固体物理第三章 课件
《固体物理·黄昆》第三章
氢键结合的情况可写成通式:
X-H…Y。 式中 X 、 Y 代表 F 、 O 、 N 等电负 性大而原子半径较小的非金属原 子, X 和 Y 可以是两种相同的元 素,也可以是两种不同的元素。 d F l H F H F
归纳起来,氢键形成的条件是:
A)有与电负性大(X)的原子相结合的氢原子;
B) 有一个电负性也很大,含有孤对电子并带有部分负 电荷的原子(Y); C)X与Y的原子半径都要较小。
氯化钠型 —— NaCl、KCl、AgBr、PbS、MgO (配位数6) 氯化铯型 —— CsCl、 TlBr、 TlI(配位数8)
离子结合成分较大的半导体材料ZnS等(配位数4)
2. 离子晶体结合的性质
1) 系统内能的计算 晶体内能 : 1)所有离子库仑相互作用能(吸引作用)
2) 和重叠排斥能之和(排斥作用)
具体晶体的内聚能(晶格能)参见周期表,有一定的规律性: 惰性气体晶体<碱金属<过渡族金属(共价晶体)
两粒子间的相互作用 相互作用能.
f(r) 和u(r)分别表示相互 作用力和相互作用势 则:
u (r ) f (r ) r
U 排斥 r
f (r )
B rn
u (r )
pij A12= j'
12
12.13188
pij A6= j'
6
14.45392
物理意义:
晶体总的势能:
—— 非极性分子晶体的晶格常数、结合能和体变模量 晶格常数
平衡状态体变模量
晶体的结合能
分子晶体: 常温下是气态的物质如:Cl2,SO2,HCl, H2, O2, He, Ne, Ar, Xe等在低温下依靠范德瓦耳斯力结合成的晶体.
孙会元固体物理基础第三章能带论课件3.10 金属的费米面和能带论的局限性
因此,费米面完全在第一布里渊区内,在周期势的作用下, 费米面都是稍稍变形的球。
对于立方晶系的二价碱土金属(Ca(fcc),Sr(fcc), Ba(bcc)),每个原胞有两个 s 价电子。 由于费米球和第一布里渊区等体积,因而和区界面 相交,导致电子并没有全部在第一布里渊区,而是有一 部分填到了第二区,因此费米面在第一区形成空穴球面 ,第二区形成电子球面. 对于六角密堆积结构的二价金属Be、Mg,由于在第 一布里渊区六角面上几何结构因子为零,弱周期势场在 此不产生带隙,仅当考虑二级效应,如自旋轨道耦合时 才能解除简并。 这些金属的费米面可看作由自由电子球被布里渊区 边界切割,并将高布里渊区部分移到第一布里渊区得到 .因此,费米面的形状很复杂,会出现空穴型宝冠状、电 子型雪茄状等.
以第一布里渊区中心为原点,以费米波矢为半径画 自由电子的费米圆. (费米面的广延区图)
3) 将落在各个布里渊区的费米球片断平移适当 的倒格矢进入简约布里渊区中等价部位(费米面 的简约区图)。
第一区
=1
第一区
第二区
=2,3
第三区圆,即费米面 同布里渊区边界垂直相交,尖角处要钝化,就 可以得到近自由电子的费米面。
三价金属铝,具有面心立方结构,每个原胞含有 3个价电子,自由电子的费米球将延伸至第一布 里渊区以外.由于周期势的作用,使得第二、第三 布里渊区的费米面变得支离破碎.
一价贵金属包括Cu,Ag,Au等均为面心立方结构,它 们s 轨道附近还有d轨道,形成固体时, s 轨道交叠积分 大, 演变成宽的s带, d轨道因交叠积分小, 变成一窄的d 带. 11个电子将d带填满, s带填了一半. 费米面在s带中, 但d带离费米面很近, 导致球形费米面发生畸变, 因而 出现复杂的输运行为, 但是仍属于单带金属. 比如对于金属铜,假设晶格常数为a,其费米半径
《固体物理基础》晶格振动与晶体的热学性质
一、三维简单格子
二、三维复式格子
三、第一布里渊区
四、周期性边界条件
◇一个原胞内有P
个不同原子,则
有3P个不同的振
动模式,其中3支 声学波。
◇具有N个原胞的 晶体中共有3PN个
振动模式,其中
3N个声学波, 3N(P-1)个光学波。
四、周期性边界条件 总结
§ 3.4 声子
声子:晶格振动中格波的能量量子
二、一维单原子链的振动
格波
二、一维单原子链的振动
色散关系
二、一维单原子链的振动
色散关系
二、一维单原子链的振动
第一布里渊区
二、一维单原子链的振动
第一布里渊区
二、一维单原子链的振动
第一布里渊区
二、一维单原子链的振动
周期性边界条件
玻恩—卡曼边界条件
二、一维单原子链的振动
周期性边界条件
即q有N个独立的取值—晶格中的原胞数第一布
◇非弹性X射线散射、非弹性中子散射、可见光 的非弹性散射。
§ 3.4 声子
§ 3.4 声子
90K下钠晶体沿三个方向的色散关系
§ 3.5 晶格热容
一、晶格振动的平均能量
热力学中,固体定容热容:
根据经典理论,每一个自由度的平均能量是kBT, kBT/2为平均动能,kBT/2为平均势能,若固体有
N个原子,总平均能量: 取N=1摩尔原子数,摩尔热容是:
二、一维单原子链的振动
一维单原子链的振动
二、一维单原子链的振动
简谐近似下的运动方程
二、一维单Hale Waihona Puke 子链的振动简谐近似下的运动方程
在简谐近似下,原子的相互作用像一个弹 簧振子。一维原子链是一个耦合谐振子,各原 子的振动相互关联传播,形成格波。
孙会元固体物理基础第三章能带论课件3.4能带结构的其它计算方法
( ) r) ,相互作用势依赖于 i ( r ) ,同时 i ( r ) 由于nr i( i i ( r ) 既出现 又要由薛定谔方程来决定,也就是说, 在系数中,同时又是方程的解.所以,必须用自洽的 计算方法—迭代法来处理.这种求解工作量很大, 需借助计算机进行. 求解思路: 1).首先确定所研究晶体的结构和组成(确知价 电子并计算出电荷密度); 2). 确定初始的单电子势 V ( r ) ;
3.密度泛函理论(density functional theory) 该理论是对哈特利—福克(Hartree—Fock)近 似,亦即将多电子问题化为单电子问题的更严格、 更精确的描述. (具体内容可参考谢希德、陆栋主 编的《固体能带理论》17). 在密度泛函理论基础之上的局域密度近似 (local density approximation,简称为LDFT)框架 下的计算 ,在大多数情况下能得到较好的结果。 密度泛函理论的基础是非均匀相互作用电子 系统的基态能量由基态电荷密度唯一确定,是基态 电子密度n ( r ) 的泛函.阎守胜书P287(12.1.3)给出了 证明;同时给出了当电子密度的空间变化缓慢时,由 局域密度近似得到的单电子薛定谔方程.
内层电子的能带---窄带;外层电子的能带---宽带 通常把被电子填满的最高能带称为价带,而把 最低空带或半满带称为导带(后面我们还要讨论). 固体的物性主要取决于价带和导带中的电子.而对 于这些外层电子而言,离子实区内和离子实区外是 两种性质不同的区域. 离子实区外,电子感受到的是弱的势场的作用, 波函数很平滑,类似于平面波;离子实区内由于强 烈的局域势作用,波函数急剧振荡,可由紧束缚波 函数来描述。 外层电子(价带和导带中的电子)的波函数可由 两者的线性组合来描述。
(2)
第三章 固体物理ppt课件
§2
三维晶格的振动
设实际三维晶体沿基矢a1、a2、a3方向的初基原胞数分 别为N1、N2、N3,即晶体由N=N1·N2·N3个初基原胞组成, 每个初基原胞内含s个原子。 一维情况下,波矢q和原子振动方向相同,所以只有纵波。 三维情况下,有纵波也有横波。
原则上讲,每支格波都描述了晶格中原子振动的一类运动 形式。初基原胞有多少个自由度,晶格原子振动就有多少种 可能的运动形式,就需要多少支格波来描述。
一个波矢为K的第S支模式处在第N个激发态,我们就说在晶 体中存在着N个波矢为K的第S支声子(因为给定了K与第S支模 式则ω可由色散关系唯一确定),在晶体中波矢为K的纵声学支 模式处于N激发态,我们就说晶体中有N个波矢为K的纵声学支 声子。
声子这个名词是模仿光子而来(因为电磁波也是一种简谐振 动)。声子与光子都代表简谐振动能量的量子。所不同的是光子 可存在于介质或真空中,而声子只能存在于晶体之中,只有当晶 体中的晶格由于热激发而振动时才会有声子,在绝对零度下,即 在0K时,所有的简正模式都没有被激发,这时晶体中没有声子, 称之为声子真空。声子与光子存在的范围不同,即寄居区不同。
每一组整数(L1,L2,L3 )对应一个波矢量q。将这些波矢在倒空 间逐点表示出来,它们仍是均匀分布的。每个点所占的“体积” 等于“边长”为(b1/N1)、(b2/N2)、(b3/N3)的平行六面体的 “体积”,它等于: b b b 3 1 2 N N N 1 N 2 3 式中Ω*是倒格子初原胞的“体积”,也就是第一 布里渊区的“体积”,而Ω*=(2π)3/Ω ,所以每个波 矢q在倒空间所占的“体积”为:
子的位移构成了波,这个波称之为格波,把寻求到的
运动方程的解带入运动方程就能找出ω 与q的关系即
固体物理基础第3章-晶格振动与晶体的热学性质
3-2 一维单原子链模型
格波的色散关系 4 2 2 aq sin ( )
m 2 • ω取正值,则有 (3)
(q)
aq 2 sin( ) m 2 • 频率是波数的偶函数
• 色散关系曲线具有周期性, 仅取简约布里渊区的结果即可 • 由正弦函数的性质可知,只有满足 0 2 / m 的格波 才能在一维单原子链晶体中传播,其它频率的格波将被强
原子n和原子n+1间的距离
非平衡位置
原子n和原子n+1间相对位移
a n1 n
n1 n
3-2 一维单原子链模型
• 忽略高阶项,简谐近似考虑原子 振动,相邻原子间相互作用势能 1 d 2v v(a ) ( 2 ) a 2 2 dr • 相邻原子间作用力 dv d 2v f , ( 2 )a d dr • 只考虑相邻原子的作用,第n个原 子受到的作用力
• 连续介质中的波(如声波)可表示为 Ae ,则可看出 • 格波和连续介质波具有完全类似的形式 • 一个格波表示的是所有原子同时做频率为ω的振动 • 格波与连续介质波的主要区别在于(2)式中,aq取值任意加减 2π的整数倍对所有原子的振动没有影响,所以可将波数q取值 限制为 q a a
V
O
a
r
• 第n个原子的运动方程
(n1 n ) (n n1 ) (n1 n1 2n )
(1)
平衡位置
d 2 n m 2 ( n1 n 1 2n ) dt
非平衡位置
——牛顿第二定律F=ma
3-2 一维单原子链模型
• 上述(1)式的解(原子振动位移)具有平面波的形式
a
)
固体物理 第三章 晶格振动
1 2 T = ∑q 2 i =1 i
3N •
3.1晶体中原子的微振动 3.1晶体中原子的微振动 声子 晶体振动势能U (qi ) 按 qi 的幂将势能在平衡位置附近展开为泰勒级数 ∂U 1 ∂ 2U U = U0 + ∑ ( ) 0 qi + ∑ ( ) 0 qi q j + 高阶项 ∂q i 2 ij ∂qi ∂q j i 其中 U 0 = 0 平衡位置处的势能为零势能点
xn = x N + n
又 : xn = Ae
i ( kna − ωt )
又 − π < k ≤ π s = − N + 1,− N + 2⋯⋯ N 共有N个取值 : a a 2 2 2
=1 e ⇒ 2π ⋅ s, = N+ 2π ,− π + 2 2π ,..., π 有N种均匀分布的分立取值 种均匀分布的分立取值 a L a L a 2π L 间隔∆k = ,密度 ,第一布里渊区倒格点数N。 L 2π
, ( l =1, 2, ⋯ 3N )
Ql = Ql0 sin(ωl t + α 1 )
1 ε l = (Q l + ωl2Ql2 ) 2
• 2
能量量子化
1 εl = (nl + )hυl 2
3.2 一维布拉菲格子的晶格振动 一、简谐近似
du 1 d 2u u( x) ≈ u( x0 ) + ∆x + (∆x)2 2 dx r0 2 dx x
3.1晶体中原子的微振动 声子 3.1晶体中原子的微振动 晶格振动模式
质量加权坐标下: 质量加权坐标下:
•• 3N
↔
独立的谐振子
↔
声子
《固体物理基础教学课件》第3章
n1 n
平衡位置 非平衡位置
a 3
3-1 原子作用力的处理:简谐近似
忽略高阶项,简谐近似考虑原子 V 振动,相邻原子间相互作用势能
v(a)12(ddr2v2)a2
相邻原子间作用力
O
a
r
f ddv, (d dr2v2)a
只考虑相邻原子的作用,第n个原
第2n+1个M原子的方程 M d2 dt2 2n1(22n12n22n)
ቤተ መጻሕፍቲ ባይዱ 第2n个m原子的方程 mdd 2t22n(22n2n12n1)
解也具有平面波 的形式
两种原子振动的 振幅(m取A, M取B)一般来说 是不同的
a 13
3-2 声学波与光学波
色散关系有不同的两种
2(m m M M ) 11(m 4 m M M )2sin2aq12
a 2
3-1 一维单原子链模型
一维单原子链:最简单的晶格模型
晶格具有周期性,晶格的振动具有波的形式 —— 格波
格波的研究方法:
计算原子之间的相互作用力 根据牛顿定律写出原子运动方程,并求解方程
一维单原子链模型:
平衡时相邻原子间距为a (即原胞体积为a)
原子质量为m 原子限制在沿链方向运动
声子
0.1
1 100 10000
a 11
3-2 一维双原子链模型
一维双原子链模型 声学波与光学波 声学波与光学波的长波极限 长光学波的特性
a 12
3-2 一维双原子链模型
两种原子m和M (M > m) 构成一维复式格子 M原子位于2n-1, 2n+1, 2n+3 … m原子位于2n, 2n+2, 2n+4… 晶格常数、同种原子间的距离:2a
固体物理第三章 晶格振动与晶体热学性质
固体物理第三章晶格振动与晶体热学性质第三章晶格振动与晶体的热学性质晶格振动是描述原子在平衡位置附近的振动,由于晶体内原子间存在着相互作用力,各个原子的振动也不是孤立的,而是相互联系的,因此在晶体内形成各种模式的波。
只有当振动微弱时,原子间非谐的相互作用可以忽略,即在简谐近似下,这些模式才是独立的。
由于晶格的周期性条件,模式所取的能量值不是连续的而是分立的。
对于这些独立而又分立的振动模式,可以用一系列独立的简谐振子来描述。
和光子的情形相似,这些谐振子的能量量子称为声子。
这样晶格振动的总体就可以看成声子系综。
若原子间的非谐相互作用可以看作微扰项,则声子间发生能量交换,并且在相互作用过程中,某些频率的声子产生,某些频率的声子湮灭。
当晶格振动破坏了晶格的周期性,使电子在晶格中的运动受到散射而电阻增加,可以看作电子受到声子的碰撞,晶体中的光学性质也与晶格振动有密切关系,在很大程度上可以看作光子与声子的相互作用乃至强烈耦合。
晶格振动最早是用于研究晶体的热学性质,其对晶体的电学性质、光学性质、超导电性、磁性、结构相变等一系列物理问题都有相当重要的作用,是研究固体宏观性质和微观过程的重要基础。
ωη§3-1 简谐近似和简正坐标由原子受力和原子间距之间的关系可以看出,若离开平衡位置的距离在一定限度,原子受力和该距离成正比。
这时该振动可以看成谐振动.用n μϖ表示原子偏离平衡位置(格点)位移矢量,对于三维空间,描述N 个原子的位移矢量需要3N 个分量,表为)3,,2,1(N i i Λ=μ将体系的势函数在平衡位置附近作泰勒展开:高阶项+∑⎪⎪⎭⎫ ⎝⎛∂∂∂+∑∂∂+===j i N j i j i i N i i V V V V μμμμμμ031,2031021)(第一项为平衡位置的势能,可取为零,第二项为平衡位置的力,等于零。
若忽略高阶项,因为势能仅和位移的平方成正比,即为简谐近似。
23121i N i i m T μ&∑==引入合适的正交变换,将动能和势能用所谓的简正坐标表示成仅含平方∑==N j j ij i i Q a m 31μ项而没有交叉项,即:由分析力学,基本形式的拉格朗日方程为:)32,1(,N i q Q T Q T dt d i i i Λ&==∂∂-⎪⎪⎭⎫ ⎝⎛∂∂其中)32,1(,1N i q f q i j N j j i Λϖϖ=∂∂⋅∑==μ朗日方程:)32,1(,0N i Q L Q L dt d i i Λ&==∂∂-⎪⎪⎭⎫ ⎝⎛∂∂则正则方程为:)3,2,1(,02N i Q Q i i i Λ&&==+ω其解为:)sin(δω+=t A Q i i 当考察某一个j Q 时,则:)sin(δωμ+=t A m a j i iji 晶体参与的振动,且它们的振动频率相同。
固体物理基础第三章能带论课件33紧束缚近似
Rn
为此取
an
1 eikRn N
则晶体中的单电子波函数变为:k(r)
1 eikRn
NRn
i(rRn)
下面验证 k (r )为布洛赫函数
令 : R nR mR l
(r)1 eikRn
k
NRn
i(rRn)
(1)孤立原子情形下电子的运动方程
电子绕格点 R n 处原子运 动时的运动方程:
H ˆ 0 i( r R n ) i a ti( r R n )
k
NRn
i (rRn)
即用孤立原子的电子波函数 ia t的线性组合来构
成晶体中电子共有化运动的波函数,因此紧束缚 近似也称为原子轨道线性组合法,简称 LCAO。
2.周期势场 晶体中的电子在某个原子附近时主要受该原
子势场 V(rR n)的作用,其它原子的作用视为微 扰来处理,所以,周期势为
其中
2
H ˆ02m2Vat(rRn)
为孤立原子中电子的哈密顿
H ˆ /Vat(rRm) Rm
为其它原子的周期微扰势。
r
r Rn
O Rn
3.哈密顿方程
如果不考虑原子间的相互影响,在格点R n 附
近的电子将以原子束缚态
at i
绕R
n 点运动。iat(rRn)
表示孤立原子的电子波函数 。
固体物理:第三章 晶格振动和晶体的热学性质
2 sin aq
m
2
2π / a π / a
0
π/ a
2π / a
是波矢q的周期性函数,且(-q)= (q)。
m
2 sin aq
m
2
2π a
π a
o
πa
2π a
当 q , q 2π s ( s为 整 数), a
(q) (q)
且
i t na ( q 2π s )
xn (q) Ae
x2n Beit2naq
其他原子位移可按下列原则得出:
(1)同种原子周围情况都相同,其振幅相同;原子不同,其振幅 不同。
(2)相隔一个晶格常数2a的同种原子,相位差为2aq。
x2n1 Aeit 2n1aq
x Be 2n2
[t ( 2n2 )aq]
..
x M 2n x2n1 x2n1 2 x2n
2
2
2
2
波矢 q
2π Na
s
也只能取N个不同的值。
晶格振动波矢只能取分立的值
波矢的数目(个数)=晶体原胞的数目
6. 长波极限:
q 2π 0
2 sin aq 2 aq a q
m2
m2
m
Vp q
vp a m
弹性波
m
2π a
π a
o
πa
Vp q
vp a m
由连续介质波
弹性模量
x
格波 不能在晶体中传播,实际上此时它是一种驻波。因为 此时相邻原子的振动位相相反,
模型 运动方程
试探解
色散关系
波矢q范围 B--K条件
波矢q取值
一维无限长原子链,m,a,
n-2 n-1 n mm
固体物理学课件第三章
10
3.1 一维单原子链的晶格振动
将:
un1 Aei[t(n1)aq] un1 Aei[t(n1)aq] un Aei[tnaq]
代入到运动方程:
m
d 2un dt 2
(un1 un1 2un )
消去共同因子,得到:
m 2 (eiap eiaq 2)
《固体物理学》 微电子与固体电子学院
14
3.1 一维单原子链的晶格振动
格波的波长: 2
q
格波的波矢:q 2 n
n 代表沿格波传播方向的单位
矢量。
格波的相速度:v p
q
不同原子间的位相差:
n’aq-naq = (n’-n)aq
《固体物理学》 微电子与固体电子学院
15
3.1 一维单原子链的晶格振动
a
2
f
U
U R
a
2U R2
a
第一项与振动无关,为常数项,第二项中因为平衡位置处,
势能为极小值,互作用力为零。
《固体物理学》 微电子与固体电子学院
4
3.1 一维单原子链的晶格振动
引入弹性系数
2U R 2
(un1 un1 2un )
《固体物理学》 微电子与固体电子学院
5
3.1 一维单原子链的晶格振动
最近邻近似下一维单原子振动可 简化为质量为m的小球被用弹性系
数为的弹簧连起来的弹性链。处
理微小振动一般都采取这种简谐 近似。在有些物理问题需要考虑 高阶项的效应,称为非简谐效应。
固体物理--第三章 晶格振动
三、周期性边界条件 周期性边界条件:
N n n
e
iNaq
1
2 q h Na
q的分布密度:
h =整数, N:晶体链的原胞数
Na L q const. 2 2
{
简约区中q的取值总数 = q
2 N =晶体的原胞数 a 晶格振动的格波总数=2N=晶体的自由度数
2 1
两个色散关系即有两支格波:(+:光学波; -:声学波)
简约区:
a
q
a
π a
π a
对于不在简约区中的波数q’ ,一定可在简约区中 找到唯一一个q,使之满足:
2 q q G a
G 为倒格矢
二、光学波和声学波的物理图象 第n个原胞中P、Q两种原子的位移之比
n m M n q0
离子晶体在某种光波的照射下,光波的电场可以激发这 种晶格振动,因此,我们称这种振动为光学波或光学支。
对于单声子过程(一级近 似),电磁波只与波数相同的格
(q)
=c0q +
+(0)
波相互作用。如果它们具有相同
的形式在整个晶体中传播,称为格波。
q取不同的值,相邻两原子间的振动位相差不同,则 晶格振动状态不同。 2 则 q 与 q描述同一晶格振动状态 若 q q a
1 4a
例:
q1
q2
2
1
2 a
5
4
2
2a 5
2a
2
2 q2 q1 a
三、周期性边界条件(Born-Karman边界条件)
N+1
固体物理课件ppt完全版
B A
特点:每个原子有4个最近邻,它们
正好在正四面体的顶角位置!
τ
金刚石晶格结 构的典型单元
三、 晶胞(单胞)
晶胞:为反映晶格的对称性,在结晶学中选择较大 的周期单元 → 称为晶体学原胞
晶胞的基矢:沿晶胞的三个棱所作的三个矢量,常
A
a
c
A层
B
六角密排晶格结构的典型单元
B层
A层内原子的上、下各3个最 近邻原子所分别形成的正三 角形的空间取向,不同于B 面内原子的上、下各3个最 近邻原子所分别形成的正三 角形的空间取向!
五、金刚石晶体结构
1· 特点:每个原子有4 个最近邻,它们正 好在一个正四面体的顶角位置 2· 堆积方式:立方单元体内对角线上的原子 — A 面心立方位置上的原子 — B 金刚石晶格 A、B 两个面心 立方晶格套成 相对位移 = 对角线的1/4
33
3
4
6· 判断此原胞为fcc格子的最小周期性单元 3 a 原胞 a1 a2 a3 ∵ fcc 格子的一个立方单元体积中含的原子数: 4 4 a 1 又∵ 原胞 fcc 4 a a ∴原胞中只包含一个原子 → 因而为最小周期性单元 注: fcc 晶格方式是一种最紧密的排列方式 — 立方密排晶格!
3· 原胞: a , a 在密排面内,互成1200角,a 沿垂直
1 2
3
密排面的方向构成的菱形柱体 → 原胞
B A
六角密排晶格的堆积方式 a A
a3
B
c
a1
a2
六角密排晶格结构的原胞
六角密排晶格结构的典型单元
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5、波矢 q 的取值、格波支数 的取值、
利用波恩—卡曼边界条件,波矢 的取值 利用波恩 卡曼边界条件,波矢q的取值 卡曼边界条件
2π q= m Na
波矢数 = 原胞数 N
m = 0 , ±1 , ±2 , ……
格波模式总数=原子总数 格波模式总数 原子总数 = 2 N
6、长波极限及其原子的振动
(1)长声学波 ) q 0, cos qa
内有一个M原子和一个 类原子。 内有一个 原子和一个m 类原子。 原子和一个
2n-1
2n 2n+1
2n+2
号原子,由虎克定律 第 2n号原子 由虎克定律 号原子
2n
β2
β1
β2
F2n-1
F2n
F2n1 = β2 (u2n u2n1 )
F2n+1 = β1 (u2n+1 u2n )
2n号原子的运动方程 号原子的运动方程
第三章 晶格振动
3.1 一维单原子晶格的振动 一、物理模型 的原子, 质量为 m 的原子,在平衡位置附近作简谐振 原子间近似于弹簧连接, 动,原子间近似于弹簧连接,弹簧力常数为 d 2U β( β = ( 2 )平衡位置)。 (
dr
格波: 格波:晶体中所有原子在平衡位置附近作微小振 在晶体中形成格波。 动,在晶体中形成格波。格波在晶体中以 波的形式转播。 波的形式转播。
一、晶格简正振动 简正振动: 简正振动:每个原子以相同的频率振动的方式 简谐近似 : 一个一维原子振动能 一个量子谐振子的能量 量子谐振子 谐振子的能量 一个一维原子振动能 一个量子谐振子能量为
≈
1 Ei = ni + ωi 2
N个原子的晶体振动总能量为 个原子的晶体振动总能量为
1 E = ∑ ni + ω i i =1 2
2π a =N < q < 内, q 点的取值数 点的取值数= a a 2π Na
点 π
2π 距离” “距离”为 Na
π
2π Na
π a
o
q πa
基矢a1、a2、a3方向的初基元胞数为N1、N2、 N3,晶体总的初基元胞数为N = N1 N2 N3, 每个元胞内有n个原子。 个原子。 a3 a1 m m m a2
2β aq = vAq ω = M+m 2β , a 线性色散关系声学波传播波速为 M+m
§3.2三维晶格振动 3.2三维晶格振动
1、关于波矢q 、关于波矢 (1)一维 )
2π q= m Na
m q= b N
m = 0 , ±1 , ±2 ,..……
值对应一个q 波矢取分离值, 一个 m 值对应一个 点,波矢取分离值,均匀分布相邻 q
1 2
1 1 (qa)2 2
1 2
长声学 波具有线性 色散关系, 色散关系,与经典 弹性波一样。 弹性波一样。
如图, 例:一维双原子链结构 ,其色散关系为 如图
1 2 m 4M β (M + m) 2 2 sin qa ω± = 1 ± 1 2 M m ( M + m) 1 求:()求色散关系
以上运动方程适合于体内的原子, 以上运动方程适合于体内的原子,而没 有考虑边界原子 波恩—卡曼周期性边界条件: 波恩 卡曼周期性边界条件:假设原子组 卡曼周期性边界条件 首尾相连。 成无限长的原子 链,首尾相连。
N 1 2
n+1 n
.
有
un = un+N
试探解代入上式
Ae
i (qna t )
= Ae
q=
1
N1
1
b1 +
2
N2
b2 +
3
N3
b3
m1、m2 、m3 = 0 , ±1 , ±2 , … m m 1 2
一组( 一组(m 、m2、m3)确定一个波矢 q点, 点 分离值、均匀分布。 波矢 q 分离值、均匀分布。
qz
qqx <
π
a
,
π
a
< qy <
π
a
,
π
< qz < 内 a a
u2n = Ae
i (qna ω t ) i [q( na +b)ω t ]
unB = B′e
= Be
i (qna ω t )
关于A 把u2n、u2n+1代入以上两个运动方程 关于 、 B的两个方程 A、B非零解,系数行列式为 非零解, 的两个方程 非零解 系数行列式为0 色散关系ω(q) 色散关系
ω ωO ωA
π
2a
o
π
2a
q
(3) q → 0, sinqa → qa
1 2 m 4M β ( M + m) 2 2 (qa) ω = 1 1 2 M m ( M + m) 1 x 2 ≈ 1 ∵ x → 0, (1 x) 2 4M m 2β β ( M + m) 2 2 (qa) = 1 1 a2q2 ∴ ω = M m 2( M + m)2 M + m
d m 2 u2n = β1 (u 2n+1 u 2n ) β 2(u2n u2n1 ) dt
2
同理, 同理,2n+1号原子的运动方程为 号原子的运动方程为 F 2n
2
F2n+2
d m 2 u 2n+1= β2 (u 2n+2 u2n+1 ) β 1(u2n+1 u2n ) dt
3、试探解 、
(2) q = 0
2 声学支 ω = 0
光学支 ω =
2 +
β ( M + m)
M m
2β ( M + m) 1+ [1 0] = M m
1 2
q=±
π
2a
,
1 2 m β ( M + m) 4M 2 声学支 ω = 1 1 2 M m ( M + m) β ( M + m) M m 2β = 1 M + m = M M m 2β 2 光学支 ω+ = m
2 讨论色散关系, ; ( )讨论色散关系,作图 3 限情况。 ( )讨论其声学波长波极 限情况。
a M
a m
原子间力常数均为β 原子间力常数均为
a
2a 元胞 a M m
(1) β1 = β2
格常数为2a
1 2 16mM 1β2 β1 + β2 β 2 2 2 qa sin ω 由公式 = (m + M) ± (m + M) 2 2mM (β1 + β2 ) 2 1 2 2 2β 16mM β 2 2 2 sin (qa) 得: ω = (m + M) ± (m + M) 2 2mM 4β 1 2 2β (m + M) 4mM 2 2 sin (qa) ω = 1 ± 1 2 2mM (m + M)
二、运动方程
n=0 o n-1
a
n
n+1
n+2
x
t 时刻
un-1
un
un+1
选n=0原子的平衡位置为原点 o 原子的平衡位置为原点 t 时刻,第n-1、n、n+1原子离开平衡位置 时刻, 、 、 原子离开平衡位置 的位移为u 的位移为 n-1、un、un+1,由虎克定律 F = -β△u
第 n 个原子受到 第 n+1 个原子的作用力
ω =
色散关系为
ω ~ q 关系图
m 2 4β qa ω= sin m 2
ω
sin
2π a
. .
π
a
π
. .
a
2π a
3 π a
.
q
1、色散关系 为了使 ω 是q 的单值函数 < q ≤
ω ωm q
π
π
a
4β m
a
q=0 π q=±
π
a
π
a
a
ω=0 ωm =
ωm为截止频率
3、格波的速度
v =ω/q
(β + β Mω )A (β + β e )B = 0 (β + β e )A + (β + β mω )B = 0
2 iqa 1 2 1 2 iqa 2 1 2 1 2
(β
+ β2 Mω 2 1
iqa
)
(β1 + β2e iqa )
(β1 + β2e )
(β
1
+ β2 mω
2
)
=0
λβ πa v = sin π m λ
1 2
4、波矢 q 数 、
N个原子组成的一维单原子链 个原子组成的一维单原子链 在
2π Na
π
a
<q ≤
π
a
π
a
o
波矢 q 可取值数
π
a
2π 相邻 q 点距离 Na
2π a 2π Na
=
=N
原胞数) (N=原胞数) 原胞数
六、长波极限
qa qa sin → a﹤﹤λ , q ﹤﹤λ 0 2 2 4β qa 4β a ω= sin q =vq = m 2 m 2
i [q( n+ N )a t )]
e
iqNa
=1
(m = 0 , ±1, ± 2)
2π Na
2π q= m Na
2π 波矢q 的取值是分离的、均匀分布,相邻q的 距离” 波矢 的取值是分离的、均匀分布,相邻 的“距离”为 Na
o
q
五、色散关系、格波速度、波矢q 数 色散关系、格波速度、波矢q