CH05 包图
小肠出血60例外科诊治体会
3 ・ 0
中华普通外 科学文献 ( 电子版 ) 02 2月第 6卷第 1 C i Ac e ug(l tn dtn , era 0 2 V l o 21年 期 h r GnSr Eer iE io) Fbur 2 1, o 6N . n h coc i y 1
・
论 著
白水 平 4 9~8 / , 均 6 / ( 1 2 。 8g L 平 5g L 表 , )
二 、 断 方法 诊
行 腹 腔 干 、 系膜 上 、 动 脉 造 影 检 查 ( S 肠 下 D A)
3 0例 , 出 1 检 3例 , 出率 4 . 图 3 ; 检 3 %( 3 ) 行 c .
rt w s 62 ;cpueed soyw s ef m di 0p t ns n eedtc d(0 . h s 3 a a . e 4 % asl n ocp a r r e 1 a et ad5w r eet 5 %) T el t 0 p o n i e a
c s sw r ig o e y s r e , w ih w r i c l t k e n t ig o i , i cu i g5 c s sp r a e e e d a n s d b u g r y h c e ed f u t oma ea d f i d a n ss i i e n ldn ae e— fr d l p r s o i p r a h a d 1 a in swe e p r r d e t r s o e e a n t n d rn p r t n, o me a a o c pc a p o c n p t t r e f me n e o c p x mi ai u ig o e ai 2 e o o o
兄弟MFC-8460N_8860DN_DCP-8060维修手册
ABB定值整定
自供电过流和接地保护继电器 REJ603
2
文件编号:1YZA000067 - cn 发行日期:2008 年 02 月 18 日 修订版:A 产品版本:1.0 Copyright 2008 – ABB.版权所有
3
版权
未经 ABB 书面允许,不得复制本文件的任何部分,不得将其内容透露给第 三方或进行任何未经授权的应用。
第5节
应用实例 .....................................................................21
目的 ................................................................................................22 说明 ................................................................................................22 定值计算.........................................................................................23
6
安全信息
即使辅助电源已被切断,端子上仍有可能出现危险电压。
如果不遵守安全规程,将可能导致人员受伤甚至死亡或巨大财产损失。
只有合格电工才能执行电气安装操作。
必须始终遵守国家和当地的电气安全规程。
继电器的接地端子必须良好接地。
若插件单元与外壳分离,切勿触摸外壳内部。继电器外壳内部可能带 有高电压,触碰可能导致人员伤亡。
7
1YZA000067-cn
ACM必备内容(几乎全)
2 数论........................................................................................................................................... 21
2.1 最大公约数 gcd............................................................................................................21 2.2 最小公倍数 lcm............................................................................................................22
3.1 堆(最小堆)...............................................................................................................31
3.1.1 3.1.2
删除最小值元素:.......................................................................................... 31 插入元素和向上调整:.................................................................................. 32
1.5 拓扑排序.........................................................................................................................7
USB数据线检验规范
标准修订记录表QJ 珠海格力电器股份有限公司标准QJ/GD 41.09.003代替 QJ/GD 41.09.002QJ/GD 41.09.007QJ/GD 41.09.009 QJ/GD 41.09.010电线电缆检验规范第八部分手机USB数据线2016-12-1发布2016-12-1实施珠海格力电器股份有限公司发布目录目录 (3)前言 (4)USB数据线 (5)1范围 (5)2规范性引用文件 (5)3技术要求 (5)4试验要求和方法 (5)4.1外观 (5)4.2规格尺寸 (6)4.3线芯排列 (7)4.4物理性能 (7)4.5VW-1燃烧试验 (8)4.6摇摆测试 (8)4.7吊重测试 (8)4.8插拨力测试 (8)4.9电气性能 (9)4.10火花试验 (9)4.11耐压测试 (9)4.12盐雾试验 (9)4.13有害物质含量 (9)5检验规则 (10)6标志、包装、运输和存贮 (10)6.1标志 (10)6.2包装 (11)6.3运输 (11)6.4存贮 (11)附录A (规范性附录)检验报告模板 (12)前言珠海格力电器股份有限公司技术标准是公司标准化技术委员会发布的标准,作为公司内部使用的技术法规性文件。
本部分标准与前一版本相比的主要变化如下:——4.1添加了外观判断图本部分标准由珠海格力电器股份有限公司提出。
本部分标准由珠海格力电器股份有限公司标准化技术委员会归口。
本部分标准由珠海格力电器股份有限公司标准管理部起草。
本部分主要起草人:蔡春晓(标管部)本部分标准本次修订人:蔡春晓(标管部)本部分标准于2016年6月首次发布(换版)。
·USB数据线1 范围本部分规定了USB线的技术要求、试验要求和方法、检验规则、标志、包装、运输和贮存。
本部分适用于USB线。
2 规范性引用文件下列文件对于本文件的应用是必不可少的。
凡是注日期的引用文件,仅注日期的版本适用于本标准。
凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
HP Color LaserJet Pro M252 用户指南说明书
此处包含的信息如有更改,恕不另行通 知。
HP 产品及服务的保修仅以随该产品及 服务提供的书面保修声明为准。本文所 述任何内容不应被视为附加保修。对任 何技术或编辑错误或者本文所述内容的 遗漏,HP 不承担任何责任。
Edition 3, 8/2019
2 纸盘 .......................................................................................................................................................................................................... 15 将纸张装入单页进纸槽(纸盘 1) ................................................................................................................................ 16 简介 ..................................................................................................................................................................... 16 将纸张装入单页优先进纸槽 ........................................................................................................................ 16 在单页优先进纸槽中装入信封(纸盘 1) .............................................................................................. 17 纸盘 1 纸张方向 ............................................................................................................................................... 19 在纸盘 2 中装入纸张 .......................................................................................................................................................... 20 简介 ..................................................................................................................................................................... 20 在纸盘 2 中装入纸张 ...................................................................................................................................... 20 在纸盘 2 中装入信封 ...................................................................................................................................... 22 纸盘 2 纸张方向 ............................................................................................................................................... 25
SIR4中文说明书中文图最终版 (1)
高频电源安装操作运行维护手册
目录
1. 概述 .................................................................................................................................................................. 9 1.1. 型 号 .................................................................................................................................................... 10 1.2. SIR: 静 电 除 尘 器 控 制 装 置 系 列 的 一 员 ....................................................................................... 10
4. 电气数据 ........................................................................................................................................................ 26 4.1. 概 述 .................................................................................................................................................... 26 4.2. 电 源 电 流 ........................................................................................................................................... 27 4.3. 要 求 的 电 缆 ....................................................................................................................................... 27
面向问题的GIS需求非形式化与形式化描述研究
数 据 结构 往往 都是 面 向最 终 解 决 方案 的。我 们 需要 对 地 理信息系统软件的问题域进行描述。通过划分地理信息 功能 子 问题 以及子 问题 的组合 应 用 实 现新 的地 理信 息系
统 软 件构 建任 务 。每一 类 问 题用 形 式 化语 言 被 描述 成 问
的效 果 。 因此 , 软 件 需 求 相 关 的描 述 应 包 括 : 题 所 与 问
me h d t e tlr e — s ae GI e uie n s t o o m e a g c l S r q r me t .
Ke r s p o lm —o e td;e u r me t n ie rn ;n o ma & f r a e c p in; S; ly y wo d : r be i r ne rq i e n gn e g i r l e i f o l d sr t m i o GI Al o
与此 同时 , Jcs M.ako 提 出了软 件 开发 中经 常 出现 n等
的 5类 基本 问题 , 对它 们 的性 质 、 涉及 问题域 的类 型 , 并 所
以及 每类 问题 的 问题 域 、 求 、 需 机器 域 之 间 的 拓 扑 结 构 、 应满 足 的关 系及 相 关 性 质 等 进 行 了深 入研 究 , 出 了 问 提 题 的框架 思想 , 图 1 示 。 如 所
S HAO a Xio—d n , o g GUO J —f ,I i a JANG n Ya g—mig , ANG n—fi n W Yu e’
( .n tueo e t esn p l ain f ieeA a e f c ne , e ig10 0 , hn ; . i j o ma 1 I stt f moeS nigA pi t so ns c d myo i csB in 0 1 1 C ia 2 Ta i N r l i R c o Ch Se j nn Unvri , ini 0 3 7 C ia 3 H n h o a c mp n Y n a rvn eMi 5 3 0 C ia ies y Ta j 30 8 , hn ; . o g eT b coCo a y, u n nP o ic , l 6 20 , hn ) t n e
CASIO CTK-2000 CTK-3000 说明书
Mode 2 : OMNI ON, MONO Mode 4 : OMNI OFF, MONO
O : Yes X : No
CTK2000_ch.book Page 1 Wednesday, March 26, 2008 10:12 AM
目錄
部位說明...................................................Ch-2
外部設備的連接 .................................Ch-32
電腦的連接................................................................................. Ch-32 MIDI 設定..................................................................................... Ch-33 音頻裝置的連接....................................................................... Ch-35
System
: Song Pos
X
X
Common
: Song Sel
X
X
: Tune
X
X
System
: Clock
O
X
Real Time
: Commands
O
X
Aux Messages
: Local ON/OFF : All notes OFF : Active Sense : Reset
Remarks
Mode 1 : OMNI ON, POLY Mode 3 : OMNI OFF, POLY
PWD22用户指南
天气现象传感器PWD22用户指南目录第一章概述 (6)操作手册介绍 (6)安全说明 (6)ESD 静电放电保护 (7)第二章产品总体介绍 (8)维萨拉能见度传感器 PWD10/20 (8)硬件结构 (8)使用 PWD10/20 (9)产品专有名词 (10)第三章功能描述 (11)光学测量 (11)光路 (11)维萨拉发射机单元 PWT11 (12)光接受机 (13)背景亮度传感器 PWL111 (可选) (13)BLSC 命令 (14)连续模式 (14)昼/夜/转换模式 (14)取消 PWL111 (14)BCAL 命令 (15)温度传感器 (15)运算方法 (15)能见度 (15)内部监测 (16)内置检测 (16)存储检测 (17)信号监测 (17)硬件监测 (18)污染监测 (18)第四章安装 (19)选择安装方位 (19)接地和防雷电保护 (20)设备接地 (20)内部接地 (21)远程单元和通讯电缆接地 (21)安装程序 (21)卸货和开箱 (21)存放 (22)固定 (22)连接 (23)电缆连接 (23)基本接线 (24)PWD10/20供电电源 (25)无PWL111(缺省)内部加热器 (26)无 PWL111 (可选) 内部加热器 (26)Hood 加热器PWH111 (26)通信选项 (26)串行通信设置 (27)串行 RS-232 (27)串行多点传输 RS-485 (27)维护终端的连接 (27)继电控制 (28)继电器命令 (30)初始设置 (31)开机验证 (32)第五章操作 (33)总述 ................................................................ 错误!未定义书签。
操作说明 (33)进入/退出命令模式 .................................... 错误!未定义书签。
OPEN命令 (34)CLOSE命令 (35)信息类型 (35)Message 0 (36)Message 1 (37)Message 2 (37)Message 3 (37)Message 4 (38)Messages 5 and 6 (38)Message 7 (38)自动信息发送 (39)信息查询 (39)命令列表 (41)PWD10/20 命令 (41)HELP帮助 (41)MES (42)AMES (42)系统配置命令 (42)PAR (42)CONF (43)Hood Heaters加热器 (47)BAUD波特 (47)模拟输出 (47)模拟输出模式 (49)Mode 0 (49)Mode 1 (49)Mode 2 (50)Mode 3 (51)Mode 4 (51)模拟输出标定 (51)维护命令 (52)STA (53)CAL (54)CLEAN (55)ZERO (55)CHEC (56)HEAT (56)其它命令 (57)TIME (57)DATE (57)RESET (58)VER (58)第六章维护 (59)周期性维护 (59)清洁 (60)清洁镜头和护罩 (60)标定 (61)能见度标定 (61)标定检查程序 (61)标定程序 (62)拆卸和更换 (63)拆卸和更换光学单元 (63)拆卸发射机 PWT11 (63)拆卸PWC10/20 (65)第七章故障排除 (66)常见问题 (66)信息指示警告或者报警 (66)信息缺失 (66)有信息无能见度值 (67)能见度值持续过好 (68)能见度值持续过差 (68)PWD10/20 电气故障 (68)第八章技术数据 (70)技术参数 (70)Mechanical Specifications (70)Electrical Specifications (71)Optical Specifications (71)Visibility Measurement Specifications (72)Environmental Specifications (72)APPENDIX A内部监控值 (74)APPENDIX BPWC10/20 连接器和跳线器设置 (78)第一章概述操作手册介绍本说明书提供了能见度传感器PWD10/20的安装、操作和维护的有关信息。
华为FDD LTE基站产品概述
华为FDD LTE基站产品概述华为技术有限公司2022年4月目录1 概述 (1)1.1 总体介绍 (1)1.2 产品形态 (1)1.3 为运营商带来的好处 (2)1.3.1 有效的站址利用与快速建网 (2)1.3.2 富有成本效益容量覆盖解决方案 (3)1.3.3 构建节能减排的绿色通信网络 (3)1.3.4 最大限度地降低站点运营费用 (3)1.3.5 面向未来无线网络的轻松演进 (3)2 系统架构 (4)2.1 概述 (4)2.2 BBU3900 (4)2.2.1 BBU3900外观 (4)2.2.2 BBU3900单板和模块 (4)2.3 RRU3832 (5)2.3.1 RRU3832外观 (5)2.3.2 RRU3832特点 (6)2.3.3 容量 ............................................................................................ 错误!未定义书签。
2.4 RRU3838 (6)2.4.1 RRU3838外观 (6)2.4.2 RRU3838特点 (6)2.4.3 容量 ............................................................................................ 错误!未定义书签。
2.5 RFU (7)2.5.1 RFUd外观 (7)2.5.2 RFU特点 (7)2.5.3 容量 ............................................................................................ 错误!未定义书签。
2.6 配套设备 (7)2.6.1 APM30 (7)2.6.2 室内宏机柜 (9)2.6.3 室外射频柜 (10)3 产品组合及应用场景介绍 (11)3.1 分布式基站DBS3900 (11)3.1.1 解决方案一:APM30 (BBU3900)+RRU (11)3.1.2 解决方案二:利用现有站址设备 (12)3.2 机柜式室内宏基站BTS3900 (12)2022-4-26 华为机密,未经许可不得扩散i3.3 机柜式室外宏基站BTS3900A (13)3.4 室内BBU基带柜+多个交流RRU (14)4 产品功能特点 (16)4.1 先进的平台化架构 (16)4.2 高集成度,大容量 (16)4.3 高性能 (16)4.4 环境适应 (16)4.5 扩容演进 (17)5 可靠性设计 (18)5.1 概述 (18)5.2 系统可靠性设计 (18)5.3 硬件可靠性设计 (19)5.4 软件可靠性设计 (20)6 遵循标准 (22)2022-4-26 华为机密,未经许可不得扩散ii1 概述1.1 总体介绍在移动通信技术日新月异发展的今天,如何利用创新的技术优化无线网络的建网方式,如何融合先进的技术,降低运营商的投资风险,助力构建面向未来的移动网络,无疑将成为运营商选择合作伙伴和网络建设投资的关注点。
充电器产品规格书
2A旅充产品规格书一、前言本规格书描述手机USB充电器的电气特性及使用环境要求等方面的规格说明。
二、产品特点1、本USB充电器连接手机后可对手机电池进行充电;2、恒压小电流充电模式,电池电压充满自动关断,将提高电池的使用寿命;3、全电压输入,全球适用。
三、电气参数1、输入:90-250V AC,50/60Hz 80mA;2、输出:5VDC 500MA,最大2A;3、空载功耗:0.2W MAX;4、充电满载功耗:5W MAX;5、电池充饱率:≥90%。
四、环境条件1、使用环境:温度:0-40℃湿度:≤95%;2、存储环境:温度: -25~+60℃湿度:≤85%;3、工作时本体温度:充电时壳体表面温度≤50℃,电池表面温度≤45℃。
五、安全规格符合安全标准。
六、可靠性能参数1.输入特性 (3)1.1额定输入电压 (3)1.2输入电压范围 (3)1.3输入频率 (3)1.4输入频率范围 (3)1.AC输入电流 (3)1.6峰值输入电流 (3)1.7效率 (3)2.输出特性 (3)2.1输出额定电压 (3)2.2输出电压 (3)2.3额定输出电流 (4)2.4额定功率 (4)2.5 LED 指示功能) (4)2.6充电器输出电压/电流特性图..........................2.7输出纹波、噪音 (4)2.8输出电流纹波、噪音 (4)2.9启动延时 (4)2.10关断时延 (4)2.11过冲 (4)2.12电流倒灌 (4)2.13保护 (4)2.13.1过压保护 (4)2.13.2过流保护........................................................................ .............. (4)2.13.3短路保护........................................................................ ......... .. (4)3.信赖性项目 (4)3.1静电 (4)3.2高压测试 (4)3.3绝缘电阻 (4)3.4泄漏电流 (4)3.5温升 (4)3.6连续工作时间 (5)3.7平均无故障时间............................................................................... . (5)3.8 EMI标准..................................................................................................5.4.环境要求 (5)4.1工作温度 (5)4.2储藏温度 (5)4.3工作湿度 (5)4.4储藏湿度 (5)5.机械要求 (5)5.1尺寸 (5)5.2重量 (5)5.3USB 接口类型 (5)5.4跌落试验 (5)5.5振动试验 (5)5.6插拔实验 (5)6.机械性能 (6)6.1外观 (5)6.2外壳材质 (6)7.环境性能 (5)7.1低温工作实验 (5)7.2高温工作实验 (6)7.3低温存储 (6)7.4高温存储 (6)7.5恒温恒湿工作) (6)1.输入特性1.1额定输入电压额定输入交流100V~240V。
特灵三级离心机组样本资料
精确控制负荷
前馈控制功能 不但能根据冷水出水温度调节机组负 荷,而且还能根据冷水进水温度的变 化率来预测和补偿空调负荷的变 化。这 项功能使得特灵冷水机组调节 负荷的速度更快,出水温度更稳定。 冷水变流量控制功能 CH530控制器具备变流量自适应功 能,保证系统在变流量状态下出水温 度波动小,运行更稳定。
热回收机组运行必须有足够的冷负荷 (通常为机组名义冷量的75~95%)。通 常将热回收机组与其它单冷机组组合 在一个系统中,以保证有足够的基本 冷负荷提供给热回收机组。
空调系统通常以满足冷负荷需求为首 要任务,为确保冷水机组运行效率, 热回收出水温度不宜过高,建议采用 辅助加热设备以满足使用需要。
自问世以来,该机组以其性能优越、质量 可靠和投资回报率高而赢得了用户的青 睐,在美国及全球的销量远远超过其它品 牌的机组,成为世界空调行业的首选。
机组特性
能效比COP高达7.85W/W(0.448 kW/Ton),是世界上效率最高、投 资回报率最高的机组。
在ARI标准工况下,机组效率比常规离心 机组高16~25%。机组效率的提高,可 以给您最高的投资回报。
CVHE /G&CDHG 三级压缩离心式冷水机组
CenTraVac® Water -Cooled Liquid Chillers 400~1300&1200~2500Tons
目录
产品简介 ...................................................................3 产品特性 ...................................................................4 CH530控制器 ...........................................................5 系统应用 ...................................................................6 机组特性解析............................................................8 型号说明 ...................................................................9 CVHE/G技术参数表 ................................................10 CVHE/G冷凝器流量 ................................................12 CVHE/G蒸发器流量 ................................................13 CVHE/G机组外形与接管尺寸..................................14 CVHE/G机组尺寸....................................................15 CDHG机组..............................................................19
Protocol for Laboratory Testing SCR Catalyst Samples
Protocol for Laboratory T esting SCR Catalyst SamplesT echnical ReportProtocol for Laboratory Testing SCR Catalyst Samples1012666Final Report, December 2006EPRI Project ManagerD. BroskeELECTRIC POWER RESEARCH INSTITUTE3420 Hillview Avenue, Palo Alto, California 94304-1338 • PO Box 10412, Palo Alto, California 94303-0813 • USA 800.313.3774 • 650.855.2121 • askepri@ • DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIESTHIS DOCUMENT WAS PREPARED BY THE ORGANIZATION(S) NAMED BELOW AS AN ACCOUNT OF WORK SPONSORED OR COSPONSORED BY THE ELECTRIC POWER RESEARCH INSTITUTE, INC. (EPRI). NEITHER EPRI, ANY MEMBER OF EPRI, ANY COSPONSOR, THE ORGANIZATION(S) BELOW, NOR ANY PERSON ACTING ON BEHALF OF ANY OF THEM:(A) MAKES ANY WARRANTY OR REPRESENTATION WHATSOEVER, EXPRESS OR IMPLIED, (I) WITH RESPECT TO THE USE OF ANY INFORMATION, APPARATUS, METHOD, PROCESS, OR SIMILAR ITEM DISCLOSED IN THIS DOCUMENT, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, OR (II) THAT SUCH USE DOES NOT INFRINGE ON OR INTERFERE WITH PRIVATELY OWNED RIGHTS, INCLUDING ANY PARTY'S INTELLECTUAL PROPERTY, OR (III) THAT THIS DOCUMENT IS SUITABLE TO ANY PARTICULAR USER'S CIRCUMSTANCE; OR(B) ASSUMES RESPONSIBILITY FOR ANY DAMAGES OR OTHER LIABILITY WHATSOEVER (INCLUDING ANY CONSEQUENTIAL DAMAGES, EVEN IF EPRI OR ANY EPRI REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES) RESULTING FROM YOUR SELECTION OR USE OF THIS DOCUMENT OR ANY INFORMATION, APPARATUS, METHOD, PROCESS, OR SIMILAR ITEM DISCLOSED IN THIS DOCUMENT.ORGANIZATION(S) THAT PREPARED THIS DOCUMENTFossil Energy Research Corp.W. S. Hinton and AssociatesNOTEFor further information about EPRI, call the EPRI Customer Assistance Center at 800.313.3774 or e-mail askepri@.Electric Power Research Institute and EPRI are registered service marks of the Electric Power Research Institute, Inc.Copyright © 2006 Electric Power Research Institute, Inc. All rights reserved.CITATIONSThis report was prepared byFossil Energy Research Corp.23342-C South Pointe DriveLaguna Hills, CA 92653Principal InvestigatorsL. MuzioR. SmithJ. MuncyW. S. Hinton and Associates1612 Smugglers CoveGulf Breeze, FL 32563Principal InvestigatorW. S. HintonThis report describes research sponsored by the Electric Power Research Institute (EPRI).The report is a corporate document that should be cited in the literature in the following manner: Protocol for Laboratory Testing SCR Catalyst Samples. EPRI, Palo Alto, CA: 2006. 1012666.iiiPRODUCT DESCRIPTIONSelective catalytic reduction (SCR) is the preferred technology for controlling NOx emissionsfrom coal-fired power plants, particularly when high levels of reduction (80 to 90%) are required. The primary objective of the protocol developed in this project is to define recommended and uniform procedures that SCR system operators can specify when having catalyst performance tests conducted by catalyst vendors and independent testing laboratories. Results & FindingsThe report discusses individually and in depth the recommended protocols for each of the following catalyst test areas:•Catalyst activity: Used to assess the overall potential of SCR reactors for reducing NOx andas an input to catalyst management programs to plan catalyst additions and replacements.•SO2 to SO3oxidation: Used to monitor SO2oxidation and help assess the need for SO3mitigation measures or changes to existing SO3mitigation measures.•Hg oxidation: With upcoming regulations targeting mercury emissions, monitoring a catalyst’s mercury oxidation characteristics will be an vital component of a catalystmanagement plan.•Physical properties: Just as back-end temperature surface area measurements can help explain changes in catalyst activity, so can pore volume and pore size distribution. •Chemical composition: Bulk and surface chemical analyses of the catalyst also assist in diagnosing the cause of normal or abnormal changes in catalyst activity.Challenges & Objective(s)A viable catalyst management strategy depends on continually assessing the rate of catalyst deactivation and accurately estimating activity at any point in time during the life of the catalyst. Although users of SCR systems may depend on a dedicated catalyst vendor to provide this information, as SCR operators begin to purchase catalyst from other vendors who may use different catalyst testing methods, activity data may differ. In addition, data provided by catalyst regeneration vendors also may not be consistent with data from the original catalyst manufacturers. Accordingly, this project addressed the need to develop uniform catalyst testing procedures.vviApplications, Values & UsePotential inconsistencies in catalyst performance data from various sources highlight the need for a catalyst testing protocol that users can specify when contracting with catalyst vendors and laboratories to conduct catalyst performance tests.EPRI PerspectiveWith well over 100-GW of installed SCR capacity in the United States at the time of this writing, the need for a standardized SCR catalyst testing protocol, documented in this report, is ofparamount importance to the coal-fired power-producing industry. The catalyst testing protocol documented in this report is considered dynamic, and updates and revisions to this document will be made as additional findings are discovered.ApproachThe project team developed the catalyst testing protocol formulated in this project using input from industry workgroups in each of the five areas listed in Results & Findings. Workgroup participants came from catalyst vendors, independent catalyst testing laboratories, catalyst reconditioners, industry consultants, and SCR system operators. Additional information was drawn from the German VGB-R302H document (Guideline for the Testing of DeNO x Catalysts ) and its supplement, “Supplement to VGB-R302He 2nd Edition – Common Best Practices for Bench Scale Reactor Testing and Chemical Analysis of SCR DeNo x Catalyst.”KeywordsSCRNOxEnvironmental controlsABSTRACTWith the widespread use of selective catalytic reduction (SCR) throughout the U.S. fleet of coal-fired utility boilers to control NOx emissions, there has been a need to standardize protocols forcatalyst testing. This document recommends a uniform catalyst testing protocol that SCR system operators can follow when conducting catalyst performance tests. The protocol covers five tests:1) catalyst activity, 2) SO2 to SO3oxidation, 3) mercury oxidation, 4) chemical characterization,and 5) characterization of physical properties.viiACKNOWLEDGMENTSA number of organizations and individuals have helped with the development of this laboratory testing protocol of SCR catalyst. The pioneering work in developing SCR laboratory testing procedures was done in Europe by the VGB (1). A recent best practices document was prepared by Steag (2).We acknowledge the help and input from the following individuals and their organizations, in preparation of the current document:Jeff van Aaken (Argillon)Jared Cannon (Southern Company Services)Tom Davey (Consumers Energy)Chris DiFrancesco (Cormetech)Thorsten Dux (E.ON Engineering)Flemming Hansen (Haldor-Topsoe)Keith Harrison (Southern Company Services)Hans Hartenstein (Steag LLC)Juliana Kyle (Southern Company Services)Marilyn Martin (Steag LLC)Kolli Rao (New York Power Authority)Terry Smith (E.ON Engineering)ixxi CONTENTS1 INTRODUCTION AND SUMMARY........................................................................................1-1 Background...........................................................................................................................1-1 Objectives .............................................................................................................................1-2 Summary...............................................................................................................................1-2 Disclaimer..............................................................................................................................1-4 2 DEFINITIONS AND CONVENTIONS.....................................................................................2-13 CATALYST NO X ACTIVITY TESTING...................................................................................3-1Definition of Catalyst Activity.................................................................................................3-1 Measuring Catalyst Activity...................................................................................................3-3 Catalyst Activity Measuring Apparatus..................................................................................3-3 Test Conditions Effects on Catalyst Activity..........................................................................3-3 Selecting Micro or Bench Reactors.......................................................................................3-5 Sample Preparation...............................................................................................................3-5 Documenting Test Sample Dimensions................................................................................3-6 Test Conditions...................................................................................................................3-10 Flow Rate and Velocity...................................................................................................3-10 Temperature...................................................................................................................3-10 Background Gas Composition........................................................................................3-10 NH 3/NO x Ratio.................................................................................................................3-11Conditioning........................................................................................................................3-12 Number of Activity Tests.....................................................................................................3-13 Measurement Methods........................................................................................................3-14 Gas Flow ........................................................................................................................3-14 Temperature...................................................................................................................3-14 Gas Composition............................................................................................................3-14 Data Analysis and Reporting...............................................................................................3-15xii4 SO 2 TO SO 3 OXIDATION........................................................................................................4-1Measurement Issues.............................................................................................................4-1 Rate Equation...................................................................................................................4-1 Conditioning Times...........................................................................................................4-2 Effect of NO x and NH 3.......................................................................................................4-3Measuring SO 2 to SO 3 Oxidation......................................................................................4-3Test Reactor..........................................................................................................................4-3 Test Conditions.....................................................................................................................4-5 Flow Rate and Velocity.....................................................................................................4-5 Temperature.....................................................................................................................4-6 Background Gas Composition..........................................................................................4-6 NH 3/NO x Ratio...................................................................................................................4-6Conditioning..........................................................................................................................4-6 Number of Tests....................................................................................................................4-7 Measurement Methods..........................................................................................................4-7 Measurement of SO 2 to SO 3 Oxidation.............................................................................4-7Data Analysis and Reporting.................................................................................................4-9 5 Hg OXIDATION......................................................................................................................5-1 Background...........................................................................................................................5-1 Mercury Addition...................................................................................................................5-2 Selecting Micro or Bench Reactors.......................................................................................5-2 Test Conditions.....................................................................................................................5-3 Catalyst Volume, Flow Rate and Velocity.........................................................................5-3 Temperature.....................................................................................................................5-4 Background Gas Composition..........................................................................................5-4 Mercury.............................................................................................................................5-5 NH 3/NO x Ratio...................................................................................................................5-5Chlorine............................................................................................................................5-6 Conditioning and Stabilization...............................................................................................5-6 Measurement Methods..........................................................................................................5-7 Mercury Measurement......................................................................................................5-7 Quality Assurance/Quality Control....................................................................................5-8 Test Apparatus Baseline Characteristics..........................................................................5-8Number of Tests...............................................................................................................5-9 Data Analysis and Reporting.................................................................................................5-96 CHEMICAL PROPERTIES.....................................................................................................6-1Background...........................................................................................................................6-1 Catalyst Sampling.................................................................................................................6-1 Bulk Chemical Analysis.........................................................................................................6-2 Sample Preparation and Digestion...................................................................................6-3 Analytical Technique and Specific Analytes.....................................................................6-3 Surface Chemical Analysis....................................................................................................6-3 X-Ray Fluorescence Spectrometry...................................................................................6-3 Other Surface Analysis Techniques.................................................................................6-4 Specific Analytes and Reporting Convention........................................................................6-5 Reporting Requirements.......................................................................................................6-67 PHYSICAL PROPERTIES......................................................................................................7-1Background...........................................................................................................................7-1 Surface Area Analysis...........................................................................................................7-1 Pore Volume and Size Distribution........................................................................................7-2 Mercury Porosimetry........................................................................................................7-2 Gas Adsorption.................................................................................................................7-2 Mechanical Strength..............................................................................................................7-3 Abrasion Resistance.............................................................................................................7-3 Catalyst Geometry.................................................................................................................7-4 Summary...............................................................................................................................7-4 Reporting Requirements.......................................................................................................7-58 REFERENCES.......................................................................................................................8-1xiiixv LIST OF FIGURESFigure 3-1 Calculated Effect of Velocity on Measured Catalyst Activity, K................................3-5 Figure 3-2 Dimensions of Honeycomb Catalyst.........................................................................3-8 Figure 3-3 NO x Conversion and Activity as a Function of Conditioning Time..........................3-13Figure 3-4 Precision in Outlet NO x Measurement as a Function of Variation in K....................3-14Figure 4-1 Effect of SO 2 Concentration and Temperature on SO 2 to SO 3 Equilibration Time...................................................................................................................................4-2 Figure 4-2 Effect of NO x and NH 3 on SO 2 to SO 3 Oxidation.......................................................4-4Figure 4-3 Change in SO 2 or SO 3 Across a Catalyst Sample ....................................................4-4Figure 4-4 Controlled Condensation Sample Train....................................................................4-8 Figure 4-5 Controlled Condensation Condenser Configurations...............................................4-8xvii LIST OF TABLESTable 1-1 Protocol Workgroups.................................................................................................1-2 Table 1-2 Summary: Activity, SO 2 and Mercury Oxidation Protocol ..........................................1-3Table 1-3 Summary: Chemical and Physical Properties............................................................1-4 Table 2-1 Examples of Standard Conditions .............................................................................2-1 Table 3-1 Activity Test Conditions ...........................................................................................3-11 Table 3-2 Workgroup Input on Conditioning Times .................................................................3-12 Table 4-1 SO 2 to SO 3 Conditioning Times (Workgroup Input)....................................................4-3Table 4-2 SO 2 Oxidation Test Conditions ..................................................................................4-5Table 5-1 Mercury Oxidation Test Conditions............................................................................5-3 Table 5-2 Specific Mercury Addition Requirements...................................................................5-5 Table 5-3 Minimum Conditioning/Stabilization Period Guidelines for Continuous MercuryData....................................................................................................................................5-6 Table 5-4 Minimum Conditioning/Stabilization Period Guidelines for Non-ContinuousMercury Data......................................................................................................................5-6 Table 5-5 Mercury Analysis Instruments Commercially Offered................................................5-8 Table 6-1 Catalyst Sampling Guideline—Minimum Requirements............................................6-2 Table 6-2 Primary Bulk and Surface Chemical Analytes and Reporting Convention.................6-5 Table 6-3 Additional Discretionary Bulk and Surface Analytes..................................................6-6 Table 7-1 Common Physical Property Parameters and Test Methods......................................7-51INTRODUCTION AND SUMMARYBackgroundSelective catalytic reduction (SCR) has become the technology of choice for the control of NOx emissions from coal-fired power plants, particularly when high levels of reduction (80 to 90%)are required. A catalyst management strategy is needed to address the consequences of catalystdeactivation over time. This catalyst management strategy depends on an ongoing assessment ofthe rate of catalyst deactivation and an accurate estimate of activity at any point in time. Someusers of SCR systems may depend on a dedicated catalyst vendor to provide this activityinformation as an integral part of a catalyst supply contract. However as SCR operators begin topurchase catalyst from other vendors which may use different catalyst testing methods, theactivity data from one supplier might not agree with data from another. Additionally, the dataprovided by catalyst regeneration vendors may not be consistent with data from catalyst OEMvendors. The inconsistencies in catalyst performance data from various sources points to theneed for a catalyst testing protocol that users can specify when they contract with catalystvendors, or laboratories, to conduct catalyst performance tests.There are many aspects of catalyst testing for SCR applications; as such, the current protocolcovers the following area pertaining to catalyst testing:•Activity – Used to assess the overall potential of the SCR reactor for reducing NOx , and isalso used as an input to catalyst management programs to plan catalyst additions and/or replacements.•SO2 to SO3Oxidation – Used to monitor SO2oxidation, and aids in assessing the need forSO33mitigation programs.•Hg Oxidation – With upcoming regulations aimed at controlling mercury emissions, utilities will begin to look to the oxidation of mercury across the SCR catalyst with subsequentremoval in a downstream wet FGD system, for mercury control. Thus, monitoring themercury oxidation characteristics of the catalyst will also be an important part of a catalyst management plan.•Physical Properties – Such as BET surface area, pore volume and pore size distribution assist in the explanation in changes in catalyst activity.•Chemical Composition – Bulk and surface chemical analyses of the catalyst also assist in the diagnosis of the cause for normal or abnormal changes in catalyst activity.Introduction and SummaryThe catalyst testing protocol formulated in this project has been developed using input from industry workgroups in each of the areas listed above. The workgroup participants were drawn from catalyst vendors, independent catalyst testing laboratories, catalyst reconditioners, industry consultants, and operators of SCR systems. In addition, the German VGB-R302H document (Guideline for the Testing of DeNO x Catalysts) provided by the Technical Association of LargePower Plant Operators in Germany (1) and a supplement authored by Steag (2)“Supplement toVGB-R302He 2ndEdition – Common Best Practices for Bench Scale Reactor Testing andChemical Analysis of SCR DeNo x Catalyst” were drawn upon where appropriate. Table 1-1 lists the workgroups and organizations that participated in each group.This document is not considered a finalized protocol. It is considered dynamic as updates and revisions will be made as technology improves.Table 1-1Protocol WorkgroupsCatalyst ActivitySO 2 to SO 3Oxidation Mercury Oxidation Chemical and PhysicalPropertiesEPRI EPRI EPRI EPRI FERCo FERCoW.S. Hinton andAssoc. W.S. Hinton and Assoc.Southern Company Southern Company Southern Company Southern Company Steag LLC Steag LLC Steag LLC Steag LLC E.ON EngineeringE.ON EngineeringE.ON EngineeringE.ON EngineeringHaldor-Topsoe Haldor-Topsoe Haldor-Topsoe Haldor-Topsoe Cormetech Cormetech Cormetech Cormetech Consumers Energy ArgillonArgillon New York PowerAuthorityNew York Power AuthorityObjectivesThe primary objective of this protocol is to present recommended and uniform procedures that operators of SCR systems can specify when having catalyst performance tests conducted bycatalyst vendors and/or independent testing laboratories. The recommended protocols for each of the test areas outlined above will be discussed individually in the following sections.SummaryAn overall summary of the catalyst testing protocol for catalyst activity, SO 2 to SO 3 oxidation, and mercury oxidation is shown in Table 1-2. Note the protocol specifies that the tests beIntroduction and Summaryconducted on a bench-scale apparatus and that catalyst from each full-scale catalyst layer be tested separately. A summary covering the determination of physical and chemical properties of the catalyst is shown in Table 1-3.Table 1-2Summary: Activity, SO 2 and Mercury Oxidation ProtocolTest Parameter ActivitySO 2 Oxidation Hg OxidationApparatus Bench Scale ReactorSample Size Honeycomb/CorrugatedPlate150mm x150mm x Full Layer Length 150mm x150mm x Half Full Layer LengthTemperatureFull ScaleFlow Match Full Scale Linear VelocityO 2 Full Scale H 2O Full ScaleCO 2 As generated by combustion sourceSO 2 Full Scale NO x Full ScaleSO 3 None AddedFull Scale HCl 0 Full ScaleNH 3/NO x 1.0 00.9 and 0 Conditioning Time 12 hrs or Equilibrium 48 hrs orEquilibriumNH 3 off after Activity Test for 8 hrsNew: 48 hrs Used: 4 hrs Measurements ∆NO x ∆SO 3 or ∆SO 2∆Hg elementalNo. of Tests 4 3 3CalculationsK=-A v ln(1-∆NOx)%SO 2 OxidationK SO2= Q/m cat ln(1-∆SO 2)% Hg OxidationIntroduction and SummaryTable 1-3Summary: Chemical and Physical PropertiesChemical PropertiesBulk Analysis Atomic Absorption (AA) Inductively Coupled Plasma (ICP) Wet ChemicalSurface Analysis X-Ray Fluorescence (XRF) Electron MicroscopeSpecies of InterestAl2O3, As, CaO, Fe2O3, P2O5, K2O, MgO, MoO3,Na2O, SiO2, TiO2, V2O5, WO3Physical PropertiesParameter Preferred Test MethodSurface Area Single-Point BET using NitrogenPore Volume and Distribution Hg Porosimetry or Gas AdsorptionMechanical Strength Per Manufacturer RecommendationDelamination Resistance Per Manufacturer RecommendationAbrasion Resistance Per Manufacturer RecommendationGeometry DirectDimensionalMeasurement DisclaimerThe catalyst testing protocol documented in this report has been formulated based on input fromthe Workgroup participants as well as information contained in references 1 and 2. The protocolhas as yet not been experimentally validated. Experimental validation is expected as feedback isreceived from users of the protocol.。
PBD7- PBA7-系列精密台秤安装手册说明书
安装手册恭喜您选择了 METTLER TOLEDO 的品质与精密。
如果您能够依照用户手册正确使用新设备,并且由我们厂商培训的服务团队进行定期校准和维护,本设备将能可靠与精确地运行,保证您购买的产品物有所值。
如需了解按照您的需求和预算量身订制的服务协议,请联系我们。
欲知详情,请登陆/service。
为了让您购买的设备发挥最高性能,须注意下列几点:1. 注册您的产品:欢迎您在 /productregistration注册您的产品,以便我们通知您与产品有关的增强功能、更新及重要通知。
2. 如需服务,请联系 METTLER TOLEDO:量具的价值与其精确度成正比——不合规格的量具会降低品质、减少利润并增加责任风险。
METTLER TOLEDO 及时的服务能够保证精确,延长设备的运行时间及使用寿命。
–安装、配置、集成与培训:我们的服务代表均为厂商培训的称重设备专家。
我们承诺我们的称重设备能够经济并及时地生产,并且我们的员工训练有素。
–初次校准文件:每个工业秤都有其独有的安装环境及应用要求,所以需要对运行情况进行测试和验证。
我们的校准服务及验证文件精确无误,保证了生产质量,并能提供良好的系统运行记录。
–定期校准维护:校准服务协议让我们对于您的称重程序和遵守规程证明充满信心。
我们提供多样化的服务计划,专为您的需求和预算而定制。
2 PBD7- / PBA7-系列 30403591A目录1 防爆区域作业安全注意事项 (4)2 安装 (6)2.1 准备工作 (6)2.2 设置 (6)2.3 调整至水平 (7)2.4 延长并安装连接电缆 (8)2.5 危险区域中的等电位连接 (8)2.6 将秤体连接至称重仪表 (10)2.7 调试 (10)3 配置可能性 (11)3.1 通用信息 (11)3.2 原厂设定的配置数据 (12)4 装配规划 (13)4.1 规划注意事项 (13)4.2 预负荷范围 (13)4.3 安装可能性 (14)5 尺寸 (17)3 30403591A PBD7- / PBA7-系列1 防爆区域作业安全注意事项 ▲PBD7- / PBA7-系列精密台秤为 Category 3 危险区域(燃气和灰尘)提供选项。
诺瓦科技LED显示屏发送卡MCTRL1600用户手册
MCTRL1600独立主控产品 版本 : V1. 0 . 2 文档编号 :NS110 000 605用户手册版权所有©2018西安诺瓦电子科技有限公司。
保留一切权利。
非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。
商标声明是诺瓦科技的注册商标。
声明欢迎您选用西安诺瓦电子科技有限公司(以下简称诺瓦科技)的产品,如果本文档为您了解和使用产品带来帮助和便利,我们深感欣慰。
我们在编写文档时力求精确可靠,随时可能对内容进行修改或变更,恕不另行通知。
如果您在使用中遇到任何问题,或者有好的建议,请按照文档提供的联系方式联系我们。
对您在使用中遇到的问题,我们会尽力给予支持,对您提出的建议,我们衷心感谢并会尽快评估采纳。
独立主控MCTRL1600用户手册更新历史更新历史独立主控MCTRL1600用户手册目录目录更新历史 (ii)1 安全说明 ...........................................................................................................................11.1 存储和运输安全 (1)1.2 安装和使用安全 (1)2 概述 ..................................................................................................................................33 功能特性 ...........................................................................................................................43.1 特性列表 ......................................................................................................................................................43.2 视频格式 ......................................................................................................................................................44 应用场景 ...........................................................................................................................65 硬件结构 ...........................................................................................................................85.1 外观说明 ......................................................................................................................................................85.2 尺寸 ..................................................................................................................................................... (10)6 主界面介绍 (11)6.1 发送卡模式 .................................................................................................................................................116.2 光电转换模式 (127)菜单操作 .........................................................................................................................147.1 快速点亮显示屏 .........................................................................................................................................147.1.1第一步输入模式设置 (14)7.1.2第二步输入分辨率设置 (15)7.1.3第三步快捷点屏 (18)7.2 亮度调节 ....................................................................................................................................................197.3 屏体配置 ....................................................................................................................................................197.3.1高级点屏 .................................................................................................................................................197.3.2画面偏移 .................................................................................................................................................207.4 画面控制 ....................................................................................................................................................207.5 高级设置 ....................................................................................................................................................217.5.1Mapping 功能 (21)7.5.2载入箱体文件 (21)7.5.3监控阈值设置 (21)独立主控MCTRL1600用户手册目录7.5.4固化至接收卡 (22)7.5.5冗余设置 (22)7.5.6工厂复位 (22)7.5.7 3D 设置 (22)7.5.8硬件版本 (25)7.6 通讯设置 (25)7.7 工作模式 (25)8PC端操作 (27)8.1 上位机软件操作 (27)8.2 在NovaLCT 上进行显示屏配置 (27)8.3 固件升级 (28)9规格参数 (29)1安全说明本章描述独立主控MCTRL1600的安全说明,目的是保证产品的存储、运输、安装和使用安全。
MRD-AZY221242料位计
TEL: (029)89579706
西安奥克自动化仪表有限公司 FAXБайду номын сангаас (029)89579700 Email:akzdhyb@
关于本手册
关于本手册
主 旨
本手册旨在为用户提供更详尽的产品功能特性、 技术特点以及维护等信息, 让用户更加 了解 MRD 系列产品,从而选用或者更好的使用 MRD 系列产品。 当您拿到本手册时,也就意味着西安奥克自动化仪表有限公司市场部同仁开启了 MRD 系列产品的服务之旅。
西安奥克自动化仪表有限公司 TEL: (029)89579706 FAX: (029)89579700
Email:akzdhyb@
目录
目
录
1 概 述...................................................................................................................................... - 1 1.1 产品特点............................................................................................................................... - 1 1.1.1 原 理................................................................................................................................ - 1 1.1.2 装 置.....................................
UML面向对象的分析与设计
定义用例
定义领域模型
定义交互图
定义设计类图
24
OOAD
OOA/D的简单示例-骰子游戏
• 软件模拟游戏者掷两个骰子,如果总点数是7 则赢得游戏,否则为输
25
OOAD
定义用例(需求阶段)
定义用例
定义领域模型
定义交互图
定义设计类图
• 需求分析可能包括人们使用应用的情节或场景, 这些情节或场景可以被编写成用例。
由用例描述可初步得出领域模型
Player
1
name
1
Plays 1
DiceGame
1
Rolls
2
Die
faceValue
2
Includes
图1-3 骰子游戏的局部领域模型
28
OOAD 分配对象职责并绘制交互图(OOD)
定义用例
定义领域模型
定义交互图
定义设计类图
• OOD关注的是软件对象的定义——它们的职责 和协作
• 顺序图(sequence diagram,UML的一种交互 图)是描述协作的常见表示法。
• 顺序图展示出软件对象之间的消息流,和由消 息引起的方法调用。
29
OOAD 骰子游戏:游戏者请求掷(两个)骰子。系统展示结果:如 果骰子总点数是7,则游戏者赢,否则游戏者输。
顺序图动态的展示了系统如何实现用例, 展示了对象的职责和协作
• 培养OO开发的重要能力:识别领域对象,设 计软件对象(为软件对象分配职责)
7
OOAD
资源: 教材及参考书
8
OOAD
教材结构安排
•教材编排特色: •不像传统教材按主题编排 •而是遵循UP(统一过程)中”Iterative”(迭代)思 想。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阅读包图
•
包的可见性:可以用“+”来表示“public”,用“#”来表 示“protected”,
用“-”来表示“private”
北京林业大学信息学院
包的依赖关系
• •
《use》关系:是一种默认的依赖关系 ,提供者包(箭头指 向的包)的公共元素,也就是说客户包依赖于提供者包
Agenda
• • • • •
什么是包 如何阅读包图
如何绘制包图
包图应用说明 本章小结
北京林业大学信息学院
包图绘制原则
• •
最小化包之间的依赖,最小化每个包中的public、
protected元素的个数,最大化每个包中private元素个数
在建模时应该避免包之间的循环依赖,也就是不能够包 含相互依赖的情况,对于这种情况应进行分析:
解释了包的几种常见的表示法之后,通过了一个简单的 例子来说明包的可见性、依赖关系、泛化等概念
要地说明了五种包的构造型 说明如何寻找包、确定包之间的依赖关系,从而绘制了 出一个表明软件基本结构的包图 简要介绍了表示系统体系结构的建模方法
北京林业大学信息学院
《facade》构造型:只是某个其它包的视图,它主要用 来为其它一些复杂的包提供简略视图 《stub》构造型:是一个代理包,它服务于某个其他包 的公共内容,这通常应用于分布式系统的建模中 《framework》构造型:用来表示一个框架的,框架是 一个领域内的应用系统提供可扩充模板的体系结构模式
•
北京林业大学信息学院
《import》关系:最普遍的包依赖类型,说明提供者包
•
•
的命名空间将被添加到客户包的命名空间中,客户包中 的元素也能够访问提供者包的所有公共元素
《access》关系:只想使用提供者包中的元素,而不想 将其命名空间合并则应使用该关系 《trace》关系:想表示一个包到另一个包的历史发展, 则需要使用《trace》关系来表示
•
在面向对象软件开发的视角中,类显然是构建整个系统
•
的基本构造块。但是对于庞大的应用系统而言,其包含 的类将是成百上千,再加上其间“阡陌交纵”的关联关 系、多重性等,必然是大大超出了人们可以处理的复杂 度。这也就是引入了“包”这种分组事物构造块。
包的作用是: 1)对语义上相关的元素进行分组; 2)定义模型中的“语义边界”; 3)提供配置管理单元; 4)在设计时,提供并行工作的单元; 5)提供封装的命名空间,其中所有名称必须惟一
常用的体系结构 模式包括分层、 MVC、管道、黑 板、微内核等, 而在应用软件 中,分层和MVC
北京林业大学信息学院
Agenda
• • • • •
什么是包 如何阅读包图
如何绘制包图
包图应用说明 本章小结
北京林业大学信息学院
本章小结
•
• • • •
首先指出了类图在大型系统的建模中的不足:缺少有效 的组织,然后引入了“包”的概念
包图
《UML面向对象建模基础》
北京林业大学信息学院
知识图谱
北京林业大学信息学院
Agenda
• • • • •
什么是包 如何阅读包图
如何绘制包图
包图应用说明 本章小结
北京林业大学信息学院
Agenda
• • • • •
什么是包 如何阅读包图
如何绘制包图
包图应用说明 本章小结
北京林业大学信息学院
什么是包
• •
一般使用默认的《use》构造型,在映射到编程时考虑 明确《import》构造型;
考虑采用泛化来对特殊包进行建模。 在表示这种模型时,注意只标明对每个包都起核心作用 的元素;另外也可以标识每个包的文档标记值,以使其
更加清晰
北京林业大学信息学院
对体系结构建模
•
•
对体系结构进行建模,是包图更有意义的一个用途。体 系结构是一个软件系统的核心逻辑结构
北京林业大学信息学院
包图阅读的结果
•
• •
首先根据《use》关系,可以发现Client包使用Server包,Server包 使用System.Data.SqlClient包,结合其元素,不难得知Client负责 Order(订单)的输入,并通过Server来管理用户的登录 (LoggingService)和数据库存储(DataBase),而Server包还将 通过.NET的SQL Server访问工具包来实现与数据库的实际交互。 接着再看两个《import》,从包的命名和其所属的元素不难发现 Rule负责处理一些规则,并引用一个具体的窗体(Window),而 Client包则通过引用Rule来实现整个窗体和表单的显示、输入等。 并且还将暂存Order(订单)信息。
GraphicGenerate
北京林业大学信息学院
确定包与包之间的依赖关系
北京林业大学信息学院
Agenda
• • • • •
什么是包 如何阅读包图
如何绘制包图
包图应用说明 本章小结
北京林业大学信息学院
对成组元素建模
• • •
每个包都应该是在概念、语义上相互接近的元素组成; 对每个包找出应标记为公共的元素,但应尽可能地少;
根据功能模块组织包:
包 SocketClient DataAccess UI 分析与功能 负责连接Internet服务器,获取实时股票信息 负责从数据库读写实时股票信息 负责响应用户输入和选择,并展现信息 负责根据数据库的信息生成相应的图表 .NET支持包 .Sockets System.Data.Sqlclient System.Windows.Forms System.Drawing
最后来看包的泛化关系,GUI有两个具体实现,一个是针对C/S的 WindowsGUI,一个是实现B/S的WebGUI。
北京林业大学信息学院
包的构造型
• • •
《system》和《subsystem》构造型:《system》构造型 的包表示正在建模的整个系统,而《subsystem》构造
型的包则表示正在建模的系统中某个独立的部分
A
应避免出现的模型
B
A B A
合并法
C B
分离法
北京林业大学信息学院
•
•
寻找包 分析系统工作流程: 1)通过Internet连接到股票信息服务器,获取实时的股票信息, 并存入数据库中。 2)根据用户的输入和选择,从数据库中获取相应的信息,展现 在屏幕中。 3)在数据的展现过程中,将需要绘制大量的图表
北京林业大学信息学院
包的表示法
• •
名称:每个包都必须有一个与其它包相区别的名称 拥有的元素:在包中可以拥有各种其它元素,包括类、
接口、构件、节点、协作、用例,甚至是其它包或图
北京林业大学信息学院
Agenda
• • • • •
什么是包 如何阅读包图
如何绘制包图
包图应用说明 本章小结
北京林业大学信息学院