八年级数学无理数与实数实数测试题
2022-2023学年苏科版八年级数学上册第四章《实数》试题卷附答案解析
2022-2023学年八年级数学上册第四章《实数》试题卷一、单选题1( )A .B .±9C .±3D .92.下列等式中,正确的是( )A .34=B 34=C .38=±D 34=± 3.下列语句中正确的是( )A .16的平方根是4B .﹣16的平方根是4C .16的算术平方根是±4D .16的算术平方根是4 4.在下列各组数中,互为相反数的一组是( )A .2-B .-2与1-2C .-D .25.下列说法:①无限小数都是无理数;②无理数都是带根号的数;③负数没有立方根;的平方根是±8;⑤无理数减去任意一个有理数仍为无理数.其中正确的有( )A .0个B .1个C .2个D .3个 6.实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .a 2>-B .b 1<C .a b ->D .a b <7.实数﹣3,3,0,中最大的数是( )A .﹣3B .3C .0 D8.为落实“双减”政策,鼓楼区教师发展中心开设“鼓老师讲作 业”线上直播课.开播首月该栏目在线点击次数已达66799次,用四舍五入法将66799精确到千位所得到的近似数是( )A .36.710⨯B .46.710⨯C .36.7010⨯D .46.7010⨯9.某市年财政收入取得重大突破,地方公共财政收入用四舍五人法取近似值后为35.29亿元,那么这个数值( )A .精确到十分位B .精确到百分位C .精确到千万位D .精确到百万位10.如图,在数轴上点B 表示的数为1,在点B 的右侧作一个边长为1的正方形BACD ,将对角线BC 绕点B 逆时针转动,使对角线的另一端落在数轴负半轴的点M 处,则点M 表示的数是( )A B +1 C .1﹣ D .﹣二、填空题11.如果14x +是的平方根,那么x = .12.已知一个正数的两个平方根是32x +和520x -,则这个数是 .13的相反数为 ,倒数为 ,绝对值为 .14.可以作为“两个无理数的和仍为无理数”的反例的是 .151 3(填“>”、“<”或“=”).三、计算题16.计算:12011|7|(π 3.14)43--⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭. 17.计算:)1021112-⎛⎫-+ ⎪⎝⎭18.计算 ()31-+.四、解答题19.将-π,0,2 ,-3.15,3.5用“>”连接.20.把下列各数填入相应的集合圈里(填序号)⑴﹣30 ⑴ ⑴3.14 ⑴ 225 ⑴0 ⑴+20 ⑴﹣2.6 ⑴ ⑴ -2π⑴ 0.05 ;⑴﹣0.5252252225…(每两个5之间依次增加1个2) ⑴ ⑴21.若 x y + 是9的算术平方根, x y - 的立方根是 2- ,求 22x y - 的值.22.已知a 的平方根是±3,b -1的算术平方根是2,求a -2b 的立方根.23.已知实数 a 、 b 、 c 在数轴上的对应点为 A 、 B 、 C ,如图所示:化简: b a c b ----.24.甲同学用如图所示的方法作出C OAB 中,90OAB ∠=,2OA =,3AB =,且点O ,A ,C 在同一数轴上,OB OC =.仿照甲同学的做法,在如图所示的数轴上描出表示F .25.一个篮球的体积为39850cm ,求该篮球的半径r (π取3.14,结果精确到0.1cm ).答案解析部分1.【答案】A【解析】3=.故答案为:A.3=,再求出3的平方根即可.2.【答案】B【解析】【解答】解:34=±,故A、C错误;34=,故B正确,D错误;故答案为:B.【分析】根据平方根、算术平方根逐一计算,并判断即可.3.【答案】D【解析】【解答】解:∵16的平方根是±4,16的算术平方根是4,负数没有平方根,∴选项D正确.故答案为:D.【分析】一个正数x2=a(a>0)则这个正数x就是a的算术平方根,一个数x2=a(a>0)则这个数x就是a的平方根;正数有两个平方根,这两个平方根互为相反数,0的平方根是0,负数没有平方根,据此一一判断得出答案.4.【答案】C【解析】【解答】解:A2=-,故本选项不符合题意;B、-2与2是相反数,故本选项不符合题意;C、-=是相反数,故本选项符合题意;D2=,故本选项不符合题意故答案为:C.【分析】利用二次根式的性质、立方根、绝对值的性质将各选项中能化简的数先化简,再根据只有符号不同的数是互为相反数,可得答案.5.【答案】B【解析】【解答】解:根据无理数的定义可知:①无限小数都是无理数;说法错误;②无理数都是带根号的数;说法错误;③负数没有立方根;负数有立方根,故说法错误;=8的平方根是±,故说法错误;⑤无理数减去任意一个有理数仍为无理数.说法正确;正确说法有1个.故答案为:B.【分析】无限不循环小数叫做无理数,据此判断①②;每一个数都有立方根,据此判断③;根据平方根的概念可判断④;根据无理数的认识以及减法法则可判断⑤.6.【答案】C【解析】【解答】解:根据数轴得:a b <,a b >,故C 选项符合题意,A ,B ,D 选项不符合题意. 故答案为:C.【分析】根据数轴可得a<-2<0<1<b<2且|a|>|b|,据此判断.7.【答案】B【解析】【解答】解:根据题意得:3>>0>−3, 则实数−3,3,0, 中最大的数是3, 故答案为:B.【分析】利用实数的大小比较:正数都大于0和负数,观察可得答案.8.【答案】B【解析】【解答】解:66799=6.6799×104,精确到千位为46.710⨯.故答案为:B.【分析】利用科学记数法表示出此数,再利用四舍五入法将此数精确到千位.9.【答案】D【解析】【解答】∵35.29亿末尾数字9是百万位,∴35.29亿精确到百万位;故答案为:D .【分析】根据近似数的定义及四舍五入的方法求解即可。
八年级数学上册第二章实数测试题含答案解析
第二章实数检测题(本检测题满分:100分:时间:90分钟)一、选择题(每小题3分:共30分)1.(2016·天津中考)估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间2.(2015·安徽中考)与1+最接近的整数是()A.4B.3C.2D.13.(2015·南京中考)估计介于()A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间4.(2016·浙江衢州中考)在:﹣1:﹣3:0这四个实数中:最小的是()A. B.﹣1 C.﹣3 D.05.(2015·重庆中考)化简12的结果是()A.43B.23C.32D.266.若a:b为实数:且满足|a-2|+2b-=0:则b-a的值为()A.2 B.0 C.-2 D.以上都不对7.若a:b均为正整数:且a>7:b>32:则a+b的最小值是()A.3B.4C.5D.68.已知3a=-1:b=1:212c⎛⎫-⎪⎝⎭=0:则abc的值为()A.0 B.-1 C.-12D.129.(2016·黑龙江大庆中考)已知实数a、b在数轴上对应的点如图所示:则下列式子正确的是()第9题图A.a•b>0B.a+b<0C.|a|<|b|D.a﹣b>010.有一个数值转换器:原理如图所示:当输入的x=64时:输出的y等于()是有理数A.2 B.8 C.2D.2二、填空题(每小题3分:共24分)11.(2015·南京中考)4的平方根是_________;4的算术平方根是__________.12.(2016·福州中考)若二次根式在实数范围内有意义:则x 的取值范围是 .13.已知:若 3.65≈1.910:36.5≈6.042:则365000≈ :±0.000365≈ .14.绝对值小于π的整数有 .15.已知|a -5|+3b +=0:那么a -b = .16.已知a :b 为两个连续的整数:且a >28>b :则a +b = . 17.(福州中考)计算:(2+1)(2-1)=________. 18.(2016·山东威海中考) 化简:= .三、解答题(共46分) 19.(6分)已知:求的值.20.(6分)若5+7的小数部分是a :5-7的小数部分是b :求ab +5b 的值. 21.(6分)先阅读下面的解题过程:然后再解答: 形如n m 2±的化简:只要我们找到两个数a :b :使m b a =+:n ab =:即m b a =+22)()(:n b a =⋅:那么便有:b a b a n m ±=±=±2)(2)(b a >.例如:化简:347+.解:首先把347+化为1227+:这里7=m :12=n : 因为::即7)3()4(22=+:1234=⨯: 所以347+1227+32)34(2+=+.根据上述方法化简:42213-.22.(6分)比较大小:并说明理由: (1)与6: (2)与.23.(6分)大家知道是无理数:而无理数是无限不循环小数:因此的小数部分我们不能全部写出来:于是小平用-1来表示的小数部分:你同意小平的表示方法吗? 事实上小平的表示方法是有道理的:因为的整数部分是1:用这个数减去其整数部分:差就是小数部分. 请解答:已知:5+的小数部分是:5-的整数部分是b :求+b 的值.24.(8分)计算:(1)862⨯-82734⨯+:(2))62)(31(-+-2)132(-. 25.(8分)阅读下面计算过程:12)12)(12()12(1121-=-+-⨯=+:();23)23)(23(231231-=-+-⨯=+()25)25)(25(251251-=-+-⨯=+.试求:(1)671+的值:(2)nn ++11(n 为正整数)的值:(3++⋅⋅⋅+的值.第二章 实数检测题参考答案一、选择题1.C 解析: 19介于16和25之间:∵ 16<19<25:∴∴ 45:∴的值在4和5之间.故选C.2.B 解析:∵ 4.84<5<5.29:∴即2.22.3:∴ 1+2.2<11+2.3:即3.2<13.3:∴ 与1最接近的整数是3.3.C 解析:22 2.25 2.3, 2.2 2.3, 1.21 1.3,<<∴<<∴<<∴ 0.60.65<<:故选C .4.C 解析:根据实数的大小比较法则(正数都大于0:负数都小于0:正数大 于一切负数:两个负数比较大小:绝对值大的反而小)比较即可. ∵ ﹣3<﹣1<0<:∴ 最小的实数是﹣3:故选C . 5.B 解析:212432323=⨯=⨯=.6.C 解析:∵ |a -2|+2b -=0:∴ a =2:b =0:∴ b -a =0-2=-2.故选C .7.C 解析:∵ a :b 均为正整数:且a >7:b >32:∴ a 的最小值是3:b 的最小值是2: 则a +b 的最小值是5.故选C .8.C 解析:∵ 3a =-1:b =1:212c ⎛⎫- ⎪⎝⎭=0:∴ a =-1:b =1:c =12:∴ abc =-12.故选C . 9.D 解析:根据实数a 、b 在数轴上对应的点的位置可知1<a <2:﹣1<b <0:∴ ab <0:a +b >0:|a |>|b |:a ﹣b >0.故选D .10.D 解析:由图得64的算术平方根是8:8的算术平方根是22.故选D .二、填空题11.2± 2 解析:∵ ()2224,24,=-=∴ 4的平方根是2±:4的算术平方根是2.12.x ≥﹣1 解析:若二次根式在实数范围内有意义:则x +1≥0:解得x ≥﹣1.13.604.2 ±0.019 1 解析:436500036.510=⨯≈604.2:±0.000365=±43.6510-⨯ ≈±0.019 1. 14. ±3:±2:±1:0 解析:π≈3.14:大于-π的负整数有:-3:-2:-1:小于π的正整数有:3:2:1:0的绝对值也小于π.15. 8 解析:由|a -5|+3b +=0:得a =5:b =-3:所以a -b =5-(-3) =8. 16.11 解析:∵ a >28>b : a :b 为两个连续的整数: 又25<28<36:∴ a =6:b =5:∴ a +b =11. 17. 1 解析:根据平方差公式进行计算:(2+1)(2-1)=()22-12=2-1=1.18.2 解析:先把二次根式化简:再合并同类二次根式:得18-832-222==.三、解答题19.解:因为::即: 所以.故:从而:所以:所以.20.解:∵ 2<7<3:∴ 7<5+7<8:∴ a =7-2. 又可得2<5-7<3:∴ b =3-7.将a =7-2:b =3-7代入ab +5b 中:得ab +5b =(7-2)(3-7)+5(3-7)=37-7-6+27+15-57=2. 21.解:根据题意:可知:因为:所以.22.分析:(1)可把6转化成带根号的形式:再比较它们的被开方数:即可比较大小:(2)可采用近似求值的方法来比较大小. 解:(1)∵ 6=36:35<36:∴ 35<6. (2)∵ -5+1≈-2.236+1=-1.236:-22≈-0.707:1.236>0.707: ∴ -5+1<-22.23.解:∵ 4<5<9:∴ 2<<3:∴ 7<5+<8:∴ =-2.又∵ -2>->-3:∴ 5-2>5->5-3:∴ 2<5-<3:∴ b =2: ∴ +b =-2+2=.24. 解:(1)原式=623332223-+⨯ (2)原式=()266321343-+--- =6236623-+ =432213--.=1362323-.11(76)25.17 6.76(76)(76)⨯-==-++-解:()(2)11(1)11(1)(1)n n n n n n n n n n ⨯+-==+-+++++-.(3)11111122334989999100+++⋅⋅⋅+++++++=-11001+10=9.。
八年级数学上册实数试卷
一、选择题(每题4分,共40分)1. 下列实数中,属于无理数的是()A. √4B. √9C. √16D. √252. 下列各数中,最小的数是()A. -1.5B. -1C. 0D. 13. 若a、b是实数,且a > b,则下列不等式中成立的是()A. a + b > 0B. a - b < 0C. a - b > 0D. a + b < 04. 已知实数x满足不等式-2 < x < 3,则x的取值范围是()A. (-2, 3)B. (-2, 0)C. (0, 3)D. (0, 3)5. 若实数x满足方程x^2 - 4x + 3 = 0,则x的值是()A. 1B. 3C. 1 或 3D. 26. 下列各数中,是绝对值最小的数是()A. |3|B. |-3|C. |0|D. |-5|7. 若a、b是实数,且a^2 = b^2,则下列结论正确的是()A. a = bB. a ≠ bC. a < bD. a > b8. 下列各数中,是等差数列的公差是1的是()A. 2, 3, 4, 5B. 1, 2, 3, 4C. 0, 1, 2, 3D. -1, 0, 1, 29. 已知实数x满足不等式x^2 - 5x + 6 ≥ 0,则x的取值范围是()A. x ≤ 2 或x ≥ 3B. x ≤ 3 或x ≥ 2C. x ≤ 2 或x ≥ 6D. x ≤ 6 或x ≥ 210. 下列各数中,是等比数列的公比是2的是()A. 1, 2, 4, 8B. 2, 4, 8, 16C. 4, 8, 16, 32D. 8, 16, 32, 64二、填空题(每题4分,共20分)11. 实数0的相反数是______。
12. 2的平方根是______。
13. 若a是正实数,则|a|的值是______。
14. 下列各数中,无理数有______。
15. 下列各数中,有理数有______。
八年级数学上册第二章《实数》单元测试卷-北师大版(含答案)
八年级数学上册第二章《实数》单元测试卷-北师大版(含答案)班级:姓名:座号:成绩:一、选择题(30 分)1. 16 的平方根是( )A.4B. ±42.下列各式正确的是( )A.√16 =±4B.±√16 =43. 下列各数中,为无理数的是( )22A. π B 一.74. 下列各数中的无理数是( )1A .0B .25. 下列说法正确的是( )A.所有无限小数都是无理数C.有理数都是有限小数6. 实数9 的算术平方根为( )A.3 B.士37. 下列根式中不是最简二次根式的是(A. √10B. √88. 下列变形正确的是( )C.8D. ±8 C.√(−4)2 =-4 D.3√−27 =-3C. 0D. -2 C. D.B.所有无理数都是无限小数D.不是有限小数就不是有理数C.士 3 D.士3)C.√6D.√2A.√(−16)(−25)= √−16 × √−25B.√161 = √16 × √1 =4×14 4 2C.√(−1) 2 =1D.√252 − 242 =25-24=13 39. 若最简二次根式√2x + 1和√4x − 3能合并,则x 的值为( )A.0.5B.1C.2D.2.510.若将−√2,√6,−√3,√11 四个无理数表示在数轴上,其中能被如图所示的墨迹覆盖的数是( )A . −√2B . √6C . −√3D . √113 8 5二、填空题(28 分)11. 16 的算术平方根是12. 比较大小: 4 3 713. 若已知 a 一3 + (b 一5)2 = 0 ,那么以a ,b 为边长的直角三角形的第三边长为.14. 请写出一个大于1且小于2的无理数:.15.若= 1 + 7 ,则的整数部分是,小数部分是.16. 计算: ( 4) 2-20220 =.17.如图,,,,是数轴上的四个点,这四个点中最适合表示7 的点是 .三、解答题18.计算:(4×4=16分)(1) ﹣2 (2) 8 + 32 一 2(3) (3 + 5)(2 一 5 )(4) (5 一3)219.再计算:(4×4=16分)(1)(2)27 一一2 3 一 3 x(2 一π)0+(一1)20222 3 (4) .20.还是计算:(4×4=16分)1 1(1) 20×(-3 48)÷ 2 (2) 12( 75+33- 48)(3) 27 ×3-182+8(4)√ ( − 3)2-(-1)2023 -(π-1)0+(|(21-121. 阅读下列材料:(6 分)∵√4< √7< √9,即 2 < √7 < 3 ,∴√7请你观察上述的规律后试解下面的问题:的整数部分为2,小数部分为√7 − 2 .如果√5 的小数部分为ᵄ, √13 的小数部分为ᵄ,求ᵄ + ᵄ−√5 的值.(3)22. 阅读理解:1已知a = ,求 2a 2 一 8a +1的值.2 一 3常a 一 2 = 3 .常 一 =,即 a 2 一 4a + 4 = 3 .常a 2 一 4a = 一1 .常2a 2 一 8a +1 = 2(a 2 一 4a) +1 = 2 x (一1) +1 = 一1 .请根据以上解答过程,解决如下问题:(8 分) 1 = .2 +11 3+2 3 (2 (1)计算:(2)计算:(a 2)2 3 1100 + 2 3 ;99 4 + 3 2 3 2 +1+…+ 2+ +11 ,1 +a = = = + 一一 3)(2 + 3)参考答案6 A11. 212. <13. 5 或 714. 2 ( 3 答案不唯一)15. 3 , 7 216. 317. P18. (1)1 (2) 5 2 (3)1 5 (4)28 10 319. (1)2 3 (2) 1 (3)1+ 2 2 (4)10 + 6 220. (1) 2 10 (2)12 (3)4 (4)521. 13 522. (1) 2 1(2) 910B3A 2D4C 7B5B8C9C1B。
八年级上册数学第二章实数测试题
北师大版八年级数学上册第二章实数测试题(1)一、选择题1.下列各数:2π, 0·, 227,27, 1010010001.6,1中无理数个数为() A .2 个 B .3 个 C .4 个 D .5 个2.在实数032-,|-2|中,最小的是( ).A .-23B .C .0D .|-2| 3.下列各数中是无理数的是( )A .B C D .4.下列说法错误的是( )A .±2B 是无理数CD .2是分数 5.下列说法正确的是( )A .0)2(π是无理数B .33是有理数C .4是无理数D .38-是有理数6.下列说法正确的是( )A .a 一定是正数B .20163 是有理数 C .22是有理数 D .平方根等于自身的数只有17.估计20的大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间8. (-2)2的算术平方根是( )A .2B . ±2C .-2D .29.下列各式中,正确的是( )A .3-B .3-C 3=±D 3=±10.下列说法正确的是( )A .5是25的算术平方根B .±4是16的算术平方根C .-6是(-6)2的算术平方根D .0.01是0.1的算术平方根11.36的算术平方根是( )A .±6B .6C .±6D . 612.下列计算正确的是( )4=± B.1= 4= 2=13.下列运算正确的是( )A .25=±5B .43-27=1C .18÷2=9D .24·32=6 14.下列计算正确的是( )A .822-=B .27-123=9-4=1C .(25)(25)1-+=D .62322-= 15.如图:在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N16.如图,矩形OABC 的边OA 长为2 ,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是A .2.5B .2 2C . 3D . 517.下列计算正确的是( ).A .2234-=4-3=1B .)25()4(-⨯-=4-×25-2)×(-5)=10C .22511+=11+5=16D .32=36 18.已知n -12是正整数,则实数n 的最大值为( )A .12B .11C .8D .319.2)9(-的平方根是x , 64的立方根是y ,则x +y 的值为( )A .3B .7C .3或7D .1或720.若||4x =29y =,且||x y x y -=-,则x y +的值为( )A .5或13B .-5或13C .-5或-13D .5或-13二、填空题1.实数27的立方根是2.若一个正数的两个平方根分别是2a -2和a -4,则a 的值是 .3.-6的绝对值是___________.4.估计7的整数部分是5.比较下列实数的大小(在 填上>、<或=) ①3- 2-; ②215- 21;③112 53。
((新人教版))八年级数学第二章《实数》单元测试卷(共4页)
八年级数学第二章《实数》单元测试卷 班级 姓名 学号一、选择题1、在下列各数3.1415、0.2060060006…、0、2.0 、π-、35、722、27无理数的个数是 ( )A 、 1 ;B 、2 ;C 、 3 ;D 、 4。
2、一个长方形的长与宽分别时6、3,它的对角线的长可能是 ( )A 、整数;B 、分数 ;C 、有理数 ;D 、无理数3、下列六种说法正确的个数是 ( )A 、1 ;B 、2;C 、3;D 、4○1无限小数都是无理 ○2正数、负数统称有理数 ○3无理数的相反数还是无理数 ○4无理数与无理数的和一定还是无理数 ○5无理数与有理数的和一定是无理数 ○6 无理数与有理数的积一定仍是无理数4、下列语句中正确的是 ( )A 、3-没有意义;B 、负数没有立方根;C 、平方根是它本身的数是0,1;D 、数轴上的点只可以表示有理数。
5、下列运算中,错误的是( ) ①1251144251=,②4)4(2±=-,③22222-=-=-,④2095141251161=+=+ A 、1个 ; B 、2个;C 、3个 ;D 、4个。
6、2)5(-的平方根是( )A 、5± ;B 、5;C 、5-;D 、5±。
7、下列运算正确的是( )A 、3311--=-;B 、 3333=- ;C 、 3311-=- ;D 、3311-=- 。
8、若a 、b 为实数,且471122++-+-=a a a b ,则b a +的值为 ( ) A 、1± ;B 、;C 、3或5 ;D 、5。
9、下列说法错误的是( )A 、2是2的平方根;B 、两个无理数的和,差,积,商仍为无理数;C 、—27的立方根是—3;D 、无限小数是无理数。
10、若9,422==b a ,且0<ab ,则b a -的值为 ( )A 、2-;B 、5± ;C 、5;D 、5-。
11、数 032032032.123是 ( )A 、有限小数 ;B 、无限不循环小数 ;C 、无理数 ;D 、有理数12、下列说法中不正确的是( )A 、1-的立方根是1-,1-的平方是1 ;B 、两个有理之间必定存在着无数个无理数;C 、在1和2之间的有理数有无数个,但无理数却没有;D 、如果62=x ,则x 一定不是有理数。
第3章 实数 单元测试 2022—2023学年湘教版八年级数学上册
湘教版八年级数学(上)第三章《实数》检测二满分:130分,时量:120分钟一、选择题(每小题3分,共30分)1. 下列各式化简结果为无理数的是( )A. B. 01)- C. D. 2. 下列各数中最大的数是( ).A. 5B.C. πD. -83. 若x 是9的算术平方根,则x 是( )A. 3B. -3C. 9D. 814. 下列说法不正确的是( )A. 125的平方根是15± B. -9是81的一个平方根C. 0.2的算术平方根是0.04D. -27的立方根是-35.如图,数轴上A ,B 两点表示的数分别为-1和B 关于点A 的对称点为C ,则点C 所表示的数为( )A. 2-B. 1--C. 2-+D. 1+6. 27-的立方根与81的平方根的和是( )A. 6B. 0C. 6或12-D. 0或67. 若()2m =-,则有( )A. 0<m <1B. -1<m <0C. -2<m <-1D. -3<m <-28. 有理数a 在数轴上对应的点如图,则a ,a -,1-的大小关系是( )A. 1a a -<<-B. 1a a -<-<C. 1a a <-<-D. 1a a <-<-9. 一个边长为cm a 的正方形,它的面积与长为8cm 、宽为5cm 的长方形面积相等,则a 的值( )A. 在3与4之间B. 在4与5之间C. 在5与6之间D. 在6与7之间10. 的点可能是( )A. 点MB. 点NC. 点PD. 点Q二、填空题(每小题3分,共24分)11.___________.12. 计算:12--=_____.13. 某数的两个不同的平方根是21a -和2a -+,则这个数是_______.14. 若一个数的算术平方根是它本身,则这个数为_______.15. 的相反数是_______2-的绝对值是________.16. 比较大小:_________0.5.17. 一个等腰三角形的两边长分别为2,那么这个等腰三角形的周长是______.18. 的整数部分是a ,小数部分为b ,则a b -=_________.三、解答题(76分)19. 把下列各数填入相应的横线上:121005 3.14 5.200.10100100013π----⋯,,,,,,正有理数集合:整数集合:负分数集合:无理数集合:20. 计算:(1)01+--(221. 求下列各式中的x ,(1)24250x -=(2)()327364x -=-22. 已知21a +的平方根是3±,522a b +-的算术平方根是4,求34a b -的平方根.23.互为相反数,求()2022x y +的平方根.24. 国际比赛的足球场地是在100米到110米之间,宽是在64米到75米之间,现有一个长方形的足球场,其长是宽的1.5倍,面积是7560平方米,那么这个足球场86.9570.99≈≈)25. 阅读材料,回答问题:对于实数a()()()0000a a a a a ⎧>⎪==⎨⎪-<⎩3=,0=()3=--问题:实数a 、b在数轴上的位置如图,化简:b a -+26. 写出所有符合下列条件的数:(1)大于的整数;(2).27. 阅读下面的文字,解答问题:的小数部分我们不可全解写出来,而12,1-的小数那分.(1)ab ,求a b +-的值;(2)已知100x y =+,其中x 是整数,且910y <<,求19x y -的算术平方根.湘教版八年级数学(上)第三章《实数》检测二满分:130分,时量:120分钟一、选择题(每小题3分,共30分)【1题答案】【答案】C【解析】【分析】将各选项化简,然后再判断即可.【详解】解:A=﹣3,是有理数,不符合题意;B、)01-=1,是有理数,不符合题意;C=,是无理数,符合题意;D2=,是有理数,不符合题意.故选C.【点睛】题目主要考查二次根式的化简及零次幂的计算,熟练掌握二次根式的化简是解题关键.【2题答案】【答案】A【解析】【分析】根据实数的大小比较方法进行解答,即可求解.,π≈3.14,∴,最大是5,故选A.视频【点睛】本题主要考查了实数的大小比较,熟练掌握实数的大小比较方法是解题的关键.【3题答案】【答案】A【分析】根据算数平方根的定义进行求解即可.【详解】解:∵x是9的算术平方根,∴=x3x=,故选:A.【点睛】本题考查算术平方根,熟练掌握算术平方根的定义是解题的关键.【4题答案】【答案】C【解析】【分析】根据平方根的意义、算术平方根的意义、立方根的意义,判断即可.【详解】A. 125的平方根是15±,选项正确;B. -9是81的一个平方根,选项正确;C. 0.04的算术平方根是0.2,选项错误;D. -27的立方根是-3,选项正确;故选:C.【点睛】本题主要考查的是平方根、算术平方根的性质,熟练掌握平方根、算术平方根的性质是解题的关键.【5题答案】【答案】A【解析】【分析】由题意可知A、B两点之间的距离是1+C在原点的左侧,进而求出C的坐标.【详解】A、B两点之间的距离是1+,所以C点表示(112--+=-故选:A.【点睛】本题考查了求数轴上两点之间的距离,同时也利用对称点的性质.【6题答案】【答案】C【分析】先列式,再根据立方根、平方根的定义进行计算,然后根据实数的运算法则求得计算结果.+=-±39结果为6或12-故选:C.【点睛】本题考查了实数的运算,熟练掌握平方根、立方根的求法,是基础知识比较简单.【7题答案】【答案】C【解析】【详解】根据二次根式的意义,化简得:,因为1<2<4,所以<2.∴-2<-<-1.故选C考点:实数运算与估算大小【8题答案】【答案】D【解析】【分析】根据数轴表示数的方法得到a<﹣1,然后根据相反数的定义易得a<﹣1<﹣a.【详解】解:∵a<﹣1,∴﹣a>1>﹣1,∴a<﹣1<﹣a.故选:D.【点睛】本题考查了数轴、有理数大小的比较,解题的关键是掌握有理数大小的比较方法:正数大于0,负数小于0;负数的绝对值越大,这个数越小.【9题答案】【答案】D【解析】【分析】根据题意求得a ,进而根据无理数的大小比较即可求解.【详解】解:258a =⨯ ,0a >a ∴=67<< a ∴的值在6与7之间故选D【点睛】本题考查了求一个数的算术平方根,无理数的大小比较,根据题意求得a 的值是解题的关键.【10题答案】【答案】C【解析】是在哪两个相邻的整数之间,然后确定对应的点即可解决问题.【详解】解:∵12.25<14<16,∴3.5<4,的点可能是点P .故选:C .【点睛】本题考查实数与数轴上的点的对应关系,应先看这个无理数在哪两个有理数之间,进而求解.二、填空题(每小题3分,共24分)【11题答案】【答案】2【解析】8,根据立方根的定义即可求解.8=,8的立方根是2,故答案为:2.【点睛】本题考查算术平方根和立方根的定义,明确算术平方根和立方根的定义是解题的关键.【12题答案】【答案】0【解析】【分析】先计算负整数指数幂及开立方,然后计算加减法即可.【详解】解:12-=11022-=,故答案为0.视频【点睛】题目主要考查实数的运算及负整数指数幂,熟练掌握运算法则是解题关键.【13题答案】【答案】9【解析】【分析】根据一个正数的两个平方根互为相反数得到()2120a a -+-+=,求出a 的值即可得到答案.【详解】解:∵某数的两个不同的平方根是21a -和2a -+,∴()2120a a -+-+=,解得1a =-,∴()()2221219a -=--=,∴这个数是9,故答案为:9.【点睛】本题主要考查了平方根的概念,熟知一个正数的平方根有两个,这两个平方根互为相反数是解题的关键.【14题答案】【答案】0或1【解析】【分析】根据算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,那么一个数的算术平方根是它本身,可以知道这个数是0和1.【详解】解:根据算术平方根的定义,这个数是0或1.故选答案为: 0或1.【点睛】此题主要考查了算术平方根的定义,分清算术平方根的概念易与平方根的概念是解决此题关键.【15题答案】【答案】①. 2 ②. 2【解析】【分析】先求出立方根,再求相反数,再利用绝对值的性质计算可得.2=-,2,2-22-=,故答案为:2,2【点睛】本题考查了实数的性质,立方根,相反数,绝对值,解题的关键是掌握相应的概念和求法.【16题答案】【答案】①. < ②. >【解析】【分析】①利用根据二次根式的性质得到=,=即可解答;②利0>即可解答.【详解】解:①∵=,=,<∴<,10.52-=-=,2>,0>0.5>,故答案为:<,>.【点睛】本题考查了实数的大小比较,选择合适的方法进行实数的大小比较是解题的关键.【17题答案】【答案】或4【解析】【分析】当以2为腰时,求出答案;再以2为底边,求出周长即可.【详解】当以2为腰时,三边长2,2224++=+;当以2为底边时,三边长2周长为.故答案为:或4+.【点睛】本题主要考查了实数的运算,根据等腰三角形的性质讨论是解题的关键.【18题答案】【答案】10-【解析】【分析】根据算术平方根的定义由252936<<得到56,则5a =,5b =-,然后计算a b -.【详解】∵252936<<∴56∴5a =,5b =-∴)5510a b -=--=-故答案为:10-.【点睛】本题考查了算术平方根,估算无理数的大小,利用完全平方数和算术平方根对无理数的大小进行估算.三、解答题(76分)【19题答案】【答案】见解析【解析】【分析】根据实数的分类进行判断即可.=, 5.2= 5.2---,=7-,正有理数集合:3.14⋯⋯;整数集合:2-、0、⋯⋯;负分数集合:153-、 5.2--⋯⋯;无理数集合:100π、0.1010010001⋯;故答案为:3.14⋯⋯;2-、0、⋯⋯;153-、 5.2--⋯⋯;100π0.1010010001⋯.【点睛】本题考查实数的分类,熟练掌握实数的相关概念是解题的关键.【20题答案】【答案】(1)2(2)74-【解析】【分析】(1)先根据算术平方根和立方根的定义、零指数幂的运算法则计算,再进行加减计算即可;(2)利用算术平方根和立方根的定义进行计算.【小问1详解】解:原式()=3311-+--+2=;【小问2详解】解:原式111=20224---++74=-.【点睛】本题考查实数的混合运算,熟练掌握算术平方根和立方根的定义是解题的关键.【21题答案】【答案】(1)52x =± (2)53x =【解析】【分析】(1)方程两边同时除以4,再开方,降次为一元一次方程即可解答;(2)方程两边同时除以27,再开三次方,降次一元一次方程即可解答.【小问1详解】解:24250x -=,方程两边同时除以4,移项得,2254x =,即x =,∴52x =±;【小问2详解】解:()327364x -=-,方程两边同时除以27,得,()364327x -=-,∴433x -==-,∴53x =.【点睛】本题考查了平方根和立方根,掌握平方根和立方根的定义是解题的关键.【22题答案】【答案】4±【解析】【分析】根据平方根和算术平方根的定义即可求出21a +和522a b +-的值,进而求出a 和b 的值,将a 和b 的值代入34a b -即可求解.【详解】解:∵21a +的平方根是3±,522a b +-的算术平方根是4,∴21a +=9,522a b +-=16,∴a =4,b =-1把a =4,b =-1代入34a b -得:3×4-4×(-1)=16,∴34a b -的平方根为:4=±.【点睛】本题主要考查了算术平方根和平方根,熟练掌握算术平方根和平方根的定义是解题的关键.注意:一个正数有两个平方根,它们互为相反数.【23题答案】【答案】()2022x y +的平方根是1±【解析】【分析】根据相反数的性质列出算式,再根据非负数的性质列出二元一次方程组,解方程组求出x 、y 的值,根据平方根的概念解答即可.0=,∴3020x y x y --=⎧⎨+=⎩,解得:21x y =-⎧⎨=⎩,∴211x y +=-+=-,则()20221x y +=,1的平方根是1±.【点睛】本题考查了非负数的性质、平方根的定义和解二元一次方程组,根据非负数的性质求出x 和y 的值是解题的关键.【24题答案】【答案】这个足球场可以用作国际比赛【解析】【分析】设足球场的的宽为x 米,则长为1.5x 米,根据题意列出方程,求出x 的值,再计算出足球场的长,即可作出判断.【详解】设足球场的的宽为x 米,则长为1.5x 米,由题意得:1.57560x x = ,25040x =,即x =,70.99≈,所以长为1.5106.49x =米,∵6470.9975<<,100106.49110<<,∴这个足球场可以用作国际比赛.【点睛】本题考查了算术平方根的应用,根据题意列出方程是解题的关键.【25题答案】【答案】2b-【解析】【分析】根据数轴上点a b 、的位置得到0b a -<,0a b +<,再根据二次根式的性质与绝对值的性质即可解答.【详解】解:∵0b a <<,b a >,∴0b a -<,0a b +<,∴b -()()a b a b =--⎡⎤⎣⎦++a b a b=---2b =-.【点睛】本题考查了二次根式的性质,绝对值的性质,整式的加减,掌握二次根式的性质及绝对值的性质是解题的关键.【26题答案】【答案】(1)-2,-1,0,1,2,3,4,5;(2)-3,-2,-1,0,1,2,3.【解析】【详解】试题分析:(1)因为≈-2.445≈5.313,所以在-2.445~5.313间的整数有-2,-1,0,1,2,3,4,5;(2≈3.606,所以只要找绝对值小于3.606的整数即可.试题解析:(1)大于的整数有:-2,-1,0,1,2,3,4,5;(2的整数有:-3,-2,-1,0,1,2,3.【27题答案】【答案】(1)1;(2)11.【解析】【分析】(1))小数部分a 的整数部分b ,最后将a 、b 的值代入求解即可;(2)先判断小数部分为1010,再由100x y =+,x 是整数,且910y <<,求得x=101,1,把x 、y 的值代入求得19x y ,++-求得代数式的值,再根据算术平方根的定义求解即可.【详解】(1)∵2334,,2-3,∴a 2=-,b=3,∴a b +-2-+3;(2)∵1011,10-10,∵100x y +=+,x 是整数,且910y <<,∴x=101,10-1,∴19x y ++-1)1+=121,∵121的算术平方根为11,∴19x y ++-的算术平方根为11.【点睛】本题主要考查了估算无理数的大小,“夹逼法”是估算的一般方法;解此类问题时应估算无理数的值,再根据题意具体解决.。
苏教版数学八年级上册第4章《实数》检测卷(含答案)
八年级上册第4章《实数》检测卷满分120分姓名:___________班级:___________学号:___________一.选择题(共8小题,满分24分,每小题3分)1.在3.14159,4,1.1010010001…,4.,π,中,无理数有()A.1个B.2个C.3个D.4个2.以下说法正确的是()A.两个无理数之和一定是无理数B.带根号的数都是无理数C.无理数都是无限小数D.所有的有理数都可以在数轴上表示,数轴上所有的点都表示有理数.3.用四舍五入法将0.00519精确到千分位的近似数是()A.0.0052 B.0.005 C.0.0051 D.0.00519 4.下列说法正确的是()A.实数与数轴上的点一一对应B.无理数与数轴上的点一一对应C.整数与数轴上的点一一对应D.有理数与数轴上的点一一对应5.a2的算术平方根是2,则a的值为()A.±2 B.2 C.4 D.±4 6.利用教材中的计算器依次按键如下:则计算器显示的结果与下列各数中最接近的一个是()A.2.5 B.2.6 C.2.8 D.2.9 7.实数a、b、c满足a<b且ac>bc,它们在数轴上的对应点的位置可以是()A.B.C.D.8.若|a|=4,,且a+b<0,则a﹣b的值是()A.1,7 B.﹣1,7 C.1,﹣7 D.﹣1,﹣7二.填空题(共8小题,满分32分,每小题4分)9.实数81的平方根是.10.计算:=.11.比较2和大小:2 (填“>”、“<“或“=”).12.一个正数的两个平方根是a﹣4和3,则a=.13.将1299万取近似值保留三位有效数字为,该近似数精确到位.14.若的整数部分为a,小数部分为b,则a﹣b=.15.若+|b+1|=0,则(a+b)2020=.16.对于实数m,n,定义运算m*n=(m+2)2﹣2n.若2*a=4*(﹣3),则a=.三.解答题(共8小题,满分64分)17.(6分)计算:.18.(8分)求下列各式中x的值:(1)25x2﹣36=0;(2)x3﹣3=;19.(6分)已知2a﹣1的一个平方根是3,3a+b﹣1的一个平方根是﹣4,求a+2b的平方根.20.(8分)阅读材料:图中是小马同学的作业,老师看了后,找来小马问道:“小马同学,你标在数轴上的两个点对应题中的两个无理数,是吗?”小马点点头.老师又说:“你这两个无理数对应的点找的非常准确,遗憾的是没有完成全部解答.”请你帮小马同学完成本次作业.请把实数0,﹣π,﹣2,,1表示在数轴上,并比较它们的大小(用<号连接).解:21.(8分)车工小王加工生产了两根轴,当它把轴交给质检员验收时,质检员说:“不合格,作废!”小王不服气地说:“图纸要求精确到2.60m,一根为2.56m,另一根为2.62m,怎么不合格?”(1)图纸要求精确到2.60m,原轴的范围是多少?(2)你认为是小王加工的轴不合格,还是质检员故意刁难?22.(8分)如图,一只蚂蚁从点A沿数轴向右直爬2个单位长度到达点B,点A表示,设点B所表示的数为m.(1)求m的值.(2)求|m﹣1|+m+6的值.23.(10分)阅读理解题:定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加、减、乘法运算与整式的加、减、乘法运算类似.例如计算:(2﹣i)+(5+3i)=(2+5)+(﹣1+3)i=7+2i;(1+i)×(2﹣i)=1×2﹣1×i+2×i﹣i2=2+(﹣1+2)i+1=3+i;i3=i2×i=﹣1×i=﹣ii4=i2×i2=﹣1×(﹣1)=1根据以上信息,完成下列问题:(1)填空:3i3=;(2)计算:(1+i)×(3﹣4i)+i5;(3)计算:i+i2+i3+i4+ (i2022)24.(10分)如图,在数轴上有两个长方形ABCD和EFGH,这两个长方形的宽都是2个单位长度,长方形ABCD的长AD是4个单位长度,长方形EFGH的长EH是8个单位长度,点E在数轴上表示的数是5.且E、D两点之间的距离为12.(1)填空:点H在数轴上表示的数是,点A在数轴上表示的数是.(2)若线段AD的中点为M,线段EH上一点N,EN=EH,M以每秒4个单位的速度向右匀速运动,N以每秒3个单位的速度向左运动,设运动时间为x秒,求当x多少秒时,OM=ON.(3)若长方形ABCD以每秒2个单位的速度向右匀速运动,长方形EFGH固定不动,当两个长方形重叠部分的面积为6时,求长方形ABCD运动的时间.参考答案一.选择题(共8小题,满分24分,每小题3分)1.解:在3.14159,4,1.1010010001…,4.,π,中,无理数有1.1010010001…,π共2个.故选:B.2.解:A、两个无理数之和一定是无理数,错误,例如+(﹣)=0;B、带根号的数都是无理数,错误,例如;C、无理数都是无限小数,正确;D、所有的有理数都可以在数轴上表示,数轴上所有的点都表示有理数,错误,实数与数轴上的点一一对应.故选:C.3.解:0.00519精确到千分位的近似数是0.005.故选:B.4.解:数轴不仅表示有理数,也可以表示无理数,例如:如图,矩形OABC,OA=1,OC=2,则OB =,以O为圆心,OB为半径画弧交数轴于点D,则点D所表示的数为:,同理,可以在数轴上表示其它的无理数,因此数轴上的点与实数一一对应,故选:A.5.解:∵a2的算术平方根是2,∴a2=4,则a=±2,故选:A.6.解:∵≈2.646,∴与最接近的是2.6,故选:B.7.解:A由图可知,因为a>b,不符合题意,所以A选项不正确;B由图可知,因为a<b<0,c<0,根据不等式的性质ac>bc,所以B选项正确;C由图可知,因为a<b<0,c>0,根据不等式的性质ac<bc,所以C选项不正确;D由图可知,因为a>b,不符合题意,所以D选项不正确.故选:B.8.解:∵|a|=4,,且a+b<0,∴a=﹣4,b=﹣3或a=﹣4,b=3,则a﹣b=﹣1或﹣7.故选:D.二.填空题(共8小题,满分32分,每小题4分)9.解:实数81的平方根是:±=±9.故答案为:±9.10.解:=﹣0.1.故答案为:﹣0.1.11.解:∵1<3<4,∴<<,∴1<<2,∴2>,故答案为:>.12.结:由题意得a﹣4+3=0,解得a=1,故答案为1.13.解:根据分析得:将1 299万取近似值保留三位有效数字为1.30×107,该近似数精确到十万位.14.解:∵92<93<102,∴,∴a=9,b=,∴a﹣b=9﹣()=18﹣.故答案为:18﹣.15.解:∵+|b+1|=0,∴a﹣2=0且b+1=0,解得,a=2,b=﹣1,∴(a+b)2020=(2﹣1)2020=1,故答案为:1.16.解:∵m*n=(m+2)2﹣2n,∴2*a=(2+2)2﹣2a=16﹣2a,4*(﹣3)=(4+2)2﹣2×(﹣3)=42,∵2*a=4*(﹣3),∴16﹣2a=42,解得a=﹣13,故答案为:﹣13.三.解答题(共8小题,满分64分)17.解:=5﹣1+2+(﹣4)=2.18.解:(1)方程整理得:x2=,开方得:x=±;(2)方程整理得:x3=,开立方得:x=.19.解:∵2a﹣1的平方根为±3,3a+b﹣1的平方根为±4,∴2a﹣1=9,3a+b﹣1=16,解得:a=5,b=2,∴a+2b=5+4=9,∴a+2b的平方根为±3.20.解:根据题意,在数轴上分别表示各数如下:∴.21.解:(1)车间工人把2.60m看成了2.6m,近似数2.6m的要求是精确到0.1m;而近似数2.60m的要求是精确到0.01m,所以轴长为2.60m的车间工人加工完原轴的范围是2.595m≤x<2.605m,(2)由(1)知原轴的范围是2.595m≤x<2.605m,故轴长为2.56m与2.62m的产品不合格.22.解:(1)由题意A点和B点的距离为2,A点的坐标为,因此B点坐标m=2.(2)把m的值代入得:|m﹣1|+m+6=|2﹣1|+2﹣+6,=|1|+8﹣,=﹣1+8﹣,=7.23.解:(1)3i3=3×i×(﹣1)=﹣3i,故答案为﹣3i;(2)原式=3﹣4i+3i﹣4i2=3﹣i﹣4×(﹣1)=3﹣i+4=7﹣i;(3)原式=[i+(﹣1)+i×(﹣1)+1]×505+(﹣1)=0+(﹣1)=﹣1.24.解:(1)∵长方形EFGH的长EH是8个单位长度,且点E在数轴上表示∴点H在数轴上表示的数是5+8=13∵E、D两点之间的距离为12点D表示的数为5﹣12=﹣7∵长方形ABCD的长AD是4个单位长∴点A在数轴上表示的数是﹣7﹣4=﹣11故答案为:13,﹣11;(2)由题意知,线段AD的中点为M,则M表示的数为﹣9,线段EH上一点N且EN=EH,则N 表示的数为7;由M以每秒4个单位的速度向右匀速运动,N以每秒3个单位的速度向左运动,则经过x秒后,M点表示的数为4x﹣9,N点表示的数为7﹣3x,∵OM=ON,∴|4x﹣9|=|7﹣3x|,∴4x﹣9=7﹣3x,或4x﹣9=3x﹣7,∴x=,或x=2,∴x=秒或x=2秒时,OM=ON;(3)∵在数轴上有两个长方形ABCD和EFGH,这两个长方形的宽都是2个单位长度,两个长方形重叠部分的面积为6,∴重叠部分的的长方形的长为3,∴①当点D运动到E点右边3个单位时,两个长方形重叠部分的面积为6,此时长方形ABCD运动的时间为:(DE+3)÷2=(12+3)÷2=(秒),②当点A运动到H点右边3个单位时,两个长方形重叠部分的面积为6,此时长方形ABCD运动的时间为:(AD+DE+EH﹣3)÷2=(4+12+8﹣3)÷2=(秒),综上,长方形ABCD运动的时间为秒或秒.。
八年级上册数学实数测试及答案
八年级数学《实数》检测题一、1.写出和为8的两个无理数 .22,那么a = . 3.下列实数:12,π3-,|1|-0.1010010001,0中,有m 个有理数,n 个无理数,5位有效数字).4、若a 、b 都是无理数,且a +b =2,则a 、b 的值可以是 (填上一个满足条件的值即可).5、实数a 在数轴上的位置如图1所示,则|1|a -= .6.(2-3)2007(2-3)2008= .7、若一个正数的平方根是2a-1和-a+2,则a= ,这个正数是 . 8.已知按一定规律排列一组数:1,12,13,…,119,120,…用计算器探索:如果从中选出若干个数,使它们的和大于3,那么至少需要选出 个9、用计算器计算比较大小:311、“=”“<”). 10、观察下列各式:311+=231,412+=341,513+=451,……,请你将猜想到的规律用含自然数n (n ≥1)的代数式表示出来是 . 二、精心选一选,慧眼识金!11.如果一个有理数的平方根和立方根相同,那么这个数是( ) A. ±1. B. 0. C. 1. D. 0和1.12.一个直角三角形的两直角边分别是6、3,则它的斜边长一定是( ) A .整数 B.分数 C.有理数 D. 无理数13.3的值( ) A .在5和6之间B .在6和7之间C .在7和8之间D .在8和9之间14.已知0<x <1,那么在x ,x1,x ,x 2中最大的是( ) A .x B .x1 C .x D .x 215、下列各组数中互为相反数的是( )A.5B.5-和15C.5-D.5--和()5--16、化简31-3+4的结果是( )A. 3-1.B. 3-3.C. -1-3.D.1+3.17 )A. x ≥1B. x ≥-1C.-1≤x ≤1D. x ≥1或x ≤-1 18、下列各式中计算正确的是( ).A.7434322=+=+B.20)5()4(2516)25()16(=-⨯-=-⨯-=-⨯-C.228324324===D.5382512425124=∙= 19、在Rt △ABC 中,∠C =90°,c 为斜边,a 、b 为两条直角边,则化简2||c a b --的结果为( )A .3a b c +-B .33a b c --+C .33a b c +-D .2a20、设4a ,小整数部分为b ,则1a b-的值为( )A .1-B C .1 D .三、用心想一想,马到成功!21、用计算器求372258-的值.(保留两个有效数字)22、如图的集合圈中,有5个实数.请计算其中的有理数的和与无理数的积的差.23、化简并求值:221122a b a b a a b a -⎛⎫--+ ⎪-⎝⎭,其中33a b =-=.24、自由下落的物体的高度h (m )与下落时间t (s )的关系为h =4.9t 2.有一学生不慎让一个玻璃杯从19.6m 高的楼上自由下落,刚好另一学生站在与下落的玻璃杯同一直线的地面上,在玻璃杯下落的同时楼上的学生惊叫一声,这时楼下的学生能躲开吗(声音的速度为340m/s )?25、已知:x -2的平方根是±2,2x +y +7的立方根是3,求x 2+y 2的算术平方根.26、如图,正方形网格中的每个小正方形边长都是1,任意连结这些小正方形的顶点,可得到一些线段.请在图中画出1352===AD AC AB 、、这样的线段.27、观察下列各式及验证过程:式①:322322+=⨯验证:()()322122122122223232222233+=-+-=-+-==⨯ 式②:833833+=⨯验证:()()833133133133338383322233+=-+-=-+-==⨯ ⑴ 针对上述式①、式②的规律,请再写出一条按以上规律变化的式子;⑵ 请写出满足上述规律的用n (n 为任意自然数,且n ≥2)表示的等式,并加以验证参考答案一、1.2+,6-(答案不惟一) 2.16 3.1.58744、1a =,1b =。
八年级数学上册 第二章 实数 单元测试卷(北师版 2024年秋)
八年级数学上册第二章实数单元测试卷(北师版2024年秋)八年级数学上(BS版)时间:90分钟满分:120分一、选择题(每题3分,共30分)1.下列实数中,是无理数的是()A.23B.-14C.0D.-1.010101 2.(2023潍坊)在实数1,-1,0,2中,最大的数是()A.1B.-1C.0 D.23.利用科学计算器求值时,小明的按键顺序为■4=S⇔D,则计算器面板显示的结果为()A.-2B.2C.±2D.44.要使x+1在实数范围内有意义,则x的取值范围是()A.x≤1B.x≥-1C.x<-1D.x>15.下列根式中,是最简二次根式的是()A.19B.4C.a2D.a+b6.下列各选项的两个数互为相反数的是()A.22和(-2)2B.-327和3-27 C.64和-364 D.37和3-77.(2023徐州)2023的值介于()A.25与30之间B.30与35之间C.35与40之间D.40与45之间8.(新考法分类讨论法)若2m-4与3m-1是同一个正数的平方根,则m的值为()A.-3B.1C.-1D.-3或1 9.下列计算正确的是()A.(-3)2=-3 B.12=23C.3-1=1D .(2+1)(2-1)=310.(教材P 43习题T 4变式)如图,每个小正方形的边长都为1,点A ,B 都在格点上,若BC =2133,则AC 的长为()A.13B.4133C .213D .313二、填空题(每题3分,共24分)11.(2023吉林)计算:|-5|=________.12.3-2的相反数是________,绝对值是________.13.(新趋势跨学科)已知当鸡蛋落地时的速度大于1.2m/s 时鸡蛋会被摔碎.若鸡蛋从高处自由下落,其落地时的速度v(m/s)与开始下落时离地面的高度h (m)满足关系v 2=20h ,现有一鸡蛋从0.15m 处自由下落,则鸡蛋________摔碎.(填“会”或“不会”,提示:3≈1.73)14.(教材P 50复习题T 10变式)如图,四边形ODBC 是正方形,以点O 为圆心,OB 的长为半径画弧交数轴的负半轴于点A ,则点A 表示的数是________.15.若6-13的整数部分为x ,小数部分为y ,则(2x +13)y 的值是________.16.(教材P 31随堂练习T 2变式)若一个正方体的棱长是5cm ,再做一个体积是它的两倍的正方体,则所做正方体的棱长约是____________(用计算器计算,结果精确到0.1cm).17.实数a ,b ,c 在数轴上对应点的位置如图所示,化简(b -a )2-(a +c )2+(c -1)2=________.18.(新视角规律探究题)如图,正方形ABCD的边长为1,以AC为边作第2个正方形ACEF,再以CF为边作第3个正方形FCGH,…,按照这样的规律作下去,第6个正方形的边长为________.三、解答题(19,23,24题每题12分,其余每题10分,共66分)19.计算下列各题:(1)9-20240+2-1;(2)(2+5)(2-5)+(2-1)2;-12-1+6÷2-|2-3|+(π-3)0-12.20.求下列各式中x的值:(1)9(3x+2)2-64=0;(2)-(x-3)3=125.21.已知2a-1的平方根是±3,3a+b-1的算术平方根是4,求a+2b的值.22.在4×4的方格中,每个小正方形的边长均为1.(1)图①中正方形ABCD的面积为________,边长为________;(2)如图②,若点A在数轴上表示的数是-1,以A为圆心、AD长为半径画圆弧与数轴的正半轴交于点E,求点E表示的数.23.(2024石家庄裕华区期末)某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来400m2的正方形场地改建成315m2的长方形场地,且其长、宽的比为5 3.(1)求原来正方形场地的周长;(2)如果把原来正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由.24.(新考法分类讨论法)对于不同的实数p,q,我们用符号max{p,q}表示p,q两数中较大的数,如max{1,2}=2,(1)请直接写出max{-2,-3}的值;(2)我们知道,当m2=1时,m=±1,利用这种方法解决下面问题:若max{(x-1)2,x2}=4,求x的值.答案一、1.B 2.D 3.B 4.B5.D6.D7.D8.D9.B10.B点拨:由勾股定理得AB 2=62+42=52,所以AB =213.所以AC =AB -BC =213-2133=4133.二、11.512.2-3;2-313.会14.-2215.316.6.3cm 17.b +118.42点拨:根据勾股定理得出正方形的对角线是边长的2倍,第1个正方形的边长为1,其对角线长为2;第2个正方形的边长为2,其对角线长为(2)2;第3个正方形的边长为(2)2,其对角线长为(2)3;…;第n 个正方形的边长为(2)n -1.所以第6个正方形的边长为(2)5=4 2.三、19.解:(1)原式=3-1+12=52.(2)原式=(2)2-(5)2+(2-22+1)=2-5+3-22=-2 2.(3)原式=-2+3-(2-3)+1-23=-2+3-2+3+1-23=-3.20.解:(1)原方程可化为(3x +2)2=649.由平方根的定义,得3x +2=±83,解得x =29或x =-149.(2)原方程可化为(x -3)3=-125.由立方根的定义,得x -3=-5,解得x =-2.21.解:由题意可知2a -1=9,3a +b -1=16,所以a =5,b =2.所以a +2b =5+2×2=9.22.解:(1)10;10点拨:因为正方形ABCD 的面积是4×4-4×12×1×3=10,所以正方形ABCD 的边长为10.(2)因为正方形ABCD 的边长为10,所以AE =AD =10,所以点E 表示的数比-1大10,即点E 表示的数为-1+10.23.解:(1)400=20(m),4×20=80(m),所以原来正方形场地的周长为80m.(2)这些铁栅栏够用,理由如下:设这个长方形场地的宽为3a m ,则长为5a m.由题意得3a ×5a =315,解得a =±21,因为a >0,所以a =21,所以3a =321,5a =521.所以这个长方形场地的周长为2(321+521)=1621(m),因为80=16×5=16×25>1621,所以这些铁栅栏够用.24.解:(1)max {-2,-3}的值为- 2.(2)分以下两种情况讨论:①当(x -1)2<x 2时,max {(x -1)2,x 2}=x 2=4,所以x =±2,当x =-2时,(-2-1)2>(-2)2.所以x =-2不符合题意,舍去.故x =2.②当(x -1)2>x 2时,max {(x -1)2,x 2}=(x -1)2=4,所以x -1=±2,解得x =3或x =-1,当x =3时,(3-1)2<32,所以x =3不符合题意,舍去.故x=-1.综上所述,x=2或-1.。
八年级数学上册第二章《实数》综合测试卷-北师大版(含答案)
八年级数学上册第二章《实数》综合测试卷-北师大版(含答案)一、选择题(每题3分,共30分)1.在π,227,-3,38,3.14,0这些数中,无理数的个数是( )A .1B .2C .3D .4 2.下列各式中,无意义的是( )A .- 3B .-3C .3-3 D .(-3)2 3.下列计算错误的是( )A .8=2 2B .2-1=12 C .16=±4 D .|3-2|=2-3 4.与a 3b 不是同类二次根式的是( )A .ab2 B .b a C .1abD .b a 35.下列计算错误的是( )A .62×3=6 6B .27÷3=3C .32-2=3 2D .(2-3)(2+3)=1 6.当1<x <4时,化简(1-x )2-(x -4)2结果是( )A .-3B .3C .2x -5D .57.已知y =(x -4)2-x +5,当x 分别取1,2,3,…,2 022时,所对应y 值的总和是( )A .2 034B .2 033C .2 032D .2 031 8.已知a +b =4,ab =2,则a -b 的值为( )A .2 2B .2 3C .±2 2D .±2 39.将4块尺寸完全相同的长方形薄木板(薄木板如图,厚度忽略不计)进行拼摆,恰好可以不重叠地摆放在如图的甲、乙两个框内.已知薄木板的宽为2,图甲中阴影部分面积为19,则图乙中AD 的长为( )A .219+2B .19+4C .219+4D .19+210.正方形ABCD 在数轴上的位置如图所示,点A ,D 对应的数分别为1和0,若正方形ABCD 绕着顶点按顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2,则翻转2 022次后,数轴上数2 022对应的点是( ) A .D B .C C .B D .A 二、填空题(每题3分,共15分) 11.化简:32=________________,23=____________.12.计算3-64125的结果等于________________.13.已知a ,b 满足-()4+a 2=2 022||b -3,a 2+b 2的平方根为________. 14.对于任意两个不相等的数a ,b ,定义一种新运算“⊕”如下:a ⊕b =a +ba -b ,如:3⊕2=3+23-2=5,那么12⊕4=________. 15.观察下列各式:①223=2+23;②338=3+38;③4415=4+415;….根据这些等式反映的规律,若x 2 022y =x +2 022y ,则x 2-y =________.三、解答题(16题10分,17题7分,第18~21题每题8分,第22~23题每题13分,共75分)16.实数与数轴上的点一一对应,无理数也可以在数轴上表示出来.(1)如图1,点A表示的数是________;(2)如图2,直线l垂直数轴于表示4的点,请用尺规作出表示1-13的点(不写作法,保留作图痕迹).17.计算:(1)18+|3-8|-(3)2;(2)2+32-3-(3+6)(3-6).18.解方程:(1)9(x+2)2-64=0;(2)12(x +3)3=108.19.求代数式a+a2-2a+1的值,其中a=-2 022.小亮的解法为:原式=a+(1-a)2=a+1-a=1.小芳的解法为:原式=a+(1-a)2=a+a-1=-4 045.(1)________的解法是错误的;(2)求代数式a+2a2-6a+9的值,其中a=-2 022.20.已知m-15的平方根是±2,33+4n=3,求m+n的算术平方根.21.已知:如图.化简:a2-(a+b)2+(b-c)2+(a+c)2.22.阅读下面的内容:我们规定:用[x]表示实数x的整数部分,用<x>表示实数x的小数部分,如[3.14]=3,<3.14>=0.14;[2]=1,而大家知道2是无理数,无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,于是小明用2-1来表示2的小数部分,即<2>=2-1.事实上,小明的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是2的小数部分,又例如:∵22<(7)2<32,即2<7<3,∴[7]=2,<7>=7-2.请解答以下问题:(1)[11]=________,<11>=________;(2)如果<5>=a,[41]=b,求a+b-5的平方根.23.(5+2)(5-2)=1,a·a=a(a≥0),(b+1)(b-1)=b-1(b≥0)……像这样,两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式.例如,5与5,2+1与2-1,23+3与23-3等都互为有理化因式.进行二次根式计算时,利用有理化因式,可以化去分母中的根号.请完成下列问题:(1)化简:233;(2)计算:12-3+13-2;(3)比较 2 023- 2 022与 2 022- 2 021的大小,并说明理由.参考答案一、1. B 2. B 3. C 4. A 5. D 6. C 7. A 8. C 9. C 10. C 二、11. 42;63 12. -45 13. ±19 14. 2 15. 1 三、16. 解:(1) 5(2)如图,点P 即为所求.17. 解:(1)原式=32+3-22-3=2.(2)原式=(2+3)2(2-3)×(2+3)-(9-6)=4+43+3-3=4+43.18. 解:(1)因为9(x +2)2-64=0,所以9(x +2)2=64, 所以(x +2)2=649, 所以x +2=±83, 所以x =23或x =-143. (2)因为12(x +3)3=108, 所以(x +3)3=216, 所以x +3=6,所以x =3. 19. 解:(1)小芳(2)a +2a 2-6a +9=a +2(a -3)2, 因为a =-2 022,所以a -3<0,所以原式=a +2(3-a )=a +6-2a =6-a =6-(-2 022)=6+2 022= 2 028,即代数式的值是2 028. 20. 解:因为m -15的平方根是±2,所以m-15=(±2)2,所以m=19.因为33+4n=3,所以3+4n=27,所以n=6.所以m+n的算术平方根为m+n=19+6=5.21.解:根据数轴可得a<0,a+b<0,b-c<0,a+c<0,所以原式=|a|-|a+b|+|b-c|+|a+c|=-a+a+b+c-b-a-c=-a.22.解:(1)3;11-3(2)因为2<5<3,6<41<7,且<5>=a,[41]=b,所以a=5-2,b=6,所以a+b-5=5-2+6-5=4,所以a+b-5的平方根是±2.23.解:(1)233=2×333×3=239.(2)12-3+13-22+3(2-3)×(2+3)3+2(3-2)×(3+2)=2+3+3+2=2+23+2.(3) 2 023- 2 022< 2 022- 2 021.理由如下:因为 2 023- 2 022=12 023+ 2 022,2 022- 2 021=12 022+ 2 021,2 023+ 2 022> 2 022+ 2 021,所以 2 023- 2 022< 2 022- 2 021.。
初二上册数学实数50道练习题
初二上册数学实数50道练习题题目:初二上册数学实数50道练习题一、选择题1. 下列数中是无理数的是:A. 2B. -3C. 0D. √52. 下列数中是真分数的是:A. -3B. 0C. 1D. -13. √2是一个无理数,那么它的平方根是:A. 2B. -2C. √2D. -√24. 有理数与无理数的和是:A. 有理数B. 整数C. 无理数D. 实数5. a是一个有理数,b是一个无理数,那么a+b是:A. 有理数B. 整数C. 无理数D. 实数二、填空题6. 若a为有理数,b为无理数,则a+b的结果为__________。
7. 常见的无理数有圆周率π和__________。
8. 用分数形式表示无理数√7。
9. 已知数a是无理数,那么a的相反数是__________。
10. 实数-3可以写成__________的形式。
三、解答题11. 求下列各数的相反数:(1)2(2)-5(3)012. 比较下列数的大小:<1, √2, -5, 0>。
13. 已知数是有理数,请判断下列各数是有理数还是无理数:(1)4.8(2)√3(3)3/7(4)-5.614. 计算并化简下列各式:(1)2√3 × 3√6(2)(2 + √3)(2 - √3)(3)(2√5 + 3√2)^215. 若a为有理数,b为无理数,c为实数,则下列哪个等式成立:A. (a + b) + c = a + (b + c)B. a + b = b + aC. a + (b + c) = (a + b) + cD. (a + b) + c = c + (a + b)本文为数学实数50道练习题,按照选择题、填空题和解答题三个部分进行划分,以便读者快速查找和使用。
在解答题中,通过具体的题目要求,引导读者进行数学运算和推理,提高数学解题能力。
一、选择题部分共有5道题目,旨在考察读者对于数学概念和规则的理解和应用。
每题设有四个选项,读者需选择正确答案。
(典型题)初中数学八年级数学上册第二单元《实数》测试题(含答案解析)
一、选择题1.下列计算正确的是( )A +=B =C 6=-D 1-= 2.与数轴上的点一—对应的数是( )A .分数或整数B .无理数C .有理数D .有理数或无理数 3.一个正方形的面积为29,则它的边长应在( ) A .3到4之间 B .4到5之间 C .5到6之间 D .6到7之间 4.对于两个不相等的有理数a ,b ,我们规定符号{},max a b 表示a ,b 两数中较大的数,例如{}2,42max -=.则方程{},34max x x x -=+的解为( )A .-1B .-2C .-1或-2D .1或25.下列各式中,正确的是( )A .3=B 3=±C 3=-D 3=6. )A .8 B .4C D 7.下列计算正确的是( ). A .()()22a b a b b a +-=- B .224x y xy +=C .()235a a -=-D .=8.已知||3a =,216b =,且0a b +<,则代数式-a b 的值为( ) A .-1或-7B .1或-7C .1或7D .±1或7± 9.已知一个表面积为212dm 的正方体,这个正方体的棱长为( )A .2dmB CD .3dm10( )A .1与2之间B .2与3之间C .3与4之间D .5与6之间 11.已知21a -与2a -+是一个正数的平方根,则这个正数的值是( ) A .9 B .3 C .1D .81 12.下列对于二次根式的计算正确的是( )A =B .2C .2=D .=二、填空题13.a b -=________.14.对于任意非零实数a ,b ,定义运算“※”如下:“a b ※”a b ab-=,则12233420202021++++※※※※的值为__________.15.已知6y x =+,当x 分别取1,2,3,…,2021时,所对应y 值的总和是__.16.对于正整数n ,规定111()(1)1f n n n n n ==-++,例如:111(1)1212f ==-⨯,111(2)2323f ==-⨯,111(3)3434f ==-⨯,…则(1)(2)(3)(2021)f f f f ++++= _______ 17.材料:一般地,n 个相同因数a 相乘:n a a a a a ⋅⋅⋅⋅⋅个记为n a .如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=).那么3log 9=_____,()2231log 16log 813+=_____. 18.请你写出一个比3大且比4小的无理数,该无理数可以是:____.19.已知2a =+,2b =,则227a b ++的算术平方根是_____.20.已知2x =,2y =+x 2+y 2﹣2xy 的值为_____.三、解答题21.计算:(1)(π﹣2020)0﹣.(2.22.(3++-.23.计算:(1(2)已知﹣a|=0,求a 2﹣+2+b 2的值.24.已知某正数的两个平方根是314a -和2a +,14b -的立方根为-2,求+a b 的算术平方根.25.计算下列各题:(1(2)()(3)(226.化简(1)+(2【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据二次根式加减运算和二次根式的性质逐项排除即可.【详解】与A选项错误;===B选项正确;=-=,所以C选项错误;321与D选项错误;故选答案为B.【点睛】本题考查了二次根式加减运算和二次根式的性质,掌握同类二次根式的定义和二次根式的性质是解答本题的关键.2.D解析:D【分析】实数与数轴上的点一一对应,实数包括有理数和无理数.【详解】A. 分数或整数,只是有理数,不是数轴上所有点,故此项不正确;B. 只是无理数,不是数轴上所有点,故此项不正确;C. 只是有理数,不是数轴上所有点,故此项不正确;D. 有理数和无理数是实数的组成,实数与数轴上的点一一对应,故此项正确;故选D.【点睛】此题考查了实数的意义,能掌握实数与数轴的关系是解答此题的关键.3.C解析:C一个正方形的面积为29“夹逼法”的近似值,从而解决问题.【详解】解:∵正方形的面积为29,∴,5<6.故选:C .【点睛】此题主要考查了无理数的估算能力,解决本题的关键是得到最接近无理数的有理数的值.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.4.A解析:A【分析】利用题中的新定义化简已知方程,求解即可.【详解】①当0x >时,即x x >-,此时max }{34x x x x -==+,, 解得2x =-,不符合题意舍去. ②当0x <时,即x x <-,此时max }{34x x x x -=-=+,, 解得1x =-且符合题意.故选:A .【点睛】此题考查了新定义下实数的运算以及解一元一次方程,运用分类讨论的思想是解答本题的关键. 5.D解析:D【分析】根据二次根式的性质化简判断.【详解】A 、3=±,故该项不符合题意;B 3=,故该项不符合题意;C 3=,故该项不符合题意;D 3=,故该项符合题意;【点睛】此题考查二次根式的化简,正确掌握二次根式的性质是解题的关键.6.B解析:B【分析】根据分数的性质,在分子分母同乘以2,再根据二次根式的性质化简即可.【详解】=== 故选:B .【点睛】此题考查化简二次根式,掌握分数的性质确定分子分母同乘以最小的数值,使分母化为一个数的平方,由此化简二次根式是解题的关键.7.D解析:D【分析】根据平方差公式、合并同类项、幂的乘方、二次根式的运算法则即可求出答案.【详解】A.原式=a 2−b 2,故A 错误;B.2x 与2y 不是同类项,不能合并,故B 错误;C.原式=a 6,故C 错误;D.原式=D 正确;故选:D .【点睛】本题考查了平方差公式、合并同类项、幂的乘方、二次根式,解题的关键是熟练运用运算法则,本题属于基础题型.8.C解析:C【分析】分别求出a 与b 的值,再利用0a b +<这一条件判断出a 、b 的值,进而分情况讨论即可解题.【详解】 解 ||3a =,216b =,3,4a b ∴=±=±,0a b +<,3,4a b ∴==-或3,4a b =-=-,7a b ∴-=或1,【点睛】本题考查了去绝对值和求平方根,正确的确定a 、b 的值是解答本题的关键.9.B解析:B【分析】先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可.【详解】设正方形的棱长为a ,∵正方体有6个面且每个面都相等,∴正方体的一个面的面积为2,∴22a =,解得:a =∴dm .故选:B .【点睛】本题主要考查了算术平方根的定义,求得正方形的一个面的面积是解题的关键. 10.C解析:C【分析】【详解】解:<34∴<<,故选:C .【点睛】本题考查无理数的估算,掌握几个非负整数的算术平方根的大小比较方法是解决问题的关键.11.A解析:A【分析】首先根据正数有两个平方根,它们互为相反数可得2120a a --+=,解方程可得1a =-,然后再求出这个正数即可.【详解】解:由题意得:2120a a --+=,解得:1a =-,213a -=-,23a -+=,则这个正数为9.故选:A .【点睛】此题主要考查了平方根,关键是掌握一个正数有两个平方根,这两个平方根互为相反数. 12.C解析:C【分析】利用二次根式的加减和乘除运算法则进行计算即可.【详解】解:=B.=C.2=,故原题计算正确;D.10=,故原题计算错误.故选:C【点睛】此题主要考查了二次根式的混合运算,掌握二次根式的运算法则是解答此题的关键.二、填空题13.2【分析】根据最简二次根式同类二次根式的性质计算即可得到a 和b 的值;再将a 和b 的值代入到代数式通过计算即可得到答案【详解】根据题意得:∴∵最简二次根式与是同类最简二次根式∴∴∴故答案为:2【点睛】本 解析:2【分析】根据最简二次根式、同类二次根式的性质计算,即可得到a 和b 的值;再将a 和b 的值代入到代数式,通过计算即可得到答案.【详解】根据题意得:12a -=∴3a =∵与∴252b b +=-∴1b =∴312a b -=-=故答案为:2.【点睛】本题考查了二次根式的知识;解题的关键是熟练掌握最简二次根式、同类二次根式、代数式的性质,从而完成求解.14.【分析】根据已知将原式变形进而计算得出答案【详解】解:根据题意∵∴……∴=====故答案为:【点睛】此题主要考查了实数运算正确将原式变形是解题关键 解析:20202021-【分析】根据已知将原式变形进而计算得出答案.【详解】解:根据题意, ∵“a b ※”a b ab-=, ∴12※121(1)122-==--⨯,231123()2323-==--⨯※,……, ∴12233420202021++++※※※※ =122320202021122320202021---+++⨯⨯⨯ =11111(1)()()22320202021------- =111111(1)223320202021--+-+-+- =1(1)2021-- =20202021-. 故答案为:20202021-. 【点睛】此题主要考查了实数运算,正确将原式变形是解题关键.15.4054【分析】先化简二次根式求出y 的表达式再将x 的取值依次代入然后求和即可得【详解】解:当时当时则所求的总和为故答案为:【点睛】本题考查了二次根式的化简求值绝对值运算等知识点掌握二次根式的化简方法 解析:4054【分析】先化简二次根式求出y 的表达式,再将x 的取值依次代入,然后求和即可得.【详解】解:646y x x x =+=--+当4x <时,46102y x x x =--+=-当4x ≥时,462y x x =--+=则所求的总和为(1021)(1022)(1023)222-⨯+-⨯+-⨯++++86422018=+++⨯4054=故答案为:4054.【点睛】本题考查了二次根式的化简求值、绝对值运算等知识点,掌握二次根式的化简方法是解题关键.16.【分析】根据题意可得:原式=再根据加法的结合律相加计算即可【详解】解:原式=故答案为:【点睛】本题考查了数字类规律探究和新定义问题正确理解题意准确计算是关键 解析:20212022【分析】根据题意可得:原式=111111112233420212022-+-+-++-,再根据加法的结合律相加计算即可.【详解】解:原式=11111111202111223342021202220222022-+-+-++-=-=. 故答案为:20212022. 【点睛】本题考查了数字类规律探究和新定义问题,正确理解题意、准确计算是关键. 17.3;【分析】由可求出由可分别求出继而可计算出结果【详解】解:(1)由题意可知:则(2)由题意可知:则∴故答案为:3;【点睛】本题主要考查定义新运算读懂题意掌握运算方法是解题关键解析:3; 1173. 【分析】由239=可求出2log 93=,由4216=,43=81可分别求出2log 164=,3log 814=,继而可计算出结果.【详解】解:(1)由题意可知:239=,则2log 93=,(2)由题意可知: 4216=,43=81,则2log 164=,3log 814=,∴223141(log 16)log 811617333+=+=, 故答案为:3;1173. 【点睛】 本题主要考查定义新运算,读懂题意,掌握运算方法是解题关键.18.答案不唯一如:【分析】无限不循环小数是无理数根据无理数的三种形式解答即可【详解】设该无理数是x 由题意得∴x=10或11或12或13或14或15该无理数可以是:答案不唯一如:故答案为:答案不唯一如:【解析:【分析】无限不循环小数是无理数,根据无理数的三种形式解答即可.【详解】设该无理数是x x <<∴x=10或11或12或13或14或15,【点睛】此题考查无理数的定义,熟记定义并掌握无理数的三种形式是解题的关键.19.5【分析】根据完全平方公式和算术平方根即可求解【详解】解:因为所以=(+2)2+(-2)2+7=9+2+9-2+7=25所以a2+b2+7的算术平方根是5故答案为:5【点睛】本题考查了完全平方公式算解析:5【分析】根据完全平方公式和算术平方根即可求解.【详解】解:因为2a =,2b =,,所以227a b ++=)2+)2+7=25.所以a 2+b 2+7的算术平方根是5.故答案为:5.【点睛】本题考查了完全平方公式、算术平方根,解决本题的关键是掌握完全平方公式、算术平方根.20.【分析】根据二次根式的减法法则求出利用完全平方公式把原式化简代入计算即可【详解】解:则故答案为:12【点睛】本题考查的是二次根式的化简求值掌握完全平方公式二次根式的加减法法则是解题的关键解析:【分析】根据二次根式的减法法则求出x y -,利用完全平方公式把原式化简,代入计算即可.【详解】解:2x =-2y =+ 23x y, 则22222()(23)12x y xy x y , 故答案为:12.【点睛】本题考查的是二次根式的化简求值,掌握完全平方公式、二次根式的加减法法则是解题的关键.三、解答题21.(1)-2;(2)4【分析】(1)根据零指数幂、二次根式、立方根、绝对值的计算法则来化简,之后按照二次根式的加减计算法则来计算即可;(2)先计算二次根式的乘除,再计算二次根式的加减即可.【详解】解:(1)原式=()12212-⨯+-+=121+ =2-;(2)原式()32-=231+-=4.【点睛】本题考查的是实数的混合计算,熟练掌握相关的计算法则是解题的关键. 22.10-【分析】根据二次根式运算法则计算即可.【详解】解:原式=2253+-5924=+-1424=-10=-.【点睛】本题考查了二次根式的运算,解题关键是熟练运用二次根式运用算法则进行计算,注意:平方差公式的运用.23.(1)2)4【分析】(1)根据二次根式的乘除法和加减法可以解答本题;(2)根据﹣a|=0,可以得到a 、b 的值,然后将所求式子变形,再将a 、b 的值代入即可解答本题.【详解】解:(1=4-=4+(2)∵﹣a|=0, ∴a =0,b ﹣2=0,∴a,b =2,∴a2﹣a +2+b 2=(a 2+b 2)2+22=02+4=0+4=4【点睛】本题考查了如二次根式的化简求值、非负数的性质、解答本题的关键是明确二次根式混合运算的计算方法;24.3【分析】利用正数的平方根有两个,且互为相反数列出方程,求出方程的解即可得到a 的值,根据立方根的定义求出b 的值,根据算术平方根的定义求出a+b 的算术平方根.【详解】解:由题意得,31420a a -++=,148b -=-,解得:3a =,6b =,∴9a b +=,∴+a b 的算术平方根是3.【点睛】本题考查的是平方根、立方根和算术平方根的定义,正数的平方根有两个,且互为相反数;正数的算术平方根是正数,0的算术平方根是0,负数没有平方根.25.(1)0;(2)【分析】(1)根据平方根、立方根的意义进行计算即可;(2)利用平方差公式和实数的计算方法进行计算即可.【详解】解:(1=2+(﹣5)+3=0;(2)()(3)(2=32)2﹣2=9﹣﹣2=【点睛】本题考查了包含算术平方根、立方根、平方差公式的实数计算,熟练运用法则和公式是解决问题关键.26.(1)1-+;(2)54【分析】(1)先利用平方差公式计算,然后将每个二次根式化为最简二次根式,最后合并计算即可;(2)先将每个二次根式化简为最简二次根式,然后合并即可.【详解】(1)解:原式22231=-+=-+=-+(2)解:原式=== 【点睛】 本题考查了二次根式的运算,熟练掌握运算法则是解题的关键.。
八年级《实数》练习题(有解答)
八年级《实数》练习题(有解答)一、选择题(共23小题) 1.31-的值是( )A .1B .-1C .3D .-3解:31-表示是-1的立方根,因为3(1)-=-1=-1. 【答案】B2. 9的平方根是( )A .81B .±3C .3D .﹣3解:9的平方根是:±=±3.【答案】B3. 下列实数中,无理数是( )A .0B .-2CD .17解:这里只有3是无限不循环小数,其他都是有理数,故选C . 【答案】C4. 实数a ,b ,c ,d 在数轴上对应的点的位置如图所示,这四个数中最大的是( )A .aB .bC .cD .d 解:根据数轴上右边的点表示的数总比左边表示的数大,可知最大的数是d. 【答案】D5.下列命题是真命题的是( )A .如果一个数的相反数等于这个数的本身,那么这个数一定是0B .如果一个数的倒数等于这个数本身,那么这个数一定是1C .如果一个数的平方等于这个数的本身,那么这个数一定是0D .如果一个数的算术平方根等于这个数的本身,那么这个数一定是0解:易知A 选项正确,因为倒数等于其本身的数是±1,平方数等于其本身的数有0和1,算术平方根等于其本身的数有0和1. 【答案】A6.若实数m ,n 满足等式,且m ,n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是( ) A .12B .10C .8D .6解:根据得m=2,n=4,再根据等腰三角形三边关系定理得:三角形三边长分别为4,4,2. 【答案】B7与37最接近的整数是( )A .5B .6C .7D .8 6. 【答案】B8.一个正数的两个平方根分别是2a ﹣1与﹣a +2,则a 的值为( ) A .﹣1B .1C .2D .﹣2解:由题意可知:2a ﹣1﹣a +2=0, 解得:a =﹣1 【答案】A9.下列说法正确的是( )A .﹣5是25的平方根B .25的平方根是﹣5C .﹣5是(﹣5)2的算术平方根D .±5是(﹣5)2的算术平方根 解:A 、﹣5是25的平方根,说法正确; B 、25的平方根是﹣5,说法错误;C 、﹣5是(﹣5)2的算术平方根,说法错误;D 、±5是(﹣5)2的算术平方根,说法错误; 【答案】A 10.在实数0,﹣,,|﹣2|中,最小的是( ) A .B .﹣C .0D .|﹣2|解:|﹣2|=2, ∵四个数中只有﹣,﹣为负数,042=-+-n m 042=-+-n m∴应从﹣,﹣中选;∵|﹣|>|﹣|,∴﹣<﹣.【答案】B11.已知|a|=5,=7,且|a+b|=a+b,则a﹣b的值为()A.2或12B.2或﹣12C.﹣2或12D.﹣2或﹣12解:∵|a|=5,∴a=±5,∵=7,∴b=±7,∵|a+b|=a+b,∴a+b>0,所以当a=5时,b=7时,a﹣b=5﹣7=﹣2,当a=﹣5时,b=7时,a﹣b=﹣5﹣7=﹣12,所以a﹣b的值为﹣2或﹣12.【答案】D12.已知=1.147,=2.472,=0.5325,则的值是()A.24.72B.53.25C.11.47D.114.7解:==1.147×10=11.47.【答案】C13.下列等式:①=,②=﹣2,③=2,④=﹣,⑤=±4,⑥﹣=﹣2;正确的有()个.A.4B.3C.2D.1解:=,故①错误.=4,故⑤错误.其他②③④⑥是正确的.【答案】A14.如图,已知数轴上的点A 、B 、C 、D 分别表示数﹣2、﹣1、1、2,则表示1﹣的点P应落在线段( )A .AB 上 B .OB 上C .OC 上D .CD 上解:∵2<<3, ∴﹣2<1﹣<﹣1,∴表示1﹣的点P 应落在线段AB 上.【答案】A15.下列各组数中互为相反数的是( ) A .|﹣|与B .﹣2与C .2与(﹣)2D .﹣2与解:A 、都是,故A 错误;B 、都是﹣2,故B 错误;C 、都是2,故C 错误;D 、只有符号不同的两个数互为相反数,故D 正确; 【答案】D 16. 从-5,310-,6-,-1,0,2,π这七个数中随机抽取一个数,恰好为负整数的概率为( )A .72B . 73C . 74D . 75 解:七个数中的负整数只有-5和-1两个数,所以其概率为72.【答案】A17.计算|1-2|=( ) A .1-2 B .2-1 C .1+2 D .-1-2解:∵1<2,∴1-2<0,∴|1-2|=-(1-2)=2-1. 【答案】B18.四个数0,112中,无理数的是( ).B. 1C.12D. 0解:根据无理数定义“无限不循环小数叫做无理数”进行选择,2带根号且开不尽方,所以2是无理数.【答案】A19.下列实数中的无理数是()ABCD.=1.1=﹣2,是无理数.【答案】C20. 的值()A. 在2和3之间B. 在3和4之间C. 在4和5之间D. 在5和6之间解:∵34,∴4<5【答案】C21)A.5和6之间B.6和7之间C.7和8之间D.8和9之间解:∵82<65<92,∴89.【答案】D22.94的值等于( )A.32 B.-32 C.±32 D.8116解:94=94=32【答案】A23.如图所示,数轴上表示3、的对应点分别为C、B,点C是AB的中点,则点A表示的数是()227227A.B.C.D.解:点C是AB的中点,设A表示的数是c,则﹣3=3﹣c,解得:c=6﹣.【答案】C二、填空题(共10小题)1.在数轴上,﹣2对应的点为A,点B与点A的距离为,则点B表示的数为.解:设B点表示的数是x,∵﹣2对应的点为A,点B与点A的距离为,∴|x+2|=,解得x=﹣2或x=﹣﹣2.【答案】﹣2或﹣﹣2.2.定义新运算“☆”:a☆b=,则2☆(3☆5)=.解:∵3☆5===4;∴2☆(3☆5)=2☆4==3.【答案】33.若﹣是m的一个平方根,则m+13的平方根是.解:根据题意得:m=(﹣)2=3,则m+13=16的平方根为±4.【答案】±44.小成编写了一个程序:输入x→x2→立方根→倒数→算术平方根→,则x为.解:根据题意得:=,则=,x2=64,x=±8,【答案】±85. 对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是_____. 解:∵1*(-1)=2,∴,即a-b=2∴原式==−(a-b )=-1故答案为:-1【答案】﹣16. 已知一个正数的平方根是和,则这个数是__________. 解:根据题意可知:3x-2+5x+6=0,解得x=-,所以3x-2=-,5x+6=, ∴(±)2=【答案】7. |1|= .解:由于1-02<,所以|1|=-(1)-1.-18. -8的立方方根是 .解:(-2)3=-8,所以-8的立方根是-2. 【答案】-2 9. 有意义的x 的取值范围是 . 解:∵有意义,∴x-3>0,∴x >3,∴x 的取值范围是x >3. 【答案】x >310. 如图8,数轴上点A 表示的数为a ,化简:a +244a a -+= .解:由完全平方公式“(a -b )2=a 2-2ab +b 2”和二次根式性质“a ”可得a +=a a +2a -,根据数轴上点A 的位置可得出0<a <2,所以a -2<0,由“负数的绝对值等于它的相反数”可得原式=a +2-a =2. 【答案】2A 2a三、解答题(共11小题)1.计算:(1)(﹣2)×﹣6.解:原式==3﹣6﹣3=﹣6.(2);解:原式=4- +1=5-(3)解:原式.【答案】2. 化简:(1)(m+2)2 +4(2-m)解:(m+2)2 +4(2-m)=m2+4m+4+8-4=m2+12(2)(1﹣)÷.解:原式==x+1.3.解方程(1)(x﹣1)3=27 (2)2x2﹣50=0.解:(1)∵(x﹣1)3=27,∴x﹣1=3∴x=4;(2)∵2x2﹣50=0,∴x2=25,∴x=±5.4.已知a是的整数部分,b是的小数部分,求(﹣a)3+(2+b)2的值.解:∵4<8<9,∴2<<3,∴的整数部分和小数部分分别为a=2,b=﹣2.∴(﹣a)3+(2+b)2=(﹣2)3+()2=0.5.若x、y都是实数,且y=++8,求x+3y的立方根.解:∵y=++8,∴解得:x=3,将x=3代入,得到y=8,∴x+3y=3+3×8=27,∴=3,即x+3y的立方根为3.6.已知某正数的两个平方根分别是a﹣3和2a+15,b的立方根是﹣2.求﹣2a﹣b的算术平方根.解:∵某正数的两个平方根分别是a﹣3和2a+15,b的立方根是﹣2.∴a﹣3+2a+15=0,b=﹣8,解得a=﹣4.∴﹣2a﹣b=16,16的算术平方根是4.7.在实数范围内定义一种新运算“△”,其规则为:a△b=a2﹣b2,根据这个规则:(1)求4△3的值;(2)求(x+2)△5=0中x的值.解:(1)4△3=42﹣32=16﹣9=7;(2)由题意得:(x+2)2﹣25=0,(x+2)2=25,x+2=±5,x+2=5或x+2=﹣5,解得:x1=3,x2=﹣7.8.先填写表,通过观察后再回答问题:(1)表格中x=,y=;(2)从表格中探究a与数位的规律,并利用这个规律解决下面两个问题:①已知≈3.16,则≈;②已知=8.973,若=897.3,用含m的代数式表示b,则b=;(3)试比较与a的大小.解:(1)x=0.1,y=10;(2)①根据题意得:≈31.6;②根据题意得:b=10000m;(3)当a=0或1时,=a;当0<a<1时,>a;当a>1时,<a,【答案】(1)0.1;10;(2)①31.6;②10000m9.我们在学习“实数”时,画了这样一个图,即“以数轴上的单位长为‘1’的线段作一个正方形,然后以原点O为圆心,正方形的对角线长为半径画弧交x轴于点A”,请根据图形回答下列问题:(1)线段OA的长度是多少?(要求写出求解过程)(2)这个图形的目的是为了说明什么?(3)这种研究和解决问题的方式,体现了的数学思想方法.(将下列符合的选项序号填在横线上)A、数形结合;B、代入;C、换元;D、归纳.解:(1)∵OB2=12+12=2,∴OB=,∴OA=OB=;(2)数轴上的点和实数﹣一对应关系;(3)A10.先观察下列等式,再回答下列问题:①;②;③.(1)请你根据上面三个等式提供的信息,猜想的结果,并验证;(2)请你按照上面各等式反映的规律,试写出用含n的式子表示的等式(n为正整数).解:(1),验证:=;(2)(n为正整数).11. 对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)=.求满足D(m)是完全平方数的所有m.【分析】(1)根据“极数”的概念写出即可,设任意一个极数为(其中1≤x ≤9,0≤y≤9,且x、y为整数),整理可得=99(10x+y+1),由此即可证明;(2)设m=(其中1≤x≤9,0≤y≤9,且x、y为整数),由题意则有D(m)=3(10x+y+1)根据1≤x≤9,0≤y≤9,以及D(m)为完全平方数且为3的倍数,可确定D(m)可取36、81、225,然后逐一进行讨论求解即可。
(常考题)北师大版初中数学八年级数学上册第二单元《实数》检测题(答案解析)(3)
一、选择题1.实数316,027,40.10.3133133314π-⋯,,,,(每两个1之间依次增加一个3),其中无理数共有( ) A .2个 B .3个 C .4个 D .5个 2.一个数的相反数是最大的负整数,则这个数的平方根是( )A .1-B .1C .±1D .03.下列说法中:①立方根等于本身的是1-,0,1;②平方根等于本身的数是0,1;③两个无理数的和一定是无理数;④实数与数轴上的点是一一对应的;⑤23π-是负分数;⑥两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数.其中正确的个数是( ) A .3 B .4 C .5 D .6 4.下列各数中,介于6和7之间的数是( )A .72+B .45C .472-D .355.已知实数x 、y 满足|x -4|+ 8y -=0,则以x 、y 的值为两边长的等腰三角形周长是( ) A .20或16B .20C .16D .186.下列计算中,正确的是( ) A .()()()22253532-=-=B .()3710101010+⨯=⨯= C .()()a ba c a bc +-=-D .()()3232321+-=-=7.若a 化成最简二次根式后,能与2合并,则a 的值不可以是( ) A .12B .8C .18D .288.如图,点A 表示的数可能是( )A 21B 6C 11D 179.下列计算正确的是( ) A 235+=B 236=C 2434=D ()233-=-10.下列计算正确的是( )A 3=3B 39 3C 235D .22211.已知x 5,则代数式x 2﹣x ﹣2的值为( )A .9+55B .9+35C .5+55D .5+3512.下列各计算正确的是( ) A .382-=B .84= C .235+= D .236⨯=二、填空题13.要使二次根式22x x ---有意义,则x 的值是____. 14.计算:12466-的结果是_____.15.3x -+|2x ﹣y |=0,那么x ﹣y =_____. 16.化简:()2223x x--=______17.用“<”连接2的平方根和2的立方根_________.1813a 13b ,那么2(2)b a +-的值是________. 19.已知a b 、是有理数,若2364,64a b ==,则+a b 的所有值为____________.20.如果一个数的平方根和它的立方根相等,则这个数是______.三、解答题21.计算. (121483230(223)5; (2)22021021(1)(2)(4)362π-⎛⎫---⨯- ⎪⎝⎭22.(1)计算: 27123;3232). (2)解方程: ①4(x -1)2-9 =0; ②8x 3+125=0. 23.阅读下列问题:()()12121122121⨯==++-;()()13232323232⨯==++-以上化简的方法叫作分母有理化,仿照以上方法化简:(165=+______; (220212020+的值:(3n 为正整数)的值.24.在数轴上点A 为原点,点B 表示的数为b ,点C 表示的数c ,且已知b 、c 满足b 1+=0,(1)直接写出b 、c 的值:b=______,c=_______; (2)若BC 的中点为D ,则点D 表示的数为________;(3)若B 、C 两点同时以每秒1个单位长度的速度向左移动,则运动几秒时,恰好有AB=AC ? 25.化简(1)+(226.(1;(2)计算:【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】无限不循环小数是无理数,根据定义解答. 【详解】符合无理数定义的有:0.3133133314π-⋯, ,故选:A . 【点睛】此题考查无理数定义,熟记定义是解题的关键.2.C解析:C 【分析】由于最大的负整数是-1,本题即求-1的相反数,进而求其平方根. 【详解】解:最大的负整数是-1,根据概念,(-1的相反数)+(-1)=0, 则-1的相反数是1,则这个数是1,1的平方根是±1,故选:C . 【点睛】本题考查了相反数、负整数的概念及求一个数的平方根,正确掌握相关定义是解题的关键.3.A解析:A 【分析】根据平方根和立方根的性质,以及无理数的性质判断选项的正确性. 【详解】解:立方根等于本身的数有:1-,1,0,故①正确; 平方根等于本身的数有:0,故②错误;的和是0,是有理数,故③错误; 实数与数轴上的点一一对应,故④正确;23π-是无理数,不是分数,故⑤错误; 从数轴上来看,两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数,故⑥正确. 故选:A . 【点睛】本题考查平方根和立方根的性质,无理数的性质,解题的关键是熟练掌握这些概念.4.B解析:B 【分析】根据夹逼法逐项判断即得答案. 【详解】解:A 、47<<425∴<<,故本选项不符合题意;B 、∵<<67∴<<,故本选项符合题意;C 、36<425∴<<,故本选项不符合题意;D 、25<<56∴<<,故本选项不符合题意.故选:B . 【点睛】本题考查了无理数的估算,属于常考题型,掌握夹逼法解答的方法是关键.5.B解析:B 【分析】根据绝对值与二次根式的非负性即可求出x 与y 的值.由于没有说明x 与y 是腰长还是底边长,故需要分类讨论. 【详解】由题意可知:x-4=0,y-8=0, ∴x=4,y=8,当腰长为4,底边长为8时, ∵4+4=8, ∴不能围成三角形, 当腰长为8,底边长为4时, ∵4+8>8, ∴能围成三角形, ∴周长为:8+8+4=20, 故选:B . 【点睛】本题考查了算术平方根,以及三角形三边关系,解题的关键是正确理解非负性的意义,以及三角形三边关系,本题属于基础题型.6.D解析:D 【分析】根据二次根式的性质逐一判断即可; 【详解】2228=-=-A 错误;=B 错误;=a C 错误;321=-=,故D 正确;故答案选D . 【点睛】本题主要考查了二次根式的性质,结合平方差公式和完全平方公式计算是解题的关键.7.D解析:D 【分析】是否为同类二次根式即可. 【详解】是同类二次根式,当a=122=是同类二次根式,故该项不符合题意;当a=8=是同类二次根式,故该项不符合题意;当a=18=是同类二次根式,故该项不符合题意;当a=28=不是同类二次根式,故该项符合题意;故选:D.【点睛】此题考查最简二次根式的定义,同类二次根式的定义,化简二次根式,正确化简二次根式是解题的关键.8.C解析:C【分析】先确定点A表示的数在3、4之间,再根据夹逼法逐项判断即得答案.【详解】解:点A表示的数在3、4之间,A、因为12<<,故本选项不符合题意;<<,所以213B<<23<<,故本选项不符合题意;C<,所以34<<,故本选项符合题意;D<<,所以45<<,故本选项不符合题意;故选:C.【点睛】本题考查了实数与数轴以及无理数的估算,属于常见题型,正确理解题意、熟练掌握基本知识是解题的关键.9.B解析:B【分析】由二次根式的乘法、除法,二次根式的性质,分别进行判断,即可得到答案.【详解】解:A A错误;B=,故B正确;C==C错误;=,故D错误;D3故选:B.【点睛】本题考查了二次根式的乘法、除法,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.10.D解析:D【分析】根据二次根式的化简、立方根的化简、二次根式的加减乘除法则进行判断即可;【详解】A,故A错误;B,故B错误;C3=6,故C错误;D、,故D正确;故选:D.【点睛】本题考查了二次根式的化简、立方根的化简、二次根式的加减乘除,熟练掌握计算法则是解题的关键;11.D解析:D【分析】把已知条件变形得到x2=4x+1,利用降次的方法得到原式=3x-1,然后把 x 的值代入计算即可.【详解】∵x,∴x﹣2∴(x﹣2)2=5,即x2﹣4x+4=5,∴x2=4x+1,∴x2﹣x﹣2=4x+1﹣x﹣2=3x﹣1,当x时,原式=3)﹣1=.故选:D.【点睛】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值,运用整体代入的方法可简化计算.12.D解析:D【分析】分别计算即可.【详解】=-,原式错误,不符合题意;解:2=≠D. =故选:D.【点睛】本题考查了二次根式和立方根的运算,解题关键是熟练掌握二次根式和立方根的运算法则,准确进行计算.二、填空题13.2【分析】根据二次根式有意义的条件:被开方数大于等于0即可得答案【详解】∵二次根式有意义∴x-2≥02-x≥0∴x=2故答案为:2【点睛】考查二次根式有意义的条件要使二次根式有意义则被开方数大于或等解析:2【分析】根据二次根式有意义的条件:被开方数大于等于0,即可得答案.【详解】∵∴x-2≥0,2-x≥0,∴x=2,故答案为:2【点睛】考查二次根式有意义的条件,要使二次根式有意义,则被开方数大于或等于0.14.【分析】化简成最简二次根式后合并同类二次根式即可【详解】==2-=故答案为:【点睛】本题考查了最简二次根式同类二次根式熟练进行最简二次根式的化简是解题的关键.【分析】化简成最简二次根式,后合并同类二次根式即可.【详解】=6,故答案为.【点睛】本题考查了最简二次根式,同类二次根式,熟练进行最简二次根式的化简是解题的关键.15.﹣3【分析】先根据非负数的性质列出方程组求出xy的值进而可求出x﹣y 的值【详解】解:∵+|2x﹣y|=0∴解得所以x﹣y=3﹣6=﹣3故答案为:-3【点睛】本题考查了二次根式的非负性绝对值的非负性根解析:﹣3【分析】先根据非负数的性质列出方程组,求出x、y的值,进而可求出x﹣y的值.【详解】解:∵+|2x﹣y|=0,∴3020xx y-=⎧⎨-=⎩,解得36 xy=⎧⎨=⎩.所以x﹣y=3﹣6=﹣3.故答案为:-3【点睛】本题考查了二次根式的非负性,绝对值的非负性,根据题意得到关于x、y的二元一次方程组,求出x、y的值是解题关键.16.-1【分析】根据二次根式有意义的条件求出的范围再根据二次根式的性质和绝对值的性质化简即可得到答案【详解】由可知故答案为:【点睛】本题考查了二次根式化简求值正确掌握二次根式有意义的条件二次根式的性质绝解析:-1【分析】根据二次根式有意义的条件,求出x的范围,再根据二次根式的性质和绝对值的性质化简,即可得到答案.【详解】20x-≥,∴2x≤,30x∴-<223x x-=---,∴()2323231x x x x x x---=---=--+=-故答案为:1-.【点睛】本题考查了二次根式化简求值,正确掌握二次根式有意义的条件,二次根式的性质,绝对值的性质是解题关键.17.<<【分析】先表示出2的平方根与立方根再根据有理数的大小比较可得答案【详解】解:2的平方根为±2的立方根为∴<<故答案为:<<【点睛】本题主要考查立方根解题的关键是掌握平方根算术平方根与立方根的定义解析: 【分析】先表示出2的平方根与立方根,再根据有理数的大小比较可得答案. 【详解】解:2的平方根为,2 ∴,故答案为:. 【点睛】本题主要考查立方根,解题的关键是掌握平方根、算术平方根与立方根的定义.18.【分析】直接利用的取值范围得出ab 的值进而求出答案【详解】解:故答案为:【点睛】本题主要考查了估算无理数的大小正确得出ab 的值是解题关键解析:11-【分析】a 、b 的值,进而求出答案. 【详解】 解:3134<<,3a ∴=,3b ∴=-, ()))22223231311b a ∴+-=+-=-=-故答案为:11- 【点睛】本题主要考查了估算无理数的大小,正确得出a ,b 的值是解题关键.19.12或【分析】根据平方和立方的意义求出a 与b 的值然后代入原式即可求出答案【详解】解:∵a2=64b3=64∴a=±8b=4∴当a=8b=4时∴a+b=8+4=12当a=-8b=4时∴a+b=-8+4解析:12或4- 【分析】根据平方和立方的意义求出a 与b 的值,然后代入原式即可求出答案. 【详解】解:∵a 2=64,b 3=64, ∴a=±8,b=4, ∴当a=8,b=4时, ∴a+b=8+4=12, 当a=-8,b=4时,∴a+b=-8+4=-4,故答案为:12或-4【点睛】本题考查有理数,解题的关键是熟练运用有理数的运算法则,本题属于基础题型. 20.0【解析】试题解析:0【解析】试题平方根和它的立方根相等的数是0.三、解答题21.(1)-7;(2)-5【分析】(1)先算二次根式的乘方,乘除,再算加减法,即可求解;(2)先算乘方,算术平方根,再算加减法,即可求解.【详解】(1)原式-3-7;(2)原式=4(164)1--⨯--=4416+--=-5.【点睛】本题主要考查二次根式的混合运算以及实数的混合运算,掌握二次根数的混合运算法则以及实数的混合运算法则,是解题的关键.22.(1)①5;②6-;(2)52x =或12x =-; ②52x =-. 【分析】(1)①先把各二次根式化为最简二次根式,然后合并后进行二次根式的除法运算; ②根据平方差公式计算即可;(2)①将方程移项,再整理为2x a =的的形式,再根据平方根定义求解即可; ②将方程移项,再整理为3x a =根据立方根定义求解即可;【详解】解:(1)解:①原式== 5=.②原式1218=-6=-.(2)解:①原方程可化为29(1)4x -=则312x -=或312x -=-, 解得,52x =或12x =-. ②原方程可化为31258x =-, 解得,52x =-. 【点睛】 本题考查了平方根、立方根及实数的运算,主要考查学生的运算能力,题目比较好,解题关键是理解平方根、立方根的意义.23.(1;(2-3)1++n .【分析】(1)分子分母同乘以计算即可;(2)分子分母同乘以)化简即可;(3)分子分母同乘以,化简彻底.【详解】解(1)∵==(2===;(3)原式=1n =++【点睛】本题考查了二次根式的分母有理化,抓住根式特点,确定有理化因式是解题的关键.24.(1)-1;7;(2)3;(3)运动3秒时,恰好有AB=AC .【分析】(1)根据非负数的和为零,可知绝对值和根号下的式子同时为零,可得答案; (2)根据中点坐标公式,可得答案;(3)设第x 秒时,AB=AC ,可得关于x 的方程,解方程,可得答案.【详解】解:(1)b 1+=0,∴b+1=0,c−7=0,∴b=−1,c=7,故答案为:−1,7.(2)由中点坐标公式, 得1732-+=, ∴D 点表示的数为3,故答案为:3.(3)设第x 秒时,AB=AC ,由题意,得x+1=7−x ,解得x=3,∴第3秒时,恰好有AB=AC .【点睛】本题主要考查实数与数轴,难度一般,熟练掌握绝对值和二次根式的非负性以及数轴的基础知识是解题的关键.25.(1)1-+;(2)54【分析】(1)先利用平方差公式计算,然后将每个二次根式化为最简二次根式,最后合并计算即可;(2)先将每个二次根式化简为最简二次根式,然后合并即可.【详解】(1)解:原式22231=-+=-+=-+(2)解:原式=== 【点睛】 本题考查了二次根式的运算,熟练掌握运算法则是解题的关键.26.(1)6;(2【分析】(1)根据二次根式的乘法法则计算;(2)先化简二次根式,根据二次根式的减法法则计算.【详解】=⨯,解:(1)原式23=⨯=;236(2)原式==【点睛】此题考查二次根式的计算,掌握二次根式的乘法计算法则、减法计算法则是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实数测试题
1.下列实数
2π,722,0.1414,39 ,21中,无理数的个数是【 】 (A)2个 (B)3个 (C)4个 (D)5个
2.下列说法正确的是【 】
(A )278的立方根是2
3± (B )-125没有立方根 (C )0的立方根是0 (D )-4)8(3=- 3.下列说法正确的是【 】
(A )一个数的立方根一定比这个数小 (B )一个数的算术平方根一定是正数 (C )一个正数的立方根有两个 (D )一个负数的立方根只有一个,且为负数
4.一个数的算术平方根的相反数是312
-,则这个数是【 】. (A)79 (B)349 (C)499 (D)9
49
5.下列运算中,错误的有 【 】 ①1251144251=;②
4)4(2±=-;③22222-=-=-;④2
14141161+=+ (A)1个 (B)2个 (C)3个 (D)4个
6.下列语句中正确的是【 】
(A)带根号的数是无理数 (B)不带根号的数一定是有理数 (C)无理数一定是无限不循环的小数 (D)无限小数都是无理数
7.下列叙述正确的是【 】
(A)有理数和数轴上点是一一对应的 (B)最大的实数和最小的实数都是存在的
(C)最小的实数是0 (D)任意一个实数都可以用数轴上的一个点来表示 8.2)25(-的平方根是 【 】
(A)25 (B)5 (C)±5 (D)±25
9.-27的立方根与4的平方根的和是【 】
(A)-1 (B)-5 (C)-1或-5 (D)±5或±1
10.已知平面直角坐标系中,点A 的坐标是(
2,-3),将点A 向右平移3个单位长度,然后向上平移33个单位长度后得到B 点,则点B 的坐标是【 】 (A)(33,23) (B)(32,32+) (C)(34,32--) (D)(3,33).
11.9的平方根是________.
12.面积为13的正方形的边长为_______.
13.若实数a 、b 满足(a+b-2)2+
032=+-a b 则2b-a+1的值等于______. 14. a 200是个整数,那么最小正整数a 是_____.
15. 若9的平方根是a,43=b ,则a+b 的值为______.
16. 用计算器探索:已知按一定规律排列的一组数:
201
,,31
,21
,1Λ。
如果从中选取若干个数,使它们的和大于3,那么至少需要选____个.
17 .计算|922-|+22的结果等于________. 18.比较大小:2
15-_______0.5.
19.写出-3和2之间的所有整数为______________.
20.请你观察、思考下列计算过程:因为112=121,所以
121=11 ; 因为1112=12321,所以11112321=;……, 由此猜想
76543211234567898=_____.
21.计算 (1)
331251241027.0416--+ (2)32710225.204112121-+-
22.求下列各式中的x 的值:
(1)(1-x)2=64. (2)(2x-1)3=8.
23.(1) 已知2x-1的平方根是±6,2x+y-1的算术平方根是5,求2x-3y+11的平方根.
(2)已知x 的平方根是2a+3和1-3a,y 的立方根是a,求x+y 的值.
24.有两个正方体形纸盒,第一个正方体形纸盒的棱长为6cm,第二个正方体形纸盒的体积比第一个纸盒的体积大127cm 3,求第二个纸盒的棱长.
25.如图一个体积为25cm 3的长方体形工件,其中,a 、b 、c 表示的是它的长、宽、高,且a :b :c=2:1:3,请你求出这个工件的表面积(结果精确到0.1cm 2)
26.已知x 是1的平方根,求代数式(x 2003-1)(x 2004-15)(x 2005+1)(x 2006+15)+1000x 的立方根.
27.如图,在平行四边形ABC0中,已知点A 、C 两点的坐标为A(
5,5),C(25,0). (1)求点B 的坐标.
(2)将平行四边形ABCO 向左平移
5个单位长度,求所得四边形A ′B ′C ′O ′四个顶点的坐标.
(3)求平行四边形ABCO 的面积.
参考答案:
一、1.B 2.C 3.D 4.D 5.D D 6.C 7.D 8.C 9.C 10.B
二、11.±3; 12.13; 13.O 14.2 ; 15.67或-61; 16. 借助计算器可得:3514131211>++++
,所以至少取5个数.;17.3 18.7 ;19.-1,0,1; 20. 111111111
三、21.(1) 532; (2)3
35 22.(1)1-x=±8,解得x=-7或9; (2)2x-1=2,
解得x=2
3 23.(1)因为2x-1=36,2x+y-1=25,所以2x=37,3y=-33,
所以2x-3y+11=81,所以81的平方根为±9
(2)2a+3+1-3a=0,解得a=4,所以x=16,y=64,所以x+y=80.
24.设第二个正方体的棱长为x,则x 3=127+63,所以x 3=343,所以x=
3343=7. 25.设a=2x,b=x,c=3x,因为abc=25,所以2x ·x ·3x=25,
所以x 3=6
25,所以x ≈1.609. 所以长方体的表面积为(2x 2+6x 2+3x 2)≈57.0
26. 因为x 是1的平方根,所以x=±1,
当x=1时,原式=1000,其立方根为10;
当x=-1时,原式=-1000,其立方根为-10.
27. (1)点B 坐标是(3
5,5); (2)向左平移
5个单位长度后,各点的纵坐标不变,横坐标都减少5,所以A ′(O, 5)、B ′(25,5)、C ′(5,0),O ′(-5,0).
(3)平行四边形的面积为25·5=2(5)2=2×5=10.。