改性明胶磁性Fe3O4纳米粒子的制备及其性能研究

合集下载

微-纳米Fe3O4磁粒子的表面改性及在免疫分析中的初步应用的开题报告

微-纳米Fe3O4磁粒子的表面改性及在免疫分析中的初步应用的开题报告

微-纳米Fe3O4磁粒子的表面改性及在免疫分析中的初步应用的开题报告一、研究背景及意义近年来,微/纳米磁性材料在生物医学领域不断得到应用和发展,其中Fe3O4磁粒子作为一种重要的磁性纳米材料,因其具有超顺磁性、良好的稳定性和可控性等优良特性而备受关注。

在免疫分析、疾病诊断等方面,纳米Fe3O4磁粒子已成为一种重要的生物分离、传递、检测工具。

但是,Fe3O4磁粒子在生物体系中的应用仍面临一些问题,例如在生物样品中的高分散能力、稳定性、表面生物活性等方面还需要进一步优化,这需要通过表面改性技术来实现。

因此,本研究将探讨如何通过表面修饰方法提高纳米Fe3O4磁粒子在生物样品中的分散性、稳定性和生物活性,从而为其在免疫分析中的应用提供基础支撑。

二、研究内容本研究将主要围绕以下内容展开:1.制备微/纳米Fe3O4磁性材料:采用溶剂热法或共沉淀法制备微/纳米Fe3O4磁粒子,并通过XRD、TEM等手段对其进行表征。

2.表面改性探究:利用硅烷偶联剂、PEG等化学方法对微/纳米Fe3O4磁粒子表面进行改性,并考察其影响。

3.免疫分析应用研究:以肿瘤标记物为模型,利用改性后的磁粒子和特异性抗体进行荧光免疫分析,评估其在肿瘤标记物检测中的应用潜力。

三、研究方法1.制备微/纳米Fe3O4磁性材料:采用溶剂热法或共沉淀法制备微/纳米Fe3O4磁粒子,并通过XRD、TEM等手段对其进行表征。

2.表面改性探究:利用化学合成方法对微/纳米Fe3O4磁粒子表面进行改性,并利用FTIR、zeta电位等性能测试对其进行表征。

3.免疫分析应用研究:以肿瘤标记物为模型,利用改性后的磁粒子和特异性抗体进行荧光免疫分析,评估其在肿瘤标记物检测中的应用潜力。

四、期望成果本研究旨在提高微/纳米Fe3O4磁粒子在生物体系中的分散性、稳定性和生物活性,为其在免疫分析中的应用提供基础支撑,最后,期望实现以下成果:1.成功制备微/纳米Fe3O4磁性材料,并对其进行表征。

受控部分还原法制备Fe3O4纳米粒子及其性能研究

受控部分还原法制备Fe3O4纳米粒子及其性能研究
Z a gJ h n Z a gWe jn L D z o g h n i u h n n i e h n c u
( e a m n o h m s y H ah n nv r t o ce c n e h o g , h n H b i 3 0 4, hn ) D p r e t f e i r , u z o gU iesy f i ea dT c n l y Wu a u e 4 0 7 C i t C t i S n o a
A s atF 3 4 a o at lsw r y tei d b o t l d p ri e u t n meh d ( P M) T e snh s e bt c:e n p rce ee snh s e y ac nr l at lrd ci to C R . h y te i d r 0n i z oe a o z
te r a t n,h sma e t e ietamo p r n e e s r . h r n m iso lcr n mirs o y, ry d f a t n, y a c h e ci ti d h n r t s hee u n c s ay T e ta s s in ee to co c p X—a i r ci d n mi o f o
维普资讯
20 0 7年AT ON C I ENGI NEERI NG
Jn2 0 a.0 7
Vo . 2 No 1 13 .
第3 2卷 第 1 期
受 控 部 分 还原 法 制备 F 4纳 米粒 子及 其性 能研 究 e0
应 系统 中的 F 稍过 量 ,故采 用 C R 时 ,反 应 系统 无 须 惰 性 气 体保 护 ,合 成 的 F 纳 米 粒 子 经 T M、X r 、动 态 e PM eO E —y a 光 散射 和 振 动磁 强计 等 进 行 表征 ,结 果 表 明 F 性 粒 子 的平 均 粒 径 为 1 m,且 粒 径 分 布 窄 ,具 有 极 好 的 超 顺 磁 eO 磁 6n 性 。C R 法使 得 在 一般 条 件下 合 成 高 质量 的纳 米粒 子 和 F 流 体成 为可 能 。 PM eO 磁 关 键 词 :纳 米粒 子 ;磁 流体 ;部 分还 原 中 图分 类号 :T 56 1 文献 标识 码 :A 文章 编 号 :0 5 0 5 (0 7 1— 8 3 Q 8 . 24— 10 20 ) 0 3—

Fe3O4磁性纳米微粒的制备及药物缓释性能的研究

Fe3O4磁性纳米微粒的制备及药物缓释性能的研究

Fe3O4磁性纳米微粒的制备及药物缓释性能的研究刘坤;陈良勇;蒋恒;韩钧尧;徐敏;林金辉;马晓艳【摘要】采用水热法制备了Fe3O4磁性纳米微粒,采用FTIR、XRD和SEM等技术对样品的粒径、晶体结构和形貌进行了表征,选用盐酸多西环素为模型药物,研究了不同药物浓度条件下Fe3O4磁性纳米微粒的吸附性能以及不同pH条件下的药物释放行为.结果表明:Fe3O4磁性纳米微粒在药物浓度0.1 g/L时,对药物吸附率最高,达到46.2%,pH =3时药物缓释性能最佳.【期刊名称】《广州化工》【年(卷),期】2014(042)004【总页数】3页(P66-68)【关键词】水热法;Fe3O4磁性纳米微粒;吸附;释放【作者】刘坤;陈良勇;蒋恒;韩钧尧;徐敏;林金辉;马晓艳【作者单位】成都理工大学材料与化学化工学院,四川成都610059;成都理工大学材料与化学化工学院,四川成都610059;成都理工大学材料与化学化工学院,四川成都610059;成都理工大学材料与化学化工学院,四川成都610059;成都理工大学材料与化学化工学院,四川成都610059;成都理工大学材料与化学化工学院,四川成都610059;成都理工大学材料与化学化工学院,四川成都610059【正文语种】中文【中图分类】TB321随着新型药剂学的逐步成熟,药物制剂在理论、工艺及研究等方面进入了一个全新的阶段,缓控释制剂和靶向制剂已经成为了研究的热点[1]。

其中就包括以磁性纳米材料为药物载体的研究,其小尺寸效应、良好的靶向性、生物相容性、生物降解性和功能基团等优点,不仅能弥补传统给药系统的缺陷(药物无法到达特定病变位置、无法在某个局部形成较高浓度而不产生毒副作用[2]),也可为药物缓释的发展提供支持。

Fe3O4 磁性纳米微粒是一类非常重要的无机磁性功能材料,由于其突出的磁响应性和超顺磁性在诸多领域显示出了强大的生命力[3-6]。

目前,用于合成磁性Fe3O4 纳米微粒的方法较多,如中和沉淀法[7]、化学共沉淀法[8]、溶胶-凝胶法[9]、微乳液法[10]和水热法[11-12]等。

《2024年Fe3O4@SiO2磁性纳米颗粒的制备研究》范文

《2024年Fe3O4@SiO2磁性纳米颗粒的制备研究》范文

《Fe3O4@SiO2磁性纳米颗粒的制备研究》篇一摘要:本文主要研究Fe3O4@SiO2磁性纳米颗粒的制备过程。

通过对材料合成条件的探索和优化,实现了高质量的磁性纳米颗粒的制备。

本文详细介绍了制备方法、表征手段以及所制备的磁性纳米颗粒的性质和应用。

一、引言随着纳米科技的不断发展,磁性纳米颗粒因其独特的物理化学性质,在生物医学、环境科学、材料科学等领域具有广泛的应用前景。

Fe3O4@SiO2磁性纳米颗粒作为一种重要的磁性纳米材料,其制备方法和性质研究具有重要意义。

二、Fe3O4@SiO2磁性纳米颗粒的制备方法1. 材料与试剂(1)主要材料:四氧化三铁(Fe3O4)纳米颗粒;(2)试剂:正硅酸乙酯(TEOS)、氨水、乙醇等。

2. 制备过程(1)首先,通过共沉淀法或热分解法制备出四氧化三铁(Fe3O4)纳米颗粒;(2)然后,在Fe3O4纳米颗粒表面包裹一层二氧化硅(SiO2),通过控制TEOS与氨水的反应,形成核壳结构的Fe3O4@SiO2磁性纳米颗粒;(3)最后,通过离心、洗涤、干燥等步骤得到纯净的Fe3O4@SiO2磁性纳米颗粒。

三、制备过程中的影响因素及优化措施1. 影响因素:反应温度、反应时间、反应物的浓度和比例等都会影响Fe3O4@SiO2磁性纳米颗粒的制备过程和性质。

2. 优化措施:通过控制反应条件,如调节反应温度、时间以及反应物的浓度和比例,可得到具有不同尺寸和表面性质的Fe3O4@SiO2磁性纳米颗粒。

此外,还可以通过添加表面活性剂、调节pH值等方法进一步优化制备过程。

四、表征与性质分析1. 表征手段:通过透射电子显微镜(TEM)、X射线衍射(XRD)、动态光散射(DLS)等手段对Fe3O4@SiO2磁性纳米颗粒进行表征。

2. 性质分析:结果表明,所制备的Fe3O4@SiO2磁性纳米颗粒具有良好的磁性能和稳定性,尺寸分布均匀,表面光滑。

此外,其还具有良好的生物相容性和低毒性,为生物医学应用提供了良好的基础。

纳米四氧化三铁的化学制备及应用的研究进展

纳米四氧化三铁的化学制备及应用的研究进展

纳米四氧化三铁的化学制备及应用的研究进展摘要:纳米四氧化三铁在在物理、化学等方面表现出优异的性质,因此其制备方法受到了广泛关注。

本文主要综述了纳米四氧化三铁粒子的化学制备方法,包括共沉淀法、微乳液法、溶剂热法等,说明了各个方法的特点,此外介绍了纳米四氧化三铁在催化、吸附、吸波等方面的应用。

关键词:纳米四氧化三铁化学制备方法应用1引言近年来,有关磁性Fe3O4纳米微粒的合成方法及性质研究受到愈来愈多的重视,这是因为磁性Fe3O4纳米微粒具有许多特殊物理和化学性能[1]。

目前,纳米Fe3O4微球的制备方法主要有共沉淀法、微乳液法、溶剂热法等,共沉淀法的操作简单易控制;微乳液法制备的纳米粒子具有粒径分布窄,稳定性好等特点,但其影响因素较多,制备过程较复杂;溶剂热法制备的微球胶体稳定性较差且颗粒大,但此方法可以生长出各类形貌的化合物,这对晶体生长的研究具有重要价值[2]。

未来可将多种传统方法结合,克服单一的制备方法的缺点。

本文就纳米Fe3O4微粒的制备方法及应用进行了综述。

2纳米四氧化三铁的化学制备工艺及应用进展2.1共沉淀法共沉淀法是目前最普遍的使用方法,其方法在包含两种或两种以上金属离子的可溶性盐溶液中,加入适量的沉淀剂,使金属离子均匀沉淀或结晶出来,再将沉淀物脱水或热分解而制得纳米微粉[5]。

夏光强等[3]采用共沉淀法制备纳米Fe3O4,实验过程中发现温度对实验影响不大,对于条件较差的实验室而言,只要保持在40-60℃的温度范围内进行实验即可,此外反应物的添加顺序会影响产物粒子的形貌,反应时间的长短对颗粒细度无明显影响,而沉淀温度过高过低都不利于沉淀,选择50℃左右效果最佳,因此实验选择反相共沉淀法,在50℃水浴环境中,保温10min,PH设定为10左右的实验条件,达到理想的实验效果。

2.2微乳液法微乳液法是利用两种互不相溶的溶剂在表面活性剂的作用下形成热力学稳定的、各向同性、外观透明或半透明的分散体系[5]。

超顺磁性Fe3O4磁性聚合物载药胶束的制备与磁靶向载药体系性能研究

超顺磁性Fe3O4磁性聚合物载药胶束的制备与磁靶向载药体系性能研究

超顺磁性Fe3O4磁性聚合物载药胶束的制备与磁靶向载药体系性能研究一、概述随着医学领域的深入发展,癌症治疗已成为当代医学面临的重大挑战之一。

尽管传统的手术、放疗和化疗等手段在一定程度上能够控制病情,但其对正常细胞的损伤以及药物的非特异性分布等问题仍亟待解决。

探索新型的、具有靶向性的药物传输体系成为了当前的研究热点。

超顺磁性Fe3O4磁性聚合物载药胶束作为一种新型的磁靶向载药体系,因其独特的磁响应性和生物相容性,在肿瘤治疗中显示出巨大的潜力。

超顺磁性Fe3O4纳米粒子,作为一种重要的磁性材料,具有优异的磁响应性能,能够在外部磁场的作用下实现定向移动。

与此其超顺磁性质使得粒子在去除外部磁场后能够迅速失去磁性,从而避免了对生物体的潜在危害。

将Fe3O4纳米粒子与聚合物载药胶束相结合,不仅可以实现药物的靶向输送,还能通过调控聚合物的性质和结构,优化药物在体内的释放行为。

本研究旨在制备具有优良磁靶向性能的超顺磁性Fe3O4磁性聚合物载药胶束,并对其性能进行深入研究。

我们将通过化学合成法制备出粒径均匀、磁性能稳定的Fe3O4纳米粒子。

利用聚合物反应合成不同分子量的嵌段聚合物,并通过适当的方法将Fe3O4纳米粒子与聚合物相结合,形成稳定的磁性聚合物载药胶束。

在此基础上,我们将进一步探讨载药胶束的制备工艺、药物释放行为以及磁靶向性能等关键问题。

通过本研究的开展,我们期望能够为磁靶向载药体系的设计和优化提供新的思路和方法,为癌症等重大疾病的治疗提供更为安全、有效的药物传输手段。

我们也期望通过本研究的成果,推动磁性纳米材料在生物医学领域的广泛应用,为人类的健康事业做出更大的贡献。

1. 介绍药物传输系统的重要性及磁靶向载药体系的研究背景在现代医学领域,药物传输系统的重要性日益凸显。

药物传输系统不仅关乎药物的治疗效果,更直接影响患者的生存质量。

一个高效、精准的药物传输系统能够确保药物准确到达病灶部位,发挥最大的治疗作用,同时减少药物在非病灶部位的分布,从而降低副作用,提高患者的生活质量。

强磁性Ni掺杂Fe3O4纳米磁粉的制备及性能研究

强磁性Ni掺杂Fe3O4纳米磁粉的制备及性能研究

一 3 旦 誊
窘 三
图3 掺杂纳米磁粉的红外吸收图
舸p拳煎放 ·,■um●■‘■“^t■a■I“m研
2005年(第四届)中田纳米科技西安研讨会论文集
Nano∞ienee&髓曲肭蛔r 2,11115 the 4蛆Chinese SYml砌aUm Oll
2.3掺杂纳米磁粉的透射电子显徽镜(TEM)测试 从掺杂Fe304纳米磁粉的透射电镜照片可以看出,掺杂Fe30。纳米粒子的粒径基本上在20nm左右,与由谢乐公
嬲the20惦年(第四届)中田纳米科技西安研讨会论文集 4恤Chln雠¥ymimattm on N*n懈elenee&Teehnology
薯墨圈_蕾皇曩焉圈_置冒冒——_置墨—墨_薯瞄囊_—一1 1"
li
强磁性Ni掺杂Fe304纳米磁粉的制备及性能研究
王芸1 马季玫1’2沈新元1 (1.东华大学材料科学与工程学院,东华大学纤维材料改性国家重点实验室,上海200051)
神、铀眷煎放 —,^■N■j‘I●“■t■,■■∞研
21105年(第四届)中田纳米科技西善£研讨会}论文jI

2005 the 4'k Chinese Symposium on Nauoscience&Tecimology
NiCl2·6H:O
Fe3+
2+
Fe
图1掺杂磁流体的制备流程图 1.3试剂及仪器
·286·一
厂/一一
.f

萼£a)一loq叮蠲叠0霉‘ -、|
. 一—一//
州icfield(G) 3500 ua000-2500-2'00_3·1500 1000—500

3∞加∞15∞2000 2500珊Ⅺ3500
图5掺杂纳米磁粉的饱和磁化曲线

新型磁性Fe_3O_4_EDTA复合纳米粒子的制备及性能研究

新型磁性Fe_3O_4_EDTA复合纳米粒子的制备及性能研究
A
其吸收峰向低波数移动 < 除此以外 * 在 ;CB< >/ ?@ A = 和 EC=< ’/ ?@ A = 处的两个吸收峰也分别和 #123 中 ( A .、 (D& A (D& 及 ( A H 键 的 吸 收 峰 相 对 应 * 同 时 * 由于分子间氢键的形成 * 使参与形成氢键的化学 键的力常数减少 * 吸收频率向低波数移动 * 在图 =I
?
?- !
结果与讨论
红外光谱分析
图 = 为改性前后样品以及 #123 的红外光谱 图 < 由图 =5 可见 * 未经改性 +,- ./ 的特征吸收峰为 >;/< ; ?@ A = 和 - /B=< C ?@ A = * 分别对应于 +,- ./ 的 特征吸收峰和 +,-./ 表面的羟基伸缩振动峰 * 由于 纳米粒子表面结合水的存在 * 在 = B-;< / ?@ A = 处出 现了 D A . A D 的弯曲振动峰 < 在图 =? 中 * #123 的特征吸收峰为 = B&;< E ?@ A = 强吸收峰、 - >’’ F A= 间宽而散的吸收峰以及 - =’’ ?@ = >’’ F ;>’ ?@ A = 之间的数个吸收峰 * 分别对应于缔合态酰胺 ! 带的 缔合态的 !.D 吸收和 ( A .、 !( G . 吸收、 A( (D& ) & 及 ( A H 键的吸收 < 对于经 #123 改性后的 +,- ./ 粒 子 * !( G . 向长波方向移动 * 并和 +,- ./ 表面的羟基伸 缩振动峰合并 * 在 = B&-< C ?@ A = 处出现了强的吸收 峰 * 这可能是 (.. 与 +,- ./ 粒子表面形成了一定 程度的化学键合 * 从而导致了 ( G . 的电子更分散 *

fe3o4纳米颗粒合成

fe3o4纳米颗粒合成

一、引言纳米颗粒是指直径小于100纳米的微粒子,具有较大的比表面积和量子尺寸效应等特性,广泛应用于医学、材料科学、能源、环境保护等领域。

其中,Fe3O4纳米颗粒具有磁性、生物相容性和化学稳定性等优良特性,因此被广泛应用于生物医学领域中。

二、研究现状Fe3O4纳米颗粒的合成方法主要包括化学共沉淀法、水热法、溶胶-凝胶法、氢热还原法等。

其中,化学共沉淀法是一种常用的合成方法,但其制备过程中需要使用大量的化学试剂,且存在产物结晶不完全、粒径分布不均匀等问题。

因此,近年来研究人员开始关注使用可再生和环境友好的方法制备Fe3O4纳米颗粒。

三、可再生合成方法目前,可再生合成方法主要包括植物提取物辅助合成法、微生物辅助合成法等。

其中,植物提取物辅助合成法具有操作简单、环境友好等优点。

研究人员发现,某些植物提取物中含有的多酚、蛋白质等有机分子可以作为还原剂和稳定剂,用于Fe3O4纳米颗粒的合成。

四、植物提取物辅助合成法1. 实验步骤(1)制备植物提取物:将干燥的植物材料粉碎并加入无水乙醇中浸泡过夜,随后离心收集液体部分即可得到植物提取物。

(2)制备Fe3O4纳米颗粒:将适量的FeCl3和FeCl2混合溶液滴加到植物提取物中,并进行超声处理。

随着反应时间的增加,产物会逐渐由棕色转变为黑色。

(3)分离和洗涤:通过磁性分离器将Fe3O4纳米颗粒分离出来,并使用无水乙醇将其洗涤干净。

(4)表征:使用扫描电子显微镜、透射电子显微镜、X射线衍射等方法对合成的Fe3O4纳米颗粒进行表征并确定其粒径和形貌等性质。

2. 实验结果通过实验,研究人员成功合成了具有较好分散性和稳定性的Fe3O4纳米颗粒。

经过表征发现,其平均粒径为20纳米左右,呈球形或椭圆形,并且具有良好的磁性。

五、结论通过植物提取物辅助合成法,可以制备出具有良好分散性和稳定性的Fe3O4纳米颗粒。

该方法具有操作简单、环境友好等优点,并有望应用于生物医学等领域中。

但是,目前该方法仍面临一些问题,如产物粒径分布不均匀、反应时间长等,需要进一步改进和优化。

《2024年Fe3O4@SiO2磁性纳米颗粒的制备研究》范文

《2024年Fe3O4@SiO2磁性纳米颗粒的制备研究》范文

《Fe3O4@SiO2磁性纳米颗粒的制备研究》篇一一、引言随着纳米科技的飞速发展,磁性纳米颗粒因其独特的物理和化学性质在生物医学、环境科学、材料科学等领域展现出广阔的应用前景。

其中,Fe3O4磁性纳米颗粒以其超顺磁性、生物相容性及易于表面修饰等特点备受关注。

为了进一步提高其稳定性和生物相容性,将Fe3O4磁性纳米颗粒表面包覆一层SiO2成为了一种常见的策略。

本文旨在研究Fe3O4@SiO2磁性纳米颗粒的制备方法,并探讨其制备过程中的关键因素和优化策略。

二、实验材料与方法1. 材料准备实验所需材料包括:四氧化三铁(Fe3O4)纳米颗粒、正硅酸乙酯(TEOS)、氨水、乙醇、去离子水等。

2. 制备方法(1)Fe3O4磁性纳米颗粒的合成:采用共沉淀法或热分解法合成Fe3O4磁性纳米颗粒。

(2)Fe3O4@SiO2磁性纳米颗粒的制备:在Fe3O4磁性纳米颗粒表面包覆SiO2。

具体步骤包括将Fe3O4纳米颗粒分散在乙醇中,加入TEOS和氨水,在一定温度下反应,使TEOS在Fe3O4表面水解生成SiO2。

三、实验过程与结果分析1. 实验过程(1)Fe3O4磁性纳米颗粒的合成:在室温下,将FeSO4和FeCl3按一定比例混合,加入氢氧化钠溶液,调节pH值,经过共沉淀或热分解反应得到Fe3O4磁性纳米颗粒。

(2)Fe3O4@SiO2磁性纳米颗粒的制备:将合成的Fe3O4磁性纳米颗粒分散在乙醇中,加入适量的TEOS和氨水,在一定温度下搅拌反应一段时间,使TEOS在Fe3O4表面水解生成SiO2。

通过控制反应条件,可以得到不同厚度的SiO2包覆层。

2. 结果分析(1)表征方法:采用透射电子显微镜(TEM)、X射线衍射(XRD)、振动样品磁强计(VSM)等手段对制备的Fe3O4@SiO2磁性纳米颗粒进行表征。

(2)结果分析:通过TEM观察,可以看到Fe3O4@SiO2磁性纳米颗粒具有明显的核壳结构,SiO2包覆层均匀地覆盖在Fe3O4核表面。

Fe3O4微-纳米磁性材料的合成、自组装及其性能研究共3篇

Fe3O4微-纳米磁性材料的合成、自组装及其性能研究共3篇

Fe3O4微-纳米磁性材料的合成、自组装及其性能研究共3篇Fe3O4微/纳米磁性材料的合成、自组装及其性能研究1随着科学技术的发展,人们对于制备微/纳米磁性材料的需求越来越大。

Fe3O4是一种常见的磁性材料,其微/纳米级别的制备和自组装已经得到了广泛的研究。

本文介绍Fe3O4微/纳米磁性材料的制备、自组装以及其性能研究。

首先,我们来谈一谈Fe3O4微/纳米磁性材料的制备方法。

目前常见的制备方法有化学合成法、物理气相沉积法、溶胶-凝胶法和高能球磨法等。

其中,化学合成法是最为常用的制备方法。

该方法具有生产工艺简便、产率高、重复性好等优点。

此外,该方法还能够控制制备出的Fe3O4微/纳米磁性材料的形貌、粒度和分散性等。

物理气相沉积法则主要应用于纳米级别的制备,其制备的Fe3O4纳米粒子具有均一的形貌和尺寸,可以用于磁珠、磁液的制备。

而溶胶-凝胶法和高能球磨法则适用于微/纳米级别的制备,能够制备出高度分散的Fe3O4微/纳米粒子。

接下来,我们来探讨Fe3O4微/纳米磁性材料的自组装现象。

自组装是一种通过自身物性和相互作用力而形成的层次结构的过程。

一种常见的Fe3O4微/纳米磁性材料的自组装结构是Fe3O4磁性微球。

该结构由大量的Fe3O4微粒组成,具有磁响应性、生物相容性以及化学稳定性等特点。

还有一种自组装形态,是通过氧化反应将FeSO4和FeCl2混合反应而成的Fe3O4/FeOOH微球。

该微球结构具有优异的吸附作用,广泛应用于水处理、环境管理等领域。

最后,我们来介绍一下Fe3O4微/纳米磁性材料的性能研究。

首先是其磁性性质。

由于Fe3O4微/纳米粒子的粒径小于宏观尺寸,其表现出的磁性行为不同于宏观尺寸下的Fe3O4。

一些研究表明,Fe3O4微/纳米粒子具有单分子磁性特征、超顺磁性特性等。

其次,Fe3O4微/纳米磁性材料还具有生物相容性、生物成像以及药物传输等应用方向。

例如,可以将Fe3O4包覆在生物相容性高的聚合物中,用于药物输送。

11.2 磁性Fe304纳米粒子

11.2 磁性Fe304纳米粒子

磁性Fe304纳米粒子1 磁性Fe304纳米粒子的表面修饰及功能化与磁性Fe304纳米粒子尺寸相关联的一个不可避免的问题是其在较长一段时间内固有的不稳定性,这主要表现在两个方面:(1)分散性的降低,小粒径的纳米粒子聚集并形成大的颗粒以降低表面能,从而降低了粒子的分散性能;(2)磁性能的损耗,裸的磁性Fe304纳米粒子由于其高化学活性容易在空气中氧化,进而损失部分磁性能。

因此,在Fe304纳米粒子的应用中(后)重要的是要制定一个保护策略来保护Fe304不受损坏。

尤其在生物医学应用方面,需要获得亲水性的纳米Fe304颗粒,因为大多数生物介质是接近中性的水溶液,因此更有必要对Fe304颗粒表面进行有效的修饰及功能化。

近年来,各种材料已被用来对Fe304颗粒表面进行修饰及功能化,主要分为有机材料和无机材料(图3.1)。

图3.1 Fe304颗粒表面修饰及功能化材料分类图1.1 有机材料修饰表面经一些有机材料修饰后的磁性纳米粒子主要用于磁记录,电磁屏蔽,磁共振成像,尤其是生物领域的药物靶向,磁性细胞分离,生物监测等。

外加高磁场下磁性纳米粒子的稳定性对其在生物体内应用以及其他领域的应用是非常重要的。

采用有机材料对磁性纳米粒子的表面修饰及功能化的方法有很多,包括原位涂层法和合成后涂层法。

此外,为防止团聚及确保纳米粒子具有好的生物相容性,使用不同的有机材料对磁性纳米粒子表面进行修饰,比如葡萄糖,淀粉,聚乙二醇(PEG),聚(D,L-丙交酯)(PLA),聚乙烯亚胺(PEI),特别是一些亲水性的有机材料。

1.1.1 小分子及表面活性剂经适当的表面改性后,磁性纳米粒子的表面带有一些特殊官能团(例如-OH,-COOH,-NH2,-SH),有利于通过连接不同的生物活性分子做进一步修饰从而适应各种应用。

作为小分子,硅烷常被用来修饰磁性纳米粒子及对裸露的磁核表面有效官能团化,常见的硅烷修饰剂有3-氨基丙基三乙氧基硅烷(APTES),p-氨基苯基三甲氧基硅烷(APTS)及巯基丙基三甲氧基硅烷(MPTES)。

磁性Fe3O4纳米粒子的制备及其表面修饰研究[开题报告]

磁性Fe3O4纳米粒子的制备及其表面修饰研究[开题报告]

磁性Fe3O4纳米粒子的制备及其表面修饰研究[开题报告]毕业论文开题报告环境工程磁性Fe3O4纳米粒子的制备及其表面修饰研究一、选题的背景、意义随着人类文明的不断进步和科学技术的飞速发展,特别是能源开发、空间技术、电子技术、激光技术、光电子技术、传感技术等高新技术领域的高速发展,元器件的小型化、智能化、高集成、高密度存储和超快传输等对材料提出了新的需求[1]。

再者随着中国工业经济的飞速发展,现有的传统材料己经难以满足其需求,开发、利用高性能材料和新功能材料己经成为共识。

纳米材料就应运而生,由于纳米材料的界面组元所占比例大,纳米颗粒表面原子比例高,与通常的多晶材料或者微粉完全不同,其表现出高的表面效应、体积效应、小尺寸效应、量子尺寸效应和宏观量子隧道效应,派生出传统固体材料所不具备的许多特殊性质[2-4]。

纳米科学技术的快速发展,让磁性纳米材料得到了长足的发展。

近年来的磁性材料,在非晶态、稀土永磁化合物、超磁致伸缩、巨磁电阻等新材料相继发现的同时,由于组织的微细化、晶体学方位的控制、薄膜化、超晶格等新技术的开发,其特性显著提高。

这些不仅对电子、信息产品等特性的飞跃提高作出了重大贡献,而且成为新产品开发的原动力。

目前,磁性纳米材料已成为支持并促进社会发展的关键材料。

而磁性Fe304纳米粒子是纳米材料中一类新颖的功能材料,四氧化三铁的化学稳定性好,原料易得,价格便宜,广泛用于涂料、油墨等领域[5-7]。

四氧化三铁纳米粒子的磁性比大块本体材料的强许多倍,当四氧化三铁纳米粒子的粒径d<16nm,具有超顺磁性。

磁性四氧化三铁纳米粒子磁性能好,用于优质磁记录材料的制备,同时是制备α-Fe203等重要磁记录材料的中间体,还可作为微波吸收材料及催化剂。

近年来,四氧化三铁纳米粒子具有良好的磁性,在生物医学方面表现出潜在的广泛用途,如磁性四氧化三铁纳米粒子可作为药物的主要载体进行靶向给药,也可用于细胞及DNA的分离等,成为倍受关注的研究热点。

《2024年Fe3O4@SiO2磁性纳米颗粒的制备研究》范文

《2024年Fe3O4@SiO2磁性纳米颗粒的制备研究》范文

《Fe3O4@SiO2磁性纳米颗粒的制备研究》篇一摘要:本文详细研究了Fe3O4@SiO2磁性纳米颗粒的制备过程,通过一系列实验,成功合成出具有优异性能的磁性纳米颗粒。

本文首先介绍了制备背景及意义,随后详细描述了实验材料、方法及步骤,接着对实验结果进行了深入分析,最后总结了实验的结论和展望了未来的研究方向。

一、引言随着纳米科技的快速发展,磁性纳米颗粒因其独特的物理化学性质,在生物医学、环境保护、催化等领域有着广泛的应用前景。

Fe3O4作为一种典型的磁性材料,具有高磁性、生物相容性好等优点。

而Fe3O4@SiO2磁性纳米颗粒更是以其良好的稳定性、生物相容性和易于表面修饰等特点,成为当前研究的热点。

因此,研究Fe3O4@SiO2磁性纳米颗粒的制备方法,对于拓展其应用领域具有重要意义。

二、实验材料及方法1. 材料准备实验所需材料包括:三价铁盐、亚铁盐、硅源、表面活性剂、溶剂等。

所有材料均需为分析纯,且在使用前进行必要的处理。

2. 制备方法采用溶胶-凝胶法与共沉淀法相结合的方式制备Fe3O4@SiO2磁性纳米颗粒。

首先合成Fe3O4磁性纳米颗粒,然后在其表面包覆一层SiO2。

(1)Fe3O4磁性纳米颗粒的合成:通过共沉淀法,在一定的温度和pH值条件下,使三价铁盐和亚铁盐共沉淀,经过后续的热处理得到Fe3O4磁性纳米颗粒。

(2)SiO2包覆:以合成的Fe3O4磁性纳米颗粒为核,通过溶胶-凝胶法在其表面包覆一层SiO2。

控制反应条件,使得SiO2均匀包覆在Fe3O4表面。

三、实验步骤1. Fe3O4磁性纳米颗粒的合成将三价铁盐和亚铁盐按一定比例混合,加入溶剂中,调节pH 值至合适范围,进行共沉淀反应。

反应完成后,经过滤、洗涤、干燥和热处理等步骤,得到Fe3O4磁性纳米颗粒。

2. SiO2包覆将合成的Fe3O4磁性纳米颗粒分散在硅源溶液中,加入表面活性剂,调节pH值和温度,进行溶胶-凝胶反应。

反应完成后,同样经过滤、洗涤、干燥等步骤,得到Fe3O4@SiO2磁性纳米颗粒。

《2024年Fe3O4@SiO2磁性纳米颗粒的制备研究》范文

《2024年Fe3O4@SiO2磁性纳米颗粒的制备研究》范文

《Fe3O4@SiO2磁性纳米颗粒的制备研究》篇一一、引言随着纳米科技的飞速发展,磁性纳米颗粒因其独特的物理和化学性质在众多领域中得到了广泛的应用。

其中,Fe3O4@SiO2磁性纳米颗粒因其良好的生物相容性、磁响应性和化学稳定性,在生物医学、药物传递、催化等领域具有巨大的应用潜力。

本文旨在探讨Fe3O4@SiO2磁性纳米颗粒的制备方法及其相关性能研究。

二、制备方法概述Fe3O4@SiO2磁性纳米颗粒的制备主要采用溶胶-凝胶法和化学共沉淀法相结合的方法。

首先,通过化学共沉淀法合成Fe3O4磁性纳米颗粒,然后在其表面包覆一层SiO2,形成Fe3O4@SiO2核壳结构。

三、实验部分1. 材料与试剂实验所需材料包括:铁盐、碱溶液、硅源、催化剂等。

所有试剂均为分析纯,使用前未进行进一步处理。

2. Fe3O4磁性纳米颗粒的合成将铁盐溶液与碱溶液混合,通过共沉淀法合成Fe3O4磁性纳米颗粒。

在反应过程中,控制反应温度、pH值和反应时间,以获得理想的颗粒大小和形态。

3. Fe3O4@SiO2磁性纳米颗粒的制备将合成的Fe3O4磁性纳米颗粒分散在硅源溶液中,加入催化剂,通过溶胶-凝胶过程在Fe3O4颗粒表面包覆一层SiO2。

在包覆过程中,控制反应温度、时间和硅源浓度,以获得理想的核壳结构。

四、结果与讨论1. 形貌与结构分析通过透射电子显微镜(TEM)和X射线衍射(XRD)对制备的Fe3O4@SiO2磁性纳米颗粒进行形貌和结构分析。

结果表明,颗粒呈球形,具有明显的核壳结构,且结晶度良好。

2. 磁性能分析通过振动样品磁强计(VSM)对Fe3O4@SiO2磁性纳米颗粒的磁性能进行分析。

结果表明,该颗粒具有较高的饱和磁化强度和良好的磁响应性。

3. 包覆效率与稳定性分析通过测量SiO2层厚度和包覆前后的粒径变化,计算包覆效率。

同时,通过长期稳定性实验评估Fe3O4@SiO2磁性纳米颗粒在水溶液中的稳定性。

结果表明,该颗粒具有良好的包覆效率和较高的稳定性。

磁性四氧化三铁纳米粒子的合成及改性

磁性四氧化三铁纳米粒子的合成及改性

21
结论
本 文 首 先 利 用 化 学 共 沉 淀 法 合 成 了 纳 米 级 的 Fe3O4 粒 子 , 在合成过程中, 氨水要保证是过量的, 因为要想得到较纯的 Fe3O4, Fe2+要完全沉淀, 溶液的 pH 值 必 须 一 直 保 持 大 于 等 于 8.9, 并一 定 要 保 持 高 速 搅 拌 , 这 样 粒 子 才 能 达 到 纳 米 级 。 用 油 酸 和 SDBS 两 种 表 面 活 性 剂 对 合 成 好 的 Fe3O4 粒 子 进 行 改
(4) 改性前后 Fe3O4 透射电镜分析
图 4 Fe3O4 改性前 (a) 后 (b) 的透射电镜照片
图 4a 和 4b 分别是改性前后的 Fe3O4 透射电镜照片, 从图 4a 中 可 以 明 显 看 出 改 性 前 的 Fe3O4 粒 子 之 间 因 存 在 粒 子 间 的 作用力而引起的粒子聚集状况, 而改性后的粒子却有着较好 的分散性。 用双层表面活性剂改性后的 Fe3O4 粒子, 由于表面 被双层表面活性剂所包覆, 因而粒子之间会产生静电斥力, 使得粒子在溶剂中均匀分散而不聚集。
参考文献
〔1〕 Tricot, et al. Process for the preparation of magnetic beads of vinylaromaticpolymers 〔S〕 . USP4 339 337, 1982
〔2〕 Hiromichi Noguchi, Noriko Yanase, Yasuzo Uchida, et al. Preparation and characterization by thermal analysis of magnetic latex particles 〔J〕 .Appl Polym Sci,1993,48:1593~ 1597

Fe3O4磁性纳米微粒的制备及药物缓释性能的研究

Fe3O4磁性纳米微粒的制备及药物缓释性能的研究
征 ,选用盐酸 多西环素 为模 型药物 ,研究 了不 同药 物浓 度条 件下 F e , O 磁性纳米微粒 的吸附性能 以及不 同 p H条件下 的药 物释放行 为 。结果表 明 : F e O 磁性纳米微粒在药物浓度 0 . 1 g / L时 ,对 药物 吸附率最 高 ,达到 4 6 . 2 % ,p H=3时药物缓释性能最佳 。
刘 坤 ,陈 良勇 ,蒋 恒 ,韩钧尧 ,徐 敏 ,林金 辉 ,马晓艳
6 1 0 0 5 9 )
( 成都 X - Y - - 大 学材料 与化 学化 工 学院 ,四川 成都
摘 要 :采用水热法制备了F e , 0 磁性纳米微粒,采用 F T I R、 X R D和 S E M等技术对样品的粒径、晶体结构和形貌进行了表
关 键词 :水热法; F e O 磁性纳米微粒;吸附;释放
中图分 类号 :T B 3 2 1
文献 标 志码 :A
文章编 号 :1 0 0 1 — 9 6 7 7 ( 2 0 1 4 ) 0 4 — 0 0 6 6— 0 3
Pr e p a r a t i o n a nd Dr u g Re l e a s e Pr o p e r t y o f Fe 3 O4 Ma g ne t i c Na n o pa r t i c l e s
U n i v e r s i t y o f T e c h n o l o g y , S i c h u a n C h e n g d u 6 1 0 0 5 9 ,C h i n a )
Abs t r a c t :Fe 3 04 ma g n e t i c n a n o p a r t i c l e s we r e p r e p a r e d b y h y d r o t h e r ma l me t h o d .T he p a r t i c l e s i z e,c ys r t a l s t r u c t ur e a n d mo r p ho l o y g we r e i n v e s t i g a t e d b y用 R, XRD, a n d S EM t e c h ni q u e s . Do x y c y c l i ne h y d r o c h l o r i d e wa s c h o s e n a s a

Fe3O4磁性纳米粒子-氧化石墨烯复合材料的可控制备及结构与性能表征

Fe3O4磁性纳米粒子-氧化石墨烯复合材料的可控制备及结构与性能表征

[Article]物理化学学报(Wuli Huaxue Xuebao )Acta Phys.-Chim.Sin.2011,27(X),0001-0009Month Received:January 3,2011;Revised:March 9,2011;Published on Web:March 31,2011.∗Corresponding authors.YANG Zu-Pei,Email:yangzp@;Tel:+86-29-85308442.ZHANG Zhi-Jun,Email:zjzhang2007@;Tel:+86-512-62872556.The project was supported by the National Natural Science Foundation of China (20873090,21073224).国家自然科学基金(20873090,21073224)资助项目ⒸEditorial office of Acta Physico-Chimica SinicaFe 3O 4磁性纳米粒子-氧化石墨烯复合材料的可控制备及结构与性能表征张燚1,2陈彪2杨祖培1,*张智军2,*(1陕西师范大学化学与材料科学学院,西安710062;2中国科学院苏州纳米技术与纳米仿生研究所,江苏苏州215123)摘要:首先利用高温分解法制备了粒径为18nm 的Fe 3O 4磁性纳米粒子,并进行羧基化修饰,然后与聚乙烯亚胺(PEI)化学修饰的氧化石墨烯进行交联反应,得到磁功能化的氧化石墨烯(MGO)复合材料.研究了氧化石墨烯片上的磁性纳米粒子的可控负载及其对复合材料磁性能的影响.利用透射电子显微镜(TEM),原子力显微镜(AFM),X 射线衍射(XRD),傅里叶变换红外(FT-IR)光谱,热重分析(TGA),振荡样品磁强计(VSM)等手段对MGO 复合材料的形貌,结构和磁性能进行了表征.结果表明,我们发展的MGO 复合材料的制备方法具有简单、可控的优点,所制备的MGO 复合材料具有较高的超顺磁性.该类磁性氧化石墨烯复合材料有望在磁靶向药物、基因输运,磁共振造影,以及磁介导的生物分离和去除环境污染物等领域获得广泛的应用.关键词:氧化石墨烯;Fe 3O 4磁性纳米粒子;复合材料;可控制备;表征.中文分类号:O641Controlled Synthesis and Characterization of the Structure and Property of Fe 3O 4Nanoparticle-Graphene Oxide CompositesZHANG Yi 1,2CHEN Biao 2YANG Zu-Pei 1,*ZHANG Zhi-Jun 2,*(1School of Chemistry and Materials Science,Shaanxi Normal University,Xi ′an 710062,P .R.China ;2Suzhou Institute of Nano-tech and Nano-bionics,Chinese Academy of Sciences,Suzhou 215123,Jiangsu Province,P .R.China )Abstract:Fe 3O 4nanoparticle-graphene oxide (MGO)composites were prepared by chemically binding carboxylic acid-modified Fe 3O 4nanoparticles to polyethylenimine-functionalized graphene oxide (GO).The structure,morphology,and magnetic properties of the composites were characterized by transmission electron microscopy (TEM),atomic force microscopy (AFM),X-ray diffraction (XRD),Fourier transform infrared (FT-IR)spectroscopy,thermogravimetric analysis (TGA),and vibrating sample magnetometry (VSM).The results show that the Fe 3O 4nanoparticle content in the MGO composites can be easily controlled by changing the ratio of Fe 3O 4nanoparticles to GO in the reaction mixture.The MGO composites obtained are superparamagnetic with high saturation magnetization,which can potentially be applied in magnetic targeted drug delivery,magnetic resonance imaging,bioseparation,and magnetic guided removal of aromatic contaminants in waste water and in other fields.Key Words:Graphene oxide;Fe 3O 4nanoparticles;Composites;Controlled synthesis;Characterization0001Acta Phys.⁃Chim.Sin.2011V ol.271引言石墨烯是由单层碳原子组成的世界上最薄的二维纳米材料.1其优异的性能,如较高的机械强度(> 1060GPa),导热系数(-3000W·m-1·K-1),电子迁移率(15000cm2·V-1·s-1),以及比表面积(2600m2·g-1),2引起了科学家的广泛关注.目前石墨烯的制备技术已经较为成熟,发展了机械剥离,3晶体外延生长,4化学氧化,5化学气相沉积6和有机合成7等多种制备方法.对石墨烯进行有效的功能化,赋予其新的性质和功能,拓展其应用领域,是当今研究石墨烯材料的热点.尤其是近年来氧化石墨烯和金属纳米粒子(金,铂等),磁性纳米粒子(氧化镍,氧化钴,四氧化三铁等)的复合材料的制备以及其在材料、化学、生物医学等领域的应用研究发展迅速.8磁功能化的石墨烯复合材料具有光限幅特性,9磁介导的靶向载药,10磁共振成像11等应用而备受瞩目.磁性纳米粒子-氧化石墨烯复合材料大多是采用原位还原乙酰丙酮合铁而制备的.12-14陈永胜课题组10通过化学沉淀法制备了磁性纳米粒子-氧化石墨烯复合材料,俞书宏课题组15通过在聚苯乙烯磺酸钠(PSS)包裹的氧化石墨烯(GO)溶液中高温分解乙酰丙酮合铁来制备磁性纳米粒子-氧化石墨烯复合材料的,使复合材料表面接上了不同含量的磁性纳米粒子,并研究了其作为磁共振成像造影剂等方面.最近Chan等16通过化学交联法合成了磁性纳米粒子-氧化石墨烯复合材料,并初步研究了其在去除污水中污染物方面的应用,但他们采用二氧化硅包覆磁性纳米粒子,大大降低了复合材料的饱和磁化强度;我们课题组也采用共价交联的方式制备了磁性纳米粒子-氧化石墨烯复合材料,17但未对其可控负载进行更深入的研究.以上工作大都存一定缺陷,如复合材料中磁性纳米粒子的粒径分布不均,复合材料的饱和磁化强度低,在氧化石墨烯上的担载率不能有效控制等.这些都限制了磁性纳米粒子-氧化石墨烯复合材料在不同领域的广泛应用.针对以上问题,我们发展了一种利用组装技术制备磁性纳米颗粒-氧化石墨烯复合材料的方法.首先我们利用成熟的高温分解法获得单分散性好,粒径可控的油溶性Fe3O4磁性纳米颗粒,并通过配体交换,使其转化为带有羧基的水溶性磁性纳米粒子(记为Fe3O4-DMSA).同时将聚乙烯亚胺(PEI)共价交联到氧化石墨烯上,得到GO-PEI.最后通过控制反应中GO-PEI和Fe3O4-DMSA的比例制备了不同负载率的磁性纳米粒子-氧化石墨烯复合材料.并对复合材料的结构、形貌和性能进行了表征.2实验部分2.1试剂与仪器聚乙烯亚胺(相对分子质量为25000),乙酰丙酮合铁(Fe(acac)3,97%),油胺(90%),二苯醚(99%),二巯基丁二酸(DMSA,98%)及乙基二甲基胺丙基碳化二亚胺(EDAC,>99%),均购于Sigma-Aldrich公司(美国).硫酸,过硫酸钾,五氧化二磷,高锰酸钾,无水乙醇,环己烷,二氯甲烷,乙酸乙酯,甲苯,油酸,石墨(化学纯或者分析纯),均购于国药集团化学试剂有限公司.二甲基亚砜(DMSO,>99.9%,生工).Fe3O4纳米粒子、氧化石墨烯和复合材料形貌是利用美国Tecnai(G2F20S-Twin200kV)型透射电子显微镜(TEM)和原子力显微镜(AFM)(Veeco Dimen-sion3100)进行表征.磁性纳米粒子的结构是利用X 射线衍射(XRD)(Bruker D8Advance)进行分析.复合材料中磁性纳米粒子的负载量采用热重分析仪(TG-DTA6200,升温速率为10°C·min-1)测定.氧化石墨烯和复合材料的结构采用傅里叶变换红外(FT-IR)光谱仪(美国Pekin-Elmer,Spectrum One)进行表征.磁性纳米粒子和复合材料的磁性使用振荡样品磁强计(VSM)磁性测量系统(Lakeshore7307)进行测量.2.2氨基化氧化石墨烯(GO-PEI)的制备氧化石墨烯的制备参照我们以前的工作.11具体方法:100mL的氧化石墨稀(1mg·mL-1)加入5g 氢氧化钠和5g氯酸钠超声2h,透析,得到表面羧基化的氧化石墨烯.在25mL的羧基化的氧化石墨烯(1mg·mL-1)中加入25mL的PEI(0.1mg·mL-1)及20mg的EDAC搅拌24h,透析,得到在常温下稳定的PEI修饰的氧化石墨烯(记为GO-PEI).2.3Fe3O4-DMSA的制备采用高温分解法18制备了粒径为18nm的Fe3O4纳米粒子.具体方法为:将乙酰丙酮合铁(3 mmol),油胺(20mL)和二苯醚(10mL)加入100mL 的三颈瓶中混合,在氮气保护下进行反应.磁力搅拌升温至110°C保温2h,再升温至280°C回流反应1h.室温冷却产物,加入20mL乙醇沉淀,离心.在沉淀物中加入环己烷(20mL),油酸(-0.05mL),油胺(-0.05mL),超声使其分散均匀.离心(8000r·min-1)30min,弃上清,保留沉淀,在其中分别加入0002张燚等:Fe 3O 4磁性纳米粒子-氧化石墨烯复合材料的可控制备及结构与性能表征No.X环己烷(20mL),油酸(~0.05mL),油胺(~0.05mL),超声使其分散.再离心(6000r ·min -1)30min,获得油溶性的Fe 3O 4纳米粒子.用DMSA 进行表面修饰.具体方法为:20mg 的油溶性Fe 3O 4纳米粒子溶解在2mL 甲苯中.20mg DMSA 溶解在2mL DMSO 中,然后加入到Fe 3O 4纳米粒子的甲苯溶液中,在25°C 下搅拌12h.反应结束后,在溶液中加入乙酸乙酯,沉淀用磁铁收集,重复2-3次,再用超纯水清洗3次,最后溶解在2mL 的水中.用很稀的氢氧化钠水溶液调节其pH 值在7-8之间,即得到了水溶性很好的表面羧基化的磁性纳米粒子(Fe 3O 4-DMSA).192.4MGO 系列复合材料的合成在EDAC 存在下,利用GO-PEI 上的氨基与Fe 3O 4-DMSA 上的羧基进行交联反应,制备MGO 复合材料.具体方法为:在含有10mL 的GO-PEI (~0.3mg ·mL -1)圆底烧瓶中,加入1.5mL Fe 3O 4-DMSA 水溶液(~0.8mg ·mL -1)及0.8mL 的EDAC (25mmol ·mL -1),在室温搅拌下,反应48h.反应结束后,用磁铁富集所获得的产物,用超纯水清洗三次,除去溶液中未反应的EDAC,得到了磁功能化的氧化石墨烯复合材料,记为MGO-1.同样,GO-PEI 用量不变,将Fe 3O 4-DMSA 的用量改变为4和7mL,得到Fe 3O 4纳米粒子含量不同的MGO 复合材料,分别记为MGO-2和MGO-3.3结果和讨论3.1MGO 系列复合材料的合成图1为Fe 3O 4纳米粒子-氧化石墨烯复合材料的制备示意图.在我们的技术路线中,首先通过配体交换使高温分解法制备的油溶性的Fe 3O 4纳米粒子转化为表面带有羧基官能团的Fe 3O 4-DMSA,以便下一步与GO-PEI 的氨基共价交联.采用Hummers 和offeman 方法20得到表面和边缘带有羧基、羟基和环氧基等基团的氧化石墨烯(GO);再用PEI 共价交联GO,得到了表面带有氨基的氧化石墨烯材料(GO-PEI).最后用EDAC 交联Fe 3O 4-DMSA 与GO-PEI,得到了磁性纳米粒子-氧化石墨烯复合材料(MGO).我们所设计的实验路线是分别采用成熟的制备方法合成磁性纳米粒子和氧化石墨烯,能更有效地控制该两种材料的形貌、尺寸和表面修饰等.更重要的一点,通过改变反应混合物中Fe 3O 4纳米颗子与GO-PEI 的比例,获得了磁性可控的MGO复合材料.在我们的实验中,Fe 3O 4纳米粒子与GO-PEI 之间通过酰胺键键合,具有很好的化学和热稳定性.我们的结果还表明,Fe 3O 4-DMSA 和GO-PEI 具有良好的水溶性,其化学交联后所得到的磁性氧化石墨烯复合材料在水溶液也表现出良好的胶体稳定性.因此,我们合成的磁性氧化石墨烯复合材料所具备的以上特点有利于其在生物医学,材料等不同领域的广泛应用.3.2磁功能化氧化石墨烯复合材料的形貌和组成分析图2为GO 和GO-PEI 的AFM 图.由图2可知,制备的GO 尺寸在几十纳米到几百个纳米,厚度约为1.379nm,表明所制备的氧化石墨烯基本上为单层,也可能存在一些双层;20理论上石墨烯的厚度为0.34nm,而氧化石墨烯表面含有很多含氧基团,导致其厚度增加.GO-PEI 厚度为3.408nm,这是由于PEI 可以修饰氧化石墨烯片的两面导致其厚度显著增加.利用TEM 和XRD 对所制备的磁性纳米粒子以图1Fe 3O 4纳米粒子-氧化石墨烯复合材料制备路线示意图Fig.1Schematic synthesis diagram of Fe 3O 4nanoparticle-GO compositesDMSA:meso-2,3-dimercaptosuccinic acid;NPs:nanoparticles;PEI:polyethylene imine;EDAC:1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride;GO:graphene oxide图2(GO 和GO-PEI 的AFM 图Fig.2AFM images of GO and GO-PEI sheets0003Acta Phys.⁃Chim.Sin.2011V ol.27及其与氧化石墨烯的复合物进行了形貌,尺寸和结构的表征.图3A为Fe3O4纳米粒子TEM图,TEM结果表明,我们所制备的油溶性磁性纳米粒子单分散性较好,粒径约为18nm.图3B为Fe3O4纳米粒子的XRD图谱.图3B中的6个特征峰(2θ=30.4°,35.7°, 43.4°,53.4°,57.4°,62.7°),分别对应立方相Fe3O4的(220),(311),(400),(422),(511),(440)晶面,表明磁性物质为纯Fe3O4.21图4为氧化石墨烯担载不同含量Fe3O4纳米粒子的TEM图.从图中可以看出,Fe3O4纳米粒子均能很好地组装在GO片上形成复合材料.从TEM图中很明显地看出改变氧化石墨烯与Fe3O4纳米粒子的比例,导致Fe3O4纳米粒子吸附在GO上含量的变化.然后我们对这些Fe3O4纳米粒子-氧化石墨烯复合材料磁学性质进行了研究.MGO复合材料的磁性能依赖于Fe3O4纳米粒子的负载量,当Fe3O4纳米粒子负载量较高时,其相应的饱和磁化强度也较高,反之其负载量较少时,饱和磁化强度也较低. Fe3O4纳米粒子较少时,复合材料的饱和磁化强度较低,但是氧化石墨烯基面很多空出的位置可以通过π-π吸附一些特定的含芳环的分子,如抗癌药物,10或四环素,17等,实现载药和环境污染物吸附去除的目的.氧化石墨烯表面担载Fe3O4纳米粒子较多时,其饱和磁化强度较高,可以用于磁共振成像15或生物分离.所以通过控制复合材料上Fe3O4纳米粒子与氧化石墨烯的不同比例可以极大地扩展其应用领域.图5为磁功能化的氧化石墨烯复合材料在空气气氛下的热重分析图.第一阶段,100-150°C时的失重是由于复合材料表面吸附的水分以及一些低温易分解的物质.第二阶段,150-520°C时的失重原因是氧化石墨烯上的碳转化为二氧化碳以及氧化石墨烯上部分官能团转化为其相应氧化物气体等形式脱去.第三阶段,520°C以后则主要是不易分解的Fe2O3纳米粒子.由于Fe3O4纳米粒子在空气中易氧化,形成Fe2O3纳米粒子,会使其增重-12%.考虑该因素后,从TGA图中计算出该系列复合材料中Fe3O4磁性纳米粒子的相对含量,复合材料MGO-1,MGO-2,MGO-3中磁性纳米粒子的相对含量分别为:23.5%,43.3%,54.1%.从TGA结果得到的Fe3O4含量的变化与TEM和VSM结果相一致.图3Fe3O4纳米粒子的(A)TEM图和(B)XRD图谱Fig.3(A)TEM image and(B)XRD pattern of the as-prepared Fe3O4nanoparticles图4Fe3O4纳米粒子-氧化石墨烯(MGO)复合材料的TEM图Fig.4TEM images of Fe3O4nanoparticle-GO(MGO)composites(A)MGO-1,(B)MGO-2,(C)MGO-3A B C0004张燚等:Fe 3O 4磁性纳米粒子-氧化石墨烯复合材料的可控制备及结构与性能表征No.X3.3GO-PEI 和MGO-3复合材料的红外分析为了表征Fe 3O 4纳米粒子-氧化石墨烯的化学结构,我们对GO-PEI,MGO 复合材料进行了红外光谱分析.图6为GO-PEI 和MGO-3的FT-IR 光谱.GO-PEI 和MGO-3样品在3435cm -1处的吸收峰归属于氧化石墨烯上吸附水分子的O ―H,以及PEI 的N ―H 的伸缩振动.GO-PEI,MGO-3在2854cm -1处的吸收峰归属于PEI 亚甲基的伸缩振动.在图中还可以明显看出GO-PEI 和MGO-3在1636cm -1的吸收峰为酰胺键的C =O 伸缩振动.在1114cm -1处的红外吸收峰归属于C ―O 的伸缩振动.22-24与原始的GO-PEI 的红外光谱比较,MGO-3在617cm -1处较强的吸收峰属于Fe ―O 键的伸缩振动,25,26表明Fe 3O 4纳米粒子与氧化石墨烯形成了复合物.3.4Fe 3O 4和MGO 复合材的磁性能我们通过改变Fe 3O 4纳米粒子在氧化石墨烯上的负载量获得了一系列磁功能化的氧化石墨烯复合材料.利用VSM 磁性测量系统测定了Fe 3O 4纳米粒子以及MGO 复合材料的磁滞回线(图7).如图7所示,磁滞回线呈现典型的S 型,剩余磁化强度趋于0,表明Fe 3O 4纳米粒子和MGO 系列复合材料为超顺磁物质.我们所制备的18nm Fe 3O 4纳米粒子的饱和磁化强度为41.3emu ·g -1,比其体相材料的92emu ·g -1显著减少,25这主要是由于Fe 3O 4纳米颗粒较小的缘故,26且表面有机配体的修饰等造成的.MGO 系列复合材料的饱和磁化强度因Fe 3O 4纳米颗粒含量而改变,分别为7.8,11.1,15.6emu ·g -1.这样制备的不同含量的磁性氧化石墨烯复合材料可以分别在磁共振成像,磁靶向载药,磁分离等方面获得广泛应用.4结论通过化学交联的方法制备了Fe 3O 4纳米粒子-氧化石墨烯复合材料.利用TEM 、XRD 、AFM 、TGA 、FT-IR 、VSM 等手段表征了其形貌、结构、组成以及磁学性质.实验结果表明,利用我们的制备方法,可以很好地控制磁性氧化石墨烯复合材料中Fe 3O 4磁性纳米粒子粒径,粒径分布,以及其负载率.我们所制备的磁性氧化石墨烯复合材料具有较好的超顺磁性.这些磁功能化石墨烯复合材料将在磁靶向载药,生物分离,磁共振成像,以及在去除污水中稠环污染物等领域获得广泛的应用.References(1)Geim,A.K.;Novoselov,K.S.Nat.Mater.2007,6,183.(2)Shen,J.F.;Hu,Y .Z.;Shi,M.;Li,N.;Ma,H.W.;Ye,M.X.J.Phys.Chem.C 2010,114,1498.(3)Novoselov,K.S.;Geim,A.K.;Morozov,S.V .;Jiang,D.;Zhang,Y .;Dubonos,S.V .;Grigorieva,I.V .;Firsov,A.A.Science 2004,306,666.图5MGO-1,MGO-2,MGO-3复合材料的热重分析曲线Fig.5TGA curves of MGO-1,MGO-2,MGO-3composites图6GO-PEI 和MGO-3的傅里叶变换红外光谱Fig.6FT-IR spectra of GO-PEI andMGO-3图7(A)MGO-1,(B)MGO-2,(C)MGO-3复合材料及(D)Fe 3O 4纳米粒子的磁滞回线Fig.7Magnetic hysteresis loops of (A)MGO-1,(B)MGO-2,(C)MGO-3composites and (D)Fe 3O 4nanoparticles0005Acta Phys.⁃Chim.Sin.2011V ol.27(4)Berger,C.;Song,Z.M.;Li,T.B.;Li,X.B.;Ogbazghi,A.Y.;Feng,R.;Dai,Z.T.;Marchenkov,A.N.;Conrad,E.H.J.Phys.Chem.B2004,108,19912.(5)Stankovich,S.;Dikin,D.A.;Dommett,G.H.B.;Kohlhaas,K.M.;Zimney,E.J.;Stach,E.A.;Piner,R.D.;Nguyen,S.T.;Ruoff,R.S.Nature2006,442,282.(6)Di,C.A.;Wei,D.C.;Yu,G.;Liu,Y.Q.;Guo,Y.L.;Zhu,D.B.Adv.Mater.2008,20,3289.(7)Wu,J.S.;Pisula,W.;Mullen,K.Chem.Rev.2007,107,718.(8)Huang,J.;Zhang,L.M.;Chen,B.;Ji,N.;Chen,F.H.;Zhang,Y.;Zhang Z.J.Nanoscale2010,2,2733.(9)Zhang,X.Y.;Yang,X.Y.;Ma,Y.F.;Huang,Y.;Chen,Y.S.Journal of Nanoscience and Nanotechnology2010,10,2984. (10)Yang,X.Y.;Zhang,X.Y.;Ma,Y.F.;Huang,Y.;Wangand,Y.S.;Chen,Y.S.J.Mater.Chem.2009,19,2710.(11)Zhang,L.M.;Xia,J.G.;Zhao,Q.H.;Liu,L.W.;Zhang,Z.J.Small2010,6,537.(12)Si,Y.C.;Samulski,E.T.Chem.Mater.2008,20,6792.(13)Muszynski,R.;Seger,B.;Kamat,P.V.J.Phys.Chem.C2008,112,5263.(14)Xu,C.;Wang,X.;Zhu,J.W.J.Phys.Chem.C2008,112,19841.(15)Cong,H.P.;He,J.J.;Lu,Y.;Yu,S.H.Small2010,6,169.(16)He,F.;Fan,J.T.;Ma,D.;Zhang,L.M.;Leung,C.W.;Chan,H.L.Carbon2010,48,3139.(17)Zhang,Y.;Chen,B.;Zhang,L.M.;Huang,J.;Chen,F.H.;Yang,Z.P.;Yao.J.L.;Zhang,Z.J.Nanoscale,publishedonline:07Feb,2011,DOI:10.1039/C0NR00776E.(18)Sun,S.H.;Zeng,H.;Robinson,D.B.;Raoux,S.;Rice,P.M.;Wang,S.X.;Li,G.X.J.Am.Chem.Soc.2004,126,273. (19)Chen,Z.P.;Zhang,Y.;Xu,K.;Xu,R.Z.;Liu,J.W.;Gu,N.Journal of Nanoscience and Nanotechnology2008,8,12.(20)Hummers,W.;Offeman,R.J.Am.Chem.Soc.1958,80,1339.(21)Zhu,C.X.;Peng,D.F.Speciality Petrochemicals2010,27,57.(21)Paredes,J.I.;Villar-Rodil,S.;Solis-Fernandez,P.;Martinez-Alonso,A.;Tascon,ngmuir2009,25,5957.(22)Bourlinos,A.B.;Gournis,D.;Petridis,D.;Szabo,T.;Szeri,A.;Dekany,ngmuir2003,19,6050.(23)Stankovich,S.S.;Piner,R.D.;Nguyen,S.B.T.;Ruoff,R.S.Carbon2006,44,3342.(24)Chin,S.F.;Iyer,K.S.;Raston,b.Chip.2008,8,439.(25)Rocchiccioli-Deltche,C.;Franck,R.;Cabuil,V.;Massart,R.J.Chem.Res.1987,5,126.(26)Popplewell,J.;Sakhnini,L.J.Magn.Mater.1995,142,72.0006。

《2024年Fe3O4@SiO2磁性纳米颗粒的制备研究》范文

《2024年Fe3O4@SiO2磁性纳米颗粒的制备研究》范文

《Fe3O4@SiO2磁性纳米颗粒的制备研究》篇一一、引言随着纳米科技的快速发展,磁性纳米颗粒因其独特的物理和化学性质在生物医学、环境科学、材料科学等领域得到了广泛的应用。

其中,Fe3O4磁性纳米颗粒因其高磁化强度、生物相容性好及超顺磁性等特性,在药物传递、细胞分离、磁共振成像等方面具有巨大的应用潜力。

而Fe3O4@SiO2核壳结构纳米颗粒,通过在Fe3O4表面包覆一层二氧化硅,不仅可以提高其化学稳定性、生物相容性和分散性,还能为其提供更多的功能化修饰位点。

因此,Fe3O4@SiO2磁性纳米颗粒的制备研究具有重要意义。

二、实验部分1. 材料与试剂实验所用的主要材料包括:四氧化三铁(Fe3O4)纳米颗粒、正硅酸乙酯(TEOS)、氨水、乙醇等。

所有试剂均为分析纯,使用前未进行进一步处理。

2. 制备方法(1)Fe3O4磁性纳米颗粒的合成采用共沉淀法合成Fe3O4磁性纳米颗粒。

将一定量的二价铁盐和三价铁盐混合溶液在碱性条件下进行共沉淀反应,得到Fe3O4纳米颗粒。

(2)Fe3O4@SiO2核壳结构纳米颗粒的制备以合成的Fe3O4纳米颗粒为核,采用溶胶-凝胶法在其表面包覆二氧化硅。

首先,将Fe3O4纳米颗粒分散在乙醇中,加入一定量的氨水和正硅酸乙酯(TEOS)。

在一定的温度和搅拌速度下进行反应,使TEOS在Fe3O4表面水解缩合,形成二氧化硅壳层。

反应结束后,离心分离得到Fe3O4@SiO2核壳结构纳米颗粒。

三、结果与讨论1. 形貌与结构表征通过透射电子显微镜(TEM)对制备的Fe3O4@SiO2核壳结构纳米颗粒进行形貌观察。

结果显示,Fe3O4纳米颗粒被二氧化硅均匀包覆,形成清晰的核壳结构。

同时,通过X射线衍射(XRD)和傅里叶变换红外光谱(FTIR)对样品进行结构分析,证实了Fe3O4@SiO2核壳结构的成功制备。

2. 磁性能分析对制备的Fe3O4@SiO2核壳结构纳米颗粒进行磁性能测试。

结果显示,样品具有超顺磁性,且磁化强度随外磁场的变化而变化。

【精品文章】纳米四氧化三铁的制备、改性及应用

【精品文章】纳米四氧化三铁的制备、改性及应用

纳米四氧化三铁的制备、改性及应用
一、纳米四氧化三铁的简介
 四氧化三铁是一种常用的磁性材料,又称氧化铁黑,呈黑色或灰蓝色。

四氧化三铁是一种铁酸盐,即Fe2+Fe3+(Fe3+O4)(即FeFe(FeO4)前面2+和3+代表铁的价态)。

在Fe3O4里,铁显两种价态,一个铁原子显+2价,两个铁原子显+3价,所以说四氧化三铁可看成是由FeO与Fe2O3组成的化合物,可表示为FeO〃Fe2O3,而不能说是FeO与Fe2O3组成的混合物,它属于纯净物。

四氧化三铁硬度很大,具有磁性,可以看成是氧化亚铁和氧化铁组成的化合物,逆尖晶石型、立方晶系。

在外磁场下能够定向移动,粒径在一定范围之内具有超顺磁性,以及在外加交变电磁场作用下能产生热量等特性,其化学性能稳定,因而用途相当广泛。

 二、纳米四氧化三铁的制备方法
 纳米微粒的制备方法主要有物理方法和化学方法。

物理方法制备纳米微粒一般采用真空冷凝法、物理粉碎法、机械球磨法等。

但是用物理方法制备的样品一产品纯度低、颗粒分布不均匀,易被氧化,且很难制备出10nm 以下的纳米微粒,所以在工业生产和试验中很少被采纳。

 化学方法主要有共沉淀法、溶胶-凝胶法、微乳液法、水解法、水热法等。

采用化学方法获得的纳米微粒的粒子一般质量较好,颗粒度较小,操作方法也较为容易,生产成本也较低,是目前研究、生产中主要采用的方法。

 1、共沉淀法:沉淀法是在包含两种或两种以上金属离子的可溶性盐溶液中,加入适当的沉淀剂,使金属离子均匀沉淀或结晶出来,再将沉淀物脱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
载体 的时候 , 已经 广 泛 应 用磁 性 微 球 , 但磁 性 F e o 纳 米 粒 子 比
离技 术来 静止 一 段时 间磁 铁上 的悬浮 液 , 在 除去 上 层液 体 , 也
表 面 积较 大 , 具 有 强烈 的聚 集倾 向 , 这 大 大限 制 了磁 性 纳 米粒 就是得到 了磁流体 。 子 的应 用 , 因此有 必要 对其进 行表 面修饰 。本 文采取化 学共 沉 1 . 4制备磁性改性明胶 F e a O 纳米粒子 淀 方式制备 磁性 F e , o 纳米粒 子 , 用 亲水性 葡聚糖一明胶 高分子 准确 称取 一定量 的改性 明胶于 圆底烧瓶 中, 加入 去离子 水 化 合 物对 其进 行表 面修饰 来 制备 磁性 F e 0 纳米粒 子 , 这种 复 在 5 0 ℃的热水 浴 中进 行溶解 和搅拌 , 搅 拌冷 却一直 到室温 。再 合微 粒分散 性 好 , 稳定性 强 , 并且 因表 面合有 大量 官能 团 , 具 有 加 入 一定规 定 的磁流 体 , 利 用超 声分 散技 术对 其 实施 5 m i n , 在
1 . 2制备改性明胶高分子共价物
将 明胶用去离 子水 中配成 2 0 m ̄ / mL的明胶溶 液 , 将葡聚糖 有效观察颗粒 的形状和大z b [ 3 l 。利用蒸馏 水把磁性 明胶粒 子和 进 行几分钟超声 分散 , 观察 磁性 以4 : 1 的 质量 比 配制 成与 明胶 的混 合 溶液 。搅 拌混 合 溶液 , 使 磁流体进行一 定倍数稀释 以后 , 用P H计 将溶液 的 p H值调 节到 8 . 0 , 然 后将 混合 溶液 冷冻干 燥 。
2 O h m左右州 。 S I GMA公 司 的 明 胶 、 葡聚 糖 ( d e x t r a n T - 7 o ) ; 市 场 销 售 的 粒 子粒径 的大 小为 1
2 . 2改性明胶磁性 F e 。 O 纳米粒子的形态
日本 J E O L公 司生 产的 J E M一 1 2 0 0 E X型透 射 电子显 微镜 来
2讨 论 和 结 果
艺 比较 简单 , 材料 来源也 比较 廉价 、 广泛 , 磁性 F e , O 纳 米粒子逐 2 . 1 改性明胶磁性 F e s O 纳米粒子的分布、 大小 渐发 展成为功 能材料 以及纳米材 料范 围内研究的 热点 。将 天 在稀释 完磁性 明胶 F e , O 纳米粒子 以后 利用英 国 Ma l v e m公 然 高分子 包裹在 F e , O 磁性 粒子的表 面 , 可形成具 有多种优 司生 产的 Z e t a s i z e r 3 0 0 0 H S 纳米 粒 度分析 仪测 啦观 察磁性 明胶 良性 能的 复合微 粒 。它们 既具 有 磁响应 功能 , 可 方便 简单 地进 F e O 纳 米粒 子 的分布 、 大小 形态 。结 果发 现 , 磁性 F e 。 O 纳 米 行 分离 和 磁性 导 向 , 又 因其表 面 含有 大量 官能 团 , 具 有生 物相 粒子 的粒 径 分布 在 2 0 n m- 1 5 0 n m之 间 , 平均粒径尺寸约为 7 0 容性 和可 降解 性 , 因此磁性 F e , O 复合粒子 在磁性免疫 细胞 的分 n m{ 而 改性 明胶修 饰后 的 8 O n m- 2 2 0 n m之 间 , 平 均粒径 尺寸 约 离、 酶 的 固 定化 、 靶 向 药物 的控 制 释 放 等 领 域 有 广 泛 的 应 用 为 1 2 0 n m, 由此 可见 , 此次 修饰后 的 四氧 化三 铁磁 性纳 米粒 子
23改性明胶磁性feoa纳米粒子的分散稳定性依据静置或者磁分离的方式来合理观察不同浓度情况下下转第73页2015年11月托工虿鳕i71万方数据22环氧树脂涂料在防腐涂料领域的发展防腐涂料的发展一直是涂料发展的重要领域对于环氧树脂涂料而言其在防腐涂料中的发展不仅在于新型环氧涂料而且面对现代船舶海洋工程等快速发展防腐涂料的发展前景十分广阔如何进一步在防腐领域取得长足性发展显得十分重要
改性 明胶磁性 F e 3 0 , 纳米粒 子的制备 及其性 能研 究
宁顺 花 ( 衡 阳 师范学 院 , 湖南 衡阳 4 2 1 0 0 1 )
摘要: 随着社 会 的发展 , 在 研 究和 分析 磁 响应 性新 型 药物 涤 , 重复 以上操 作 , 一直到 具备澄 清的上 层液体 , 在 合理应 用分
前景 。
由于表 面 包裹 了改性 明胶导 致粒 径变 大 , 但 是粒 径分布 变 窄 ,
1实验部分
1 . 1试 剂
Na OH、 F e C1 3 ・ 6 H2 0、 F e C1 2 ・ 4 H2 0, KB r 。
分 散性 较好 。改性 明胶 浓度 的大 小也 对磁 性 复合粒 子 有较大 的影响 , 粒径 随 明胶 浓度 的增大而 增大 。当明胶浓 度为 2 %时 ,
6 0 。 C下进 行 Ma i l l a r d 反应 2 4 h , 得 到葡聚糖一 明胶共价物 。
明胶 F e , O 纳米粒子样 貌的时候 使用透射 电子显微镜 。结果 发
粒子属形貌 呈现不规 则球状 。较 F e O 纳米 粒子相 比较 , 存 在少
磁性 明胶 F e O 纳米粒子 的分布 , 基本上是 均匀分布 的 , 并且 将 冷冻干 燥 的 固体 放在 装有饱 和 K B r 溶液 的密 闭容 器中 , 置于 现 ,
生 物 相 容 性 和 可 降 解 性
速度 为 1 8 0 d mi n的摇床 中记 性搅拌 , 将磁 流体均 匀 的分 散于 改 性明胶溶 液 中 。均 匀分散 的磁性 明胶纳米 颗粒 的悬浮液 体 , 在
关键词 : 明胶 ; 磁性F e 。 O ; 纳 米粒 子 ; 制备
磁性 F e O 纳米 粒子具备 明显的表 面效应和 磁效应 , 在众 多 烘 箱 温 度 为 4 0 ℃的情 况 下进 行干 燥 , 最 终 可 以获 得 改性 明胶 领域 中都具 备 一定应 用前 景 ,O 4 纳米粒 子 J 。 材料 、 生物 靶 向材料 、 磁性 液体等 , 制备 磁性 F e O 纳米 粒子的 工
相关文档
最新文档