七年级数学上册 5.1 一元一次方程试题 (新版)浙教版

合集下载

浙教版数学七年级上册 第五章一元一次方程单元测试 (含答案)

浙教版数学七年级上册 第五章一元一次方程单元测试 (含答案)

浙教版数学七年级上册第五章一元一次方程一、选择题1.下列方程是一元一次方程的是( )A .y =2x−1B .x−1=0C .x 2=9D .3x−52.下列利用等式的基本性质变形错误的是( )A .若x−2=7,则x =7+2B .若−5x =15,则x =−3C .若13x =9,则x =3D .若2x +1=6,则2x =53.若x =2是关于x 的方程x−a =0的解,则a 的值是( )A .2B .1C .−1D .−24.由x 2−y3=1可以得到用x 表示y 的式子是( )A .y =3x−22B .y =32x−12C .y =3−32xD .y =32x−35.解方程x−13=1−3x +16,去分母后正确的是( )A .2x−1=1−(3x +1)B .2(x−1)=1−(3x +1)C .2(x−1)=6−(3x +1)D .(x−1)=6−3x +16.我国明代珠算家程大位的名著《直指算法统宗》里有一道算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设小和尚有x 人,依题意列方程得( )A .x3+3(100−x )=100B .3x +100−x3=100C .x3−3(100−x )=100D .3x−100−x3=1007.下列方程的变形中,正确的是( )A .方程3x−2=2x +1,移项,得3x−2x =−1+2;B .方程3−x =2−5(x−1),去括号,得3−x =2−5x−1;C .方程23x =32,未知数系数化为1,得x =1;D .方程x−12−x5=1化成5(x−1)−2x =10.8. 将 6 块形状、大小完全相同的小长方形,放入长为 m ,宽为 n 的长方形中,当两块阴影部分A,B 的面积 相等时, 小长方形其较短一边长的值为( )A .m 6B .m 4C .n 6D .n 49.已知|a−1|+(ab−2)2=0,则关于x 的方程xab+x (a +1)(b +1)+x (a +2)(b +2)+⋅⋅⋅+x(a +2021)(b +2021)=2022的解是( )A .2021B .2022C .2023D .202410.我国古代的“九宫图”是由3×3的方格构成的,每个方格均有不同的数,每一行、每一列以及每一条对角线上的三个数之和相等.如图给出了“九宫图”的一部分,请推算x 的值是( )2025x 23A .2020B .−2020C .2019D .−2019二、填空题11.已知4x +2y =3,用含x 的式子表示y =  .12.如图,在数轴上,点A,B 表示的数分别为a,b ,且a +b =0,若AB =2,则点A 表示的数为 .13.一张试卷有25道必答题,答对一题得4分,答错一题扣1分,某学生解答了全部试题共得70分,他答对了 道题.14.甲对乙说:“当我岁数是你现在的岁数时,你才4岁.”乙对甲说:“当我的岁数是你现在岁数时,你61岁.”则乙现在为 岁.15.如图,数轴上A ,B 点对应的实数分别是1和3.若点A 关于点B 的对称点为点C (即2AB =BC ),则点C 所对应的实数为 .16.一个四位正整数M ,如果千位数字与十位数字之和的两倍等于百位数字与个位数字之和,则称M 为“共进退数”,并规定F (M )等于M 的前两位数所组成的数字与后两位数所组成的数字之和,G (M )等于M 的前两位数所组成的数字与后两位数所组成的数字之差,如果F (M )=60,那么M 各数位上的数字之和为  ;有一个四位正整数N =1101+1000x +10y +z (0≤x ≤4,0≤y ≤9,0≤z ≤8,且为整数)是一个“共进退数”,且F (N )是一个平方数,G (N )13是一个整数,则满足条件的数N 是 .三、解答题17.解方程:2x +13−6x−16=1.18.当m 为何值时,关于x 的方程x−m 2−1=2x +m3的解是非负数.19.一艘轮船从A 地顺水航行到B 地用了4小时,从B 地逆水航行返回A 地比顺水航行多用了2小时,已知轮船在静水中的速度是25千米/时.(1)求水流的速度和A ,B 两地之间的距离;(2)若在A ,B 两地之间的C 地建立新的码头,使该轮船从A 地顺水航行到C 码头的时间是它从B 地逆水航行到C 码头所用时间的一半,问A ,C 两地相距多少千米?20.关于x 的两个一元一次方程x−1=a ①,3x +1=2a ②,已知方程①的解比方程②的解大1,求a的值.21.我们规定,若关于x 的一元一次方程ax =b 的解为x =b−a ,则称该方程为“差解方程”.例如:2x =4的解为x =2,且2=4−2,则该方程2x =4是差解方程.(1)判断:方程3x =4.5差解方程(填“是”或“不是”)(2)若关于x 的一元一次方程4x =m +3是差解方程,求m 的值.22.甲、乙两人加工机器零件,已知甲、乙两人一天共加工零件35个,甲每天加工零件的个数比乙每天加工零件的个数多5个.(1)问甲、乙两人每天各加工多少个零件?(2)现在工厂需要加工零件600个,先由两人合作一段时间,剩下的全部由乙单独完成,恰好20天完成任务,求两人合作的天数.23. 某条城际铁路线共有A ,B ,C 三个车站,每日上午均有两班次列车从A 站驶往C 站,其中D1001次列车从A 站始发,经停B 站后到达C 站,G1002次列车从A 站始发,直达C 站,两个车次的列车在行驶过程中保持各自的行驶速度不变.某校数学学习小组对列车运行情况进行研究,收集到列车运行信息如下表所示.列车运行时刻表A 站B 站C 站车次发车时刻到站时刻发车时刻到站时刻D10018:009:309:5010:50G10028:25途经B站,不停车10:30请根据表格中的信息,解答下列问题:(1)D1001次列车从A站到B站行驶了 分钟,从B站到C站行驶了 分钟;(2)记D1001次列车的行驶速度为v1,离A站的路程为d1;G1002次列车的行驶速度为v2,离A站的路程为d2.①v1v=▲;2②从上午8:00开始计时,时长记为t分钟(如:上午9:15,则t=75),已知v1=240千米/小时(可换算为4千米/分钟),在G1002次列车的行驶过程中(25≤t≤150),若|d1−d2|=60,求t的值.答案解析部分1.【答案】B2.【答案】C3.【答案】A4.【答案】D5.【答案】C6.【答案】A7.【答案】D8.【答案】A9.【答案】C10.【答案】D11.【答案】32−2x12.【答案】−113.【答案】1914.【答案】2315.【答案】33−216.【答案】15;310517.【答案】x=−3218.【答案】m≤−6519.【答案】(1)解:设水流的速度为x千米/时,A,B两地之间的距离为y千米,则轮船在顺水中的速度为(25+x)千米/时,在逆水中的速度为(25−x)千米/时.由题意,得{4(25+x)=y6(25−x)=y,解得{x=5 y=120.答:水流的速度为5千米/时,A,B两地之间的距离为120千米.(2)解:设A,C两地相距m千米.由题意,得m25+5=12×120−m25−5,解得m=3607.答:A,C两地相距3607千米.20.【答案】a=−121.【答案】(1)是(2)7322.【答案】(1)甲每天加工零件个数为20个,乙每天加工15个(2)两人合作的天数15天23.【答案】(1)90;60(2)解:①5 6;②解法示例:∵v1=4(千米/分钟),v1v2=56,∴v2=4.8(千米/分钟).∵4×90=360,∴A与B站之间的路程为360.∵360÷4.8=75,∴当t=100时,G1002次列车经过B站.由题意可如,当90≤t≤110时,D1001次列车在B站停车.∴G1002次列车经过B站时,D1001次列车正在B站停车.ⅰ.当25≤t<90时,d1>d2,∴|d1−d2|=d1−d2,∴4t−4.8(t−25)=60,t=75(分钟);ⅱ.当90≤t≤100时,d1≥d2,∴|d1−d2|=d1−d2,∴360−4.8(t−25)=60,t=87.5(分钟),不合题意,舍去;ⅲ.当100<t≤110时,d1<d2,∴|d1−d2|=d2−d1,∴4.8(t−25)−360=60,t=112.5(分钟),不合题意,舍去;ⅳ.当110<t≤150时,d1<d2,∴|d1−d2|=d2−d1,∴4.8(t−25)−[360+4(t−110)]=60,t=125(分钟).综上所述,当t=75或125时,|d1−d2|=60.。

浙教版七年级上册数学第5章 一元一次方程 基础测试卷及答案

浙教版七年级上册数学第5章 一元一次方程 基础测试卷及答案

浙教版七年级上册数学第5章一元一次方程基础测试卷考试时间:120分钟满分:120分一、选择题(本大题有12小题,每小题3分,共36分)下面每小题给出的四个选项中,只有一个是正确的.1.若x=y,下列各式中:①x-3=y-3;②x+5=y+5;③x-8=y+8;④2x=x+y.其中正确的个数有()A. 1个B. 2个C. 3个D. 4个2.已知a=b,下列应用等式性质错误的是()A. a+c=b+cB. a-c=b-cC. ac=bcD.3.方程的解是()A. 1B.C. –1D.4.在如图所示的2018年1月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和可能是( )A. 23B. 51C. 65D. 755.方程=1变形正确的是()A. B.C. D.6.“一个数比它的相反数大-4”,若设这数是x,则可列出关于x的方程为().A. x=-x+4B. x=-x+(-4)C. x=-x-(-4)D. x-(-x)=47.某同学在解关于x的方程时,误将看作,得到方程的解为,则a 的值为A. 3B.C. 2D. 18.如图a和图b分别表示两架处于平衡状态的简易天平,对a,b,c三种物体的质量判断正确的是()A. a<c<bB. a<b<cC. c<b<aD. b<a<c9.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更合算()A. 甲B. 乙C. 丙D. 一样10.根据流程右边图中的程序,当输出数值y为1时,输入数值x为()A. -8B. 8C. ﹣8或8D. 不存在11.已知方程2x+k=6的解为正整数,則k所能取的正整数值为()A. 1B. 2或3C. 3D. 2或412.一套仪器由1个A部件和3个B部件构成,1立方米钢材可做40个A部件或240个B部件,现要用6立方米钢材制作这种仪器,设应用x立方米钢材做B部件,其他钢材做A部件,恰好配套,则可列方程为()A. B.C. D.二、填空题(本大题有6小题,每小题3分,共18分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.13.在① ;② ;③ ;④ 中,等式有________,方程有________.(填入式子的序号)14.方程3(2x﹣1)=3x的解是________.15.三个连续奇数的和是15,那么其中最大的奇数是________.16.明代数学家程大位的《算法统宗》中有这样一个问题(如图),其大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,请问:所分的银子共有________两.(注:明代时1斤=16两,故有“半斤八两”这个成语)17.某品牌电脑进价为5 000元,按照定价的9折销售时,获利760元,则此电脑的定价为________元.18.如图的号码是由12为数字组成的,每一位数字写在下面的方格中,若任何相邻的三个数字之和都等于12,则x的值为________.9 x ﹣2三、解答题(本大题有7小题,共66分)解答应写出文字说明,证明过程或推演步骤19.(10分)解下列方程:(1)4 +3=2( -1)+1 (2)(3)4x﹣2(x+0.5)=17 (4).20.(6分)根据问题,设未知数,列出方程:(1)环形跑道一周长400m,沿跑道跑多少周,路程为3000m?(2)一个长方形的周长是20厘米,长比宽多2厘米,求这个长方形的宽.21.(8分)小明解方程 + 1 = 时,由于粗心大意,在去分母时,方程左边的 1 没有乘 10,由此求得的解为 x=4,试求 a 的值,并求出方程正确的解.(分)某酒店有三人间、双人间客房若干,各种房型每天的收费标准如下:普通(元/间)豪华(元/间)三人间160 400双人间140 300旅游团当日住宿费用共计4020元,问该旅游团入住的三人普通间和双人豪华间各为几间?23.(10分)某校七年级学生从学校出发步行去博物馆参观,他们出发半小时后,张老师骑自行车按相同路线用15分钟赶上学生队伍.已知张老师骑自行车的速度比学生队伍步行的速度每小时多8千米,求学生队伍步行的速度?24.(10分)一个长方形如图所示,恰好分成六个正方形。

浙教版2022年七年级上册第5章《一元一次方程》单元检测题(含解析)

浙教版2022年七年级上册第5章《一元一次方程》单元检测题(含解析)

浙教版2022年七年级上册第5章《一元一次方程》单元检测题满分100分一、选择题(共30分)1.下列说法中正确的是( )A .含有未知数的式子叫方程B .能够成为等式的式子叫方程C .方程就是等式,等式就是方程D .方程就是含有未知数的等式 2.下列方程是一元一次方程的是( )A .3412x x +=-B .2210x x +-=C .235x y -=D .132x x -= 3.下列方程中,解为2x =-的是( )A .22x x -=B .3121x x +=-C .313x x -=+D .322x x +=--4.运用等式性质进行的变形,正确的是( )A .如果33a b =,那么a b =B .如果a b =,那么a b c c= C .如果a b =,那么a c b c +=-D .如果23a a =,那么3a = 5.方程3141136x x --=-去分母后,正确的是( ) A .2(31)1(41)x x -=-- B .2(31)641x x -=-- C .2(31)6(41)x x -=-- D .31141x x -=-+6.一只蜗牛蚁在数轴上先向左爬6个单位,再向右爬3个单位,所在位置正好距离数轴原点2个单位,则蜗牛的起始位置所表示的数是( )A .5B .1-或5C .0或5-D .1或5 7.在解关于x 的方程2235x x a ++=-时,小颖在去分母的过程中,右边的“2-”漏乘了公分母15,因而求得方程的解为4x =,则方程正确的解是( )A .10x =-B .16x =C .203x =D .4x =8.一个两位数十位数字与个位数字的和是7,把这个两位数加上45,结果恰好等于个位与十位数字对调后组成的两位数,则这个两位数是( )A .16B .25C .34D .619.如图,在11月的日历表中用框数器“”框出3,5,11,17,19五个数,它们的和为55,若将 “”在图中换个位置框出五个数,则它们的和可能是( )A .40B .88C .107D .11010.若关于x 的方程534x kx -=+有整数解,那么满足条件的所有整数k 的和为( )A .20B .6C .4D .2 二、填空题(共18分)11.若方程()1230a a x --+=是关于x 的一元一次方程,则a 的值是_________.12.等式4152y y -=-移项,得到________.(不用求解)13.若8313x x ++-=,则x =___________.14.甲、乙两个足球队连续进打对抗赛,规定胜一场得3分,平一场得1分,负一场得0分,共赛10场,甲队保持不败,得22分,甲队胜___________场.15.《九章算术》中记载这样一道题:今有牛、马、羊食人苗.苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”大意是:现在有一头牛、一匹马、一只羊吃了别人家的禾苗.禾苗的主人要求这些动物的主人共计赔偿五斗粟米.羊的主人说:“我家羊只吃了马吃的禾苗的一半.”马的主人说:“我家马只吃了牛吃的禾苗的一半."按此说法,羊的主人应当赔偿给禾苗的主人多少斗粟米?设羊的主人赔x 斗,根据题意,可列方程为________. 16.规定一种新的运算:*2a b a b =--,求211*132x x -+=的解是 _____. 三、解答题(共52分)17.(6分)解方程 (1)()3836x +-= (2)1124x x -=--.18.(6分)解方程:(1)123(2)47x x --=+ (2)0.4320.20.5x x +--=19.(6分)一套仪器由2个A 部件和5个B 部件构成,用1m 3钢材可做40个A 部件或200个B 部件,现要用63m 钢材制作这种仪器,应用多少钢材做A 部件,多少钢材做B 部件,恰好能使这种仪器刚好配套?20.(6分)甲乙两人承包铺地砖任务,若甲单独做需20小时完成,乙单独做需要12小时完成.甲乙二人合做6小时后,乙有事离开,剩下的由甲单独完成.问甲还要几个小时才可完成任务?21.(9分)方程的解的定义:使方程两边相等的未知数的值.如果一个方程的解都是整数,那么这个方程叫做“立信方程”(1)若“立信方程”211x +=的解也是关于x 的方程()123x m --=的解,则=m ____________;(2)若关于x 的方程2340x x +-=的解也是“立信方程”26230x x n +--=的解,求n 的值.(3)关于x 的方程9314x kx -=+是“立信方程”,直接写出符合要求的正整数k 的值.22.(9分)某中学组织学生参加文艺汇演,如果单租45座客车若干辆,且每辆刚好坐满;如果单租60座客车,可少租一辆,且空15个座位.已知45座客车租金为每辆250元,60座客车租金为每辆300元,试问:(1)求参加文艺汇演的学生总人数是多少?(2)如果单租,哪种客车省钱?(3)如果同时租用两种客车分别租多少辆最省钱?-表示a与b之差的绝对值,实际上也可理解为a与b两数在数轴上所对应的两点之23.(10分)探究与发现:a bx-的几何意义是数轴上表示有理数x的点与表示有理数3的点之间的距离.间的距离.如3(1)如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且20AB=,则数轴上点B表示的数;x-=,则x=.(2)若82(3)拓展与延伸:在(1)的基础上,解决下列问题:动点P从O点出发,以每秒5个单位长度的速度沿数轴向右匀t t>秒.求当t为多少秒时?A,P两点之间的距离为2;速运动,设运动时间为()0(4)数轴上还有一点C所对应的数为30,动点P和Q同时从点O和点B出发分别以每秒5个单位长度和每秒10个单位长度的速度向C点运动,点Q到达C点后,再立即以同样的速度返回,点P到达点C后,运动停止.设运动t t>秒.问当t为多少秒时?P,Q之间的距离为4.时间为()0参考答案1.D【分析】根据方程的定义结合选项选出正确答案即可.【详解】A 、1x +含有未知数,但不是方程,A 选项错误;B 、213+=是等式,但不是方程,B 选项错误;C 、213+=是等式,但不是方程,C 选项错误;D 、方程就是含有未知数的等式,D 选项正确;故选:D .【点睛】主要考查了方程的定义,解题的关键是掌握方程的定义:含未知数的等式叫方程.2.A【分析】根据一元一次方程的定义,逐个判断即可.【详解】解:A 、符合一元一次方程的定义,故A 正确;B 、未知数的最高次数是2次,不是一元一次方程,故B 错误;C 、是二元一次方程,故C 错误;D 、分母中含有未知数,是分式方程,故D 错误.故选:A .【点睛】考查了一元一次方程的定义,方程的两边都是整式,只含有一个未知数,并且未知数的次数都是1,像这样的方程叫做一元一次方程.3.B【分析】根据方程解的定义,将方程的解代入方程的左边与右边,求代数式的值,验证方程左右两边的值是否相等即可.【详解】解:当2x =-,方程左边=22426x -=--=-,方程右边=-2,左边≠右边,故解为2x =-的不是选项A ; 当2x =-,方程左边=,()31321615x +=⨯-+=-+=-,方程右边=21415x -=--=-,左边=右边,故解为2x =-是选项B ;当2x =-,方程左边=()313217x -=⨯--=-,方程右边=3231x +=-+=,左边≠右边,故解为2x =-的不是选项C ; 当2x =-,方程左边=()32322624x +=⨯-+=-+=-,方程右边=()2220x =--=---=-2,左边≠右边,故解为2x =-的不是选项D ;故选择B .【点睛】考查方程的解,代数式的值,掌握方程的解;使方程左右两边值相等的未知数的值是方程的解是解题关键.4.A【分析】根据等式的基本性质,逐项判断即可求解.【详解】解:A 、如果33a b =,那么a b =,故本选项正确,符合题意; B 、如果a b =,当0c ≠时,那么a b c c =,故本选项错误,不符合题意; C 、如果a b =,那么a c b c +=+,故本选项错误,不符合题意;D 、如果23a a =,那么3a =或0,故本选项错误,不符合题意;故选:A【点睛】主要考查了等式的性质:等式的左、右两边同时加上或减去同一个数,等式仍然成立;等式的左、右两边同时乘上或除以同一个数(0除外),等式仍然成立.5.C【分析】方程两边乘以最小公倍数6,化简后即可作出判断.【详解】方程两边乘以最小公倍数6,得:3141616636x x --⨯=⨯-⨯, 即2(31)6(41)x x -=--;故选:C .【点睛】考查了解一元一次方程的去分母,注意去分母时,不要漏乘了右边的1,还有去分母后,分子若是多项式,则应把分子放到括号里.6.D【分析】设蜗牛的起始位置所表示的数为x ,根据题意可得632x -+=±,然后求解即可.【详解】解:设蜗牛的起始位置所表示的数为x ,蜗牛蚁在数轴上先向左爬6个单位,再向右爬3个单位,所在位置正好距离数轴原点2个单位,∴632x -+=±, 5x ∴=或1x =故选:D .【点睛】此题考查了数轴上的点所表示的数、绝对值的意义与一元一次方程的应用,熟练掌握点在数轴上移动时所表示的数的变化规律列出方程是解答此题的关键.7.A【分析】先根据小颖解方程的过程求出a 的值,然后正确求出原方程的解即可.【详解】解:由题意得()()5232x x a +=+-的解为4x =,∴()()542342a ⨯+=+-, 解得203a =, ∴2023235x x ++=-,去分母得:()20523303x x ⎛⎫+=+- ⎪⎝⎭, 去括号得:51032030x x +=+-,移项得:53203010x x -=--,合并得:220x =-,解得:10x =-,故选A .【点睛】主要考查了解一元一次方程,正确理解题意是解题的关键.8.A【分析】先设这个两位数的十位数字和个位数字分别为x ,7-x ,则这个两位数为10x+7-x=9x+7,对调后的两位数为10(7-x )+x=70-9x ,根据题意列出方程9x+7+45=70-9x ,解这个方程,求出这个两位数.【详解】解:设十位数字为x ,则个位数字为7-x ,由题意得:10x+7-x+45=10(7-x )+x ,解得:x=1,所以个位数为:7-x=7-1=6,答:这个两位数这16.故选:A .【点睛】此题主要考查了一元一次方程的应用,属于数字问题,培养学生用方程解决问题的能力.9.D【分析】设正中间的数为x ,则x 为整数,再求得这5个数的和为5x ,令5x 的值分别为40、88、107、110,分别列方程求出x 的值并进行检验,即可得到符合题意的答案.【详解】解:设正中间的数为x ,则x 为整数,这5个数的和为:86685x x x x x x +-+-++++=,当540x =时,得8x =,∴80x -=,∴8x =不符合题意;当588x =时,得885x =,不符合题意; 当5107x =时,得1075x =,不符合题意; 当5110x =时,得22x =,符合题意;∴它们的和可能是110,故选:D .【点睛】考查一元一次方程的解法、列一元一次方程解应用题等知识,设正中间的数为x ,求得五个数的和是5x 并分类讨论是解题的关键.10.A【分析】先解方程可得75x k=-,再根据关于x 的方程534x kx -=+有整数解,k 为整数,可得51k -=±或57k -=±,从而可得答案. 【详解】解:∴534x kx -=+,∴57x kx -=,即()57k x -=,当50k -≠时, ∴75x k=-, ∴关于x 的方程534x kx -=+有整数解,k 为整数,∴51k -=±或57k -=±,解得:4k =或6k =或2k =-或12k =,∴()4621220++-+=,∴满足条件的所有整数k 的和为20.故选A .【点睛】考查的是一元一次方程的解与方程的解法,掌握“方程的整数解的含义以及求解整数解的方法”是解的关键. 11.2-【分析】根据一元一次方程的定义列式求解即可.【详解】解:由题意得11a -=且20a -≠,解得2a =-.故答案为:2-.【点睛】考查了一元一次方程的定义,方程的两边都是整式,只含有一个未知数,并且未知数的次数都是1,象这样的方程叫做一元一次方程,熟练掌握定义是解答的关键.12.4251y y +=+【分析】利用等式的性质将方程移项即可.【详解】解:等式4152y y -=-,移项得:4251y y +=+,故答案为:4251y y +=+.【点睛】此题考查了解一元一次方程,熟练掌握等式的性质是解的关键.13.9-或4【分析】根据绝对值的性质进行分类讨论即可求解.【详解】解:当∴8x <-时, ∴8313x x ++-=,∴8313x x --+-=,解得:9x =-;∴83x -≤≤时, ∴8313x x ++-=,∴8313x x ++-=,即1113=,不符合题意;∴当3x >时, ∴8313x x ++-=,∴8313x x ++-=,解得:4x =,∴x 的值为9-或4,故答案为:9-或4.【点睛】主要考查了解绝对值方程,解一元一次方程,掌握绝对值的性质是解题的关键.14.6【分析】设甲胜了x 场,则平了()10x -场,根据“共赛10场,甲队保持不败,得22分”列出方程并解答.【详解】解:设甲队胜了x 场,由题意得:()31022x x +-=,解得6x =,答:甲队胜了6场,故答案为:6.【点睛】考查了一元一次方程的应用,解答的关键是明确题意,找出等量关系,列出方程.15.245++=x x x【分析】设羊的主人赔x 斗,则马的主人赔2x 斗,牛的主人赔4x 斗,根据题意,列出方程,即可求解.【详解】解:设羊的主人赔x 斗,则马的主人赔2x 斗,牛的主人赔4x 斗,根据题意得:245++=x x x .故答案为:245++=x x x【点睛】主要考查了一元一次方程的应用,明确题意,准确得到等量关系是解题的关键.16.57x = 【分析】已知等式利用题中的新定义化简,计算即可求出解. 【详解】解:根据题中的新定义化简得:2112132x x -+--=, 去分母得:()()12221316x x ---+=,去括号得:1242336x x -+--=,移项合并得:75x -=-, 解得:57x =. 故答案为:57x =. 【点睛】主要考查了解一元一次方程,以及有理数的混合运算,弄清题中的新定义是解的关键. 17.(1)5x =- (2)12x =-【分析】(1)按照去括号、移项、合并同类项、系数化为1的步骤解方程即可;(2)按照去分母、移项、合并同类项、系数化为1的步骤解方程即可.【详解】(1)解:()3836x +-=去括号得,32436x +-=,移项得,36243x =-+,合并同类项得,315x =-,系数化为1得,5x =-(2)1124x x -=-- 去分母得,2144x x -=--,移项得,2441x x +=-+,合并同类项得,63=-x ,系数化为1得,12x =- 【点睛】此题考查了一元一次方程,熟练掌握一元一次方程的解法是解题的关键.18.(1)117x =(2)2x =-【分析】(1)展开、移项、合并同类项、再将x 系数化为1;(2)先利用分数的基本性质把分母化为整数,再去分母,再合并同类项,再求解.【详解】(1)解:123(2)47x x --=+去括号得,123647x x -+=+,移项得,347126x x --=--,合并同类项得,711x -=-,系数化1得,117x =(2)0.4320.20.5x x +--= 原方程变形得,5221162x x +--=, 去分母得,()52262x x +--=,去括号得,52262x x +-+=,移项得,52226x x -=--,合并同类项得,36x =-,系数化1得,2x =-【点睛】考查了一元一次方程求解,解题的关键是熟练掌握解一元一次方程的步骤.19.应用43m 钢材做A 部件,23m 钢材做B 部件,恰好能使这种仪器刚好配套.【分析】设应用3m x 钢材做A 部件,(6-x )3m 钢材做B 部件,然后根据等量关系列出方程,求解即可.【详解】解:设应用3m x 钢材做A 部件,(6-x )3m 钢材做B 部件,根据题意得,5×40x =2×200(6-x )解得x =46-x =2.答:应用43m 钢材做A 部件,23m 钢材做B 部件,恰好能使这种仪器刚好配套.【点睛】考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.20.甲还要4个小时后可完成任务.【分析】先求出甲乙合作6小时完成的工作量为1162012⎛⎫+⨯ ⎪⎝⎭,设甲还要x 个小时后可完成任务,则完成的工作量为120x ,由前后完成的工作量之和为1为等量关系建立方程求出其解即可. 【详解】解:设甲还要x 个小时后可完成任务,根据题意,得:11161202012x ⎛⎫++⨯= ⎪⎝⎭, 解得:=4x .答:甲还要4个小时后可完成任务.【点睛】考查了列一元一次方程解工程问题的运用题的运用,工作总量=工作效率×工作时间的运用,在解答时根据各部分工作量之和=工作总量建立方程是关键.21.(1)1(2)5n =(3)8,10,26【分析】(1)求出211x +=的解,将之代入()123x m --=求出m 值即可.(2)将2340x x +-=转化为234x x += 代入26230x x n +--=即可求处n 的值.(3)先求9314x kx -=+解的表达式,然后利用“立信方程”的解都是整数的定义找出正整数解即可.(1)解:∴211x +=∴x = 0把x = 0代入()123x m --=得12(0)3m --= ,即123m +=解得:m = 1(2)解:∴2340x x +-=∴234x x +=∴222(3)268x x x x +=+=由题意可知,关于x 的方程2340x x +-=的解也是“立信方程”26230x x n +--=的解.将2268x x +=代入26230x x n +--=得830n --=,解得n = 5(3)解:解关于x 的方程9314x kx -=+得,()1799x k k=≠- 当9k -取1,1- ,17,17-时,即k 取8,10,-8,26时,x 的值为整数.∴符合要求的正整数k 的值为8,10,26.【点睛】主要考查一元一次方程的解的应用,能根据立信方程的定义是解的关键.22.(1)学生225人(2)单租60座的客车省钱(3)租1辆45座的客车和3辆60座的客车最省钱【分析】(1)设单租x 辆45座客车,则参加文艺汇演的学生总人数为45x 人,由题意得:4560115x x =--(),计算求出x 的值,进而可得45x 的值;(2)分别计算单租不同客车的租金,然后进行比较即可;(3)设租x 辆45座客车,y 辆60座客车,则4560225x y +=,根据x y ,均为正整数进行求解即可.解:设单租x 辆45座客车,则参加文艺汇演的学生总人数为45x 人,由题意得:4560115x x =--(),解得:5x =.则455225⨯=(人).∴参加文艺汇演的学生总人数为225人.(2)解:由题意知,单租45座客车,租金为52501250⨯=元;单租60座客车,租金为43001200⨯=元;∴12501200>,∴单租60座客车更省钱.(3)解:设租x 辆45座客车,y 辆60座客车,则4560225x y +=,∴x y ,均为正整数,解得:13x y ==,,∴租1辆45座客车,3辆60座客车最省钱.【点睛】考查了一元一次方程的应用.解题的关键在于理解题意,列出正确的方程.23.(1)12-(2)6或10(3)当t 为65秒时,A ,P 两点之间的距离为2 (4)当t 为85或165或6815或7615秒时,P ,Q 之间的距离为4【分析】(1)利用数轴上两点间的距离公式,找出点B 表示的数;(2)利用绝对值的定义(绝对值是指一个数在数轴上所对应点到原点的距离),去掉绝对值符号;(3)找准等量关系,正确列出一元一次方程;(4)分0215t <<,2156t ≤<或6t ≥三种情况,找出关于t 的一元一次方程. 【详解】(1)数轴上点B 表示的数82012=-=-.故答案为:12-;(2)∴82x -=,∴82x -=-或82x -=,故答案为:6或10.(3)当运动时间为t 秒时,点P 表示的数为5t , 依题意得:582t -=,即582t -=-或582t -=, 解得:65t =或2t =. 答:当t 为65秒或2秒时,A ,P 两点之间的距离为2. (4)P 到达C 点时间:()30056-÷=(秒),Q 到达C 点时间:212301510--÷=(秒). 当0215t <<时,P 、Q 都没有到达C 点, 点P 表示的数为5t ,点Q 表示的数为1012t -,依题意得:()510124t t --=,即1254t -=或5124t -=, 解得:85t =或165t =; 当2156t ≤<时,Q 已经到达C 点,P 没有到达C 点, 点P 表示的数为5t ,点Q 表示的数为10301072215t t ⎛⎫--+=-+ ⎪⎝⎭, 依题意得:()510724t t --+=,即72154t -=或15724t -=, 解得:6815t =或7615t =; 当6t ≥时,P 、Q 都已经到达C 点点P 表示的数为30,点Q 表示的数为10301072215t t ⎛⎫--+=-+ ⎪⎝⎭, 依题意得:()3010724t --+=, 解得:235t =(不合题意,舍去). 答:当 t 为85或165或6815或7615秒时,P ,Q 之间的距离为 4. 【点睛】考查了一元一次方程的应用、数轴以及绝对值,解题的关键是运用分类讨论的思想去解决问题.。

七年级数学上册阶段许7第5章一元一次方程5-1-5-3作业新版浙教版

七年级数学上册阶段许7第5章一元一次方程5-1-5-3作业新版浙教版
阶段小卷(七)
第5章 一元一次方程(5.1-5.3)
一、选择题(每小题 4 分,共 32 分)
1.下列四个方程中,属于一元一次方程是( D )
A.x+y=1 B.x2-2x+1=0
C.2x =1
D.x=0
2.以x=-3为解的方程是( D )
A.3x-7=2
B.5x-2=-x
C.6x+8=26 D.x+7=4x+16
3.设 x,y,c 是有理数,下列选项错误的是
( C)
A.若 x=y,则 x+c=y+c B.若 x=y,则 xc=yc C.若 x=y,则xc =yc D.若2xc =3yc ,则 3x=2y
4.一个长方形的长比宽多2 cm,若把它的 长、宽分别增加2 cm后,面积则增加24 cm2, 求长和宽,若设宽为x cm,则列出的正确方 程为( D )
(4)0x.8 -0.160-.030.2x =1. 解:x=7965 .
14.(8 分)若代数式12 x+2(54 x+1)比 18 +x 大 10,求 x.
解:x=13.
15.(10 分)小明的练习册上有一道方程题,
其中一个数字被墨水污染了,成为3x+ 5 1 =1-
x+● 5
.他翻看书后的答案,知道了这个方程的
12.若方程9x-3=kx+14有正整数解,则 k的整数值为_____8_或__-__8___.
三、解答题(48分) 13.(20分)解下列方程: (1)-(1.5y+1)+2y=2(1.5y-3); 解:y=2;
(2)3x-[1-2(2+3x)]=12; 解:x=1;
(3)x-x-4 1 =1-3-2 x ; 解:x=-3;
7.将方程2x-2 1 -x-3 1 =1 去分母得到方程

浙教版七年级上册数学 第五章一元一次方程单元测试卷(含答案)

浙教版七年级上册数学 第五章一元一次方程单元测试卷(含答案)

浙教版七上数学第五章一元一次方程一、选择题1.下列方程中,是一元一次方程的是( )A.x2−4x=3B.3x−1=x2C.x+2y=1D.xy−3=52.下列等式变形正确的是( )A.若a=b,则a+c=b−c B.若ac=bc,则a=bC.若a=b,则ac=bcD.若(m2+1)a=(m2+1)b,则a=b3.已知关于x的方程8−3x=ax的解是x=−2,则a的值为( )A.1B.7C.52D.−74.把方程3x+2x−13=3−x+12去分母正确的是( )A.18x+2(2x−1)=18−3(x+1)B.3x+(2x−1)=3−(x+1)C.18x+(2x−1)=18−(x+1)D.3x+2(2x−1)=3−3(x+1)5.若x=1是关于x的方程3x−2m=1的解,则m的值是( )A.−1B.1C.−2D.36.如图,数轴上依次有A,B,C三点,它们对应的数分别是a,b,c,若BC=2AB=6,a+b+c=0,则点C对应的数为( )A.4B.5C.6D.87.如图,是2024年1月的月历,任意选取“十”字型中的五个数(比如图中阴影部分),若移动“十”字型后所得五个数之和为115,那么该“十”字型中正中间的号数为( )A.20B.21C.22D.238.《九章算术》中有如下问题:“以绳测井,若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺.问绳长、井深各几何?”其题意是:用绳子测量水井深度,如果将绳子折成三等份,那么每等份绳长比水井深度多四尺;如果将绳子折成四等份,那么每等份绳长比水井深度多一尺.问绳长和井深各多少尺?设绳长为x尺,则根据题意,可列方程为( )A.x3+4=x4+1B.x3−4=x4−1C.x3−1=x4−4D.x3−4=x4+19.如图,线段AB=24cm,动点P从A出发,以2cm/s的速度沿AB运动,M为AP的中点,N为BP的中点.以下说法正确的是( )①运动4s后,PB=2AM;②PM+MN的值随着运动时间的改变而改变;③2BM−BP的值不变;④当AN=6PM时,运动时间为2.4s.A.①②B.②③C.①②③D.②③④10.有一组非负整数:a1,a2,…,a2022.从a3开始,满足a3=|a1−2a2|,a4=|a2−2a3|,a5=|a3−2 a4|,…,a2022=|a2020−2a2021|.某数学小组研究了上述数组,得出以下结论:①当a1=2,a2=4时,a4=6;②当a1=3,a2=2时,a1+a2+a3+⋯+a20=142;③当a1=2x−4,a2=x,a5=0时,x=10;④当a1=m,a2=1(m≥3,m为整数)时,a2022=2020m−6059.其中正确的结论个数有( )A.1个B.2个C.3个D.4个二、填空题11.由a=b,得ac =bc,那么c应该满足的条件是 .12.如果方程3x m+1+2=0是关于x的一元一次方程,那么m的值是 .13.如果|x+8|=5,那么x= .14.若关于x的方程5x-1=2x+a的解与方程4x+3=7的解互为相反数,则a= .15.对于非零自然数a和b,规定符号⊗的含义是:a⊗b=m×a+b2×a×b(m是一个确定的整数).如果1⊗4=2⊗3,那么3⊗4等于 16.人民路有甲乙两家超市,春节来临之际两个超市分别给出了不同的促销方案:甲超市购物全场8.8折.乙超市购物①不超过200元,不给予优惠;②超过200元而不超过600元,打9折;③超过600元,其中的600元仍打9折,超过600元的部分打8折.(假设两家超市相同商品的标价都一样)当标价总额是 元时,甲、乙两家超市实付款一样.三、解答题17.解方程:(1)3x+5=2(x+4)(2)3x−14=1−x+8618.已知a-2(4-x)=5a是关于x的方程,且与方程6-x=x+32有相同的解.(1)求a的值.(2)求多项式8a2−2a+7−5的值.若两个一元一次方程的解相差1,则称解较大的方程为另一个方程的“后移方程”例如:方程x−2=0是方程x−1=0的“后移方程”19.判断方程2x+1=0是否为方程2x+3=0的“后移方程”;20.若关于x的方程3(x−1)−m=m+32是关于x的方程2(x−3)−1=3−(x+1)的“后移方程”,求m的值.21.一项工程,甲队独做10ℎ完成,乙队独做15ℎ完成,丙队独做20ℎ完成,开始时三队合作,中途甲队另有任务,由乙、丙两队完成,从开始到工程完成共用了6ℎ,问甲队实际工作了几小时?22.将连续奇数1,3,5,7,9,…排列成如下的数表:(1)设中间数为x,用式子表示十字框中五个数之和.(2)十字框中的五个数之和能等于2024吗?若能,请写出这五个数;若不能,请说明理由.23.用A,B两种型号的机器生产相同的产品,产品装入同样规格的包装箱后运往仓库.已知每台B型机器比A型机器一天多生产2件产品,3台A型机器一天生产的产品恰好能装满5箱,4台B型机器一天生产的产品恰好能装满7箱.每台A型机器一天生产多少件产品?每箱装多少件产品?下面是解决该问题的两种方法,请选择其中的一种方法,完成分析填空和解答.【方法一】分析:设每箱装x件产品,则3台A型机器一天共生产①▲)件产品,4台B型机器一天共生产( ▲)件产品,再根据题意列方程.【方法二】分析:设每台A型机器一天生产x件产品,则每台B型机器一天生产(x+2)件产品,3台A型机器一天共生产(①▲)件产品,4台B型机器一天共生产(②▲)件产品,再根据题意列方程.解:设每箱装x 件产品.答:(写出完整的解答过程)解:设每台A 型机器一天生产x 件产品答:(写出完整的解答过程)24.如图,点A 、B 、C 、D 在数轴上,点A 表示的数是−3,点D 表示的数是9,AB =2,CD =1.(1)线段BC =______.(2)若点B 以每秒1个单位长度的速度向右匀速运动,同时点C 以每秒2个单位长度的速度向左匀速运动,运动t 秒后,BC =3,求t 的值.(3)若线段AB 以每秒1个单位长度的速度向左匀速运动,同时线段CD 以每秒2个单位长度的速度向左匀速运动,M 是AC 中点,N 为BD 中点,运动t 秒后(0<t <9),求线段MN 的长度.答案解析部分1.【答案】B2.【答案】D3.【答案】D4.【答案】A5.【答案】B6.【答案】B7.【答案】D8.【答案】B9.【答案】D10.【答案】B11.【答案】c≠012.【答案】013.【答案】-13或-314.【答案】-415.【答案】111216.【答案】75017.【答案】(1)x=3(2)x=−1 1118.【答案】(1)解:6-x=x+32,去分母得:12-2x=x+3,移项合并得:-3x=-9,解得:x=3,把x=3代入a-2(4-x)=5a得:a-2=5a,解得:a=-1 2.(2)解:当a=-12时,原式=-2【答案】19.方程2x+1=0是方程2x+3=0的后移方程20.m=521.【答案】解:设三队合作时间为xh,乙、丙两队合作为(6−x)ℎ,总工程量为1,由题意得:(110+115+120)x+(115+120)(6−x)=1,解得:x=3,答:甲队实际工作了3小时22.【答案】(1)解:设中间数为x,则另4个数分别为x−16、x+16、x−2、x+2,所以十字框中五个数之和为x+(x−16)+(x+16)+(x−2)+(x+2)=5x.(2)解:设中间的数为x,依题意可得:5x=2024,解得:a=404.8因为a=404.8不是整数,与题目的a是奇数不符,所以5数之和不能等于2024.23.【答案】解:【方法一】①设每箱装x件产品,则3台A型机器一天共生产3x件产品,4台B型机器一天共生产7x件产品,依题意列方程,得5x3+2=7x4,解得:x=24,故5x3=40,即每台A型机器一天生产40件产品,每箱装24产品.【方法二】设每台A型机器一天生产x件产品,则每台B型机器一天生产(x+2)件产品,3台A型机器一天共生产3x件产品,4台B型机器一天共生产4(x+2)件产品,依题意列方程,得3x5=4(x+2)7,解得:x=40,故3x5=24,即每台A型机器一天生产40件产品,每箱装24产品. 24.【答案】(1)9(2)2或4(3)3 2。

浙教版七年级数学上册单元检测卷一元一次方程(5.1_5.3)(含答案)

浙教版七年级数学上册单元检测卷一元一次方程(5.1_5.3)(含答案)

浙教版七年级数学上册单元检测卷一元一次方程(5.1-5.3)(含答案)一、选择题(每小题3分,共30分)1.买一个足球需要m 元,买一个篮球需要n 元,则买4个足球,7个篮球共需( )A. 4m +7nB. 28mnC. 7m +4nD. ll mn2.下列方程是一元一次方程的是( )A .23x y +=B .19x x -= C .62x x += D .21x x =- 3.下列方程中,解不是2x =的是( )A .24x =B .35x x -=C .62x x -+=D .1(1)0.52x -= 4. 下列等式的变形中,错误的是( )A.由x + 7= 5得x +7-7 = 5-7 ;B.由3x -2 =2x + 1得x = 3C.由4-3x = 4x -3得4+3 = 4x +3xD.由-2x = 3得x = 32-5.方程3x +2(1-x )=4的解是( )A .x =52B .x =56 C .x =2 D .x =1 6.解方程2631x x =+-,去分母,得( ) A .B .C . C . 7. 若关于x 的方程03=-m x 的解是m x -=4,则m 的值是( )A .4B .3C .2D .18.把方程17.012.04.01=--+x x 中的分母化为整数,结果应为( ). A. 1010.21147x x +--= B. 1010210147x x +--= C.101211047x x +--= D. 552101027x x +--=9.已知方程a x x -=+483的解满足02=-x ,则a 的值为( ) A .227- B .281- C .141- D .4 10.如图所示的运算程序中,若开始输入的x 值为96,我们发现第一次输出的结果为48,第二次输出的结果为24,…,则第2019次输出的结果为( )A.6B.3C. 202062 D. 201962二、填空题(每小题3分,共24分)11. 比a 的3倍大5的数是9,列出方程式是__________________12. 若x =2是方程2x -a =7的解,那么a =____ ___13.当m =_______时,代数式353+m 的值是2. 14.某个一元一次方程满足两个条件:①未知数的系数是2;②方程的解为3.请写出一个满足上述条件的方程:__________.18. 一组数:2,1,3,x ,7,y ,23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a ﹣b ”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中y 表示的数为 .三、解答题(共46分)19.(本题8分)解下列方程:(1)238x x -=-+; (2)112322y y -=- 20. (本题8分)解方程2x -6115+x =l+342-x21.(本题10分) 如图,点A 、B 分别表示的数是6、-12,M 、N 、P 为数轴上三个动点,它们同时都向右运动.点M 从点A 出发,速度为每秒2个单位长度,点N 从点B 出发,速度为点M 的3倍,点P 从原点出发,速度为每秒1个单位长度.(1)当运动3秒时,点M 、N 、P 分别表示的数是 、 、 ;(2)求运动多少秒时,点P 到点M 、N 的距离相等?22.(本题10分)小明做作业时,不小心将方程中⊗+=--34122x x ,的一个常数⊗污染了看不清楚,怎么办呢? (1)小红告诉他该方程的解是x =3,那么这个常数应是多少呢?(2)小芳告诉他该方程的解是负数,并且这个常数⊗是负整数,请你试求该方程的解.23.(本题10分)如图,用三个正方形①、2个正方形②、1个正方形③和缺了一个角的长方形④,恰好拼成一个大长方形.根据图示数据,解答下列问题:(1)用含x 的代数式表示:a =__________cm ,b =__________cm ;(2)若大长方形的周长为64,求x 的值.附加题24..阅读下面的解题过程:解方程:|x +3|=2.解:当x +3≥0时,原方程可化成为x +3=2解得x =-1,经检验x =-1是方程的解;当x +3<0,原方程可化为,-(x +3)=2解得x =-5,经检验x =-5是方程的解.所以原方程的解是x =-1,x =-5.解答下面的两个问题:(1)解方程:|3x -2|-4=0;(2)探究:当值a 为何值时,方程|x -2|=a , ①无解;②只有一个解;③有两个解.答案:一、选择题:ACCDC BBBAB二、填空题:11. 953=+a12. -313.31 14. 512=-x 等15. 816. 617. 1 18. -9三、解答题 19.(1)8=x (2)35-=y 20.)42(26)115(3-+=+-x x x ,23-=x 21.(1)12,6,3(2)1或29 22.常数为﹣;(2)设这个常数为m ,﹣1=+m3(x ﹣2)﹣6=8x+6m解得x=﹣,解是负数,m是负整数,m的值只有﹣2和﹣1,23.(1)由图象可得:a=(x+2)cm,b=(2x+2)cm;故答案为:(x+2),(2x+2);(2)大长方形的周长为:2(3x+2a+a+b)=2(3x+3a+b)=2[3x+3(x+2)+2x+2]=2(8x+8)=16(x+1).当16(x+1)=64时,x=3(2) a小于0,无解;a=0,一个解;a大于0,两个解。

七年级数学上册51一元一次方程试题(新版)浙教版

七年级数学上册51一元一次方程试题(新版)浙教版

5.1 一元一次方程1.以下方程是一元一次方程的是(D )A .2x +y =0B .7x +5=7(x +1)C .x (x +3)+2=0D .2x =12.小华带x 元去买甜点,假设全买红豆汤圆,那么刚好可买30杯;假设全买豆花,那么刚好可买40杯.豆花每杯比红豆汤圆廉价10元,依题意可列出方程为(A )A.x 30=x 40+10B.x 40=x 30+10C.x 40=x +1030D.x +1040=x 303.以下方程中,解为x =-1的是(D )A .2x =x +1B .2x -1=0C .x =2x -1D .x =2x +14.假设关于x 的方程mx m -2-m +3=0是一元一次方程,那么这个方程的解为(A )A .x =0B .x =3C .x =-3D .x =25.以下方程中,解不是x =2的是(B )A.14x -2=-32B .3x -5=x C.12(x -1)=0.5 D .2x +3=7 6.2x -3与9互为相反数,用方程来表示就是(B )A .2x -3=9B .2x -3=-9C .2x +3=9D .2x +3=-97.写出一个一元一次方程,使它的解为-5,未知数的系数为45,那么方程为__45x =-4(答案不唯一)__.8.假设关于x 的方程-5x 1-a +1=6是一元一次方程,那么a =__0__.9.假设(a +1)2+|b -2|=0,那么a -b =__-3__.10.检验括号中的数是否为方程的解.(1)3x -4=8(x =3,x =4);(2)12y +3=7(y =8,y =4). 【解】 (1)x =4是方程的解,x =3不是方程的解.(2)y =8是方程的解,y =4不是方程的解.11.根据条件列方程:(1)某数的5倍比这个数大3;(2)某数的相反数比这个数大6;(3)爸爸和儿子的年龄分别是40岁和13岁,请问:几年后,爸爸的年龄是儿子年龄的2倍【解】 (1)设该数为x ,由题意,得5x =x +3.(2)设该数为x ,由题意,得-x =x +6.(3)设经过x 年后,爸爸的年龄是儿子年龄的2倍,由题意,得40+x =2(13+x ).12.假设关于x 的方程mxm +5+m -3=0是一元一次方程,那么这个方程的解为(C )A .x =1B .x =-1C .x =-74D .x =-4 【解】 由题意,得m +5=1,∴m =-4.∴该方程为-4x -7=0,解得x =-74.应选C. 13.关于x 的方程ax +b =0,当方程的解是x =0时,a ,b 应满足的条件是(C )A .a =0,b =0B .a =0,b ≠0C .a ≠0,b =0D .a ≠0,b ≠014.有6个班的同学在大会议室里听报告,如果每条长凳坐5人,还缺8条长凳;如果每条长凳坐6人,就多出2条长凳.设来听报告的同学有x 人,会议室里有y 条长凳,那么以下方程:①x 5-8=x 6+2;②5(y -8)=6(y +2);③5(y +8)=6(y -2);④x 5+8=x 6-2.其中正确的选项是(A )A .①③ B.②④C .①② D.③④15.3个连续偶数的和为90,设中间的偶数为x ,那么可列出方程为__(x -2)+x +(x +2)=90__.16.假设方程(m 2-1)x 2-mx -x +2=0是关于x 的一元一次方程,那么代数式|m -1|的值为(A )A .0B .2C .0或2D .-2【解】 原方程可化为(m 2-1)x 2-(m +1)x +2=0.∵该方程是关于x 的一元一次方程,∴m 2-1=0且-(m +1)≠0,∴m =1,∴|m -1|=0.应选A.。

七年级数学上册第5章一元一次方程检测卷作业新版浙教版

七年级数学上册第5章一元一次方程检测卷作业新版浙教版

21.(10 分)对于有理数 a,b,规定一种新运算: a*b=ab+2b. (1)计 算 : ( - 4)*5= ________, 4*[(- 3)*2]= ________; (2)已知方程(x-4)*1 =x-4,求 x 的值.
2
解:(1)∵a*b=ab+2b∴(-4)*5=(-4)×5+2
上车,若每辆客车乘 62 人,则最后一辆车空了 8
个座位.在下列四个方程①60m+10=62m-8;②
60m+10=62m+8;③n-10 =n+8 ;④n+10 =
60
62
60
n-8 中,其中正确的有( 62
A
)
A.①③ B.②④ C.①④ D.②③
10.甲、乙两人完成一项工作,甲先做了 3 天, 然后乙加入合作完成剩下的工作,设工作总量为 1,
三、解答题(共 66 分) 17.(6 分)解方程: (1)3(x-2)+6x=5;
解:去括号得:3x-6+6x=5,移项合并得:9x =11,解得:x=11 ;
9
(2)1.5x-2 -0.5=5x .
3
3
解:去分母得:3x-4-3=10x,移项合并得:-
7x=7,解得:x=-1.
18.(8 分)当 x 为何值时,代数式x+1 比代数式 2
工作进度如下表:则完成这项工作共需( A )
天数 第3天 工作进度
第5天
A.9 天 B.10 天 C.11 天 D.12 天
二、填空题(每小题 4 分,共 24 分) 11.已知关于 x 的方程(|m|-2)x2+(m+2)x-9
=0 为一元一次方程,则 m=__2____.
12.已知 x=1 是方程 x+2m=7 的解,则 m=__3__.

最新【浙教版】七年级上册数学第5章《一元一次方程》检测试卷(含答案)

最新【浙教版】七年级上册数学第5章《一元一次方程》检测试卷(含答案)

【浙教版】七年级数学上册一元一次方程测试卷(含答案)阶 段 性 测 试(一)([考查范围:5.1~5.3 总分:100分]一、选择题(每小题4分,共32分)1.下列叙述中正确的是( B ) A .方程是含有未知数的式子 B .方程是等式C .只有含有字母x ,y 的等式才叫方程D .带等号和字母的式子叫方程2.若代数式x +2的值为1,则x 等于( B ) A .1B .-1C .3D .-33.下列等式的变形正确的是( D ) A .如果s =v t ,那么v =ts B .如果12x =6,那么x =3 C .如果-x -1=y -1,那么x =y D .如果a =b ,那么a +2=2+b4.下列方程中是一元一次方程的是( A ) A .4x -5=0B .3x -2y =3C .3x 2-14=2D.1x -2=35.利用等式的性质解方程-23x =32时,应在方程的两边( C ) A .同乘-23 B .同除以-32 C .同乘-32D .同减去-236.运用等式性质的变形,正确的是( B ) A .如果a =b ,那么a +C =b -C B .如果a c =bc ,那么a =b C .如果a =b ,那么a c =bc D .如果a =3,那么a 2=3a 2 7.下列方程中变形正确的是( A )①3x +6=0变形为x +2=0;②2x +8=5-3x 变形为x =3;③x2+x3=4去分母,得3x +2x =24;④(x +2)-2(x -1)=0去括号,得x +2-2x -2=0.A .①③B .①②③C .①④D .①③④8.在解方程x -12-2x +33=1时,去分母正确的是( A ) A .3(x -1)-2(2x +3)=6 B .3(x -1)-2(2x +3)=1 C .3(x -1)-2(2x +3)=3D .2(x -1)-2(2x +3)=6二、填空题(每小题5分,共20分) 9.已知x -3y =3,则7+6y -2x =__1__.10.若(a -1)x |a |=3是关于x 的一元一次方程,则a =__-1__. 11.已知y 1=x +3,y 2=2-x ,当x =__2__时,y 1比y 2大5. 12.在如图所示的运算流程中,若输出的数y =7,则输入的数x =__28或27__.第12题图【解析】当x 是偶数时,有x ÷4=7, 解得:x =28,当x 是奇数时,有(x +1)÷4=7. 解得:x =27.故答案为28或27. 三、解答题(共48分)13.(8分)方程2-3(x +1)=0的解与关于x 的方程k +x2-3k -2=2x 的解互为倒数,求k 的值.解:解方程2-3(x +1)=0得:x =-13, -13的倒数为-3,把x =-3代入方程k +x2-3k -2=2x , 得:k -32-3k -2=-6, 解得:k =1.14.(12分)(1)已知方程2x -12=4与关于x 的方程4x -a2=-2()x -1的解相同,求a 的值.(2)x -2x +56=1-2x -32. (3)x -20.2-x +10.5=3.解:(1)解方程2x -12=4得x =92, 把x =92代入方程4x -a2=-2(x -1),得4×92-a2=-2⎝ ⎛⎭⎪⎫92-1, 解得a =50.(2)6x -(2x +5)=6-3(2x -3), 6x -2x -5=6-6x +9, 6x -2x +6x =6+9+5, 10x =20, x =2.(3)5(x -2)-2(x +1)=3, 5x -10-2x -2=3,5x -2x =3+10+2, 3x =15, x =5.15.(10分)下面是某同学解方程的过程,请你仔细阅读,然后回答问题.解:x +12-1=2+2-x 4, x +12-1×4=2+2-x4×4, ① 2x +2-4=8+2-x , ② 2x +x =8+2+2+4, ③ 3x =16, ④ x =163. ⑤(1)该同学有哪几步出现错误? (2)请你写出正确的解答过程. 解:(1)观察得:第①、②、③步出错. (2)正确解法为:去分母得:2x +2-4=8+2-x , 移项得:2x +x =8+2-2+4,合并得:3x =12, 解得:x =4.16.(8分)小明解方程2x -15+1=x +a2时,由于粗心大意,在去分母时,方程左边的1没有乘10,由此求得的解为x =4,试求a 的值,并正确求出方程的解.解:由题意可知(在去分母时,方程左边的1没有乘10,由此求得的解为x =4),2(2x -1)+1=5(x +a ), 把x =4代入得:a =-1,将a =-1代入原方程得:2x -15+1=x -12, 去分母得:4x -2+10=5x -5, 移项合并得:-x =-13,解得:x =13.17.(10分)【阅读】|4-1|表示4与1差的绝对值,也可以理解为4与1两数在数轴上所对应的两点之间的距离;|4+1|可以看做|4-(-1)|,表示4与-1的差的绝对值,也可以理解为4与-1两数在数轴上所对应的两点间的距离.(1)|4-(-1)|=__5__. (2)|5+2|=__7__.(3)利用数轴找出所有符合条件的整数x ,使得|x +3|=5,则x =__x =2或-8__.(4)利用数轴找出所有符合条件的整数x ,使得|x +3|+|x -2|=5,这样的整数是哪些?第17题图解:(4)∵-3与2两数在数轴上所对应的两点之间的距离是5, ∴使得|x +3|+|x -2|=5成立的整数是-3和2之间的所有整数(包括-3和2),∴这样的整数是-3、-2、-1、0、1、2.阶 段 性 测 试(二)[考查范围:5.1~5.4 总分:100分]一、选择题(每小题4分,共32分)1.若代数式x +2的值为1,则x 等于( B ) A .1B .-1C .3D .-32.下列各题正确的是( D )A .由7x =4x -3移项得7x -4x =3B .由2x -13=1+x -32去分母得2(2x -1)=1+3(x -3) C .由2(2x -1)-3(x -3)=1去括号得4x -2-3x -9=1 D .由2(x +1)=x +7去括号、移项、合并同类项得x =5 3.小明今年11岁,爸爸今年39岁,x 年后爸爸年龄是小明年龄的3倍,则x 的值为( B )A .2B .3C .4D .54.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( D )A.22x=16(27-x)B.16x=22(27-x)C.2×16x=22(27-x)D.2×22x=16(27-x)5.(安徽)2 014年我省财政收入比2 013年增长8.9%,2 015年比2014年增长9.5%,若2 013年和2 015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为(C)A.b=a(1+8.9%+9.5%)B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%)D.b=a(1+8.9%)2(1+9.5%)6.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品进价为200元,按标价的五折销售,仍可获利10%,设这件商品的标价为x元,根据题意列出方程(A)A.0.5x-200=10%×200B.0.5x-200=10%×0.5xC.200=(1-10%)×0.5xD.0.5x=(1-10%)×2007.如图,水平桌面上有个内部装水的长方体箱子,箱内有一个与底面垂直的隔板,且隔板左右两侧的水面高度分别为40公分,50公分,今将隔板抽出,若过程中箱内的水量未改变,且不计箱子及隔板厚度,则根据图中的数据,隔板抽出后水面静止时,箱内的水面高度为(B)第7题图A.43公分B.44公分C.45公分D.46公分8.(宁德)如图,用十字形方框从日历表中框出5个数,已知这5个数的和为5a-5,a是方框①,②,③,④中的一个数,则数a所在的方框是(C)第8题图A.①B.②C.③ D.④【解析】解法一:设中间位置的数为A,则①位置数为A-7,④位置为A+7,左②位置为A-1,右③位置为A+1,其和为5A=5a-5,∴a =A +1,即a 为③位置的数; 解法二:5a -5=5(a -1), 则中间的数为a -1,因为方框③表示的数比中间的数大1,所以方框③表示的数就是a ,即数a 所在的方框就是③;故选C.二、填空题(每小题5分,共20分)9.小明同学在解方程x 6-x 2=53时,他是这样做的:解:⎝ ⎛⎭⎪⎫16-12x =53,……①-13x =53,……② x =-5,……③∴x =-5是原方程的解.同桌小洪同学对小明说:“你做错了,第①步应该去分母”,你认为小明做__对__(填“对”或“错”)了,他第①步变形是在__合并同类项__.10.(金华)若a b =23,则a +b b =__53__.【解析】根据等式的性质:两边都加1,a b +1=23+1,则a +b b =53.11.初三某班学生在会议室看录像,每排坐13人,则有1人无处坐,每排坐14人,则空12个座位,则这间会议室共有座位的排数是__13__.12.如图,在数轴上,点A,B分别在原点O的两侧,且到原点的距离都为2个单位长度,若点A以每秒3个单位长度,点B以每秒1个单位长度的速度均向右运动,当点A与点B重合时,它们所对应的数为__4__.第12题图【解析】设点A、点B的运动时间为t,根据题意知-2+3t=2+t,解得:t=2,∴当点A与点B重合时,它们所对应的数为-2+3t=-2+6=4,故答案为4.三、解答题(共48分)13.(8分)(安徽)《九章算术》中有一道阐述“盈不足术”的题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.解:设共有x 人,可列方程为:8x -3=7x +4. 解得x =7,∴8x -3=53,答:共有7人,这个物品的价格是53元.14.(8分)有一列数,按一定的规律排列成-2,4,-8,16,…,其中某三个相邻的数的和为-384,求这三个数.解:设第一个数为x ,则第二个数为-2x ,第三个数为4x . 由题意,得x -2x +4x =-384,解得x =-128,∴-2x =256,4x =-512. 则这三个数分别为-128,256,-512.15.(8分)已知关于x 的方程2(x +1)-m =-m -22的解比方程5(x -1)-1=4(x -1)+1的解大2.(1)求第二个方程的解. (2)求m 的值.解:(1)5(x -1)-1=4(x -1)+1, 5x -5-1=4x -4+1, 5x -4x =-4+1+1+5, x =3.(2)由题意得:方程2(x +1)-m =-m -22的解为x =3+2=5, 把x =5代入方程2(x +1)-m =-m -22得: 2(5+1)-m =-m -22,12-m =-m -22,解得m =22.16.(12分)目前节能灯在各城市已基本普及,今年某市面向县级及农村地区推广,为响应号召,朝阳灯饰商场用了4 200元购进甲型和乙型两种节能灯.这两种型号节能灯的进价、售价如表:特别说明:毛利润=售价-进价(1)朝阳灯饰商场销售甲型节能灯一只毛利润是__5__元. (2)朝阳灯饰商场购买甲、乙两种节能灯共100只,其中买了甲型节能灯多少只?(3)现在朝阳灯饰商场购进甲型节能灯m 只,销售完节能灯时所获的毛利润为y 元.当y =1 080时,求m 的值.解:(2)设买了甲型节能灯x 只,根据题意得 25x +45(100-x )=4 200, 解得x =15,答:买了甲型节能灯15只.(3)购进甲型节能灯m 只,则购进乙型节能灯的数量为4 200-25m45只,根据题意,得:5m +15×4 200-25m 45=1 080, 解得:m =96.17.(12分)“十一”期间,小明跟父亲一起去杭州旅游,出发前小明从网上了解到杭州市出租车收费标准如下:(1)若甲、乙两地相距10千米,乘出租车从甲地到乙地需要付款多少元?(2)小明和父亲从火车站乘出租车到旅馆,下车时计费表显示18元,请你帮小明算一算从火车站到旅馆的距离有多远.(3)小明的母亲乘飞机来到杭州,小明和父亲从旅馆乘出租车到机场去接母亲,到达机场时计费表显示72元,接完母亲,立即沿原路返回旅馆(接人时间忽略不计),请帮小明算一下乘原车返回和换乘另外的出租车各需多少钱.解:(1)根据题意得:10+(10-3)×2=10+14=24(元).答:乘出租车从甲地到乙地需要付款24元.(2)由(1)可知:因为18<24,得出火车站到旅馆的距离超过3千米,但少于10千米,设火车站到旅馆的距离有x千米,则10+2×(x-3)=18,解得:x=7,答:火车站到旅馆的距离有7千米.(3)由(1)可知,出租车行驶的路程超过10千米,设出租车行驶的路程为x千米,根据题意得:10+2(10-3)+3(x-10)=72,解得:x=26,乘原车返回需要花费:24+3×(26×2-10)=150(元),换乘另一辆出租车需要花费:72×2=144(元),∵150>144,∴小明换乘另外的出租车更便宜.阶段性测试(三)[考查范围:6.1~6.4 总分:100分]一、选择题(每小题4分,共32分)1.七棱柱的面数、顶点数、棱数分别是(C)A.9,14,18B.7,14,21C.9,14,21 D.7,14,212.如图,把左边的图形绕着给定的直线旋转一周后形成的几何体是(D)第2题图3.七巧板是我国祖先的一项卓越创造.下列四幅图中有三幅是小明用如图所示的七巧板拼成的,则不是小明拼成的那副图是(C)第3题图4.根据“反向延长线段CD”这句话,下列图中表示正确的是(C)5.下列语句正确的是( B ) A .延长线段AB 到C ,使BC =AC B .反向延长线段AB ,得到射线BA C .取直线AB 的中点D .连结A 、B 两点,并使直线AB 经过C 点6.如图,线段AB =D E ,点C 为线段A E 的中点,下列式子不正确的是( D )第6题图A .BC =CDB .CD =12A E -AB C .CD =AD -C ED .CD =D E7.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A 地到B 地架设电线,总是尽可能沿着线段AB 架设;④把弯曲的公路改直,就能缩短路程.其中可用“两点确定一条直线”来解释的现象有( B ) A .1个B .2个C .3个D .4个8.在平面上,如果点A 和点B 到点C 的距离分别为3和4,那么A,B两点的距离d应该是(D)A. d=1B. d=5C. d=7D. 1≤d≤7【解析】若三点在同一条直线上,则d=1或者d=7;若不在同一条直线上,即构成一个三角形,则1≤d≤7,故选D.二、填空题(每小题5分,共20分)9.如图,在一条直线上有A、B、C、D四个点,则图中共有__6__条不同的线段.第9题图10.如图所示,M是AC的中点,N是BC的中点,若A M=1 cm,BC=3 cm,则A N=__3.5__ cm.第10题图11.如图,已知B是线段AC上的一点,M是线段AB的中点,N是线段AC的中点,P为N A的中点,Q为M A的中点,则MN∶PQ 等于__2__.第11题图12.如图,在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a-b|=3,且A O=2B O,则a+b的值为__-1__.第12题图三、解答题(共48分)13.(8分)如图,已知点C 为AB 上一点,AC =12 cm ,CB =23AC ,D 、E 分别为AC 、AB 的中点,求D E 的长.第13题图解:根据题意,AC =12 cm ,CB =23AC , 所以CB =8 cm ,所以AB =AC +CB =20 cm , 又D 、E 分别为AC 、AB 的中点, 所以D E =A E -AD =12(AB -AC)=4 cm.14.(10分)如图是一个长为4 cm ,宽为3 cm 的长方形纸片,该长方形纸片分别绕长、宽所在直线旋转一周(如图1、图2),会得到两个几何体,请你通过计算说明哪种方式得到的几何体的体积大(结果保留π).第14题图解:如图1,绕长边旋转得到的圆柱的底面半径为3 cm ,高为4 cm ,体积=π×32×4=36π cm 3;如图2,绕短边旋转得到的圆柱底面半径为4 cm ,高为3 cm ,体积=π×42×3=48π cm 3.所以绕短边旋转得到的圆柱体积大.15.(10分)指出下列句子的错误,并加以改正: (1)如图1,在线段AB 的延长线上取一点C.(2)如图2,延长直线AB ,使它与直线CD 相交于点P . (3)如图3,延长射线O A ,使它和线段BC 相交于点D.第15题图解:(1)如图1,应为:在线段BA 的延长线上取一点C. (2)如图2,应为:直线AB 与直线CD 相交于点P . (3)如图3,反向延长射线O A ,使它和线段BC 相交于点D. 16.(8分)如图所示,AB =10 cm ,D 为AC 的中点,DC =2 cm ,B E =13BC ,求C E 的长.第16题图解:∵D 为AC 的中点,DC =2 cm. ∴AC =2DC =4 cm.由图可知:BC =AB -AC =10 cm -4 cm =6 cm. ∴B E =13BC =2 cm. ∴C E =BC -B E =4 cm.17.(12分)将一副三角板中的两块直角三角尺的直角顶点C 按如图方式叠放在一起:(1)若∠DC E=35°,则∠ACB的度数为__145°__;(2)若∠ACB=140°,求∠DC E的度数;(3)猜想∠ACB与∠DC E的大小关系,并说明理由;(4)三角尺ACD不动,将三角尺BC E的C E边与CA边重合,然后绕点C按顺时针或逆时针方向任意转动一个角度,当∠AC E(0°<∠AC E<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AC E角度所有可能的值,不用说明理由.第17题图解:(1)∵∠ACD=∠ECB=90°,∴∠ACB=180°-35°=145°.(2)∵∠ACD=∠ECB=90°,∴∠DCE=180°-140°=40°.(3)∵∠ACE+∠ECD+∠DCB+∠ECD=180.∵∠ACE+∠ECD+∠DCB=∠ACB,∴∠ACB+∠DCE=180°,即∠ACB与∠DCE互补.(4)30°、45°、60°、75°.。

浙教版初中数学七年级上册第五单元《一元一次方程》单元测试卷(标准难度)(含答案解析)

浙教版初中数学七年级上册第五单元《一元一次方程》单元测试卷(标准难度)(含答案解析)

浙教版初中数学七年级上册第五单元《一元一次方程》单元测试卷考试范围:第五章;考试时间:120分钟;总分:120分第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1.下列各式是一元一次方程的是( )A. −3x−y=0B. x=0C. 2+1x=3 D. 3x2+x=82.已知(m−3)x|m−2|+6=0是关于x的一元一次方程,则m的值为( )A. 1B. 2C. 3D. 1或33.下列方程中,是一元一次方程的是( )A. x2−4x=3B. x=0C. x+2y=1D. x−1=1x4.下列图中所示的球、圆柱、正方体的重量分别都相等,三个天平分别都保持平衡,那么第三个天平中,右侧秤盘上所放正方体的个数应为( )A. 5B. 4C. 3D. 25.下列说法正确的是( )A. 在等式ab=ac中,两边都除以a,可得b=cB. 在等式a=b两边都除以c2+1可得ac2+1=bc2+1C. 在等式ba =ca两边都除以a,可得b=cD. 在等式2x=2a−b两边都除以2,可得x=a−b6.下列等式变形中,错误的是( )A. 由a=b,得a+5=b+5B. 由−3x=−3y,得x=yC. 由x+m=y+m,得x=yD. 由a=b,得am =bm7.下列运用等式的性质变形不一定成立的是( )A. 若a=b,则a+6=b+6B. 若−3x=−3y,则x=yC. 若n+3=m+3,则n=mD. 若a=b,则ac =bc8.若代数式4x−5与2x−12的值相等,则x的值是 ( )A. 1B. 32C. 23D. 29.方程310a+2x+42=4(x−1)的解为x=3,则a的值为( )A. 2B. 22C. 10D. −210.若对任意有理数a,b,定义运算“∗”:a∗b=−2a+b3,则方程(2∗3)⋅(4∗x)=49的解为( )A. x=−3B. x=−55C. x=−56D. x=5511.已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x人,则( )A. 2x+3(72−x)=30B. 3x+2(72−x)=30C. 2x+3(30−x)=72D. 3x+2(30−x)=7212.某校社团活动课中,手工制作社的同学用一种彩色硬纸板制作某种长方体小礼品的包装盒,每张硬纸板可制作盒身12个,或制作盒底18个,1个盒身与2个盒底配成一套,现有42张这种彩色硬纸板,要使盒身和盒底刚好配套,若设需用x张做盒身,则下面所列方程正确的是( )A. 18(42−x)=12xB. 2×18(42−x)=12xC. 18(42−x)=2×12xD. 18(21−x)=12x第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13.如图所示为一块在电脑屏幕上出现的色块图,是由6个颜色不同的正方形拼成的长方形.如果中间最小的正方形的边长为1,那么所拼成的长方形的面积为.14.方程(a−2)x |a|−1+3=0是关于x的一元一次方程,则a=____.15.已知关于x的一元一次方程(a+3)x|a|−2+6=0,则a的值为______.16. 当x = 时,代数式8−x 4与4x+32的值互为相反数. 三、解答题(本大题共9小题,共72.0分。

浙教版数学七年级上册 第 5 章一元一次方程测试卷(含答案)

浙教版数学七年级上册 第 5 章一元一次方程测试卷(含答案)

第5 章测试卷一元一次方程班级学号姓名得分一、选择题(本大题有10小题,每小题3分,共30分)1.下列方程是一元一次方程的是( )C. x+y=102.由2x-3y=1可以得到用含x的式子表示y的形式为( )3. 在实数范围内定义运算“☆”,a☆b=a+b-1,例如:2☆3=2+3-1=4,若2☆x=1,则x的值是 ( )A. --1B. 1C. 0D. 24.下列解方程的过程中,变形正确的是( )A. 由2x--1=3得2x=3--1B. 由得C. 由-75x=76得D. 由得2x-3x=65. 与方程的解相同的方程是( )A. 3x-2x+2=-1B.3x-2x+3=-3C. 2(x-5)=1D. x-3=06. 我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,则符合题意的方程是( )C. 2x=(x-5)-5D. 2x=(x+5)+57. 已知关于x的一元一次方程的解为x=1,则a+m的值为( )A. 9B. 8C. 5D. 48.某种商品的标价为132元.若以标价的九折出售,仍可获利10%,则该商品的进价为( )A. 105元B. 100 元C. 108元D. 118元9. 小马虎做作业时,不小心将方程中的一个常数污染了,被污染的方程是2(x-3)--■=x+1,怎么办呢? 他想了想,便翻看书后的答案,方程的解是x=9,请问这个被污染的常数是( )A. 1B. 2C. 3D. 410. 观察下列按一定规律排列的n个数:2,4,6,8,10,12,….若最后三个数之和是3000,则n等于 ( )A. 499B. 500C. 501D. 1002二、填空题(本大题有6 小题,每小题4分,共24分)11. 已知x=-3是一元一次方程6- ax=x的解,则a= .12. 已知三个数的比是2:3:7,这三个数的和是144,则这三个数分别是 .13. 当x= 时,代数式:与x-1的值相等.14. 已知关于x的方程 kx=5-x有正整数解,则整数k的值为 .15. 已知关于x的方程 bx+4a--9=0的解是x=2,则-2a-b的值是 .16. 已知关于x的一元一次方程的解为x=2018,那么关于y的一元一次方程=2019(5--y)-m的解为 .三、解答题(本大题有 8小题,共66分)17. (6分)解方程:(1)10x-3=7x+3;18. (6分)已知x=-2是关于x的方程的解,求a的值.19.(6分)解方程:解:两边同除以得而,你知道问题出在哪儿吗? 你能求出x的值吗?20. (8分)已知关于x的方程与2-m=2x的解互为相反数,试求这两个方程的解及m的值.21. (8分)m为何值时,代数式的值与代数式的值的和等于5?22.(10分)省城太原开展了“活力太原·乐购晋阳”消费暖心活动,本次活动中的家电消费券单笔交易满600元立减128元(每次只能使用一张).某品牌电饭煲按进价提高50%后标价,若按标价的八折销售,某顾客购买该电饭煲时,使用一张家电消费券后,又付现金568元.求该电饭煲的进价.23.(10分)(1)约定“※”为一种新的运算符号,先观察下列各式:1※3=1×4+3=7;3※(-1)=3×4-1=11;4※(-3)=4×4-3=13;据以上的运算规则,写出(2)根据(1)中约定的a※b的运算规则,求解问题①和②.①若(x-3)※x的值等于13,求x的值;②若2m-n=2,请计算:(m-n)※(2m+n).24.(12分)某地区A,B两村盛产香梨,A村有香梨200吨,B村有香梨300 吨,现将这批香梨全部运到C,D两个冷藏仓库,已知C仓库可储存240 吨,D 仓库可储存260吨.从A 村运往C,D两处的费用分别为每吨40元和45元,从B 村运往C,D两处的费用分别为每吨 25 元和 32元.设从 A 村运往C 仓库的香梨为x 吨.(1) 请根据题意填写下表(填写表中所有空格):运输量(吨)仓库C D总计产地A x200B300总计240260(2)请问怎样调运,A,B两村的运费总和是17120元? 请写出调运方案.第 5 章测试卷一元一次方程1. D2. B3. C4. D5. B6. A7. C8. C9. B10. C 解析:设最后三个数为x-4,x--2,x.由题意得:x-4+x--2+x=3000,解得x=1002. n=1002÷2=501.故选 C.11. -3 12. 24,36,84 13. 6 14. 0 或 417. 解:(1)10x-7x=3+3,3x=6,x=2.(2)10(3x+2).-20=5(2x-1)-4(2x+1),30x+20-20=10x-5-8x19. 解:问题出现在两边同除以(x+2),等式两边同除以同一个不为零的整式,等式仍然成立,而x +2有等于零的可能,所以不能这样做.5(x+2)=2(x+2),5x+10=2x+4,5x-2x=4-10,3x=-6,x=-2.20. 两个方程的解分别为x=-3,x=3 m=-421. m=-722. 解:设该电饭煲的进价为 x 元. 根据题意, 得(1+50%)x·80%-128=568,解得x=580.答:该电饭煲的进价为580 元.23. 解:(1)4a+b (2)①因为(x-3)※x=4(x-3)+x=4x-12+x=5x-12,由题意,得5x-12=13,解得:x=5.②由(m-n)※(2m+n)得4(m-n)+(2m+n)=4m-4n+2m+n=6m-3n,∵2m-n=2,∴6m-3n=3(2m-n)=3×2=6.24. 解:(1)填表如下运输量(吨)仓库C D总计产地A x200-x200B240-x60+x300总计240260500(2)A村费用:40x+45(200-x)=-5x+9000(元),B村费用:25(240-x)+32(60+x)=7x+7920(元),若总运费是17120元,则-5x+9000+7x+7920=17120,解得x=100,调运方案:A 村向C 仓库运 100 吨,向 D 仓库运 100吨;B村向C仓库运 140吨,向 D 仓库运 160 吨.。

浙教版七年级数学上第五章 《一元一次方程》 实际应用专项练习含答案

浙教版七年级数学上第五章 《一元一次方程》 实际应用专项练习含答案

《一元一次方程》实际应用题综合提优训练1.某水果零售商店分两批次从批发市场共购进“红富士”苹果100箱,已知第一、二次进货价分别为每箱50元、40元,且第二次比第一次多付款400元.(1)求第一、二次分别购进“红富士”苹果各多少箱?(2)商店对这100箱“红富士”苹果先按每箱60元销售了75箱后出现滞销,于是决定其余的每箱靠打折销售完.要使商店销售完全部“红富士”苹果所获得的利润不低于1300元,问其余的每箱至少应打几折销售?(注:按整箱出售,利润=销售总收入﹣进货总成本)2.某服装厂生产一款T恤和帽子,T恤每件定价200元,每顶帽子定价40元,厂方在开展促销活动期间,向客户提供两种优惠方案.①买一件T恤送一顶帽子②T恤和帽子都按定价的九折付款现某客户要到该服装厂购买T恤40件,帽子x顶(x>40),(1)请用含x的代数式表示:若该客户拨方案①购买,需付款元;若该客户按方案②购买,需付款元;(2)当x为多少时,方案①和方案②需支付的费用一样?3.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1分钟需付话费0.4元(这里均指市内电话).若一个月内通话x分钟.求:(1)一个月内通话多少分钟,两种通话方式的费用相同?(2)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?4.小红:昨天老师带着我们班同学去深圳少年宫玩,我们一共去了60人(包括老师),买门票共花了1240元.玩得可开心了!小明:真羡慕你们,不过听说门票还是挺贵的.小红:是的,老师票每张30元,学生票每张20元.那你能猜出我们去了几位老师,几位学生吗?小明:去了……根据以上的对话,你能用解方程的知识帮助小明回答小红的提问吗?5.某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.甲、乙两种树苗的成活率分别为85%,90%.(1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株?(2)若要使这批树苗的总成活率不低于88%,则甲种树苗的数量应满足怎样的条件?6.某学校刚完成一批结构相同的学生宿舍的修建,这些宿舍地板需要铺瓷砖,一天4名一级技工去铺4个宿舍,结果还剩12m2地面未铺瓷砖;同样时间内6名二级技工铺4个宿舍刚好完成,已知每名一级技工比二级技工一天多铺3m2瓷砖.(1)求每个宿舍需要铺瓷砖的地板面积.(2)现该学校有20个宿舍的地板和36m2的走廊需要铺瓷砖,某工程队有4名一级技工和6名二级技工,一开始有4名一级技工来铺瓷砖,3天后,学校根据实际情况要求3天后必须完成剩余的任务,所以决定加入一批二级技工一起工作,问需要安排多少名二级技工才能按时完成任务?7.为方便市民出行,减轻城市中心交通压力,我市正在修建贯穿城市东西、南北的地铁1号线、地铁2号线一期工程.已知修建地铁1号线23千米和2号线一期18千米共需投资310.6亿;若2号线一期每千米的平均造价比1号线每千米的平均造价多0.4亿元.(1)求1号线,2号线一期每千米的平均造价分别是多少亿元?(2)除1号线,2号线一期外,我市政府规划到2020年后还将再建2号线2期,3号线和4号线,从而形成102km的地铁线网.据预算,这61千米的地铁网每千米的平均造价将比1号线每千米的平均造价多20%,则还需投资多少亿元?8.由甲地到乙地前三分之二的路是高速公路,后三分之一的路是普通公路,高速公路和普通公路交界处是丙地,A车在高速公路和普通公路的行驶速度都是80千米/时;B车在高速公路上的行驶速度是100千米/时,在普通公路上的行驶速度是70千米/时,A、B两车分别从甲、乙两地同时出发相向行驶,在高速公路上距离丙地40千米处相遇,求甲、乙两地之间的距离是多少?9.某商场出售的甲种商品每件售价80元,利润为30元;乙种商品每件进价40元,售价60元.(1)甲种商品每件进价为元,每件乙种商品利润率为.(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件?(3)在“元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动:打折前一次性购物总金额优惠措施不超过380元不优惠超过380元,但不超过500按售价打九折元超过500元按售价打八折按上述优惠条件,若小明第一天只购买甲种商品,实际付款360元,第二天只购买乙种商品实际付款432元,求小明这两天在该商场购买甲、乙两种商品一共多少件?10.甲、乙两个班到集市上购买苹果,苹果的价格如下:所购苹果数量不超过30kg30kg以上但不超过50kg50kg以上每千克价格3元 2.5元2元甲班两次共购买48kg(第二次多于第一次),乙班一次购买苹果48kg,丙班两次共购买苹果90kg.(1)若甲班第一次购买16kg,第二次购买32kg,则乙班比甲班少付多少元?(2)若甲班两次共付费126元,则甲班第一次、第二次分别购买苹果多少千克?(3)若丙班两次共付费196元,则丙班第一次、第二次分别购买苹果多少千克?参考答案1.解:(1)设第一次购进“红富士”苹果x箱,则第二次购进“红富士”苹果(100﹣x)箱,根据题意得:40(100﹣x)﹣50 x=400,解得:x=40,∴100﹣x=60.答:第一次购进“红富士”苹果40箱,第二次购进“红富士”苹果60箱.(2)设其余的每箱应打y折销售,根据题意得:60×75+60××25﹣40×60﹣50×40≥1300,解得:y≥8.答:其余的每箱至少应打8折销售.2.解:(1)该客户按方案①购买,需付款200×40+40(x﹣40)=(40x+6400)元;该客户按方案②购买,需付款0.9×(200×40+40x)=(36x+7200)元.故答案为:(40x+6400);(36x+7200).(2)根据题意得:40x+6400=36x+7200,解得:x=200.答:购买T恤200件时,两种方案付款金额相同.3.解:(1)设一个月内通话x分钟时,两种通话方式的费用相同,根据题意得:0.2x+50=0.4x,解得:x=250.答:一个月内通话250分钟时,两种通话方式的费用相同.(2)使用“全球通”通话方式可使用时间为(120﹣50)÷0.2=350(分钟),使用“神州行”通话方式可使用时间为120÷0.4=300(分钟),∵350>300,∴选择“全球通”通话方式比较合算.4.解:设去了x名学生,(60﹣x)名老师,依题意得:30(60﹣x)+20x=1240解之得:x=56所以老师:60﹣56=4(名),答:共去了4位老师,56位学生.5.(1)解:设甲购买x株,则乙购买(800﹣x)株由题意可列方程为:24x+30(800﹣x)=2100解方程可得:x=500则800﹣x=800﹣500=300答:甲购买500株,乙购买300株;(2)设购买甲y株,则乙购买(800﹣y)株.由题意可列不等式为:85%y+90%(800﹣y)≥800×88%解得:y≤320∴购买甲的数量应大于等于0株且小于等于320株.6.解:(1)设每个宿舍需要铺瓷砖的地板面积为x m2,则依题意列出方程:﹣=3,解方程得:x=18.答:每个宿舍需要铺瓷砖的地板面积为18m2.(2)设需要再安排y名二级技工才能按时完成任务,∵每名一级技工每天可铺砖面积:=15m2,每名二级技工每天可铺砖面积:15﹣3=12m2,∴15×4×6+3×12y=20×18+36.解得:y=1.答:需要再安排1名二级技工才能按时完成任务.7.解:(1)设地铁1号线每千米的平均造价为x亿元,则地铁2号线一期每千米的平均造价为(x+0.4)亿元,根据题意得:23x+18(x+0.4)=310.6,解得:x=7.4,∴x+0.4=7.8.答:地铁1号线每千米的平均造价为7.4亿元,地铁2号线一期每千米的平均造价为7.8亿元.(2)61×7.4×(1+20%)=541.68(亿元).答:还需投资541.68亿元.8.解:设甲、乙两地之间的距离是x千米.根据题意得:=+,解得x=252.答:甲、乙两地之间的距离是252千米.9.解:(1)(80﹣30)=50(元)(60﹣40)÷40=50%.故答案为:50,50%;(2)设该商场购进甲种商品x件,根据题意可得:50x+40(50﹣x)=2100,解得:x=10;乙种商品:50﹣10=40(件).答:该商场购进甲种商品10件,乙种商品40件.(3)根据题意得,第一天只购买甲种商品,享受了9折优惠条件,∴360÷0.9÷80=5件第二天只购买乙种商品有以下两种情况:情况一:购买乙种商品打九折,432÷90%÷60=8件;情况二:购买乙种商品打八折,432÷80%÷60=9件.一共可购买甲、乙两种商品5+8=13件或5+9=14件.答:小明这两天在该商场购买甲、乙两种商品一共13或14件.10.解:(1)甲班费用16×3+32×2.5=128(元),乙班费用48×2.5=120(元),128﹣120=8,答:乙班比甲班少付8元.(2)设甲班第一次购买苹果x千克,甲班第二次购买苹果(48﹣x)千克,由题意:48﹣x>x,即x<24,①当48﹣x≤30,即18≤x<24时,3x+3(48﹣x)=126,不合题意;②当x<18时,3x+2.5(48﹣x)=126,解得x=12,答:甲班第一次购买苹果12千克,甲班第二次购买苹果36千克.(3)设丙班第一次购买苹果x千克,丙班第二次购买苹果(90﹣x)千克,①当x≤30时,90﹣x≥60,3x+2(90﹣x)=196,x=16,②当30<x<40时,90﹣x>50,2.5x+2(90﹣x)=196,x=32,③当40≤x<50时,40<90﹣x≤50,2.5x+2.5(90﹣x)=196,不合题意,④当50≤x≤60时,30≤90﹣x≤40,2x+2.5(90﹣x)=196,x=58,⑤当x>60时,90﹣x<30,2x+3(90﹣x)=196,x=74,综上所述,丙班第一次、第二次分别购买苹果16千克和74千克;32千克和58千克;58千克和32千克;74千克和16千克;。

浙教版初中数学七年级上册第五章《一元一次方程》单元复习试题精选 (31)

浙教版初中数学七年级上册第五章《一元一次方程》单元复习试题精选 (31)

浙教版初中数学试卷2019-2020年七年级数学上册《一元一次方程》精选试题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.(2分)下列方程中,解是2x =的是( ) A .2514x x =+B .1102x -=C .3(1)1x -=D .2x 51-=2.(2分)A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,经过t 小时两车相距50千米,则t 的值是( )A .2或2.5B .2或10C .10或12.5D .2或12.53.(2分)若方程3(2x-1)=2-3x 的解与关于x 的方程622(3)k x -=+的解相同,则k 的值为( ) A .59B .59-C .53D .53-4.(2分)一根竹竿插入到池塘中,插入池塘淤泥中的部分占全长的51,水中部分是淤泥中的部分的2倍多1米,露出水面的竹竿长1米,设竹竿的长度为x 米,则可列出方程( ) A .51x+52x+1=x B 51x+52x+1+1=x C .51x+52x +1-1=x D .51x+52x=1 5.(2分)国家规定存款利息的纳税办法是:利息税=利息×20%,银行一年定期储蓄的年利率为2.25%,今年小刚取出一年到期的本息时,交纳了l3.5元的利息税,则小刚一年前存入银行的本金为 ( ) A .1000元B .2000元C .4000元D .3000元6.(2分)一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件服装仍可获利l5元,则这种服装每件的成本价是 ( ) A .120元B .125元C .135元D .1407.(2分)在一次美化校园的活动中,先安排32人去拔草,18人去植树,后又增派20人去支援他们,结果拔草的人数是植树人数的2倍,问支援拔草和植树的人分别有多少人?若设支援拔草的有x 人,则下列方程中正确的是 ( )A .32+x=2×18B .32+x=2(38-x )C .52-x =2(18+x )D .52-x=2×18 8.(2分)若x=2是方程k (2x-1)=kx+7 的解,则k 的值为( ) A .1B .-1C .7D .-79.(2分)如果关于m 的方程 2m+b=m-1 的解是-4,那么b 的值是( ) A .3B .5C . -3D .-510.(2分)在下列方程:①1-2x=2x-1;②12(1)2x x -=--;③-2x=-1 中,解为12x =的方程有0.30.3ax -( ) A .0 个B .1 个C .2 个D .3 个11.(2分)下列方程的变形是移项的是( ) A .由723x =,得67x = B .由x=-5+2x, x =2x-5 C .由2x-3=x+5, 得2x+x=5-3D .由111223y y -=+,得112123y y -=+12.(2分)有一旅客带了30 kg 的行李乘飞机.按民航规定,旅客最多可免费携带20 k9的行李,超重部分每千克按飞机票价的1.5%支付行李费,现该旅客支付了120元的行李费,则他的飞机票价是( ) A .600元B .800元C .1000元D .1200元13.(2分)某超市推出如下优惠方案:①一次性购物不超过100元不享受优惠;②一次性购物超过l00元但不超过300元一律九折;③一次性购物超过300元一律八折,王波两次购物分别付款80元、252元.若王波一次性购买与上两次相同的商品,则应付款 ( ) A .288元 B .288元或316元C .332元D .332元或363元14.(2分)有6个班的同学在大会议室里听报告,如果每条长凳坐5人,还缺8条长凳;如果每条长凳坐6人,就多出2条长凳.设来听报告的同学有x 人,会议室里有y 条长凳,则下列方程正确的是( )①8256x x -=+;②5(8)6(2)y y -=+;③5(8)6(2)y y +=-;④8256x x +=-. A .①③ B .②④ C .①② D .③④15.(2分)设某数为x ,“比某数的12大3的数等于5的相反数”,列方程为 ( ) A .1352x -+=-B .1352x +=-C .1(3)52x -+=D .1352x -=-二、填空题16.(2分)当21(53)m --取得最大值时,方程5432m x -=+的解是 . 17.(2分)如果2x =-是方程10kx k +-=的解,那么k = .18.(2分)刘莹用5000元存了6年期的教育储蓄,该储蓄的年利率为2.88%.6年后刘莹可以得到 元.19.(2分)100位会员,其中有10人既不懂英语又不懂俄语,有75人懂英语,83人懂俄语,求既 懂英语又懂俄语的有 人.三、解答题20.(7分)在依次标有数字3、6、9、12……的卡片中,小明拿到3张卡片,它们的数字相邻,且数字之和为117.(1)小明拿到的卡片是标有哪些数字的?(2)你能否拿到数字相邻的4张卡片,使其数字之和为177?若能,请指出这4张卡片中数字最大的卡片,若不能,请说明理由.21.(7分)某足球比赛的计分规则为胜一场得3分,平一场得1分,负一场得0分.一个队踢14场球负5场共得19分,问这个队胜了几场?22.(7分)若“*”是新规定的某种运算法则,设2*A B A B B =⋅-,试求: (1)(2)6-*的值;(2)若(5)10x *-=,求x 的值.23.(7分)解方程:(1)13432x x -=+ (2)5x-2(x-1)=14 (3)2211632x x x -+--=+ (4)0.5110.20.3x x +-=24.(7分)一台挖土机和 200 名工人在水利工地挖土和运土,已知挖土机每天能挖土 800 m 3,每名工人每天能挖土 3 m 3 或运土5 m 3,如何分配挖土和运土人数,才能使挖出的士可以及时运走?25.(7分)求作两个方程,使它们的解都是32-.26.(7分)根据图给出的信息,求每件T 恤衫和每瓶矿泉水的价格.27.(7分)x 为何值时,式子32x -与式子13x-+满足下面的条件?(1)相等 (2)互为相反数(3)式子32x -比式子13x-+的值小 128.(7分)根据下列条件列方程,并求出方程的解:(1)某数的13比它本身小 6,求这个数;(2)一个数的 2倍与 3 的和等于这个数与 7的差.29.(7分)为了能有效地使用电力资源,某市供电部门最近进行居民峰谷用电试点,每天8:00至21:O0用电每千瓦时0.55元(“峰电”价),21:00至次日8:00每千瓦时0.30元(“谷电”价).王老师家使用“峰谷”电后,5月份用电量为300千瓦时,付电费115元.求王老师家该月使用“峰电”多少千瓦时.30.(7分)解下列方程: (1)x x 321=- (2)24322x x x -+=++【参考答案】***试卷处理标记,请不要删除一、选择题1.B 2.A3.B 4.B 5.D 6.B 7.B 8.C 9.A 10.D11.D12.B13.B14.A15.B二、填空题16.1x=-17.-l18.586419.68三、解答题20.(1)小明拿到的卡片标有的数字是36、39、42(2)设相邻的4张卡片为x,x+3,x+6,x+9,则x+(x+3)+(x+6)+(x+9)=117,994x=不是整数,∴不能拿到数字相邻的4张卡片,使其数字之和为177.21.解:设这个队胜了x场,依题意得: 3(145)19x x+--=,解得:5x=.答:这个队胜了5场.22.(1)-48 (2)7x=-23.(1)145x=;(2)x=4 ;(3)94x=-;(4)1310x=24.挖土25人,运土l75人25.略26.T恤衫每件 20 元,矿泉水每瓶 2 元27.(1)245x= (2)12x= (3)185x=28.列方程略 (1)9 (2)-10 29.100千瓦30.(1)3x;(2)无解.。

浙教版七年级上册第五章一元一次方程单元测试卷

浙教版七年级上册第五章一元一次方程单元测试卷

浙教版七年级上册第五章一元一次方程单元测试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.按如图所示的运算程序,能使输出的结果为12的是( )A .3,3x y ==B .4,2x y =-=-C .2,4x y ==D .4,2x y ==2.已知下列方程,属于一元一次方程的有( ) ①x ﹣2=2x;②0.5x =1;③3x =8x ﹣1;④x 2﹣4x =8;⑤x =0;⑥x+2y =0.A .5个B .4个C .3个D .2个3.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( ) A .180元B .200元C .225元D .259.2元4.甲、乙两运动员在长为100m 的直道AB (A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点…若甲跑步的速度为5m/s ,乙跑步的速度为4m/s ,则起跑后100s 内,两人相遇的次数为( ) A .5B .4C .3D .25.一个商店把某件商品按进价加20%作为定价,后来老板按定价8折192元卖出这件商品,那么老板在销售这件商品的过程中的盈亏情况为( ) A .盈利16元 B .亏损24元C .亏损8元D .不盈不亏6.下列变形中: ①由方程125x -=2去分母,得x ﹣12=10; ②由方程29x =92两边同除以29,得x =1; ③由方程6x ﹣4=x +4移项,得7x =0;④由方程2﹣5362x x -+=两边同乘以6,得12﹣x ﹣5=3(x +3). 错误变形的个数是( )个. A .4B .3C .2D .17.某商店购进甲、乙两种商品共160件,甲每件进价为15元,售价20元;乙每件进价为35元,售价45元;售完这批商品利润为l100元,设甲为x 件,则购进甲商品的件数满足方程( ) A .30x+15(160-x)=1100 B .5(160-x)+10x=1100 C .20x+25(160-x)=1100D .5x+10(160-x)=l1008.下列方程中,解为x =4的方程是( ) A .x ﹣1=4B .4x =1C .4x ﹣1=3x +3D .1(1)5x -=19.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.若设这个班有x 名学生,则依题意所列方程正确的是( ) A .3x -20=4x -25 B .3x +20=4x +25 C .3x -20=4x +25 D .3x +20=4x -25 10.已知下列方程:①x ﹣2=1x ;②x=0;③3x=x ﹣3;④x 2﹣4=3x ;⑤x ﹣1;⑥x ﹣y=6,其中一元一次方程有( ) A .2个 B .3个 C .4个 D .5个二、填空题11.一艘船从甲码头到乙码头顺流行驶,用了2个小时,从乙码头返回甲码头逆流行驶,用了2.5小时,已知水流的速度是3千米/时,则船在静水中的速度是_____千米/时. 12.文具店销售某种笔袋,每个18元,小华去购买这种笔袋,结账时店员说:“如果你再多买一个就可以打九折,价钱比现在便宜36元”,小华说:“那就多买一个吧,谢谢,”根据两人的对话可知,小华结账时实际付款_____元.13.古代名著《算学启蒙》中有一题:良马日行二百四十里.驽马日行一百五十里.驽马先行一十二日,问良马几何追及之.意思是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可追上慢马?若设快马x 天可追上慢马,则由题意,可列方程为__.14.已知1(3)21a a x x --+=是关于x 的一元一次方程,则a=_____.15.甲、乙两班共有98人,若从甲班调3人到乙班,那么两班人数正好相等.设甲班原有x 人,可列出方程____________________.三、解答题16.小明用的练习本可以到甲、乙两家商店购买,已知两商店的标价都是每本2元,甲商店的优惠条件是购买10本以上,从第11本开始按标价的70%出售;乙商店的优惠条件是,从第一本起按标价的80%出售.(1)设小明要购买x (x >10)本练习本,则当小明到甲商店购买时,须付款 元,当到乙商店购买时,须付款 元; (2)买多少本练习本时,两家商店付款相同?(3)小明准备买50本练习本,为了节约开支,应怎样选择哪家更划算?17.数轴上有A 、B 、C 三点,分别表示有理数26-、10-、20,动点P 从A 出发,以每秒1个单位的速度向右移动,当P 点运动到C 点时运动停止,设点P 移动时间为t 秒.(1)用含t 的代数式表示P 点对应的数:_________;(2)当P 点运动到B 点时,点Q 从A 点出发,以每秒2个单位的速度向C 点运动, Q 点到达C 点后,再立即以同样的速度返回A 点.①用含t 的代数式表示Q 点在由A 到C 过程中对应的数:_________; ②当t =______时,动点P 、Q 到达同一位置(即相遇); ③当3PQ =时,求t 的值.18.某地区居民生活用电,规定按以下标准收取电费:(1)某户7月份用电123千瓦时,共交电费57.2元,求a ;(2)若该用户8月份的平均电费为0.45元,则8月份共用多少千瓦时?应交电费多少元?19.华联超市购进一批四阶魔方,按进价提高40%后标价,为了让利于民,增加销量,超市决定打八折出售,这时每个魔方的售价为28元.(1)求魔方的进价?(2)超市卖出一半后,正好赶上双十一促销,商店决定将剩下的魔方以每3个80元的价格出售,很快销售一空,这批魔方超市共获利2800元,求该超市共购进魔方多少个?参考答案1.C 【解析】【分析】由题可知,代入x 、y 值前需先判断y 的正负,再进行运算方式选择,据此逐项进行计算即可得.【详解】A 选项0y ≥,故将x 、y 代入22x y +,输出结果为15,不符合题意;B 选项0y ≤,故将x 、y 代入22x y -,输出结果为20,不符合题意;C 选项0y ≥,故将x 、y 代入22x y +,输出结果为12,符合题意;D 选项0y ≥,故将x 、y 代入22x y +,输出结果为20,不符合题意,故选C.【点睛】本题主要考查程序型代数式求值,解题的关键是根据运算程序,先进行y 的正负判断,选择对应运算方式,然后再进行计算.2.C 【解析】 【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a ,b 是常数且a≠0). 【详解】 ①是分式方程;②符合一元一次方程的定义;③经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程;④未知项的最高次数为2,故不是一元一次方程; ⑤符合一元一次方程的定义;⑥含有两个未知数,故不是一元一次方程;因此②、③、⑤是一元一次方程,所以一共有三个一元一次方程. 故答案选C. 【点睛】本题考查了一元一次方程的定义,解题的关键是熟练的掌握一元一次方程的定义.3.A 【解析】 【分析】设这种商品每件进价为x 元,根据题中的等量关系列方程求解. 【详解】设这种商品每件进价为x 元,则根据题意可列方程270×0.8-x =0.2x ,解得x =180.故选A. 【点睛】本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程. 4.B 【解析】分析:可设两人相遇的次数为x ,根据每次相遇的时间100254⨯+,总共时间为100s ,列出方程求解即可.详解:设两人相遇的次数为x ,依题意有100254⨯+x=100, 解得x=4.5, ∵x 为整数, ∴x 取4. 故选:B .点睛:考查了一元一次方程的应用,利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x ,然后用含x 的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答. 5.C 【解析】 【分析】设进价为x ,根据按进价加20%作为定价,可得:定价=1.2x , 后来老板按定价8折出售,可得售价=1.2x ×0.8=0.96x ,根据售价是192元,可得0.96x =192,算出进价,从而得到盈亏情况. 【详解】设进价为x 元,由题意可得:()120%0.8192x +⨯=,0.96x =192, 解得: x =200, 200-192=8(元) 故选C. 【点睛】本题主要考查一元一次方程解决商品销售问题,解决本题的关键是要熟练掌握商品销售问题中进价,标价,售价,利润之间的关系. 6.B 【解析】分析:根据方程的不同特点,从计算过程是否正确、方法应用是否得当等方面加以分析.详解:①方程125x -=2去分母,两边同时乘以5,得x ﹣12=10,故①正确. ②方程29x =92,两边同除以29,得x =814;要注意除以一个数等于乘以这个数的倒数,故②错误.③方程6x ﹣4=x +4移项,得5x =8;要注意移项要变号,故③错误. ④方程2﹣5362x x -+=两边同乘以6,得12﹣(x ﹣5)=3(x +3);要注意去分母后,要把是多项式的分子作为一个整体加上括号,故④错误. 故②③④变形错误. 故选B .点睛:在解方程时,要注意以下问题:(1)去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号;(2)移项时要变号. 7.D 【解析】由题意可知,当设甲商品的件数为x 时,可得方程为:(2015)(4535)(160)1100x x -+--=,即510(160)1100x x +-=. 故选D. 8.C【解析】【分析】把x=4代入方程的左右两边,判断左边和右边是否相等即可判断.【详解】解:A、当x=4时,左边=4-1=3≠右边,故选项不符合题意;B、当x=4时,左边=16≠右边,故选项不符合题意;C、当x=4时,左边=16-1=15,右边=13+3=15,则左边=右边,则x=4是方程的解,选项符合题意;D、当x=4时,左边=2(4-1)=6≠右边,故选项不符合题意.故选:C.【点睛】本题考查了方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值,理解定义是关键.9.D【解析】【分析】设这个班有学生x人,若每人分3本,剩余20本,则图书的数量为3x+20;同理再由每人分4本,则还缺25本可得图书的数量还可表示为4x-25,根据图书的总数量是定值即可得到方程.【详解】设这个班有学生x人,由题意得,3x+20=4x-25.故选D.【点睛】本题主要考查了一元一次方程的应用,找到题中的等量关系是解答本题的关键.10.A【解析】分析:根据一元一次方程的定义对各小题进行逐一分析即可.详解:①x﹣2=1x是分式方程,故本小题错误;②x=0是一元一次方程,故本小题正确; ③3x=x ﹣3是一元一次方程,故本小题正确; ④x 2﹣4=3x 是一元二次方程,故本小题错误; ⑤x ﹣1是代数式,故本小题错误;⑥x ﹣y=6是二元一次方程,故本小题错误.故选A.点睛:本题考查的是一元一次方程的定义,熟知只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程是解答此题的关键. 11.27 【解析】 【分析】设船在静水中的速度是x ,则顺流时的速度为(x+3)km/h ,逆流时的速度为(x-3)km/h ,根据往返的路程相等,可得出方程,解出即可. 【详解】解:设船在静水中的速度是x ,则顺流时的速度为(x+3)km/h ,逆流时的速度为(x-3)km/h , 由题意得,2(x+3)=2.5(x-3), 解得:x=27,即船在静水中的速度是27千米/时. 故答案为:27. 【点睛】本题考查了一元一次方程的应用,解答本题的关键是仔细审题,设出未知数,根据等量关系建立方程. 12.486 【解析】【分析】设小华购买了x 个笔袋,根据原单价×购买数量(x ﹣1)﹣打九折后的单价×购买数量(x )=节省的钱数,即可得出关于x 的一元一次方程,解之即可求出小华购买的数量,再根据总价=单价×0.9×购买数量,即可求出结论. 【详解】设小华购买了x 个笔袋,根据题意得:18(x ﹣1)﹣18×0.9x=36, 解得:x=30,∴18×0.9x=18×0.9×30=486, 即小华结账时实际付款486元, 故答案为:486.【点睛】本题考查了一元一次方程的应用,弄清题意,找准等量关系,正确列出一元一次方程是解题的关键.13.240x=150x+12×150 【解析】 【分析】设良马x 天能够追上驽马,根据路程=速度×时间结合二者总路程相等,即可得出关于x 的一元一次方程. 【详解】解:设良马x 天能够追上驽马.根据题意得:240x=150×(12+x )=150x+12×150. 【点睛】本题考查的知识点是一元一次方程的应用,解题关键是根据路程=速度×时间结合二者总路程相等,列出关于x 的一元一次方程. 14.±2 【解析】分析:由一元一次方程的定义得到|a|-1=1且a-3≠0,由此求得a 的值. 详解:∵方程(a-3)x |a|-1=1是关于x 的一元一次方程, ∴|a|-1=1且a-3≠0, 解得a=±2. 故答案是:±2. 点睛:本题考查了一元一次方程的概念和解法.一元一次方程的未知数的指数为1. 15.3983x x -=-+ 【解析】设甲班原有人数是x 人,则乙班人数为(98-x )人,根据题中等量关系:甲班人数+乙班人数=98;甲班人数-3=乙班人数+3,列方程得:x-3=(98-x)+3. 故答案是:x-3=(98-x)+3.16.(1)10×2+(x -10)×2×0.7 ;2x×0.8(2)买30本时两家商店付款相同(3)甲商店更划算【解析】试题分析:(1)根据题中的收费标准表示出到甲乙两商店的费用即可; (2)根据甲乙两商店费用相等,列方程求出x 的值即可; (3)根据小明所购买的练习本的本数求出钱数比较即可.(1)10×2+(x -10)×2×0.7 , 2x×0.8 (2)10×2+(x -10)×2×0.7= 2x×0.8 . 20+1.4x -14=1.6xx=30答:买30本时两家商店付款相同.(3)买50本时,甲家商店付款:10×2+(50-10)×2×0.7=76元. 乙商店付款:50×2×0.8=80元 . ∵76<80 ∴甲商店更划算.17.(1)26t -+;(2)①258t -;②32或1243;③3t =, 29, 35, 1213, 1273. 【解析】【分析】(1)根据题意可得P 点对应的数;(2)①P 因为点从A 运动到B 点所花的时间为16秒,Q 点从A 运动到C 点所花的时间为23秒所以Q 点在由A 到C 过程中对应的数()26216258t t -+-=-为;②分为返回前相遇和返回后相遇两种情况:返回前相遇,P 的路程等于Q 的路程等于Q 的路程减去16;而返回后相遇,则是二者走的总路程是Q 到C 的路程的2倍,分别列式子求解.【详解】(1)P 点所对应的数为:26t -+(2)①258t -②P 点从A 运动到B 点所花的时间为16秒,Q 点从A 运动到C 点所花的时间为23秒 当1639t ≤≤时,P :26t -+,Q :()26216258t t -+-=-26258t t -+=-,解之得32t =当3946t ≤≤时,P :26t -+,Q :()20239982t t --=-26982t t -+=-,解之得1243t =③3t =,29,35,1213,1273 【点睛】考核知识点:一元一次方程应用.理解定义,列出方程是关键.18.(1)a=80;(2)八月份共用电160千瓦时,应交电费72元.【解析】【分析】(1)根据表格可得:123×0.5=61.5(元)>57.2元,再根据表格中的数量关系可得得:0.5a +0.5×80%×(123﹣a )=57.2,解得:a =80.(2)先设八月份共用电x 千瓦时,根据题意得:0.5×80+(x ﹣80)×0.5×80%=0.45x , 解得:x =160,进而求出0.45x =0.45×160=72. 【详解】(1)∵123×0.5=61.5(元)>57.2元, ∴该户七月份用电超出基本用电量,根据题意得:0.5a +0.5×80%×(123﹣a )=57.2,解得:a =80.(2)设八月份共用电x 千瓦时,根据题意得:0.5×80+(x ﹣80)×0.5×80%=0.45x , 解得:x =160,∴0.45x =0.45×160=72.答:八月份共用电160千瓦时,应交电费72元.【点睛】本题主要考查一元一次方程解决阶梯收费问题,解决本题的关键是要能够根据表格分析出等量关系继而列出方程求解.19.25元 超市一共购进1200个魔方【解析】试题分析:(1)首先设魔方的进价是每个x 元,根据条件“按进价提高40%后标价,打八折出售的售价为28元”列出关于x 的一元一次方程,求解即可;(2)设该超市共进四阶魔方2y 个,由这些魔方获利2800元列出方程,求解即可. 解:设魔方的售价为每个x 元。

【期末复习提升卷】浙教版2022-2023学年七上数学第5章 一元一次方程 测试卷1(解析版)

【期末复习提升卷】浙教版2022-2023学年七上数学第5章 一元一次方程 测试卷1(解析版)

【期末复习提升卷】浙教版2022-2023学年七上数学第5章 一元一次方程 测试卷1(解析版)一、选择题(本大题有10小题,每小题3分,共30分) 下面每小题给出的四个选项中,只有一个是正确的. 1.已知①x=1;②x 2﹣2x=0;③x ﹣3=5;④6﹣x ;⑤2x+y=3;⑥xy=2,其中一元一次方程有( ) A .1个 B .2个 C .3个 D .4个 【答案】B【解析】①x=1是一元一次方程; ②x 2﹣2x=0是一元二次方程; ③x ﹣3=5是一元一次方程; ④6﹣x 是多项式;⑤2x+y=3是二元一次方程; ⑥xy=2是二元二次方程, 故选:B .2.已知代数式8x ﹣7与6﹣2x 的值互为相反数,那么x 的值等于( ) A .16 B .﹣ 16 C .1310 D .﹣ 1310【答案】A【解析】根据题意得:(8x ﹣7)+(6﹣2x )=0,解得:x= 16.故答案为:A.3.下列变形正确的是( )A .若3x −1=2x +1,则3x +2x =1+1B .若3(x +1)−5(1−x)=0,则3x +3−5−5x =0C .若1−3x−12=x ,则2−3x −1=xD .若x+10.2−x 0.3=10,则x+12−x 3=1【答案】D【解析】A 、若3x -1=2x+1,则3x -2x=1+1,故A 不符合题意;B 、若3(x+1)-5(1-x )=0,则3x+3-5+5x=0,故B 不符合题意;C 、若1-3x−12=x ,则2-3x+1=2x ,故C 不符合题意;D 、若x+10.2−x 0.3=10,则x+12−x 3=1,故D 符合题意. 故答案为:D.4.已知关于x 的方程2x+4=m ﹣x 的解为负数,则m 的取值范围是( ) A .m <43 B .m >43C .m <4D .m >4【答案】C【解析】由2x+4=m ﹣x 得, x= m−43,∵方程有负数解, ∴m−43<0,解得m <4. 故选C .5.阅读:关于x 方程ax=b 在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x= b a;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x 的方程 x3 •a= x 2 ﹣ 16 (x ﹣6)无解,则a 的值是( ) A .1 B .﹣1 C .±1 D .a≠1 【答案】A【解析】去分母得:2ax=3x ﹣(x ﹣6),去括号得:2ax=2x+6移项,合并得,x= 3a−1,因为无解;所以a ﹣1=0,即a=1. 故选A .6.松桃县对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等,如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设这段公路的长是x 米,则根据题意列出方程正确的是( )A .x 5+1+21=x 6+1B .x 5+1−21=x 6+1C .x+15+21=x+16D .x+15−21=x+16【答案】B【解析】设这段公路的长是x 米,则x 5+1−21=x 6+1故答案为:B【分析】设这段公路的长是x 米, 根据“ 如果每隔5米栽1棵,则树苗缺21棵"可得树苗总数有(x5+1−21)棵;根据“ 如果每隔6米栽1棵 ”可得树苗总数有(x6+1),利用树苗总数不变列出方程即可. 7.若不论 k 取什么实数,关于 x 的方程 2kx+a 3−x−bk 6=1 ( a 、 b 常数)的解总是 x =1 ,则 a +b 的值是( ) A .−0.5 B .0.5 C .−1.5 D .1 【答案】A【解析】∵关于x 的方程 2kx+a 3−x−bk 6=1 的解总是 x =1∴2k+a 3−1−bk 6=1∴4k +2a −1+bk =6 ∴(4+b)k =7−2a∴{4+b =07−2a =0解得: {a =72b =−4 ∴a +b =72−4=−12故答案为:A.8.某超市为了回馈顾客,若一次性购物不超过300元不优惠,超过300元时按全额9折优惠.一位顾客第一次购物付款180元,第二次购物付款288元,若这两次购物付款合并一次性付款可节省( ) A .18元 B .16元 C .18或46.8元 D .46.8元 【答案】C 【解析】(1)若第二次购物超过300元, 设此时所购物品价值为x 元,则 90%x=288, 解得x=320,两次所购物价值为180+320=500>300, 所以享受9折优惠,因此应付 500×90%=450(元),这两次购物付款合并一次性付款可节省: 180+288-450=18(元),(2)若第二次购物没有超过300元, 两次所购物价值为180+288=468(元), 这两次购物付款合并一次性付款可节省: 468×10%=46.8(元), 故答案为:C .9.方程|x+1|+|x -3|=4的整数解有( )A .2个B .3个C .5个D .无穷多个 【答案】C【解析】根据数轴上任意两点间的距离等于这两点所表示的数的差的绝对值可得, 方程中的未知数x 表示到-1与3的距离的和等于4的整数值,所以x 1=−1,x 2=0,x 3=1,x 4=2,x 5=3,共有五个整数解. 故答案为:C.10.如图,在长方形ABCD 中,AB =4cm ,BC =3cm ,E 为CD 的中点,动点P 从A 点出发,以每秒1cm 的速度沿A→B→C→E 运动,最终到达点E .若点P 运动的时间为x 秒,则当△APE 的面积为5cm 2时,x 的值为( )A .5B .3或5C .103D .103或5【答案】D【解析】∵ 长方形ABCD 中,AB =4cm ,BC =3cm ,E 为CD 的中点,∴AB =CD =4,BC =AD =3,CE =12CD =2, 当P 在AB 上时,AP =x(0≤x ≤4),∴12x ·3=5, ∴x =103,当P 在BC 上时,BP =x −4(4<x ≤7),CP =3−(x −4)=7−x ,∴12(2+4)×3−12×4(x −4)−12×2(7−x)=5, 解得:x =5,当P 在CE 上时,如图,CP =x −7(7<x ≤9),PE =2−(x −7)=9−x ,∴12×3(9−x)=5, 解得:x =173,经检验不符合题意,舍去,所以当△APE 的面积为5cm 2时,x 的值为5s 或103s ,故答案为:D二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.已知x ,y ,z 满足x+43=y+32=z+84,且x −2y +z =12,则x = .【答案】14【解析】设x+43=y+32=z+84=t ,则x =3t −4,y =2t −3,z =4t −8,代入x −2y +z =12得:3t −4−2×(2t −3)+4t −8=12 解得:t =6, x =3t −4=14. 故答案为:14.12.x 是实数,若1+x +x 2+x 3+x 4+x 5=0,则x 6= . 【答案】1【解析】∵1+x +x 2+x 3+x 4+x 5=0① , ∴ 两边同时乘以 x ,x +x 2+x 3+x 4+x 5+x 6=0 ,∴1+x +x 2+x 3+x 4+x 5+x 6=1 , ∵1+x +x 2+x 3+x 4+x 5=0②, ②-①得 ∴x 6=1 , 故答案为:1. 13.《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,余三.问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,多余3钱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.1 一元一次方程
1.下列方程是一元一次方程的是(D )
A .2x +y =0
B .7x +5=7(x +1)
C .x (x +3)+2=0
D .2x =1
2.小华带x 元去买甜点,若全买红豆汤圆,则刚好可买30杯;若全买豆花,则刚好可买40杯.已知豆花每杯比红豆汤圆便宜10元,依题意可列出方程为(A )
A.x 30=x 40+10
B.x 40=x 30+10
C.x 40=x +1030
D.x +1040=x 30
3.下列方程中,解为x =-1的是(D )
A .2x =x +1
B .2x -1=0
C .x =2x -1
D .x =2x +1
4.若关于x 的方程mx m -2-m +3=0是一元一次方程,则这个方程的解为(A )
A .x =0
B .x =3
C .x =-3
D .x =2
5.下列方程中,解不是x =2的是(B )
A.14x -2=-32
B .3x -5=x C.12
(x -1)=0.5 D .2x +3=7 6.2x -3与9互为相反数,用方程来表示就是(B )
A .2x -3=9
B .2x -3=-9
C .2x +3=9
D .2x +3=-9
7.写出一个一元一次方程,使它的解为-5,未知数的系数为45,则方程为__45
x =-4(答案不唯一)__.
8.若关于x 的方程-5x 1-a +1=6是一元一次方程,则a =__0__.
9.若(a +1)2+|b -2|=0,则a -b =__-3__.
10.检验括号中的数是否为方程的解.
(1)3x -4=8(x =3,x =4);
(2)12
y +3=7(y =8,y =4). 【解】 (1)x =4是方程的解,x =3不是方程的解.
(2)y =8是方程的解,y =4不是方程的解.
11.根据条件列方程:
(1)某数的5倍比这个数大3;
(2)某数的相反数比这个数大6;
(3)爸爸和儿子的年龄分别是40岁和13岁,请问:几年后,爸爸的年龄是儿子年龄的2倍?
【解】 (1)设该数为x ,由题意,得5x =x +3.
(2)设该数为x ,由题意,得-x =x +6.
(3)设经过x 年后,爸爸的年龄是儿子年龄的2倍,由题意,得40+x =2(13+x ).
12.若关于x 的方程mx m +5+m -3=0是一元一次方程,则这个方程的解为(C )
A .x =1
B .x =-1
C .x =-74
D .x =-4 【解】 由题意,得m +5=1,∴m =-4.
∴该方程为-4x -7=0,解得x =-74
.故选C. 13.已知关于x 的方程ax +b =0,当方程的解是x =0时,a ,b 应满足的条件是(C )
A .a =0,b =0
B .a =0,b ≠0
C .a ≠0,b =0
D .a ≠0,b ≠0
14.有6个班的同学在大会议室里听报告,如果每条长凳坐5人,还缺8条长凳;如果每条长凳坐6人,就多出2条长凳.设来听报告的同学有x 人,会议室里有y 条长凳,则下列方程:①x 5-8=x 6+2;②5(y -8)=6(y +2);③5(y +8)=6(y -2);④x 5+8=x 6
-2.其中正确的是(A )
A .①③ B.②④
C .①② D.③④
15.已知3个连续偶数的和为90,设中间的偶数为x ,则可列出方程为__(x -2)+x +(x +
2)=90__.
16.若方程(m 2-1)x 2-mx -x +2=0是关于x 的一元一次方程,则代数式|m -1|的值为(A )
A .0
B .2
C .0或2
D .-2
【解】 原方程可化为(m 2-1)x 2-(m +1)x +2=0.
∵该方程是关于x 的一元一次方程,
∴m 2-1=0且-(m +1)≠0,
∴m =1,∴|m -1|=0.
故选A.。

相关文档
最新文档