大学物理第刚体的转动汇总
大学物理第四章刚体转动
进动和章动在自然界中实例
陀螺仪
地球极移
陀螺仪的工作原理即为进动现象。当 陀螺仪受到外力矩作用时,其自转轴 将绕某固定点作进动,通过测量进动 的角速度可以得知外力矩的大小和方 向。
地球极移是指地球自转轴在地球表面 上的移动现象,其产生原因与章动现 象类似。地球极移的周期约为18.6年 ,且极移的幅度会受到地球内部和外 部因素的影响。
天体运动
许多天体的运动都涉及到进动和章动 现象。例如,月球绕地球运动时,其 自转轴会发生进动,导致月球表面的 某些特征(如月海)在地球上观察时 会发生周期性的变化。同时,行星绕 太阳运动时也会发生章动现象,导致 行星的自转轴在空间中的指向发生变 化。
感谢观看
THANKS
02
刚体定轴转动动力学
转动惯量定义及计算
转动惯量定义
刚体绕定轴转动时,其惯性大小的量度称为转动惯量,用字母$J$表示。它是一个与刚体质量分布和转轴位置有 关的物理量。
转动惯量计算
对于形状规则的均质刚体,可以直接套用公式计算其转动惯量;对于形状不规则的刚体,则需要采用间接方法, 如分割法、填补法等,将其转化为规则形状进行计算。
刚体性质
刚体是一个理想模型,它在力的作用 下,只会发生平动和转动,不会发生 形变。
转动运动描述方式
01
02
03
定轴转动
平面平行运动
ห้องสมุดไป่ตู้
定点转动
物体绕一固定直线(轴)作转动。
物体上各点都绕同一固定直线作 不同半径的圆周运动,同时物体 又沿该固定直线作平动。
物体绕一固定点作转动。此时物 体上各点的运动轨迹都是绕该固 定点的圆周。
非惯性系下刚体转动描述方法
欧拉角描述法
2.6 大学物理 刚体的定轴转动详解
分析:
解:滑轮具有一定的转动惯量。 转动中受阻力矩,两边的张力不 再相等,设物体1这边绳的张 力为T1、 T1’(T1’= T1) , 物体2这边的张力为
T2、 T2’(T2’= T2)
m
1
T1 T
1
T2 T
2
a m
1
a
m G
2 1
a G
2
m
2
因m2>m1,物体1向上运动,物体2向下运动,滑轮以 顺时针方向旋转,Mr的指向如图所示。可列出下列方 程
分析: 飞轮制动 角加速度
正压力FN
力矩平衡
摩擦力矩
制动力F
分析: 飞轮制动
正压力FN
角加速度
摩擦力矩
l1
l2
F
力矩平衡
制动力F
解: 摩擦力矩是恒力矩,飞 轮做匀角加速度转动
0
t 2 n T
l1
FN
FN
l2
F f
F
由转动定律:M=Jβ 闸瓦对轮的摩擦力矩 M F f R FN R
(设轮轴光滑无摩擦,滑轮的初角速度为零)
求 滑轮转动角速度随时间变化的规律。
解 以m1 , m2 , m 为研究对象, 受力分析 物体 m1:
物体 m2: 滑轮 m:
例1 一飞轮半径为 0.2m、 转速为150r· min-1, 因受制动而均匀减速,经 30 s 停止转动 . 试求:(1) 角加速度和在此时间内飞轮所转的圈数;(2)制动开 始后 t = 6 s 时飞轮的角速度;(3)t = 6 s 时飞轮边缘 上一点的线速度、切向加速度和法向加速度 .
a m2 m1 g M / r 1 r m2 m1 m r 2
刚体转动总结
转轴I
转轴II
总质量 m
m i
ri
ri
刚体转轴的位置。
1. 转动惯量的计算 质点组成的系统的转动惯量
J mi ri m r m r m r
2 2 1 1 2 2 2 2 3 3 i
质量连续分布的物体的转动惯量 转轴
转轴 L
线密度
r
J r dm
ri
转轴
m i
刚体转动动能等于所有 质点动能相加
2
2
2
1 1 1 E m v m r J 2 2 2
2
k
i
i
i
i
i
i
vi ri
转动惯量
二.力矩的功 当刚体在外力 F 作用 下有一角位移d 时,力的 作用点位移 dr 的大小为
0
如果力矩恒定不变
根据转动定律,合外力矩为
M J J d dt
在dt时间内刚体角位移为 d d t
则
dW M d J
d dt
dt J d
当刚体角速度由 1变为 2时,合外力矩的功
W
2
1
J d
1 2
J
2 2
1 2
J1
2
合外力矩对刚体所作的功等于刚体转动动能的增量 刚体的动能定理
存在以下对应关系
F ma F M m J a 1 2 mv
2
M
J
J
1 2
J
2
角 动 量
mv
质点做圆周运动时对转轴的角动量
L J mr mvr
刚体旋转知识点归纳总结
刚体旋转知识点归纳总结1. 刚体旋转的基本概念刚体是指在一定时间内,其内部各点的相对位置不改变的物体。
刚体旋转是指刚体围绕固定点或固定轴发生的旋转运动。
在刚体旋转中,需要引入一些基本概念:1.1 刚体的转动刚体的旋转可以是定点转动,也可以是定轴转动。
在定点转动中,刚体绕固定点旋转,而在定轴转动中,刚体绕固定轴旋转。
定点转动和定轴转动都是刚体旋转运动的两种基本形式。
1.2 刚体的转动角度和角速度刚体的转动角度是刚体在单位时间内所转过的角度,通常用θ表示。
刚体的角速度是指刚体单位时间内转过的角度,通常用ω表示。
在刚体定点转动中,角速度是刚体绕定点旋转的角度速度;在刚体定轴转动中,角速度是刚体绕定轴旋转的角度速度。
1.3 刚体的转动惯量刚体的转动惯量是衡量刚体抵抗旋转的惯性大小,通常用I表示。
刚体转动惯量的大小取决于刚体形状、质量分布以及旋转轴的位置。
对于质点组成的刚体,其转动惯量可以通过对质点的质量进行积分得到。
1.4 刚体的角动量刚体的角动量是刚体旋转运动的物理量,通常用L表示。
角动量的大小和方向分别由角速度和转动惯量决定。
在定点转动中,如果刚体的角速度和转动惯量都不变,那么刚体的角动量也保持不变;在定轴转动中,如果刚体绕固定轴旋转,那么刚体的角动量也保持不变。
2. 刚体的转动力学刚体的转动力学研究刚体在旋转运动中所受的力和力矩,包括转动定律、角动量定理、动能定理等内容。
2.1 刚体的平衡刚体旋转平衡需要满足一定的条件,包括力矩平衡条件和动量平衡条件。
刚体力矩平衡条件是指刚体所受的合外力矩为零;刚体动量平衡条件是指刚体所受的合外力矩关于某一点的力矩为零。
2.2 刚体的角动量定理刚体的角动量定理描述了刚体在受到外力矩作用下,其角动量的变化规律。
根据角动量定理,刚体所受外力矩产生的角动量变化率等于刚体所受外力矩的矢量和。
2.3 刚体的动能定理刚体的动能定理描述了刚体在旋转运动中,其动能的变化规律。
根据动能定理,刚体所受外力矩产生的功率等于刚体动能的变化率。
大学物理 第四章 刚体的转动小结
分离变量法:等式两边分别积分时,每边只 能有一个变量。
五、运动的叠加性
运动的叠加性 质点的运动可以看成不同分运动的叠加,通常采用 正交合成和分解
• 1、(本题3分) • 一质点沿x轴作直线运动,其v-t曲线如图 所示,如t=0时,质点位于坐标原点,则 t=4.5 s时,质点在x轴上的位置为 • (A) 5m. (B) 2m. • (C) 0. (D) -2 m. • (E) -5 m. [ ] v ( m /s )
t
2
2
0 2 ( 0 )
2
四、已知加速度(或速度)及初始条件求运动方 程;使用积分方法。
dv
a dt
此类问题必须已知初始条件! 投影到各坐标轴上后再积分!
dr
v dt
a dv dt
变量置换法
dv dx
dx dt
v
dv dx
1. 物理量
2. 线量和角量的关系
d
v r
3.匀角加速转动公式
注意: J和M必须是一个刚体对同一转轴的转动惯量和力矩。若同 时存在几个刚体,原则上应对每个刚体列出 Mi 。 i J i
三、转动惯量
J
J
mi ri
i
2
( 不连续)
( 连续)
r dm
2
刚体的转动惯量与刚体的 质量、形状、质量的分布 以及转轴的位置有关。
1 2
1 2
1 2
• 8、(本题4分) v 从某点开始 • 一物体在某瞬时,以初速度 运动,在 t时间内,经一长度为S的曲线 路径后,又回到出发点,此时速度为 , -v 则在这段时间内: S • 物体的平均速率是 ; t 2v • 物体的平均加速度是 t .
刚体旋转知识点总结图解
刚体旋转知识点总结图解一、刚体的定义刚体是指形状和大小在一定范围内不改变,结构完整,部分不会随着外力的作用而发生形变的物体。
刚体的旋转是指刚体绕着某个固定轴线旋转的运动。
二、刚体的转动定律1. 刚体的角位移:刚体绕固定轴线旋转时,每个质点的位移方向都与该质点的运动轨迹相切,并且线速度不同,但角速度相同。
2. 刚体的角加速度:刚体绕固定轴线旋转时,各质点的加速度虽然大小不同,但方向都垂直于该质点的运动轨迹,并与其对应的线速度方向一致。
3. 刚体的角动量:刚体绕固定轴线旋转时,当刚体的转动轴不经过质心时,刚体的角动量等于该点相对于质心的角动量之和。
三、刚体的转动定律1. 角动量定理:刚体绕固定轴线旋转时,刚体的角动量与外力矩之和等于刚体对旋转轴的角动量的变化率。
2. 动能定理:刚体绕固定轴线旋转时,刚体的动能等于刚体的角动量的变化率与角速度的乘积之和。
3. 动量矩定理:刚体绕固定轴线旋转时,刚体的角动量改变的原因是外力矩。
如果外力矩为零,则刚体的角动量是守恒的。
四、刚体的转动惯量1. 刚体的转动惯量:刚体绕固定轴线旋转时,刚体对于该轴线的转动惯量等于各质点到该轴线距离的平方与质点质量乘积之和。
2. 转动惯量的计算方法:刚体对于不同轴线的转动惯量计算是以刚体某一坐标轴为基准,按照平行轴定理或垂直轴定理进行转动惯量的计算。
3. 转动惯量的应用:刚体绕固定轴线旋转时,转动惯量的大小决定了刚体旋转的惯性大小。
转动惯量越大,刚体绕轴旋转越困难。
五、刚体的转动动力学1. 合力与合力矩:刚体绕固定轴线旋转时,合力是刚体质心的动力学性质,而合力矩是刚体绕轴线旋转的动力学性质。
2. 麦克尔斯定理:刚体绕固定轴线旋转时,如果刚体受到合力矩的作用,则该合力矩等于刚体在质心处受到的效力矩与刚体到该轴的距离的乘积。
3. 角动量矩定理:刚体绕固定轴线旋转时,角动量矩定理描述了刚体对旋转轴的角动量的变化率等于刚体受到的外力矩。
六、刚体的平衡与稳定1. 刚体的平衡:刚体绕固定轴线旋转时,刚体处于平衡状态可以分为静平衡和动平衡,其中静平衡是指刚体的合外力和合外力矩均为零,而动平衡是指刚体的合外力为零。
(完整版)大学物理刚体部分知识点总结,推荐文档
一、刚体的简单运动知识点总结1.刚体运动的最简单形式为平行移动和绕定轴转动。
2.刚体平行移动。
·刚体内任一直线段在运动过程中,始终与它的最初位置平行,此种运动称为刚体平行移动,或平移。
·刚体作平移时,刚体内各点的轨迹形状完全相同,各点的轨迹可能是直线,也可能是曲线。
·刚体作平移时,在同一瞬时刚体内各点的速度和加速度大小、方向都相同。
3.刚体绕定轴转动。
• 刚体运动时,其中有两点保持不动,此运动称为刚体绕定轴转动,或转动。
• 刚体的转动方程φ=f(t)表示刚体的位置随时间的变化规律。
• 角速度ω表示刚体转动快慢程度和转向,是代数量,。
角速度也可以用矢量表示,。
• 角加速度表示角速度对时间的变化率,是代数量,,当α与ω同号时,刚体作匀加速转动;当α与ω异号时,刚体作匀减速转动。
角加速度也可以用矢量表示,。
• 绕定轴转动刚体上点的速度、加速度与角速度、角加速度的关系:。
速度、加速度的代数值为。
• 传动比。
二.转动定律转动惯量转动定律力矩相同,若转动惯量不同,产生的角加速度不同与牛顿定律比较:转动惯量刚体绕给定轴的转动惯量J 等于刚体中每个质元的质量与该质元到转轴距离的平方的乘积之总和。
定义式质量不连续分布质量连续分布物理意义转动惯量是描述刚体在转动中的惯性大小的物理量。
它与刚体的形状、质量分布以及转轴的位置有关。
计算转动惯量的三个要素:(1)总质量; (2)质量分布; (3)转轴的位置(1) J 与刚体的总质量有关几种典型的匀质刚体的转动惯量刚体转轴位置转动惯量J细棒(质量为m ,长为l )过中心与棒垂直212ml 细棒(质量为m ,长为l )过一点与棒垂直23ml 细环(质量为m ,半径为R )过中心对称轴与环面垂直2mR 细环(质量为m ,半径为R )直径22mR 圆盘(质量为m ,半径为R )过中心与盘面垂直22mR 圆盘(质量为m ,半径为R )直径24mR 球体(质量为m ,半径为R )过球心225mR 薄球壳(质量为m,半径为R )过球心223mR 平行轴定理和转动惯量的可加性1) 平行轴定理设刚体相对于通过质心轴线的转动惯量为Ic ,相对于与之平行的另一轴的转动惯量为I ,则可以证明I 与Ic 之间有下列关系 2c I I md =+2)转动惯量的可加性对同一转轴而言,物体各部分转动惯量之和等于整个物体的转动惯量。
第三章刚体的运动(大学物理)
3-1 刚体的基本运动 一、刚体 F
t
A B C
t + t 才 感受到力
在任何情况下物体的形状和大小都不会变化,因 而可以瞬时传递力。
即:质元间保持不变,称“不变质点系” 。刚体 是个理想化的模型。
二、刚体的运动形式 1.平动 *刚体上所有质元都 沿平行路径运动,各 个时刻的相对位置都 彼此固定。
1.角速度矢量 的规定: 大小
d dt
ω
v
r
刚体
P r
方向:沿瞬时轴,与转向成 右螺旋关系。 2.线速度与角速度的关系:
× 基点O 瞬时轴
v r
r
例题1 一刚体以每分钟60转绕z轴做匀速转动 沿z轴正方向)。设某时刻刚体上一点P的位 ( 置矢量为r 3i 4 j 5k ,则该时刻P点速度。
m1 g T1 m1a T2 m2 g m2a
T2 m2 g
M T1 T
m1
1
a
m1 g
对定滑轮
1 rT1 rT2 Mr 2 2 且有 a r
(m1 m2 ) g 可得 M (m1 m2 )r 2
(m1 m2 ) g a M m1 m2 2
①对O点:rom T 0
rom mg lsin (mg)
锥摆
O
T l
m
O
合力矩不为零,角动量变化。
v mg
( mg) 0 ②对O点: rom T rom
rom mg rom T
合力矩为零,角动量大小、方向都不变。
2.刚体定轴转动的角动量定理
M r F m
Or
·
大学物理-ch4_刚体的转动汇总
J
dJ
2m R2
R 0
r 3dr
1 2
mR2
m
R 2
J
常 见 刚 体 的 转 动 惯 量
三、 力矩
使物体转动,必须给定一 个作用力,另外考虑转动与力 的作用点以及作用力的方向有 关,因此在研究物体转动中引
(入1力)矩若这刚一体物所理受量力。F在转动平面内
z
Od
r
F
F
P
力臂:rsin = d 表示转轴到力作用线的垂直距离。
(2)转动惯量J的大小决定于
刚体的质量:同形状的刚体,ρ(λ,σ)越大,J 就越大 质量的分布:质量相同,dm 分布在 r 越大的地方,则 J越大 刚体的转轴位置:同一刚体依不同的转轴而有不同的J
(3)转轴相同的刚体系统的总转动惯量等于各刚体转动
惯量的代数和
J J1 J2 Jn
转动惯量的计算:
c
2
t2
2 600π 3002
π 75
rad s3
1 ct 2 π t 2
2 150
由 d π t 2
dt 150
得
d
π
t t 2dt
0
150 0
π t 3 rad
450
在 300 s 内转子转过的转数
N π (300)3 3104
2π 2π 450
例 一条缆索绕过一定滑轮拉动一升降机,滑轮半
向转动,则力矩Mz为正,反之为Mz为负。
力矩
M
r
F
M
ห้องสมุดไป่ตู้
F
方向:满足右手螺旋法则 对于定轴转动,力矩的方向沿 转轴方向,但只有两种可能, 则可用正负表示
即:力矩与坐标轴同向时为正 ,反向时为负
大学物理-刚体的转动
1 Ek J 2 2
3、刚体的转动惯量 rotational inertia (moment of inertia)
J mi ri 2
质量连续分布时
单位: kg m
体分布 面分布 线分布
2
dm dv 体密度
dm ds 面密度
dm dl 线密度
J r dm
0
t 0 50 1 3.14 rad s 50
O
an a
1 2 1 0 t t 50 50 502 4825rad 2 2
N 625 转 2
0 t 50 25 78.5rad s 1 ⑵
刚体内所作的任何一条直线,始终保持和自 身平行的运动。平动时,刚体上各点的运动轨迹都 相同,因此,刚体上一点的运动可代表整个刚体的 运动。( 刚体平动的运动规律与质点的运动规律相 同)
3、刚体绕定轴转动:
rotation of a rigid body around a
z
fix axis 转轴相对于参照系不动的转动称为定轴转动。
例题
均匀圆环 : m i
J C m i R 2 R 2 m i
C R
J C mR
2
例题
均匀圆盘:
m dm ds 2 R ds 2rdr
2 R 0
面密度
r
J r dm r 2 2 rdr
R4
2
1 mR 2 2
半径为R质量为M的均匀圆盘联结一长为L质量为m 的均匀直棒,写出刚体对O轴的转动惯量。(O轴垂直 纸面)
解:
J A m i ri2
大学物理3_1 刚体的定轴转动
d 5 t dt 2
(1)t = 4 s 时, 则有
d 2 rad s dt
5 2 2 4 4 0 2 2
3–1
刚体的定轴转动
第三章 刚体的转动
5 3 4 rad s 2 2 d rad s 2 dt
刚体的一般运动 质心的平动
+
绕质心的转动
平动:若刚体中 所有点的运动轨迹都 保持完全相同,或者 说刚体内任意两点间 的连线总是平行于它 们的初始位置间的连 线.
刚体平动
质点运动
3–1
刚体的定轴转动
第三章 刚体的转动
转动:刚体中所有的点都绕同一直线做圆周运 动. 转动又分定轴转动和非定轴转动 .
第三章 刚体的转动
三
刚体定轴转动的运动学描述
物理量 位置坐标 运动方程 位移 速度 加速度
刚体的定轴转动
质点的直线运动
(t )
x x(t )
x
d
dx
v dx dt
a dv dt d x dt
2 2
d dt 2 2 d dt d dt
3–1
d lim0 t t dt
参考轴
方向:
右手螺旋方向
3–1
刚体的定轴转动
第三章 刚体的转动
刚体定轴转动(一 维转动)的转动方向可 以用角速度的正负来表 示.
角加速度
>0
z
z
<0
d dt
定轴转动的特点 1) 每一质点均作圆周运动,圆面为转动平面;
大学物理第四章 刚体的转动_4-2
例1:长为 l、质量
为 m 的细杆,初始
时的角速度为 0,
ol
由于细杆与桌面的
摩擦,经过时间 t
后杆静止,求摩擦 力矩 M阻。
4 – 2 力矩 转动定律 转动惯量
第四章 刚体的转动
解:以细杆为研究对象,只有摩擦阻力产生力矩,由 匀变速转动公式:
0 t
0 t 0
ol
0
t
细杆绕一端的转动惯量 J 1 ml 2
1 mgl sin J
2
4 – 2 力矩 转动定律 转动惯量
第四章 刚体的转动
1 mgl sin J
2 式中 J 1 ml2
3
得 3g sin
2l
由角加速度的定义
d d d d dt d dt d
d 3g sind
2l
代入初始条件积分 得
3g (1 cos )
l
4 – 2 力矩 转动定律 转动惯量
F
Fi 0 , Mi 0
4 – 2 力矩 转动定律 转动惯量 讨论
第四章 刚体的转动
1)若力 F 不在转动平面内,把力分解为平行和垂
直于转轴方向的两个 分量
F Fz F
其中 Fz 对转轴的力
矩为零,故 F 对转轴的
力矩 M zk r F
z
k
Fz
F
O r
F
M z rF sin
例5 一长为 l 质量为 m 匀质细杆竖直放置,其
下端与一固定铰链 O 相接,并可绕其转动 . 由于此
竖直放置的细杆处于非稳定平衡状态,当其受到微小 扰动时,细杆将在重力作用下由静止开始绕铰链O 转
动 .试计算细杆转动到与竖直线成 角时的角加速度
和角速度 .
刚体转动知识点总结
刚体转动知识点总结1. 刚体的定义在物理学中,刚体是一个理想化的概念,用来描述物体的力学性质。
刚体是一个不会发生形变的物体,它具有不变的形状和大小。
在刚体转动的过程中,可以忽略物体的形变,只需考虑刚体的质量分布和外力作用情况。
2. 转动定律在刚体转动的过程中,存在着转动定律,即牛顿第二定律在转动运动中的应用。
根据转动定律,刚体的角加速度与作用在刚体上的合外力成正比,与刚体的转动惯量成反比。
转动定律可以用数学公式表示为:\[ \tau = I \alpha \]其中,$\tau$ 表示合外力矩,$I$ 表示刚体的转动惯量,$\alpha$ 表示刚体的角加速度。
3. 角动量角动量是描述刚体转动运动的物理量,它是刚体的转动惯量和角速度的乘积。
角动量可以用数学公式表示为:\[ L = I \omega \]其中,$L$ 表示角动量,$I$ 表示刚体的转动惯量,$\omega$ 表示角速度。
4. 转动惯量转动惯量是描述刚体对转动运动的惯性大小的物理量,它反映了刚体的质量分布对其转动运动的影响程度。
转动惯量的计算需要考虑刚体的形状和质量分布,通常需要使用积分来进行计算。
5. 转动运动方程刚体转动运动的规律可以通过转动运动方程来描述,转动运动方程可以表示为:\[ \tau = \frac{dL}{dt} \]其中,$\tau$ 表示合外力矩,$L$ 表示角动量,$t$ 表示时间。
转动运动方程描述了刚体的转动运动受到外力矩作用时角动量的变化规律。
6. 刚体的转动运动在刚体的转动运动中,需要考虑刚体的转动惯量、角速度、角加速度等物理量。
刚体的转动运动可以在直角坐标系下进行描述,通过使用牛顿运动定律和转动运动方程来分析刚体的转动运动规律。
7. 平行轴定理和垂直轴定理在计算刚体的转动惯量时,可以利用平行轴定理和垂直轴定理来简化计算过程。
根据平行轴定理和垂直轴定理,刚体绕与其质心平行(或垂直)且距离为$d$的轴转动的转动惯量可以表示为:\[ I = I_{\text{CM}} + Md^2 \]其中,$I$ 表示绕过质心平行(或垂直)轴转动的转动惯量,$I_{\text{CM}}$ 表示绕质心转动的转动惯量,$M$ 表示刚体的质量,$d$ 表示轴与质心的距离。
刚体的转动知识点总结
一、刚体的基本概念1. 刚体的定义:刚体是一个质点系列,这些质点之间的相对位置在任意时刻都是固定的,不会改变。
2. 刚体的运动方式:除了平动外,刚体还可以进行转动运动。
3. 刚体的主要特征:刚体在转动运动中的主要特征是角位移、角速度和角加速度。
二、刚体的转动定律1. 牛顿第一定律在转动中的应用:刚体静止或匀速转动时,对固定轴的力矩为零。
2. 牛顿第二定律在转动中的应用:刚体转动的加速度和力矩之间的关系。
3. 牛顿第三定律在转动中的应用:力矩的作用对应地产生反作用力矩。
三、刚体的转动运动学1. 角度和弧度的关系:1弧度对应角度2pi,即1弧度=180°/π。
2. 角速度和角位移的关系:角位移是角速度随时间的积分。
3. 角加速度和角速度的关系:角加速度是角速度随时间的导数。
4. 刚体的角度运动学方程:θ=θ0+ω0t+1/2αt²,ω=ω0+αt,ω²=ω0²+2α(θ-θ0)。
四、刚体的转动动力学1. 转动惯量的概念:刚体对任意轴的转动惯量是对角速度与角动量之间关系的比较重要的物理量。
2. 转动惯量与质量的关系:转动惯量与质量和物体形状有关,质量越大,转动惯量越大。
3. 转动惯量的计算方法:在一个轴上转动的刚体对该轴的转动惯量的计算方法是对每个质点的质量进行求和。
4. 牛顿第二定律在转动中的适用条件:转动惯量与角加速度的关系。
五、刚体的转动运动与平动的转换1. 垂直平动和转动的关系:刚体在平动运动中的质心对其转动惯量有影响。
2. 能量守恒在转动中的应用:刚体在转动运动中的动能和势能之间的转换过程与保守力的性质有关。
1. 刚体的转动平衡条件:刚体在平衡时,合外力和合力矩均为零。
2. 刚体的稳定条件:刚体在平衡时,摆子有稳定和不稳定平衡之分。
以上便是刚体的转动知识点总结,这些知识点涵盖了刚体的基本概念、转动定律、转动运动学、转动动力学、转动运动与平动的转换以及转动稳定性等内容。
大学物理刚体的转动
$Delta E_{k} = int_{t_{1}}^{t_{2}} vec{M} cdot mathrm{d}vec{θ}$,其中$vec{M}$为合外力矩, $mathrm{d}vec{θ}$为刚体的角位移。
动能与转动惯量的关系
动能与转动惯量的关系
刚体的转动动能等于转动惯量与角速度平方的乘积的一半,即$E_{k} = frac{1}{2} I omega^{2}$,其中$I$为转动惯量,$omega$为角速度。
THANKS.
实验步骤与操作
准备实验设备和材料,检查刚体 转动装置是否稳固。
将刚体用细线悬挂于转动轴上, 调整砝码的位置,使刚体平衡。
使用测角仪测量刚体的初始角度, 记录数据。
实验步骤与操作
01
释放刚体,开始计时, 同时观察刚体的转动情 况,记录数据。
02
使用天平测量砝码的质 量,计算刚体的转动惯 量。
03
根据实验数据,计算刚 体的角速度、角加速度 等物理量。
物理意义
根据刚体的质量和形状,通过计算其 相对于某固定轴的惯性矩来确定。
反映了刚体绕固定轴转动的惯性大小。
影响因素
刚体的质量分布和形状,以及转动轴 的位置。
转动定律的应用
陀螺仪
利用角动量守恒原理制作 的陀螺仪,可以用来测量 角度和方向。
自行车轮
自行车轮在行驶过程中, 由于角动量守恒,可以通 过调整车轮的转动惯量来 改变行驶稳定性。
03
题的能力。
刚体的基本概念
02
刚体的定义
刚体:在任何力的作用下,大 小和形状保持不变,只发生刚 性变形的物体。
刚体是一个理想化的物理模型, 用于简化对实际物体运动的研 究。
刚体在现实世界中并不存在, 但可以近似地描述一些物体在 一定条件下的运动特性。
大学物理教程第五章刚体的转动
⼤学物理教程第五章刚体的转动第五章刚体的转动§5-1 刚体的平动、转动和定轴转动⼀、刚体在外⼒作⽤下形状和⼤⼩都不变化的物体称为刚体.和这定义等价的另⼀定义是:如果物体在外⼒作⽤下它的任意两点之间的距离保持不变,则这物体称为刚体.刚体是⼀种理想模型,在⾃然界中是找不到的.实际上任何物体在外⼒作⽤下,它的形状和⼤⼩都或多或少要发⽣变化.但有许多物体,如果外⼒不甚⼤的话,它的形状和⼤⼩的改变不显著,这样的物体和刚体很接近,刚体⼒学中的结论对于这样的物体⼤致与经验符合.因此在实际问题中这样的物体可以当刚体来处理.⼆、平动和转动刚体的最简单的运动是平动和转动.在§1-3中关于参考系的平动的定义对刚体也适⽤.即如果刚体运动时,它⾥⾯任⼀直线的⽅位始终保持不变,则其运动称为平动.平动的特点是,任⼀时刻刚体中各点的速度和加速度都相等,任⼀点的运动都可以代表整个刚体的运动.刚体运动时,如果刚体中所有质点都绕着⼀条直线作圆周运动(如图5-1),则这刚体的运动称为转动,这条直线称为转轴.座钟的指针、CD 光碟、涡轮发电机的叶⽚和车辆的轮⼦的运动都是转动.转动刚体的转轴可以是固定的(例如涡轮叶⽚的转轴),也可以是运动的(例如车轮的转轴).转轴固定的转动称为定轴转动.可以证明,刚体的⼀般运动可以当作是由⼀平动和⼀绕瞬时轴的转动组合⽽成.例如车轮在地⾯上滚动(图5-2a),可以看成是由车轮随轮轴的平动以及车轮绕轮轴的转动组合⽽成.车轮上任⼀点P 的瞬时速度v ,等于轮轴的瞬时速度v 0与由于该点随车轮绕轮轴转动所具有的速度v r 的⽮量和,如图5-2(b)所⽰.三、定轴转动如图5-1,P 为刚体中⼀质点,当刚体绕定轴转动时,P 作圆周运动,圆⼼O 为转轴与圆平⾯的交点.由于刚体中任意两点之间的距离是固定不变的,刚体中各质点在同⼀时间Δt 内具有相同的⾓位移Δθ,因此在任⼀时刻各质点具有相同的⾓速度ω和⾓加速度α.所以我们可以⽤Δθ、ω和α作为描写刚体绕定轴转动的物理量,称为刚体的⾓位移、⾓速度和⾓加速度.我们在§1-4中讲过的⾓位移、⾓速度和⾓加速度等概念都适⽤于刚体的定轴转动.如果将⾓位移Δθ图5-1图5-2改为θ,则§1-4中公式θ = ωt ,ω = ω0 + αt 及θ = ω0t +21αt 2对刚体的定轴转动亦适⽤.⾄于刚体内各质点的速度和加速度则由于各质点到转轴的距离不同⽽各不相同,但这些线量与⾓量之间的关系仍然由(1-49)式、(1-51)式及(1-52)式表⽰.例题5-1 ⼀转速为1.80×103 r/min 的飞轮,因受制动⽽均匀地减速,经20.0s 停⽌转动.(1) 求⾓加速度和从制动开始到停⽌转动飞轮转过的转数;(2) 求制动开始后t = 10.0s 时飞轮的⾓速度;(3) 设飞轮半径为0.500m ,求在t = 10.0s 时飞轮边缘上⼀点的线速度和切向与法向加速度.解 (1) 设ω0为初⾓速度,由题意得rad/s π60rad/s 60101.80π2π230=??==n ω s 0.20 ,0==t ω因飞轮均匀减速,其转动为匀变速转动,由§1-4公式,⾓加速度为220rad/s π3rad/s 20.0π60-=-=-=t ωωα从开始制动到停⽌转动飞轮的⾓位移θ及转过的转数N 依次为rad π600rad 20.03π2120.0π6021220=??-=+=t t αωθ 300 2ππ600π2===θN (2) t = 10.0s 时飞轮的⾓速度为()rad/s π30rad/s 10.03ππ600=?-=+=t αωω(3) t = 10.0s 时,飞轮边缘上⼀点的线速度为m/s 1.47m/s 30π.5000=?==ωr v相应的切向加速度及法向加速度为22t m/s 71.4m/s 3π.5000-=?-==αr a()23222n m/s 1044.4m/s 30π.5000?=?==ωr a §5-2 ⼒矩转动定律转动惯量⼀、⼒对转轴的⼒矩根据经验,⼒可以使物体转动.但使物体转动的作⽤,不仅与⼒的⼤⼩有关,⽽且与⼒的⽅向以及⼒的作⽤线和转轴的距离有关.例如当我们⽤⼿关门时,⼒的作⽤线和门的转轴的距离越⼤,越容易把门关上.如果⼒的作⽤线通过门的转轴,或⼒的⽅向与转轴平⾏,则不论⽤多⼤的⼒也不能把门关上.⾸先讨论⼒在垂直于转轴的平⾯内的情形.图5-3为与转轴垂直的刚体的截⾯图,⼒F 在此平⾯内,⼒的作⽤线与转轴的距离为d ,d 称为⼒臂,⼒的⼤⼩F 与⼒臂d 的乘积称为⼒F 对转轴的⼒矩,⽤M 表⽰,则M = Fd (5-1)设r 为从转轴到⼒的作⽤点P 的径⽮,φ为r 与F 之间的夹⾓,由图5-3看出,d = r sin φ,故(5-1)式可写为r F Fr M ⊥==?sin (5—2)其中⊥F 为⼒F 在垂直于r ⽅向的分量.上式表⽰,只有⼒F 在垂直于r ⽅向的分量才对⼒矩有贡献.当φ = 0或φ =180°时M = 0,此时⼒的作⽤线通过转轴,0=⊥F ,d = 0.如果⼒F 不在垂直于转轴的平⾯内,则将F 分解为⼆分⼒F l 、F 2.F l 在垂直于转轴的平⾯内,F 2与转轴平⾏(图5-4).由于平⾏分⼒F 2对物体转动不起作⽤,可以不考虑,因此在⼒矩定义式(5-1)或式(5-2)中,F 应理解为外⼒在垂直于转轴的平⾯内的分⼒.⼒对定轴的⼒矩不但有⼤⼩,⽽且有转向.⼀般规定,如果⼒矩使刚体沿反时针⽅向转动,⼒矩为正;如果⼒矩使刚体沿顺时针⽅向转动,⼒矩为负.如果同时有⼏个⼒作⽤于刚体,则刚体所受的合⼒矩等于各个⼒对转轴的⼒矩的代数和.⼒对转轴的⼒矩与⼒对⼀点的⼒矩之间的关系如上所述,如果⼒F 与转轴不垂直,可将它分解为垂直于转轴的分⼒F l 和平⾏于转轴的分⼒F 2.设O 为通过⼒F 的作⽤点P ⽽垂直于转轴的平⾯与转轴的交点.r 为从O 点到P 点的径⽮(图5-4).则由(4-37)式得⼒F 对O 点的⼒矩为M = r × F = r × (F l + F 2) = r × F l + r × F 2将上式两边投影在转轴上.现在来看左右两边投影的意义.左边为⼒F 对O 点的⼒矩在转轴上的投影,右边r × F 2与转轴垂直,它在转轴上的投影为零.r × F l 与转轴平⾏,它在转轴上的投影等于F l r sin φ(图5-4).⽽后者等于⼒F 对转轴的⼒矩.故得结论:⼒F 对转轴的⼒矩等于⼒F 对O 点的⼒矩M 在转轴上的投影,其中O 为通过⼒F 的作⽤点P ⽽垂直于转轴的平⾯与转轴的交点.应当注意,⼒对⼀点的⼒矩是⽮量,⼒对转轴的⼒矩是标量.这是因为后者是前者的投影之故.⼆、转动定律刚体可看成是由⽆数质点组成,当刚体绕定轴转动时,各个质点都绕定轴作圆周运动,取质点P i 来考虑,设其质量为Δm i ,与转轴的距离为r i ,图5-5为经过P i ⽽垂直于转轴的刚体的截⾯图,作⽤于P i 的⼒有外⼒F i 及内⼒F ’i ,令F i t 及F ’i t 分别表⽰F i 及F ’i 沿切线⽅向的分量,则由切向运动⽅程得F i t + F ’i t = Δm i · r i α两边乘以r i :F i t r i + F ’i t r i = (Δm i r i 2)α将此式对刚体中⼀切质点求和得图5-3 图5-4∑∑∑='+ii i i ii i i i r m r F r F α)Δ(2t t (5-3) ∑'i ii r F t 为所有内⼒对转轴的⼒矩的代数和,即合内⼒矩.下⾯证明此合内⼒矩等于零.取刚体中两质点P i 及P j 来考虑.根据⽜顿第三定律,这两质点相互作⽤的⼒⼤⼩相等⽅向相反,且在同⼀直线上(图5-6),此⼆⼒有相同的⼒臂d ,但因⼆⼒⽅向相反,故其对转轴的合⼒矩为零.⼜因内⼒总是成对的,每⼀对内⼒的合⼒矩既然等于零,所以所有内⼒的合⼒矩亦必等于零,即0t ='∑iii r F 因此,(5-3)式化为∑∑=ii i i i i r m r F α)Δ(2t (5-4)∑iii r F t 为所有外⼒对转轴的⼒矩的代数和,即合外⼒矩,⽤M 表⽰,则上式化为∑=ii i r m M α)Δ(2 (5-5)对于⼀定刚体及⼀定转轴来说,上式中∑ii i r m 2Δ为⼀恒量,称为刚体对该转轴的转动惯量,⽤J 表⽰,即∑=ii i r m J 2Δ (5-6)这样(5-5)式便化为αJ M = (5-7)此式表⽰,刚体的⾓加速度与它所受的合外⼒矩成正⽐,与刚体的转动惯量成反⽐,这⼀关系称为转动定律.这是刚体绕定轴转动的基本定律.刚体绕定轴转动的其他定律都可以由这条定律导出.值得注意,这条定律是从⽜顿第⼆、第三定律推出的.三、转动惯量把转动定律αJ M =与⽜顿第⼆定律F = ma ⽐较,可以看出,这两个式⼦⼗分相似,M 对应于F ,α对应于a ,J 对应于m .我们知道,物体的质量m 是物体的平动惯性⼤⼩的量度,与此类似,物体的转动惯量J 是物体的转动惯性⼤⼩的量度.这可以从转动定律αJ M =看出.转动惯量不同的两个刚体,在相同的图5-5 图5-6外⼒矩作⽤下,转动惯量⼤的刚体⾓加速度⼩,就是它的⾓速度难于改变,也就是转动惯性⼤;反之,转动惯量⼩的刚体,它的转动惯性⼩.根据转动惯量定义:∑=ii i r m J 2Δ如果刚体是由若⼲个质量为m 1,m 2,m 3,…的质点组成,在(5-6)式中Δm i 应代以m i ,得+++=233222211r m r m r m J (5-8)如果刚体的质量连续分布在⼀体积内,(5-6)式中总和式应代以积分式,Δm 应代以d m (刚体中的质量元),得==VV V r m r J d d 22ρ(5-9)其中d V 为刚体的体积元,ρ为体积元d V 处的质量体密度,此积分遍及于刚体的整个体积V .(5-9)式可推求如下:将刚体划分为许许多多⼩部分,每⼀部分的线度极⼩,使它可以看成⼀质点.设各⼩部分的质量为Δm 1,Δm 2,…,Δm i ,…,与转轴的距离依次为r 1,r 2,…,r i ,…,按照(5-6)式,刚体的转动惯量J 近似地等于∑i i m r Δ2,即∑≈ii i m r J Δ2设λ为各⼩部分的线度的最⼤值,λ越⼩,每⼀⼩部分越接近于⼀质点,因此和数∑i i m r Δ2越接近于J ,所以当0→λ时,和数∑i i m r Δ2的极限值便完全等于J 了,即∑→=ii i m r J Δlim 20λ按照⾼等数学,上式中右式就是定积分?Vm r d 2,于是得 ??==VV V r m r J d d 22ρ这就是(5-9)式如果刚体的质量连续分布在⼀⾯上或⼀细线上,则需引⽤质量⾯密度或线密度概念,计算转动惯量公式与上式相同,只需将体密度换为⾯密度或线密度,将体积元换为⾯积元或线元即可.参看例题5-2及5-3.在国际单位制中转动惯量单位为千克平⽅⽶,符号为kg·m 2,转动惯量的量纲为ML 2.⼏何形状简单的刚体,其转动惯量可⽤积分法算出,见表5-1.表5-1 质量分布均匀的⼏种刚体的转动惯量a) 细棒(转轴通过中⼼与棒垂直) b) 细棒(转轴过棒的⼀端与棒垂直) 2121ml J = 231ml J =c) 圆柱体(转轴沿⼏何轴) d) 球体(转轴沿球的任⼀直径)221mR J = 252mR J =e) 薄圆筒(转轴沿⼏何轴) f ) 圆筒(转轴沿⼏何轴)2mR J = )(212221R R m J +=例题5-2 求质量为m 、板长为l 的均匀细棒对于通过棒的中点⽽与棒垂直的轴的转动惯量.解在棒上取与轴OO ’距离为x 、长为d x 的⼀⼩段来考虑(图5-7),这⼀⼩段的质量为d m = λd x .其中λ为棒的质量线密度.根据转动惯量定义,棒对轴OO ’的转动惯量为32222121d d l x x m x J l l -λλ===?? 棒的质量线密度lm =λ,代⼊上式得 2121ml J = 例题5-3 求质量为m 、半径为r 的匀质圆盘对于通过圆⼼⽽垂直于圆平⾯的轴的转动惯量.解在圆盘上取⼀半径为x ,宽为d x 的圆环来考虑(图5-8),这圆环的⾯积为2πx d x ,质量为d m = 2πσx d x ,其中σ为圆盘的质量⾯密度.根据转动惯量定义,圆盘对通过圆⼼O ⽽垂直圆平⾯的轴的转动惯量为4032π21d π2d r x x m x J r σσ===?? 圆盘的质量⾯密度2πrm =σ,代⼊上式得 221mr J = 上式对匀质圆柱体对于它的⼏何轴的转动惯量亦适⽤.决定刚体的转动惯量J 的⼤⼩因素有三:①刚体的质量;②刚体质量分布情况;③刚体的转轴的位置.例如质量均匀、⼤⼩相同的铅球和铜球,由于铅球质量较⼤,所以对于位置相同的轴来说,铅球的J 较⼤.⼜如有两个圆柱体,外径相等,质量也相等,但其中⼀个为实⼼,另⼀个为空⼼(质量分布不同),则对于它们的⼏何轴来说空⼼的圆柱体的J 较⼤.⼜如同⼀根棒对于通过棒的中⼼与棒垂直的轴与对于通过棒的⼀端与棒垂直的轴的J 不相同.例题 5-4 在半径分别为R 1、R 2的阶梯形滑轮上反向绕有两根轻绳,各悬挂质量为m 1、m 2的物体,如图5-9所⽰.若滑轮与轴间的摩擦忽略不计,滑轮的转动惯量为J ,求滑轮的⾓加速度α及各绳中张⼒F T1、F T2.解分析各物体的受⼒情况,如图5-9右图,对于滑轮,重⼒和轴的⽀承⼒通过轴⼼,其⼒矩为零.由于是轻绳,应有F T1 = F’T1,F T2 = F ’T2.先假设物体运动⽅向为:m 1的加速度a 1向下,m 2的加速度a 2向上,滑轮沿顺时针⽅向转动.选取物体运动⽅向为坐标轴正向,根据⽜顿第⼆定律和转动定律可得111T 1a m F g m =- 2222T a m g m F =- αJ R F R F =-22T 11T 滑轮边缘的切向加速度等于物体的加速度:αα2211 ,R a R a == 解以上各式得 g R m R m J R m R m 2222112211++-=α g m R m R m J R R m R m J R g m F 1222211212222111T )(???? ?++++=-=α图5-7 图5-8图5-9gm R m R m J R R m R m J R g m F 2222211211211222T )(???? ?++++=+=α讨论:1) 当m 1gR 1 > m 2gR 2 时,物体运动⽅向与原假定⽅向相同.2) 当m 1gR 1 = m 2gR 2 时,α = 0,滑轮作匀速转动或静⽌,运动状态或⽅向由初时刻条件决定.3) 当m 1gR 1 < m 2gR 2时,物体运动⽅向与原假定⽅向相反,即m 1向上,m 2向下,滑轮沿反时针⽅向转动.§5-3 转动动能⼒矩的功⼀、转动动能如图5-10,设刚体绕通过O 点⽽垂直于图平⾯的定轴转动,⾓速度为ω.当刚体转动时,刚体中各质点都绕定轴作圆周运动,因⽽都有动能.刚体的转动动能等于刚体中所有质点的动能之和.设各质点的质量为Δm 1,Δm 2,Δm 3,…,与转轴的距离为r 1,r 2,r 3,…,线速度为v 1 = r 1ω,v 2 = r 2ω,v 3 = r 3ω,…,则刚体的转动动能为22223322222211k Δ21 Δ21Δ21Δ21ωωωω??=+++=∑i i i r m r m r m r m E 但J r m ii i =∑2Δ为刚体的转动惯量,故E k ⼜可写为2k 21ωJ E =(5-10)即刚体的转动动能等于刚体的转动惯量与⾓速度的平⽅的乘积的⼀半,(5-10)式与平动动能公式2k 21v m E =形式相似,⽽且量纲也相同.⼆、⼒矩的功如图5-11,设绕定轴转动的刚体在外⼒F 作⽤下有⼀⾓位移d θ,⼒F 在垂直于转轴的平⾯上,从转轴到⼒的作⽤点的径⽮为r ,则⼒的作⽤点的位移d r 的⼤⼩为d s = r d θ.根据定义,⼒F 在位移d r 中的功为d W = F · d r = F cos α d s因α与φ互为余⾓,cos α = sin φ,故上式可写为d W = Fr sin φd θ⼜由(5-2)式Fr sin φ = M 为⼒F 对转轴的⼒矩,故⼜可写为图5-10 图5-11d W = M d θ(5-11)这就是⼒矩M 在微⼩⾓位移d θ中的功的公式.当刚体在⼒矩M 作⽤下产⽣⼀有限⾓位移θ时,⼒矩的功等于(5-11)式的积分:=θθ0d M W (5-12)如果⼒矩M 为常量,则θθθθθM M M W ===??00d d (5-13)如果刚体同时受到⼏个⼒作⽤,则(5-11)及(5-12)式中M 应理解为这⼏个⼒的合⼒矩.当外⼒矩对刚体作功时,刚体的转动动能就要变化,下⾯我们来求⼒矩的功与刚体转动动能的变化之间的关系.由转动定律tJ J M d d ωα== 其中M 为作⽤于刚体的合外⼒矩,在d t 时间内刚体的⾓位移为d θ = ωd t ,合外⼒矩的功为ωωωωθd d d d d d J t t J M W =??== 当刚体的⾓速度由ω1变为ω2时,合外⼒矩对刚体所作的功等于上式的积分,即21222121d 21ωωωωωωJ J J W -==? (5-14)上式指出,合外⼒矩对刚体所作的功等于刚体的转动动能的增量.例题5-5 ⼀长为l 质量为m 的均匀细长杆OA ,绕通过其⼀端点O 的⽔平轴在铅垂⾯内⾃由摆动.已知另⼀端点A 过最低点时的速率为v 0,杆对通过端点O ⽽垂直于杆长的轴的转动惯量231ml J =,若空⽓阻⼒及轴上的摩擦⼒都可以忽略不计,求杆摆动时A 点升⾼的最⼤⾼度h .解作⽤于杆的⼒有重⼒m g 及轴对杆的⽀承⼒F N ,⽀承⼒F N 通过O 点,其⼒矩为零.重⼒m g 作⽤于杆的质⼼C ,⼒矩为θsin 2l mg ,当杆沿升⾼⽅向有⾓位移d θ时,由于重⼒矩与⾓位移转向相反.其元功为θθd sin 2d l mg W -= 设θm 为杆的最⼤⾓位移,当杆从平衡位置转到最⼤⾓位移θm 位置时,重⼒矩所作的总功为)cos 1(2d sin 2d m 0m θθθθ--=-==??l mg l mg W W 由图5-12看出,h = l (1-cos θm ),代⼊上式得图5-12mgh W 21-= 杆在平衡位置时的⾓速度l00v =ω,在⾓位移最⼤时的⾓速度0m =ω.由于合外⼒矩的功等于转动动能的增量,故得 20220220613121 21021v v m l m l J m gh W -=??-=-=-=ω由此得 gh 320v = §5-4 绕定轴转动的刚体的⾓动量和⾓动量守恒定律当刚体以⾓速度ω绕定轴转动时,刚体中各质点都绕定轴作圆周运动.设质点P i 的质量为Δm i ,与轴的距离为r i ,线速度的⼤⼩为v i ,则质点P i 的动量的⼤⼩为Δm i v i (图5-13),P i 对转轴的⾓动量为Δm i v i r i .刚体中所有质点的⾓动量之和称为刚体对转轴的⾓动量,⽤L 表⽰,则ωωωJ r m r m r m L i i i i i i i i i i =??===∑∑∑22ΔΔΔv这样,刚体的转动定律可写为tL t J t JM d d d )d(d d ===ωω即 tJ t L M d )d(d d ω== (5-15)可以证明:(5-15)式不但适⽤于绕定轴转动的刚体,⽽且适⽤于绕定轴转动的任意物体或物体系.所不同的是,对于绕定轴转动的刚体来说,转动惯量J 是不变的,但对于绕定轴转动的任意物体或物体系来说,J 是可以变化的.在特殊情形下,如果作⽤于转动物体的合外⼒矩M = 0,则由(5-15)式,我们有L = J ω = 常量(5-16)即当物体所受的合外⼒矩等于零时,物体的⾓动量J ω保持不变,这⼀结论称为⾓动量守恒定律.⾓动量守恒有两种情形:① J 不变的情形,由(5-16)式得知ω亦不变,地球的⾃转差不多是这种情形;② J 是变化的情形,由(5-16)式得知,当J 减⼩时,ω增⼤;当J 增⼤时,ω减⼩.例如⼀⼈坐在可以绕铅直轴⾃由转动的凳⼦上,⼿中握着两个很重的哑铃.当他两臂伸开时,使凳⼦和⼈⼀起转动起来,假设轴承处的摩擦很⼩可以忽略不计,则凳⼦和⼈没有受到外⼒矩作⽤,其⾓动量J ω保持不变(图5-14a).当⼈把两臂收缩时,转动惯量J 减⼩,⾓速度ω就增⼤,即是说⽐两臂伸开时要转得快些(图5-14b).⼜如跳⽔运动员在空中翻筋⽃图5-13时,先把两臂伸直,当他从跳板跳起时使他⾃⼰以某⼀⾓速度绕通过腰部的⼀⽔平轴线转动,在空中时使臂和腿尽量蜷缩起来,以减⼩转动惯量,因⽽⾓速度增⼤,在空中迅速翻转,当他快要接近⽔⾯时,再伸直两臂和腿以增⼤转动惯量,减⼩⾓速度,以便竖直地进⼊⽔中.⾓动量守恒定律,与前⾯介绍过的动量守恒定律和能量守恒定律⼀样,是⾃然界中的普遍规律之⼀,不但适⽤于宏观物体的机械运动,也适⽤于原⼦、原⼦核和基本粒⼦等微观粒⼦的运动.例题5-6 ⼀⽔平放置的圆盘形转台.质量为m ’,半径为R ,可绕通过中⼼的竖直轴转动,摩擦阻⼒可以忽略不计.有⼀质量为m 的⼈站在台上距转轴为2R 处.起初⼈和转台⼀起以⾓速度ω1转动,当这⼈⾛到台边后,求⼈和转台⼀起转动的⾓速度ω2.解以⼈和转台为⼀系统,该系统没有受到外⼒矩作⽤,因此⾓动量守恒:J 1ω1 = J 2ω2 =常量即 22212221421ωω??? ??+'=???? ?+'mR R m R m R m 由此得 12422ωωmm m m +'+'= 思考题5-1 对于定轴转动刚体上的不同点来说,下⾯的物理量中哪些具有相同的值,哪些具有不同的值?线速度、法向加速度、切向加速度、⾓位移、⾓速度、⾓加速度.5-2 飞轮转动时,在任意选取的⾓位移间隔Δθ内,⾓速度的增量Δω相等,此飞轮是在作匀加速转动吗?5-3 作⽤在刚体上的合外⼒为F ,合外⼒矩为M ,举例说明在什么情况下(1) F ≠ 0⽽M = 0;(2) F = 0⽽M ≠ 0;(3) F = 0且M = 0.5-4 当刚体受到若⼲外⼒作⽤时,能否⽤平⾏四边形法先求它们的合⼒,再求合⼒的⼒矩?其结果是否等于各外⼒的⼒矩之和?5-5 在磁带录⾳机中,驱动装置将磁带匀速拉过读写磁头,于是磁带被拉出的⼀端卷带轴上剩余的磁带半径逐渐减⼩,作⽤在该卷带轴上的⼒矩随时间如何变化?该卷带轴的⾓速度随时间如何变化?5-6 如果要设计⼀个存储能量的飞盘,在质量和半径相同的情况下,应该选取质量均匀分布的圆盘形的还是质量集中在边缘的圆环形的呢?当⾓速度相同时,⼆者的转动动能之⽐为多少?图5-145-7 ⼏何形状完全相同的铁圆盘与铝圆盘,哪⼀个绕中⼼对称轴的转动惯量⼤?要使它们由静⽌开始绕轴转动并获得相同的⾓速度,对哪⼀个圆盘外⼒矩要作更多的功?5-8 恒星起源于缓慢旋转的⽓团,在重⼒作⽤下,这些⽓团的体积逐渐减⼩,在恒星尺度收缩的过程中,它的⾓速度如何变化?习题5-1 ⼀个螺丝每厘⽶长度上有20条螺纹,⽤电动螺丝起⼦驱动,在12.8s 内推进了1.37cm ,求螺丝的平均⾓速度.5-2 转盘半径为10.0cm ,以⾓加速度10.0 rad/s 2由静⽌开始转动,当t = 5.00s 时,求(1) 转盘的⾓速度;(2) 转盘边缘的切向加速度和法向加速度.5-3 ⼀个匀质圆盘由静⽌开始以恒定⾓加速度绕过中⼼⽽垂直于盘⾯的定轴转动.在某⼀时刻,转速为10.0 r/s ,再转60转后,转速变为15.0 r/s ,试计算:(1)⾓加速度;(2)由静⽌达到10.0 r/s 所需时间;(3)由静⽌到10.0 r/s 时圆盘所转的圈数.5-4 如图所⽰,半径r 1 = 30.0 cm 的A 轮通过⽪带被半径为r 2 = 75.0 cm 的B 轮带动,B 轮以π rad/s 的匀⾓加速度由静⽌起动,轮与⽪带间⽆滑动发⽣,试求A 轮⾓速度达到3.00×103 r/min 所需要的时间.5-5 在边长为b 的正⽅形的顶点上,分别有质量为m 的四个质点,求此系统绕下列转轴的转动惯量:(1)通过其中⼀质点A ,平⾏于对⾓线BD 的转轴,如图所⽰.(2)通过A 垂直于质点所在平⾯的转轴.5-6 求半径为R ,质量为m 的均匀半圆环相对于图中所⽰轴线的转动惯量.5-7 代换汽车引擎盖密封垫时要求对螺栓的扭矩达到90.0N·m(扭矩过⼤会使密封垫失效),如果使⽤长度为45.0 cm 的扳⼿,如图所⽰,在垂直于扳⼿⼿柄⽅向⽤多⼤的作⽤⼒可以完成这⼀⼯作?5-8 ⽔井上提⽔的辘轳为圆柱形,半径为0.200m ,质量为5.00kg ,辘轳缠绕的轻绳上悬挂的⽔桶质量为3.00kg ,如图所⽰.辘轳失去控制使⽔桶⽆初速地下落,在2.00s 后达到井下⽔⾯,忽略辘轳轴上的摩擦阻⼒,求(1) ⽔桶下落的加速度;(2) 井⼝到⽔⾯的深度;(3) 辘轳的⾓加速度.题5-4图题5-5图题5-6图题5-7图5-9 圆盘形飞轮直径为1.25m ,质量为80.0kg ,飞轮上附着的滑轮半径为0.230m ,质量可以忽略,电动机通过环绕滑轮的⽪带驱动飞轮顺时针旋转,如图所⽰.当飞轮的⾓加速度为1.67rad/s 2时,上段⽪带中的张⼒为135N ,忽略轴上的摩擦阻⼒,求下段⽪带中的张⼒.5-10 制陶旋盘半径为0.500m ,转动惯量为12.0kg·m 2,以转速50.0r/min 旋转.陶⼯⽤湿抹布沿径向施加70.0N 的⼒按住旋盘的边缘,使之在6.00s 内制动,求旋盘的边缘和湿抹布之间的有效滑动摩擦系数.5-11 ⼀轻绳跨过滑轮悬有质量不等的⼆物体A 、B ,如图所⽰,滑轮半径为20.0 cm ,转动惯量等于50.0 kg·m 2,滑轮与轴间的摩擦⼒矩为98.1N·m ,绳与滑轮间⽆相对滑动,若滑轮的⾓加速度为2.36 rad/s 2,求滑轮两边绳中张⼒之差.5-12 如图所⽰的系统中,m 1 = 50.0 kg ,m 2 = 40.0 kg ,圆盘形滑轮质量m = 16.0 kg ,半径R = 0.100 m ,若斜⾯是光滑的,倾⾓为30°,绳与滑轮间⽆相对滑动,不计滑轮轴上的摩擦,(1)求绳中张⼒;(2)运动开始时,m 1距地⾯⾼度为1.00 m ,需多少时间m 1到达地⾯?5-13 飞轮质量为60.0 kg ,半径为0.250 m ,当转速为1.00×103 r/min 时,要在5.00 s 内令其制动,求制动⼒F ,设闸⽡与飞轮间摩擦系数µ = 0.400,飞轮的转动惯量可按匀质圆题5-8图题5-9图题5-11图题5-12图题5-13图题5-15图盘计算,闸杆尺⼨如图所⽰.5-14 ⼀个风扇转速为900 r/min ,当马达关闭后,风扇均匀减速,⽌动前它转过了75转,在此过程中制动⼒作的功为44.4 J ,求风扇的转动惯量和摩擦⼒矩.5-15 如图所⽰,质量为24.0 kg 的⿎形轮,可绕⽔平轴转动,⼀绳缠绕于轮上,另⼀端通过质量为5.00 kg 的圆盘形滑轮悬有10.0 kg 的物体,当重物由静⽌开始下降了0.500 m 时,求:(1)物体的速度;(2)绳中张⼒.设绳与滑轮间⽆相对滑动.5-16 蒸汽机的圆盘形飞轮质量为200 kg ,半径为1.00 m ,当飞轮转速为120 r/min 时关闭蒸汽阀门,若飞轮在5.00 min 内停下来,求在此期间飞轮轴上的平均摩擦⼒矩及此⼒矩所作的功.5-17 长为85.0 cm 的均匀细杆,放在倾⾓为45°的光滑斜⾯上,可以绕过上端点的轴在斜⾯上转动,如图所⽰,要使此杆实现绕轴转动⼀周,⾄少应给予它的下端多⼤的初速度? 5-18 如图所⽰,滑轮转动惯量为0.0100 kg·m 2,半径为7.00 cm ,物体质量为5.00 kg ,由⼀绳与劲度系数k = 200 N/m 的弹簧相连,若绳与滑轮间⽆相对滑动,滑轮轴上的摩擦忽略不计,求:(1)当绳拉直弹簧⽆伸长时,使物体由静⽌⽽下落的最⼤距离;(2)物体速度达最⼤值的位置及最⼤速率. 5-19 圆盘形飞轮A 质量为m ,半径为r ,最初以⾓速度ω0转动,与A 共轴的圆盘形飞轮B 质量为4m ,半径为2r ,最初静⽌,如图所⽰,两飞轮啮合后,以同⼀⾓速度ω转动,求ω及啮合过程中机械能的损失. 5-20 ⼀⼈站在⼀匀质圆板状⽔平转台的边缘,转台的轴承处的摩擦可忽略不计,⼈的质量为m ’,转台的质量为10 m ’,半径为R .最初整个系统是静⽌的,这⼈把⼀质量为m 的⽯⼦⽔平地沿转台的边缘的切线⽅向投出,⽯⼦的速率为v (相对于地⾯).求⽯⼦投出后转台的⾓速度与⼈的线速度.5-21 ⼀⼈站⽴在转台上,两臂平举,两⼿各握⼀个m = 4.00 kg 的哑铃,哑铃距转台轴r 0 = 0.800 m ,起初,转台以ω0 = 2π rad/s 的⾓速度转动,然后此⼈放下两臂,使哑铃与轴相距r = 0.200 m ,设⼈与转台的转动惯量不变,且J = 5.00 kg·m 2,转台与轴间摩擦忽略不计,求转台⾓速度变为多⼤?整个系统的动能改变了多少?5-22 证明刚体中任意两质点相互作⽤⼒所作之功的和为零.如果绕定轴转动的刚体除受到轴的⽀承⼒外仅受重⼒作⽤,试证明它的机械能守恒.5-23 ⼀块长L = 0.500 m ,质量为m =3.00 kg 的均匀薄⽊板竖直悬挂,可绕通过其上端的⽔平轴⽆摩擦地⾃由转动,质量m = 0.100 kg 的球以⽔平速度v 0 = 50.0 m/s 击中⽊板中题5-17图题5-18图题5-19图⼼后⼜以速度v = 10.0 m/s 反弹回去,求⽊板摆动可达到的最⼤⾓度.⽊板对于通过其上端轴的转动惯量为231L m J '= . 5-24 半径为R 质量为m '的匀质圆盘⽔平放置,可绕通过圆盘中⼼的竖直轴转动.圆盘边缘及R /2处设置了两条圆形轨道,质量都为m 的两个玩具⼩车分别沿⼆轨道反向运⾏,相对于圆盘的线速度值同为v .若圆盘最初静⽌,求⼆⼩车开始转动后圆盘的⾓速度.5-25 花样滑冰运动员起初伸展⼿臂以转速1.50r/s 旋转,然后他收拢⼿臂紧靠⾝体,使他的转动惯量减少到原来的3/4,求该运动员此时的转速.5-26 旋转⽊马转盘半径为2.00m ,质量为25.0kg ,假设可视为圆盘形刚体,转速为0.200r/ s ,⼀个质量为80.0kg 的⼈站在转盘边缘.当此⼈⾛到距转轴1.00m 处时,求转盘的⾓速度和⼈和转盘组成的系统转动动能的改变量.。
大学物理第三章 刚体总结
M rF
M
rF sin(r,
F)
rF
sin
r
sin F
6、刚体绕定轴的转动定律
M J J d 类比
dt
F maΒιβλιοθήκη 7、 定轴转动刚体的角动量定理
M J J d d(J) d L
dt dt dt
8、定轴转动刚体的角动量守恒定律
当M合外 0时,L J 常量
刚体 总结
刚体(形状、大小不能忽略)
1、刚体(理想模型)
刚体平动运动特点:
1)刚体中所有质点的位移、速度和加速度都相同。 2)研究刚体内任何一个质点的运动,都可代表其它质点的运动,也代
表整个刚体的运动。
定轴转动特点:
绕同一转轴转动的质点,角位移,角速度和角加速度均相同。
2、角速度 矢量
右手螺旋定则:
右手的四指沿刚体的转动方向弯曲,大
拇指方向为 方向
ω
Z轴 v
r
例:已知转速n=1500r/min,求角速度
解:=21500/60=50 rad/s
3、 转动惯量,角动量,转动动能
刚体绕定轴的转动惯量
n
J miri2 J r2dm 类比
i1
m
刚体绕定轴的角动量
Lz J
类比
刚体的转动动能
m惯性质量
P mv动量
Ek
1 2
J 2
类比
1 mv2动能
2
4、影响转动惯量大小的因素
1) 转轴的位置。 2)刚体总质量
3)跟质量分布相关
常用的几个转动惯量
均匀圆环: Jc mr2
均匀圆盘:
Jc
1 2
mr2
均匀细杆:
Jc
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 刚体的定轴转动
质点力学是刚体力学的基础。在外力作 用下,刚体的基本运动形式可以分为平动和 转动。平动时刚体上各点的运动情况完全相 同,可用其上任一点代表。因此,刚体平动 的规律与质点运动规律完全相同。本章主要 研究刚体绕定轴转动的基本规律。 本章主要采取与质点运动类比的研究方 法。类比也是一种常用的科学研究方法。学 习本章必须要注意把有关刚体运动的概念、 规律和研究方法与质点力学进行类比。在类 比中体会它们的联系与区别,从而加深对物 理规律内在一致性的理解。
第三章 刚体的定轴转动
Chapter 3. Fixed-axis rotation of Rigid Body
第三章 刚体的定轴转动
内容联系与线索
在实际问题研究中,许多物体的大小和形状不 能忽略。物体在外力作用下一般都要发生形变,这 对研究物体的运动规律带来了困难。如果物体的形 变很小,而且只着重研究物体在外力作用下的整体 运动规律时,可把物体看作是在外力作用下不发生 形变的理想物体——刚体。它是继质点之后的又一 个理想模型。这种在一定条件下,把复杂具体的物 体抽象为简单的理想模型的方法,是科学研究常用 的方法。它可以使我们抓住事物的本质,突出主要 矛盾,从而找出它所遵循的主要规律。我们必须熟 悉和掌握这种方法。
JC为通过质心的转轴的 转动惯量,另一轴与该轴相 互平行,相距为 d,m为刚 体的质量。 3.转动惯量具有可加性。 思考:下列物体的转动惯量
1 J c mR2 4
2
1 l 4 1 2 J ? J c ml 12
J ?
C
实心圆盘
有空洞圆盘
第三章 刚体的定轴转动——3.2 转动定律
例3-1 质量为mA的物体A初始时静止在光滑的
J r dm
2 m
刚体转动惯量的大小与下列因素有关:
(1)形状大小分别相同的刚体,质量大的 转动惯量大; (2)总质量相同的刚体,质量分布离轴越 远,转动惯量越大; (3)对同一刚体而言,转轴位置不同,转动 惯量的大小就不同。
第三章 刚体的定轴转动——3.2 转动定律
1.转动惯量的计算 1.1 均匀细棒
C
平 架 陀 螺 仪
C
第三章 刚体的定轴转动——3.3 角动量守恒定律
4.2 角动量守恒定理不仅对刚体成立而且对 非刚体也成立.一般有三种情况: A:J不变,也不变,保持匀速转动。(常 平架上的回转仪)。 B:J发生变化,要发生改变,但J不变。
F
F
C:开始不旋转的物体,当其一 部分旋转时,必引起另一部分 朝另一反方向旋转。 4.3 一些实际现象的讨论 •芭蕾舞演员的旋转动作
解:隔离物体,受力分析 A 分别根据 牛二定律 和转动定 律列方程
T1 C
T1
R
N
T2
B
PB A : T1 mAa (1) B : mB g T2 mBa ( 2 )
T2
滑轮视为均匀圆盘, J
v ( 2ay ) 2 ( 3 ) C : RT2 RT1 M J ( 4 ) a R ( 5 ) 1
第三章 刚体的定轴转动——3.1 刚体运动的描述
二、刚体运动学
1.刚体的平动 刚体上所有点的运动轨迹都相同。 2.刚体定轴转动 刚体相对于某一惯性系(如地 面)固定不动的直线的转动。 3.刚体的一般运动 平动和转动的合成运动。
第三章 刚体的定轴转动——3.1 刚体运动的描述
2.角速度 Angular Velocity d dt 3.角加速度 Angular
3g (1 cos) 2l
第三章 刚体的定轴转动——3.3 角动量守恒定律
§3-3 角动量守恒定律 Law of Conservation of Angular Momentum
一、质点的角动量定理和角动量守恒定律 1.质点的角动量 L r mv 定义:质点m 相对于 z 参考点O 的角动量为 注意: L y 1) L是矢量 O 方向:右手定则确定 B 大小: L mrv sin 2 SOAB r mv x A 2 1 单位 : kgm s
第三章 刚体的定轴转动——3.2 转动定律
由初始条件: t 0时, 0 0, 0 0得 : 3g 0 d 2l 0 si nd
3g d sin d 2l
d d d 3 g sin dt d dt 2l
o
mg
J J 00
4.注意:4.1 对一般刚体运动,该定理对通过质心的转 轴的转动也是成立的.即合外力对通过质心的轴的力矩 恒为零时,则对该轴的角动量守恒.
第三章 刚体的定轴转动——3.3 角动量守恒定律
J C1 J C2
( MC 0) 常
C
C
F F
F
mg
C
ri
fi
Fi
n : Fi cosi f i cosi mi ain (2) : Fi sini f i sini mi ai (3)
法向分力产生的力矩为零。 (3) ri 切向分力的力矩为:
O
i i ri
ri Fi sini ri f i sini mi ai ri mi ri
2 mC R
2
1
联立求解方程(1)~(5)即可。
第三章 刚体的定轴转动——3.2 转动定律
例3-2 一长为l 质量为m 的匀质细杆竖直放置
,其下端与一固定铰链o 相连,并可绕其转 动。由于此杆处于非稳定平衡状态,当其受 到扰动时,细杆将在重力的作用下由静止开 始绕铰链o 转动。试计算细杆转到与铅直线 成 角时,杆的角加速度和角速度。 解:受力分析 取任一状态,由转动定律 1 M 外 mgl sin J mg 2 o 1 3g 2 J ml sin 3 2l
i
i i
d M J J dt
i
刚体所受合外力矩等于刚体 转动惯量和角加速度的乘积。
第三章 刚体的定轴转动——3.2 转动定律
三、转动惯量 Moment of Inertia 描述刚体转动惯性大小的物理量。
J mi ri2
i
适用于质量离散分布刚体 适用于质量连续分布刚体
2
Acceleration
0
0
第三章 刚体的定轴转动——3.2 转动定律
§3-2 转动定律
一、力矩 torque z o F d
P M 的方向由右手法则确定 1.定轴转动,力矩的方向可用正、负号表示。 几个力同时作用同 M Mi 一刚体,合力矩为 i 结论:刚体内 2.内力对转轴的力矩为零 力不产生力矩
M Fd Fr sin M r F
r
第三章 刚体的定轴转动——3.2 转动定律
二、转动定律 Law of Rotation of a Rigid Body 考察刚体上任意质元: mi 在 f i 和 Fi 的作用下作圆 周运动,由牛顿定律: Fi f i mi ai (1)
2
第三章 刚体的定轴转动——3.2 转动定律
对组成刚体的质点系来说: (ri Fi si n i ri f i si n i )
i
mi ai ri mi ri2
因为内力产生的力矩为零,于是总力矩: 2 2 M ri mi 令 J ri mi
§3-1 刚体运动的描述
一、刚体 Rigid Body 在任何外力作用下,其形状 和大小均不发生改变的物体。 mj 说明: 1)理想模型; mi 2)在外力的作用下,任意 两点均不发生相对位移,即 ri j c 3)内力无穷大的特殊质点系。 刚体力学是质点力学的应用和发展, 所有研究质点、质点系的方法均可应用。
+
m
M
X
已知:M , m , R , 0 求: 人 ,台 解:以M、m为研究对象
M外力矩 0
故角动量守恒 以地面为参照,建立轴 的正方向如图
第三章 刚体的定轴转动——3.3 角动量守恒定律
若人和转台的角速度分别为 人 , 台 人和台原来都静止, 人 m 故角动量 +
1.2 均匀细圆环 转轴通过圆心并与环面垂直
dm O
m
R m dl 解:质元 dm 2R 2 mR 2R 2 2 J R dm dl mR 2R 0
一般物体的转动惯量要由实验确定。
第三章 刚体的定轴转动——3.2 转动定律
zC
d C
z
2.平行轴定理: J J c md
水平面上,它和一轻绳索相连接,此绳索 跨过半径为R、质量为mC的园柱形滑轮C ,并系在另一质量为mB的物体B 上,滑轮 与轴承间的摩擦力矩为 M 。 1)这两物体的加速度为多少? 水平和铅直两段绳索的张力为多少? A 2)B物体下落距离 y C 时速率为多少? B y
第三章 刚体的定轴转动——3.2 转动定律
第三章 刚体的定轴转动
教学要求
1. 理解角位移、角速度、角加速度等概 念;掌握线量与角量的关系。 2. 理解力矩和转动惯量的概念;掌握刚 体转动定律并能进行简单计算。 3. 掌握刚体转动动能的概念,能正确应 用转动动能定理。 4. 了解角动量的概念,掌握角动量定理 和角动量守恒定律。
第三章 刚体的定轴转动——3.1 刚体运动的描述
第三章 刚体的定轴转动——3.3 角动量守恒定律
2.刚体定轴转动的角动量定理
dL d M ( J ) dt dt t t Mdt J2 J1
2 1
3.刚体定轴转动的角动量守恒定律 由角动量定理
M外 0时,L J 恒矢量
dL d M ( J ) dt dt