初三数学圆的经典例题解析,中考圆压轴题解题技巧
2024中考压轴题05 圆的综合(5题型+解题模板+技巧精讲)(原卷版)
![2024中考压轴题05 圆的综合(5题型+解题模板+技巧精讲)(原卷版)](https://img.taocdn.com/s3/m/80ac925d7dd184254b35eefdc8d376eeafaa175e.png)
压轴题05圆的综合目录题型一切线的判定题型二圆中求线段长度题型三圆中的最值问题题型四圆中的阴影部分面积题型五圆中的比值(相似)问题下图为二次函数图象性质与几何问题中各题型的题型一切线的判定解题模板:技巧:有切点,连半径,证垂直(根据题意,可以证角为90°,如已有90°角,可以尝试证平行) 没切点,作垂直,证半径(通常为证全等,也可以通过计算得到与半径相等)【例1】1.(2023-四川攀枝花-中考真题)如图,AB 为O 的直径,如果圆上的点D 恰使ADC B ∠=∠,求证:直线CD 与O 相切.【变式1-1】(2023-辽宁-中考真题)如图,ABC 内接于O ,AB 是O 的直径,CE 平分ACB ∠交O 于点E ,过点E 作EF AB ∥,交CA 的延长线于点F .求证:EF 与O 相切;【变式1-2】(2023-辽宁-中考真题)如图,AB 是O 的直径,点C E ,在O 上,2CAB EAB ∠=∠,点F 在线段AB 的延长线上,且AFE ABC ∠=∠.(1)求证:EF与O相切;(2)若41sin5BF AFE=∠=,,求BC的长.【变式1-3】(2023-湖北鄂州-中考真题)如图,AB为O的直径,E为O上一点,点C为EB的中点,过点C作CD AE⊥,交AE的延长线于点D,延长DC交AB的延长线于点F.(1)求证:CD是O的切线;题型二圆中求线段长度解题模板:【例2】(2023-西藏-中考真题)如图,已知AB为O的直径,点C为圆上一点,AD垂直于过点C的直线,交O于点E,垂足为点D,AC平分BAD∠.(1)求证:CD 是O 的切线; (2)若8AC =,6BC =,求DE 的长.【变式2-1】(2023-内蒙古-中考真题)如图,AB 是⊙O 的直径,E 为⊙O 上的一点,点C 是AE 的中点,连接BC ,过点C 的直线垂直于BE 的延长线于点D ,交BA 的延长线于点P .(1)求证:PC 为⊙O 的切线;(2)若PC =,10PB =,求BE 的长.【变式2-2】(2023-辽宁大连-中考真题)如图1,在O 中,AB 为O 的直径,点C 为O 上一点,AD 为CAB ∠的平分线交O 于点D ,连接OD 交BC 于点E .(1)求BED ∠的度数;(2)如图2,过点A 作O 的切线交BC 延长线于点F ,过点D 作DG AF ∥交AB 于点G .若AD =4DE =,求DG 的长.【变式2-3】(2023-湖北恩施-中考真题)如图,ABC 是等腰直角三角形,90ACB ∠=︒,点O 为AB 的中点,连接CO 交O 于点E ,O 与AC 相切于点D .(1)求证:BC是O的切线;(2)延长CO交O于点G,连接AG交O于点F,若AC FG的长.题型三圆中的最值问题解题模板:技巧精讲:1、辅助圆模型【例3】(2023-湖南长沙-三模)如图1:在O 中,AB 为直径,C 是O 上一点,3,4AC BC ==.过O 分别作OH BC ⊥于点H ,OD AC ⊥于点D ,点E 、F 分别在线段BC AC 、上运动(不含端点),且保持90EOF ∠=︒.(1)OC =______;四边形CDOH 是______(填矩形/菱形/正方形); CDOH S =四边形______; (2)当F 和D 不重合时,求证:OFD OEH ∽;(3)⊙在图1中,P 是CEO 的外接圆,设P 面积为S ,求S 的最小值,并说明理由;⊙如图2:若Q 是线段AB 上一动点,且1QAQB n =∶∶,90EQF ∠=︒,M 是四边形CEQF 的外接圆,则当n 为何值时,M 的面积最小?最小值为多少?请直接写出答案.【变式3-1】(2023-安徽-模拟预测)如图,半圆的直径4AB =,弦CD AB ∥,连接,,,AC BD AD BC .(1)求证:ADC BCD △≌△;(2)当ACD 的面积最大时,求CAD ∠的度数.【变式3-2】(2023-四川-中考真题)如图1,已知线段AB ,AC ,线段AC 绕点A 在直线AB 上方旋转,连接BC ,以BC 为边在BC 上方作Rt BDC ,且30DBC ∠=︒.(1)若=90BDC ∠︒,以AB 为边在AB 上方作Rt BAE △,且90AEB ∠=︒,30EBA ∠=︒,连接DE ,用等式表示线段AC 与DE 的数量关系是 ;(2)如图2,在(1)的条件下,若DE AB ⊥,4AB =,2AC =,求BC 的长;(3)如图3,若90BCD ∠=︒,4AB =,2AC =,当AD 的值最大时,求此时tan CBA ∠的值.【变式3-3】(2023-陕西西安-模拟预测)【问题情境】如图1,在ABC 中,120A ∠=︒,AB AC =,BC =ABC 的外接圆的半径值为______; 【问题解决】如图2,点P 为正方形ABCD 内一点,且90BPC ∠=︒,若4AB =,求AP 的最小值; 【问题解决】如图3,正方形ABCD 是一个边长为的书展区域设计图,CE 为大门,点E 在边BC 上,CE =,点P 是正方形ABCD 内设立的一个活动治安点,到B 、E 的张角为120︒,即120BPE ∠=︒,点A 、D 为另两个固定治安点,现需在展览区域内部设置一个补水供给点Q ,使得Q 到A 、D 、P 三个治安点的距离和最小,试求QA QD QP ++的最小值.(结果精确到0.1m 1.7≈,214.3205≈)题型四 圆中的阴影部分面积【例4】(2024-西藏拉萨-一模)如图,等腰ABC 的顶点A ,C 在O 上, BC 边经过圆心0且与O 交于D 点,30B ∠=︒.(1)求证:AB 是O 的切线; (2)若6AB =,求阴影部分的面积【变式4-1】(2023-陕西西安-一模)如图,正六边形ABCDEF 内接于O .(1)若P 是CD 上的动点,连接BP ,FP ,求BPF ∠的度数;(2)已知ADF △的面积为O 的面积.【变式4-2】(2023-浙江衢州-中考真题)如图,在Rt ABC △中,90,ACB O ∠=︒为AC 边上一点,连结OB .以OC 为半径的半圆与AB 边相切于点D ,交AC 边于点E .(1)求证:BC BD =.(2)若,2OB OA AE ==.⊙求半圆O 的半径.⊙求图中阴影部分的面积.【变式4-3】(2023-辽宁阜新-中考真题)如图,AB 是O 的直径,点C ,D 是O 上AB 异侧的两点,DE CB ⊥,交CB 的延长线于点E ,且BD 平分ABE ∠.(1)求证:DE 是O 的切线.(2)若60ABC ∠=︒,4AB =,求图中阴影部分的面积.【变式4-4】(2023-山东枣庄-中考真题)如图,AB 为O 的直径,点C 是AD 的中点,过点C 做射线BD 的垂线,垂足为E .(1)求证:CE 是O 切线;(2)若34BE AB ==,,求BC 的长;(3)在(2)的条件下,求阴影部分的面积(用含有π的式子表示).题型五 圆中的比值(相似)问题 技巧精讲:【例5】(2024-陕西西安-模拟预测)如图,AB 为O 的直径, 点 D 为O 上一点, 过点 B 作O 切线交AD 延长线于点 C ,CE 平分ACB ∠,CE BD ,交于F .(1)求证:BE BF =;(2)若O 半径为2,3sin 5A =,求DF 的长度. 【变式5-1】(2023-湖南湘西-二模)如图,AB 是O 的直径,点C ,D 在O 上,AD 平分CAB ∠,交BC 于点E ,连接BD .(1)求证:BED ABD △△.(2)当3tan 4ABC ∠=,且10AB =时,求线段BD 的长.(3)点G 为线段AE 上一点,且BG 平分ABC ∠,若GE =,3BG =,求CE 的长.【变式5-2】(2024-陕西西安-一模)如图,AB 是O 的直径CD 与O 相切于点C ,与BA 的延长线交于点D ,连接BC ,点E 在线段OB 上,过点E 作BD 的垂线交DC 的延长线于点F ,交BC 于点G .(1)求证:FC FG =;(2)若220AO AD ==,点E 为OB 的中点,求GE 的长.【变式5-3】(2024-陕西西安-一模)如图,AB 是O 的直径,点D 在直径AB 上(D 与,A B 不重合),CD AB ⊥且CD AB =,连接CB ,与O 交于点F ,在CD 上取一点E ,使EF 与O 相切.(1)求证:EF EC =;(2)若D 是OA 的中点,4AB =,求BF 的长.一、解答题1.(2024-云南-模拟预测)如图,四边形ABCD 内接于O ,对角线AC 是O 的直径,过点C 作AC 的垂线交AD 的延长线于点E ,F 为CE 的中点,连接BD ,DF ,BD 与AC 交于点P .(1)求证:DF 是O 的切线;(2)若45DPC ∠=︒,228PD PB +=,求AC 的长.2.(2024-湖北黄冈-模拟预测)如图,PO 平分APD ∠,PA 与⊙O 相切于点A ,延长AO 交PD 于点C ,过点O 作OB PD ⊥,垂足为B .(1)求证:PB 是⊙O 的切线;(2)若⊙O 的半径为4,5OC =,求PA 的长.3.(2024-江苏淮安-模拟预测)如图,已知直线l 与O 相离,OA l ⊥于点A ,交O 于点 P ,点 B 是O 上一点,连接BP 并延长,交直线l 于点 C ,使得AB AC =.(1)判断直线AB 与O 的位置关系并说明理由;(2)4PC OA ==,求线段 PB 的长.4.(2024-四川凉山-模拟预测)如图,CD 是O 的直径,点P 是CD 延长线上一点,且AP 与O 相切于点A ,弦AB CD ⊥于点F ,过D 点作DE AP ⊥于点E .(1)求证:∠∠EAD FAD =;(2)若4PA =,2PD =,求O 的半径和DE 的长.5.(2024-四川凉山-模拟预测)如图,在Rt ABC △中,90ACB ∠=︒,以AC 为直径的O 交AB 于点D ,E 为BC 的中点,连接DE 并延长交AC 的延长线于点F .(1)求证:DE 是O 的切线;(2)若30A ∠=︒,3DF =,求CE 长.6.(2024-山东泰安-一模)如图,AB CD ,是O 的两条直径,过点C 的O 的切线交AB 的延长线于点E ,连接AC BD ,.(1)求证:ABD CAB ∠=∠;(2)若B 是OE 的中点,12AC =,求O 的半径.7.(2024-福建南平-一模)如图1,点D 是ABC 的边AB 上一点.AD AC =,CAB α∠=,O 是BCD △的外接圆,点E 在DBC 上(不与点C ,点D 重合),且90CED α∠=︒-.(1)求证:ABC 是直角三角形;(2)如图2,若CE 是⊙O 的直径,且2CE =,折线ADF 是由折线ACE 绕点A 顺时针旋转α得到. ⊙当30α=︒时,求CDE 的面积;⊙求证:点C ,D ,F 三点共线.8.(2023-四川甘孜-中考真题)如图,在Rt ABC △中,=90ABC ∠︒,以BC 为直径的O 交AC 边于点D ,过点C 作O 的切线,交BD 的延长线于点E .(1)求证:=DCE DBC ∠∠;(2)若=2AB ,=3CE ,求O 的半径.9.(2023-湖北黄石-中考真题)如图,AB 为O 的直径,DA 和O 相交于点F ,AC 平分DAB ∠,点C 在O 上,且CD DA ⊥,AC 交BF 于点P .(1)求证:CD 是O 的切线;(2)求证:2AC PC BC ⋅=;(3)已知23BC FP DC =⋅,求AF AB的值.10.(2023-辽宁鞍山-中考真题)如图,四边形ABCD 内接于O ,AB 为O 的直径,过点D 作DF BC ⊥,交BC 的延长线于点F ,交BA 的延长线于点E ,连接BD .若180EAD BDF ∠+∠=︒.(1)求证:EF 为O 的切线.(2)若10BE =,2sin 3BDC ∠=,求O 的半径.11.(2023-湖南湘西-中考真题)如图,点D ,E 在以AC 为直径的O 上,ADC ∠的平分线交O 于点B ,连接BA ,EC ,EA ,过点E 作EH AC ⊥,垂足为H ,交AD 于点F .(1)求证:2AE AF AD =⋅;(2)若sin 5ABD AB ∠==,求AD 的长. 12.(2023-辽宁沈阳-中考真题)如图,AB 是O 的直径,点C 是O 上的一点(点C 不与点A ,B 重合),连接AC 、BC ,点D 是AB 上的一点,AC AD =,BE 交CD 的延长线于点E ,且BE BC =.(1)求证:BE 是O 的切线;(2)若O 的半径为5,1tan 2E =,则BE 的长为______ .13.(2023-黑龙江大庆-中考真题)如图,AB 是O 的直径,点C 是圆上的一点,CD AD ⊥于点D ,AD 交O 于点F ,连接AC ,若AC 平分DAB ∠,过点F 作FG AB ⊥于点G ,交AC 于点H ,延长AB ,DC 交于点E .(1)求证:CD 是O 的切线;(2)求证:AF AC AE AH ⋅=⋅;(3)若4sin 5DEA ∠=,求AH FH的值.14.(2023-四川雅安-中考真题)如图,在Rt ABC △中,90ABC ∠=︒,以AB 为直径的O 与AC 交于点D ,点E 是BC 的中点,连接BD ,DE .(1)求证:DE 是O 的切线;(2)若2DE =,1tan 2BAC ∠=,求AD 的长;(3)在(2)的条件下,点P 是O 上一动点,求PA PB +的最大值.15.(2023-辽宁营口-中考真题)如图,在ABC 中,AB BC =,以BC 为直径作O 与AC 交于点D ,过点D 作DE AB ⊥,交CB 延长线于点F ,垂足为点E .(1)求证:DF 为O 的切线;(2)若3BE =,4cos 5C =,求BF 的长.。
2024中考备考数学重难点05 圆的综合压轴题(6大题型+满分技巧+限时分层检测
![2024中考备考数学重难点05 圆的综合压轴题(6大题型+满分技巧+限时分层检测](https://img.taocdn.com/s3/m/2f366b61b5daa58da0116c175f0e7cd184251832.png)
重难点05 圆的综合压轴题中考数学中《圆的综合压轴题》部分主要考向分为六类:一、圆中弧长和面积的综合题二、圆与全等三角形的综合题三、圆的综合证明问题四、圆与等腰三角形的综合题五、圆的阅读理解与新定义问题六、圆与特殊四边形的综合题圆的综合问题是中考数学中的压轴题中的一类,也是难度较大的一类,所以,对应的训练很有必要。
考向一:圆中弧长与面积的综合题1.(2023•河北)装有水的水槽放置在水平台面上,其横截面是以AB为直径的半圆O,AB=50cm,如图1和图2所示,MN为水面截线,GH为台面截线,MN∥GH.计算:在图1中,已知MN=48cm,作OC⊥MN于点C.(1)求OC的长.操作:将图1中的水槽沿GH向右作无滑动的滚动,使水流出一部分,当∠ANM=30°时停止滚动.如图2.其中,半圆的中点为Q,GH与半圆的切点为E,连接OE交MN于点D.探究:在图2中.(2)操作后水面高度下降了多少?(3)连接OQ并延长交GH于点F,求线段EF与的长度,并比较大小.2.(2023•乐山)在学习完《图形的旋转》后,刘老师带领学生开展了一次数学探究活动.【问题情境】刘老师先引导学生回顾了华东师大版教材七年级下册第121页“探索”部分内容:如图1,将一个三角形纸板△ABC绕点A逆时针旋转θ到达的位置△AB′C′的位置,那么可以得到:AB=AB′,AC=AC′,BC=B′C′;∠BAC=∠B′AC′,∠ABC=∠AB′C′,∠ACB=∠AC′B′.(_____)刘老师进一步谈到:图形的旋转蕴含于自然界的运动变化规律中,即“变”中蕴含着“不变”,这是我们解决图形旋转的关键.故数学就是一门哲学.【问题解决】(1)上述问题情境中“(_____)”处应填理由:;(2)如图2,小王将一个半径为4cm,圆心角为60°的扇形纸板ABC绕点O逆时针旋转90°到达扇形纸板A′B′C′的位置.①请在图中作出点O;②如果BB′=6cm,则在旋转过程中,点B经过的路径长为;【问题拓展】小李突发奇想,将与(2)中完全相同的两个扇形纸板重叠,一个固定在墙上,使得一边位于水平位置.另一个在弧的中点处固定,然后放开纸板,使其摆动到竖直位置时静止.此时,两个纸板重叠部分的面积是多少呢?如图3所示,请你帮助小李解决这个问题.考向二:圆与全等三角形综合题1.(2023•济宁)如图,已知AB是⊙O的直径,CD=CB,BE切⊙O于点B,过点C作CF⊥OE交BE于点F,EF=2BF.(1)如图1,连接BD,求证:△ADB≌△OBE;(2)如图2,N是AD上一点,在AB上取一点M,使∠MCN=60°,连接MN.请问:三条线段MN,BM,DN有怎样的数量关系?并证明你的结论.2.(2023•哈尔滨)已知△ABC内接于⊙O,AB为⊙O的直径,N为的中点,连接ON交AC于点H.(1)如图①,求证:BC=2OH;(2)如图②,点D在⊙O上,连接DB,DO,DC,DC交OH于点E,若DB=DC,求证OD∥AC;(3)如图③,在(2)的条件下,点F在BD上,过点F作FG⊥DO,交DO于点G,DG=CH,过点F 作FR⊥DE,垂足为R,连接EF,EA,EF:DF=3:2,点T在BC的延长线上,连接AT,过点T作TM ⊥DC,交DC的延长线于点M,若FR=CM,AT=4,求AB的长.3.(2023•长春)【感知】如图①,点A、B、P均在⊙O上,∠AOB=90°,则锐角∠APB的大小为45度.【探究】小明遇到这样一个问题:如图②,⊙O是等边三角形ABC的外接圆,点P在弧AC上(点P不与点A、C重合),连接PA、PB、PC.求证:PB=PA+PC.小明发现,延长PA至点E,使AE=PC,连接BE,通过证明△PBC≌△EBA.可推得△PBE是等边三角形,进而得证.下面是小明的部分证明过程:证明:延长PA至点E,使AE=PC,连接BE.∵四边形ABCP是⊙O的内接四边形,∴∠BAP+∠BCP=180°,∵∠BAP+∠BAE=180°,∴∠BCP=∠BAE,∵△ABC是等边三角形,∴BA=BC,∴△PBC≌△EBA(SAS).请你补全余下的证明过程.【应用】如图③,⊙O是△ABC的外接圆,∠ABC=90°,AB=BC,点P在⊙O上,且点P与点B在AC的两侧,连接PA、PB、PC,若,则的值为.考向三:圆的综合证明问题1.(2023•黄石)如图,AB为⊙O的直径,DA和⊙O相交于点F,AC平分∠DAB,点C在⊙O上,且CD ⊥DA,AC交BF于点P.(1)求证:CD是⊙O的切线;(2)求证:AC•PC=BC2;(3)已知BC2=3FP•DC,求的值.2.如图,在⊙O中,直径AB垂直弦CD于点E,连接AC,AD,BC,作CF⊥AD于点F,交线段OB于点G(不与点O,B重合),连接OF.(1)若BE=1,求GE的长.(2)求证:BC2=BG•BO.(3)若FO=FG,猜想∠CAD的度数,并证明你的结论.3.(2023•永州)如图,以AB为直径的⊙O是△ABC的外接圆,延长BC到点D.使得∠BAC=∠BDA,点E在DA的延长线上,点M在线段AC上,CE交BM于N,CE交AB于G.(1)求证:ED是⊙O的切线;(2)若,BD=5,AC>CD,求BC的长;(3)若DE•AM=AC•AD,求证:BM⊥CE.4.(2023•广东)综合探究如图1,在矩形ABCD中(AB>AD),对角线AC,BD相交于点O,点A关于BD的对称点为A′.连接AA′交BD于点E,连接CA′.(1)求证:AA'⊥CA';(2)以点O为圆心,OE为半径作圆.①如图2,⊙O与CD相切,求证:;②如图3,⊙O与CA′相切,AD=1,求⊙O的面积.考向四:圆与等腰三角形的综合1.(2023•宁波)如图,在Rt△ABC中,∠C=90°,E为AB边上一点,以AE为直径的半圆O与BC相切于点D,连结AD,BE=3,BD=3.P是AB边上的动点,当△ADP为等腰三角形时,AP的长为.2.(2023•上海)如图(1)所示,已知在△ABC中,AB=AC,O在边AB上,点F是边OB中点,以O 为圆心,BO为半径的圆分别交CB,AC于点D,E,连接EF交OD于点G.(1)如果OG=DG,求证:四边形CEGD为平行四边形;(2)如图(2)所示,连接OE,如果∠BAC=90°,∠OFE=∠DOE,AO=4,求边OB的长;(3)连接BG,如果△OBG是以OB为腰的等腰三角形,且AO=OF,求的值.3.(2023•泰州)已知:A、B为圆上两定点,点C在该圆上,∠C为所对的圆周角.知识回顾(1)如图①,⊙O中,B、C位于直线AO异侧,∠AOB+∠C=135°.①求∠C的度数;②若⊙O的半径为5,AC=8,求BC的长;逆向思考(2)如图②,若P为圆内一点,且∠APB<120°,PA=PB,∠APB=2∠C.求证:P为该圆的圆心;拓展应用(3)如图③,在(2)的条件下,若∠APB=90°,点C在⊙P位于直线AP上方部分的圆弧上运动.点D在⊙P上,满足CD=CB﹣CA的所有点D中,必有一个点的位置始终不变.请证明.考向五:圆的阅读理解与新定义问题1.(2023•青海)综合与实践车轮设计成圆形的数学道理小青发现路上行驶的各种车辆,车轮都是圆形的.为什么车轮要做成圆形的呢?这里面有什么数学道理吗?带着这样的疑问,小青做了如下的探究活动:将车轮设计成不同的正多边形,在水平地面上模拟行驶.(1)探究一:将车轮设计成等边三角形,转动过程如图1,设其中心到顶点的距离是2,以车轮转动一次(以一个顶点为支点旋转)为例,中心的轨迹是,BA=CA=DA=2,圆心角∠BAD=120°.此时中心轨迹最高点是C(即的中点),转动一次前后中心的连线是BD(水平线),请在图2中计算C 到BD的距离d1.(2)探究二:将车轮设计成正方形,转动过程如图3,设其中心到顶点的距离是2,以车轮转动一次(以一个顶点为支点旋转)为例,中心的轨迹是,BA=CA=DA=2,圆心角∠BAD=90°.此时中心轨迹最高点是C(即的中点),转动一次前后中心的连线是BD(水平线),请在图4中计算C到BD的距离d2(结果保留根号).(3)探究三:将车轮设计成正六边形,转动过程如图5,设其中心到顶点的距离是2,以车轮转动一次(以一个顶点为支点旋转)为例,中心的轨迹是,圆心角∠BAD=.此时中心轨迹最高点是C(即的中点),转动一次前后中心的连线是BD(水平线),在图6中计算C 到BD的距离d3=(结果保留根号).(4)归纳推理:比较d1,d2,d3大小:,按此规律推理,车轮设计成的正多边形边数越多,其中心轨迹最高点与转动一次前后中心连线(水平线)的距离(填“越大”或“越小”).(5)得出结论:将车轮设计成圆形,转动过程如图7,其中心(即圆心)的轨迹与水平地面平行,此时中心轨迹最高点与转动前后中心连线(水平线)的距离d=.这样车辆行驶平稳、没有颠簸感.所以,将车轮设计成圆形.2.(2023•陕西)(1)如图①,∠AOB=120°,点P在∠AOB的平分线上,OP=4.点E,F分别在边OA,OB上,且∠EPF=60°,连接EF.求线段EF的最小值;(2)如图②,是一个圆弧型拱桥的截面示意图.点P是拱桥的中点,桥下水面的宽度AB=24m,点P到水面AB的距离PH=8m.点P1,P2均在上,=,且P1P2=10m,在点P1,P2处各装有一个照明灯,图中△P1CD和△P2EF分别是这两个灯的光照范围.两灯可以分别绕点P1,P2左右转动,且光束始终照在水面AB上.即∠CP1D,∠EP2F可分别绕点P1,P2按顺(逆)时针方向旋转(照明灯的大小忽略不计),线段CD,EF在AB上,此时,线段ED是这两灯照在水面AB上的重叠部分的水面宽度.已知∠CP1D=∠EP2F=90°,在这两个灯的照射下,当整个水面AB都被灯光照到时,求这两个灯照在水面AB上的重叠部分的水面宽度.(可利用备用图解答)3.(2023•北京)在平面直角坐标系xOy中,⊙O的半径为1.对于⊙O的弦AB和⊙O外一点C给出如下定义:若直线CA,CB中一条经过点O,另一条是⊙O的切线,则称点C是弦AB的“关联点”.(1)如图,点A(﹣1,0),B1(,),B2(,).①在点C1(﹣1,1),C2(,0),C3(0,)中,弦AB1的“关联点”是;②若点C是弦AB2的“关联点”,直接写出OC的长;(2)已知点M(0,3),N(,0),对于线段MN上一点S,存在⊙O的弦PQ,使得点S是弦PQ的“关联点”.记PQ的长为t,当点S在线段MN上运动时,直接写出t的取值范围.4.在探究“四点共圆的条件”的数学活动课上,小霞小组通过探究得出:在平面内,一组对角互补的四边形的四个顶点共圆.请应用此结论,解决以下问题:如图1,△ABC中,AB=AC,∠BAC=α(60°<α<180°).点D是BC边上的一动点(点D不与B,C重合),将线段AD绕点A顺时针旋转α到线段AE,连接BE.(1)求证:A,E,B,D四点共圆;(2)如图2,当AD=CD时,⊙O是四边形AEBD的外接圆,求证:AC是⊙O的切线;(3)已知α=120°,BC=6,点M是边BC的中点,此时⊙P是四边形AEBD的外接圆,直接写出圆心P与点M距离的最小值.考向六:圆与特殊四边形综合1.(2023•威海)已知:射线OP平分∠MON,A为OP上一点,⊙A交射线OM于点B,C,交射线ON 于点D,E,连接AB,AC,AD.(1)如图1,若AD∥OM,试判断四边形OBAD的形状,并说明理由;(2)如图2,过点C作CF⊥OM,交OP于点F;过点D作DG⊥ON,交OP于点G.求证:AG=AF.2.(2023•益阳)如图,线段AB与⊙O相切于点B,AO交⊙O于点M,其延长线交⊙O于点C,连接BC,∠ABC=120°,D为⊙O上一点且的中点为M,连接AD,CD.(1)求∠ACB的度数;(2)四边形ABCD是否是菱形?如果是,请证明;如果不是,请说明理由;(3)若AC=6,求的长.(建议用时:80分钟)1.(2023•宜昌)如图1,已知AB是⊙O的直径,PB是⊙O的切线,PA交⊙O于点C,AB=4,PB=3.(1)填空:∠PBA的度数是,PA的长为;(2)求△ABC的面积;(3)如图2,CD⊥AB,垂足为D.E是上一点,AE=5EC.延长AE,与DC,BP的延长线分别交于点F,G,求的值.2.(2023•台州)我们可以通过中心投影的方法建立圆上的点与直线上点的对应关系,用直线上点的位置刻画圆上点的位置.如图,AB是⊙O的直径,直线l是⊙O的切线,B为切点.P,Q是圆上两点(不与点A重合,且在直径AB的同侧),分别作射线AP,AQ交直线l于点C,点D.(1)如图1,当AB=6,弧BP长为π时,求BC的长;(2)如图2,当,时,求的值;(3)如图3,当,BC=CD时,连接BP,PQ,直接写出的值.3.(2023•遂宁)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,AD=CD,过点D的直线l交BA的延长线于点M.交BC的延长线于点N且∠ADM=∠DAC.(1)求证:MN是⊙O的切线;(2)求证:AD2=AB•CN;(3)当AB=6,sin∠DCA=时,求AM的长.4.(2023•丽水)如图,在⊙O中,AB是一条不过圆心O的弦,点C,D是的三等分点,直径CE交AB于点F,连结AD交CF于点G,连结AC,过点C的切线交BA的延长线于点H.(1)求证:AD∥HC;(2)若=2,求tan∠FAG的值;(3)连结BC交AD于点N,若⊙O的半径为5.下面三个问题,依次按照易、中、难排列.请根据自己的认知水平,选择其中一道问题进行解答.①若OF=,求BC的长;②若AH=,求△ANB的周长;③若HF•AB=88,求△BHC的面积.5.(2023•长沙)如图,点A,B,C在⊙O上运动,满足AB2=BC2+AC2,延长AC至点D,使得∠DBC =∠CAB,点E是弦AC上一动点(不与点A,C重合),过点E作弦AB的垂线,交AB于点F,交BC 的延长线于点N,交⊙O于点M(点M在劣弧上).(1)BD是⊙O的切线吗?请作出你的判断并给出证明;(2)记△BDC,△ABC,△ADB的面积分别为S1,S2,S,若S1•S=(S2)2,求(tan D)2的值;(3)若⊙O的半径为1,设FM=x,FE•FN•=y,试求y关于x的函数解析式,并写出自变量x的取值范围.6.(2023•宁波)如图1,锐角△ABC内接于⊙O,D为BC的中点,连结AD并延长交⊙O于点E,连结BE,CE,过C作AC的垂线交AE于点F,点G在AD上,连结BG,CG,若BC平分∠EBG且∠BCG =∠AFC.(1)求∠BGC的度数.(2)①求证:AF=BC.②若AG=DF,求tan∠GBC的值.(3)如图2,当点O恰好在BG上且OG=1时,求AC的长.(建议用时:80分钟)1.(2023•东营区校级一模)如图,PA、PB是⊙O的切线,切点分别为A、B,BC是⊙O的直径,PO交⊙O于E点,连接AB交PO于F,连接CE交AB于D点.下列结论:①PA=PB;②OP⊥AB;③CE 平分∠ACB;④;⑤E是△PAB的内心;⑥△CDA≌△EDF.其中一定成立的有()个.A.5B.4C.3D.22.(2023•鹿城区校级三模)如图1,在△ABC中,∠ACB=90°,BC=2AC=2,过BC上一点D作DE ⊥BC,交AB于点E,以点D为圆心,DE的长为半径作半圆,交AC,AB于点F,G,交直线BC于点H,I(点I在H左侧).当点D与点C重合时(如图2),GH=;当EF=GH时,CD=.3.(2023•湖北模拟)如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为D,直线DC与AB的延长线交于点P,弦CE平分∠ACB,交AB于点F,连接BE,BE=7,下列四个结论:①AC平分∠DAB;②PF2=PB•PA;③若BC=OP,则阴影部分的面积为;④若PC=24,则tan∠PCB=;其中,所有正确结论的序号是.4.(2024•鄞州区校级一模)如图1,AB,CD是⊙O的两条互相垂直的弦,垂足为E,连结BC,BD,OC.(1)求证:∠BCO=∠ABD.(2)如图2,过点A作AF⊥BD,交CD于G,求证:CE=EG.(3)如图3,在(2)的条件上,连结BG,若BG恰好经过圆心O,若⊙O的半径为5,,求AB的长.5.(2024•常州模拟)对于⊙C和⊙C上的一点A,若平面内的点P满足:射线AP与⊙C交于点Q(点Q 可以与点P重合,且,则点P称为点A关于⊙C的“阳光点”.已知点O为坐标原点,⊙O 的半径为1,点A(﹣1,0).(1)若点P是点A关于⊙O的“阳光点”,且点P在x轴上,请写出一个符合条件的点P的坐标;(2)若点B是点A关于⊙O的“阳光点”,且,求点B的横坐标t的取值范围;(3)直线与x轴交于点M,且与y轴交于点N,若线段MN上存在点A关于⊙O的“阳光点”,请直接写出b的取值范围是或.6.(2024•广东一模)如图1,在⊙O中,AB为⊙O的直径,点C为⊙O上一点,点D在劣弧BC上,CE ⊥CD交AD于E,连接BD.(1)求证:△ACE~△BCD;(2)若cos∠ABC=m,求;(用含m的代数式表示)(3)如图2,DE的中点为G,连接GO,若BD=a,cos∠ABC=,求OG的长.7.(2024•镇海区校级模拟)在矩形ABCD中,M、N分别在边BC、CD上,且AM⊥MN,以MN为直径作⊙O,连结AN交⊙O于点H,连结CH交MN于点P,AB=8,AD=12.(1)求证:∠MAD=∠MHC;(2)若AM平分∠BAN,求MP的长;(3)若△CMH为等腰三角形,直接写出BM的长.8.(2024•浙江一模)如图,在⊙O中,AB是一条不过圆心O的弦,C,D是的三等分点,直径CE交AB于点F,连结BD交CF于点G,连结AC,DC,过点C的切线交AB的延长线于点H.(1)求证:FG=CG.(2)求证:四边形BDCH是平行四边形.(3)若⊙O的半径为5,OF=3,求△ACH的周长.9.(2024•五华区校级模拟)如图,AB,CD是⊙O的两条直径,且AB⊥CD,点E是上一动点(不与点B,D重合),连接DE并延长交AB的延长线于点F,点P在AF上,且∠PEF=∠DCE,连接AE,CE分别交OD,OB于点M,N,连接AC,设⊙O的半径为r.(1)求证:PE是⊙O的切线;(2)当∠DCE=15°时,求证:AM=2ME;(3)在点E的移动过程中,判断AN•CM是否为定值,若是,求出该定值;若不是,请说明理由.10.(2024•福建模拟)已知:如图,⊙O内两条弦AB、CD,且AB⊥CD于E,OA为⊙O半径,连接AC、BD.(1)求证:∠OAC=∠BCD;(2)作EN⊥BD于N,延长NE交AC于点H.求证:AH=CH;(3)在(2)的条件下,作∠EHF=60°交AB于点F,点P在FE上,连接PC交HN于点L,当EL=HF=,CL=8,BE=2PF时,求⊙O的半径.11.(2024•鹿城区校级一模)如图1,锐角△ABC内接于⊙O,点E是AB的中点,连结EO并延长交BC 于D,点F在AC上,连结AD,DF,∠BAD=∠CDF.(1)求证:DF∥AB.(2)当AB=9,AF=FD=4时,①求tan∠CDF的值;②求BC的长.(3)如图2,延长AD交⊙O于点G,若,求的值.12.(2024•正阳县一模)【材料】自从《义务教育数学课程标准(2022年版)》实施以来,九年级的晏老师通过查阅新课标获悉:切线长定理由“选学”改为“必学”,并新增“会过圆外的一个点作圆的切线”,在学习完《切线的性质与判定》后,她布置一题:“已知:如图所示,⊙O及⊙O外一点P.求作:直线PQ,使PQ与⊙O相切于点Q.李蕾同学经过探索,给出了如下的一种作图方法:(1)连接OP,分别以O、P为圆心,以大于的长为半径作弧,两弧分别交于A、B两点(A、B 分别位于直线OP的上下两侧);(2)作直线AB,AB交OP于点C;(3)以点C为圆心,CO为半径作⊙C,⊙C交⊙O于点Q(点Q位于直线OP的上侧);(4)连接PQ,PQ交AB于点D,则直线PQ即为所求.【问题】(1)请按照步骤完成作图,并准确标注字母(尺规作图,保留作图痕迹);(2)结合图形,说明PQ是⊙O切线的理由;(3)若⊙O半径为2,OP=6.依据作图痕迹求QD的长.13.(2024•泌阳县一模)小贺同学在数学探究课上,用几何画板进行了如下操作:首先画一个正方形ABCD,一条线段OP(OP<AB),再以点A为圆心,OP的长为半径,画⊙A分别交AB于点E.交AD于点G.过点E,G分别作AB,AD的垂线交于点F,易得四边形AEFG也是正方形,连接CF.(1)【探究发现】如图1,BE与DG的大小和位置关系:.(2)【尝试证明】如图2,将正方形AEFG绕圆心A转动,在旋转过程中,上述(1)的关系还存在吗?请说明理由.(3)【思维拓展】如图3,若AB=2OP=4,则:①在旋转过程中,点B,A,G三点共线时,CF的值为;②在旋转过程中,CF的最大值是.14.(2024•秦都区校级一模)问题提出:(1)如图①,⊙O的半径为4,弦AB=4,则点O到AB的距离是.问题探究:(2)如图②,⊙O的半径为5,点A、B、C都在⊙O上,AB=6,求△ABC面积的最大值.问题解决:(3)如图③,是一圆形景观区示意图,⊙O的直径为60m,等边△ABP的边AB是⊙O的弦,顶点P在⊙O内,延长AP交⊙O于点C,延长BP交⊙O于点D,连接CD.现准备在△PAB和△PCD 区域内种植花卉,圆内其余区域为草坪.按照预算,草坪的面积尽可能大,求草坪的最大面积.(提示:花卉种植面积尽可能小,即花卉种植面积S△PAB +S△PCD的最小值)15.(2024•碑林区校级一模)问题探究(1)寒假期间,乐乐同学参观爸爸的工厂,看到半径分别为2和3的两个圆形零件⊙A、⊙B按如图1所示的方式放置,点A到直线m的距离AC=4,点B到直线m的距离BD=6,CD=5,M是⊙A上一点,N是⊙B上一点,在直线m上找一点P,使得PM+PN最小.请你在直线m上画出点P的位置,并直接写出PM+PN的最小值.问题解决(2)如图2,乐乐爸爸的工厂欲规划一块花园,如图所示的矩形ABCD,其中米,BC=30米,点E、F为花园的两个入口,米,DF=10米.若在△BCD区域内设计一个亭子G(亭子大小忽略不计),满足∠BDG=∠GBC,从入口到亭子铺设两条景观路.已知铺设小路EG所用的景观石材每米的造价是400元,铺设小路FG所用的景观石材每米的造价是200元,你能否帮乐乐同学分析一下,是否存在点G,使铺设小路EG和FG的总造价最低?若存在,求出最低总造价,并求出此时亭子G到边AB的距离;若不存在,请说明理由.16.(2024•雁塔区校级一模)问题发现(1)在△ABC中,AB=2,∠C=60°,则△ABC面积的最大值为;(2)如图1,在四边形ABCD中,AB=AD=6,∠BCD=∠BAD=90°,AC=8,求BC+CD的值.问题解决(3)有一个直径为60cm的圆形配件⊙O,如图2所示.现需在该配件上切割出一个四边形孔洞OABC,要求∠O=∠B=60°,OA=OC,并使切割出的四边形孔洞OABC的面积尽可能小.试问,是否存在符合要求的面积最小的四边形OABC?若存在,请求出四边形OABC面积的最小值及此时OA的长;若不存在,请说明理由.17.(2024•东莞市校级一模)如图①,点C,D在线段AB上,点C在点D的左侧,若线段AC,CD,DB 满足AC2+BD2=CD2,称C,D是线段AB的勾股点.(1)如图②,C,D是线段AB的勾股点,分别以线段AC,CD,DB为边向AB的同侧作正△ACE,正△CDF,正△DBG,已知正△ACE、正△CDF的面积分别是3,5,则正△DBG的面积是;(2)如图①,AB=12,C,D是线段AB的勾股点,当AC=AB时,求CD的长;(3)如图③,C,D是线段AB的勾股点,以CD为直径画⊙O,P在⊙O上,AC=CP,连接PA,PB,若∠A=2∠B,求∠B的度数.18.(2023•西湖区模拟)如图,已知CE是圆O的直径,点B在圆O上,且BD=BC,过点B作弦CD的平行线与CE的延长线交于点A.(1)若圆O的半径为2,且点D为弧EC的中点时,求线段CD的长度;(2)在(1)的条件下,当DF=a时,求线段BD的长度;(答案用含a的代数式表示)(3)若AB=3AE,且CD=12,求△BCD的面积.19.古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的是圆”.小明决定研究一下圆,如图,AB是⊙O的直径,点C是⊙O上的一点,延长AB至点D,连接AC、BC、CD,且∠CAB=∠BCD,过点C 作CE⊥AD于点E.(1)求证:CD是⊙O的切线;(2)若OB=BD,求证:点E是OB的中点;(3)在(2)的条件下,若点F是⊙O上一点(不与A、B、C重合),求的值.。
压轴题 圆的五种考法(解析版)--九年级数学常考压轴题
![压轴题 圆的五种考法(解析版)--九年级数学常考压轴题](https://img.taocdn.com/s3/m/5641ca6ebb1aa8114431b90d6c85ec3a87c28ba6.png)
压轴题圆的五种考法目录解题知识必备压轴题型讲练类型一、四点共圆类型二、圆中最值问题类型三、定点定长构造辅助圆类型四、定弦定角构造辅助圆类型五、对角互补构造辅助圆压轴能力测评(10题)类型一、四点共圆一.填空题1.(2022秋•大丰区期中)如图,ΔABC中,AD⊥BC,∠B=45°,∠C=30°.以AD为弦的圆分别交AB、AC于E、F两点.点G在AC边上,且满足∠EDG=120°.若CD=4+22,则ΔDEG的面积的最小值是.【分析】连接EF,利用四点共圆和同弧所对的圆周角相等证明EF⎳DG,从而得到SΔEDG=S△EDG,当FG最小时,ΔDFG的面积就最小,作ΔDFG的外接圆O,过O点作OH⊥FG交于点H,连接OF、OG,DO+OH=12+22FG,当DO+OH最小时,FG就最小,当D、O、H三点共线时,DO+OH最小,此时DH⊥FG,在RtΔFHO中,(2FH)2=FH2+(2+2-2FH)2,求出FH=2,可得FG的最小值为22,再求SΔDFG =22+2,即ΔDEG的面积的最小值为22+2.【解答】解:连接EF,AD⊥BC,∠B=45°,∠C=30°,∴∠B=45°,∠DAC=60°,∵∠BAC=105°,∵A、E、F、D四点共圆,∴∠EDF=75°,∵∠EDG=120°,∴∠FDG=45°,∵ED =ED ,∴∠EFD =∠FDG ,∴EF ⎳DG ,∴S ΔEDG =S △EDG ,∵CD =4+22,∠C =30°,∴AC =833+463,AD =433+263,∴AC 边上的高=AD ⋅DC AC=2+2,∴当FG 最小时,ΔDFG 的面积就最小,作ΔDFG 的外接圆O ,过O 点作OH ⊥FG 交于点H ,连接OF 、OG ,∵∠FDG =45°,∴∠FOG =90°,∵OF =GO ,∴ΔFOG 是等腰直角三角形,∵∠FOH =12∠FOG =45°,∴ΔFOH 是等腰直角三角形,∴FH =OH =12FG ,FO =2FH ,∴DO +OH =22FG +12FG =12+22FG ,∴当DO +OH 最小时,FG 就最小,∵DO +OH ≥DH ,∴当D 、O 、H 三点共线时,DO +OH 最小,此时DH ⊥FG ,∴DH =2+2,在Rt ΔFHO 中,(2FH )2=FH 2+(2+2-2FH )2,解得FH =2或FH =4+32,∵OH =2+2=FH +FO ,∴FH =2,∴FG 的最小值为22,∴S ΔDFG =12×22×(2+2)=22+2,∴ΔDEG 的面积的最小值为22+2,故答案为:22+2.【点评】本题考查圆的综合应用,熟练掌握圆心角与圆周角的关系,四点共圆的性质,三角形外接圆的性质是解题的关键.二.解答题2.(2022秋•建湖县期中)如图,在⊙O 的内接四边形ABCD 中,DB =DC ,∠DAE 是四边形ABCD 的一个外角.(1)若∠DAE =75°,则∠DAC =°;(2)过点D 作DE ⊥AB 于E ,判断AB 、AE 、AC 之间的数量关系并证明;(3)若AB =6、AE =2,求BD 2-AD 2的值.【分析】(1)根据四边形外接圆的性质,同弧所对的圆周角相等,可得∠DCB=∠DBC=∠DAC=75°;(2)过点D作DF⊥AC于点F,可证明ΔBDE≅ΔCDF(AAS),ΔADE≅ΔADF(AAS),则AC=AF+FC= AE+BE=AE+AE+AB=2AE+AB;(3)在RtΔBDE中,BD2=64+DE2,在RtΔAED中,AD2=4+ED2,再求解即可.【解答】解:(1)∵四边形ABCD是圆O的内接四边形,∴∠BCD+∠BAD=180°,∵∠DAE是四边形ABCD的一个外角,∴∠DAE=∠BCD,∵BD=CD,∴∠CBD=∠DCB,∵弧CD所对的圆周角分别为∠CAD、∠CBD,∴∠CBD=∠CAD,∵∠DAE=75°,∴∠DCB=∠DBC=∠DAC=75°,故答案为:75;(2)过点D作DF⊥AC于点F,∵DE⊥AB,∴∠DEA=90°,∵∠ABD=∠ACD,BD=CD,∠E=∠DFC=90°,∴ΔBDE≅ΔCDF(AAS),∴DE=DF,AE=CF,∴∠ADE=∠ADF,又∵∠E=∠AFD,AD=AD,∴ΔADE≅ΔADF(AAS),∴AE=AF,∴AC=AF+FC=AE+BE=AE+AE+AB=2AE+AB,即AC=2AE+AB;(3)在RtΔBDE中,BD2=BE2+DE2,在RtΔAED中,AD2=AE2+ED2,∵AB=6,AE=2,∴BE=8,∴BD2=64+DE2,AD2=4+ED2,∴BD2-AD2=60.【点评】本题考查圆的综合应用,熟练掌握同弧所对的圆周角相等,四点共圆的性质,直角三角形勾股定理,三角形全等的判定及性质是解题的关键.3.(2023秋•鄞州区期中)如图,在△ABC 中,点D ,E 为AB ,AC 上的点,BE =CD ,DC ,BE 交于F ,△BDF 与△CEF 的外接圆相交于点G (异于F ),H 1,H 2分别为△ABC 和△ADE 的垂心.证明:(1)GF 平分∠BFC ;(2)H 1,H 2,G 三点共线.(注:利用坐标系、复数解题者不给分)【分析】(1)通过证明△BGE ≅△DGC 得出DG =BG ,然后由BG =DG 推导出∠BFG +∠DFG =180°,再由邻补角的性质得出∠BFG =∠GFC ,即可证明结论;(2)根据题意构造B 、E 、B ′、E ′四点共⊙P ,以及D 、C 、D ′、C ′四点共⊙Q ,然后由相似三角形推导出点H 1、H 2对于⊙P 和⊙Q 等幂,再由根轴的性质得出H 1H 2是PQ 的垂直平分线,最后根据GP =GQ 得到GM ⊥PQ ,进而证得三点共线.【解答】(1)证明:在△BGE 和△DGC 中,∠GBE =∠GDC ,BE =CD ,∠GEB =∠GCD ,∴△BGE ≅△DGC (ASA ).∴DG =BG ,∴BG =DG ,∵DBG +DG =2πR (R 为△BDF 的外接圆半径).∴∠BFG +∠DFG =180°.又∵∠GFC +∠DFG =180°,∴∠BFG =∠GFC ,∴GF 平分∠BFC .(2)证明:连接BH 1、DH 2并延长分别交AC 于B ′、D ′,连接CH 1、EH 2并延长交AB 于C ′、E ′.BE 中点为P ,CD 中点为Q .∵BB ′⊥AC ,EE ′⊥AB ,∴B 、E 、B ′、E ′四点共⊙P .∵DD ′⊥AC ,CC ′⊥AB ,∴D 、C 、D ′、C ′四点共⊙Q .∵∠DE ′H 2=∠ED ′H 2,∠DH 2E ′∽△EH 2D ′,∴△DE ′H2∽△ED ′H 2,∴DH 2:EH 2=E ′H 2:D ′H 2,∴DH 2⋅D ′H 2=EH 2⋅E ′H 2.同理得CH 1⋅C ′H 1=BH 1⋅B ′H 1.∴H 1,H 2在⊙P 和⊙Q 的根轴上.∵⊙P 和⊙Q 的根轴是过两圆的交点的直线.∴H 1,H 2在⊙P 和⊙Q 的公共弦JK 上.又∵BE =CD ,即⊙P 和⊙Q 是等圆,∴四边形PJQK 为菱形.∴H 1H 2是PQ 的垂直平分线,M 为PQ 中点.由(1)知△BGE ≅△DGC ,∵GP 、GQ 分别为△BGE 和△DGC 的对应边上的中线,∴GP =GQ ,∴点G 在PQ 的垂直平分线上.∴H 1,H 2,G 三点共线.【点评】本题考查了全等三角形的判定和性质,圆周角定理,圆幂定理,菱形的性质,等腰三角形的性质等.本题辅助线繁多,综合性强,通过四点共圆判断出H 1、H 2两点对于⊙P 和⊙Q 等幂是解答本题的关键.4.(2022秋•沙坪坝区校级期中)在ΔABC 中,已知AB =AC ,作AM ⊥BC ,D 是AM 上一点,∠DBC =30°,连接BD 、CD ,在BD 上截取DE =AD ,连接AE .(1)如图1所示,若∠BAC =90°,AD =3,求ΔABE 的周长;(2)如图2所示,若分别取AE 、AC 的中点N 、H ,连接MN 、MH ,求证:MN =MH ;(3)如图3所示,∠BAC =90°,BC =2,将AC 沿着直线AP 翻折得到AQ ,连接BQ ,直线BQ 交AP 于点P ,N 为AE 中点,当PN 取得最小值时,请直接写出ΔAPN 的面积.【分析】(1)过点D 作DL ⊥AE 于L ,则∠ALD =∠ELD =90°,由∠DBC =30°,可得BD =2DM ,设DM =x ,则BD =2x ,由勾股定理可得BM =3x ,AM =x +3,可得BM =CM =AM =33+32,AB =2BM =2×33+32=36+322,利用勾股定理可得AL =AD 2-DL 2=(3)2-32 2=32,进而可得AE =2AL =2×32=3,即可求得答案;(2)延长AM 至F ,使MF =AM ,在DF 上截取DT =DE ,连接EF ,ET ,设∠ABM =α,则∠BAM =90°-α,可证得ΔDET 是等边三角形,得出:DT =ET =DE =AD ,∠DTE =60°,再证得ΔABD ≅ΔEFT (SAS ),可得AB =EF =AC ,利用三角形中位线定理可得MN =12EF ,再由直角三角形性质可得MH =12AC ,即可证得结论;(3)连接CP ,先证得点P 在ΔABC 的外接圆⊙M 上,当且仅当点P 为半径MP 经过点N 时,PN 取得最小值,连接DN ,过点N 作NG ⊥AM 于G ,利用解直角三角形可得DM =BM ⋅tan30°=33,AD =DE =1-33,AN =EN =32AD =321-33 ,NG =12AN =12×321-33 =3-14,AG =3NG =3-34,GM =AM -AG =1-3-34=1+34,由勾股定理可得MN =GM 2+NG 2=1+34 2+3-14 2=22,PN =MP -MN =1-22,再利用S ΔAPN S ΔAMN =PN MN=2-1,即可求得答案.【解答】(1)解:过点D 作DL ⊥AE 于L ,则∠ALD =∠ELD =90°,∵∠BAC =90°,AB =AC ,AM ⊥BC ,∴AM =BM =CM ,∠BMD =90°,∠ABM =∠BAM =45°,∵∠DBC =30°,∴BD =2DM ,设DM =x ,则BD =2x ,∴BM =BD 2-DM 2=(2x )2-x 2=3x ,AM =x +3,∴3x =x +3,∴x =3+32,∴BM =CM =AM =33+32,∴AB =2BM =2×33+32=36+322,∵DE =AD ,∴∠DAE =∠DEA ,∵∠DAE +∠DEA =∠BDM =90°-30°=60°,∴∠DAE =∠DEA =30°,∴∠BAE =∠BAM -∠DAE =45°-30°=15°,∵∠ABD =∠ABM -∠DBC =45°-30°=15°,∴∠BAE =∠ABD ,∴AE =BE ,在Rt ΔADL 中,DL =12AD =32,∴AL =AD 2-DL 2=(3)2-322=32,∵DE =AD ,DL ⊥AE ,∴AE =2AL =2×32=3,∴ΔABE 的周长=AB +AE +BE =36+322+3+3=36+32+122;(2)证明:延长AM 至F ,使MF =AM ,在DF 上截取DT =DE ,连接EF ,ET ,设∠ABM =α,则∠BAM =90°-α,∵∠DBC =30°,∴∠BDT =60°,∠ABD =α-30°,BD =2DM ,∵DE =AD ,∴∠AED =∠DAE =30°,∴ΔDET 是等边三角形,∴DT =ET =DE =AD ,∠DTE=60°,∵AF =2(AD +DM )=AT +FT ,∴FT =2DM =BD ,∵∠EDT =∠ETD =60°,∴∠ADB =180°-60°=120°=∠ETF ,在ΔABD 和ΔEFT 中,AD =ET∠ADB =∠ETF BD =FT,∴ΔABD ≅ΔEFT (SAS ),∴AB =EF ,∵AB =AC ,∴EF =AC ,∵N 、M 分别是AE 、AF 的中点,∴MN =12EF ,∵点H 是Rt ΔACM 斜边AC 的中点,∴MH =12AC ,∴MN =MH ;(3)解:如图,连接CP ,由翻折得:∠ACP =∠AQP ,AC =AQ ,∵AB =AC ,∠BAC =90°,BC =2,AM ⊥BC ,∴AB =AQ ,AM =BM =CM =1,∴∠ABP =∠AQB ,∵∠AQB +∠AQP =180°,∴∠ABP +∠ACP =180°,∴点P 在ΔABC 的外接圆⊙M 上,当且仅当点P 为半径MP 经过点N 时,PN 取得最小值,如图,连接DN ,过点N 作NG ⊥AM 于G ,∵∠DBC =30°,∴DM =BM ⋅tan30°=33,∴AD =DE =1-33,∴AN =EN =32AD =321-33,∵∠AGN =90°,∠NAG =30°,∴NG =12AN =12×321-33 =3-14,∴AG =3NG =3-34,∴GM =AM -AG =1-3-34=1+34,在Rt ΔMNG 中,MN =GM 2+NG 2=1+342+3-14 2=22,∴PN =MP -MN =1-22,∴SΔAPNSΔAMN=PNMN=1-2222=2-1,∵SΔAMN=12AM⋅NG=12×1×3-14=3-18,∴SΔAPN=(2-1)SΔAMN=(2-1)×3-18=6-3-2+18.【点评】本题是几何综合题,考查了等腰三角形性质,等腰直角三角形性质,直角三角形性质,等边三角形性质,全等三角形的判定和性质,勾股定理,圆内接四边形的判定,三角形面积等,涉及知识点多,难度大,添加适当的辅助线是解题的关键与难点.5.(2022秋•鼓楼区期中)以下是“四点共圆”的几个结论,你能证明并运用它们吗?Ⅰ.若两个直角三角形有公共斜边,则这两个三角形的4个顶点共圆(图1、2);Ⅱ.若四边形的一组对角互补,则这个四边形的4个顶点共圆(图3);Ⅲ.若线段同侧两点与线段两端点连线的夹角相等,则这两点和线段两端点共圆(图4).(1)在图1、2中,取AC的中点O,根据得OA=OB=OC=OD,即A,B,C,D共圆;(2)在图3中,画⊙O经过点A,B,D(图5).假设点C落在⊙O外,BC交⊙O于点E,连接DE,可得=180°,所以∠BED=,得出矛盾;同理点C也不会落在⊙O内,即A,B,C,D共圆.结论Ⅲ同理可证.(3)利用四点共圆证明锐角三角形的三条高交于一点.已知:如图6,锐角三角形ABC的高BD,CE相交于点H,射线AH交BC于点F.求证:AF是ΔABC的高.(补全以下证明框图,并在图上作必要标注)(4)如图7,点P是ΔABC外部一点,过P作直线AB,BC,CA的垂线,垂足分别为E,F,D,且点D,E,F在同一条直线上.求证:点P在ΔABC的外接圆上.【分析】(1)根据直角三角形斜边中线的性质可得结论;(2)由圆周角的性质可得∠BED+∠A=180°,再结合题干条件,得出矛盾,由此可得出结论;(3)如图,连接DE,由点B、C、D、E四点共圆得∠BDE=∠ECB,由点A、D、H、E四点共圆得∠BDE=∠BAF,从而证明∠BAF+∠ABF=90°即可;(4)连接BP和CP,由点A,E,P,F四点共圆可得,∠BEF=∠BPF,由点C,P,D,F四点共圆可得∠CDF =∠CPF,再由外角的性质及角的和差可得∠BAC=∠BPC,由此可得点A,B,C,P四点共圆,即点P在ΔABC的外接圆上.【解答】解:(1)在图1、2中,取AC的中点O,根据直角三角形斜边上的中线等于斜边的一半,得OA=OB= OC=OD,即A,B,C,D共圆;故答案为:直角三角形斜边上的中线等于斜边的一半;(2)在图3中,画⊙O经过点A,B,D(图5).假设点C落在⊙O外,BC交⊙O于点E,连接DE,可得∠BED+∠A=180°,∴∠BED=180°-∠A,得出矛盾;同理点C也不会落在⊙O内,即A,B,C,D共圆.结论Ⅲ同理可证.故答案为:∠BED+∠A;180°-∠A;(3)如图6,连接DE,由点B、C、D、E四点共圆得∠BDE=∠ECB,由点A、D、H、E四点共圆得∠BDE=∠BAF,∴∠ECB=∠BAF,∵∠BEC=90°,∴∠ECB+∠ABF=90°,∴∠BAF+∠ABF=90°,∴∠BFA=90°,∴AF为ΔABC的边BC上的高.(4)如图7,连接BP和CP,由点A,E,P,F四点共圆可得∠BEF=∠BPF,由点C,P,D,F四点共圆可得∠CDF=∠CPF,∵∠ADE=∠CDF,∴∠ADE=∠CPF,∵∠BAC=∠BEF+∠ADE,∠BPC=∠BPF+∠CPF,∴∠BAC=∠BPC,∴点A,B,C,P四点共圆,即点P在ΔABC的外接圆上.【点评】本题考查了圆的定义,直角三角形斜边上的中线等于斜边一半,圆内接四边形对角互补,圆周角定理,内心的定义.第(3)(4)题解题关键是选取适当的四点证明共圆,再利用圆周角定理证明角相等.类型二、圆中最值问题一.填空题6.(2022秋•长沙期中)如图,⊙O 的半径为1,P A ,PB 为⊙O 的切线,切点为A ,B ,∠APB =60°,点M 为劣弧AB 上一动点,过点M 作⊙O 的切线,分别交P A ,PB 于点E ,F ,EF 的最小值是.【分析】由切线的性质定理,全等三角形的判定和性质,三角形外心的性质,可以求解.【解答】解:连接OA ,OE ,OM ,OF ,OB ,∵P A ,PB 为⊙O 的切线,EF 切⊙O 于M ,∴OA ⊥P A ,OB ⊥PB ,OM ⊥EF ,∵四边形PBOA 内角和是360°,∴∠P +∠AOB =360°-∠P AB -∠PBA =180°,∴∠AOB =180°-∠P =120°,∵OE =OE ,OA =OM ,∴Rt ΔOAE ≅Rt ΔOME (HL ),∴∠AOE =∠MOE ,同理:∠MOF =∠BOF ,∴∠EOF =∠EOM +∠FOM =12∠AOB =60°,设ΔOEF 的外心是点C ,作CH ⊥EF 于H ,连接CO ,CE ,CF ,OM ,∵点C 是ΔOEF 的外心,∴OC =EC =FC ,∴∠CEF =∠CFE ,EH =FH ,∵∠ECF =2∠EOF =120°,∴∠CEF =30°,∴CH =12CE =12OC ,∵OC +CH ≥OM ,∴3CH ≥1,∴CH ≥13,∵tan ∠CEH =CH EH,∴EH =3CH ,∴EF =2EH =23CH ,∴EF ≥233,∴EF 的最小值是233,故答案为:233.【点评】本题考查有关圆的最值问题,关键是掌握切线的性质定理,全等三角形的判定和性质,三角形外心的性二.解答题7.(2022秋•东城区校级期中)对于平面直角坐标系xOy中的图形G和点P给出如下定义;Q为图形G上任意一点,若P,Q两点间距离的最大值和最小值都存在,且最大值是最小值的k倍,则称点P为图形G 的“k分点”.已知点N(3,0),A(1,0),B(0,3),C(1,-1).(1)①在点A,B,C中,线段ON的“2分点”是;②点D(a,0),若点C为线段OD的“二分点”,求a的值;(2)以点O为圆心,r为半径画图,若线段AN上存在⊙O的“二分点”,直接写出r的取值范围.【分析】(1)①分别求出点A、B、C到线段ON的最小值和最大值,看是否满足“2分点”定义即可,②对a的取值分情况讨论:0<a≤1,1<a≤2,a>2和a<0,根据“二分点”的定义可求解,(2)设线段AN上存在⊙O的“二分点”为M(m,0)(1≤m≤3).对r的取值分情况讨论0<r≤1,1<r<3且m<r,1<r<3且m>r,r≥3,根据二分点的定义可求解.【解答】(1)解:①如图,∵点A在ON上,故最小值为0,不符合题意,点B到ON的最小值为OB=3,最大值为BN=32+32=32,∴点B是线段ON的“2分点”,点C到ON的最小值为1,最大值为CN=22+12=5∴点C不是线段ON的“2分点”,故答案为:点B;②当0<a≤1时,点C到OD的最小值为CD=(1-a)2+(-1)2=2-2a+a2,点C到OD的最大值为CO=12+(-1)2=2,∴2=22-2a+a2,即2a2-4a+3=0,∵△<0,故无解,舍去;当1<a≤2时,点C到OD的最小值为1,点C到OD的最大值为CO=12+(-1)2=2,最大值不是最小值的2倍,所以舍去,当a>2时,点C到OD的最小值为1,点C到OD的最大值为CD=(a-1)2+(0-1)2=a2-2a+2,∵点C为线段OD的“二分点”,∴a2-2a+2=2×1,a1=1+3,a2=1-3(舍去),当a<0时,点C到OD的最小值为CO=12+(-1)2=2,点C到OD的最大值为CD=(1-a)2+(-1-0)2=a2-2a+2,∵点C为线段OD的“二分点”,同0<a≤1时,无解,舍去;综上,a=1+3.(2)如图所示,设线段AN上存在⊙O的“二分点”为M(m,0)(1≤m≤3),当0<r≤1时,最小值为:m-r,最大值为:m+r,m,∴2(m-r)=m+r,即r=13∵1≤m≤3,≤r≤1,∴13当1<r<3且m<r时,最小值为:r-m,最大值为r+m,∴2(r-m)=r+m,即r=3m,∵1≤m≤3,∴3≤r≤9,∵1<r<3,∴r不存在,当1<r<3且m>r时,最小值为:m-r,最大值为:m+r,m,∴2(m-r)=r+m,即r=13≤r≤1,∴13∵1<r<3,∴r 不存在.当r ≥3时,最小值为:r -m ,最大值为:m +r ,∴2(r -m )=r +m ,即r =3m ,∴3≤r ≤9.综上所述,r 的取值范围为13≤r ≤1或3≤r ≤9.【点评】本题考查坐标上的两点距离,勾股定理,点到圆的距离.根据题目所给条件,掌握“k 分点”的定义是解题的关键.8.(2022秋•江阴市期中)如图,在平面直角坐标系中,点A 的坐标为(-3,0),点B 在y 轴的正半轴上,且∠ABO =30°,以点B 为圆心,1为半径画⊙B ,与y 轴交于点C (点C 在点B 的下方),点Q 是AB 的中点,点P 是⊙B 上的一个动点,从点C 开始以5度/秒的速度沿圆周逆时针运动一周,设运动时间为t 秒.(1)如图1,连接OQ ,当OQ ⎳BP 时,求t 的值;(2)如图2,点P 在运动过程中,连接AP ,以AP 为边在左侧作等边ΔAPD ,①当t =12秒时,求点D 的坐标;②连接DQ ,当DQ 最大时,求此时t 的值和这个最大值.【分析】(1)如图,过点B 作BP ⎳OQ ,交⊙B 于点P 1,P 2,由平行得出点P 的旋转角,进而可得出时间t ;(2)①将线段AB 绕点A 逆时针旋转60°到线段AB ′,连接B ′D ,易证△AB ′D ≅ΔABP (SAS ),所以B ′D =BP =1,∠AB ′D =∠ABP =90°;过点B ′作B ′N ⊥x 轴于点N ,过点D 作DM ⊥B ′N 于点M ,所以∠M =∠ANB ′=90°,由互余可知,∠MBD ′=∠B ′AN ,所以∠B ′AB =60°,∠BAO =60°,所以∠B ′AN =60°,AN =3,B ′N =3,则MB ′=12,MD =32,进而可得点D 的坐标;②由旋转可知,点D 在以点B ′为圆心,1长为半径的圆上运动,当DQ 最大时,点D ,B ′,Q 三点共线,设⊙B与y 轴的另一个交点为C ′,则C ′(0,4),OC ′=4,由点Q 是AB 的中点可知,Q -32,32,B ′(-23,3),进而可得B ′Q =3,所以DQ =4,易证△AB ′Q ≅ΔABO (SSS ),进而可得ΔADQ ≅△AC ′O (SAS ),所以AD =AC ′,即此时点P 与点C ′重合,所以t =180°5°=36.【解答】解:(1)如图:∵ΔABO 是直角三角形,Q 是AB 中点,∴OQ =QA =QB ,∴∠BOQ =∠ABO =30°,又∵OQ ⎳BP 1,∴∠OBP 1=∠BOQ =30°,∴点P 的轨迹是⊙B 中30°圆心角所对的弧,∴t =30°5°=6,∵当点P 运动到P 1B 延长线与⊙B 的交点P 2时,点P 的轨迹是⊙B 中180°+30°=210°圆心角所对的弧,∴t =210°5°=42.故t 的值为6或42;(2)①如图,∵∠ABO =30°,OA =3,∴OB =3,AB =23,当t =12时,∠CBP =60°,∴∠ABP =90°,将线段AB 绕点A 逆时针旋转60°到线段AB ′,连接B ′D ,由旋转可知,∠BAB ′=60°,AB =AB ′=23,∵ΔADP 是等边三角形,∴∠DAP =60°,AD =AP ,∴∠B ′AD =∠BAP ,∴△AB ′D ≅ΔABP (SAS ),∴B ′D =BP =1,∠AB ′D =∠ABP =90°,过点B ′作B ′N ⊥x 轴于点N ,过点D 作DM ⊥B ′N 于点M ,∴∠M =∠ANB ′=90°,∴∠AB ′N +∠B ′AN =90°,∠MB ′D +∠AB ′N =90°,∴∠MB ′D =∠B ′AN ,∵∠B ′AB =60°,∠BAO =60°,∴∠B ′AN =60°,AN =3,B ′N =3,∴∠MB ′D =60°,∴MB ′=12,MD =32,∴MN =72.∴D -332,72;②由旋转可知,点D 在以点B ′为圆心,1长为半径的圆上运动,∴当DQ 最大时,点D ,B ′,Q 三点共线,如图所示,设⊙B 与y 轴的另一个交点为C ′,∴C ′(0,4),∴OC ′=4,∵点Q 为AB 的中点,∴AQ =BQ =3,AB ′=AB =23,由①可知,B (0,3),∴Q -32,32,B ′(-23,3),∴DQ =4,∴B ′Q =BO ,AQ =BQ =3,AB ′=AB =23,∴△AB ′Q ≅ΔABO (SSS ),∴∠AQB ′=∠AOB =90°,∵DQ =OC ′,AQ =AO ,∴ΔADQ ≅△AC ′O (SAS ),∴AD =AC ′,即此时点P 与点C ′重合,∴t =180°5°=36.综上,t =36,DQ 最大值是4.【点评】本题属于圆的综合题,涉及考查旋转的性质,等边三角形的性质,全等三角形的性质与判定,相似三角形的相似与判定,含30°的直角三角形的三边关系,根据题意得出点D 的轨迹是解题关键.类型三、定点定长构造辅助圆一.填空题9.(2023秋•常州期中)如图,点A ,B 的坐标分别为A (4,0),B (0,4),C 为坐标平面内一点,BC =2,点M 为线段AC 的中点,连接OM ,OM 的最大值为.【分析】先判断出点C 的运动轨迹是在半径为2的⊙B 上,再取OD =OA =4,连接OD ,则OM 是ΔACD 的中位线,OM =12CD ,进而可得OM 最大值时,CD 取最大值,此时D 、B 、C 三点共线,计算即可求出结果.【解答】解:∵C 为坐标平面内一点,BC =2,∴点C 的运动轨迹是在半径为2的⊙B 上,如图,取OD =OA =4,连接OD ,∵点M 为线段AC 的中点,∴OM 是ΔACD 的中位线,∴OM =12CD ,∴OM 最大值时,CD 取最大值,此时D 、B 、C 三点共线,此时在Rt ΔOBD 中,BD =42+42=42,∴CD =2+42,∴OM 的最大值是1+22.故答案为:1+22.【点评】本题考查了坐标和三角形的中位线,定点定长构造辅助圆等,解题关键是确定点C 的运动轨迹.二.解答题10.(2022秋•秀洲区期中)如图,ΔABC 中,AC =BC =4,∠ACB =90°,过点C 任作一条直线CD ,将线段BC 沿直线CD 翻折得线段CE ,直线AE 交直线CD 于点F .(1)小智同学通过思考推得当点E 在AB 上方时,∠AEB 的角度是不变的,请按小智的思路帮助小智完成以下推理过程:∵AC =BC =EC ,∴A 、B 、E 三点在以C 为圆心以AC 为半径的圆上.∴∠AEB =∠ACB =°.(2)若BE =2,求CF 的长.(3)线段AE 最大值为;若取BC 的中点M ,则线段MF 的最小值为.【分析】(1)根据AC =BC =EC ,得A 、B 、E 三点在以C 为圆心以AC 为半径的圆上,根据圆周角定理可知∠AEB 的度数;(2)由ΔEFG 是等腰三角形可求出FG =1,利用勾股定理求出CG 的长,从而得出答案;(3)根据直径是圆中最大的弦知当AE 经过圆心C 时,线段AE 的最大值为2AC =8,取AB 的中点O ,连接OF ,可证∠AFB =90°,则点F 在以AB 为直径的圆O 上,当OF 经过点M 时,MF 最短,此时OF ⊥BC ,从而解决问题.【解答】解:(1)∵AC =BC =EC ,∴A 、B 、E 三点在以C 为圆心以AC 为半径的圆上,∴∠AEB =12∠ACB =45°,故答案为:12,45;(2)由折叠可知,CD 垂直平分BE ,∴BE ⊥CD ,设CD 、BE 交于点G ,则GE =BG =12BE =1,∴∠FGE =90°,∵∠AEB =45°,∴FG =GE =1,在Rt ΔCEG 中,由勾股定理得,CG =CE 2-DE 2=15,∴CF =CG -FG =15-1;当点E 在AB 的下方时,如图,∵AC =BC =EC ,∴A 、B 、E 三点在以C 为圆心以AC 为半径的圆上,∴∠EAB +∠EBA =12∠ACB =45°,即∠BEF =45°,由翻折可知,∠EGF=90°,EG=GB 12BE=1,∴ΔEGF是等腰直角三角形,∴GF=EG=1,在RtΔCEG中,CG=CE2-EG2=42-12=15,∴CF=15+1,综上所述,CF的长为15-1或15+1;(3)∵A,B,E,三点在以C为圆心,以AC为半径的圆上,∴当AE经过圆心C时,线段AE的最大值为2AC=8,在RtΔABC中,AC=BC=4,∠ACB=90°,∴AB=AC2+BC2=42,BM=CM=12BC=2,∠ABC=∠BAC=45°,连接BF,取AB的中点O,连接OF,如图,∵CD垂直平分BE,∠AEB=45°,∴BF=EF,∴∠EBF=∠AEB=45°,∴∠EFB=90°,∴∠AFB=90°,∴OF=12AB=OA=OB=22,∴点F在以点O为圆心,AB为直径的圆上,∵∠ACB=90°,∴点C在⊙O上,∴当OF经过点M时,MF最短,此时OF⊥BC,∴OM=BM⋅tan∠ABC=2×1=2,∴MF=OF-OM=22-2,即线段MF的最小值为22-2,故答案为:8;22-2.【点评】本题是圆的综合题,主要考查了等腰直角三角形的性质,线段垂直平分线的性质,圆周角定理,利用定点定长构造辅助圆是解题的关键.类型四、定弦定角构造辅助圆一.填空题11.(2023春•梁子湖区期中)如图,矩形ABCD的边AB=8,AD=6,M为BC的中点,P是矩形内部一动点,且满足∠ADP=∠P AB,N为边CD上的一个动点,连接PN,MN,则PN+MN的最小值为.【分析】先找出点P 的运动路线为以AD 为直径的圆,设圆心为O ,作点M 关于直线DC 的对称点M ′,连接OM ′交⊙O 于点P ′,可推出M ′P ′的长即为PN +MN 的最小值,再求出M ′P ′的长即可.【解答】解:∵四边形ABCD 是矩形,∴∠BAD =90°,∵∠ADP =∠P AB ,∴∠ADP +∠P AD =∠P AB +∠P AD =∠BAD =90°,∴点P 的运动路线为以AD 为直径的圆,作以AD 为直径的⊙O ,作点M 关于直线DC 的对称点M ′,连接OM ′交⊙O 于点P ′,连接M ′N ,OP ,则OP =OP ′=3,M ′N =MN ,∴PN +MN =PN +M ′N =PN +M ′N +OP -OP ′≥OM ′-OP ′=OM ′-3,∴PN +MN 的最小值为OM ′-3;连接OM ,∵四边形ABCD 是矩形,点O 是AD 的中点,点M 为BC 的中点,∴OD =12AD =12BC =CM =3,OD ⎳CM ,∠ODC =90°,∴四边形OMCD 是矩形,∴OM =DC =AB =8,∵点M 关于直线DC 的对称点M ′,∴M ′M =2MC =6,在Rt △M ′OM 中,由勾股定理,得OM ′=OM 2+M ′M 2=82+62=10,∴PN +MN 的最小值为OM ′-3=10-3=7,故答案为:7.【点评】本题考查轴对称-最短路线问题,矩形的性质,勾股定理,能利用一条线段的长表示两线段的和的最小值是解题的关键.二.解答题小赵同学在学习完“圆”这一章内容后,感觉到一些几何问题,如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.我们把这个过程称为“化隐圆为显圆”.①已知:如图1,OA =OB =OC ,若∠AOB =50°,求∠ACB 的度数.解:若以点O 为圆心,OA 为半径作辅助圆,∠AOB 是⊙O 的圆心角,而∠ACB 是圆周角,从而可容易得到∠ACB = °.②如图2,点P 为正方形ABCD 内一点,且∠BPC =90°,若AB =4,求AP 的最小值.解:∵BC =4,∠BPC =90°,∴点P 在以BC 为直径的圆上,设圆心为点O ,则O 、P 、A 三点共线时AP 最小,最小值为 .(2)【问题解决】①如图3,在平行四边形ABCD 中,已知AB =4,BC =6,∠ABC =60°,点P 是BC 边上一动点(点P 不与B ,C 重合),连接AP ,作点B 关于直线AP 的对称点Q ,则线段QC 的最小值为 .②如图4,△ABC 中,∠BAC =90°,AB =4,AC =3,D 为AC 上一动点,以AD 为直径的⊙O 交BD 于E ,求线段CE 的最小值.(3)【问题拓展】如图5,在平面直角坐标系中,已知两点A (2,3),B (6,7),x 轴上有一动点P ,当∠APB 最大时,直接写出点P 的坐标 .【分析】(1)①利用圆周角定理即可求得答案;②由正方形性质可得:∠ABC =90°,BC =AB =4,OB =12BC =2,由勾股定理得:AO =25,推出点P 在以BC 为直径的⊙O 上,则O 、P 、A 三点共线时AP 最小,即可求得答案;(2)①过点A 作AH ⊥BC 于H ,利用解直角三角形得AH =AB ⋅sin ∠ABC =23,BH =AB ⋅cos ∠ABC =2,CH =BC -BH =4,由勾股定理得AC =27,再由AQ =AB =4,可得点Q 在以A 为圆心AB 为半径的⊙A 上,即当C 、Q 、A 三点共线时QC 最小,QC 的最小值=AC -AQ =27-4;②连接AE ,由AD 是⊙O 的直径,可得∠AED =90°,推出∠AEB =90°,即点E 在以AB 为直径的圆上,进而可得当C 、E 、Q 三点共线时,CE 最小,运用勾股定理即可求得答案;(3)当∠APB 最大时,过A 、B 两点的⊙O ′与x 轴相切,利用待定系数法可得直线AB 的解析式为y =x +1,线段AB 的垂直平分线为y =-x +9,设O ′(m ,-m +9),根据O ′A =O ′B =O ′P ,建立方程求解即可得出答【解答】解:(1)①如图1,以点O为圆心,OA为半径作辅助圆⊙O,∵AB =AB ,∠AOB=50°,∠AOB=25°,∴∠ACB=12故答案为:25.②点P为正方形ABCD内一点,且∠BPC=90°,若AB=4,求AP的最小值.如图②,以BC为直径作⊙O,∵四边形ABCD是正方形,∴∠ABC=90°,BC=AB=4,BC=2,∴OB=12在Rt△ABO中,AO=AB2+OB2=42+22=25,∵BC=4,∠BPC=90°,∴点P在以BC为直径的⊙O上,则O、P、A三点共线时AP最小,∴AP的最小值=AO-OP=25-2,故答案为:25-2.(2)①如图3,过点A作AH⊥BC于H,∵AB=4,BC=6,∠ABC=60°,则AH=AB⋅sin∠ABC=4sin60°=23,BH=AB⋅cos∠ABC=4cos60°=2,∴CH=BC-BH=6-2=4,在Rt△ACH中,AC=AH2+CH2=(23)2+42=27,∵点B与点Q关于直线AP对称,∴AQ=AB=4,∴点Q在以A为圆心AB为半径的⊙A上,∴当C、Q、A三点共线时QC最小,QC的最小值=AC-AQ=27-4,故答案为:27-4.②如图4,连接AE,∵AD是⊙O的直径,∴∠AED=90°,∴∠AEB=180°-∠AED=90°,以AB 为直径作⊙Q ,交⊙O 于E ,当C 、E 、Q 三点共线时,CE 最小,∵△ABC 中,∠BAC =90°,AB =4,AC =3,∴QE =AQ =12AB =2,∴CQ =AC 2+AQ 2=32+22=13,∴CE =CQ -QE =13-2,故线段CE 的最小值为13-2.(3)当∠APB 最大时,过A 、B 两点的⊙O ′与x 轴相切,设直线AB 的解析式为y =kx +b ,把A (2,3),B (6,7)代入,得:2k +b =36k +b =7 ,解得:k =1b =1 ,∴直线AB 的解析式为y =x +1,∵线段AB 的中点坐标为(4,5),圆心O ′在AB 的垂直平分线上,∴线段AB 的垂直平分线为y =-x +9,设O ′(m ,-m +9),∵O ′A =O ′B =O ′P ,∴(m -2)2+(-m +9-3)2=(-m +9)2,解得:m =42-1或m =-42-1(舍去),∴点P 的坐标为(42-1,0),故答案为:42-1.【点评】本题是圆的综合题,考查了圆的有关知识,正方形的性质,平行四边形的性质,解直角三角形等知识,灵活运用这些性质解决问题是解题的关键.13.(2022秋•泗洪县期中)已知:⊙O 和⊙O 外一点P .(1)如图甲,P A 和PB 是⊙O 的两条切线,A 、B 分别为切点,求证:P A =PB .(2)尺规作图:在图乙中,过P 点画⊙O 的两条切线PE 、PF ,E 、F 为切点(要求:保留作图痕迹,不写作法).【分析】(1)如图,连接OP、OA、OB.只要证明RtΔP AO≅RtΔPBO(HL),可得P A=PB.(2)以OP为直径作⊙O′,两圆交于点E、F,直线PE、PF即为所求;【解答】解:(1)如图,连接OP、OA、OB.∵P A、PB是切线,∴P A⊥OA,PB⊥OB,∴∠P AO=∠PBO=90°,在RtΔP AO和RtΔPBO中,OP=OP,OA=OB∴RtΔP AO≅RtΔPBO,∴P A=PB.(2)以OP为直径作⊙O′,两圆交于点E、F,直线PE、PF即为所求;【点评】本题考查切线的性质、全等三角形的判定和性质,直径的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用辅助圆解决问题,属于中考常考题型.类型五、对角互补构造辅助圆14.(2021秋•越秀区校级期中)如图1,在ΔABC中,∠ACB=90°,CD平分∠ACB,且AD⊥BD于点D.(1)判断ΔABD的形状;(2)如图2,在(1)的结论下,若BQ=22,DQ=3,∠BQD=75°,求AQ的长;(3)如图3,在(1)的结论下,若将DB绕着点D顺时针旋转α(0°<α<90°)得到DP,连接BP,作DE⊥BP交AP于点F.试探究AF与DE的数量关系,并说明理由.【分析】(1)由∠ACB+∠ADB=90°+90°=180°,知点A、C、B、D上四点共圆,则∠ACD=∠ABD=45°,即可得出结论;(2)将ΔADQ绕点D顺时针旋转90°得ΔBDE,连接EQ,过点B作EQ的垂线,交EQ的延长线于H,得ΔQDE是等腰直角三角形,从而可解直角三角形BQH,在RtΔBEH中,利用勾股定理得可求出BE的长度,从而解决问题;(3)在AF上截取AM=PF,利用SAS证明ΔADM≅ΔPDF,得∠ADM=∠PDE,DM=DF,可证明ΔMDF、ΔPEF是等腰直角三角形,从而解决问题.【解答】解:(1)∵∠ACB=90°,CD平分∠ACB,∴∠ACD=45°,∵∠ACB+∠ADB=90°+90°=180°,∴点A、C、B、D上四点共圆,∴∠ACD=∠ABD=45°,∴∠BAD=∠ABD=45°,∴ΔABD是等腰直角三角形;(2)将ΔADQ绕点D顺时针旋转90°得ΔBDE,连接EQ,过点B作EQ的垂线,交EQ的延长线于H,∴DQ=DE,∠QDE=90°,AQ=BE,∴ΔQDE是等腰直角三角形,∴∠DQE=45°,∴QE=2DQ=32,∵∠BQD=75°,∴∠BQE=∠BQD+∠DQE=120°,∴∠BQH=60°,BQ=2,BH=6,∴QH=12在RtΔBEH中,由勾股定理得BE=BH2+EH2=(42)2+(6)2=38,∴AQ=BE=38;(3)AF=2DE.,理由如下:如图,在AF上截取AM=PF,∵DA=DP,∴∠DAM=∠DPF,∴ΔADM≅ΔPDF(SAS),∴∠ADM=∠PDE,DM=DF,∵BD=DP,DE⊥BP,∴∠BDE=∠PDE,∴∠ADM=∠BDE,∴ΔMDF是等腰直角三角形,∴∠MFD=45°,MF=2DF,∴∠EFP=45°,∴ΔPEF是等腰直角三角形,∴PF=2EF,∴AF=2DE.【点评】本题主要考查了等腰直角三角形的判定与性质,全等三角形的判定与性质,等腰三角形的性质,含30°角的直角三角形的性质,勾股定理,四点共圆等知识,作辅助线构造全等三角形是解题的关键.15.(2021秋•西城区校级期中)如图,ΔABC为等边三角形,点P是线段AC上一动点(点P不与A,C重合),连接BP,过点A作直线BP的垂线段,垂足为点D,将线段AD绕点A逆时针旋转60°得到线段AE,连接DE,CE.(1)求证:BD=CE;(2)延长ED交BC于点F,求证:F为BC的中点;(3)若ΔABC的边长为1,直接写出EF的最大值.【分析】(1)利用SAS证明ΔBAD≅ΔCAE,即可得出结论;(2)过点C作CG⎳BP交DF的延长线于点G,利用等角对等边可得CG=CE,由(1)ΔBAD≅ΔCAE,得BD=CE,再利用AAS证明ΔBDF≅ΔCGF,从而解决问题;(3)由(2)知∠AFC=∠AEC=90°,则点A,F,C,E四点在以AC为直径的圆上,故EF的最大值为直径.【解答】(1)证明:∵线段AD绕点A逆时针旋转60°得到线段AE,∴ΔADE是等边三角形,∴AD=AE,∠DAE=60°,∵ΔABC是等边三角形,∴AB=AC,∠BAC=60°,∴∠BAC=∠DAE,∴∠BAD=∠CAE,在ΔBAD和ΔCAE中,AB=AC∠BAD=∠CAE AD=AE,∴ΔBAD≅ΔCAE(SAS),∴BD=CE;(2)证明:如图,过点C作CG⎳BP交DF的延长线于点G,∴∠G=∠BDF,∴∠G =30°,由(1)可知,BD =CE ,∠CEA =∠BDA ,∵AD ⊥BP ,∴∠BDA =90°,∴∠CEA =90°,∵∠AED =60°,∴∠CED =30°=∠G ,∴CE =CG ,∴BD =CG ,在ΔBDF 和ΔCGF 中,∠BDF =∠G∠BFD =∠CFG BD =CG,∴ΔBDF ≅ΔCGF (AAS ),∴BF =FC ,即F 为BC 的中点;(3)解:如图,连接AF ,∵ΔABC 是等边三角形,BF =FC ,∴AF ⊥BC ,∴∠AFC =90°,∴∠AFC =∠AEC =90°,∴点A ,F ,C ,E 四点在以AC 为直径的圆上,∴EF 的最大值为直径,即最大值为1.【点评】本题主要考查了等边三角形的性质,全等三角形的判定与性质,四点共圆等知识,作辅助线构造全等三角形是解题的关键.16.(2023秋•东城区校级期中)如图1,在Rt ΔABC 中,∠ABC =90°,BA =BC ,直线MN 是过点A 的直线CD ⊥MN 于点D ,连接BD .(1)观察猜想张老师在课堂上提出问题:线段DC ,AD ,BD 之间有什么数量关系.经过观察思考,小明出一种思路:如图1,过点B 作BE ⊥BD ,交MN 于点E ,进而得出:DC +AD =BD .(2)探究证明将直线MN 绕点A 顺时针旋转到图2的位置写出此时线段DC ,AD ,BD之间的数量关系,并证明(3)拓展延伸在直线MN 绕点A 旋转的过程中,当ΔABD 面积取得最大值时,若CD 长为1,请直接写BD 的长.【分析】(1)由题意:ΔBAE≅ΔBCD,推出AE=CD,BE=BD,推出CD+AD=AD+AE=DE,ΔBDE是等腰直角三角形,推出DE=2BD,可得DC+AD=2BD;(2)结论:AD-DC=2BD.过点B作BE⊥BD,交MN于点E.AD交BC于O.只要证明ΔCDB≅ΔAEB,即可解决问题;(3)如图3中,当点D在线段AB的垂直平分线上且在AB的右侧时,ΔABD的面积最大.【解答】解:(1)如图1中,由题意:ΔBAE≅ΔBCD,∴AE=CD,BE=BD,∴CD+AD=AD+AE=DE,∵ΔBDE是等腰直角三角形,∴DE=2BD,∴DC+AD=2BD,故答案为2.(2)AD-DC=2BD.证明:如图,过点B作BE⊥BD,交MN于点E.AD交BC于O.∵∠ABC=∠DBE=90°,∴∠ABE+∠EBC=∠CBD+∠EBC,∴∠ABE=∠CBD.∵∠BAE+∠AOB=90°,∠BCD+∠COD=90°,∠AOB=∠COD,∴∠BAE=∠BCD,∴∠ABE=∠DBC.又∵AB=CB,∴ΔCDB≅ΔAEB,∴CD=AE,EB=BD,∴△BD为等腰直角三角形,DE=2BD.∵DE=AD-AE=AD-CD,∴AD-CD=2BD.(3)如图3中,易知A、B、C、D四点共圆,当点D在线段AB的垂直平分线上且在AB的右侧时,ΔABD的面积最大.。
中考数学压轴题-圆的压轴题 含解析
![中考数学压轴题-圆的压轴题 含解析](https://img.taocdn.com/s3/m/8fd29d9533d4b14e852468a4.png)
圆的压轴题(1)1、如图,BF 为⊙O 的直径,直线AC 交⊙O 于A ,B 两点,点D 在⊙O 上,BD 平分∠OBC ,DE ⊥AC 于点E 。
(1)求证:直线DE 是⊙O 的切线;(2)若 BF=10,sin ∠BDE=,求DE 的长。
2、如图,AN 是M ⊙的直径,NB x ∥轴,AB 交M ⊙于点C .(1)若点()0,6A ,()0,2N ,30ABN =∠°,求点B 的坐标;(2)若D 为线段NB 的中点,求证:直线CD 是M ⊙的切线.x y C D M O B NA3、如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.4、已知△ABC的内切圆⊙O与AB、BC、AC分别相切于点D、E、F,若=,如图1,.(1)判断△ABC的形状,并证明你的结论;(2)设AE与DF相交于点M,如图2,AF=2FC=4,求AM的长.5、如图,AB是⊙O的直径,AC是上半圆的弦,过点C作⊙O的切线DE交AB的延长线于点E,过点A作切线DE的垂线,垂足为D,且与⊙O交于点F,设∠DAC,∠CEA的度数分别是α,β.(1)用含α的代数式表示β,并直接写出α的取值范围;(2)连接OF与AC交于点O′,当点O′是AC的中点时,求α,β的值.6、如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD的外接圆.(1)求证:AB是⊙O的切线;(2)若AC=8,tan∠BAC=,求⊙O的半径.7、如图,AB为⊙O的直径,CB,CD分别切⊙O于点B,D,CD交BA的延长线于点E,CO的延长线交⊙O于点G,EF⊥OG于点F.(1)求证:∠FEB=∠ECF;(2)若BC=6,DE=4,求EF的长.8、如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.(1)求证:BE与⊙O相切;(2)设OE交⊙O于点F,若DF=1,BC=2 ,求阴影部分的面积.9、如图,已知⊙O的直径CD=6,A,B为圆周上两点,且四边形OABC是平行四边形,过A点作直线EF∥BD,分别交CD,CB的延长线于点E,F,AO与BD交于G点.(1)求证:EF是⊙O的切线;(2)求AE的长.10、如图,C、D是半圆O上的三等分点,直径AB=4,连接AD、AC,DE⊥AB,垂足为E,DE交AC于点F.(1)求∠AFE的度数;(2)求阴影部分的面积(结果保留π和根号).11、如图,MN是⊙O的直径,MN=4,点A在⊙O上,∠AMN=30°,B为的中点,P是直径MN上一动点.(1)利用尺规作图,确定当PA+PB最小时P点的位置(不写作法,但要保留作图痕迹).(2)求PA+PB的最小值.12、如图,已知直线PT与⊙O相切于点T,直线PO与⊙O相交于A,B两点.(1)求证:PT2=PA•PB;(2)若PT=TB=,求图中阴影部分的面积.13、如图,PA、PB是⊙O的切线,A、B为切点,∠APB=60°,连接PO并延长与⊙O交于C点,连接AC,BC.(1)求证:四边形ACBP是菱形;(2)若⊙O半径为1,求菱形ACBP的面积.14、如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF ∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.15、如图,梯形ABCD中,AD∥BC,AE⊥BC于E,∠ADC的平分线交AE于点O,以点O为圆心,OA为半径的圆经过点B,交BC于另一点F.(1)求证:CD与⊙O相切;(2)若BF=24,OE=5,求tan∠ABC的值.16、已知:如图,MN为⊙O的直径,ME是⊙O的弦,MD垂直于过点E的直线DE,垂足为点D,且ME平分∠DMN.求证:(1)DE是⊙O的切线;(2)ME2=MD•MN.参考答案1、【解答】解:(1)如图所示,连接OD,∵OD=OB,∴∠ODB=∠OBD,∵BD平分∠OBC,∴∠OBD=∠DBE,∴∠ODB=∠DBE,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∵OD是⊙O的半径,∴直线DE是⊙O的切线;(2)如图,连接DF,∵BF是⊙O的直径,∴∠FDB=90°,∴∠F+∠OBD=90°,∵∠OBD=∠DBE,∠BDE+∠DBE=90°,∴∠F=∠BDE,在Rt△BDF中,=sinF=sin∠BDE=,∴BD=10×=2,∴在Rt△BDE中,sin∠BDE==,∴BE=2×=2,∴在Rt△BDE中,DE===4。
专题06 圆的有关动点综合问题-突破中考数学压轴题讲义(解析版)
![专题06 圆的有关动点综合问题-突破中考数学压轴题讲义(解析版)](https://img.taocdn.com/s3/m/fb125923c381e53a580216fc700abb68a982add3.png)
【类型综述】综合题是指学生在不同的学习阶段所学的知识,不同章节所学的知识,特别是代数、几何不同学科中所学的知识,综合运用进行解题的数学题目,它既能考察同学们对数学基础知识基本方法掌握的熟练程度,又能考察综合运用数学知识分析问题、解决问题的能力。
几何中关于圆的综合题大致可分为:(1)以几何知识为主体的综合题;(2)代数、几何知识相结合的综合题;(3)圆中的探索型问题;【方法揭秘】直线与圆的位置关系问题,一般也无法先画出比较准确的图形.解这类问题,一般也分三步走,第一步先罗列两要素:R和d,第二步列方程,第三步解方程并验根.第一步在罗列两要素R和d的过程中,确定的要素罗列出来以后,不确定的要素要用含有x的式子表示.第二步列方程,就是根据直线与圆相切时d=R列方程.如图1,直线443y x=+与x轴、y轴分别交于A、B两点,圆O的半径为1,点C在y轴的正半轴上,如果圆C既与直线AB相切,又与圆O相切,求点C的坐标.“既……,又……”的双重条件问题,一般先确定一个,再计算另一个.假设圆C与直线AB相切于点D,设CD=3m,BD=4m,BC=5m,那么点C的坐标为(0,4-5m).罗列三要素:对于圆O,r=1;对于圆C,R=3m;圆心距OC=4-5m.分类列方程:两圆外切时,4-5m=3m+1;两圆内切时,4-5m=3m-1.把这个问题再拓展一下,如果点C在y轴上,那么还要考虑点C在y轴负半轴.相同的是,对于圆O,r=1;对于圆C,R=3m;不同的是,圆心距OC=5m-4.图1【典例分析】例1如图1,直线AB与x轴交于点A(-4,0),与y轴交于点B(0,3).点P从点A出发,以每秒1个单位长度的速度沿直线AB向点B移动.同时将直线34y x以每秒0.6个单位长度的速度向上平移,交OA于点C,交OB于点D,设运动时间为t(0<t<5)秒.(1)证明:在运动过程中,四边形ACDP总是平行四边形;(2)当t取何值时,四边形ACDP为菱形?请指出此时以点D为圆心、OD长为半径的圆与直线AB 的位置关系并说明理由.图1思路点拨1.用含t的式子把线段OD、OC、CD、AP、AC的长都可以表示出来.2.两条直线的斜率相等,这两条直线平行.3.判断圆与直线的位置关系,就是比较圆心到直线的距离与半径的大小.满分解答(2)如图3,如果四边形ACDP为菱形,那么AC=AP.所以4-0.8t =t .解得t =209.此时OD =0.6t =43.所以BD =433-=53.作DE ⊥AB 于E .在Rt △BDE 中,sin B =45,BD =53,所以DE =BD ·sin B =43.因此OD =DE ,即圆心D 到直线AB 的距离等于圆D 的半径.所以此时圆D 与直线AB 相切于点E (如图4).图2图3考点伸展在本题情境下,点P 运动到什么位置时,平行四边形ACDP 的面积最大?S 平行四边形ACDP =AC ·DO =43(4)55t t -⨯=21212+255t t -=2125(3252t --+.当52t =时,平行四边形ACDP 的面积最大,最大值为3.此时点P 是AB 的中点(如图5).图4图5例2如图1,PQ 为圆O 的直径,点B 在线段PQ 的延长线上,OQ =QB =1,动点A 在圆O 的上半圆上运动(包含P 、Q 两点),以线段AB 为边向上作等边三角形ABC .(1)当线段AB 所在的直线与圆O 相切时,求△ABC 的面积(如图1);(2)设∠AOB =α,当线段AB 与圆O 只有一个公共点(即A 点)时,求α的范围(如图2,直接写出答案);(3)当线段AB 与圆O 有两个公共点A 、M 时,如果AO ⊥PM 于点N ,求CM 的长(如图3).图1图2图3思路点拨1.过点B 画圆O 的切线,可以帮助理解第(1)、(2)题的题意.2.第(3)题发现AO //MQ 很重要,进一步发现NO 、MQ 是中位线就可以计算了.满分解答此时等边三角形ABC 3602︒=,所以S △ABC =4.图4图5图6考点伸展第(2)题的题意可以这样理解:如图7,过点B 画圆O 的切线,切点为G .如图8,弧GQ 上的每一个点(包括点G 、Q )都是符合题意的点A ,即线段AB 与圆O 只有一个公共点(即A 点).如图9,弧GP 上的每一个点A (不包括点Q )与点B 连成的线段AB ,与圆O 都有两个交点A 、M .图7图8图9例3在Rt △ABC 中,∠C =90°,AC =6,53sin B ,⊙B 的半径长为1,⊙B 交边CB 于点P ,点O是边AB 上的动点.(1)如图1,将⊙B 绕点P 旋转180°得到⊙M ,请判断⊙M 与直线AB 的位置关系;(2)如图2,在(1)的条件下,当△OMP 是等腰三角形时,求OA 的长;(3)如图3,点N 是边BC 上的动点,如果以NB 为半径的⊙N 和以OA 为半径的⊙O 外切,设NB =y ,OA =x ,求y 关于x 的函数关系式及定义域.图1图2图3思路点拨1.∠B 的三角比反复用到,注意对应关系,防止错乱.2.分三种情况探究等腰△OMP ,各种情况都有各自特殊的位置关系,用几何说理的方法比较简单.3.探求y 关于x 的函数关系式,作△OBN 的边OB 上的高,把△OBN 分割为两个具有公共直角边的直角三角形.满分解答(1)在Rt △ABC 中,AC =6,53sin =B ,所以AB =10,BC =8.过点M 作MD ⊥AB ,垂足为D .在Rt △BMD 中,BM =2,3sin 5MD B BM ==,所以65MD =.因此MD >MP ,⊙M 与直线AB 相离.图4(2)①如图4,MO ≥MD >MP ,因此不存在MO =MP 的情况.②如图5,当PM =PO 时,又因为PB =PO ,因此△BOM 是直角三角形.在Rt △BOM 中,BM =2,4cos 5BO B BM ==,所以85BO =.此时425OA =.③如图6,当OM =OP 时,设底边MP 对应的高为OE .在Rt △BOE 中,BE =32,4cos 5BE B BO ==,所以158BO =.此时658OA =.图5图6图7图8考点伸展第(2)题也可以这样思考:如图8,在Rt △BMF 中,BM =2,65MF =,85BF =.在Rt △OMF 中,OF =8421055x x --=-,所以222426()()55OM x =-+.在Rt △BPQ 中,BP =1,35PQ =,45BQ =.在Rt △OPQ 中,OF =4461055x x --=-,所以222463()()55OP x =-+.①当MO =MP =1时,方程22426()(155x -+=没有实数根.②当PO =PM =1时,解方程22463()(155x -+=,可得425x OA ==③当OM =OP 时,解方程22426()()55x -+22463()(55x =-+,可得658x OA ==.例4如图1,在Rt △ABC 中,∠ACB =90°,AC =4,cos A =14,点P 是边AB 上的动点,以PA 为半径作⊙P .(1)若⊙P 与AC 边的另一个交点为D ,设AP =x ,△PCD 的面积为y ,求y 关于x 的函数解析式,并直接写出函数的定义域;(2)若⊙P 被直线BC 和直线AC 截得的弦长相等,求AP 的长;(3)若⊙C 的半径等于1,且⊙P 与⊙C ,求AP 的长.图1备用图思路点拨1.△PCD 的底边CD 上的高,就是弦AD 对应的弦心距.2.若⊙P 被直线BC 和直线AC 截得的弦长相等,那么对应的弦心距相等.3.⊙C 的半径等于1,公共弦MN ,那么△CMN 是等腰直角三角形.在四边形CMPN 中,利用勾股定理列关于x (⊙P 的半径)的方程.满分解答(1)如图2,在Rt △ABC 中,AC =4,cos A =14,所以AB =16,BC =设弦AD 对应的弦心距为PE ,那么AE =14AP =14x ,PE =4AP =4x .所以y =S △PCD =12CD PE ⋅=11(4)22x x -=2x x .定义域是0<x <8.(2)若⊙P 被直线BC 和直线AC 截得的弦长相等,那么对应的弦心距PF =PE .因此四边形AEPF 是正方形(如图3),设正方形的边长为m .由S △ABC =S △ACP +S △BCP ,得AC ·BC =m (AC +BC ).所以m=307-.此时AE =4AP =4AE图2图3图4图5考点伸展第(2)题也可以这样计算:由于PF =14BP =1(16)4x -,由PE =PF ,得1(16)44x x =-.解得87x =.例5如图1,抛物线y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的对称轴为y 轴,且经过(0,0)和1)16两点,点P 在该抛物线上运动,以点P 为圆心的⊙P 总经过定点A (0,2).(1)求a、b、c的值;(2)求证:在点P运动的过程中,⊙P始终与x轴相交;(3)设⊙P与x轴相交于M(x1,0)、N(x2,0)两点,当△AMN为等腰三角形时,求圆心P的纵坐标.图1思路点拨1.不算不知道,一算真奇妙,原来⊙P在x轴上截得的弦长MN=4是定值.2.等腰三角形AMN存在三种情况,其中MA=MN和NA=NM两种情况时,点P的纵坐标是相等的.满分解答所以在点P运动的过程中,⊙P始终与x轴相交.图2图3②如图4,当MA =MN 时,在Rt △AOM 中,OA =2,AM =4,所以OM =3.此时x =OH =32+.所以点P 的纵坐标为22211(232)(31)4344x ===+③如图5,当NA =NM 时,点P 的纵坐标为也为43+.图4图5考点伸展如果点P 在抛物线214y x =上运动,以点P 为圆心的⊙P 总经过定点B (0,1),那么在点P 运动的过程中,⊙P 始终与直线y =-1相切.这是因为:设点P 的坐标为21(,)4x x .已知B (0,1),所以222222111(1)(1)1444PB x x x x =+-=++.而圆心P 到直线y =-1的距离也为2114x +,所以半径PB =圆心P 到直线y =-1的距离.所以在点P 运动的过程中,⊙P 始终与直线y =-1相切.【变式训练】1.(2017北京第29题)在平面直角坐标系xOy 中的点P 和图形M ,给出如下的定义:若在图形M 上存在一点Q ,使得P Q 、两点间的距离小于或等于1,则称P 为图形M 的关联点.(1)当O 的半径为2时,①在点1231135,0,,,,02222P P P ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭中,O 的关联点是_______________.②点P 在直线y x =-上,若P 为O 的关联点,求点P 的横坐标的取值范围.(2)C 的圆心在x 轴上,半径为2,直线1y x =-+与x 轴、y 轴交于点A B 、.若线段AB 上的所有点都是C 的关联点,直接写出圆心C 的横坐标的取值范围.【答案】(1)①23,P P ,②-322≤x ≤-22或22≤x ≤322,(2)-2≤x ≤1或2≤x ≤22本题解析:(1)12315,01,22OP P OP ===,点1P 与⊙的最小距离为32,点2P 与⊙的最小距离为1,点3P 与⊙的最小距离为12,∴⊙的关联点为2P 和3P .(2)∵y=-x+1与轴、轴的交点分别为A、B两点,∴令y=0得,-x+1=0,解得x=1,令得x=0得,y=0,∴A(1,0),B(0,1),分析得:如图1,当圆过点A时,此时CA=3,∴点C坐标为,C(-2,0)如图2,当圆与小圆相切时,切点为D,∴CD=1,如图4,当圆过点B时,连接BC,此时BC=3,-=,C点坐标为2,0).在Rt△OCB中,由勾股定理得OC=2312考点:切线,同心圆,一次函数,新定义.2.(2017广东广州第25题)如图14,AB 是O 的直径,,2AC BC AB ==,连接AC .(1)求证:045CAB ∠=;(2)若直线l 为O 的切线,C 是切点,在直线l 上取一点D ,使,BD AB BD =所在的直线与AC 所在的直线相交于点E ,连接AD .①试探究AE 与AD 之间的数量关系,并证明你的结论;②EB CD 是否为定值?若是,请求出这个定值;若不是,请说明理由.【答案】(1)详见解析;(2)①AE AD =②2BE CD =(2)①如图所示,作BF l ⊥于F由(1)可得,ACB ∆为等腰直角三角形.O 是AB 的中点.CO AO BO ∴==ACB ∴∆为等腰直角三角形.又l 是O 的切线,OC l BF l∴⊥⊥ ∴四边形OBEC 为矩形22AB BF BD BF ∴=∴=303075BDF DBA BDA BAD ∴∠=︒∴∠=︒∠=∠=︒,15901575CBE CEB DEA∴∠=︒∠=︒-︒=︒=∠,,ADE AED AD AE∴∠=∠∴=②当ABD ∠为钝角时,如图所示,同样,1,302BF BD BDC =∴∠=︒1801501509015152ABD AEB CBE ADB ︒-︒∴∠=︒∠=︒-∠=︒∠=︒,,AE AD∴=考点:圆的相关知识的综合运用3.(2017湖南湘潭第26题)如图,动点在以为圆心,为直径的半圆弧上运动(点不与点及的中点重合),连接.过点作于点,以为边在半圆同侧作正方形,过点作的切线交射线于点,连接、.(1)探究:如左图,当动点在上运动时;①判断是否成立?请说明理由;②设,是否为定值?若是,求出该定值,若不是,请说明理由;③设,是否为定值?若是,求出该定值,若不是,请说明理由;(2)拓展:如右图,当动点在上运动时;分别判断(1)中的三个结论是否保持不变?如有变化,请直接写出正确的结论.(均不必说明理由)【答案】(1)①成立,理由见解析;②为定值1;③ 为定值45°;(2)不发生变化.试题解析:(1)①成立,理由如下:过点M作ME⊥AB于点E,以BE为边在半圆同侧作正方形BCDE,∴∠MEO=∠MDN=90°,∴∠MOE+∠EMO=90°过M点的的切线交射线DC于点N,∴∠OMN=90°,∴∠DMN+∠EMO=90°∴∠MOE=∠DMN∴△OEM∽△MDN②k是定值1,理由如下:过点B作BG⊥MN,∵过M点的的切线交射线DC于点N,∴∠OMN=90°,∵BG⊥MN,∴∠BGM=90°,③α为定值45°,理由如下:由②知:∠OBM=∠MBG,△BNG ≌△BCN,∴∠GBN=∠CBN,∵正方形BCDE,∴∠EBC=90°,∴∴∠MBN=01452EBC ∠=(2)不发生变化.4.(2017湖南株洲第26题)已知二次函数y=﹣x 2+bx +c +1,①当b=1时,求这个二次函数的对称轴的方程;②若c=14b 2﹣2b ,问:b 为何值时,二次函数的图象与x 轴相切?③若二次函数的图象与x 轴交于点A (x 1,0),B (x 2,0),且x 1<x 2,与y 轴的正半轴交于点M ,以AB 为直径的半圆恰好过点M ,二次函数的对称轴l 与x 轴、直线BM 、直线AM 分别交于点D 、E 、F ,且满足13DE EF =,求二次函数的表达式.【答案】①.二次函数的对称轴的方程为x=12;②.b 为2或2时,二次函数的图象与x 轴相切;③.二次函数的表达式为y=﹣x 2+32x +1.出△OAM ∽△OMB ,得出OM 2=OA•OB ,由二次函数的图象与x 轴的交点和根与系数关系得出OA=﹣x 1,OB=x 2,x 1+x 2,=b ,x 1•x 2=﹣(c +1),得出方程(c +1)2=c +1,得出c=0,OM=1,证明△BDE ∽△BOM ,△AOM ∽△ADF ,得出DE BD OM OD =,OM OADF AD=,得出OB=4OA ,即x 2=﹣4x 1,由x 1•x 2=﹣(c +1)=﹣1,得出方程组122114x x x x ⋅=-⎧⎨=-⎩,解方程组求出b 的值即可.试题解析:①二次函数y=﹣x 2+bx +c +1的对称轴为x=2b ,当b=1时,2b =12,∴当b=1时,求这个二次函数的对称轴的方程为x=12.③∵AB 是半圆的直径,∴∠AMB=90°,∴∠OAM +∠OBM=90°,∵∠AOM=∠MOB=90°,∴∠OAM +∠OMA=90°,∴∠OMA=∠OBM ,∴△OAM ∽△OMB ,∴OM OAOB OM=,∴OM 2=OA•OB ,∵二次函数的图象与x 轴交于点A (x 1,0),B (x 2,0),∴OA=﹣x 1,OB=x 2,x 1+x 2,=b ,x 1•x 2=﹣(c +1),∵OM=c +1,∴(c +1)2=c +1,解得:c=0或c=﹣1(舍去),∴c=0,OM=1,∵二次函数的对称轴l 与x 轴、直线BM 、直线AM 分别交于点D 、E 、F ,且满足13DE EF =,∴AD=BD ,DF=4DE ,DF ∥OM ,∴△BDE ∽△BOM ,△AOM ∽△ADF ,∴,DE BD OM OA OM OB DF AD ==,∴DE=BD OB ,DF=AD OA ,∴AD BDOA OB=×4,∴OB=4OA ,即x 2=﹣4x 1,∵x 1•x 2=﹣(c +1)=﹣1,∴122114x x x x ⋅=-⎧⎨=-⎩,解得:12122x x ⎧=-⎪⎨⎪=⎩,∴b=﹣12+2=32,∴二次函数的表达式为y=﹣x 2+32x +1.考点:二次函数综合题;二次函数的性质.5.(2017哈尔滨第26题)已知:AB 是O ⊙的弦,点C 是AB 的中点,连接OB 、OC ,OC 交AB 于点D .(1)如图1,求证:AD BD =;(2)如图2,过点B 作O ⊙的切线交OC 的延长线于点M ,点P 是AC 上一点,连接AP 、BP ,求证:90APB OMB -=∠∠°.(3)如图3,在(2)的条件下,连接DP 、MP ,延长MP 交O ⊙于点Q ,若6MQ DP =,3sin 5ABO =∠,求MPMQ的值.【答案】(1)证明见解析;(2)证明见解析;(3)518PM MQ =.试题解析:(1)如图1,连接OA,∵C 是AB 的中点,∴AC BC =,∴∠AOC=∠BOC,∵OA=OB,∴OD⊥AB,AD=BD;(2)如图2,延长BO 交⊙O 于点T,连接PT∵BT是⊙O的直径,∴∠BPT=90°,∴∠APT=∠APB﹣∠BPT=∠APB﹣90°,∵BM是⊙O的切线,∴OB⊥BM,又∠OBA+∠MBA=90°,∴∠ABO=∠OMB,又∠ABO=∠APT,∴∠APB﹣90°=∠OMB,∴∠APB﹣∠OMB=90°;考点:圆的综合题.6.(2017年贵州省黔东南州第24题)如图,⊙M的圆心M(﹣1,2),⊙M经过坐标原点O,与y轴交于点A,经过点A的一条直线l解析式为:y=﹣x+4与x轴交于点B,以M为顶点的抛物线经过x轴上点D(2,0)和点C(﹣4,0).(1)求抛物线的解析式;(2)求证:直线l是⊙M的切线;(3)点P为抛物线上一动点,且PE与直线l垂直,垂足为E,PF∥y轴,交直线l于点F,是否存在这样的点P,使△PEF的面积最小?若存在,请求出此时点P的坐标及△PEF面积的最小值;若不存在,请说明理由.【答案】(1)y=﹣29x2﹣49x+169(2)证明见解析(3)50415120试题解析:(1)设抛物线的解析式为y=a(x﹣2)(x+4),将点M的坐标代入得:﹣9a=2,解得:a=﹣29.∴抛物线的解析式为y=﹣29x2﹣49x+169.(2)连接AM,过点M作MG⊥AD,垂足为G.把x=0代入y=﹣12x+4得:y=4,∴∠MAG=∠ABO.∵∠OAB+∠ABO=90°,∴∠MAG+∠OAB=90°,即∠MAB=90°.∴l是⊙M的切线.(3)∵∠PFE+∠FPE=90°,∠FBD+∠PFE=90°,∴∠FPE=∠FBD.∴tan∠FPE=12.5:2:1.∴△PEF的面积=12PE•EF=12×255PF•55PF=15PF2.考点:二次函数综合题7.(2017年四川省内江市第27题)如图,在⊙O中,直径CD垂直于不过圆心O的弦AB,垂足为点N,连接AC,点E在AB上,且AE=CE.(1)求证:AC2=AE•AB;(2)过点B作⊙O的切线交EC的延长线于点P,试判断PB与PE是否相等,并说明理由;(3)设⊙O半径为4,点N为OC中点,点Q在⊙O上,求线段PQ的最小值.【答案】(1)证明见解析;(2)PB=PE;(3)421123.【解析】试题分析:(1)证明△AEC∽△ACB,列比例式可得结论;(2)如图2,证明∠PEB=∠COB=∠PBN,根据等角对等边可得:PB=PE;(3)如图3,先确定线段PQ的最小值时Q的位置:因为OQ为半径,是定值4,则PQ+OQ的值最小时,PQ最小,当P、Q、O三点共线时,PQ最小,先求AE的长,从而得PB的长,最后利用勾股定理求OP 的长,与半径的差就是PQ的最小值.试题解析:(1)如图1,连接BC ,∵CD 为⊙O 的直径,AB ⊥CD ,∴BC AC =,∴∠A =∠ABC ,∵EC =AE ,∴∠A =∠ACE ,∴∠ABC =∠ACE ,∵∠A =∠A ,∴△AEC ∽△ACB ,∴AC AEAB AC=,∴AC 2=AE •AB ;(3)如图3,∵N 为OC 的中点,∴ON =12OC =12OB ,Rt △OBN 中,∠OBN =30°,∴∠COB =60°,∵OC =OB ,∴△OCB 为等边三角形,∵Q 为⊙O 任意一点,连接PQ 、OQ ,因为OQ 为半径,是定值4,则PQ +OQ 的值最小时,PQ 最小,当P 、Q 、O 三点共线时,PQ 最小,∴Q 为OP 与⊙O 的交点时,PQ 最小,∠A =12∠COB =30°,∴∠PEB =2∠A =60°,∠ABP =90°﹣30°=60°,∴△PBE 是等边三角形,Rt △OBN 中,BN ,∴AB =2BN =设AE =x ,则CE =x ,EN =﹣x ,Rt △CNE 中,2222)x x =+,x =433,∴BE =PB =433-=833,Rt △OPB 中,OP =4213,∴PQ =4213﹣4=421123-.则线段PQ 的最小值是421123-.考点:圆的综合题;最值问题;探究型;压轴题.8.(2017年浙江省杭州市第23题)如图,已知△ABC 内接于⊙O,点C 在劣弧AB 上(不与点A,B 重合),点D 为弦BC 的中点,DE⊥BC,DE 与AC 的延长线交于点E,射线AO 与射线EB 交于点F,与⊙O 交于点G,设∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,(1)点点同学通过画图和测量得到以下近似数据:ɑ30°40°50°60°β120°130°140°150°γ150°140°130°120°猜想:β关于ɑ的函数表达式,γ关于ɑ的函数表达式,并给出证明:(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.【答案】(1)β=α+90°,γ=﹣α+180°(2)5试题解析:(1)猜想:β=α+90°,γ=﹣α+180°连接OB,∴由圆周角定理可知:2∠BCA=360°﹣∠BOA,∵OB=OA,∴∠OBA=∠OAB=α,∴∠BOA=180°﹣2α,∴2β=360°﹣(180°﹣2α),∴β=α+90°,∵D是BC的中点,DE⊥BC,∴OE是线段BC的垂直平分线,∴BE=CE,∠BED=∠CED,∠EDC=90°∵∠BCA=∠EDC+∠CED,∴β=90°+∠CED,∴∠CED=α,∴∠CED=∠OBA=α,∴O、A、E、B四点共圆,∴∠EBO+∠EAG=180°,∴∠EBA+∠OBA+∠EAG=180°,∴γ+α=180°;设CE=3x,AC=x,由(1)可知:BC=2CD=6,∵∠BCE=45°,∴CE=BE=3x,∴由勾股定理可知:(3x)2+(3x)2=62,,考点:1、圆的综合问题,2、勾股定理,3、解方程,4、垂直平分线的性质9.(2017浙江温州第24题)(本题14分)如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD 上),连结AC,DE.(1)当∠APB=28°时,求∠B和CM的度数;(2)求证:AC=AB。
中考热点题型攻略 与圆有关的压轴题 经典模型及精选例题 免费
![中考热点题型攻略 与圆有关的压轴题 经典模型及精选例题 免费](https://img.taocdn.com/s3/m/f102dc2b59fb770bf78a6529647d27284b73370a.png)
中考热点题型攻略-——与圆有关的压轴题(精选例题讲解)
三、经典模型分析——等腰三角形模型(一)
与圆有关的压轴题偏爱等腰三角形,主要会遇到下以情形:
如图,已知△ABC中,以AB为直径作⊙O交BC于D,交AC于E,
方法指导:
1.由AB为直径,可有两种辅助线作法:连接AD或BE,都可以得到直角:
A
F
O
B
D
C
中考热点题型攻略-——与圆有关的压轴题(精选例题讲解)
四、经典考题:
例5:如图,△ABC中AB=BC,以AB为直径的⊙O交AC于D点,直线DP⊥BC于点E.
(1)求证:直线DP是⊙O的切线;
(2)若∠ABC=120°,AB=4cm,求AC的长.
C
D
E
P
A
B
O
中考热点题型攻略-——与圆有关的压轴题(精选例题讲解)
思路和方法;
3.增强分析能力、解题能力、应考能力.
中考热点题型攻略-——与圆有关的压轴题(精选例题讲解)
二、与圆有关的压轴题的题型特点:
1.一般都与相切有关,一般有1--3问;
2.第1问一般为圆的切线的证明;
2.第2、3问、形式较灵活,主要有求弦长、求直径、求切线长、求
弦心距、求角度、求周长、求面积、证相似、证线段相等、证角
与圆有关的压轴题偏爱等腰三角形,主要会遇到下以情形:
如图,已知△ABC中,以AB为直径作⊙O交BC于D,交AC于E,
方法指导:
A
1.若已知BD=DC,则连接AD、OD
可得:OD是中位线、AD是BC的中垂线、AB=AC
O
E
2.若已知AE=EC,则连接BE、OE
可得:OE是中位线、BE是AC的中垂线、BA=BC
中考数学圆的综合-经典压轴题及答案解析
![中考数学圆的综合-经典压轴题及答案解析](https://img.taocdn.com/s3/m/d9aa52737cd184254a35353f.png)
中考数学圆的综合-经典压轴题及答案解析一、圆的综合1.如图,以O为圆心,4为半径的圆与x轴交于点A,C在⊙O上,∠OAC=60°.(1)求∠AOC的度数;(2)P为x轴正半轴上一点,且PA=OA,连接PC,试判断PC与⊙O的位置关系,并说明理由;(3)有一动点M从A点出发,在⊙O上按顺时针方向运动一周,当S△MAO=S△CAO时,求动点M所经过的弧长,并写出此时M点的坐标.【答案】(1)60°;(2)见解析;(3)对应的M点坐标分别为:M1(2,﹣3M2(﹣2,﹣3)、M3(﹣2,3M4(2,3).【解析】【分析】(1)由于∠OAC=60°,易证得△OAC是等边三角形,即可得∠AOC=60°.(2)由(1)的结论知:OA=AC,因此OA=AC=AP,即OP边上的中线等于OP的一半,由此可证得△OCP是直角三角形,且∠OCP=90°,由此可判断出PC与⊙O的位置关系.(3)此题应考虑多种情况,若△MAO、△OAC的面积相等,那么它们的高必相等,因此有四个符合条件的M点,即:C点以及C点关于x轴、y轴、原点的对称点,可据此进行求解.【详解】(1)∵OA=OC,∠OAC=60°,∴△OAC是等边三角形,故∠AOC=60°.(2)由(1)知:AC=OA,已知PA=OA,即OA=PA=AC;∴AC=1OP,因此△OCP是直角三角形,且∠OCP=90°,2而OC是⊙O的半径,故PC与⊙O的位置关系是相切.(3)如图;有三种情况:①取C点关于x轴的对称点,则此点符合M点的要求,此时M点的坐标为:M1(2,﹣3劣弧MA的长为:6044 1803ππ⨯=;②取C点关于原点的对称点,此点也符合M点的要求,此时M点的坐标为:M2(﹣2,﹣3劣弧MA的长为:12048 1803ππ⨯=;③取C点关于y轴的对称点,此点也符合M点的要求,此时M点的坐标为:M3(﹣2,3优弧MA的长为:240416 1803ππ⨯=;④当C、M重合时,C点符合M点的要求,此时M4(2,3);优弧MA的长为:300420 1803ππ⨯=;综上可知:当S△MAO=S△CAO时,动点M所经过的弧长为481620,,,3333ππππ对应的M点坐标分别为:M1(2,﹣3M2(﹣2,﹣3)、M3(﹣2,3M4(2,3【点睛】本题考查了切线的判定以及弧长的计算方法,注意分类讨论思想的运用,不要漏解.2.如图,已知四边形ABCD是矩形,点P在BC边的延长线上,且PD=BC,⊙A经过点B,与AD边交于点E,连接CE .(1)求证:直线PD是⊙A的切线;(2)若5sin∠P=23,求图中阴影部份的面积(结果保留无理数).【答案】(1)见解析;(2)20-4π.【解析】分析:(1)过点A作AH⊥PD,垂足为H,只要证明AH为半径即可.(2)分别算出Rt△CED的面积,扇形ABE的面积,矩形ABCD的面积即可.详解:(1)证明:如图,过A作AH⊥PD,垂足为H,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∠PCD=∠BCD=90°,∴∠ADH=∠P,∠AHD=∠PCD=90°,又PD=BC,∴AD=PD,∴△ADH≌△DPC,∴AH=CD,∵CD=AB,且AB是⊙A的半径,∴AH=AB,即AH是⊙A的半径,∴PD是⊙A的切线.(2)如图,在Rt△PDC中,∵sin∠P=23CDPD,5,令CD=2x,PD=3x,由由勾股定理得:(3x)2-(2x)252,解得:x=2,∴CD=4,PD=6,∴AB=AE=CD=4,AD=BC=PD=6,DE=2,∵矩形ABCD的面积为6×4=24,Rt△CED的面积为12×4×2=4,扇形ABE的面积为12π×42=4π,∴图中阴影部份的面积为24-4-4π=20-4π.点睛:本题考查了全等三角形的判定,圆的切线证明,三角形的面积,扇形的面积,矩形的面积.3.如图,△ABC内接于⊙O,弦AD⊥BC垂足为H,∠ABC=2∠CAD.(1)如图1,求证:AB=BC;(2)如图2,过点B作BM⊥CD垂足为M,BM交⊙O于E,连接AE、HM,求证:AE∥HM;(3)如图3,在(2)的条件下,连接BD交AE于N,AE与BC交于点F,若NH=25,AD=11,求线段AB的长.【答案】(1)证明见解析;(2)证明见解析;(3)AB的长为10.【解析】分析:(1)根据题意,设∠CAD=a,然后根据直角三角形的两锐角互余的关系,推导出∠BAC=∠ACB,再根据等角对等边得证结论;(2)延长AD、BM交于点N,连接ED.根据圆周角定理得出∠N=∠DEN=∠BAN,进而根据等角对等边,得到DE=DN,BA=BN,再根据等腰三角形和直角三角形的性质,求得MH∥AE;(3)连接CE,根据(2)的结论,由三角形全等的判定与性质证得HF=HC,然后结合勾股定理求出AC2-AH2=CD2-DH2,解得CD=5,CH=4,AH=8,最后根据锐角三角函数的性质得到AB.详解:(1)证明:设∠CAD=a,则∠ABC=2a,∠C=90°-a,∠BAD=90°-2a,∴∠BAC=90°-2a+a=90°-a∴∠BAC=∠ACB.∴AB=BC(2)证明:延长AD、BM交于点N,连接ED.∵∠DEN=∠DAB,∠N=∠BCD,∠BCD=∠BAN∴∠N=∠DEN=∠BAN∴DE=DN,BA=BN又∵BH⊥AN,DM⊥EN∴EM=NM,HN=HA,∴MH∥AE(3)连接CE.∠BDA=∠BCA,∠BDM=∠BAC,由(1)知∠BCA=∠BAC∴∠BDA=∠BDM,∴△BDM ≌△BDH,∴DH=MH,∠MBD=∠HBD,∴BD ⊥MH又∵MH ∥AE,∴BD ⊥EF,∴△FNB ≌△ENB,同理可证△AFH ≌△ACH,∴HF=HC,又∵FN=NE∴NH ∥EC,EC=2NH,又∵NH=25∴EC=45∠EAC=2∠AEC=2a=∠ABC,可证弧AC=弧EC,∴AC=EC=5设HD=x ,AH=11-x ,∵∠ADC=2∠CAD,翻折△CHD 至△CHG,可证CG=CD=AGAH=CD+DH,CD=AH-DH=11-x-x=11-2x又∵AC 2-AH 2=CD 2-DH 2,∴(52-(11-x)2=(11-2x)2-x 2∴x 1=3,x 2=272(舍去)∴CD=5,CH=4,AH=8. 又∵tan2AH CH a BH DH==,∴BH=6 ∴22226810BM AH +=+= 点睛:此题主要考查了圆的综合,结合圆周角定理,勾股定理,全等三角形的判定与性质,解直角三角形的性质,综合性比较强,灵活添加辅助线,构造方程求解是解题关键.4.矩形ABCD 中,点C (3,8),E 、F 为AB 、CD 边上的中点,如图1,点A 在原点处,点B 在y 轴正半轴上,点C 在第一象限,若点A 从原点出发,沿x 轴向右以每秒1个单位长度的速度运动,点B 随之沿y 轴下滑,并带动矩形ABCD 在平面内滑动,如图2,设运动时间表示为t 秒,当点B 到达原点时停止运动.(1)当t =0时,点F 的坐标为 ;(2)当t =4时,求OE 的长及点B 下滑的距离;(3)求运动过程中,点F 到点O 的最大距离;(4)当以点F 为圆心,FA 为半径的圆与坐标轴相切时,求t 的值.【答案】(1)F (3,4);(2)8-43;(3)7;(4)t 的值为245或325. 【解析】试题分析:(1)先确定出DF ,进而得出点F 的坐标;(2)利用直角三角形的性质得出∠ABO =30°,即可得出结论; (3)当O 、E 、F 三点共线时,点F 到点O 的距离最大,即可得出结论;(4)分两种情况,利用相似三角形的性质建立方程求解即可.试题解析:解:(1)当t =0时.∵AB =CD =8,F 为CD 中点,∴DF =4,∴F (3,4); (2)当t =4时,OA =4.在Rt △ABO 中,AB =8,∠AOB =90°,∴∠ABO =30°,点E 是AB 的中点,OE =12AB =4,BO =43,∴点B 下滑的距离为843-.(3)当O 、E 、F 三点共线时,点F 到点O 的距离最大,∴FO=OE+EF=7.(4)在Rt △ADF 中,FD 2+AD 2=AF 2,∴AF 22FD AD +,①设AO =t 1时,⊙F 与x 轴相切,点A 为切点,∴FA ⊥OA ,∴∠OAB +∠FAB =90°.∵∠FAD +∠FAB =90°,∴∠BAO =∠FAD .∵∠BOA =∠D =90°,∴Rt △FAE ∽Rt △ABO ,∴AB AO FA FE =,∴1853t =,∴t 1=245,②设AO =t 2时,⊙F 与y 轴相切,B 为切点,同理可得,t 2=325.综上所述:当以点F为圆心,FA为半径的圆与坐标轴相切时,t的值为245或325.点睛:本题是圆的综合题,主要考查了矩形的性质,直角三角形的性质,中点的意义,勾股定理,相似三角形的判定和性质,切线的性质,解(2)的关键是得出∠ABO=30°,解(3)的关键是判断出当O、E、F三点共线时,点F到点O的距离最大,解(4)的关键是判断出Rt△FAE∽Rt△ABD,是一道中等难度的中考常考题.5.某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径.如图,若这个输水管道有水部分的水面宽AB=16cm,水最深的地方的高度为4cm,求这个圆形截面的半径.【答案】10cm【解析】分析:先过圆心O作半径CO⊥AB,交AB于点D设半径为r,得出AD、OD的长,在Rt△AOD中,根据勾股定理求出这个圆形截面的半径.详解:解:过点O作OC⊥AB于D,交⊙O于C,连接OB,∵OC⊥AB∴BD=12AB=12×16=8cm由题意可知,CD=4cm∴设半径为xcm,则OD=(x﹣4)cm在Rt△BOD中,由勾股定理得:OD2+BD2=OB2(x﹣4)2+82=x2解得:x=10.答:这个圆形截面的半径为10cm.点睛:此题考查了垂经定理和勾股定理,关键是根据题意画出图形,再根据勾股定理进行求解.6.如图1,四边形ABCD为⊙O内接四边形,连接AC、CO、BO,点C为弧BD的中点.(1)求证:∠DAC=∠ACO+∠ABO ;(2)如图2,点E 在OC 上,连接EB ,延长CO 交AB 于点F ,若∠DAB=∠OBA+∠EBA .求证:EF=EB ;(3)在(2)的条件下,如图3,若OE+EB=AB ,CE=2,AB=13,求AD 的长.【答案】(1)证明见解析;(2)证明见解析;(3)AD=7.【解析】试题分析:(1)如图1中,连接OA ,只要证明∠CAB=∠1+∠2=∠ACO+∠ABO ,由点C 是»BD中点,推出»»CD CB = ,推出∠BAC=∠DAC ,即可推出∠DAC=∠ACO+∠ABO ; (2)想办法证明∠EFB=∠EBF 即可;(3)如图3中,过点O 作OH ⊥AB ,垂足为H ,延长BE 交HO 的延长线于G ,作BN ⊥CF 于N ,作CK ⊥AD 于K ,连接OA .作CT ∠⊥AB 于T .首先证明△EFB 是等边三角形,再证明△ACK ≌△ACT ,Rt △DKC ≌Rt △BTC ,延长即可解决问题;试题解析:(1)如图1中,连接OA ,∵OA=OC ,∴∠1=∠ACO ,∵OA=OB ,∴∠2=∠ABO ,∴∠CAB=∠1+∠2=∠ACO+∠ABO , ∵点C 是BD u u u r 中点,∴CD CB =u u u r u u u r ,∴∠BAC=∠DAC ,∴∠DAC=∠ACO+∠ABO .(2)如图2中,∵∠BAD=∠BAC+∠DAC=2∠CAB ,∠COB=2∠BAC ,∴∠BAD=∠BOC ,∵∠DAB=∠OBA+∠EBA ,∴∠BOC=∠OBA+∠EBA ,∴∠EFB=∠EBF ,∴EF=EB .(3)如图3中,过点O 作OH ⊥AB ,垂足为H ,延长BE 交HO 的延长线于G ,作BN ⊥CF 于N ,作CK ⊥AD 于K ,连接OA .作CT ∠⊥AB 于T .∵∠EBA+∠G=90°,∠CFB+∠HOF=90°,∵∠EFB=∠EBF ,∴∠G=∠HOF ,∵∠HOF=∠EOG ,∴∠G=∠EOG ,∴EG=EO ,∵OH ⊥AB ,∴AB=2HB ,∵OE+EB=AB ,∴GE+EB=2HB ,∴GB=2HB ,∴cos ∠GBA=12HB GB ,∴∠GBA=60°, ∴△EFB 是等边三角形,设HF=a ,∵∠FOH=30°,∴OF=2FH=2a , ∵AB=13,∴EF=EB=FB=FH+BH=a+132, ∴OE=EF ﹣OF=FB ﹣OF=132﹣a ,OB=OC=OE+EC=132﹣a+2=172﹣a , ∵NE=12EF=12a+134, ∴ON=OE=EN=(132﹣a )﹣(12a+134)=134﹣32a , ∵BO 2﹣ON 2=EB 2﹣EN 2, ∴(172﹣a )2﹣(134﹣32a )2=(a+132)2﹣(12a+134)2, 解得a=32或﹣10(舍弃), ∴OE=5,EB=8,OB=7, ∵∠K=∠ATC=90°,∠KAC=∠TAC ,AC=AC ,∴△ACK ≌△ACT ,∴CK=CT ,AK=AT ,∵CD CB =u u u r u u u r ,∴DC=BC ,∴Rt △DKC ≌Rt △BTC ,∴DK=BT ,∵FT=12FC=5,∴DK=TB=FB ﹣FT=3,∴AK=AT=AB ﹣TB=10,∴AD=AK ﹣DK=10﹣3=7.7.问题发现.(1)如图①,Rt △ABC 中,∠C =90°,AC =3,BC =4,点D 是AB 边上任意一点,则CD 的最小值为______.(2)如图②,矩形ABCD 中,AB =3,BC =4,点M 、点N 分别在BD 、BC 上,求CM+MN 的最小值.(3)如图③,矩形ABCD 中,AB =3,BC =4,点E 是AB 边上一点,且AE =2,点F 是BC 边上的任意一点,把△BEF 沿EF 翻折,点B 的对应点为G ,连接AG 、CG ,四边形AGCD 的面积是否存在最小值,若存在,求这个最小值及此时BF 的长度.若不存在,请说明理由.【答案】(1) 125CD =;(2) CM MN +的最小值为9625.(3) 152【解析】 试题分析:(1)根据两种不同方法求面积公式求解;(2)作C 关于BD 的对称点C ',过C '作BC 的垂线,垂足为N ,求C N '的长即可;(3) 连接AC ,则ADC ACG AGCD S S S =+V V 四,321GB EB AB AE ==-=-=,则点G 的轨迹为以E 为圆心,1为半径的一段弧.过E 作AC 的垂线,与⊙E 交于点G ,垂足为M ,由AEM ACB V V ∽求得GM 的值,再由ACD ACG AGCD S S S =+V V 四边形 求解即可.试题解析:(1)从C 到AB 距离最小即为过C 作AB 的垂线,垂足为D ,22ABC CD AB AC BC S ⋅⋅==V , ∴341255AC BC CD AB ⋅⨯===, (2)作C 关于BD 的对称点C ',过C '作BC 的垂线,垂足为N ,且与BD 交于M ,则CM MN +的最小值为C N '的长,设CC '与BD 交于H ,则CH BD ⊥,∴BMC BCD V V ∽,且125CH =,∴C CB BDC ∠=∠',245CC '=, ∴C NC BCD 'V V ∽, ∴244965525CC BC C N BD ⨯⋅==='', 即CM MN +的最小值为9625. (3)连接AC ,则ADC ACG AGCD S S S =+V V 四,321GB EB AB AE ==-=-=,∴点G 的轨迹为以E 为圆心,1为半径的一段弧.过E 作AC 的垂线,与⊙E 交于点G ,垂足为M ,∵AEM ACB V V ∽,∴EM AE BC AC=, ∴24855AE BC EM AC ⋅⨯===, ∴83155GM EM EG =-=-=, ∴ACD ACG AGCD S S S =+V V 四边形,113345225=⨯⨯+⨯⨯,15.2【点睛】本题考查圆的综合题、最短问题、勾股定理、面积法、两点之间线段最短等知识,解题的关键是利用轴对称解决最值问题,灵活运用两点之间线段最短解决问题.8.如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD 交圆的切线BE于点E(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如果∠BED=60°,PD=3,求PA的长;(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.【答案】(1)证明见解析;(2)1;(3)证明见解析.【解析】【分析】(1)连接OD,由AB是圆O的直径可得∠ADB=90°,进而求得∠ADO+∠PDA=90°,即可得出直线PD为⊙O的切线;(2)根据BE是⊙O的切线,则∠EBA=90°,即可求得∠P=30°,再由PD为⊙O的切线,得∠PDO=90°,根据三角函数的定义求得OD,由勾股定理得OP,即可得出PA;(3)根据题意可证得∠ADF=∠PDA=∠PBD=∠ABF,由AB是圆O的直径,得∠ADB=90°,设∠PBD=x°,则可表示出∠DAF=∠PAD=90°+x°,∠DBF=2x°,由圆内接四边形的性质得出x 的值,可得出△BDE是等边三角形.进而证出四边形DFBE为菱形.【详解】(1)直线PD为⊙O的切线,理由如下:如图1,连接OD,∵AB是圆O的直径,∴∠ADB=90°,∴∠ADO+∠BDO=90°,又∵DO=BO,∴∠BDO=∠PBD,∵∠PDA=∠PBD,∴∠BDO=∠PDA,∴∠ADO+∠PDA=90°,即PD⊥OD,∵点D在⊙O上,∴直线PD为⊙O的切线;(2)∵BE是⊙O的切线,∴∠EBA=90°,∵∠BED=60°,∴∠P=30°,∵PD为⊙O的切线,∴∠PDO=90°,在Rt△PDO中,∠P=30°,∴0 tan30ODPD=,解得OD=1,∴PO,∴PA=PO﹣AO=2﹣1=1;(3)如图2,依题意得:∠ADF=∠PDA,∠PAD=∠DAF,∵∠PDA=∠PBD∠ADF=∠ABF,∴∠ADF=∠PDA=∠PBD=∠ABF,∵AB是圆O的直径,∴∠ADB=90°,设∠PBD=x°,则∠DAF=∠PAD=90°+x°,∠DBF=2x°,∵四边形AFBD内接于⊙O,∴∠DAF+∠DBF=180°,即90°+x+2x=180°,解得x=30°,∴∠ADF=∠PDA=∠PBD=∠ABF=30°,∵BE、ED是⊙O的切线,∴DE=BE,∠EBA=90°,∴∠DBE=60°,∴△BDE是等边三角形,∴BD=DE=BE,又∵∠FDB=∠ADB﹣∠ADF=90°﹣30°=60°∠DBF=2x°=60°,∴△BDF是等边三角形,∴BD=DF=BF,∴DE=BE=DF=BF,∴四边形DFBE为菱形.【点睛】本题是一道综合性的题目,考查了切线的判定和性质,圆周角定理和菱形的性质,是中档题,难度较大.9.在直角坐标系中,O为坐标原点,点A坐标为(2,0),以OA为边在第一象限内作等边△OAB,C为x轴正半轴上的一个动点(OC>2),连接BC,以BC为边在第一象限内作等边△BCD,直线DA交y轴于E点.(1)求证:△OBC≌△ABD(2)随着C点的变化,直线AE的位置变化吗?若变化,请说明理由;若不变,请求出直线AE的解析式.(3)以线段BC为直径作圆,圆心为点F,当C点运动到何处时,直线EF∥直线BO;这时⊙F和直线BO的位置关系如何?请给予说明.【答案】(1)见解析;(2)直线AE的位置不变,AE的解析式为:33=-y x(3)C点运动到(4,0)处时,直线EF∥直线BO;此时直线BO与⊙F相切,理由见解析.【解析】【分析】(1)由等边三角形的性质可得到OB=AB,BC=BD,∠OBA=∠DBC,等号两边都加上∠ABC,得到∠OBC=∠ABD,根据“SAS”得到△OBC≌△ABD.(2)先由三角形全等,得到∠BAD=∠BOC=60°,由等边△BCD,得到∠BAO=60°,根据平角定义及对顶角相等得到∠OAE=60°,在直角三角形OAE中,由OA的长,根据tan60°的定义求出OE的长,确定出点E的坐标,设出直线AE的方程,把点A和E的坐标代入即可确定出解析式.(3)由EA∥OB,EF∥OB,根据过直线外一点作已知直线的平行线有且只有一条,得到EF与EA重合,所以F为BC与AE的交点,又F为BC的中点,得到A为OC中点,由A的坐标即可求出C的坐标;相切理由是由F为等边三角形BC边的中点,根据“三线合一”得到DF与BC垂直,由EF 与OB 平行得到BF 与OB 垂直,得证.【详解】(1)证明:∵△OAB 和△BCD 都为等边三角形,∴OB=AB ,BC=BD ,∠OBA=∠DBC=60°,∴∠OBA+∠ABC=∠DBC+∠ABC ,即∠OBC=∠ABD ,在△OBC 和△ABD 中,OB AB OBC ABD BC BD =⎧⎪∠=∠⎨⎪=⎩, ∴△OBC ≌△ABD.(2)随着C 点的变化,直线AE 的位置不变,∵△OBC ≌△ABD ,∴∠BAD=∠BOC=60°,又∵∠BAO=60°,∴∠DAC=60°,∴∠OAE=60°,又OA=2,在Rt △AOE 中,tan60°=OE OA, 则∴点E 坐标为(0,设直线AE 解析式为y=kx+b ,把E 和A 的坐标代入得:02k b b =+⎧⎪⎨-=⎪⎩,解得,k b ⎧=⎪⎨=-⎪⎩, ∴直线AE的解析式为:y =-(3)C 点运动到(4,0)处时,直线EF ∥直线BO ;此时直线BO 与⊙F 相切,理由如下: ∵∠BOA=∠DAC=60°,EA ∥OB ,又EF ∥OB ,则EF 与EA 所在的直线重合,∴点F 为DE 与BC 的交点,又F 为BC 中点,∴A 为OC 中点,又AO=2,则OC=4,∴当C 的坐标为(4,0)时,EF ∥OB ,这时直线BO 与⊙F 相切,理由如下:∵△BCD 为等边三角形,F 为BC 中点,∴DF ⊥BC ,又EF ∥OB ,∴FB⊥OB,∴直线BO与⊙F相切,【点睛】本题考查了一次函数;三角形全等的判定与性质;等边三角形的性质和直线与圆的位置关系.熟练掌握相关性质定理是解题关键.10..如图,△ABC中,∠ACB=90°,∠A=30°,AB=6.D是线段AC上一个动点(不与点A重合),⊙D与AB相切,切点为E,⊙D交射线..DC于点F,过F作FG⊥EF交直线..BC于点G,设⊙D的半径为r.(1)求证AE=EF;(2)当⊙D与直线BC相切时,求r的值;(3)当点G落在⊙D内部时,直接写出r的取值范围.【答案】(1)见解析33 35r<<【解析】【分析】(1)连接DE,则∠ADE=60°=∠DEF+∠DFE,而∠DEF=∠DFE,则∠DEF=∠DFE=30°=∠A,即可求解;(2)如图2所示,连接DE,当圆与BC相切时,切点为F,∠A=30°,AB=6,则BF=3,AD=2r,由勾股定理,即可求解;(3)分点F在线段AC上、点F在线段AC的延长线上两种情况,分别求解即可.【详解】解:设圆的半径为r;(1)连接DE,则∠ADE=60°=∠DEF+∠DFE,而∠DEF=∠DFE,则∠DEF=∠DFE=30°=∠A,∴AE=EF;(2)如图2所示,连接DE,当圆与BC相切时,切点为F∠A=30°,AB=6,则BF=3,AD=2r,由勾股定理得:(3r)2+9=36,解得:r=3;(3)①当点F在线段AC上时,如图3所示,连接DE、DG,=-==-333,3933FC r GC FC r②当点F在线段AC的延长线上时,如图4所示,连接DE、DG,===-333,3339FC r GC FC r两种情况下GC 符号相反,GC 2相同,由勾股定理得:DG 2=CD 2+CG 2,点G 在圆的内部,故:DG2<r2, 即:22(332)(339)2r r r -+-<整理得:25113180r r -+<解得:6335r <<【点睛】本题考查了圆的综合题:圆的切线垂直于过切点的半径;利用勾股定理计算线段的长.11.如图,已知AB 是⊙O 的直径,P 是BA 延长线上一点,PC 切⊙O 于点C ,CD ⊥AB ,垂足为D .(1)求证:∠PCA =∠ABC ;(2)过点A 作AE ∥PC 交⊙O 于点E ,交CD 于点F ,交BC 于点M ,若∠CAB =2∠B ,CF =3,求阴影部分的面积.【答案】(1)详见解析;(2)633π-. 【解析】【分析】(1)如图,连接OC ,利用圆的切线的性质和直径对应的圆周角是直角可得∠PCA=∠OCB ,利用等量代换可得∠PCA=∠ABC.(2)先求出△OCA 是等边三角形,在利用三角形的等边对等角定理求出FA=FC 和CF=FM,然后分别求出AM 、AC 、MO 、CD 的值,分别求出0A E S ∆、BOE S 扇形 、ABM S ∆ 的值,利用0A E ABM BOE S S S S ∆∆=+-阴影部分扇形,然后通过计算即可解答.【详解】解:(1)证明:连接OC ,如图,∵PC 切⊙O 于点C ,∴OC ⊥PC,∴∠PCA+∠ACO=90º,∵AB 是⊙O 的直径,∴∠ACB=∠ACO+OCB=90º∴∠PCA=∠OCB,∵OC=OB,∴∠OBC=∠OCB,∴∠PCA=∠ABC ;(2)连接OE ,如图,∵△ACB 中,∠ACB =90º,∠CAB =2∠B,∴∠B =30º,∠CAB =60º,∴△OCA 是等边三角形,∵CD ⊥AB,∴∠ACD+∠CAD =∠CAD +∠ABC =90º,∴∠ACD =∠B =30º,∵PC ∥AE,∴∠PCA =∠CAE =30º,∴FC=FA,同理,CF =FM,∴AM =2CF=23,Rt △ACM 中,易得AC=23×3=3=OC, ∵∠B =∠CAE =30º,∴∠AOC=∠COE=60º,∴∠EOB=60º,∴∠EAB=∠ABC=30º,∴MA=MB,连接OM,EG ⊥AB 交AB 于G 点,如图所示,∵OA=OB,∴MO ⊥AB,∴MO =3∵△CDO ≌△EDO(AAS),∴332 ∴1332ABM S AB MO ∆=⨯= 同样,易求93AOE S ∆=, 260333602BOE S ππ⨯==扇形∴0A E ABM BOE S S S S ∆∆=+-阴影部分扇形=93363333424ππ-+-=. 【点睛】本题考查了切线的性质、解直角三角形、扇形面积和识图的能力,综合性较强,有一定难度,熟练掌握定理并准确识图是解题的关键.12.如图,在矩形ABCD 中,点O 在对角线AC 上,以OA 的长为半径的⊙O 与AD 、AC 分别交于点E 、F ,且∠ACB =∠DCE .(1)判断直线CE 与⊙O 的位置关系,并说明理由;(2)若AB =2,BC =2,求⊙O 的半径.【答案】(1)直线CE 与⊙O 相切,理由见解析;(2)⊙O 的半径为64【解析】【分析】 (1)首先连接OE ,由OE=OA 与四边形ABCD 是矩形,易求得∠DEC+∠OEA=90°,即OE ⊥EC ,即可证得直线CE 与⊙O 的位置关系是相切;(2)首先易证得△CDE ∽△CBA ,然后根据相似三角形的对应边成比例,即可求得DE 的长,又由勾股定理即可求得AC 的长,然后设OA 为x ,即可得方程2223)6)x x -=,解此方程即可求得⊙O 的半径.【详解】解:(1)直线CE 与⊙O 相切.…理由:连接OE ,∵四边形ABCD 是矩形,∴∠B =∠D =∠BAD =90°,BC ∥AD ,CD =AB ,∴∠DCE +∠DEC =90°,∠ACB =∠DAC ,又∠DCE =∠ACB ,∴∠DEC +∠DAC =90°,∵OE =OA ,∴∠OEA =∠DAC ,∴∠DEC +∠OEA =90°,∴∠OEC =90°,∴OE ⊥EC ,∵OE 为圆O 半径,∴直线CE 与⊙O 相切;…(2)∵∠B =∠D ,∠DCE =∠ACB ,∴△CDE ∽△CBA ,∴ BC AB DC DE =, 又CD =AB =2,BC =2, ∴DE =1根据勾股定理得EC =3, 又226AC AB BC =+=,…设OA 为x ,则222(3)(6)x x +=-,解得64x =, ∴⊙O 的半径为6.【点睛】此题考查了切线的判定与性质,矩形的性质,相似三角形的判定与性质以及勾股定理等知识.此题综合性较强,难度适中,解题的关键是注意数形结合思想与方程思想的应用,注意辅助线的作法.13.在中,,,,分别是边,的中点,若等腰绕点逆时针旋转,得到等腰,设旋转角为,记直线与的交点为.(1)问题发现 如图1,当时,线段的长等于_________,线段的长等于_________. (2)探究证明 如图2,当时,求证:,且. (3)问题解决求点到所在直线的距离的最大值.(直接写出结果)【答案】(1);;(2)详见解析;(3)【解析】【分析】(1)利用等腰直角三角形的性质结合勾股定理分别得出BD1的长和CE1的长;(2)根据旋转的性质得出,∠D1AB=∠E1AC=135°,进而求出△D1AB≌△E1AC(SAS),即可得出答案;(3)首先作PG⊥AB,交AB所在直线于点G,则D1,E1在以A为圆心,AD为半径的圆上,当BD1所在直线与⊙A相切时,直线BD1与CE1的交点P到直线AB的距离最大,此时四边形AD1PE1是正方形,进而求出PG的长.【详解】(1)解:∵∠A=90°,AC=AB=4,D,E分别是边AB,AC的中点,∴AE=AD=2,∵等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,设旋转角为α(0<α≤180°),∴当α=90°时,AE1=2,∠E1AE=90°,∴BD1=;故答案为:;;(2)证明:由题意可知,,,∵是由绕点逆时针旋转得到,∴,,在和中,,∴,∴,.∵,∴,∴,∴,且.(3)点的运动轨迹是在的上半圆周,点的运动轨迹是在的弧段.即当与相切时,有最大值.点到所在直线的距离的最大值为.【点睛】此题主要考查了几何变换以及等腰腰直角三角形的性质和勾股定理以及切线的性质等知识,根据题意得出PG的最长时P点的位置是解题关键.14.如图,在中,,以为直径作,交边于点,交边于点,过点作的切线,交的延长线于点,交于点.(1)求证:;(2)若,,求的半径.【答案】(1)证明见解析;(2)4.【解析】试题分析:(1)连接AD,根据等腰三角形三线合一即可证明.(2)设⊙O的半径为R,则FO=4+R,FA=4+2R,OD=R,连接OD,由△FOD∽△FAE,得列出方程即可解决问题.试题解析:(1)连接AD,∵AB是直径,∴∠ADB=90°,∵AB=AC,AD⊥BC,∴BD=DC.(2)设⊙O的半径为R,则FO=4+R,FA=4+2R,OD=R,连接OD、∵AB=AC,∴∠ABC=∠C,∵OB=OD,∴∠ODB=∠C ,∴OD ∥AC ,∴△FOD ∽△FAE , ∴, ∴,整理得R 2﹣R ﹣12=0,∴R=4或(﹣3舍弃).∴⊙O 的半径为4.考点:切线的性质、等腰三角形的性质等知识.15.如图,AB 是O e 的直径,弦CD AB ⊥于点E ,过点C 的切线交AB 的延长线于点F ,连接DF .(1)求证:DF 是O e 的切线;(2)连接BC ,若30BCF ∠=︒,2BF =,求CD 的长.【答案】(1)见解析;(2)3【解析】【分析】(1) 连接OD,由垂径定理证OF 为CD 的垂直平分线,得CF=DF ,∠CDF=∠DCF ,由∠CDO=∠OCD ,再证∠CDO +∠CDB=∠OCD+∠DCF=90°,可得OD ⊥DF ,结论成立.(2) 由∠OCF=90°, ∠BCF=30°,得∠OCB=60°,再证ΔOCB 为等边三角形,得∠COB=60°,可得∠CFO=30°,所以FO=2OC=2OB ,FB=OB= OC =2,在直角三角形OCE 中,解直角三角形可得CE,再推出CD=2CE.【详解】(1)证明:连接OD∵CF 是⊙O 的切线∴∠OCF=90°∵直径AB⊥弦CD∴CE=ED,即OF为CD的垂直平分线∴CF=DF∴∠CDF=∠DCF∵OC=OD,∴∠CDO=∠OCD∴∠CDO +∠CDB=∠OCD+∠DCF=90°∴OD⊥DF∴DF是⊙O的切线(2)解:连接OD∵∠OCF=90°, ∠BCF=30°∴∠OCB=60°∵OC=OB∴ΔOCB为等边三角形,∴∠COB=60°∴∠CFO=30°∴FO=2OC=2OB∴FB=OB= OC =2在直角三角形OCE中,∠CEO=90°∠COE=60°CE3∠==sin COEOC=∴CF3=∴CD=2 CF23【点睛】本题考核知识点:垂径定理,切线,解直角三角形. 解题关键点:熟记切线的判定定理,灵活运用含有30°角的直角三角形性质,巧解直角三角形.。
2024数学中考压轴题-圆(九大题型和解题方法)
![2024数学中考压轴题-圆(九大题型和解题方法)](https://img.taocdn.com/s3/m/5aee941b2f3f5727a5e9856a561252d381eb2061.png)
专题01 中考压轴题-圆(九大题型+解题方法)1、圆中常见相似三角形2.在圆中解三角形或四边形的常用思路画出特殊图形:如圆中的特殊三角形、特殊四边形等,在已知条件下,以结果为导向,在这些特殊图形中求出一些中间量。
目录:题型1:圆与三角形综合题型2:圆与四边形综合题型3:圆有关的动态问题题型4:圆与坐标系或函数题型5:以实际问题为背景,求圆与三角形、四边形综合问题题型6:最值问题题型7:在解三角形、四边形中作辅助圆题型8:定值问题题型9:在圆综合中求解三角函数值题型1:圆与三角形综合1.(2024·黑龙江哈尔滨·一模)已知,AD 、BC 为O 两条弦,AD BC ⊥于点E ,连接OE ,AE CE =.(1)如图1,连接OE ,求AEO ∠的度数;(2)如图2,连接AC ,延长EO 交AC 于点N ,点F 为AC 上一点,连接EF ,在EF 上方作等腰直角三角形EFG ,且90EGF ∠=︒,连接NG ,求证:NG BC ∥;(3)在(2)的条件下,连接AB ,CD ,当点G 落在线段AB 上时,过点O 做OL OE ⊥,交CD 于点L ,交CE于点T ,若2OE EG CL ==,求O 半径的长.2.(2024·黑龙江哈尔滨·一模)已知:AB 为O 的直径,点C 为 AB 上一点,连接AC ,点D 为 BC上一点,连接AD ,过点D 作AB 的垂线,垂足为点F ,交O 于点E ,连接CE ,分别交AD 和AB 于点H 和点K ,且90AHE =︒∠.(1)如图1,求证:CAD BAD ∠=∠;(2)如图2,连接HF ,过点H 作HF 的垂线交AB 于点T ,求证:2AB FT =;(3)如图3,在(2)的条件下,连接BC 交AD 于点G ,延长CD 交AB 的延长线于点M ,若CM AG =,5FT =,求CG 的长.3.(2024·黑龙江哈尔滨·一模)如图1,在O 中,直径AB 垂直弦CD 于点G ,连接AD ,过点C 作CF AD ⊥于F ,交AB 于点H ,交O 于点E ,连接DE .(1)如图1,求证:2E C ∠=∠;(2)如图2,求证:DE CH =;(3)如图3,连接BE ,分别交AD CD 、于点M N 、,当2OH OG =,HF =EN 的长.4.(2024·浙江·模拟预测)如图1,ABC 内接于O ,作AD BC ⊥于点D .(1)连结AO ,BO .求证:2180AOB DAC ∠+∠=︒;(2)如图2,若点E 为弧AC 上一点,连结BE 交AD 于点F ,若2BAD CAD ∠∠=,490DBF CAD ∠+∠=︒,连结OF ,求证:OF 平分AFB ∠;(3)在(2)的条件下,如图3,点G 为BC 上一点,连结EG ,2BGE C ∠=∠.若AD =3BD EG +=,求DF 的长.题型2:圆与四边形综合5.(2024·浙江杭州·模拟预测)如图,四边形ABCD 内接于O ,AC 为O 的直径,DE AC ⊥于点F 交BC 于点E .(1)设DBC α∠=,试用含α的代数式表示ADE ∠;(2)如图2,若3BE CE =,求BDDE的值;(3)在(2)的条件下,若,AC BD 交于点G ,设FGx CF=,cos BDE y ∠=.①求y 关于x 的函数表达式.②若BC BD =,求y 的值.6.(2024·广东珠海·一模)如图1,F 为正方形ABCD 边BC 上一点,连接AF , 在AF 上取一点O , 以OA 为半径作圆, 恰好使得O 经过点B 且与CD 相切于点E .(1)若正方形的边长为4时,求O 的半径;(2)如图2, 将AF 绕点A 逆时针旋转45︒后,其所在直线与O 交于点G ,与边CD 交于点H ,连接DG BG ,.①求ADG ∠的度数;②求证:··²AB BF AG FG BG +=.题型3:圆有关的动态问题7.(2024·广东·一模)综合探究:如图,已知10AB =,以AB 为直径作半圆O ,半径OA 绕点O 顺时针旋转得到OC ,点A 的对应点为C ,当点C 与点B 重合时停止.连接BC 并延长到点D ,使得CD BC =,过点D 作DE AB ⊥于点E ,连接AD ,AC .(1)如图1,当点E 与点O 重合时,判断ABD △的形状,并说明理由;(2)如图2,当1OE =时,求BC 的长;(3)如图3,若点P 是线段AD 上一点,连接PC ,当PC 与半圆O 相切时,判断直线PC 与AD 的位置关系,并说明理由.8.(2024·浙江湖州·一模)如图,在ABCD Y 中,∠B 是锐角,AB =10BC =,在射线BA 上取一点P ,过P 作PE BC ⊥于点E ,过P ,E ,C 三点作O .(1)当3cos 5B =时,①如图1,若AB 与O 相切于点P ,连结CP ,求CP 的长;②如图2,若O 经过点D ,求O 的半径长.(2)如图3,已知O 与射线BA 交于另一点F ,将BEF △沿EF 所在的直线翻折,点B 的对应点记为B ',且B '恰好同时落在O 和边AD 上,求此时PA 的长.9.(2024·云南昭通·模拟预测)如图,在O 中,AB 是O 的直径,点M 是直径AB 上的一个动点,过点M 的弦CD AB ⊥,交O 于点C 、D ,连接BC ,点F 为BC 的中点,连接DF 并延长,交AB 于点E ,交O 于点G .图1 图2 备用图(1)如图1,连接CG ,过点G 的直线交DC 的延长线于点P .当点M 与圆心O 重合时,若PGC MDE ∠=∠,求证:PG 是O 的切线;(2)在点M 运动的过程中,DE kDF =(k 为常数),求k 的值;(3)如图2,连接BG OF MF 、、,当MOF △是等腰三角形时,求BGD ∠的正切值.题型4:圆与坐标系或函数10.(2024·福建龙岩·一模)如图,抛物线234y x x =-++与x 轴分别交于A 、B 两点(点A 在点B 的左侧)与y 轴交于点C .(1)直接写出A 、B 、C 三点的坐标;(2)如图(1),P 是抛物线上异于A ,B 的一点,将点B 绕点P 顺时针旋转45︒得到点Q ,若点Q 恰好在直线AP 上,求点P 的坐标;(3)如图(2),MN 是抛物线上异于B ,C 的两个动点,直线BN 与直线CM 交于点T ,若直线MN 经过定点()1,3,求证:点T 的运动轨迹是一条定直线.11.(2024·江苏常州·模拟预测)定义:在平面直角坐标系xOy 中,P 、Q 为平面内不重合的两个点,其中1122(,),(,)P x y Q x y .若:1122x y x y +=+,则称点Q 为点P 的“等和点”.(1)如图1,已知点()21P ,,求点P 在直线1y x =+上“等和点”的坐标;(2)如图2,A 的半径为1,圆心A 坐标为()20,.若点()0P m ,在A 上有且只有一个“等和点”,求m 的值;(3)若函数()22y x x m =-+≤的图像记为1W ,将其沿直线x m =翻折后的图像记为2W .当1W ,2W 两部分组成的图像上恰有点()0P m ,的两个“等和点”,请直接写出m 的取值范围.12.(2024·江苏宿迁·一模)如图1,在平面直角坐标系xOy 中,抛物线23y ax bx =++与x 轴分别相交于A 、B 两点,与y 轴相交于点C ,已知点A 的坐标为(10)-,,点B 的坐标为(30),.(1)求出这条抛物线的函数表达式;(2)如图2,点D 是第一象限内该抛物线上一动点,过点D 作直线l y 轴,直线l 与ABD △的外接圆相交于点E .①仅用无刻度直尺找出图2中ABD △外接圆的圆心P .②连接BC 、CE ,BC 与直线DE 的交点记为Q ,如图3,设CQE △的面积为S ,在点D 运动的过程中,S是否存在最大值?如果存在,请求出S 的最大值;如果不存在,请说明理由.13.(2024·江苏宿迁·二模)中国象棋棋盘上双方的分界处称为“楚河汉界”,以“楚河汉界”比喻双方对垒的分界线.在平面直角坐标系中,为了对两个图形进行分界,对“楚河汉界线”给出如下定义:点()11,P x y 是图形1G 上的任意一点,点()22,Q x y 是图形2G 上的任意一点,若存在直线()0l y kx b k =+≠∶满足11y kx b ≤+且22y kx b ≥+,则直线(0)y k b k =+≠就是图形1G 与2G 的“楚河汉界线”.例如:如图1,直线4l y x =--∶是函数6(0)y x x=<的图像与正方形OABC 的一条“楚河汉界线”.(1)在直线①2y x =-,②41y x =-,③23y x =-+,④31y x =--中,是图1函数6(0)y x x=<的图像与正方形OABC 的“楚河汉界线”的有______;(填序号)(2)如图2,第一象限的等腰直角EDF 的两腰分别与坐标轴平行,直角顶点D 的坐标是()2,1,EDF 与O 的“楚河汉界线”有且只有一条,求出此“楚河汉界线”的表达式;(3)正方形1111D C B A 的一边在y 轴上,其他三边都在y 轴的右侧,点(2,)M t 是此正方形的中心,若存在直线2y x b =-+是函数2)304(2y x x x =-++≤≤的图像与正方形1111D C B A 的“楚河汉界线”,求t 的取值范围.题型5:以实际问题为背景,求圆与三角形、四边形综合问题14.(2024·陕西西安·一模)【问题提出】(1)如图1,已知在边长为5的等边ABC 中,点D 在边BC 上,3BD =,连接AD ,则ACD 的面积为 ;【问题探究】(2)如图2,已知在边长为6的正方形ABCD 中,点E 在边BC 上,点F 在边CD 上,且45EAF ∠=︒,若5EF =,求AEF △的面积;【问题解决】(3)如图3是某座城市廷康大道的一部分,因自来水抢修在4AB =米,AD =ABCD 区域内开挖一个AEF △的工作面,其中B 、F 分别在BC CD 、边上(不与B 、C 、D 重合),且60EAF ∠=︒,为了减少对该路段的拥堵影响,要求AEF △面积最小,那么是否存在一个面积最小的AEF △?若存在,请求出AEF △面积的最小值;若不存在,请说明理由.15.(2024·陕西西安·一模)【问题提出】(1)如图1,点D 为ABC 的边BC 上一点,连接2,,3BD AD BDA BAC AB ∠=∠=,若ABD △的面积为4,则ACD 的面积为______;【问题探究】(2)如图2,在矩形ABCD 中,6,5AB BC ==,在射线BC 和射线CD 上分别取点E F 、,使得65BE CF =,连接AE BF 、相交于点P ,连接CP ,求CP 的最小值;【问题解决】(3)如图3,菱形ABCD 是某社区的一块空地,经测量,120AB =米,60ABC ∠=︒.社区管委会计划对该空地进行重新规划利用,在射线AD 上取一点E ,沿BE CE 、修两条小路,并在小路BE 上取点H ,将CH 段铺设成某种具有较高观赏价值的休闲通道(通道宽度忽略不计),根据设计要求,BHC BCE ∠=∠,为了节省铺设成本,要求休闲通道CH 的长度尽可能小,问CH 的长度是否存在最小值?若存在,求出CH 长度的最小值;若不存在,请说明理由.题型6:最值问题16.(2024·湖南长沙·三模)如图1,,,A B C 为O 上不重合的三点,GC 为O 的切线,1902G A ∠+∠=︒.(1)求证:GB 为O 的切线;(2)若ABC 为等腰三角形,345,tan 4BAC BAC ∠<︒∠=,求BC AG的值;(3)如图2,若AB 为直径,M 为线段AC 上一点且GM GB ⊥,2223880AM OB GB GB +-+-=,02GB <<,求MGBA S 四边形的最大值.17.(2024·重庆·模拟预测)如图,在直角ABC 中,90BAC ∠=︒.点D 为ABC 内一点,且60ADB ∠=︒,E 为线段BD 的中点,连接AE .(1)如图1,若AB AC ==,2AD =,求BE 的长;(2)如图2,连接CD ,若AB AC =,BAE ACD ∠=∠,过点E 作EF AD ⊥交于F ,求证:AE =;(3)如图3,过点D 作DM AC ⊥于点M ,DN BC ⊥于点N ,连接MN ,若AB =4AC =,求MN 的最小值.题型7:在解三角形、四边形中作辅助圆18.(2024·福建泉州·一模)如图1,在ABCD Y 中,BE 平分ABC ∠交AD 于点E ,F 是CD 上一点,且DF DE =.(1)求证:BE EF ⊥;(2)如图2,若120A ∠=︒,FG BC ⊥于点G ,H 是BF 的中点,连接DG ,EH ,EG ,且EG 与BF 相交于点K .①求证:DG EH =;②若2CF DF =,求KFGK的值.题型8:定值问题19.(2024·浙江·模拟预测)如图1,E 点为x 轴正半轴上一点,E 交x 轴于A 、B 两点,P 点为劣弧 BC上一个动点,且(1,0)A -、(1,0)E .(1) BC的度数为 °;(2)如图2,连结PC ,取PC 中点G ,则OG 的最大值为 ;(3)如图3,连接AC 、AP 、CP 、CB .若CQ 平分PCD ∠交PA 于Q 点,求AQ 的长;(4)如图4,连接PA 、PD ,当P 点运动时(不与B 、C 两点重合),求证:PC PDPA+为定值,并求出这个定值.题型9:在圆综合中求解三角函数值20.(2024·湖南长沙·一模)如图1,在Rt ABC △中,90ABC ∠=︒,30C ∠=︒,B C =,D 是BC 的中点.经过A ,B ,D 三点的O 交AC 于点E ,连接BE .(1)求AE 和BE 的长;(2)如图2,两动点P 、Q 分别同时从点A 和点C 出发匀速运动,当点P 运动到点E 时,点Q 恰好运动到点B ,P 、Q 停止运动,连接PQ .①记AP x =,当PQC △的面积最大时,求x 的值;②如图3,连接BP 并延长交O 于点F ,连接AF 、FE .当BE 平分FBC ∠时,求sin ABF ∠的值.21.(2024·上海杨浦·一模)已知以AB 为直径的半圆O 上有一点C ,CD OA ⊥,垂足为点D ,点E 是半径OC 上一点(不与点O 、C 重合),作EF OC ⊥交弧BC 于点F ,连接OF .(1)如图1,当FE 的延长线经过点A 时,求CDAF的值;(2)如图2,作FG AB ⊥,垂足为点G ,连接EG .①试判断EG 与CD 的大小关系,并证明你的结论;②当EFG 是等腰三角形,且4sin 5COD ∠=,求OE OD的值.专题01 中考压轴题-圆(九大题型+解题方法)1、圆中常见相似三角形2.在圆中解三角形或四边形的常用思路画出特殊图形:如圆中的特殊三角形、特殊四边形等,在已知条件下,以结果为导向,在这些特殊图形中求出一些中间量。
备战中考数学圆的综合-经典压轴题含答案解析
![备战中考数学圆的综合-经典压轴题含答案解析](https://img.taocdn.com/s3/m/c1c3988fdd36a32d7275812f.png)
一、圆的综合 真题与模拟题分类汇编(难题易错题)1.如图,已知AB 是⊙O 的直径,点C ,D 在⊙O 上,BC=6cm,AC=8cm,∠BAD=45°.点E 在⊙O 外,做直线AE ,且∠EAC=∠D .(1)求证:直线AE 是⊙O 的切线.(2)求图中阴影部分的面积.【答案】(1)见解析;(2)25-504π. 【解析】 分析:(1)根据圆周角定理及推论证得∠BAE=90°,即可得到AE 是⊙O 的切线; (2)连接OD ,用扇形ODA 的面积减去△AOD 的面积即可.详解:证明:(1) ∵AB 是⊙O 的直径,∴∠ACB=90°,即∠BAC+∠ABC=90°,∵∠EAC=∠ADC ,∠ADC=∠ABC ,∴∠EAC=∠ABC∴∠BAC+∠EAC =90°,即∠BAE= 90°∴直线AE 是⊙O 的切线;(2)连接OD∵ BC=6 AC=8∴ 226810AB =+=∴ OA = 5又∵ OD = OA∴∠ADO =∠BAD = 45°∴∠AOD = 90°∴AOD ODA S S S ∆-阴影扇形= =90155553602π⨯⨯-⨯⨯ 25504π-= (2cm )点睛:此题主要考查了圆周角定理和圆的切线的判定与性质,关键是利用圆周角定理和切线的判定与性质,结合勾股定理的和弓形的面积的求法求解,注意数形结合思想的应用.2.已知,如图:O1为x轴上一点,以O1为圆心作⊙O1交x轴于C、D两点,交y轴于M、N两点,∠CMD的外角平分线交⊙O1于点E,AB是弦,且AB∥CD,直线DM的解析式为y=3x+3.(1)如图1,求⊙O1半径及点E的坐标.(2)如图2,过E作EF⊥BC于F,若A、B为弧CND上两动点且弦AB∥CD,试问:BF+CF 与AC之间是否存在某种等量关系?请写出你的结论,并证明.(3)在(2)的条件下,EF交⊙O1于点G,问弦BG的长度是否变化?若不变直接写出BG 的长(不写过程),若变化自画图说明理由.【答案】(1)r=5 E(4,5)(2)BF+CF=AC (3)弦BG的长度不变,等于2【解析】分析:(1)连接ED、EC、EO1、MO1,如图1,可以证到∠ECD=∠SME=∠EMC=∠EDC,从而可以证到∠EO1D=∠EO1C=90°.由直线DM的解析式为y=3x+3可得OD=1,OM=3.设⊙O1的半径为r.在Rt△MOO1中利用勾股定理就可解决问题.(2)过点O1作O1P⊥EG于P,过点O1作O1Q⊥BC于Q,连接EO1、DB,如图2.由AB∥DC可证到BD=AC,易证四边形O1PFQ是矩形,从而有O1P=FQ,∠PO1Q=90°,进而有∠EO1P=∠CO1Q,从而可以证到△EPO1≌△CQO1,则有PO1=QO1.根据三角形中位线定理可得FQ=12BD.从而可以得到BF+CF=2FQ=AC.(3)连接EO1,ED,EB,BG,如图3.易证EF∥BD,则有∠GEB=∠EBD,从而有BG=ED,也就有BG=DE.在Rt△EO1D中运用勾股定理求出ED,就可解决问题.详解:(1)连接ED、EC、EO1、MO1,如图1.∵ME平分∠SMC,∴∠SME=∠EMC.∵∠SME=∠ECD,∠EMC=∠EDC,∴∠ECD=∠EDC,∴∠EO1D=∠EO1C.∵∠EO1D+∠EO1C=180°,∴∠EO1D=∠EO1C=90°.∵直线DM的解析式为y=3x+3,∴点M的坐标为(0,3),点D的坐标为(﹣1,0),∴OD=1,OM=3.设⊙O1的半径为r,则MO1=DO1=r.在Rt△MOO1中,(r﹣1)2+32=r2.解得:r=5,∴OO1=4,EO1=5,∴⊙O1半径为5,点E的坐标为(4,5).(2)BF+CF=AC.理由如下:过点O1作O1P⊥EG于P,过点O1作O1Q⊥BC于Q,连接EO1、DB,如图2.∵AB∥DC,∴∠DCA=∠BAC,∴AD=BC BD∴,=AC,∴BD=AC.∵O1P⊥EG,O1Q⊥BC,EF⊥BF,∴∠O1PF=∠PFQ=∠O1QF=90°,∴四边形O1PFQ是矩形,∴O1P=FQ,∠PO1Q=90°,∴∠EO1P=90°﹣∠PO1C=∠CO1Q.在△EPO1和△CQO1中,111111EO P CO QEPO CQOO E O C∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EPO1≌△CQO1,∴PO1=QO1,∴FQ=QO1.∵QO1⊥BC,∴BQ=CQ.∵CO1=DO1,∴O1Q=12 BD,∴FQ=12BD.∵BF+CF=FQ+BQ+CF=FQ+CQ+CF=2FQ,∴BF+CF=BD=AC.(3)连接EO1,ED,EB,BG,如图3.∵DC是⊙O1的直径,∴∠DBC=90°,∴∠DBC+∠EFB=180°,∴EF∥BD,∴∠GEB=∠EBD,∴BG=ED,∴BG=DE.∵DO1=EO1=5,EO1⊥DO1,∴DE=52,∴BG=52,∴弦BG的长度不变,等于52.点睛:本题考查了圆周角定理、圆内接四边形的性质、弧与弦的关系、垂径定理、全等三角形的判定与性质、矩形的判定与性质、三角形中位线定理、平行线的判定与性质、勾股定理等知识,综合性比较强,有一定的难度.而由AB∥DC证到AC=BD是解决第(2)小题的关键,由EG ∥DB 证到BG =DE 是解决第(3)小题的关键.3.如图,⊙M 与菱形ABCD 在平面直角坐标系中,点M 的坐标为(3,﹣1),点A 的坐标为(﹣2,3),点B 的坐标为(﹣3,0),点C 在x 轴上,且点D 在点A 的左侧. (1)求菱形ABCD 的周长;(2)若⊙M 沿x 轴向右以每秒2个单位长度的速度平移,同时菱形ABCD 沿x 轴向右以每秒3个单位长度的速度平移,设菱形移动的时间为t (秒),当⊙M 与BC 相切,且切点为BC 的中点时,连接BD ,求:①t 的值;②∠MBD 的度数;(3)在(2)的条件下,当点M 与BD 所在的直线的距离为1时,求t 的值.【答案】(1)8;(2)①7;②105°;(3)t=633 【解析】 分析:(1)根据勾股定理求菱形的边长为2,所以可得周长为8;(2)①如图2,先根据坐标求EF 的长,由EE '﹣FE '=EF =7,列式得:3t ﹣2t =7,可得t 的值;②先求∠EBA =60°,则∠FBA =120°,再得∠MBF =45°,相加可得:∠MBD =∠MBF +∠FBD =45°+60°=105°;(3)分两种情况讨论:作出距离MN 和ME ,第一种情况:如图5由距离为1可知:BD 为⊙M 的切线,由BC 是⊙M 的切线,得∠MBE =30°,列式为3t 3=2t +6,解出即可; 第二种情况:如图6,同理可得t 的值.详解:(1)如图1,过A 作AE ⊥BC 于E .∵点A 的坐标为(﹣23),点B 的坐标为(﹣3,0),∴AE 3,BE =3﹣2=1,∴AB 22AE BE +2231+()=2. ∵四边形ABCD 是菱形,∴AB =BC =CD =AD =2,∴菱形ABCD 的周长=2×4=8;(2)①如图2,⊙M 与x 轴的切点为F ,BC 的中点为E .∵M (3,﹣1),∴F (3,0).∵BC =2,且E 为BC 的中点,∴E (﹣4,0),∴EF =7,即EE '﹣FE '=EF ,∴3t ﹣2t =7,t =7;②由(1)可知:BE =1,AE 3∴tan∠EBA=AEBE =31=3,∴∠EBA=60°,如图4,∴∠FBA=120°.∵四边形ABCD是菱形,∴∠FBD=12∠FBA=11202⨯︒=60°.∵BC是⊙M的切线,∴MF⊥BC.∵F是BC的中点,∴BF=MF=1,∴△BFM是等腰直角三角形,∴∠MBF=45°,∴∠MBD=∠MBF+∠FBD=45°+60°=105°;(3)连接BM,过M作MN⊥BD,垂足为N,作ME⊥BC于E,分两种情况:第一种情况:如图5.∵四边形ABCD是菱形,∠ABC=120°,∴∠CBD=60°,∴∠NBE=60°.∵点M与BD所在的直线的距离为1,∴MN=1,∴BD为⊙M的切线.∵BC是⊙M的切线,∴∠MBE=30°.∵ME=1,∴EB=3,∴3t+3=2t+6,t=6﹣3;第二种情况:如图6.∵四边形ABCD是菱形,∠ABC=120°,∴∠DBC=60°,∴∠NBE=120°.∵点M与BD所在的直线的距离为1,∴MN=1,∴BD为⊙M的切线.∵BC是⊙M的切线,∴∠MBE=60°.∵ME=MN=1,∴Rt△BEM中,tan60°=MEBE,EB=160tan︒=3,∴3t=2t+6+3,t=6+3;综上所述:当点M与BD所在的直线的距离为1时,t=6﹣3或6+33.点睛:本题是四边形和圆的综合题,考查了菱形的性质、圆的切线的性质和判定、特殊的三角函数值、等腰直角三角形的性质、动点运动问题,此类问题比较复杂,弄清动点运动方向、速度、时间和路程的关系,并与方程相结合,找等量关系,求出时间t的值.4.在平面直角坐标系xOy中,点M的坐标为(x1,y1),点N的坐标为(x2,y2),且x1≠x2,y1≠y2,以MN为边构造菱形,若该菱形的两条对角线分别平行于x轴,y轴,则称该菱形为边的“坐标菱形”.(1)已知点A(2,0),B(0,23),则以AB为边的“坐标菱形”的最小内角为;(2)若点C(1,2),点D在直线y=5上,以CD为边的“坐标菱形”为正方形,求直线CD 表达式;(3)⊙O的半径为2,点P的坐标为(3,m).若在⊙O上存在一点Q,使得以QP为边的“坐标菱形”为正方形,求m的取值范围.【答案】(1)60°;(2)y=x+1或y=﹣x+3;(3)1≤m≤5或﹣5≤m≤﹣1【解析】分析:(1)根据定义建立以AB为边的“坐标菱形”,由勾股定理求边长AB=4,可得30度角,从而得最小内角为60°;(2)先确定直线CD与直线y=5的夹角是45°,得D(4,5)或(﹣2,5),易得直线CD的表达式为:y=x+1或y=﹣x+3;(3)分两种情况:①先作直线y=x,再作圆的两条切线,且平行于直线y=x,如图3,根据等腰直角三角形的性质分别求P'B=BD=1,PB=5,写出对应P的坐标;②先作直线y=﹣x,再作圆的两条切线,且平行于直线y=﹣x,如图4,同理可得结论.详解:(1)∵点A(2,0),B(0,23),∴OA=2,OB=23.在Rt△AOB中,由勾股定理得:AB=22()=4,∴∠ABO=30°.223∵四边形ABCD是菱形,∴∠ABC=2∠ABO=60°.∵AB∥CD,∴∠DCB=180°﹣60°=120°,∴以AB为边的“坐标菱形”的最小内角为60°.故答案为:60°;(2)如图2.∵以CD为边的“坐标菱形”为正方形,∴直线CD与直线y=5的夹角是45°.过点C作CE⊥DE于E,∴D(4,5)或(﹣2,5),∴直线CD的表达式为:y=x+1或y=﹣x+3;(3)分两种情况:①先作直线y=x,再作圆的两条切线,且平行于直线y=x,如图3.∵⊙O的半径为2,且△OQ'D是等腰直角三角形,∴OD=2OQ'=2,∴P'D=3﹣2=1.∵△P'DB是等腰直角三角形,∴P'B=BD=1,∴P'(0,1),同理可得:OA=2,∴AB=3+2=5.∵△ABP是等腰直角三角形,∴PB=5,∴P(0,5),∴当1≤m≤5时,以QP为边的“坐标菱形”为正方形;②先作直线y=﹣x,再作圆的两条切线,且平行于直线y=﹣x,如图4.∵⊙O的半径为2,且△OQ'D是等腰直角三角形,∴OD=2OQ'=2,∴BD=3﹣2=1.∵△P'DB是等腰直角三角形,∴P'B=BD=1,∴P'(0,﹣1),同理可得:OA=2,∴AB=3+2=5.∵△ABP是等腰直角三角形,∴PB=5,∴P(0,﹣5),∴当﹣5≤m≤﹣1时,以QP为边的“坐标菱形”为正方形;综上所述:m的取值范围是1≤m≤5或﹣5≤m≤﹣1.点睛:本题是一次函数和圆的综合题,考查了菱形的性质、正方形的性质、点P,Q的“坐标菱形”的定义等知识,解题的关键是理解题意,学会利用图象解决问题,学会用分类讨论的思想思考问题,注意一题多解,属于中考创新题目.5.如图,AB是⊙O的直径,D、D为⊙O上两点,CF⊥AB于点F,CE⊥AD交AD的延长线于点E,且CE=CF.(1)求证:CE是⊙O的切线;(2)连接CD、CB,若AD=CD=a,求四边形ABCD面积.【答案】(1)证明见解析;(2)【解析】【分析】(1)连接OC,AC,可先证明AC平分∠BAE,结合圆的性质可证明OC∥AE,可得∠OCB=90°,可证得结论;(2)可先证得四边形AOCD为平行四边形,再证明△OCB为等边三角形,可求得CF、AB,利用梯形的面积公式可求得答案.【详解】(1)证明:连接OC,AC.∵CF⊥AB,CE⊥AD,且CE=CF.∴∠CAE=∠CAB.∵OC=OA,∴∠CAB=∠OCA.∴∠CAE=∠OCA.∴OC∥AE.∴∠OCE+∠AEC=180°,∵∠AEC=90°,∴∠OCE=90°即OC⊥CE,∵OC是⊙O的半径,点C为半径外端,∴CE是⊙O的切线.(2)解:∵AD=CD,∴∠DAC=∠DCA=∠CAB,∴DC∥AB,∵∠CAE=∠OCA,∴OC∥AD,∴四边形AOCD是平行四边形,∴OC=AD=a,AB=2a,∵∠CAE=∠CAB,∴CD=CB=a,∴CB=OC=OB,∴△OCB是等边三角形,在Rt△CFB中,CF=,∴S四边形ABCD=(DC+AB)•CF=【点睛】本题主要考查切线的判定,掌握切线的两种判定方法是解题的关键,即有切点时连接圆心和切点,然后证明垂直,没有切点时,过圆心作垂直,证明圆心到直线的距离等于半径.6.如图,在直角坐标系中,⊙M经过原点O(0,0),点A(6,0)与点B(0,-2),点D 在劣弧OA上,连结BD交x轴于点C,且∠COD=∠CBO.(1)求⊙M的半径;(2)求证:BD平分∠ABO;(3)在线段BD的延长线上找一点E,使得直线AE恰为⊙M的切线,求此时点E的坐标.【答案】(1)M的半径r2;(2)证明见解析;(3)点E的坐标为262).【解析】试题分析:根据点A 和点B 的坐标得出OA 和OB 的长度,根据Rt △AOB 的勾股定理得出AB 的长度,然后得出半径;根据同弧所对的圆周角得出∠ABD=∠COD ,然后结合已知条件得出角平分线;根据角平分线得出△ABE ≌△HBE ,从而得出BH=BA=22,从而求出OH 的长度,即点E 的纵坐标,根据Rt △AOB 的三角函数得出∠ABO 的度数,从而得出∠CBO 的度数,然后根据Rt △HBE 得出HE 的长度,即点E 的横坐标.试题解析:(1)∵点A 为(6,0),点B 为(0,-2) ∴OA=6OB=2 ∴根据Rt △AOB 的勾股定理可得:AB=22∴M 的半径r=12AB=2. (2)根据同弧所对的圆周角相等可得:∠ABD=∠COD ∵∠COD=∠CBO ∴∠ABD=∠CBO ∴BD 平分∠ABO(3)如图,由(2)中的角平分线可得△ABE ≌△HBE ∴BH=BA=22∴OH=22-2=2在Rt △AOB 中,3OA OB=∴∠ABO=60° ∴∠CBO=30° 在Rt △HBE 中,HE=2633BH =∴点E 的坐标为(263,2)考点:勾股定理、角平分线的性质、圆的基本性质、三角函数.7.如图, Rt △ABC 中,∠B=90°,它的内切圆分别与边BC 、CA 、AB 相切于点D 、E 、F , (1)设AB=c, BC=a, AC=b, 求证: 内切圆半径r =12(a+b-c). (2) 若AD 交圆于P , PC 交圆于H, FH//BC, 求∠CPD; (3)若r=310, PD =18, PC=272. 求△ABC 各边长.【答案】(1)证明见解析(2)45°(3)1010,1510,12【解析】【分析】(1)根据切线长定理,有AE=AF,BD=BF,CD=CE.易证四边形BDOF为正方形,BD=BF=r,用r表示AF、AE、CD、CE,利用AE+CE=AC为等量关系列式.(2)∠CPD为弧DH所对的圆周角,连接OD,易得弧DH所对的圆心角∠DOH=90°,所以∠CPD=45°.(3)由PD=18和r=310,联想到垂径定理基本图形,故过圆心O作PD的垂线OM,求得弦心距OM=3,进而得到∠MOD的正切值.延长DO得直径DG,易证PG∥OM,得到同位角∠G=∠MOD.又利用圆周角定理可证∠ADB=∠G,即得到∠ADB的正切值,进而求得AB.再设CE=CD=x,用x表示BC、AC,利用勾股定理列方程即求出x.【详解】解:(1)证明:设圆心为O,连接OD、OE、OF,∵⊙O分别与BC、CA、AB相切于点D、E、F∴OD⊥BC,OE⊥AC,OF⊥AB,AE=AF,BD=BF,CD=CE∴∠B=∠ODB=∠OFB=90°∴四边形BDOF是矩形∵OD=OF=r∴矩形BDOF是正方形∴BD=BF=r∴AE=AF=AB-BF=c-r,CE=CD=BC-BD=a-r∵AE+CE=AC∴c-r+a-r=b整理得:r=12(a+b-c)(2)取FH中点O,连接OD ∵FH∥BC∴∠AFH=∠B=90°∵AB与圆相切于点F,∴FH为圆的直径,即O为圆心∵FH∥BC∴∠DOH=∠ODB=90°∴∠CPD=12∠DOH=45°(3)设圆心为O ,连接DO 并延长交⊙O 于点G ,连接PG ,过O 作OM ⊥PD 于M ∴∠OMD=90°∵PD=18∴DM=12PD=9 ∵10∴22OD DM -22(310)9-9081-3∴tan ∠MOD=DM OM =3 ∵DG 为直径∴∠DPG=90°∴OM ∥PG ,∠G+∠ODM=90°∴∠G=∠MOD∵∠ODB=∠ADB+∠ODM=90°∴∠ADB=∠G∴∠ADB=∠MOD∴tan ∠ADB=AB BD=tan ∠MOD=3 ∴10∴10−10=10设CE=CD=x ,则10+x ,10+x∵AB 2+BC 2=AC 2∴10)2.10+x)2=10+x)2解得:10∴10,10∴△ABC 各边长10,10,10【点睛】本题考查切线的性质,切线长定理,正方形的判定,圆周角定理,垂径定理,勾股定理.切线长定理的运用是解决本题的关键,而在不能直接求得线段长的情况下,利用勾股定理作为等量关系列方程解决是常用做法.8.已知:如图,四边形ABCD为菱形,△ABD的外接圆⊙O与CD相切于点D,交AC于点E.(1)判断⊙O与BC的位置关系,并说明理由;(2)若CE=2,求⊙O的半径r.【答案】(1)相切,理由见解析;(2)2.【解析】试题分析:(1)根据切线的性质,可得∠ODC的度数,根据菱形的性质,可得CD与BC 的关系,根据SSS,可得三角形全等,根据全等三角形的性质,可得∠OBC的度数,根据切线的判定,可得答案;(2)根据等腰三角形的性质,可得∠ACD=∠CAD,根据三角形外角的性质,∠COD=∠OAD+∠AOD,根据直角三角形的性质,可得OC与OD的关系,根据等量代换,可得答案.(1)⊙O与BC相切,理由如下连接OD、OB,如图所示:∵⊙O与CD相切于点D,∴OD⊥CD,∠ODC=90°.∵四边形ABCD为菱形,∴AC垂直平分BD,AD=CD=CB.∴△ABD的外接圆⊙O的圆心O在AC上,∵OD=OB,OC=OC,CB=CD,∴△OBC≌△ODC.∴∠OBC=∠ODC=90°,又∵OB为半径,∴⊙O与BC相切;(2)∵AD=CD,∴∠ACD=∠CAD.∵AO=OD,∴∠OAD=∠ODA.∵∠COD=∠OAD+∠AOD,∠COD=2∠CAD.∴∠COD=2∠ACD又∵∠COD+∠ACD=90°,∴∠ACD=30°.∴OD=12OC,即r=12(r+2).∴r=2.【点睛】运用了切线的判定与性质,利用了切线的判定与性质,菱形的性质,直角三角形的性质.9.如图,AB是⊙O的直径,∠ACB的平分线交AB于点D,交⊙O于点E,过点C作⊙O 的切线CP交BA的延长线于点P,连接AE.(1)求证:PC=PD;(2)若AC=5cm,BC=12cm,求线段AE,CE的长.【答案】(1)见解析172132【解析】试题分析:(1)如图1中,连接OC 、OE .利用等角的余角相等,证明∠PCD =∠PDC 即可;(2)如图2中.作EH ⊥BC 于H ,EF ⊥CA 于F .首先证明Rt △AEF ≌Rt △BEH ,推出AF =BH ,设AF =BH =x ,再证明四边形CFEH 是正方形,推出CF =CH ,可得5+x =12﹣x ,推出x =72,延长即可解决问题; 试题解析:(1)证明:如图1中,连接OC 、OE .∵AB 直径,∴∠ACB =90°,∴CE 平分∠ACB ,∴∠ECA =∠ECB =45°,∴AE =BE ,∴OE ⊥AB ,∴∠DOE =90°.∵PC 是切线,∴OC ⊥PC ,∴∠PCO =90°.∵OC =OE ,∴∠OCE =∠OEC .∵∠PCD +∠OCE =90°,∠ODE +∠OEC =90°,∠PDC =∠ODE ,∴∠PCD =∠PDC ,∴PC =PD .(2)如图2中.作EH ⊥BC 于H ,EF ⊥CA 于F .∵CE 平分∠ACB ,EH ⊥BC 于H ,EF ⊥CA 于F ,∴EH =EF ,∠EFA =∠EHB =90°.∵AE =BE ,∴AE =BE ,∴Rt △AEF ≌Rt △BEH ,∴AF =BH ,设AF =BH =x .∵∠F =∠FCH =∠CHE =90°,∴四边形CFEH 是矩形.∵EH =EF ,∴四边形CFEH 是正方形,∴CF =CH ,∴5+x =12﹣x ,∴x =72,∴CF =FE =172,∴EC 2CF 172,AE 22EF AF +2217722()()+132 点睛:本题考查了切线的性质、圆周角定理、勾股定理、垂径定理、正方形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.10.如图,AB 为⊙O 的直径,DA 、DC 分别切⊙O 于点A ,C ,且AB =AD .(1)求tan ∠AOD 的值.(2)AC,OD交于点E,连结BE.①求∠AEB的度数;②连结BD交⊙O于点H,若BC=1,求CH的长.【答案】(1)2;(2)①∠AEB=135°;②2 CH=【解析】【分析】(1)根据切线的性质可得∠BAD=90°,由题意可得AD=2AO,即可求tan∠AOD的值;(2)①根据切线长定理可得AD=CD,OD平分∠ADC,根据等腰三角形的性质可得DO⊥AC,AE=CE,根据圆周角定理可求∠ACB=90°,即可证∠ABC=∠CAD,根据“AAS”可证△ABC≌△DAE,可得AE=BC=EC,可求∠BEC=45°,即可求∠AEB的度数;②由BC=1,可求AE=EC=1,BE2=,根据等腰直角三角形的性质可求∠ABE=∠HBC,可证△ABE∽△HBC,可求CH的长.【详解】(1)∵DA是⊙O切线,∴∠BAD=90°.∵AB=AD,AB=2AO,∴AD=2AO,∴tan∠AODADAO==2;(2)①∵DA、DC分别切⊙O于点A,C,∴AD=CD,OD平分∠ADC,∴DO⊥AC,AE=CE.∵AB是直径,∴∠ACB=90°,∴∠BAC+∠ABC=90°,且∠BAC+∠CAD=90°,∴∠ABC=∠CAD,且AB=AD,∠ACB=∠AED=90°,∴△ABC≌△DAE(AAS),∴CB=AE,∴CE=CB,且∠ACB=90°,∴∠BEC=45°=∠EBC,∴∠AEB=135°.②如图,∵BC=1,且BC=AE=CE,∴AE=EC=BC=1,∴BE2=.∵AD=AB,∠BAD=90°,∴∠ABD=45°,且∠EBC=45°,∴∠ABE=∠HBC,且∠BAC=∠CHB,∴△ABE∽△HBC,∴BC CHEB AE=,即12CH=,∴CH22=.【点睛】本题考查了切线的性质,圆周角定理,锐角三角函数,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的性质等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.。
2024年中考数学压轴题型-专题03 与圆有关问题的压轴题之五大题型(解析版)
![2024年中考数学压轴题型-专题03 与圆有关问题的压轴题之五大题型(解析版)](https://img.taocdn.com/s3/m/374301577dd184254b35eefdc8d376eeaeaa17fc.png)
专题03与圆有关问题的压轴题之五大题型目录【题型一与圆中三角形全等的有关问题】 (1)【题型二与圆中三角形相似问题的有关问题】 (5)【题型三与圆中证明直线是切线的有关问题】 (29)【题型四与圆中求弧长、扇形面积的有关问题】 (40)【题型五与圆中求函数表达式的有关问题】 (50)【题型一与圆中三角形全等的有关问题】【变式训练】(1)求证:CD BF =.(2)若14BE BF ==,,求GE 的长.(3)连结GO OF ,,如图2,求证:122+EOG AOF ∠∠=【答案】(1)见解析(2)的长为3,由(1)得: CFBD =,FBC BCD ∴∠=∠,BG CG ∴=,AB 为O 的直径,CD 12DE CE CD ∴===,,AF AF =,12AOF OBF ∴∠=∠,在OCG 和OBG △中,OC OB =⎧⎪【题型二与圆中三角形相似问题的有关问题】例题:(2023·浙江宁波·校考一模)如图,已知BC 是O 的直径,点D 为BC 延长线上的一点,点A 为圆上一点,且AB AD =,AC CD =.(1)求证:ACD BAD ∽ ;(2)求证:AD 是O 的切线.【答案】(1)见解析(2)见解析【分析】(1)根据等腰三角形的性质得到CAD B ∠=∠,由于D D ∠=∠,于是得到ACD BAD ∽ ;(2)连接OA ,根据等腰三角形的性质得到B OAB ∠=∠,得到OAB CAD ∠=∠,由BC 是O 的直径,得到90BAC ∠=︒,即可得到结论.【详解】(1)证明:(1)∵AB AD =,∴B D ∠=∠,∵AC CD =,∴CAD D ∠=∠,∴CAD B ∠=∠,∵D D ∠=∠,∴ACD BAD ∽ ;(2)连接OA ,∵OA OB =,∴B OAB ∠=∠,∴OAB CAD ∠=∠,∵BC 是O 的直径,∴90BAC ∠=︒,∴OA ⊥AD ,∴AD 是O 的切线.【点睛】本题考查了相似三角形的判定和性质,切线的判定,等腰三角形的性质,圆周角定理,正确的作出辅助线是解题的关键.【变式训练】(1)求证:BDE DCE △∽△.(2)若2,DE C =为BE 中点,求【答案】(1)见解析(2)3AC =【分析】(1)根据CD 平分∠BDE DCE △∽△;(2)由BDE DCE △∽△得BE DE 在由Rt DCE V 中,cos ACD ∠【详解】(1)∵CD 平分ACE ∠∴ACD DCE∠=∠∵AB DE ∥,(2)∵BDE DCE △∽△,∴BE DE DE CE=,∵点C 为BE 中点,设BC =则2a DE DE a=,∴22D E a ==,即1a =∵90ABC ∠=︒,∴90E ADC ∠=∠=︒在Rt DCE V 中,1CE CD =,∴cos cos ACD DCE ∠=∠=∴3AC =.【点睛】此题主要考查了相似三角形的判定和性质,三角形的外接圆等,解答此题的关键是熟练掌握相似三角形的判定方法,理解相似三角形的对应边成比例,难点是正确的作出辅助线.2.(2023·浙江杭州·杭州市公益中学校考三模)如图,AC ,BD 交于点E ,P 为DB(1)求证:ABE DBA∽;的切线;(2)求证:PA是O(3)若E为BD的中点,求tan 【答案】(1)见解析(2)见解析(3)2(1)求B D ∠-∠的值.(2)当75B ∠=︒时,求(3)若BC CE =,DOE 【答案】(1)45︒∵AB是O的直径,半径∴OAD ODA∠=∠=∵ AC AC=,∴ABC ADC∠=∠,(3)解:如图所示,连接∵ BDBD =,∴12BCD BOD =∠∠∵BC CE =,∴B CEB ∠=∠67.5=(1)求BGC ∠的度数.(2)①求证:AF BC =.②若AG DF =,求tan GBC ∠的值,(3)如图2,当点O 恰好在BG 上且1OG =时,求AC 的长.【答案】(1)90︒(2)①证明见解析;②15tan 5GBC ∠=;(3)3172+∵OB OC =,∴CBE OBC OCB ∠=∠=∠,∴OC BE ∥,∵BD CD =,BDE CDN ∠=∠∴EBD NCD ≌,∴BE CN =,DB DG = ,DBG DGB ∠=∠∴.又,DBG CAG BGD ∠=∠∠=∠ CAG AGM ∴∠=∠,MA MG ∴=.OB OC = ,OBC OCB ∴∠=∠,(1)求ACB ∠的大小(用α,β表示);(2)连接CF ,交AB 于H (如图2).若45β=︒,且BC EF AE CF ⨯=⨯.求证:(3)在(2)的条件下,取CH 中点M ,连接OM 、GM (如图3),若OGM ∠①求证:GM BC ∥,12GM BC =;②OM∵AF AG =,∴AFG AGF ∠∠==∴ACF AGF ∠∠==∵FAB ∠β=,∴ACB ACF ∠=∠+∠∵AF AG =,45β=︒,∴AFG G ACH ∠=∠=∠∵EAF FAC ∠=∠,∴EAF FAC ∽,∴EF AE CF FA=,∴AE CF EF FA ⨯=⨯,∵BC EF AE CF ⨯=⨯,∴BC EF EF AF ⨯=⨯,∴BC AF =,∴ AF BC=,∴45BAC AGF ∠=∠=︒,∴180454590AHC ∠=︒-︒-︒=︒,∴2AHC BAC ∠=∠;(3)①证明:如图3中,连接CG ,延长GM 交AB 于点I .∵245OGM α∠=-︒,45AGF ∠=︒,∴2AGM α∠=,∵45AFG G ACH ∠=∠=∠=︒,∴90FAG ∠=︒,∴FG 是直径,∴90FCG ∠=︒,∵90AHC ∠=︒,∴180AHC GCH ∠+∠=︒,∴AB CG ∥,∴MHI MCG ∠=∠,∵MH MC =,HMI CMG ∠∠=,∴ASA MHI MCG ≌(),∴MI MG =,HI CG =,MGC HIM ∠=∠,∵90FAG ∠=︒,∴90FAG BAF BAG BAG α∠=∠+∠=+∠=︒,在AIG V 中,180AGM BAG HIM ∠+∠+∠=︒,∴2180BAG HIM α+∠+∠=︒即()22BAG HIM BAG αα+∠+∠=+∠,∴HIM BAG ∠=∠,又45BAC ∠=︒,【点睛】本题属于圆综合题,考查了圆周角定理,相似三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是正确寻找相似三角形或全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.6.(2023·浙江·统考中考真题)如图,在径CE 交AB 于点F ,连结(1)求证:AD HC ∥;(2)若2OG GC=,求tan FAG ∠的值;(3)连结BC 交AD 于点N ,若O ①若52OF =,求BC 的长;②若10AH =,求ANB 的周长;∠=∠.∴BAD CAD∴52CF =.∴54CG FG ==,∴154OG =,∴22574AG OA OG =-=.∵CE AD ⊥,∴5272AD AG ==.∵ ==AC CDDB ,∴ AD CB=,∵,AD HC FG GC =∥,∴AH AF =.∵90HCF ∠=︒,∴10AC AH AF ===.设CG x =,则,5FG x OG ==-由勾股定理得222AG AO OG =-2225(5)10x x --=-,设CG x =,则,5FG x OG x ==-由勾股定理得222AG AO OG =-2222210AF AG FG x x x =+=-+∵,AD HC FG GC =∥,∴12AH AF HF ==,∴12AG HC =.(1)设E ∠为α,请用α表示BAC ∠的度数.(2)如图1,当BE AD ⊥时,①求证:DE BG =.②当3tan ,54ABE BG ∠==时,求半径的长.(3)如图2,当BE 过圆心O 时,若tan ABE k ∠=90 ABC ADC∴∠=∠=又AB AD=,AC=∴ABC ADC△≌△.∴12 BAC CAD∠=∠=∠E BADα∠=∠=,3tan 4ABE ∠=,BG =∴3tan 4FDE ∠=,DE 3EF FG ∴==,FD =8BF BG GF ∴=+=.AB AD = ,BAC ∠AC BD ∴⊥,【题型三与圆中证明直线是切线的有关问题】(1)求证:DE 为圆O 的切线;(2)连接OC 交DE 于点F ,若cos ABC ∠O为AB中点,D为BC中点,OD AC∴∥.DE AC⊥,DE OD∴⊥,且点D在O上,DE∴是O的切线;OD AC∥,∴OF OD FC EC=.AB为O的直径,90ADB ADC∴∠=∠=︒.又D为BC的中点,【变式训练】1.(2023·浙江台州·台州市书生中学统考一模)如图,直线AB 经过O 上的点M ,并且,OA OB MA MB ==,OA 交O 于点N .(1)求证:直线AB 是O 的切线;(2)当ON AN =时,求AOB ∠的度数.【答案】(1)见解析(2)120AOB ∠=︒【分析】(1)连接OM ,根据等腰三角形的性质与判定推出OM AB ⊥,即可证明结论;(2)连接MN ,根据直角三角形的性质和圆的基本性质得出OMN 是等边三角形,从而得到60MON ∠=︒,即可求解.【详解】(1)连接OM ,∵OA OB =,∴OAB 是等腰三角形,∵MA MB =,∴OM AB ⊥,又点M 在O 上,∴直线AB 是O 的切线;(2)连接MN ,∵,OM AB ON AN ⊥=,∴MN AN ON ==,又OM ON =,∴OMN 是等边三角形,∴60MON ∠=︒,∴906030A B ==︒-︒=︒∠∠,∴120AOB ∠=︒.【点睛】本题考查了圆的性质,圆的切线证明,等腰三角形的性质与判定,等边三角形的性质与判定,直角三角形的性质等知识点,熟练掌握相关知识点是解题的关键.2.(2023·浙江金华·校联考模拟预测)如图,BC 是O 的直径,PB 是O 的切线,切点为B ,连接PO ,过点C 作AC PO 交O 于点A ,连接PA .(1)求证:AP是O的切线;(2)若4cos5APO∠=,O的半径为∵OA OC=,∴OAC OCA∠=∠.∵O 的半径为3,∴3,6OA BC ==.∵POB POA △≌△,(1)求证:DG 是O 的切线.(2)已知3DG =,1EG =,求【答案】(1)见解析(2)O 的半径为5【分析】(1)连接OD ,根据(2)解:∵OD DG ⊥∴四边形ODGF 为矩形,∴3OF DG ==,OD 设O 的半径为r ,即∵1EG =,(1)求证:DC 为O 的切线;(2)若ACB ∠的角平分线CE 交线段AB 于点F ,交O 于点E ,连接BE ,求CF CE ⋅.OA OC,=∴∠=∠,OAC OCA ,DCB OAC ∠=∠∴∠=∠,OCA DCB 是直径,AB(1)求证:直线AB 是O 的切线;(2)若2BC OC =,①求tan ADB ∠的值;②作CAD ∠的平分线AP 交O 于点P 的代数式表示).∴90OAC OAD ∠+∠=︒,又∵OA OD =,∴OAD ODA ∠=∠,∵BAC ADB ∠=∠,∴OAD BAC ∠=∠,∴90BAC OAC ∠+∠=°,即90BAO ∠=∴AB OA ⊥,又∵OA 为半径,∴直线AB 是O 的切线;(2)解:①解:∵BAC ADB ∠=∠,∴BCA BAD △∽△,∴AC BC AD BA=,2②在Rt CAD △中,22AC AD =,2AC +∴()()222222AC AC CD r +==解得233AC r =,263AD r =,∵AP 平分CAD ∠,∴CAP EAD ∠=∠,又∵APC ADE ∠=∠,∴CAP EAD △∽△,∴AC AP AE AD=,∴2423AE AP AC AD r ⋅=⋅=,∵22AB r k ==,∴24r k =,∴224212386AE AP k k ⋅=⋅=.【点睛】本题考查圆周角定理、切线的判定、等腰三角形的性质、相似三角形的判定与性质、勾股定理、角平分线的定义等知识,熟练掌握相关知识的联系与运用,会利用相似三角形的性质求解是解答的关键.【题型四与圆中求弧长、扇形面积的有关问题】(1)求证:BC BD =.(2)若,2OB OA AE ==.①求半圆O 的半径.②求图中阴影部分的面积.【变式训练】1.(2023·浙江绍兴·校联考三模)如图,已知,在ABC 中,4AB =,以AB 为直径作O ,交边BC 的中点D .DE AC ⊥于点E ,连结AD .(1)求证:DE 是O 的切线.(2)请你给ABC 添加一个条件,并求弧【答案】(1)证明过程见详解(2)添加条件为:60DAB ∠=︒(添加条件不唯一)【分析】(1)如图所示,连接OD 由此即可求证;(2)根据圆周角的性质,可求出∵点D 是BC 的中点,点O 是∴12BD BO BC BA ==,∴OD AC ∥,∴ADO DAE ∠=∠,∵DE AC ⊥,∴90ADE DAE ∠+∠=︒,∴90ADE ADO ∠+∠=︒,∴OD DE ⊥,点D 在O 上,∥;(1)求证:OD ACAB=,求阴影部分的面积.(2)若6【答案】(1)见解析393∵OA OC =,60A ∠=︒,∴AOC 是等边三角形,过点C 作CF AO ⊥,(1)证明: BDCE =;(2)若60A ∠=︒,2BC =,求阴影部分面积.【答案】(1)证明见解析∵AB AC =,∴A ABC CB =∠∠,∵BC 为O 的直径,∵AB AC =,60BAC ∠=︒,OB ∴ABC 为等边三角形,AO ∴60ABC ACB ∠=∠=︒,OB(1)求证:DE AB ⊥.(2)若3DE =,30C ∠=︒,求阴影部分面积.【答案】(1)见解析(2)332π23-∵AC 为直径,∴AD BC ⊥,∵AB AC =,(1)求证:ACD E∠=∠;(2)若3AC=,1AD=,求弧【答案】(1)见解析(2)π3∵直线AC与O相切于点C ∴OC CA⊥,∴190ACD︒∠+∠=,∵ED为直径,【题型五与圆中求函数表达式的有关问题】(1)求CD 的长;(2)如图2,当90PQD ∠=︒时,求PEC 的正切值;(3)如图1,设PE x DF y ==,.①求y 关于x 的函数解析式;②若20PF DQ ⨯=,求y 的值.【答案】(1)8(2)322x 73。
中考数学题型解析与技巧点拨专题六 圆综合题解题技巧(含解析)
![中考数学题型解析与技巧点拨专题六 圆综合题解题技巧(含解析)](https://img.taocdn.com/s3/m/5ee92e3ae3bd960590c69ec3d5bbfd0a7956d54d.png)
专题六中考数学中的圆综合题解题技巧圆的综合题是历年中考的重头戏,很多省份设置为压轴题,分值6分,7分,9分甚至12分。
圆的综合题综合的知识点比较丰富,类型也比较多,难度也比较大,通常要作一至两条辅助线,多的要作三条。
很多省份的中考题一个题干,设置两个小问题,或者一个题干,设置三个小问题。
只要我们熟记圆的各个性质和判定定理,还有辅助线的各种作法,这类题是可以突破的。
圆的综合题以圆为背景,综合特殊四边形或者三角形,利用三角形相似或解直角三角形等方法,求阴影部分的面积和线段的关系,或者判断圆和线的位置关系等等。
主要是记住几个重要定理,会灵活应用定理,根据图形,作辅助线是解题的关键。
类型一:求阴影部分的面积【例题展示】例题1(2018山东省临沂市))如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D,OB与⊙O相交于点E.(1)求证:AC是⊙O的切线;(2)若BD=,BE=1.求阴影部分的面积.【分析】(1)连接OD,作OF⊥AC于F,如图,利用等腰三角形的性质得AO⊥BC,AO平分∠BAC,再根据切线的性质得OD⊥AB,然后利用角平分线的性质得到OF=OD,从而根据切线的判定定理得到结论;(2)设⊙O的半径为r,则OD=OE=r,利用勾股定理得到r2+()2=(r+1)2,解得r=1,则OD=1,OB=2,利用含30度的直角三角三边的关系得到∠B=30°,∠BOD=60°,则∠AOD=30°,于是可计算出AD=OD=,然后根据扇形的面积公式,利用阴影部分的面积=2S△AOD﹣S扇形DOF进行计算.【解答】(1)证明:连接OD,作OF⊥AC于F,如图,∵△ABC为等腰三角形,O是底边BC的中点,∴AO⊥BC,AO平分∠BAC,∵AB与⊙O相切于点D,∴OD⊥AB,而OF⊥AC,∴OF=OD,∴AC 是⊙O 的切线;(2)解:在Rt △BOD 中,设⊙O 的半径为r ,则OD=OE=r , ∴r 2+()2=(r+1)2,解得r=1, ∴OD=1,OB=2,∴∠B=30°,∠BOD=60°, ∴∠AOD=30°, 在Rt △AOD 中,AD=OD=,∴阴影部分的面积=2S △AOD ﹣S 扇形DOF =2××1×﹣=﹣.【点评】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线.圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了等腰三角形的性质.例题2(2018山东省青岛市)如图,Rt △ABC ,∠B=90°,∠C=30°,O 为AC 上一点,OA=2,以O 为圆心,以OA 为半径的圆与CB 相切于点E ,与AB 相交于点F ,连接OE 、OF ,则图中阴影部分的面积是 .【分析】根据扇形面积公式以及三角形面积公式即可求出答案. 【解答】解:∵∠B=90°,∠C=30°, ∴∠A=60°, ∵OA=OF ,∴△AOF 是等边三角形, ∴∠COF=120°, ∵OA=2,∴扇形OGF 的面积为:ππ343604120=⨯∵OA 为半径的圆与CB 相切于点E , ∴∠OEC=90°,∴OC=2OE=4, ∴AC=OC+OA=6, ∴AB=21AC=3, ∴由勾股定理可知:BC=33∴△ABC 的面积为:23933321=⨯⨯ ∵△OAF 的面积为:33221=⨯⨯, ∴阴影部分面积为:34-23734-3-239ππ=故答案为:34-237π【点评】本题考查扇形面积公式,涉及含30度角的直角三角形的性质,勾股定理,切线的性质,扇形的面积公式等知识,综合程度较高.例题3(2018广东省)如图,矩形ABCD 中,BC=4,CD=2,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为 .(结果保留π)【分析】连接OE ,如图,利用切线的性质得OD=2,OE ⊥BC ,易得四边形OECD 为正方形,先利用扇形面积公式,利用S正方形OECD﹣S扇形EOD计算由弧DE 、线段EC 、CD 所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积. 【解答】解:连接OE ,如图,∵以AD 为直径的半圆O 与BC 相切于点E , ∴OD=2,OE ⊥BC ,易得四边形OECD 为正方形,∴由弧DE 、线段EC 、CD 所围成的面积=S 正方形OECD ﹣S 扇形EOD =22﹣ππ-43602902=••, ∴阴影部分的面积=21×2×4﹣(4﹣π)=π. 故答案为π.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了矩形的性质和扇形的面积公式.例题4(2018江苏省泰州市)如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC于点E.(1)试判断DE与⊙O的位置关系,并说明理由;(2)过点D作DF⊥AB于点F,若BE=3,DF=3,求图中阴影部分的面积.【分析】(1)直接利用角平分线的定义结合平行线的判定与性质得出∠DEB=∠EDO=90°,进而得出答案;(2)利用勾股定理结合扇形面积求法分别分析得出答案.【解答】解:(1)DE与⊙O相切,理由:连接DO,∵DO=BO,∴∠ODB=∠OBD,∵∠ABC的平分线交⊙O于点D,∴∠EBD=∠DBO,∴∠EBD=∠BDO,∴DO∥BE,∵DE⊥BC,∴∠DEB=∠EDO=90°,∴DE与⊙O相切;(2)∵∠ABC的平分线交⊙O于点D,DE⊥BE,DF⊥AB,∴DE=DF=3,∵BE=3,∴BD==6,∵sin∠DBF==,∴∠DBA=30°,∴∠DOF=60°,∴sin60°===,∴DO=2,则FO=,故图中阴影部分的面积为:﹣××3=2π﹣.【点评】此题主要考查了切线的判定方法以及扇形面积求法等知识,正确得出DO的长是解题关键.【跟踪训练】1.(2018湖北省荆门市)如图,在平行四边形ABCD中,AB<AD,∠D=30°,CD=4,以AB为直径的⊙O交BC于点E,则阴影部分的面积为.2.(2018湖北省襄阳市)如图,AB是⊙O的直径,AM和BN是⊙O的两条切线,E为⊙O上一点,过点E作直线DC分别交AM,BN于点D,C,且CB=CE.(1)求证:DA=DE;(2)若AB=6,CD=43,求图中阴影部分的面积.3.(2018江苏省扬州市)如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE为半径作半圆,交AO于点F.(1)求证:AC是⊙O的切线;(2)若点F是A的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP的长.4.(2018云南省昆明市)如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.(1)求证:CD是⊙O的切线;(2)若∠D=30°,BD=2,求图中阴影部分的面积.5.(2018广西贵港市)如图,在Rt△ABC中,∠ACB=90°,AB=4,BC=2,将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,则图中阴影部分的面积为(结果保留π).6.(2018江苏省淮安市)如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E是AC的中点.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,∠B=50°,AC=4.8,求图中阴影部分的面积.7.(2018黑龙江省齐齐哈尔市)如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积.8.(2018四川省达州市)已知:如图,以等边△ABC的边BC为直径作⊙O,分别交AB,AC于点D,E,过点D作DF⊥AC交AC于点F.(1)求证:DF是⊙O的切线;(2)若等边△ABC的边长为8,求由DE、DF、EF围成的阴影部分面积.类型二:圆和三角函数的综合【例题展示】1.(2018甘肃省定西市)如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB 分别相交于点D,F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sinA=35时,求AF的长.【分析】(1)连接OE,BE,因为DE=EF,所以DE EF=,从而易证∠OEB=∠DBE,所以OE∥BC,从可证明BC⊥AC;(2)设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA=355OE rOA r==-,从而可求出r的值.【解答】解:(1)连接OE,BE,∵DE=EF,∴DE EF=∴∠OBE=∠DBE∵OE=OB , ∴∠OEB=∠OBE ∴∠OEB=∠DBE , ∴OE ∥BC∵⊙O 与边AC 相切于点E , ∴OE ⊥AC ∴BC ⊥AC ∴∠C=90°(2)在△ABC ,∠C=90°,BC=3,sinA=35∴AB=5,设⊙O 的半径为r ,则AO=5﹣r , 在Rt △AOE 中,sinA=355OE r OA r ==- ∴r=158∴AF=5﹣2×158=54【点评】本题考查圆的综合问题,涉及平行线的判定与性质,锐角三角函数,解方程等知识,综合程度较高,需要学生灵活运用所学知识.2.(2018广东省)如图,四边形ABCD 中,AB=AD=CD ,以AB 为直径的⊙O 经过点C ,连接AC ,OD 交于点E .(1)证明:OD ∥BC ;(2)若tan ∠ABC=2,证明:DA 与⊙O 相切;(3)在(2)条件下,连接BD 交于⊙O 于点F ,连接EF ,若BC=1,求EF 的长.【分析】(1)连接OC ,证△OAD ≌△OCD 得∠ADO=∠CDO ,由AD=CD 知DE ⊥AC ,再由AB 为直径知BC ⊥AC ,从而得OD ∥BC ;(2)根据tan ∠ABC=2可设BC=a 、则AC=2a 、225AC BC a +,证OE 为中位线知OE=12a 、AE=CE=12AC=a ,进一步求得DE=222a AD AE -=,再△AOD 中利用勾股定理逆定理证∠OAD=90°即可得;(3)先证△AFD ∽△BAD 得DF •BD=AD 2①,再证△AED ∽△OAD 得OD •DE=AD 2②,由①②得DF •BD=OD •DE ,即DF DE OD BD =,结合∠EDF=∠BDO 知△EDF ∽△BDO ,据此可得EF DEOB BD=,结合(2)可得相关线段的长,代入计算可得. 【解答】解:(1)连接OC ,在△OAD 和△OCD 中,OA=OC,AD=CD,OD=OD , ∴△OAD ≌△OCD (SSS ), ∴∠ADO=∠CDO , 又AD=CD , ∴DE ⊥AC , ∵AB 为⊙O 的直径, ∴∠ACB=90°,∴∠ACB=90°,即BC ⊥AC , ∴OD ∥BC ; (2)∵tan ∠ABC=ACBC=2, ∴设BC=a 、则AC=2a , ∴AD=AB=225AC BC a +=,∵OE ∥BC ,且AO=BO , ∴OE=12BC=12a ,AE=CE=12AC=a , 在△AED 中,DE=222a AD AE -=,在△AOD 中,AO 2+AD 2=(5a 2)2+(5a )2=254a 2,OD 2=(OF+DF )2=(12a+2a )2=254a 2, ∴AO 2+AD 2=OD 2, ∴∠OAD=90°, 则DA 与⊙O 相切; (3)连接AF , ∵AB 是⊙O 的直径, ∴∠AFD=∠BAD=90°,∵∠ADF=∠BDA,∴△AFD∽△BAD,∴DF ADAD BD=,即DF•BD=AD2①,又∵∠AED=∠OAD=90°,∠ADE=∠ODA,∴△AED∽△OAD,∴AD DEOD AD=,即OD•DE=AD2②,由①②可得DF•BD=OD•DE,即DF DE OD BD=,又∵∠EDF=∠BDO,∴△EDF∽△BDO,∵BC=1,∴AB=AD=5、OD=52、ED=2、BD=10、OB=52,∴EF DEOB BD=,即25102EF=,解得:EF=22.【点评】本题主要考查圆的综合问题,解题的关键是掌握等腰三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质及勾股定理逆定理等知识点.典型的中考压轴题.3.(2018湖北省荆门市)如图,AB为⊙O的直径,C为⊙O上一点,经过点C的切线交AB的延长线于点E,AD⊥EC交EC的延长线于点D,AD交⊙O于F,FM⊥AB于H,分别交⊙O、AC于M、N,连接MB,BC.(1)求证:AC平分∠DAE;(2)若cosM=45,BE=1,①求⊙O的半径;②求FN的长.【分析】(1)连接OC,如图,利用切线的性质得OC⊥DE,则判断OC∥AD得到∠1=∠3,加上∠2=∠3,从而得到∠1=∠2;(2)①利用圆周角定理和垂径定理得到CF BC=,则∠COE=∠FAB,所以∠FAB=∠M=∠COE,设⊙O的半径为r,然后在Rt△OCE中利用余弦的定义得到r415r=+,从而解方程求出r即可;②连接BF,如图,先在Rt△AFB中利用余弦定义计算出AF=325,再计算出OC=3,接着证明△AFN∽△AEC,然后利用相似比可计算出FN的长.【解答】(1)证明:连接OC,如图,∵直线DE与⊙O相切于点C,∴OC⊥DE,又∵AD⊥DE,∴OC∥AD.∴∠1=∠3∵OA=OC,∴∠2=∠3,∴∠1=∠2,∴AC平方∠DAE;(2)解:①∵AB为直径,∴∠AFB=90°,而DE⊥AD,∴BF∥DE,∴OC⊥BF,∴CF BC=,∴∠COE=∠FAB,而∠FAB=∠M,∴∠COE=∠M,设⊙O的半径为r,在Rt△OCE中,cos∠COE=45OCOE=,即r415r=+,解得r=4,即⊙O的半径为4;②连接BF,如图,在Rt△AFB中,cos∠FAB=AF AB,∴AF=8×432 55 =在Rt△OCE中,OE=5,OC=4,∴CE=3,∵AB⊥FM,∴AM AF=,∴∠5=∠4,∵FB∥DE,∴∠5=∠E=∠4,∵CF BC=,∴∠1=∠2,∴△AFN∽△AEC,∴FN AFCE AE=,即32539FN=,∴FN=32 15.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了垂径定理、圆周角定理和相似三角形的判定与性质.4.(2018四川省内江市)如图,以Rt△ABC的直角边AB为直径作⊙O交斜边AC于点D,过圆心O作OE∥AC,交BC于点E,连接DE.(1)判断DE与⊙O的位置关系并说明理由;(2)求证:2DE2=CD•OE;(3)若tanC=43,DE=52,求AD的长.【分析】(1)先判断出DE=BE=CE,得出∠DBE=∠BDE,进而判断出∠ODE=90°,即可得出结论;(2)先判断出△BCD∽△ACB,得出BC2=CD•AC,再判断出DE=12BC,AC=2OE,即可得出结论;(3)先求出BC,进而求出BD,CD,再借助(2)的结论求出AC,即可得出结论.【解答】解:(1)DE是⊙O的切线,理由:如图,连接OD,BD,∵AB是⊙O的直径,∴∠ADB=∠BDC=90°,∵OE∥AC,OA=OB,∴BE=CE,∴DE=BE=CE,∴∠DBE=∠BDE,∵OB=OD,∴∠OBD=∠ODB,∴∠ODE=∠OBE=90°,∵点D在⊙O上,∴DE是⊙O的切线;(2)∵∠BCD=∠ABC=90°,∠C=∠C,∴△BCD∽△ACB,∴BC CD AC BC=,∴BC2=CD•AC,由(1)知DE=BE=CE=12 BC,∴4DE2=CD•AC,由(1)知,OE是△ABC是中位线,∴AC=2OE,∴4DE2=CD•2OE,∴2DE2=CD•OE;(3)∵DE=52,∴BC=5,在Rt△BCD中,tanC=43BDCD =,设CD=3x,BD=4x,根据勾股定理得,(3x)2+(4x)2=25,∴x=﹣1(舍)或x=1,∴BD=4,CD=3,由(2)知,BC2=CD•AC,∴AC=2253BC CD =, ∴AD=AC ﹣CD=2516333-=. 【点评】此题是圆的综合题,主要考查了切线的性质,等腰三角形的性质,三角形的中位线定理,相似三角形的判定和性质,锐角三角函数,判断出△BCD ∽△ACB 是解本题的关键.【跟踪训练】1. (2018浙江省温州市)如如图,D 是△ABC 的BC 边上一点,连接AD ,作△ABD 的外接圆,将△ADC沿直线AD 折叠,点C 的对应点E 落在上. (1)求证:AE=AB . (2)若∠CAB=90°,cos ∠ADB=31,BE=2,求BC 的长.2.(2018贵州省黔西南)如图,CE 是⊙O 的直径,BC 切⊙O 于点C ,连接OB ,作ED ∥OB 交⊙O 于点D ,BD 的延长线与CE 的延长线交于点A . (1)求证:AB 是⊙O 的切线;(2)若⊙O 的半径为1,tan ∠DEO=2,tan ∠A=14,求AE 的长.3.(2018四川省宜宾市)如图,AB 为圆O 的直径,C 为圆O 上一点,D 为BC 延长线一点,且BC=CD ,CE ⊥AD 于点E .(1)求证:直线EC 为圆O 的切线;(2)设BE 与圆O 交于点F ,AF 的延长线与CE 交于点P ,已知∠PCF=∠CBF ,PC=5,PF=4,求sin ∠PEF 的值.4.(2018内蒙古包头市)如图,在Rt△ACB中,∠ACB=90°,以点A为圆心,AC长为半径的圆交AB 于点D,BA的延长线交⊙A于点E,连接CE,CD,F是⊙A上一点,点F与点C位于BE两侧,且∠FAB=∠ABC,连接BF.(1)求证:∠BCD=∠BEC;(2)若BC=2,BD=1,求CE的长及sin∠ABF的值.5.(2018广西贵港市)如图,已知⊙O是△ABC的外接圆,且AB=BC=CD,AB∥CD,连接BD.(1)求证:BD是⊙O的切线;(2)若AB=10,cos∠BAC=35,求BD的长及⊙O的半径.6.(2018湖北省恩施州)如图,AB为⊙O直径,P点为半径OA上异于O点和A点的一个点,过P点作与直径AB垂直的弦CD,连接AD,作BE⊥AB,OE∥AD交BE于E点,连接AE、DE、AE交CD于F点.(1)求证:DE为⊙O切线;(2)若⊙O的半径为3,sin∠ADP=13,求AD;(3)请猜想PF与FD的数量关系,并加以证明.7.(2018四川省资阳市)已知:如图,在△ABC中,AB=AC,点P是底边BC上一点且满足PA=PB,⊙O是△PAB的外接圆,过点P作PD∥AB交AC于点D.(1)求证:PD是⊙O的切线;(2)若BC=8,tan∠ABC=22,求⊙O的半径.8.(2018深圳市)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=10 10.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.类型三:特殊图形(四边形或三角形)与圆的综合【例题展示】例题1(2018山东省菏泽市)如图,△ABC内接于⊙O,AB=AC,∠BAC=36°,过点A作AD∥BC,与∠ABC的平分线交于点D,BD与AC交于点E,与⊙O交于点F.(1)求∠DAF的度数;(2)求证:AE2=EF•ED;(3)求证:AD是⊙O的切线.【分析】(1)求出∠ABC、∠ABD、∠CBD的度数,求出∠D度数,根据三角形内角和定理求出∠BAF 和∠BAD度数,即可求出答案;(2)求出△AEF∽△DEA,根据相似三角形的性质得出即可;(3)连接AO,求出∠OAD=90°即可.【解答】(1)解:∵AD∥BC,∴∠D=∠CBD,∵AB=AC,∠BAC=36°,∴∠ABC=∠ACB=12×(180°﹣∠BAC)=72°,∴∠AFB=∠ACB=72°,∵BD平分∠ABC,∴∠ABD=∠CBD=12∠ABC=1272°=36°,∴∠D=∠CBD=36°,∴∠BAD=180°﹣∠D﹣∠ABD=180°﹣36°﹣36°=108°,∠BAF=180°﹣∠ABF﹣∠AFB=180°﹣36°﹣72°=72°,∴∠DAF=∠DAB﹣∠FAB=108°﹣72°=36°;(2)证明:∵∠CBD=36°,∠FAC=∠CBD,∴∠FAC=36°=∠D,∵∠AED=∠AEF,∴△AEF∽△DEA,∴AE ED EF AE,∴AE2=EF×ED;(3)证明:连接OA、OF,∵∠ABF=36°,∴∠AOF=2∠ABF=72°,∵OA=OF,∴∠OAF=∠OFA=12×(180°﹣∠AOF)=54°,由(1)知∠ADF=36°,∴∠OAD=36°+54°=90°,即OA⊥AD,∵OA为半径,∴AD是⊙O的切线.【点评】本题考查了切线的判定,圆周角定理,三角形内角和定理,等腰三角形的性质等知识点,能综合运用定理进行推理是解此题的关键.例题2(2018湖北省黄石市)如图,已知A、B、C、D、E是⊙O上五点,⊙O的直径BE=23,∠BCD=120°,A为BE的中点,延长BA到点P,使BA=AP,连接PE.(1)求线段BD的长;(2)求证:直线PE是⊙O的切线.【分析】(1)连接DB,如图,利用圆内接四边形的性质得∠DEB=60°,再根据圆周角定理得到∠BDE=90°,然后根据含30度的直角三角形三边的关系计算BD的长;(2)连接EA,如图,根据圆周角定理得到∠BAE=90°,而A为BE的中点,则∠ABE=45°,再根据等腰三角形的判定方法,利用BA=AP得到△BEP为等腰直角三角形,所以∠PEB=90°,然后根据切线的判定定理得到结论.【解答】(1)解:连接DB,如图,∵∠BCD+∠DEB=90°,∴∠DEB=180°﹣120°=60°,∵BE为直径,∴∠BDE=90°,在Rt△BDE中,DE=12BE=12×23=3,BD=3DE=3 3=3;(2)证明:连接EA,如图,∵BE为直径,∴∠BAE=90°,∵A为BE的中点,∴∠ABE=45°,∵BA=AP,而EA⊥BA,∴△BEP为等腰直角三角形,∴∠PEB=90°,∴PE⊥BE,∴直线PE是⊙O的切线.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理.例题3(2018河南省湘潭市)如图,AB是以O为圆心的半圆的直径,半径CO⊥AO,点M是AB上的动点,且不与点A、C、B重合,直线AM交直线OC于点D,连结OM与CM.(1)若半圆的半径为10.①当∠AOM=60°时,求DM的长;②当AM=12时,求DM的长.(2)探究:在点M运动的过程中,∠DMC的大小是否为定值?若是,求出该定值;若不是,请说明理由.【分析】(1)①当∠AOM=60°时,所以△AMO是等边三角形,从而可知∠MOD=30°,∠D=30°,所以DM=OM=10;②过点M作MF⊥OA于点F,设AF=x,OF=10﹣x,利用勾股定理即可求出x的值.易证明△AMF∽△ADO,从而可知AD的长度,进而可求出MD的长度.(2)根据点M的位置分类讨论,然后利用圆周角定理以及圆内接四边形的性质即可求出答案.【解答】解:(1)①当∠AOM=60°时,∵OM=OA,∴△AMO是等边三角形,∴∠A=∠MOA=60°,∴∠MOD=30°,∠D=30°,∴DM=OM=10②过点M作MF⊥OA于点F,设AF=x,∴OF=10﹣x,∵AM=12,OA=OM=10,由勾股定理可知:122﹣x2=102﹣(10﹣x)2∴x=365,∴AF=365,∵MF∥OD,∴△AMF∽△ADO,∴AM AF AD OA=,∴36 12510 AD=,∴AD=50 3∴MD=AD﹣AM=14 3(2)当点M位于AC之间时,连接BC,∵C是AB的重点,∴∠B=45°,∵四边形AMCB是圆内接四边形,此时∠CMD=∠B=45°,当点M位于BC之间时,连接BC,由圆周角定理可知:∠CMD=∠B=45°综上所述,∠CMD=45°【点评】本题考查圆的综合问题,涉及圆周角定理,勾股定理,相似三角形的判定与性质,含30度角的直角三角形性质,解方程等知识,综合程度较高,需要学生灵活运用所学知识.例题4(2018湖北省宜昌市)如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.【分析】(1)根据对角线相互平分的四边形是平行四边形,证明是平行四边形,再根据邻边相等的平行四边形是菱形即可证明;(2)设CD=x ,连接BD .利用勾股定理构建方程即可解决问题; 【解答】(1)证明:∵AB 是直径, ∴∠AEB=90°, ∴AE ⊥BC , ∵AB=AC , ∴BE=CE , ∵AE=EF ,∴四边形ABFC 是平行四边形, ∵AC=AB ,∴四边形ABFC 是菱形. (2)设CD=x .连接BD . ∵AB 是直径, ∴∠ADB=∠BDC=90°, ∴AB 2﹣AD 2=CB 2﹣CD 2, ∴(7+x )2﹣72=42﹣x 2, 解得x=1或﹣8(舍弃)∴AC=8,BD=228715-=,∴S 菱形ABFC =815.【点评】本题考查平行四边形的判定和性质、菱形的判定、线段的垂直平分线的性质勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.【跟踪训练】1.(2018山东省淄博市)如图,以AB 为直径的⊙O 外接于△ABC ,过A 点的切线AP 与BC 的延长线交于点P ,∠APB 的平分线分别交AB ,AC 于点D ,E ,其中AE ,BD (AE <BD )的长是一元二次方程x 2﹣5x+6=0的两个实数根.(1)求证:PA•BD=PB•AE;(2)在线段BC上是否存在一点M,使得四边形ADME是菱形?若存在,请给予证明,并求其面积;若不存在,说明理由.2.(2018浙江省台州市)如图,△ABC是⊙O的内接三角形,点D在BC上,点E在弦AB上(E不与A重合),且四边形BDCE为菱形.(1)求证:AC=CE;(2)求证:BC2﹣AC2=AB•AC;(3)已知⊙O的半径为3.①若53ABAC,求BC的长;②当ABAC为何值时,AB•AC的值最大?3.(2018福建省)如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE⊥AB,垂足为E,DE的延长线交此圆于点F.BG⊥AD,垂足为G,BG交DE于点H,DC,FB的延长线交于点P,且PC=PB.(1)求证:BG∥CD;(2)设△ABC外接圆的圆心为O,若AB=3DH,∠OHD=80°,求∠BDE的大小.4.(2018广西桂林市)如图1,已知⊙O是△ADB的外接圆,∠ADB的平分线DC交AB于点M,交⊙O 于点C,连接AC,BC.(1)求证:AC=BC;(2)如图2,在图1的基础上做⊙O的直径CF交AB于点E,连接AF,过点A做⊙O的切线AH,若AH∥BC,求∠ACF的度数;(3)在(2)的条件下,若△ABD的面积为63,△ABD与△ABC的面积比为2:9,求CD的长.5.(2018贵州省遵义市)如图,AB是半圆O的直径,C是AB延长线上的点,AC的垂直平分线交半圆于点D,交AC于点E,连接DA,DC.已知半圆O的半径为3,BC=2.(1)求AD的长.(2)点P是线段AC上一动点,连接DP,作∠DPF=∠DAC,PF交线段CD于点F.当△DPF为等腰三角形时,求AP的长.6.(2018辽宁省盘锦市)如图,在Rt△ABC中,∠C=90°,点D在线段AB上,以AD为直径的⊙O 与BC相交于点E,与AC相交于点F,∠B=∠BAE=30°.(1)求证:BC是⊙O的切线;(2)若AC=3,求⊙O的半径r;(3)在(1)的条件下,判断以A、O、E、F为顶点的四边形为哪种特殊四边形,并说明理由.7.(2018江苏省苏州市)如图,AB是⊙O的直径,点C在⊙O上,AD垂直于过点C的切线,垂足为D,CE垂直AB,垂足为E.延长DA交⊙O于点F,连接FC,FC与AB相交于点G,连接OC.(1)求证:CD=CE;(2)若AE=GE,求证:△CEO是等腰直角三角形.类型四:圆中求线段或弧的长度,证明三角形相似或线段的关系等的综合【例题展示】例题1(2018山东省滨州市)如图,AB为⊙O的直径,点C在⊙O上,AD⊥CD于点D,且AC平分∠DAB,求证:(1)直线DC是⊙O的切线;(2)AC2=2AD•AO.【分析】(1)连接OC,由OA=OC、AC平分∠DAB知∠OAC=∠OCA=∠DAC,据此知OC∥AD,根据AD⊥DC即可得证;(2)连接BC,证△DAC∽△CAB即可得.【解答】解:(1)如图,连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴OC∥AD,又∵AD⊥CD,∴OC⊥DC,∴DC是⊙O的切线;(2)连接BC,∵AB为⊙O的直径,∴AB=2AO,∠ACB=90°,∵AD⊥DC,∴∠ADC=∠ACB=90°,又∵∠DAC=∠CAB,∴△DAC∽△CAB,∴AC ADAB AC=,即AC2=AB•AD,∵AB=2AO,∴AC2=2AD•AO.【点评】本题主要考查圆的切线,解题的关键是掌握切线的判定、圆周角定理及相似三角形的判定与性质.例题2(2018四川省泸州市)如图,已知AB,CD是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,⊙O的弦DE交AB于点F,且DF=EF.(1)求证:CO2=OF•OP;(2)连接EB交CD于点G,过点G作GH⊥AB于点H,若PC=42,PB=4,求GH的长.【分析】(1)想办法证明△OFD∽△OCP,可得OD OFOP OC=,由OD=OC,可得结论;(2)如图作CM⊥OP于M,连接EC、EO.设OC=OB=r.在Rt△POC中,利用勾股定理求出r,再利用面积法求出CM,由四边形EFMC是矩形,求出EF,在Rt△EOF中,求出OF,再求出EC,利用平行线分线段成比例定理即可解决问题;【解答】(1)证明:∵PC是⊙O的切线,∴OC⊥PC,∴∠PCO=90°,∵AB是直径,EF=FD,∴AB⊥ED,∴∠OFD=∠OCP=90°,∵∠FOD=∠COP,∴△OFD∽△OCP,∴OD OFOP OC=,∵OD=OC,∴OC2=OF•OP.(2)解:如图作CM⊥OP于M,连接EC、EO.设OC=OB=r.在Rt△POC中,∵PC2+OC2=PO2,∴(42)2+r2=(r+4)2,∴r=2,∵CM=423 OC PCOP⨯=,∵DC是直径,∴∠CEF=∠EFM=∠CMF=90°,∴四边形EFMC是矩形,∴EF=CM=423,在Rt△OEF中,222 3EO EF-=,∴EC=2OF=43,∵EC∥OB,∴23 EC CGOB GO==,∵GH∥CM,∴35 GH OGCM OC==,∴GH=425.【点评】本题考查切线的性质、相似三角形的判定和性质、矩形的判定和性质、平行线分线段成比例定理、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.例题3(2018湖北省武汉市)如图,PA是⊙O的切线,A是切点,AC是直径,AB是弦,连接PB、PC,PC交AB于点E,且PA=PB.(1)求证:PB是⊙O的切线;(2)若∠APC=3∠BPC,求PECE的值.【分析】(1)想办法证明△PAO≌△PBO.可得∠PAO=∠PBO=90°;(2)首先证明BC=2OK,设OK=a,则BC=2a,再证明BC=PB=PA=2a,由△PAK∽△POA,可得PA2=PK•PO,设PK=x,则有:x2+ax﹣4a2=0,解得x=171a2-(负根已经舍弃),推出PK=171a2-,由PK∥BC,可得1714PE PKEC BC-==;【解答】(1)证明:连接OP、OB.∵PA是⊙O的切线,∴PA⊥OA,∴∠PAO=90°,∵PA=PB,PO=PO,OA=OB,∴△PAO≌△PBO.∴∠PAO=∠PBO=90°,∴PB⊥OB,∴PB是⊙O的切线.(2)设OP 交AB 于K . ∵AB 是直径, ∴∠ABC=90°, ∴AB ⊥BC ,∵PA 、PB 都是切线, ∴PA=PB ,∠APO=∠BPO , OA=OB ,OP 垂直平分线段AB , OK ∥BC , AO=OC , AK=BK ,BC=2OK ,设OK=a ,则BC=2a , ∵∠APC=3∠BPC ,∠APO=∠OPB , ∴∠OPC=∠BPC=∠PCB , BC=PB=PA=2a , ∵△PAK ∽△POA , PA 2=PK •PO ,设PK=x , 则有:x 2+ax ﹣4a 2=0, 解得x=171a 2-(负根已经舍弃), PK=171a 2-, PK ∥BC , 1714PE PK EC BC -==. 【点评】本题考查相似三角形的判定和性质、圆周角定理、切线的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题,学会利用参数解决问题,属于中考常考题型.例题4(2018黑龙江大庆市)如图,AB 是⊙O 的直径,点E 为线段OB 上一点(不与O ,B 重合),作EC ⊥OB ,交⊙O 于点C ,作直径CD ,过点C 的切线交DB 的延长线于点P ,作AF ⊥PC 于点F ,连接CB . (1)求证:AC 平分∠FAB ;(2)求证:BC2=CE•CP;(3)当AB=43且34CFCP=时,求劣弧BD的长度.【分析】(1)根据等角的余角相等证明即可;(2)只要证明△CBE∽△CPB,可得CB CECP CB=解决问题;(3)作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=3a,PC=4a,PM=a,利用相似三角形的性质求出BM,求出tan∠BC M的值即可解决问题;【解答】(1)证明:∵AB是直径,∴∠ACB=90°,∴∠BCP+∠ACF=90°,∠ACE+∠BCE=90°,∵∠BCP=∠BCE,∴∠ACF=∠ACE,(2)证明:∵OC=OB,∴∠OCB=∠OBC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠CEB=90°,∴∠PCB+∠OCB=90°,∠BCE+∠OBC=90°,∴∠BCE=∠BCP,∵CD是直径,∴∠CBD=∠CBP=90°,∴△CBE∽△CPB,∴CB CE CP CB=,∴BC2=CE•CP;(3)解:作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=3a,PC=4a,PM=a,∵∠MCB+∠P=90°,∠P+∠PBM=90°,∴∠MCB=∠PBM,∵CD是直径,BM⊥PC,∴∠CMB=∠BMP=90°,∴△BMC∽△PMB,∴BM CM PM BM=,∴BM2=CM•PM=3a2,∴BM=3a,∴tan∠BCM=33 BMCM=,∴∠BCM=30°,∴∠OCB=∠OBC=∠BOC=60°,∠BOD=120°∴BD的长=12023431803ππ⨯⨯=.【跟踪训练】1.(2018广西柳州市)如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,过点A作⊙O的切线交BC的延长线于点D.(1)求证:△DAC∽△DBA;(2)过点C作⊙O的切线CE交AD于点E,求证:CE=12 AD;(3)若点F为直径AB下方半圆的中点,连接CF交AB于点G,且AD=6,AB=3,求CG的长.2.(2018广西南宁市)如图,△ABC内接于⊙O,∠CBG=∠A,CD为直径,OC与AB相交于点E,过点E作EF⊥BC,垂足为F,延长CD交GB的延长线于点P,连接BD.(1)求证:PG与⊙O相切;(2)若58EFAC=,求BEOC的值;(3)在(2)的条件下,若⊙O的半径为8,PD=OD,求OE的长.3.(2018内蒙古通辽市)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△ABD∽△DCP;(3)当AB=5cm,AC=12cm时,求线段PC的长.4.(2018山东聊城市)如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,作ED⊥EB交AB于点D,⊙O是△BED的外接圆.(1)求证:AC是⊙O的切线;(2)已知⊙O的半径为2.5,BE=4,求BC,AD的长.5.(2018新疆乌鲁木齐)如图,AG是∠HAF的平分线,点E在AF上,以AE为直径的⊙O交AG于点D,过点D作AH的垂线,垂足为点C,交AF于点B.(1)求证:直线BC是⊙O的切线;(2)若AC=2CD,设⊙O的半径为r,求BD的长度.。
专题 点圆模型 中考数学答题技巧与模板构建
![专题 点圆模型 中考数学答题技巧与模板构建](https://img.taocdn.com/s3/m/1a075b5617fc700abb68a98271fe910ef12daec3.png)
专题点圆模型题型解读|模型构建|通关试练动点轨迹问题是中考和各类模拟考试的重要和难点题型,综合考查学生解析几何知识和思维能力.该题型一般在填空题或解答题的其中一问出现,具有一定的难度,致使该考点成为学生在中考中失分的集中点.掌握该压轴题型的基本图形,构建问题解决的一般思路,是中考专题复习的一个重要途径.本专题就动点轨迹为圆弧型进行梳理及对应试题分析,方便掌握.模型01 定义型点A为定点,点B为动点,且AB长度固定,则点B的轨迹是以点A为圆心,AB长为半径的圆.模型02 直径所对的角为直角(直角模型)一条定边所对的角始终为直角,则直角顶点轨迹是以定边为直径的圆或圆弧;如图,若P为动点,AB为定值,∠APB=90°,则动点P是以AB为直径的圆或圆弧.模型03 等弦对等角模型一条定边所对的角始终为定角,则定角顶点轨迹是圆弧.如图,若P 为动点,AB 为定值,∠APB 为定值,则动点P 的轨迹为圆弧.模型01 定义型考|向|预|测点圆模型的定义型该题型主要以选择、填空形式出现,目前与综合性大题结合考试,作为其中一问,难度系数不大,在各类考试中都以中档题为主.解这类问题的关键是结合圆的定义判定动点变化的特点,结合圆和其它几何的相关知识点进行解题.答|题|技|巧例1.(2022·广西)如图,在△ABC 中,90ACB ∠=︒,3AC =,4BC =,点D 在AC 边上,且2AD =,动A B点P 在BC 边上,将△PDC 沿直线PD 翻折,点C 的对应点为E ,则△AEB 面积的最小值是( )A .32B .53C .2D .52例2.(2022·北京)如图,在Rt ABC △中,90ACB ∠=︒,30ABC ∠=︒,6AC =,点E 是边AC 的中点,将ABC 绕点C 逆时针方向旋转得到A B C ''△,点P 是边A B ''上的一动点,则PE 长度的最大值与最小值的差为 .模型02 直角模型考|向|预|测点圆问题中的直角模型该题型也主要以选择、填空的形式出现,一般较为靠后,有一定难度,该题型主要考查对圆性质的的理解.实际题型中会结合直角三角形的相关知识点,对数形结合的讨论是解题的关键.许多实际问题的讨论中需要我们将一些线段进行转化,即用与它相等的线段替代,从而转化成求固定图形问题.答|题|技|巧例1.(2021·山东)如图,在正方形ABCD中,2AB=,E为边AB上一点,F为边BC上一点.连接DE 和AF交于点G,连接BG.若AE BF=,则BG的最小值为__________.例2.如图,在平面直角坐标系中,点A的坐标为(4,0),点B是第一象限内的一个动点并且使C,则BC的最小值为.∠=︒,点(0,3)OBA90模型03等弦对等角考|向|预|测点圆问题中的等圆对等角模型主要考查转化与化归等的数学思想,近年在中考数学和各地的模拟考中常以压轴题的形式考查,学生不易把握.该题型也主要以选择、填空的形式出现,一般较为靠后,有一定难度.该题型主要考查动点的轨迹为定圆时,可利用:“一定点与圆上的动点距离最大值为定点到圆心的距离与半径之和,最小值为定点到圆心的距离与半径之差”的性质求解.解题时会考查了矩形,圆,相似三角形的判定和性质,两点之间线段最短等知识,解题的关键是学会添加常用辅助线,构造对应图形解决问题,属于中考中的压轴题.答|题|技|巧例1.(2022·江苏)如图,已知正方形ABCD 的边长为2,若动点E 满足45BEC ∠=︒,则线段CE 长的最大值为 .例2.(2023·重庆)如图,在边长为6的等边ABC ∆中,点E ,F 分别是边AC ,BC 上的动点,且AE CF =,连接BE ,AF 交于点P ,连接CP ,则CP 的最小值为 .1. (2023·广东)如图,四边形ABCD 为矩形,3AB =,4BC =.点P 是线段BC 上一动点,点M 为线段AP 上一点.ADM BAP ∠=∠,则BM 的最小值为( )A .52B .125C 32-D 22. (2023·湖南)如图,菱形ABCD 边长为4,∠A =60°,M 是AD 边的中点,N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到△A ′MN ,连接A ′C ,则A ′C 的最小值是( )A.B C.﹣2D.33.(2023·山西)如图,△ABC中,∠C=90°,∠BAC=30°,AB=2,点P从C点出发,沿CB运动到点B停止,过点B作射线AP的垂线,垂足为Q,点Q运动的路径长为( )A.B.C.D.4.(2023·广州)如图,等边三角形ABC和等边三角形ADE,点N,点M分别为BC,DE的中点,AB=6,AD=4,△ADE绕点A旋转过程中,MN的最大值为 .5.(2023·云南)如图,在Rt△ABC中,90∠= ,30ACB∠= ,BC=2,线段BC绕点B旋转到BD,BAC连AD,E为AD的中点,连接CE,则CE的最大值是.6.(2023·贵州)如图,正方形ABCD的边长为4,点E为边AD上一个动点,点F在边CD上,且线段EF=4,点G 为线段EF 的中点,连接BG 、CG ,则BG +12CG 的最小值为 .7.(2022•天津)如图,在矩形ABCD 中,AB =6,BC =5,点E 在BC 上,且CE =4BE ,点M 为矩形内一动点,使得∠CME =45°,连接AM ,则线段AM 的最小值为 .8.(2023·贵阳)如图,矩形ABCD 中,20AB =,30AD =,点E ,F 分别是AB ,BC 边上的两个动点,且10EF =,点G 为EF 的中点,点H 为AD 边上一动点,连接CH 、GH ,则GH CH +的最小值为 .9.(2023·安徽)等腰直角ABC 中,90BAC =︒,5AB =,点D 是平面内一点,2AD =,连接BD ,将BD 绕D 点逆时针旋转90︒得到DE ,连接AE ,当DAB = (填度数)度时,AE 可以取最大值,最大值等于 .10.(2023·广西)如图①,在△ABC 中,∠ACB =90°,点D ,E 分别是AB ,BC 边上的点,且AC =CD =3,连接AE ,DE ,∠CAE +∠AEB =180°.(1)当∠B =22.5°时,求证:CD 平分∠ACB ;(2)当CD =BD 时,求的值;(3)如图②,若点F 是线段AC 上一点,且AF =1,连接DF ,EF ,EF 交CD 于点G ,求△DEF 面积的最大值.1.如图,在矩形ABCD 中,已知AB =3,BC =4,点P 是BC 边上一动点(点P 不与B ,C 重合),连接AP ,作点B 关于直线AP 的对称点M ,则线段MC 的最小值为( )A .2B .C .3D .2.如图,正方形ABCD 的边长是4,点E 是AD 边上一动点,连接BE ,过点A 作AF BE ⊥于点F ,点P 是AD 边上另一动点,则PC PF +的最小值为( )A .5B .2C .6D .2+3.如图,在Rt ABC 和Rt ADE V 中,90BAC DAE ∠=∠=︒,3AC AD ==,AB =AE =5.连接BD ,CE ,将△ADE 绕点A 旋转一周,在旋转的过程中当DBA ∠最大时,△ACE 的面积为( ).A.6B.C.9D.4.如图,在Rt△ABC中,∠ACB=90°,BC=3,AB=5,点D是边BC上一动点,连接AD,在AD上取一点E,使∠DAC=∠DCE,连接BE,则BE的最小值为( )A.2﹣3B.C.﹣2D.5.如图,点P是正六边形ABCDEF内一点,AB=4,当∠APB=90°时,连接PD,则线段PD的最小值是( )A.B.C.6D.6.如图,矩形ABCD的边AB=8,AD=6,M为BC的中点,P是矩形内部一动点,且满足∠ADP=∠PAB,N为边CD上的一个动点,连接PN,MN,则PN+MN的最小值为 .7.如图,在等边△ABC中,AB=6,点D,E分别在边BC,AC上,且BD=CE,连接AD,BE交于点F,连接CF,则∠AFB= ,CF的最小值是 .8.如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,BC =2,点E 是AC 的中点,点F 是斜边AB 上任意一点,连接EF ,将△AEF 沿EF 对折得到△DEF ,连接DB ,则△BDF 周长的最小值是 .9.如图,在边长为3的菱形ABCD 中,∠A =60°,M 是AD 边上的一点,且AM =AD ,N 是AB 边上的一动点,将△AMN 沿MN 所在直线翻折得到△A ′MN ,连接A ′C .则A ′C 长度的最小值是 .10.如图,线段AB 为O 的直径,点C 在AB 的延长线上,4AB =,2BC =,点P 是O 上一动点,连接CP ,以CP 为斜边在PC 的上方作Rt PCD ,且使60DCP ∠=︒,连接OD ,则OD 长的最大值为 .11.如图,△ABC 为等边三角形,AB =2,若P 为△ABC 内一动点,且满足∠PAB =∠ACP ,则点P 运动的路径长为 .12.如图,Rt ABC ∆中,AB BC ⊥,12AB =,8BC =,P 是ABC ∆内部的一个动点,且满足PAB PBC ∠=∠,连接PC ,则线段CP 长的最小值为 .13.(1)【学习心得】小刚同学在学习完“圆”这一章内容后,感觉到一些几何问题,如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图1,在ABC ∆中,AB AC =,90BAC ∠=︒,D 是ABC ∆外一点,且AD AC =,求BDC ∠的度数,若以点A 为圆心,AB 为半径作辅助圆A ,则点C 、D 必在A 上,BAC ∠是A 的圆心角,而BDC ∠是圆周角,从而可容易得到BDC ∠= ︒.(2)【问题解决】如图2,在四边形ABCD 中,90BAD BCD ∠=∠=︒,25BDC ∠=︒,求BAC ∠的度数.小刚同学认为用添加辅助圆的方法,可以使问题快速解决,他是这样思考的:ABD ∆的外接圆就是以BD 的中点为圆心,12BD 长为半径的圆;ACD ∆的外接圆也是以BD 的中点为圆心,12BD 长为半径的圆.这样A 、B 、C 、D 四点在同一个圆上,进而可以利用圆周角的性质求出BAC ∠的度数,请运用小刚的思路解决这个问题.(3)【问题拓展】如图3,在ABC ∆中,45BAC ∠=︒,AD 是BC 边上的高,且4BD =,2CD =,求AD 的长.专题点圆模型解析题型解读|模型构建|通关试练动点轨迹问题是中考和各类模拟考试的重要和难点题型,综合考查学生解析几何知识和思维能力.该题型一般在填空题或解答题的其中一问出现,具有一定的难度,致使该考点成为学生在中考中失分的集中点.掌握该压轴题型的基本图形,构建问题解决的一般思路,是中考专题复习的一个重要途径.本专题就动点轨迹为圆弧型进行梳理及对应试题分析,方便掌握.模型01 定义型点A 为定点,点B 为动点,且AB 长度固定,则点B 的轨迹是以点A 为圆心,AB 长为半径的圆.模型02 直径所对的角为直角(直角模型)一条定边所对的角始终为直角,则直角顶点轨迹是以定边为直径的圆或圆弧;如图,若P 为动点,AB 为定值,∠APB=90°,则动点P 是以AB 为直径的圆或圆弧.模型03 等弦对等角模型一条定边所对的角始终为定角,则定角顶点轨迹是圆弧.如图,若P 为动点,AB 为定值,∠APB 为定值,则动点P 的轨迹为圆弧.模型01 定义型考|向|预|测点圆模型的定义型该题型主要以选择、填空形式出现,目前与综合性大题结合考试,作为其中一问,难度系数不大,在各类考试中都以中档题为主.解这类问题的关键是结合圆的定义判定动点变化的特点,结合圆和其它几何的相关知识点进行解题.答|题|技|巧A B结合圆、三角形、四边形的相关知识点进行解题,一般情况下会涉及最值问题例1.(2022·广西)如图,在△ABC 中,90ACB ∠=︒,3AC =,4BC =,点D 在AC 边上,且2AD =,动点P 在BC 边上,将△PDC 沿直线PD 翻折,点C 的对应点为E ,则△AEB 面积的最小值是( )A .32B .53C .2D .52∵90ACB ∠=︒,3AC =,4BC =∵∠MAD =∠CAB ,AD =2,∴△∴25DM AD BC AB ==,DQ =DC =1.∴∵动点P 在BC 边上,△PDC 沿直线例2.(2022·北京)如图,在Rt ABC △中,90ACB ∠=︒,30ABC ∠=︒,6AC =,点E 是边AC 的中点,将ABC 绕点C 逆时针方向旋转得到A B C ''△,点P 是边A B ''上的一动点,则PE 长度的最大值与最小值的差为 .PC AB ⊥ ,30ABC ∠=︒1332P C C '''∴==,PE ∴最小值为333-模型02 直角模型考|向|预|测点圆问题中的直角模型该题型也主要以选择、填空的形式出现,一般较为靠后,有一定难度,该题型主要考查对圆性质的的理解.实际题型中会结合直角三角形的相关知识点,对数形结合的讨论是解题的关键.许多实际问题的讨论中需要我们将一些线段进行转化,即用与它相等的线段替代,从而转化成求固定图形问题.答|题|技|巧例1.(2021·山东)如图,在正方形ABCD中,2AB=,E为边AB上一点,F为边BC上一点.连接DE 和AF交于点G,连接BG.若AE BF=,则BG的最小值为__________.例2.如图,在平面直角坐标系中,点A 的坐标为(4,0),点B 是第一象限内的一个动点并且使90OBA ∠=︒,点(0,3)C ,则BC 的最小值为 .2【详解】解:如图,以OA 为直径作D ,连接CD ,交D 于B ,此时BC 长最小,(4,0)A ,(0,3)C ,3OC ∴=,4OA =,2OD DB ∴==,CD ∴===2BC CD BD ∴=-=-,2-.模型03 等弦对等角考|向|预|测点圆问题中的等圆对等角模型主要考查转化与化归等的数学思想,近年在中考数学和各地的模拟考中常以压轴题的形式考查,学生不易把握.该题型也主要以选择、填空的形式出现,一般较为靠后,有一定难度.该题型主要考查动点的轨迹为定圆时,可利用:“一定点与圆上的动点距离最大值为定点到圆心的距离与半径之和,最小值为定点到圆心的距离与半径之差”的性质求解.解题时会考查了矩形,圆,相似三角形的判定和性质,两点之间线段最短等知识,解题的关键是学会添加常用辅助线,构造对应图形解决问题,属于中考中的压轴题.答|题|技|巧例1.(2022·江苏)如图,已知正方形ABCD 的边长为2,若动点E 满足45BEC ∠=︒,则线段CE 长的最大值为 .CE ∵正方形ABCD 的边长为当点E 在BC 的下方时,例2.(2023·重庆)如图,在边长为6的等边ABC ∆中,点E ,F 分别是边AC ,BC 上的动点,且AE CF =,连接BE ,AF 交于点P ,连接CP ,则CP 的最小值为 .【答案】【详解】解:ABC ∆ 是等边三角形,AB AC BC ∴==,60CAB ACB ∠=∠=︒,在ABE ∆和CAF ∆中,AB AC BAC ACB AE CF =⎧⎪∠=∠⎨⎪=⎩,()ABE CAF SAS ∴∆≅∆,ABE CAF ∴∠=∠,60BPF PAB ABP CAP BAP ∴∠=∠+∠=∠+∠=︒,120APB ∴∠=︒,如图,过点A ,点P ,点B 作O ,连接CO ,PO ,∴点P 在 AB 上运动,AO OP OB == ,OAP OPA ∴∠=∠,OPB OBP ∠=∠,OAB OBA ∠=∠,360120AOB OAP OPA OPB OBP ∴∠=︒-∠-∠-∠-∠=︒,30OAB ∴∠=︒,90CAO ∴∠=︒,AC BC = ,OA OB =,CO ∴垂直平分AB ,30ACO ∴∠=︒,cos AC ACO CO ∴∠==2CO AO =,CO ∴=AO ∴=,在CPO ∆中,CP CO OP -…,∴当点P 在CO 上时,CP 有最小值,CP ∴的最小值=-=,故答案为.1. (2023·广东)如图,四边形ABCD 为矩形,3AB =,4BC =.点P 是线段BC 上一动点,点M 为线段AP 上一点.ADM BAP ∠=∠,则BM 的最小值为( )A .52B .125C 32-D 2∵四边形ABCD 为矩形∴+=90BAP MAD ︒∠∠∵ADM BAP∠=∠∴+=90MAD ADM ︒∠∠∴=90AMD ︒∠∴点M 在O 点为圆心,以AO故选:D.2. (2023·湖南)如图,菱形ABCD边长为4,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN 沿MN所在的直线翻折得到△A′MN,连接A′C,则A′C的最小值是()A.B C.﹣2D.33.(2023·山西)如图,△ABC中,∠C=90°,∠BAC=30°,AB=2,点P从C点出发,沿CB运动到点B停止,过点B作射线AP的垂线,垂足为Q,点Q运动的路径长为( )A.B.C.D.【答案】D【详解】解:∵AQ⊥BQ,∴点Q在以AB为直径的⊙O上运动,运动路径为,连接OC,∵∠ACB=90°,OA=OB,∴CO=OA=1,∴∠COB=2∠CAB=60°,∴的长为,故选:D.4.(2023·广州)如图,等边三角形ABC和等边三角形ADE,点N,点M分别为BC,DE的中点,AB=6,AD=4,△ADE绕点A旋转过程中,MN的最大值为 .【答案】【详解】解:连接AN,AM,以AM为半径,点A为圆心作圆,反向延长AN与圆交于点M′,如图,∵△ADE绕点A旋转,∴点M是在以AM为半径,点A为圆心的圆上运动,∵AM+AN≥MN,∴当点M旋转到M′,即M、A、N三点共线时,MN的值最大,最大为M′N,∵△ABC和△ADE都是等边三角形,点N,点M分别为BC,DE的中点,AB=6,AD=4,∴AN⊥BC,AM⊥DE,BN=3,DM=2,在Rt△ABN中,由勾股定理得,在Rt△ADM中,由勾股定理得,根据旋转的性质得,AM′=AM=,∴M′N=AN+AM′=,即MN的最大值为.故答案为:.5.(2023·云南)如图,在Rt△ABC中,90∠= ,30ACB∠= ,BC=2,线段BC绕点B旋转到BD,BAC连AD,E为AD的中点,连接CE,则CE的最大值是.【答案】3【详解】解:∵BC=2,线段BC绕点B旋转到BD,∴BD=2,∴11 BD=.6.(2023·贵州)如图,正方形ABCD的边长为4,点E为边AD上一个动点,点F在边CD上,且线段EF=4,点G为线段EF的中点,连接BG、CG,则BG+12CG的最小值为.【答案】5【详解】解:如图,在Rt△DEF中,G是EF的中点,7.(2022•天津)如图,在矩形ABCD中,AB=6,BC=5,点E在BC上,且CE=4BE,点M为矩形内一动点,使得∠CME=45°,连接AM,则线段AM的最小值为 .【答案】5﹣2.【详解】解:如图,作△EMC的外接圆⊙O,连接AO,CO,EO,作OF⊥AB,ON⊥BC,∵BC=5,点E在BC上,且CE=4BE,∴BE=1,EC=4,∵∠CME=45°,∴∠EOC=90°,∴OE=OC=2,ON=EN=CN=2,∴BN=OF=3,AF=6﹣2=4,在Rt △AFO 中,AO =,当点M 是OA 与⊙O 的交点时,AM 最小,∴AM 的最小值=OA ﹣OE =5﹣2.故答案为:5﹣2.8.(2023·贵阳)如图,矩形ABCD 中,20AB =,30AD =,点E ,F 分别是AB ,BC 边上的两个动点,且10EF =,点G 为EF 的中点,点H 为AD 边上一动点,连接CH 、GH ,则GH CH +的最小值为 .【答案】45【详解】解:由已知,点G 在以B 圆心,5为半径的圆在与长方形重合的弧上运动.作C 关于AD 的对称点C ',连接C B ',交AD 于H ,交以B 为圆心,以5为半径的圆于G由两点之间线段最短,此时C B '的值最小50==,则GH CH +的最小值50545=-=,故答案为:45.9.(2023·安徽)等腰直角ABC 中,90BAC =︒,5AB =,点D 是平面内一点,2AD =,连接BD ,将BD 绕D 点逆时针旋转90︒得到DE ,连接AE ,当DAB = (填度数)度时,AE 可以取最大值,最大值等于 .ABC 是等腰直角三角形,AC BC ∴=,CBA ∠= 将BD 绕D 点逆时针旋转90︒得到DE ,ED BD ∴= 12AB DB BC BE==,ADB CEB ∴△∽△,∴2CE =180135DAB ECB ACB ∠=∠=︒-∠=︒,如图二,∴点E 在以点为圆心,CE 长为半径的圆周上运动,在同一直线上AE 最长,AE AC CE =+10.(2023·广西)如图①,在△ABC 中,∠ACB =90°,点D ,E 分别是AB ,BC 边上的点,且AC =CD =3,连接AE ,DE ,∠CAE +∠AEB =180°.(1)当∠B =22.5°时,求证:CD 平分∠ACB ;(2)当CD =BD 时,求的值;(3)如图②,若点F 是线段AC 上一点,且AF =1,连接DF ,EF ,EF 交CD 于点G ,求△DEF 面积的最大值.C【答案】(1)证明过程见详解;(2)+1;(3)﹣3.【详解】(1)证明:∵∠CAE+∠AEB=180°,∠CEA+∠AEB=180°,∴∠CAE=∠CEA,∴AC=CE,∵AC=CD,∴AC=CD=CE,∵∠B=22.5°,∠ACB=90°,∴∠CAD=∠CDA=90°﹣22.5°=67.5°,∴∠ACD=180°﹣2×67.5°=45°,∴∠BCD=90°﹣45°=45°,∴∠ACD=∠BCD,∴CD平分∠ACB;(2)解:由(1)得:AC=CD=CE,如图①,以点C为圆心,CA长为半径作圆,过点E作EP⊥AB于P,∵CD=BD,∴∠DCB=∠B,∵∠ACD+∠BCD=90°,∠CAD+∠B=90°,∴∠ACD=∠CAD,∴CD=AD,∵AC=CD,∴AC=CD=AD,∴△ACD是等边三角形,∴∠CAD=60°,CD=AD=BD=3,∴∠B=30°,∵∠ACB=90°,∴∠ADE=180°﹣∠ACB=180°﹣×90°=135°,∴∠EDP=180°﹣135°=45°,∴△DPE是等腰直角三角形,∴DP=EP,设DP=EP=x,则BP=3﹣x,在Rt△BEP中,tan B===,解得:x=,∵∠ACE=90°,AC=CE,∴∠CAE=45°,∴∠CAE=∠PDE,∵∠ACE=∠DPE=90°,∴△ACE∽△DPE,∴===+1;(3)解:由(1)得:AC=CD=CE,如图②,以点C为圆心,CA长为半径作圆,∵CE=CD=3,CF=AC﹣AF=3﹣1=2,∠ACB=90°,∴EF===,为定值,∵CD为定值,∴当CD⊥EF时,CG取得最小值,此时,点D到EF的距离取得最大值,即△DEF的面积取得最大值,∵S△CEF=CF•CE=EF•CG最小,即×2×3=××CG最小,解得:CG最小=,∴DG最大=CD﹣CG最小=3﹣,∴S△DEF最大=EF•G最大=××(3﹣)=﹣3.1.如图,在矩形ABCD中,已知AB=3,BC=4,点P是BC边上一动点(点P不与B,C重合),连接AP,作点B关于直线AP的对称点M,则线段MC的最小值为( )A.2B.C.3D.【答案】A【详解】解:连接AM,∵点B和M关于AP对称,∴AB=AM=3,∴M在以A圆心,3为半径的圆上,∴当A,M,C三点共线时,CM最短,∵AC =,AM =AB =3,∴CM =5﹣3=2,故选:A .2.如图,正方形ABCD 的边长是4,点E 是AD 边上一动点,连接BE ,过点A 作AF BE ⊥于点F ,点P 是AD 边上另一动点,则PC PF +的最小值为( )A .5B .2-C .6D .2+【答案】B【详解】解:如图:取点C 关于直线DA 的对称点C '.以AB 中点O 为圆心,OA 为半径画半圆.连接OC '交DA 于点P ,交半圆O 于点F ,连AF .连BF 并延长交DA 于点E .由以上作图可知,AF EB ⊥于F .PC PF PC EF C F''+='+=由两点之间线段最短可知,此时PC PF +最小.4C B ''= ,6OB '=C O '∴==2C F '∴=-,PC PF ∴+的最小值为2-,故选:B .3.如图,在Rt ABC 和Rt ADE V 中,90BAC DAE ∠=∠=︒,3AC AD ==,AB =AE =5.连接BD ,CE ,将△ADE 绕点A 旋转一周,在旋转的过程中当DBA ∠最大时,△ACE 的面积为( ).A .6B .C .9D .4.如图,在Rt △ABC 中,∠ACB =90°,BC =3,AB =5,点D 是边BC 上一动点,连接AD ,在AD 上取一点E ,使∠DAC =∠DCE ,连接BE ,则BE 的最小值为( )A.2﹣3B.C.﹣2D.【答案】C【解答】解:∵Rt△ABC中,∠ACB=90°,BC=3,AB=5,∴AC=4,如图,取AC的中点O,连接OE,OB,∵∠DAC=∠DCE,∠DCE+∠ACE=90°,∴∠DAC+∠ACE=90°,∴∠AEC=90°,∴CE⊥AD,可得E点在以O为圆心,半径为OA的圆上运动,当O,E,B三点在同一直线上时,BE最短,可得此时OE=OC=OA=2,在Rt△OCB中,OB=,故BE的最小值为:OB﹣OE=﹣2,故选:C.5.如图,点P是正六边形ABCDEF内一点,AB=4,当∠APB=90°时,连接PD,则线段PD的最小值是( )A.B.C.6D.【答案】B【详解】解:∵AB=4,∠APB=90°,∴点P在以AB为直径的圆弧上,如图,取AB的中点O,连接OD,当O、P、D三点共线时,PD有最小值,连接BD,过点C作CH⊥BD于点H,∵点O为AB的中点,∴OA=OB=OP=4÷2=2,∵正六边形的每个内角为180°×(6﹣2)÷6=120°,∵CD=CB,∴∠CBD=(180°﹣120°)÷2=30°,BD=2BH,∴∠OBD=120°﹣30°=90°,在Rt△CBH中,CH==2,BH=,∴BD=,在Rt△OBD中,OD==,∴PD的最小值为OD﹣OP=.故选:B.6.如图,矩形ABCD的边AB=8,AD=6,M为BC的中点,P是矩形内部一动点,且满足∠ADP=∠PAB,N为边CD上的一个动点,连接PN,MN,则PN+MN的最小值为 .【答案】7【详解】解:∵四边形ABCD是矩形,∴∠BAD=90°,∵∠ADP=∠PAB,∴∠ADP+∠PAD=∠PAB+∠PAD=∠BAD=90°,∴点P的运动路线为以AD为直径的圆,作以AD为直径的⊙O,作点M关于直线DC的对称点M′,连接OM′交⊙O于点P′,连接M′N,OP,则OP=OP′=3,M′N=MN,∴PN+MN=PN+M′N=PN+M′N+OP﹣OP′≥OM′﹣OP′=OM′﹣3,∴PN+MN的最小值为OM′﹣3;连接OM,∵四边形ABCD是矩形,点O是AD的中点,点M为BC的中点,∴OD=AD=BC=CM=3,OD∥CM,∠ODC=90°,∴四边形OMCD是矩形,∴OM=DC=AB=8,∵点M关于直线DC的对称点M′,∴M′M=2MC=6,在Rt△M′OM中,由勾股定理,得OM′=,∴PN+MN的最小值为OM′﹣3=10﹣3=7,故答案为:7.7.如图,在等边△ABC中,AB=6,点D,E分别在边BC,AC上,且BD=CE,连接AD,BE交于点F,连接CF,则∠AFB= ,CF的最小值是 .【答案】120°,2.【详解】解:如图,∵△ABC是等边三角形,∴AB=BC=AC,∠ABC=∠BAC=∠BCE=60°,∵BD=CE,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,又∵∠AFE=∠BAD+∠ABE,∴∠AFE=∠CBE+∠ABE=∠ABC,∴∠AFE=60°,∴∠AFB=120°,∴点F的运动轨迹是O为圆心,OA为半径的弧上运动(∠AOB=120°,OA=2),连接OC交⊙O于N,当点F与N重合时,CF的值最小,最小值=OC﹣ON=4﹣2=2.故答案为:120°,2.8.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,点E是AC的中点,点F是斜边AB上任意一点,连接EF,将△AEF沿EF对折得到△DEF,连接DB,则△BDF周长的最小值是 .【答案】4+【详解】解:在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,∴AB=4,∴AC===,如图,以点E为圆心,AE为半径作圆,连接BE,交⊙E于点D′,此时BD的长度最小,∵将△AEF沿EF对折得到△DEF,且点E是AC的中点,∴AF=D′F,AE=A′E=,∵C△BD′F=D′F+FB+BD′=AF+FB+BD′=AB+BD′,∴此时△BDF的周长最小,过E作EM⊥AB于点M,∴EM==,由勾股定理可得AM===,∴BM=AB﹣AM=,由勾股定理可得BE===,∴BD′=BE﹣ED′=,∴△BDF周长的最小值是4+.故答案为:4+.9.如图,在边长为3的菱形ABCD中,∠A=60°,M是AD边上的一点,且AM=AD,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C.则A′C长度的最小值是.【答案】﹣1【详解】解:过点M作MH⊥CD交CD延长线于点H,连接CM,∵AM=AD,AD=CD=3∴AM=1,MD=2∵CD∥AB,∴∠HDM=∠A=60°∴HD=MD=1,HM=HD=∴CH =4∴MC ==∵将△AMN 沿MN 所在直线翻折得到△A ′MN ,∴AM =A 'M =1,∴点A '在以M 为圆心,AM 为半径的圆上,∴当点A '在线段MC 上时,A 'C 长度有最小值∴A 'C 长度的最小值=MC ﹣MA '=﹣1故答案为:﹣110.如图,线段AB 为O 的直径,点在AB 的延长线上,4AB =,2BC =,点P 是O 上一动点,连接CP ,以CP 为斜边在PC 的上方作Rt PCD ,且使60DCP ∠=︒,连接OD ,则OD 长的最大值为 .90CDP ∠=︒ ,60DCP ∠=︒,CP ∴∴2CO CP CE CD ==,COP CED ∴ ∽,即112ED OP ==(定长),点E 是定点,DE 是定长,C11.如图,△ABC为等边三角形,AB=2,若P为△ABC内一动点,且满足∠PAB=∠ACP,则点P运动的路径长为.12.如图,Rt ABC ∆中,AB BC ⊥,12AB =,8BC =,P 是ABC ∆内部的一个动点,且满足PAB PBC ∠=∠,连接PC ,则线段CP长的最小值为 .【答案】4【详解】解:90ABC ∠=︒ ,90ABP PBC ∴∠+∠=︒,PAB PBC ∠=∠ ,90BAP ABP ∴∠+∠=︒,90APB ∴∠=︒,∴点P 在以AB 为直径的O 上,连接OC 交O 于点P ,此时PC 最小,在Rt BCO ∆中,90OBC ∠=︒ ,8BC =,6OB =,10OC ∴==,1064PC OC OP ∴=-=-=.PC ∴最小值为4.故答案为:4.13.(1)【学习心得】小刚同学在学习完“圆”这一章内容后,感觉到一些几何问题,如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图1,在ABC ∆中,AB AC =,90BAC ∠=︒,D 是ABC ∆外一点,且AD AC =,求BDC ∠的度数,若以点A 为圆心,AB 为半径作辅助圆A ,则点C 、D 必在A 上,BAC ∠是A 的圆心角,而BDC ∠是圆周角,从而可容易得到BDC ∠= ︒.(2)【问题解决】如图2,在四边形ABCD 中,90BAD BCD ∠=∠=︒,25BDC ∠=︒,求BAC ∠的度数.小刚同学认为用添加辅助圆的方法,可以使问题快速解决,他是这样思考的:ABD ∆的外接圆就是以BD 的中点为圆心,12BD 长为半径的圆;ACD ∆的外接圆也是以BD 的中点为圆心,12BD 长为半径的圆.这样A 、B 、C 、D 四点在同一个圆上,进而可以利用圆周角的性质求出BAC ∠的度数,请运用小刚的思路解决这个问题.(3)【问题拓展】如图3,在ABC ∆中,45BAC ∠=︒,AD 是BC 边上的高,且4BD =,2CD =,求AD 的长.【答案】(1)45;(2)25°;(3)3AD AF DF ∴=+=+【详解】解:(1)如图1,AB AC = ,AD AC =,∴以点A 为圆心,点B 、C 、D 必在A 上,BAC ∠ 是A 的圆心角,而BDC ∠是圆周角,1452BDC BAC ∴∠=∠=︒,故答案是:45;(2)如图2,取BD 的中点O ,连接AO 、CO .90BAD BCD ∠=∠=︒ ,∴点A 、B 、C 、D 共圆,BDC BAC ∴∠=∠,25BDC ∠=︒ ,25BAC ∴∠=︒,(3)如图3,作ABC ∆的外接圆,过圆心O 作OE BC ⊥于点E ,作OF AD ⊥于点F ,连接OA 、OB 、OC .45BAC ∠=︒ ,90BOC ∴∠=︒.在Rt BOC ∆中,426BC =+=,BO CO ∴==.OE BC ⊥ ,O 为圆心,132BE BC ∴==,1DE OF BD BE ∴==-=.在Rt BOE ∆中,BO =,3BE =,3OE DF ∴==.在Rt AOF ∆中,AO =,1OF =,AF ∴=,3AD AF DF ∴=+=.。
中考数学与圆的综合有关的压轴题含答案解析
![中考数学与圆的综合有关的压轴题含答案解析](https://img.taocdn.com/s3/m/9c5229b82cc58bd63186bdbd.png)
中考数学与圆的综合有关的压轴题含答案解析一、圆的综合1.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC.(1)若∠B=60°,求证:AP是⊙O的切线;(2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值.【答案】(1)证明见解析;(2)8.【解析】(1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可;(2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案.试题解析:连接AD,OA,∵∠ADC=∠B,∠B=60°,∴∠ADC=60°,∵CD是直径,∴∠DAC=90°,∴∠ACO=180°-90°-60°=30°,∵AP=AC,OA=OC,∴∠OAC=∠ACD=30°,∠P=∠ACD=30°,∴∠OAP=180°-30°-30°-30°=90°,即OA⊥AP,∵OA为半径,∴AP是⊙O切线.(2)连接AD,BD,∵CD 是直径,∴∠DBC=90°,∵CD=4,B 为弧CD 中点,∴BD=BC=,∴∠BDC=∠BCD=45°,∴∠DAB=∠DCB=45°,即∠BDE=∠DAB ,∵∠DBE=∠DBA ,∴△DBE ∽△ABD , ∴,∴BE•AB=BD•BD=. 考点:1.切线的判定;2.相似三角形的判定与性质.2.如图,AB 是半圆的直径,过圆心O 作AB 的垂线,与弦AC 的延长线交于点D ,点E 在OD 上DCE B ∠=∠.(1)求证:CE 是半圆的切线;(2)若CD=10,2tan 3B =,求半圆的半径.【答案】(1)见解析;(2)13【解析】分析: (1)连接CO ,由DCE B ∠=∠且OC=OB,得DCE OCB ∠=∠,利用同角的余角相等判断出∠BCO+∠BCE=90°,即可得出结论;(2)设AC=2x ,由根据题目条件用x 分别表示出OA 、AD 、AB ,通过证明△AOD ∽△ACB ,列出等式即可.详解:(1)证明:如图,连接CO .∵AB 是半圆的直径,∴∠ACB =90°.∴∠DCB =180°-∠ACB =90°.∴∠DCE+∠BCE=90°.∵OC =OB ,∴∠OCB =∠B.∵=DCE B ∠∠,∴∠OCB =∠DCE .∴∠OCE =∠DCB =90°.∴OC ⊥CE .∵OC 是半径,∴CE 是半圆的切线.(2)解:设AC =2x ,∵在Rt △ACB 中,2tan 3AC B BC ==, ∴BC =3x .∴()()222313AB x x x =+=. ∵OD ⊥AB ,∴∠AOD =∠A CB=90°.∵∠A =∠A ,∴△AOD ∽△ACB .∴AC AO AB AD=. ∵1132OA AB ==,AD =2x +10, ∴113221013x x x =+. 解得 x =8. ∴138413OA == 则半圆的半径为413点睛:本题考查了切线的判定与性质,圆周角定理,相似三角形.3.如图,AB 为⊙O 的直径,AC 为⊙O 的弦,AD 平分∠BAC ,交⊙O 于点D ,DE ⊥AC ,交AC 的延长线于点E .(1)判断直线DE 与⊙O 的位置关系,并说明理由;(2)若AE =8,⊙O 的半径为5,求DE 的长.【答案】(1)直线DE 与⊙O 相切(2)4【解析】试题分析:(1)连接OD ,∵AD 平分∠BAC ,∴EAD OAD ∠∠=,∵OA OD =,∴ODA OAD ∠∠=,∴ODA EAD ∠∠=,∴EA ∥OD ,∵DE ⊥EA ,∴DE ⊥OD ,又∵点D 在⊙O 上,∴直线DE 与⊙O 相切(2)如图1,作DF ⊥AB ,垂足为F ,∴DFA DEA 90∠∠︒==,∵EAD FAD ∠∠=,AD AD =,∴△EAD ≌△FAD ,∴AF AE 8==,DF DE =,∵OA OD 5==,∴OF 3=,在Rt △DOF 中,22DF 4OD OF -==,∴AF AE 8== 考点:切线的证明,弦心距和半径、弦长的关系点评:本题难度不大,第一小题通过内错角相等相等证明两直线平行,再由两直线平行推出同旁内角相等.第二小题通过求出两个三角形全等,从而推出对应边相等,接着用弦心距和弦长、半径的计算公式,求出半弦长.4.如图,已知△ABC 中,AB=AC ,∠A=30°,AB=16,以AB 为直径的⊙O 与BC 边相交于点D ,与AC 交于点F ,过点D 作DE ⊥AC 于点E .(1)求证:DE 是⊙O 的切线;(2)求CE 的长;(3)过点B 作BG ∥DF ,交⊙O 于点G ,求弧BG 的长.【答案】(1)证明见解析(2)33)4π【解析】【分析】(1)如图1,连接AD,OD,由AB为⊙O的直径,可得AD⊥BC,再根据AB=AC,可得BD=DC,再根据OA=OB,则可得OD∥AC,继而可得DE⊥OD,问题得证;(2)如图2,连接BF,根据已知可推导得出DE=12BF,CE=EF,根据∠A=30°,AB=16,可得BF=8,继而得DE=4,由DE为⊙O的切线,可得ED2=EF•AE,即42=CE•(16﹣CE),继而可求得CE长;(3)如图3,连接OG,连接AD,由BG∥DF,可得∠CBG=∠CDF=30°,再根据AB=AC,可推导得出∠OBG=45°,由OG=OB,可得∠OGB=45°,从而可得∠BOG=90°,根据弧长公式即可求得BG的长度.【详解】(1)如图1,连接AD,OD;∵AB为⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=DC,∵OA=OB,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,∴∠ODE=∠DEA=90°,∴DE为⊙O的切线;(2)如图2,连接BF,∵AB为⊙O的直径,∴∠AFB=90°,∴BF∥DE,∵CD=BD,∴DE=12BF,CE=EF,∵∠A=30°,AB=16,∴BF=8,∴DE=4,∵DE 为⊙O 的切线,∴ED 2=EF•AE ,∴42=CE•(16﹣CE ),∴CE=8﹣43,CE=8+43(不合题意舍去);(3)如图3,连接OG ,连接AD ,∵BG ∥DF ,∴∠CBG=∠CDF=30°,∵AB=AC ,∴∠ABC=∠C=75°,∴∠OBG=75°﹣30°=45°,∵OG=OB ,∴∠OGB=∠OBG=45°,∴∠BOG=90°,∴BG 的长度=908180π⨯⨯=4π.【点睛】本题考查了圆的综合题,涉及了切线的判定、三角形中位线定理、圆周角定理、弧长公式等,正确添加辅助线、熟练掌握相关的性质与定理是解题的关键.5.定义:有一个角是其邻角一半的圆内接四边形叫做圆内倍角四边形.(1)如图1,四边形ABCD 内接于⊙O ,∠DCB ﹣∠ADC=∠A ,求证:四边形ABCD 为圆内接倍角四边形;(2)在(1)的条件下,⊙O 半径为5.①若AD 为直径,且sinA=45,求BC 的长; ②若四边形ABCD 中有一个角为60°,且BC=CD ,则四边形ABCD 的面积是 ; (3)在(1)的条件下,记AB=a ,BC=b ,CD=c ,AD=d ,求证:d 2﹣b 2=ab+cd .【答案】(1)见解析;(2)①BC=6,②7534或754;(3)见解析【解析】【分析】(1)先判断出∠ADC=180°﹣2∠A.进而判断出∠ABC=2∠A,即可得出结论;(2)①先用锐角三角函数求出BD,进而得出AB,由(1)得出∠ADB=∠BDC,即可得出结论;②分两种情况:利用面积和差即可得出结论;(3)先得出BE=BC=b,DE=DA=b,进而得出CE=d﹣c,再判断出△EBC∽△EDA,即可得出结论.【详解】(1)设∠A=α,则∠DCB=180°﹣α.∵∠DCB﹣∠ADC=∠A,∴∠ADC=∠DCB﹣∠A=180°﹣α﹣α=180°﹣2α,∴∠ABC=180°﹣∠ADC=2α=2∠A,∴四边形ABCD是⊙O内接倍角四边形;(2)①连接BD.∵AD是⊙O的直径,∴∠ABD=90°.在Rt△ABD中,AD=2×5=10,sin∠A=45,∴BD=8,根据勾股定理得:AB=6,设∠A=α,∴∠ADB=90°﹣α.由(1)知,∠ADC=180°﹣2α,∴∠BDC=90°﹣α,∴∠ADB=∠BDC,∴BC=AB=6;②若∠ADC=60°时.∵四边形ABCD是圆内接倍角四边形,∴∠BCD=120°或∠BAD=30°.Ⅰ、当∠BCD=120°时,如图3,连接OA,OB,OC,OD.∵BC=CD,∴∠BOC=∠COD,∴∠OCD=∠OCB=12∠BCD=60°,∴∠CDO=60°,∴AD是⊙O 的直径,(为了说明AD是直径,点O没有画在AD上)∴∠ADC+∠BCD=180°,∴BC∥AD,∴AB=CD.∵BC=CD,∴AB=BC=CD,∴△OAB,△BOC,△COD是全等的等边三角形,∴S四边形ABCD=3S△AOB 32753.Ⅱ、当∠BAD=30°时,如图4,连接OA,OB,OC,OD.∵四边形ABCD是圆内接四边形,∴∠BCD=180°﹣∠BAD=150°.∵BC =CD ,∴∠BOC =∠COD ,∴∠BCO =∠DCO =12∠BCD =75°,∴∠BOC =∠DOC =30°,∴∠OBA =45°,∴∠AOB =90°.连接AC ,∴∠DAC =12∠BAD =15°. ∵∠ADO =∠OAB ﹣∠BAD =15°,∴∠DAC =∠ADO ,∴OD ∥AC ,∴S △OAD =S △OCD . 过点C 作CH ⊥OB 于H .在Rt △OCH 中,CH =12OC =52,∴S 四边形ABCD =S △COD +S △BOC +S △AOB ﹣S △AOD =S △BOC +S △AOB =1522⨯×5+12×5×5=754. 故答案为:7534或754;(3)延长DC ,AB 交于点E .∵四边形ABCD 是⊙O 的内接四边形,∴∠BCE =∠A =12∠ABC . ∵∠ABC =∠BCE +∠A ,∴∠E =∠BCE =∠A ,∴BE =BC =b ,DE =DA =b ,∴CE =d ﹣c . ∵∠BCE =∠A ,∠E =∠E ,∴△EBC ∽△EDA ,∴CE BC AE AD =,∴d c b a b d-=+,∴d 2﹣b 2=ab +cd .【点睛】本题是圆的综合题,主要考查了圆的内接四边形的性质,新定义,相似三角形的判定和性质,等边三角形的判定和性质,正确作出辅助线是解答本题的关键.6.已知AB ,CD 都是O 的直径,连接DB ,过点C 的切线交DB 的延长线于点E .()1如图1,求证:AOD 2E 180∠∠+=;()2如图2,过点A 作AF EC ⊥交EC 的延长线于点F ,过点D 作DG AB ⊥,垂足为点G ,求证:DG CF =;()3如图3,在()2的条件下,当DG 3CE 4=时,在O 外取一点H ,连接CH 、DH 分别交O 于点M 、N ,且HDE HCE ∠∠=,点P 在HD 的延长线上,连接PO 并延长交CM 于点Q ,若PD 11=,DN 14=,MQ OB =,求线段HM 的长.【答案】(1)证明见解析(2)证明见解析(3)837+【解析】【分析】(1)由∠D +∠E =90°,可得2∠D +2∠E =180°,只要证明∠AOD =2∠D 即可; (2)如图2中,作OR ⊥AF 于R .只要证明△AOR ≌△ODG 即可;(3)如图3中,连接BC 、OM 、ON 、CN ,作BT ⊥CL 于T ,作NK ⊥CH 于K ,设CH 交DE 于W .解直角三角形分别求出KM ,KH 即可;【详解】()1证明:如图1中,O 与CE 相切于点C ,OC CE ∴⊥,OCE 90∠∴=,D E 90∠∠∴+=,2D 2E 180∠∠∴+=,AOD COB ∠∠=,BOC 2D ∠∠=,AOD 2D ∠∠=,AOD 2E 180∠∠∴+=.()2证明:如图2中,作OR AF ⊥于R .OCF F ORF 90∠∠∠===,∴四边形OCFR 是矩形,AF//CD ∴,CF OR =,A AOD ∠∠∴=,在AOR 和ODG 中,A AOD ∠∠=,ARO OGD 90∠∠==,OA DO =,AOR ∴≌ODG ,OR DG ∴=,DG CF ∴=,()3解:如图3中,连接BC 、OM 、ON 、CN ,作BT CL ⊥于T ,作NK CH ⊥于K ,设CH 交DE 于W .设DG 3m =,则CF 3m =,CE 4m =,OCF F BTE 90∠∠∠===,AF//OC//BT ∴,OA OB =,CT CF 3m ∴==,ET m ∴=, CD 为直径,CBD CND 90CBE ∠∠∠∴===,E 90EBT CBT ∠∠∠∴=-=,tan E tan CBT ∠∠∴=,BT CT ET BT ∴=,BT 3mm BT∴=,BT ∴=负根已经舍弃),tan E ∠∴== E 60∠∴=,CWD HDE H ∠∠∠=+,HDE HCE ∠∠=,H E 60∠∠∴==, MON 2HCN 60∠∠∴==,OM ON =,OMN ∴是等边三角形, MN ON ∴=,QM OB OM ==, MOQ MQO ∠∠∴=,MOQ PON 180MON 120∠∠∠+=-=,MQO P 180H 120∠∠∠+=-=, PON P ∠∠∴=,ON NP 141125∴==+=,CD 2ON 50∴==,MN ON 25==,在Rt CDN 中,CN 48==,在Rt CHN 中,CN 48tan H HN HN∠===HN ∴=在Rt KNH 中,1KH HN 2==NK 24==,在Rt NMK 中,MK 7===,HM HK MK 7∴=+=.【点睛】本题考查圆综合题、全等三角形的判定和性质、平行线的性质、勾股定理、等边三角形的判定和性质、锐角三角函数等知识,添加常用辅助线,构造全等三角形或直角三角形解题的关键.7.已知O 的半径为5,弦AB 的长度为m ,点C 是弦AB 所对优弧上的一动点.()1如图①,若m 5=,则C ∠的度数为______;()2如图②,若m 6=.①求C ∠的正切值;②若ABC 为等腰三角形,求ABC 面积.【答案】()130;()2C ∠①的正切值为34;ABCS 27=②或43225. 【解析】 【分析】()1连接OA ,OB ,判断出AOB 是等边三角形,即可得出结论;()2①先求出10AD =,再用勾股定理求出8BD =,进而求出tan ADB ∠,即可得出结论;②分三种情况,利用等腰三角形的性质和垂径定理以及勾股定理即可得出结论.【详解】()1如图1,连接OB ,OA ,OB OC 5∴==, AB m 5==, OB OC AB ∴==, AOB ∴是等边三角形,AOB 60∠∴=,1ACB AOB 302∠∠∴==,故答案为30;()2①如图2,连接AO 并延长交O 于D ,连接BD ,AD 为O 的直径,AD 10∴=,ABD 90∠=,在Rt ABD 中,AB m 6==,根据勾股定理得,BD 8=,AB 3tan ADB BD 4∠∴==, C ADB ∠∠=,C ∠∴的正切值为34;②Ⅰ、当AC BC =时,如图3,连接CO 并延长交AB 于E ,AC BC =,AO BO =, CE ∴为AB 的垂直平分线, AE BE 3∴==,在Rt AEO 中,OA 5=,根据勾股定理得,OE 4=, CE OE OC 9∴=+=,ABC 11S AB CE 692722∴=⨯=⨯⨯=;Ⅱ、当AC AB 6==时,如图4,连接OA 交BC 于F ,AC AB =,OC OB =, AO ∴是BC 的垂直平分线, 过点O 作OG AB ⊥于G ,1AOG AOB 2∠∠∴=,1AG AB 32==,AOB 2ACB ∠∠=, ACF AOG ∠∠∴=,在Rt AOG 中,AG 3sin AOG AC 5∠==, 3sin ACF 5∠∴=,在Rt ACF 中,3sin ACF 5∠=,318AF AC 55∴==,24CF 5∴=,ABC 111824432S AF BC 225525∴=⨯=⨯⨯=;Ⅲ、当BA BC 6==时,如图5,由对称性知,ABC432S25=.【点睛】圆的综合题,主要圆的性质,圆周角定理,垂径定理,等腰三角形的性质,三角形的面积公式,用分类讨论的思想解决问题是解本题的关键.8.如图,已知平行四边形OABC 的三个顶点A 、B 、C 在以O 为圆心的半圆上,过点C 作CD ⊥AB ,分别交AB 、AO 的延长线于点D 、E ,AE 交半圆O 于点F ,连接CF . (1)判断直线DE 与半圆O 的位置关系,并说明理由; (2)若半圆O 的半径为6,求AC 的长.【答案】(1)直线CE 与半圆O 相切(2)4π 【解析】试题分析:(1)结论:DE 是⊙O 的切线.首先证明△ABO ,△BCO 都是等边三角形,再证明四边形BDCG 是矩形,即可解决问题;(2)只要证明△OCF 是等边三角形即可解决问题,求AC 即可解决问题. 试题解析:(1)直线CE 与半圆O 相切,理由如下: ∵四边形OABC 是平行四边形,∴AB ∥OC. ∵∠D=90°,∴∠OCE=∠D=90°,即OC ⊥DE , ∴直线CE 与半圆O 相切.(2)由(1)可知:∠COF=60°,OC=OF , ∴△OCF 是等边三角形, ∴∠AOC=120° ∴AC 的长为1206180π⨯⨯=4π.9.如图.在△ABC 中,∠C =90°,AC =BC ,AB =30cm ,点P 在AB 上,AP =10cm ,点E 从点P 出发沿线段PA 以2c m/s 的速度向点A 运动,同时点F 从点P 出发沿线段PB 以1c m/s 的速度向点B 运动,点E 到达点A 后立刻以原速度沿线段AB 向点B 运动,在点E 、F 运动过程中,以EF 为边作正方形EFGH ,使它与△ABC 在线段AB 的同侧,设点E 、F 运动的时间为t (s )(0<t <20).(1)当点H 落在AC 边上时,求t 的值;(2)设正方形EFGH 与△ABC 重叠部分的面积为S .①试求S 关于t 的函数表达式;②以点C 为圆心,12t 为半径作⊙C ,当⊙C 与GH 所在的直线相切时,求此时S 的值.【答案】(1)t=2s或10s;(2)①S=2229?(02)75050(210)240400?(1020)t tt t tt t t⎧<≤⎪⎪-+-<≤⎨⎪-+<<⎪⎩;②100cm2.【解析】试题分析:(1)如图1中,当0<t≤5时,由题意AE=EH=EF,即10﹣2t=3t,t=2;如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10;(2)分四种切线讨论a、如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2.b、如图4中,当2<t≤5时,重叠部分是五边形EFGMN.c、如图5中,当5<t<10时,重叠部分是五边形EFGMN.d、如图6中,当10<t<20时,重叠部分是正方形EFGH.分别计算即可;②分两种情形分别列出方程即可解决问题.试题解析:解:(1)如图1中,当0<t≤5时,由题意得:AE=EH=EF,即10﹣2t=3t,t=2如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10.综上所述:t=2s或10s时,点H落在AC边上.(2)①如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2如图4中,当2<t≤5时,重叠部分是五边形EFGMN,S=(3t)2﹣12(5t﹣10)2=﹣72t2+50t﹣50.如图5中,当5<t<10时,重叠部分是五边形EFGMN,S=(20﹣t)2﹣12(30﹣3t)2=﹣72t2+50t﹣50.如图6中,当10<t<20时,重叠部分是正方形EFGH,S=(20﹣t)2=t2﹣40t+400.综上所述:S=2229?(02)75050(210) 240400?(1020)t tt t tt t t⎧<≤⎪⎪-+-<≤⎨⎪-+<<⎪⎩.②如图7中,当0<t≤5时,12t+3t=15,解得:t=307,此时S=100cm2,当5<t<20时,12t+20﹣t=15,解得:t=10,此时S=100.综上所述:当⊙C与GH所在的直线相切时,求此时S的值为100cm2点睛:本题考查了圆综合题、正方形的性质、等腰直角三角形的性质、切线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,注意不能漏解,属于中考压轴题.10.已知:AB是⊙0直径,C是⊙0外一点,连接BC交⊙0于点D,BD=CD,连接AD、AC.(1)如图1,求证:∠BAD=∠CAD(2)如图2,过点C作CF⊥AB于点F,交⊙0于点E,延长CF交⊙0于点G.过点作EH⊥AG于点H,交AB于点K,求证AK=2OF;(3)如图3,在(2)的条件下,EH交AD于点L,若0K=1,AC=CG,求线段AL的长.图1 图2 图3 【答案】(1)见解析(2)见解析(3)12105【解析】试题分析:(1)由直径所对的圆周角等于90°,得到∠ADB =90°,再证明△ABD ≌△ACD 即可得到结论;(2)连接BE .由同弧所对的圆周角相等,得到∠GAB =∠BEG .再证△KFE ≌△BFE ,得到BF =KF =BK .由OF =OB -BF ,AK =AB -BK ,即可得到结论.(3)连接CO 并延长交AG 于点M ,连接BG .设∠GAB =α.先证CM 垂直平分AG ,得到AM =GM ,∠AGC +∠GCM =90°.再证∠GAF =∠GCM =α.通过证明△AGB ≌△CMG ,得到BG =GM =12AG .再证明∠BGC =∠MCG =α.设BF =KF =a , 可得GF =2a ,AF =4a . 由OK =1,得到OF =a +1,AK =2(a +1),AF = 3a +2,得到3a +2=4a ,解出a 的值,得到AF ,AB ,GF ,FC 的值.由tanα=tan ∠HAK =12HK AH =, AK =6,可以求出 AH 的长.再由1tan tan 3BAD BCF ∠=∠=,利用公式tan ∠GAD =tan tan 1tan tan GAF BAD GAF BAD∠+∠-∠⋅∠,得到∠GAD =45°,则AL =2AH ,即可得到结论.试题解析:解:(1)∵AB 为⊙O 的直径,∴∠ADB =90°,∴∠ADC =90°. ∵BD =CD ,∠BDA =∠CDA ,AD =AD ,∴△ABD ≌△ACD ,∴∠BAD =∠CAD . (2)连接BE .∵BG =BG ,∴∠GAB =∠BEG . ∵CF ⊥AB ,∴∠KFE =90°.∵EH ⊥AG ,∴∠AHE =∠KFE =90°,∠AKH =∠EKF ,∴∠HAK =∠KEF =∠BEF . ∵FE =FE ,∠KFE =∠BFE =90°,∴△KFE ≌△BFE ,∴BF =KF =BK .∵ OF =OB -BF ,AK =AB -BK ,∴AK =2OF .(3)连接CO 并延长交AG 于点M ,连接BG .设∠GAB =α.∵AC =CG , ∴点C 在AG 的垂直平分线上.∵ OA =OG ,∴点O 在AG 的垂直平分线上, ∴CM 垂直平分AG ,∴AM =GM ,∠AGC +∠GCM =90°. ∵AF ⊥CG ,∴∠AGC +∠GAF =90°,∴∠GAF =∠GCM =α. ∵AB 为⊙O 的直径,∴∠AGB = 90°,∴∠AGB =∠CMG =90°. ∵AB =AC =CG ,∴△AGB ≌△CMG ,∴BG =GM =12AG .在Rt △AGB 中, 1tan tan 2GB GAB AG α∠=== . ∵∠AMC =∠AGB = 90°,∴BG ∥CM , ∴∠BGC =∠MCG =α. 设BF =KF =a , 1tan tan 2BF BGF GF α∠===,∴GF =2a ,1tan tan 2GF GAF AF α∠=== ,AF =4a .∵OK =1,∴OF =a +1,AK =2OF =2(a +1),∴AF =AK +KF =a +2(a +1)=3a +2,∴3a +2=4a ,∴a =2, AK =6,∴AF =4a =8,AB =AC =CG =10,GF =2a =4,FC =CG -GF =6. ∵tanα=tan ∠HAK =12HK AH =,设KH =m ,则AH =2m ,∴AK 22(2)m m +=6,解得:m =655,∴AH =2m 125.在Rt △BFC 中,1tan 3BF BCF FC ∠== .∵∠BAD +∠ABD =90°, ∠FBC +∠BCF =90°,∴∠BCF =∠BAD ,1tan tan 3BAD BCF ∠=∠= ,∴tan ∠GAD =tan tan 1tan tan GAF BADGAF BAD ∠+∠-∠⋅∠=1123111123+=-⨯,∴∠GAD =45°,∴HL=AH ,AL 2AH 121011.如图,AB是圆O的直径,射线AM⊥AB,点D在AM上,连接OD交圆O于点E,过点D作DC=DA交圆O于点C(A、C不重合),连接O C、BC、CE.(1)求证:CD是⊙O的切线;(2)若圆O的直径等于2,填空:①当AD=时,四边形OADC是正方形;②当AD=时,四边形OECB是菱形.【答案】(1)见解析;(2)①1;②3.【解析】试题分析:(1)依据SSS证明△OAD≌△OCD,从而得到∠OCD=∠OAD=90°;(2)①依据正方形的四条边都相等可知AD=OA;②依据菱形的性质得到OE=CE,则△EOC为等边三角形,则∠CEO=60°,依据平行线的性质可知∠DOA=60°,利用特殊锐角三角函数可求得AD的长.试题解析:解:∵AM⊥AB,∴∠OAD=90°.∵OA=OC,OD=OD,AD=DC,∴△OAD≌△OCD,∴∠OCD=∠OAD=90°.∴OC⊥CD,∴CD是⊙O的切线.(2)①∵当四边形OADC是正方形,∴AO=AD=1.故答案为:1.②∵四边形OECB是菱形,∴OE=CE.又∵OC=OE,∴OC=OE=CE.∴∠CEO=60°.∵CE∥AB,∴∠AOD=60°.在Rt△OAD中,∠AOD=60°,AO=1,∴AD=.故答案为:.点睛:本题主要考查的是切线的性质和判定、全等三角形的性质和判定、菱形的性质、等边三角形的性质和判定,特殊锐角三角函数值的应用,熟练掌握相关知识是解题的关键.12.如图,AD是△ABC的角平分线,以AD为弦的⊙O交AB、AC于E、F,已知EF∥BC.(1)求证:BC是⊙O的切线;(2)若已知AE=9,CF=4,求DE长;(3)在(2)的条件下,若∠BAC=60°,求tan∠AFE的值及GD长.【答案】(1)证明见解析(2)DE=6(318367-【解析】试题分析:(1)连接OD,由角平分线的定义得到∠1=∠2,得到DE DF=,根据垂径定理得到OD⊥EF,根据平行线的性质得到OD⊥BC,于是得到结论;(2)连接DE,由DE DF=,得到DE=DF,根据平行线的性质得到∠3=∠4,等量代换得到∠1=∠4,根据相似三角形的性质即可得到结论;(3)过F作FH⊥BC于H,由已知条件得到∠1=∠2=∠3=∠4=30°,解直角三角形得到FH=12DF=12×6=3,3227CF HF-=,根据三角函数的定义得到tan∠AFE=tan∠C=37HFCH=;根据相似三角形到现在即可得到结论.试题解析:(1)连接OD,∵AD是△ABC的角平分线,∴∠1=∠2,∴DE DF=,∴OD⊥EF,∵EF∥BC,∴OD⊥BC,∴BC 是⊙O 的切线; (2)连接DE , ∵DE DF =, ∴DE=DF , ∵EF ∥BC , ∴∠3=∠4, ∵∠1=∠3, ∴∠1=∠4, ∵∠DFC=∠AED , ∴△AED ∽△DFC ,∴AE DE DF CF =,即94DEDE =, ∴DE 2=36, ∴DE=6;(3)过F 作FH ⊥BC 于H , ∵∠BAC=60°,∴∠1=∠2=∠3=∠4=30°,∴FH=12DF=162⨯=3,∴=, ∵EF ∥BC , ∴∠C=∠AFE ,∴tan ∠AFE=tan ∠C=7HF CH =; ∵∠4=∠2.∠C=∠C , ∴△ADC ∽△DFC , ∴AD CDDF CF=, ∵∠5=∠5,∠3=∠2, ∴△ADF ∽△FDG , ∴AD DFDF DG=,∴CD DF CF DG =6DG =,∴DG=5.点睛:本题考查了切线的判定、圆周角定理、相似三角形的判定与性质、解直角三角形、平行线的性质,正确作出辅助线是解题的关键.13.(1)问题背景如图①,BC是⊙O的直径,点A在⊙O上,AB=AC,P为BmC上一动点(不与B,C重合),求证:2PA=PB+PC.小明同学观察到图中自点A出发有三条线段AB,AP,AC,且AB=AC,这就为旋转作了铺垫.于是,小明同学有如下思考过程:第一步:将△PAC绕着点A顺时针旋转90°至△QAB(如图①);第二步:证明Q,B,P三点共线,进而原题得证.请你根据小明同学的思考过程完成证明过程.(2)类比迁移如图②,⊙O的半径为3,点A,B在⊙O上,C为⊙O内一点,AB=AC,AB⊥AC,垂足为A,求OC的最小值.(3)拓展延伸如图③,⊙O的半径为3,点A,B在⊙O上,C为⊙O内一点,AB=43AC,AB⊥AC,垂足为A,则OC的最小值为.【答案】(1)证明见解析;(2)OC最小值是2﹣3;(3)32.【解析】试题分析:(1)将△PAC绕着点A顺时针旋转90°至△QAB(如图①),只要证明△APQ 是等腰直角三角形即可解决问题;(2)如图②中,连接OA,将△OAC绕点O顺时针旋转90°至△QAB,连接OB,OQ,在△BOQ中,利用三边关系定理即可解决问题;(3)如图③构造相似三角形即可解决问题.作AQ ⊥OA ,使得AQ=43OA ,连接OQ ,BQ ,OB .由△QAB ∽OAC ,推出BQ=43OC ,当BQ 最小时,OC 最小; 试题解析:(1)将△PAC 绕着点A 顺时针旋转90°至△QAB (如图①);∵BC 是直径,∴∠BAC=90°, ∵AB=AC ,∴∠ACB=∠ABC=45°,由旋转可得∠QBA=∠PCA ,∠ACB=∠APB=45°,PC=QB ,∵∠PCA+∠PBA=180°,∴∠QBA+∠PBA=180°,∴Q ,B ,P 三点共线, ∴∠QAB+∠BAP=∠BAP+∠PAC=90°,∴QP 2=AP 2+AQ 2=2AP 2, ∴QP=2AP=QB+BP=PC+PB ,∴2AP=PC+PB .(2)如图②中,连接OA ,将△OAC 绕点A 顺时针旋转90°至△QAB ,连接OB ,OQ ,∵AB ⊥AC,∴∠BAC=90°,由旋转可得 QB=OC ,AQ=OA ,∠QAB=∠OAC ,∴∠QAB+∠BAO=∠BAO+∠OAC=90°, ∴在Rt △OAQ 中,OQ=32,AO=3 ,∴在△OQB 中,BQ≥OQ ﹣OB=32﹣3 , 即OC 最小值是32﹣3;(3)如图③中,作AQ ⊥OA ,使得AQ=43OA ,连接OQ ,BQ ,OB .∵∠QAO=∠BAC=90°,∠QAB=∠OAC ,∵QA AB OA AC =43,∴△QAB∽OAC,∴BQ=43OC,当BQ最小时,OC最小,易知OA=3,AQ=4,OQ=5,BQ≥OQ﹣OB,∴OQ≥2,]∴BQ的最小值为2,∴OC的最小值为34×2=32,故答案为32.【点睛】本题主要考查的圆、旋转、相似等知识,能根据题意正确的添加辅助线是解题的关键.14.如图,AB为⊙O的直径,DA、DC分别切⊙O于点A,C,且AB=AD.(1)求tan∠AOD的值.(2)AC,OD交于点E,连结BE.①求∠AEB的度数;②连结BD交⊙O于点H,若BC=1,求CH的长.【答案】(1)2;(2)①∠AEB=135°;②2 CH=【解析】【分析】(1)根据切线的性质可得∠BAD=90°,由题意可得AD=2AO,即可求tan∠AOD的值;(2)①根据切线长定理可得AD=CD,OD平分∠ADC,根据等腰三角形的性质可得DO⊥AC,AE=CE,根据圆周角定理可求∠ACB=90°,即可证∠ABC=∠CAD,根据“AAS”可证△ABC≌△DAE,可得AE=BC=EC,可求∠BEC=45°,即可求∠AEB的度数;②由BC=1,可求AE=EC=1,BE2=∠ABE=∠HBC,可证△ABE∽△HBC,可求CH的长.【详解】(1)∵DA是⊙O切线,∴∠BAD=90°.∵AB=AD,AB=2AO,∴AD=2AO,∴tan∠AODADAO==2;(2)①∵DA、DC分别切⊙O于点A,C,∴AD=CD,OD平分∠ADC,∴DO⊥AC,AE=CE.∵AB是直径,∴∠ACB=90°,∴∠BAC+∠ABC=90°,且∠BAC+∠CAD=90°,∴∠ABC=∠CAD,且AB=AD,∠ACB=∠AED=90°,∴△ABC≌△DAE(AAS),∴CB=AE,∴CE=CB,且∠ACB=90°,∴∠BEC=45°=∠EBC,∴∠AEB=135°.②如图,∵BC=1,且BC=AE=CE,∴AE=EC=BC=1,∴BE2=.∵AD=AB,∠BAD=90°,∴∠ABD=45°,且∠EBC=45°,∴∠ABE=∠HBC,且∠BAC=∠CHB,∴△ABE∽△HBC,∴BC CHEB AE=,即112CH=,∴CH22=.【点睛】本题考查了切线的性质,圆周角定理,锐角三角函数,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的性质等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.15.在中,,,,分别是边,的中点,若等腰绕点逆时针旋转,得到等腰,设旋转角为,记直线与的交点为.(1)问题发现如图1,当时,线段的长等于_________,线段的长等于_________.(2)探究证明如图2,当时,求证:,且.(3)问题解决求点到所在直线的距离的最大值.(直接写出结果)【答案】(1);;(2)详见解析;(3)【解析】【分析】(1)利用等腰直角三角形的性质结合勾股定理分别得出BD1的长和CE1的长;(2)根据旋转的性质得出,∠D1AB=∠E1AC=135°,进而求出△D1AB≌△E1AC(SAS),即可得出答案;(3)首先作PG⊥AB,交AB所在直线于点G,则D1,E1在以A为圆心,AD为半径的圆上,当BD1所在直线与⊙A相切时,直线BD1与CE1的交点P到直线AB的距离最大,此时四边形AD1PE1是正方形,进而求出PG的长.【详解】(1)解:∵∠A=90°,AC=AB=4,D,E分别是边AB,AC的中点,∴AE=AD=2,∵等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,设旋转角为α(0<α≤180°),∴当α=90°时,AE1=2,∠E1AE=90°,∴BD1=;故答案为:;;(2)证明:由题意可知,,,∵是由绕点逆时针旋转得到,∴,,在和中,,∴,∴,.∵,∴,∴,∴,且.(3)点的运动轨迹是在的上半圆周,点的运动轨迹是在的弧段.即当与相切时,有最大值.点到所在直线的距离的最大值为.【点睛】此题主要考查了几何变换以及等腰腰直角三角形的性质和勾股定理以及切线的性质等知识,根据题意得出PG的最长时P点的位置是解题关键.。
初三数学圆的解题技巧
![初三数学圆的解题技巧](https://img.taocdn.com/s3/m/a9429342c4da50e2524de518964bcf84b9d52d20.png)
初三数学圆的解题技巧圆,这个看似简单的图形,其实在数学的世界里,能让人乐此不疲。
初三的数学里,圆的题目总是充满了各种各样的考验,但只要掌握了几个关键技巧,你会发现解题其实没那么难。
今天咱们就来聊聊这些技巧,让你轻松应对圆的难题!1. 圆的基本概念1.1 圆的定义首先,咱们得知道什么是圆。
圆是由一个点(圆心)到圆上所有点的距离都相等的图形。
这个距离就是半径。
听起来简单吧?但这可是解圆题的基础哦。
1.2 圆的元素圆的基本元素有圆心、半径、直径、弦、切线。
圆心就是圆的中心点,半径是圆心到圆上任何一点的距离,直径则是穿过圆心的最长的线段,弦是圆内任意两点之间的线段,而切线则是与圆相切的直线。
这些概念都得熟记于心哦!2. 圆的常见问题与技巧2.1 弦的性质圆里的弦有个很重要的性质:在圆内,两条弦的长度如果相等,它们到圆心的距离也相等。
这就像两个“好朋友”,总是保持一样的距离。
利用这一点,可以帮助你解决很多涉及弦的题目。
2.2 圆心角与弦的关系圆心角就是圆心到圆上两点的夹角。
圆心角的一半就是弧所对的弦所夹的角,也就是所说的“圆周角”。
换句话说,圆心角越大,对应的弦也越长。
掌握这一点,你就能轻松搞定那些需要计算角度的题目。
2.3 切线与圆的关系切线和圆的关系特别简单:切线与圆在切点处垂直。
就是说,切线的斜率和圆的半径在切点处正好是“直的”。
这个性质常常用来求解与切线相关的题目,比如找切点或者切线的长度。
3. 解题策略3.1 画图“纸上得来终觉浅,绝知此事要躬行。
”解题时,画图是非常重要的一步。
画图不仅能帮助你理清思路,还能让你更好地理解题目中的条件和要求。
别怕麻烦,拿起铅笔动手画吧!3.2 应用公式圆的题目中,有几个公式是必备的,比如圆的周长公式(C = 2pi r)和圆的面积公式(A = pi r^2)。
这些公式的运用可以帮你快速解答涉及周长和面积的问题。
3.3 综合运用有些题目需要综合运用多个知识点,比如既要用到弦的性质,又要考虑圆心角和弧的关系。