简单不等式七年级下

合集下载

人教版七年级下册课件不等式及其解集

人教版七年级下册课件不等式及其解集

9.1.1 不等式及其解集
儿童火车票身高新标准
问题1: 五一节快到了,小李准备和父母
全 单位"米 价 票
半 价 票
坐火车去衡山旅游.若小李身高 为x米,那么:
(1)根据儿童火车票身高新标准 ① 当x满足 x<1.1 时,他可免票. ② 当x满足 x ≥ 1.5 时,他该买全票.
(2)已知小李家到衡山的距离为120
A. x=3是2x>1的解集 B. x=3不是2x>1的解 C. x=3是2x>1的唯一解 D. x=3是2x>1的解
2 .下列数值哪些是不等式 x+3> 6的解?哪些不是? -4, -2.5, 0, 1, 2.5, 3, 3.2, 4.8, 8, 12
才自清明志自高。
不等式解集的几何表示 志之所趋,无远勿届,穷山复海不能限也;志之所向,无坚不摧。
当x=2时,x+3=5成立; x=3是2x>1的唯一解 D. 1 不等式及其解集 以这个速度行驶50千米所用的时间不到 小时
1 不等关系 不相等 处处可见
在古代,我们的祖先就懂得了翘翘板的工作原理, 并且根据这一原理设计出了一些简单机械,并把它们 用到了生活实践当中.
“不相等”处处可见.从今天起,我们开始学习一类 新的数学知识:不等式.
对比来工作的. 解: ⑴ x>2 ;
“总≤”结读:作用“数小轴于表或示等不于等”式或的“解不集大的于步”骤: 思①考若:该不车等计式划的在解上和午不1等0点式准的时解到集达是,一可样列的式吗子?两者有什么区别与区别. ? ((3)6x)的a一+2半≠与a-2 的和不大于4 ①⑶ 当 a与x满5和足小于7 ; ⑷时,a与他2可的免差票不.小于-1; 已思知考导 :不火等线式的的燃解烧和速不度等为式0的. 解集是一样的吗?两者有什么区别与区别? x“=≥3”是读2x作>1“的大解于集或等B于. ”或“不小于” 你解还:记 设得导小火孩线玩的的长翘度翘为板x米吗。?你想过它的工作原 雄新鹰的必 数须学比知鸟识飞:得不高等,式因.为它的猎物就是鸟。

七年级下册不等式知识点

七年级下册不等式知识点

七年级下册不等式知识点在七年级下学期,数学课程涉及了很多关于不等式的知识点。

以下是关于这个主题的一些重要内容。

一、符号当我们谈论不等式时,我们经常使用以下符号:1. 大于号(>)这个符号表示左边的值大于右边的值。

例如:5 > 3这个不等式确定了5比3大。

我们可以在数轴上用箭头表示这个不等式。

2. 小于号(<)这个符号表示左边的值小于右边的值。

例如:3 < 5这个不等式确定了3比5小。

我们可以在数轴上用箭头表示这个不等式。

3. 大于等于号(≥)这个符号表示左边的值大于或等于右边的值。

例如:5 ≥ 5这个不等式确定了5大于或等于5。

我们可以在数轴上用箭头表示这个不等式。

4. 小于等于号(≤)这个符号表示左边的值小于或等于右边的值。

例如:3 ≤ 5这个不等式确定了3小于或等于5。

我们可以在数轴上用箭头表示这个不等式。

二、算法1. 加减法如果我们在不等式的两边都加上一个相同的数字,这个不等式仍然成立。

例如:如果a>4,那么a+2>6我们可以将4+2写成6,并将结果放到不等式的右边。

2. 乘除法如果我们使用相同的数字(除了0)乘或除不等式的两边,这个不等式仍然成立。

例如:如果a>4,那么2a>8如果b<6,那么3b<18我们可以使用相同的数字2来乘上a,使用相同的数字3来乘上b。

需要记住,如果我们使用一个负数乘或除一个不等式的两边,那么这个不等式的符号将会改变。

例如:如果a>4,那么-2a<-8如果b<6,那么-3b>-18我们可以使用负数-2来乘上a,使用负数-3来乘上b。

这会导致符号发生变化。

三、绘制数轴在学习不等式时,我们可以使用数轴。

数轴是一条线,它可以帮助我们可视化不等式。

数轴的一边代表较小的数,另一边代表较大的数。

例如,考虑这个不等式:x > 3。

我们可以绘制一个以3为起点的数轴,并将符号在数轴上表示出来。

新人教七年级数学下册 第九章不等式与不等式组全章讲与练

新人教七年级数学下册 第九章不等式与不等式组全章讲与练

第九章不等式与不等式组第一节、知识梳理一、学习目标1.掌握不等式及其解(解集)的概念,理解不等式的意义.2.理解不等式的性质并会用不等式基本性质解简单的不等式.3.会用数轴表示出不等式的解集.二、知识概要1.不等式:一般地,用不等号“>”、“<”表示不等关系的式子叫做不等式.2.不等式的解:一般地,在含有未知数的不等式中,能使不等式成立的未知数的值,叫做不等式的解.3.不等式的解集:一个不等式的所有解,组成这个不等式的解的集合,称之为此不等式的解集.4.一元一次不等式:只含有一个未知数,且未知数的次数是1的不等式,叫做一元一次不等式.5.不等式的性质:性质一:不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.性质二:不等式两边都乘以(或除以)同一个正数,不等号的方向不变.性质三:不等式的两边都乘以(或除以)同一个负数,不等号方向改变.6.三角形中任意两边之差小于第三边.三、重点难点重点是不等式的基本性质及其应用,难点是不等式和不等式解集的理解.四、知识本周知识由以前学过的比较大小拓展而来,又为解决实际问题提供了一个解题的工具,并为以后学的不等式组打下基础.五、中考视点不等式也是经常考到的内容,经常出现在选择题、填空题中,以解不等式为主.有时在一些解答题中也要用到不等式,利用不等关系求X围等.第二节、教材解读1. 常用的不等号有哪些?常用的不等号有五种,其读法和意义是:(1)“≠”读作“不等于”,它说明两个量是不相等的,但不能明确哪个大哪个小.(2)“>”读作“大于”,表示其左边的量比右边的量大.(3)“<”读作“小于”,表示其左边的量比右边的量小.(4)“≥”读作“大于或等于”,即“不小于”,表示左边的量不小于右边的量.(5)“≤”读作“小于或等于”,即“不大于”,表示左边的量不大于右边的量.2. 如何恰当地列不等式表示不等关系?(1)找准题中不等关系的两个量,并用代数式表示.(2)正确理解题目中的关键词语,如:多、少、快、慢、增加了、减少了、不足、不到、不大于、不小于、不超过、非负数、至多、至少等的确切含义.(3)选用与题意符合的不等号将表示不等关系的两个量的代数式连接起来.根据下列关系列不等式:a的2倍与b的的和不大于2a+ b.“不大于”就是“小于或等于”.列不等式为:2a+b≤3.3. 用数轴表示不等式注意什么?用数轴表示不等式要注意两点:一是边界;二是方向.若边界点在X围内则用实心点表示,若边界点不在X围内,则用空心圆圈表示;方向是对于边界点而言,大于向右画,而小于则向左画.在同一个数轴上表示下列两个不等式:x>-3;x≤2.第三节、错题剖析一、去括号时,错用乘法分配律【例1】解不等式3x+2(2-4x)<19.错解: 去括号,得3x+4-4x<19,解得x>-15.诊断: 错解在去括号时,括号前面的数2没有乘以括号内的每一项.正解: 去括号,得3x+4-8x<19,-5x<15,所以x>-3.二、去括号时,忽视括号前的负号【例2】解不等式5x-3(2x-1)>-6.错解: 去括号,得5x-6x-3>-6,解得x<3.诊断:去括号时,当括号前面是“-”时,去掉括号和前面的“-”,括号内的各项都要改变符号.错解在去括号时,没有将括号内的项全改变符号.正解: 去括号,得5x-6x+3>-6,所以-x>-9,所以x<9.三、移项时,不改变符号【例3】解不等式4x-5<2x-9.错解: 移项,得4x+2x<-9-5,即6x<-14,所以诊断: 一元一次不等式中的移项和一元一次方程中的移项一样,移项就要改变符号,错解忽略了这一点.正解: 移项,得4x-2x<-9+5,解得2x<-4,所以x<-2.四、去分母时,忽视分数线的括号作用【例4】解不等式错解: 去分母,得6x-2x-5>14,解得诊断: 去分母时,如果分子是一个整式,去掉分母后要用括号将分子括起来.错解在去掉分母时,忽视了分数线的括号作用.正解: 去分母,得6x-(2x-5)>14,去括号,得6x-2x+5>14,解得五、不等式两边同除以负数,不改变方向【例5】解不等式3x-6<1+7x.错解:移项,得3x-7x<1+6,即-4x<7,所以诊断:将不等式-4x<7的系数化为1时,不等式两边同除以-4后,根据不等式的基本性质:不等式两边同乘以或同除以同一个负数,不等号要改变方向,因此造成了错解.正解:移项,得3x-7x<1+6,即-4x<7,所以x>【例6】 x2与a的和不是正数用不等式表示.错解及分析: x2+a<0. 对“不是正数”理解不清.x2与a的和是0或负数.正解: x2+a≤0.【例7】求不等式的非负整数解.错解及分析:整理得,3x≤16,所以故其非负整数解是1,2,3,4,5.本例的解题过程没有错误,错在对“非负整数”的理解.正解:整理得,3x≤16,所以故其非负整数解是0,1,2,3,4,5.【例8】解不等式3-5(x-2)-4(-1+5x)<0.错解及分析:去括号,得3-x-2-4+5x<0,即4x<3,所以本题一是去括号后各项没有改变符号;二是一个数乘以一个多项式时应该把这个数和多项式的每一项相乘.正解:去括号得3-x+10+4-20x<0,即-21x<-17,所以【例9】解不等式7x-6<4x-9.错解及分析:移项,得7x+4x<-9-6,即11x<-15,所以一元一次不等式中移项和一元一次方程中的移项一样,都要改变符号.正解:移项,得7x-4x<-9+6,即3x<-3,所以x<-1.【例10】解不等式错解及分析:去分母,得3+2(2-3x)≤5(1+x).即11x≥2,所以错误的原因是在去分母时漏乘了不含分母的一项“3”.正解:去分母,得30+2(2-3x)≤5(1+x).即11x≥29,所以【例11】解不等式6x-6≤1+7x.错解及分析:移项,得6x-7x≤1+6.即-x≤7,所以x<-7.将不等式-x≤7的系数化为1时,不等式两边同除以-1,不等号没有改变方向,因此造成了错解.正解:移项,得6x-7x<1+6.即-x≤7,所以x≥-7.【例12】解关于x的不等式m(x-2)>x-2.错解: 化简,得(m-1)x>2(m-1),所以x>2.诊断: 错解默认为m-1>0,实际上m-1还可能小于或等于0.正解: 化简,得(m-1)x>2(m-1),①当m-1>0时,x>2;②当m-1<0时,x<2;③当m-1=0时,无解.【例13】解不等式(a-1)x>3.错解:系数化为1,得x>.诊断:此题的未知数系数含有字母,不能直接在不等式两边同时除以这个系数,应该分类讨论.正解:①当a-1>0时,x>;②当a=1时,0×x>3,不等式无解;③当a-1<0时,x<.【例14】不等式组的解集为 .错解:两个不等式相加,得 x-1<0,所以x<1.诊断:这是解法上的错误,它把解不等式组与解一次方程组的方法混为一谈,不等式组的解法是分别求出不等式组中各个不等式的解集,然后在数轴上表示出来,求得的公共部分就是不等式组的解集,而不能用解方程组的方法来求解正解:解不等式组,得.在同一条数轴上表示出它们的解集,如图,所以不等式组的解集为:0<x<【例15】解不等式组错解:因为5x-3>4x+2,且4x+2>3x-2,所以 5x-3>3x-2.移项,得5x-3x>-2+3.解得 x>.诊断:上面的解法套用了解方程组的方法,是否正确,我们可以在x>的条件下,任取一个x的值,看是否满足不等式组.如取x=1,将它代入5x-3>4x+2,得2>6(不成立).可知x>不是原方程组的解集,其造成错误的原因是由原不等式组变形为一个新的不等式时,改变了不等式的解集.正解:由5x-3>4x+2,得x>5.由4x+2>3x-2,得x>-4.综合x>5和x>-4,得原不等式组的解集为x>5.【例16】解不等式组错解:由不等式2x+3<7可得x<2.由不等式5x-6>9可得x>3.所以原不等式组的解集为2>x>3.诊断:由不等式性质可得,2>3,这是不可能的.正解:由不等式2x+3<7可得x<2.由不等式5x-6>9可得x>3.所以原不等式组无解.【例17】解不等式错解:去分母,得3-4x-1>9x.移项,得-4x-9x>1-3合并,得-13x>-2系数化为1,得诊断:本题忽视了分数线的双重作用,去分母时,若分子为多项式,应对其加上括号.正解:去分母,得3-(4x-1)>9x去括号,得3-4x+1>9x.移项,得-4x-9x>-1-3合并,得-13x>-4系数化为1,得【例18】若不等式组的解集为x>2,则a的取值X围是().A. a<2B. a≤2C. a>2D. a≥2错解及分析:原不等式组可分为得a<2,故选A.当a=2时,原不等式组变为解集也为x>2.正解:应为a≤2 ,故选B.【例19】解不等式组错解:②-①,得不等式组的解集为x<-13.诊断:错解中把方程组的解法套用到不等式组中.正解:由不等式2x<7+x得到x<7.由不等式3x<x-6得到x<-3.所以原不等式组的解集为x<-3.第四节、思维点拨一、巧用乘法【例1】解不等式0.125x<3.【思考与分析】此不等式是一元一次不等式的一般形式,只需不等式两边同时除以0.125,就可以化系数为“1”,但是较繁.不如利用不等式的性质2两边同乘以8要比两边同除以0.125解得简捷.解:两边同乘以8,得x<24.二、巧去分母【例2】解不等式【思考与分析】常规方法是先去分母,但仔细观察就会发现,可先进行移项.解:移项,得合并同类项,得x≥-1.【例3】解不等式【思考与分析】常规方法是去分母,两边同乘以分母的最小公倍数.但我们会注意到“0.25×4=1,0.5×2=1”,则利用分数的性质,对左边第一项分子、分母同乘以4,第二项分子、分母同乘以2,这样就可以化去分母并且系数为整数.解:利用分数的性质(即左边第一项分子、分母同乘以4,第二项分子、分母同乘以2),得8x+4-2(x-2)≤2,去括号,得8x+4-2x+4≤2,移项,合并同类项,得6x≤-6两边同时除以6得x≤-1.三、根据已知条件取特殊值【例4】设a、b是不相等的任意正数,又x=,则x、y这两个数一定是() A.都不大于2B.都不小于2C.至少有一个大于2D.至少有一个小于2【思考与分析】不妨取a=1,b=3,得x=10,y=从而排除A、B,再取a=3,b=4,得,从而排除D,故选C.答案:C.【反思】用特殊值法解选择题时,如果所取的特殊值使部分选项取得相同的结果,则应另选特殊值再验,直至选出答案.四、根据数轴取特殊值【例5】不等式组的解集在数轴上表示出来是如下图中的()【思考与分析】本题的常规方法是先解不等式组,然后再对照各选项选出正确答案,由于这样做要解不等式组,比较麻烦.仔细观察各选项中的数轴,有两个特殊数2,-1,不妨先取x=2,代入不成立,故可排除A、B.再取x=0,代入不成立,又可排除C,从而选D,这样做不仅节省了时间,而且又减少了出错的机会﹒答案:D.【反思】用特殊值法解选择题时,要综合运用验证法,排除法等技巧,快速选出正确答案﹒比较两个数或两个代数式的大小,可以运用求差法:如果a-b>0,则a>b;如果a-b<0,则a<b.运用求差法比较大小的一般步骤是:(1)作差;(2)判断差的符号;(3)确定大小.【例6】设x>y,试比较代数式-(8-10x)与-(8-10y)的大小,如果较大的代数式为正数,则其中最小的正整数x或y的值是多少?【思考与分析】根据求差法的步骤我们先求出两个式子的差,然后再根据已知条件x>y,来判断这个差的符号,从而比较两个代数式的大小.解:由两式作差得-(8-10x)-[-(8-10y)]=-8+10x+8-10y=10x-10y.因为x>y,所以10x>10y,即10x-10y>0.所以-(8-10x)>-(8-10y).又由题意得-(8-10x)>0,即x>,所以x最小的正整数值为1.【例7】有一个三口之家准备在假期出外旅行,咨询时了解到东方旅行社规定:若父母各买一X全票则孩子可以按全票的七折购票;而光明旅行社则规定:三人均可按团体票计价,即按全票的80%收费.若两家旅行社的票价相同,则实际哪家收费较低呢?【思考与分析】要比较哪家旅行社的收费低,我们可以先用含有未知数的式子表示出两家旅行社需要的费用,然后根据求差法的步骤,求出两个式子的差,再根据已知条件判断这个差的符号即可比较出哪个旅行社的费用低.解:设这两家旅行社全票的价格为a元,依题意东方旅行社的收费为2a+70%a=,光明旅行社的收费为3a×80%=.因为-=>0,所以实际上光明旅行社的收费较低.【反思】在解题时我们为什么设这两家旅行社全票的价格为a元呢?因为如果不设的话,我们即使知道用求差法比较大小,也无从下手.五、巧去括号【例8】【思考与分析】观察题目中的括号及数字的特点可先考虑去中括号,再去小括号,这样会使运算简便.解:去中括号,得去分母,得 3x+60<28+8x,移项,合并同类项,得-5x<-32,【思考与分析】观察题目中的括号及数字的特点可从里向外去小括号,给后面的运算带来方便.解:去小括号,得六、巧用“整体思想”【例9】解不等式:【思考与分析】观察题目中括号内外可知都有相同的项:2x-1,我们把2x-1视为整体,再去中括号和分母,则可使运算简捷.解: 3(2x-1)-9(2x-1)-9<5.合并同类项得-6×(2x-1)<14.解得反思:我们在解带有括号的一元一次不等式时,我们要善于观察题目的特点,巧去括号可使运算简便. 【例10】在欧洲足球锦标赛中,共有16支队伍参加比赛,争夺象征欧洲足球最高荣誉的“德劳内杯”.16支队伍被分成4个小组,进行单循环赛(即每个队需同其他三个队各赛一场),胜一场积3分,平一场积1分,负一场积0分,每组按照积分的前两名出线进入前八强,每个队在小组赛中需积多少分,才能确保出线?【思考与分析】根据题意,只有小组赛中的积分的前两名才能出线,我们可以分几种情况来讨论出线积分的多少.(1)若某一队三战全胜积9分,则同组的另一小队需保证小组第二才有出线的希望,在剩下的两场比赛中,它有六种可能:两场全胜积6分,一胜一平积4分,一胜一负积3分,两平积2分,一平一负积1分,两负积0分.(三场比赛,肯定有一场负)因此,在这种情况中,至少积6分才能确保出线;(2)若某一队三战两胜一平积7分,则小组第二至少要两胜积6分才能出线;(3)若某一队三战两胜一负积6分,则其他两个队也可能三战两胜一负积6分,这样三队同积6分,不能确保小组出线.由以上思考讨论可知,在小组赛中,积分可能出现三个队积分相同,为了确保出线,至少需积7分,才能保证以小组第二的身份出线.解:需7分.【小结】通过解题过程我们知道做这类题的时候要注意:在足球比赛中,一般按积分多少排名次;积分相等的两队,净胜球数多的队名次在前;积分、净胜球数都相等的球队,进球数多的队名次在前;分析有关足球比赛的问题时,不能单纯的利用不等关系判断,还要注意到相互之间的胜负关系.第五节、竞赛数学【例1】满足的x的值中,绝对值不超过11的那些整数之和等于 .【思考与分析】要求出那些整数之和,必须求出不等式的绝对值不超过11的整数解,因此我们应该先解不等式.解:原不等式去分母,得3(2+x)≥2(2x-1),去括号,移项,合并同类项,得-x≥-8,即x≤8.满足x≤8且绝对值不超过11的整数有0,±1,±2,±3,±4,±5,±6,±7,±8,-9,-10,-11.这些整数的和为(-9)+(-10)+(-11)=-30.【例2】如果关于x的一元一次方程3(x+4)=2a+5的解大于关于x的方程的解,那么().【思考与分析】这道题把方程问题转化为解不等式问题,利用了转化的数学思想.由于第一个方程的解大于第二个方程的解,只要先分别解出关于x的两个方程的解(两个解都是关于a的式子),再令第一个方程的解大于第二个方程的解,就可以求出问题的答案.解:关于x的方程3(x+4)=2a+5的解为关于x的方程的解为由题意得,解得.因此选D.【例3】如果,2+c>2,那么().A. a-c>a+cB. c-a>c+aC. ac>-acD. 3a>2a【思考与分析】已知两个不等式分别是关于a和c的不等式,求得它们的解集后,便可以找到正确的答案.解: 由所以a<0.由2+c>2,得c>0,则有-c<c.两边都加上a,得a-c<a+c,排除A;由a<0,c>0,得ac<0,-ac>0,从而ac<-ac,排除C;由a<0,两边都加上2a,得3a<2a,排除D.答案应该选B,事实上,由a<0,得-a>0,从而-a>a,两边同时加上c,可得c-a>c+a.【例4】四个连续整数的和为S,S满足不等式,这四个数中最大数与最小数的平方差等于 .【思考与分析】由于四个数是连续整数,我们欲求最大值与最小值,故只须知四数之一就行了,由它们的和满足的不等式就可以求出.解:设四个连续整数为m-1,m,m+1,m+2,它们的和为S=4m+2.由<19,解得7<m<9.由于m为整数,所以m=8,则四个连续整数为7,8,9,10,因此最大数与最小数的平方的差为102-72=51.从数轴上看,一个数的绝对值就是表示这个数的点离开原点的距离.但除零以外,绝对值都是表示两个数的绝对值,即一个数与它相反数的绝对值是一样的.由于这个性质,含有绝对值号的不等式的求解过程出现了一些新特点.一个实数a的绝对值记作∣a∣,指的是由a所惟一确定的非负实数:含绝对值的不等式的性质:(1)∣a∣≥∣b∣b≤|a|或b≥-|a|,∣a∣≤∣b∣∣b∣≤a≤∣b∣;(2)∣a∣-∣b∣≤∣a+b∣≤∣∣a∣+∣b∣;(3)∣a∣-∣b∣≤∣a-b∣≤∣a∣+∣b∣.由于绝对值的定义,含有绝对值号的代数式无法进行统一的代数运算.通常的手法是按照绝对值符号内的代数式取值的正、负情况,去掉绝对值符号,转化为不含绝对值号的代数式进行运算,即含有绝对值号的不等式的求解,常用分类讨论法.在进行分类讨论时,要注意所划分的类别之间应该不重、不漏.下面结合例题予以分析.【例5】解不等式|x-5|-|2x+3|<1.【分析】关键是去掉绝对值符号前后的变号.分三个区间讨论:解:(1)当当x≤时,原不等式化为-(x-5)-[-(2x+3)]<1,解得x<-7,结合x≤,故x<-7是原不等式的解;(2)当<x≤5时,原不等式化为-(x-5)-(2x+3)<1,解得是原不等式的解;(3)当x>5时,原不等式化为:x-5-(2x+3)<1,解得x>-9,结合x>5,故x>5是原不等式的解.综合(1),(2),(3)可知,是原不等式的解.第六节、本章训练基础训练题1.不等式x+3<6的非负整数解为().A. 1,2B. 1,2,3C. 1,2,0D. 1,2,3,02.已知三个连续奇数的和不超过27且大于10,这样的数组共有().A. 1个B. 2个C. 3个D. 4个3.的值不小于-2,则a的取值X围是().+2x的值不大于8-的值,那么x的正整数解是 .5.小明准备用26元钱买火腿肠和方便面,已知一根火腿肠2元,一盒方便面3元,他买了5盒方便面,还可以买多少根火腿肠?6.小华用最小刻度是1厘米的刻度尺,测量一本书的长,测得结果是17.5厘米,这0.5厘米是他估计的,并不准确,若设他所测量的书的长为x厘米,那么x应该满足的不等式是什么?答案1. C2. B3. C4. 1,2,35.解:设还可以买x根火腿肠.由题意我们可列不等式5×3+2x≤26,解得因为x必须为正整数,所以x=1,2,3,4,5.答:小明还可以买火腿肠的数目不超过5根.6.解:17<x<18.提高训练题2.李明在第一次数学测验中得76分,在第二次测验中得92分,设第三次测验的分数为x,且三次的平均分不低于85分,求x的取值X围.3.小强去超市买某种牌子的衬衣,该种衬衣单价为每件100元,小强想买的衬衣数不少于5件,路上交通费为10元,小强准备钱时有以下几种选择:准备400元,准备500元,准备510元,准备610元.请你说明哪种方案可行?4.某商城以单价260元购进一批DVD机,出售时标价398元,由于销售不好,商场准备降价出售,但要保证利润不低于10%.小明说:“可降价100元.”小英说:“可降价150元.”小华说:“降价不能超过112元.”你同意他们谁的说法?5. 巧解下列不等式:(1) 0.375x-2≤0.5x(2)(4)6. 解下列不等式:(1) 9-2(x-2)≥6(2) 12-3x<8-2x7. 已知答案2.解:由题意得我们可列不等式≥85,解得x≥87.3.解:设小明准备了x元钱.我们由题意可列不等式≥5.解得x≥510.所以准备510元或准备610元都可以.4.解:设降价x元.5. (1)x≥-16(提示:不等式两边同乘8);我们可以由题意列不等式398-x-260≥260×10%.解得x≤112.所以小明和小华的说法是正确的.强化训练题1. 若实数a>1,则实数M=a,N=的大小关系是().A. P>N>M B. M>N>PC. N>P>M D. M>P>N2. 若0<a<1,则下列四个不等式中正确的是().3. a、b、c在数轴上的对应点的位置如图所示,下列式子正确的有().① b+c>0;② a+b>a+c;③ bc>ac;④ ab>ac.A.1个B.2个 C.3个 D.4个.4.我市某初中举行“八荣八耻”知识抢答赛,总共50道抢答题.抢答规定:抢答对1题得3分,抢答错1题扣1分,不抢答得0分.小军参加了抢答比赛,只抢答了其中的20道题,要使最后得分不少于50分,问小军至少要答对几道题?5.已知前年物价涨幅(即前年物价比上一年,也就是大前年物价增加的百分比)为20%,去年物价涨幅为15%,预计今年物价涨幅降低5个百分点,为了使明年物价比大前年物价涨幅不高出55%,明年物价涨幅必须比今年物价涨幅至少再降低x个百分点(x为整数)则x=().A. 6B. 7C. 8D. 96.某商场计划投入一笔资金,采购紧销商品.经调查发现,如月初出售,可获利15%,并可用本和利再投资其他商品,则月末又可获利10%;如等到月末出售可获利30%,但需要支付仓储费用700元.请问根据商场资金多少,如何购销获利较多?7.小王家里装修,他去商店买灯,商店柜台里现有功率100瓦的白炽灯和40瓦的节能灯,它们的单价分别为2元和32元,经了解知道这两种灯的照明效果和使用寿命都是一样的.已知小王家所在地的电价为每度0.5元,请问当这两种灯的使用寿命超过多长时间时,小王选择节能灯才合算。

初中七年级下册数学不等式

初中七年级下册数学不等式

初中七年级下册数学不等式1 不等式不等式是一类变量间存在着大小关系,而这种大小关系必须具有限制性的等式。

与等式不同,不等式表示的是两个变量之间有关联但不一定相等的关系,并且存在着明确的大小关系限制。

一元不等式是不等式的最基本形式,即只包含一个变量的不等式。

2 一元不等式一元不等式的两个最基本的形式为「大于等于」和「小于等于」,即记法为:大于等于:a≥b,小于等于:a≤b。

在中学数学课上,一般只要求掌握小于等于和大于等于这两种形式,但将来大学数学课学到的一元不等式还可以是「大于」和「小于」,即a>b和a<b。

3 一元不等式的解法在解决一元不等式的问题时,通常有以下几个步骤:(1)确定一元不等式的不等号(大于、小于或等于),将不等式根据号的类别划分为两部分进行求解。

(2)对不等式的两部分分别进行除法运算,注意要除数不能为0。

(3)将解得的结果把步骤2中解出来的区间加以组合,组合得到最终的解集。

下面就利用这几个步骤来简单说明一元不等式的求解过程:以求解不等式2x-1≥7为例,其中的2x表示不等式的不等号为≥,划分为两部分2x和“-1≥7”分别进行除法运算,2x除以2,得到x≥4;-1≥7除以-1,得到-1≤-7。

最后,将两部分结果组合在一起,x≥4和-1≤-7区间没有重叠,所以最终的解集为x≥4。

4 一元不等式在中学数学中的应用在中学数学中,一元不等式是比较常见的知识,它可以被广泛应用于中学数学中的函数、条件判断、单调性等知识,能够从不同的角度研究所研究的数学问题。

比如,在求正数的偶函数的最小值的形阶段,可以通过求出一元不等式的解来解决。

用变量x代表未知数,并求出f(x)的导数f'(x),当f'(x)>0时,f(x)的变化趋势是递增的;当f'(x)<0时,f(x)的变化趋势是递减的;当f'(x)=0时,求得不等式结果就可以得到数学函数的最小值。

5 一元不等式用于概率论一元不等式也可以用于概率论中,比如有一个单纯的实验,投掷一枚转盘,并求出实验可能结果是投掷正面或者反面,此时通过一元不等式可以求出概率值范围,进而有所结论。

数学七年级下册不等式

数学七年级下册不等式

数学七年级下册不等式一、不等式的基本概念。

1. 不等式的定义。

- 用不等号(>、≥、<、≤、≠)表示不等关系的式子叫做不等式。

例如:3x + 5>2x - 1,a - 2≤slant0等。

2. 不等式的解。

- 使不等式成立的未知数的值叫做不等式的解。

例如,对于不等式x+3>5,x = 3是它的一个解,因为当x = 3时,3+3 = 6>5。

3. 不等式的解集。

- 一个含有未知数的不等式的所有解,组成这个不等式的解集。

例如,不等式x - 1>0的解集是x>1,表示所有大于1的数都是这个不等式的解。

- 不等式的解集可以在数轴上表示:- 大于向右画,小于向左画;有等号(≥、≤)用实心圆点,无等号(>、<)用空心圆圈。

例如,不等式x≥slant - 2在数轴上表示为:在数轴上找到 - 2这个点,用实心圆点标记,然后向右画一条线,表示x的取值范围是大于等于 - 2。

二、不等式的性质。

1. 不等式性质1。

- 不等式两边加(或减)同一个数(或式子),不等号的方向不变。

- 即如果a>b,那么a±c>b±c。

例如:若5>3,那么5 + 2>3+2(即7>5),5-1>3 - 1(即4>2)。

2. 不等式性质2。

- 不等式两边乘(或除以)同一个正数,不等号的方向不变。

- 即如果a>b,c>0,那么ac>bc(或(a)/(c)>(b)/(c))。

例如:若2>1,3>0,则2×3>1×3(即6 > 3),(2)/(3)>(1)/(3)。

3. 不等式性质3。

- 不等式两边乘(或除以)同一个负数,不等号的方向改变。

- 即如果a>b,c<0,那么ac(或(a)/(c)<(b)/(c))。

例如:若5>3,-2<0,则5×(- 2)<3×(-2)(即-10 < - 6),(5)/(-2)<(3)/(-2)(即-(5)/(2)<-(3)/(2))。

《不等式的性质》人教版七年级数学(下册)

《不等式的性质》人教版七年级数学(下册)
4
(5)a2____>_0; (6)a3______0<; (7)a-1___<__0; (8)|a|______0.>
思考: 等式有对称性及传递性,那么不等式具有对称性和传递性吗?
已知x>5,那么5<x吗? x>5 5<x
性质4(对称性):如果a>b,那么b<a. 由8<x,x<y,可以得到8<y吗?
解: 因为 a>b,两边都加上3,
由不等式基本性质1,得 a+3 > b+3;
(2)已知 a<b,则a-5
b-<5
因为 a<b,两边都减去5,
由不等式基本性质1,得
a-5 < b-5 .
练一练
用“>”或“<”填空,并说明是根据不等式的哪一条性质:
(1)若x+3>6,则x______3,
根据______________; > (2)若a-不2<等3式,性则质a_1_____5,
不等式的性质1 不等式的性质2 不等式的性质2
(4) -4a____<-4b
不等式的性质3
(5) 2a+3____>2b+3;
不等式的性质1,2
(6)(m2+1)a____ (>m2+1)b(m为常数)
不等式的性质2
2.已知a<0,用“<”“>”填空: (1)a+2 ___<_2; (2)a-1 _____-1;< (3)3a____<__0; (4) ____a__0;>
三 利用不等式的性质解简单的不等式
例4 利用不等式的性质解下列不等式:
(1) x-7>26; (3) 2>x50;
3
(2) 3x<2x+1; (4) -4x>3.

不等式七年级下册

不等式七年级下册

不等式七年级下册不等式是数学中一个重要而又基础的知识点,它在数学中应用广泛,包括线性规划、矩阵理论等数学分支学科。

本文结合七年级下学期的教学大纲,对不等式知识点做出详细的讲解及例题分析,旨在帮助同学们更好地掌握不等式的概念、性质和解题方法。

一、不等式的定义在数学中,不等式是指含有不等符号的数学表达式。

例如x > 2,y < 5等都是不等式。

其中,不等符号包括小于号"<"、大于号">"、小于等于号"≤ "和大于等于号"≥",表示不同的大小关系。

二、不等式的性质1. 对于不等式两边,可以加、减、乘、除同一个数,不等式不改变,即不等式具有等价形式;2. 对于不等式两边同时乘、除以负数,不等式方向会发生改变;3. 不等式两边可以同时平方,但要注意,平方会使不等式的方向发生改变,所以解不等式时需左右两侧同时取正根;4. 不等式两边可以同时开方,但要注意,开方只适用于非负数,所以在解不等式时需根据不等式两边的符号情况考虑是否需要翻转不等式的方向。

三、不等式的解法1. 小学奥数方法:通过运算得到x的取值范围,即可得出不等式的解;2. 移式法:将等式或不等式中有待求解的变量移项,将未知量移到一边,可得到方程或不等式的根;3. 区间法:将不等式中的变量看作是实数的变量,并找出其变量的取值范围和未知数所对应的数轴上的区间,从而求出不等式的解;4. 图像法:将不等式视作一条直线或一条曲线,通过观察直线与曲线的交点以及各区域的符号,可得到不等式的解。

四、例题解析1. 14x - 10 < 42解:将常数项移项可得14x < 52,再除以14,得到x < 4,所以不等式的解集为{x | x < 4}。

2. x + 5 ≤ 2x - 1解:将未知数移到一侧,得到x ≥ 6,所以不等式的解集为{x | x ≥ 6}。

不等式的性质(第1课时)教案 2022—2023学年人教版数学七年级下册

不等式的性质(第1课时)教案 2022—2023学年人教版数学七年级下册

9.1.2 不等式的性质第1课时一、教学目标【知识与技能】1.掌握不等式的三个性质.2.能够利用不等式的性质解不等式.3.通过实例操作,培养学生观察、分析、比较问题的能力.【过程与方法】复习等式的性质,利用天平实验探究不等式性质1,性质2;通过对具体不等式两边都乘以(或除以)同一个负数,不等式符号改变的情形探究不等式性质3;在此基础上,利用不等式的性质解不等式,要着重强化不等式性质3的理解与运用.【情感态度与价值观】通过观察、实验、类比获得新知,体验数学活动的探索性和创造性.二、课型新授课三、课时第1课时共2课时四、教学重难点【教学重点】不等式的性质.【教学难点】不等式的性质3.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2)等式的基本性质:(1)等式的两边都加上(或都减去)同一个数或同一个整式,等式仍然成立.(2)等式的两边都乘以(或除以)一个不为0的数,等式仍然成立.猜想:不等式也具有同样的性质吗?(二)探索新知1.出示课件4-6,探究不等式的性质1教师问:同学们想一想,等式的基本性质1的内容是什么呢?学生答:等式的两边都加上(或减去)同一个整式,等式仍然成立.教师问:如何利用式子表示呢?学生答:如果a=b,那么a±c=b±c.教师问:不等式是否具有类似的性质呢?学生答:猜想应该有.教师问:完成下面的问题:如果 7 > 3,那么 7+5 ____ 3+ 5 , 7 -5____3-5如果-1< 3,那么-1+2____3+2, -1- 4____3 – 4学生1答:如果 7 > 3,那么 7+5 __>__ 3+ 5 , 7 -5__>__3-5学生2答:如果-1< 3,那么-1+2__<__3+2, -1- 4_<___3 – 4教师问:你能总结一下规律吗?学生答:不等式的两边都加上或减去同一个数,不等式仍然成立.教师问:如果把数改为字母,结果会如何呢?观察下面的天平,完成填空.如果_____,那么_______,(或________)学生答:如果_a>b_,那么__a+c>b+c_,(或__a-c>b-c_)教师问:你能总结一下规律吗?学生答:如果a>b,那么a±c>b±c总结点拨:(出示课件7)不等式基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变.如果_a>b___,那么__a±c>b±c__.考点1:利用不等式的性质1解答问题用“>”或“<”填空:(出示课件8)(1)已知 a>b,则a+3_______b+3;(2)已知 a<b,则a-5_______b-5.师生共同讨论解答如下:教师依次展示学生答案:学生1解:(1)因为 a>b,两边都加上3,由不等式基本性质1,得a+3 > b+3;学生2解:(2)因为 a<b,两边都减去5,由不等式基本性质1,得a-5 < b-5 .出示课件9,学生自主练习后口答,教师订正.2.出示课件10-11,探究不等式的性质2教师出示问题:请完成下面的题目:用不等号填空:(1)5_____3 ;5×2_____3×2 ;5÷2_____3÷2 .(2)2_____4 ;2×3_____ 4×3 ;2÷4______4÷4 .教师依次展示学生答案:学生1答:如下所示:(1)5__>___3 ;5×2___>__3×2 ;5÷2__>___3÷2 .学生2答:如下所示:(2)2__<___4 ;2×3__<___ 4×3 ;2÷4___<___4÷4 .教师问:自己再写一个不等式,分别在它的两边都乘(或除以)同一个正数,看看有怎样的结果?学生答:9>6,9×2>6×2,9÷3>6÷3.教师问:与同桌互相交流,你们发现了什么规律?学生答:不等式的两边都乘以或除以同一个正数,不等式仍然成立.教师问:把数字改为字母,会怎样呢?学生答:结果仍然成立.教师问:如图所示:完成下面的问题:如果_________,那么_______(或 )学生答:如果_a>b _,那么_3a>3b_(或a3>b3)教师问:把数字3改为字母c(c>0),会怎样呢?学生答:如果_a>b且c>0_,那么_ac>bc_(或ac >bc)总结点拨:(出示课件12)不等式基本性质2不等式的两边都乘(或除以)同一个正数,不等号的方向不变.如果a > b,c > 0,那么 ac > bc ,ac >bc.考点2:利用不等式的性质2解答问题.设a>b,用“<”“>”填空并回答是根据不等式的哪一条基本性质.(出示课件13)(1)a÷3____b÷3;(2) 0.1a____0.1b;(3) 2a+3____2b+3;(4)(m2+1)a____ (m2+1)b(m为常数).学生独立思考后,师生共同分析解答.教师依次展示学生答案:学生1解:(1)a÷3__>__b÷3;不等式的性质2;学生2解:(2) 0.1a__>__0.1b; 不等式的性质2;学生3解:(3) 2a+3__>__2b+3;不等式的性质1,2;学生4解:(4)(m2+1)a__>__ (m2+1)b(m为常数).不等式的性质2;出示课件14,学生自主练习后口答,教师订正.3.出示课件15-16,探究不等式的性质3教师出示问题:完成下面的问题:(1)5_____3 ;5×(-2)_____3×(-2);5÷(-2)_____3÷(-2) .(2)2____4 ;2×(-3)_____4×(-3 );2÷(-4)_____4÷(-4) .教师依次展示学生答案:学生1答:解答如下:(1)5_>_3 ;5×(-2)_<_3×(-2);5÷(-2)_<_3÷(-2) .学生2答:解答如下:(2)2_<_4 ;2×(-3)_>_4×(-3 );2÷(-4)_>_4÷(-4) .教师问:自己再写一个不等式,分别在它的两边都乘(或除以)同一个负数,看看有怎样的结果?学生答:10>5,10×(-2)<5×(-2),10÷(-5)<5÷(-5)教师问:与同桌互相交流,你们发现了什么规律?学生答:不等式的两边都乘以或除以同一个负数,不等号的方向改变.教师问:如果把数字改为字母,结果如何呢?师生一起解答:不等式两边同乘以-1,不等号方向改变.教师问:由此得到什么结论呢?学生答:猜想:不等式两边同乘以一个负数,不等号方向改变.总结点拨:(出示课件17)不等式基本性质3不等式的两边都乘(或除以)同一个负数,不等号的方向改变.如果a > b,c < 0,那么 ac < bc ,ac <bc.出示课件18,学生自主练习,教师给出答案. 考点3:利用不等式的性质解答问题用“>”或“<”填空:(出示课件19-20)(1)已知 a>b,则3a_____3b ;(2)已知 a>b,则-a ______-b .(3)已知 a<b,则 -a3 +2____-b3+2 .师生共同讨论后解答如下:教师依次展示学生答案:学生1解:(1)因为 a>b,两边都乘3,由不等式基本性质2,得3a > 3b.学生2解:(2)因为 a>b,两边都乘-1,由不等式基本性质3,得-a < -b.学生3解:(3)因为 a<b,两边都除以-3,由不等式基本性质3,得-a3> -b3,因为-a3> -b3,两边都加上2,由不等式基本性质1,得-a 3 +2>-b3+2出示课件21,学生自主练习,教师给出答案。

人教版七年级下册数学不等式与不等式组知识点

人教版七年级下册数学不等式与不等式组知识点

不等式与不等式组知识点归纳上大附中 何小龙一、不等式的概念1.不等式:用不等号表示不等关系的式子,叫做不等式。

2.不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。

3.不等式的解集:对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。

4.解不等式:求不等式的解集的过程,叫做解不等式。

5.用数轴表示不等式的解集。

二、不等式的基本性质1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。

2.不等式两边都乘以(或除以)同一个正数,不等号的方向不变。

3.不等式两边都乘以(或除以)同一个负数,不等号的方向改变。

说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。

②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立。

例:1.已知不等式3x-a ≤0的正整数解恰是1,2,3,则a 的取值范围是 。

2.已知关于x 的不等式组⎩⎨⎧-≥->-1250x a x 无解,则a 的取值范围是 。

3.不等式组⎪⎩⎪⎨⎧>+≤+0221042x x 的整数解为 。

4.如果关于x 的不等式(a-1)x<a+5和2x<4的解集相同,则a 的值为 。

5.已知关于x 的不等式组⎪⎩⎪⎨⎧<++>+01234a x x x 的解集为2<x ,那么a 的取值范围是 。

6.当x 时,代数式52+x 的值不大于零7.若x <1,则22+-x 0(用“>”“=”或“”号填空)8.不等式x 27->1,的正整数解是9. 不等式x ->10-a 的解集为错误!未找到引用源。

<3,则a10.若a >b >c ,则不等式组⎪⎩⎪⎨⎧c x b x ax 的解集是 11.若不等式组⎩⎨⎧--3212 b x a x 的解集是-1<x <1,则错误!未找到引用源。

人教版数学七年级下册9.1.1《不等式及其解集》教案

人教版数学七年级下册9.1.1《不等式及其解集》教案

新人教版七年级下9.1.1 不等式及其解集教学内容解析:本节知识属于《义务教育课程标准实验教科书·数学》(人教版)七年级下册第九章不等式与不等式组,教材第114-115页。

本章内容是在学生继一元一次方程和二元一次方程组的学习之后,又一次数学建模思想的学习,是进一步探究现实生活中的数量关系,培养学生用数学知识解决实际问题的重要内容,也是今后学习一元二次方程、函数、以及进一步学习不等式的基础。

本节课的内容主要介绍不等式及不等式的解的概念以及解集的表示方法,是研究不等式的导入课,通过实例引入,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望;经历、感受概念形成的过程,使学生正确抓住不等式的本质特征,为进一步学习不等式的性质、解法及简单应用起到铺垫作用。

相等与不等是研究数量关系的两个重要方面,用不等式表示不等的关系,是代数基础知识的一个重要组成部分,它在解决各类实际问题中有着广泛的应用。

同时,本节知识涉及到建模、转化、数形结合等思想方法。

教学目标1.知识与技能:(1)感受生活中存在大量的不等关系,了解不等式的意义,能将简单的文字问题转化为不等式;(2)理解不等式的解及解集,会找出一个不等式的几个解并且能检验一个数是否是不等式的解;(3)灵活掌握用数轴表示不等式的解集。

2.过程与方法:(1)经历将生活问题转化为数学问题,渗入建模思想,体会到数学源于生活;(2)经历探究不等式的解与解集的不同涵义的过程,渗入数形结合思想,体会到数学服务于生活;(3)通过观察、操作、类比、概括等活动,体会在解决问题的过程中与他人合作的重要性与必要性。

3.情感态度与价值观:通过对不等式、不等式的解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识和梳理学好数学的自信心。

让学生充分体会到数学源于生活,同时又服务于生活。

学情分析中学生心理学研究指出,初中阶段是智力发展的关键年龄,学生逻辑思维从经验型逐步向理论型发展,观察能力、记忆能力和想象能力也随着迅速发展。

人教七年级数学下册-不等式的性质(附习题)

人教七年级数学下册-不等式的性质(附习题)

4
1 y≤-2
4
y≤-8
-8 0
知识点2 不等式的实际应用
某长方体形状的容器长 5cm, 宽学3c习m了,用高不10等cm式.容的性器质解 内原有水不的等高式度,为你3c现m在,能现解准决这 备 向 它 继个续问注题水了.吗用?V ( 单 位 cm3)表示新注入水的体积, 写出 V 的取值范围.
分析 要求新注入水的体积范围,那就要
x+5-5>-1-5 x>-6
(2)4x<3x-5;
4x-3x<3x-5-3x x<-5
-6
0
-5 0
(3)1 .7
7×17
x<6 ; (4) -8x>10
7
x<7×76
8x <10 =- 5 8 -8 4
x<6
x<- 5 4
0
6
-5
0
4
2.用不等式表示下列语句并写出解集,并 在数轴上表示解集.
3
分析
解不等式,就是借助不等式的性质使不
等式逐步化为 x>a 或 x<a(a为常数)的
形式.
(1)x-7>26
解这个不等式要利 用哪个性质?
要利用不等式的性质1.
(1)x-7>26
根据不等式的性质1,不等式两
边加7,不你等能号把的不方等向式不的变解,集所用以:
数x轴-7表+7示>出2来6+吗7?
实心圆表示不等式的取值范围包括这两个数空心圆表示不等式的取值范围不包括这两个数
9.1.2 不等式的性质 第1课时 不等式的性质
情景导入
简单的不等式我们可以直接写 出它的解集. 那复杂的不等式 我们应该怎么办呢?
这节课我们就来学习不等式的 性质,并用它来解不等式.

人教版-数学-七年级-下册-不等式的性质

人教版-数学-七年级-下册-不等式的性质

C. a<1
D. a<0
a<1
拓展提升
2.将物体“▲”的质量用 a 表示,物体“●”的质量用 b 表示, 现已知 a<b,则下列四个天平的倾斜度一定正确的是( B )
b+a
a+a
拓展提升
3.若实数 a,b,c 在数轴上的位置如图所示,则下列不
等式成立的是( B )
c<0<a<b
A. ab<ac c<b,a>0 B. ac>bc a<b,c<0 C. a+c>b+c b>a,c<0 D. a+b<c+b a>c,b>0
拓展提升
-1 0
拓展提升
3.“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟” 即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物. 2020年,某省谷子种植面积已达 324 万亩,平均亩产量约为 320 kg.2021年,若该省谷子的平均亩产量仍保持 320 kg 不变,则要 使谷子的年总产量不低于 108 万吨,该省至少应再多种植多少万 亩的谷子?
我们知道解方程需要依据等式的性质,同样解不等式也 可以依据不等式的性质进行,本节课我们就来学习怎样 利用不等式的基本性质解不等式.
新知探究
知识点:不等式的性质的应用
分析:解不等式,就是要借助不等式的性质使不等式逐 步化为 x>a 或 x<a (a 为常数)的形式.
新知探究
(1) x-7>26; 解:(1)根据不等式的性质1,不等式两边加 7,不等号 的方向不变, 所以 x-7+7>26+7, 即 x>33. 这个不等式的解集在数轴上的表示如图所示:

不等式的基本性质-【帮课堂】2022-2023学年七年级数学下册同步精品讲义(苏科版)

不等式的基本性质-【帮课堂】2022-2023学年七年级数学下册同步精品讲义(苏科版)

不等式的基本性质知识点一、不等式的基本性质1不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;即如果a >b ,那么a +c >b +c 或a -c >b -c ;如果a <b ,那么a +c <b +c 或a -c <b -c .1. 如果a >b ,那么2a -_______2b -(填“=”、“>”或“<”).知识点二、不等式的性质2不等式两边都乘(或除以)同一个正数,不等号的方向不变;不等式的两边都乘(或除以)同一个负数,不等号的方向改变,即如果a >b 且c >0,那么ac >bc 或a b c c >,如果a >b且c <0,那么ac <bc 或a b c c <.2. 已知x <y ,则23x --_____23y --(填“>”、“<”或“=”)一.选择题(共10小题)3. 若x y >,则下列式子中错误的是( )A. 22x y > B. 22x y ->- C. 22x y ->- D. 33x y +>+4. 若不等式21x -<,两边同时除以2-,结果正确的是( )A. 12x >- B. 12x < C. 2x >- D. 2x <5. 下列各式中正确的是( )A. 若a b >,则22a b -<- B. 若a b >,则22a b >C. 若a b >,且0c ≠,则22ac bc > D. 若a b c c>,则a b >6. 已知a b <,若c 是任意有理数,则下列不等式中总成立的是( )A. a c b c +<+B. a c b c ->-C. ac bc >D. 22ac bc >7. 已知a b <,则下列各式成立的是( )A. 22ac bc <B. 1313a b -<-C. 23a b -<-D. 33a b +<+8. 已知实数a b c ≤≤,则( )A. 2a c b +≤B. 3a b c +≤C. 2a b c+≥ D. b a c≤+的9. 如图所示,A ,B ,C ,D 四人在公园玩跷跷板,根据图中的情况,这四人体重从小到大排列的顺序为( )A. D B A C <<<B. B D C A <<<C. B A D C <<<D. B C D A <<<10. 已知非负实数a ,b ,c 满足123234a b c ---==,设S a b c =++,则S 的最大值为( )A. 112 B. 152 C. 274 D.31411. 已知三个实数a ,b ,c 满足0ab >,a b c +<,0a b c ++=,则下列结论一定成立的是( )A. 0a <,0b <,0c > B. 0a >,0b >,0c <C. 0a >,0b <,0c > D. 0a >,0b <,0c <12. 若2a b +=-,且2a b ≥,则( ).A. b a 有最小值12 B. b a 有最大值1C. a b 有最大值2 D. a b 有最小值89-二.填空题(共10小题)13. 若x y >,且(3)(3)a x a y +<+,求a 的取值范围______.14. 若a<0,则a -_____0.(用<,=,>填空)15. 选择适当的不等号填空:若a b <,则2a -______2b -.16. 已知m n >,则 3.51m -+______ 3.51n -+.(填>、=或<)17. 若a b <,则21a -+__________21b -+.(用“>”,“<”,或“=”填空)18. 如果x >y ,且(a-1)x <(a-1)y ,那么a 的取值范围是______.19. 已知x ,y 满足132x y +=,若13x -≤<,则y 的范围是__________.20. 用不等号填空,并说明根据的是不等式的哪一条基本性质:(1)若x +2>5,则x ________3,根据不等式的基本性质________;(2)若-34x <-1,则x ________43,根据不等式的基本性质________.21. 已知 2ab =.①若31b -≤≤-,则a 的取值范围是________;②若0b >,且225a b +=,则a b +=____.22. 某数学兴趣小组在研究下列运算流程图时发现,取某个实数范围内的x 作为输入值,则永远不会有输出值,这个数学兴趣小组所发现的实数x 的取值范围是_____.三.解答题(共8小题)23. 已知关于x ,y 的方程组325x y a x y a -=+⎧⎨+=⎩.(1)若x ,y 为非负数,求a 的取值范围;(2)若x y >,且20x y +<,求a 的取值范围.24. 根据不等式的性质:若0x y ->,则x y >;若0x y -<,则x y <.利用上述方法证明:若0n <,则121n n n n -->-.25. 已知:x ,y 满足3x-4y=5.(1)用含x 的代数式表示y ,结果为______;(2)若y 满足-1<y≤2,求x 的取值范围;(3)若x ,y 满足x+2y=a ,且x >2y ,求a 的取值范围.26. 已知实数x 、y 满足231x y +=.(1)用含有x 的代数式表示y ;(2)若实数y 满足y >1,求x 的取值范围;(3)若实数x 、y 满足1x >-,13y ≥-且23x y k -=,求k 的取值范围.27. 知识阅读:我们知道,当a >2时,代数式a -2>0;当a <2时,代数式a -2<0;当a =2时,代数式a -2=0.(1)基本应用:当a >2时,用“>,<,=”填空:a +5________0;(a +7)(a -2)________0;(2)理解应用:当a >1时,求代数式2a +2a -15的值的大小;(3)灵活应用:当a >2时,比较代数式a +2与2a +5a -19的大小关系.28. 用等号或不等号填空:(1)比较4m 与24m +的大小当3m =时,4m24m +当2m =时,4m24m +当3m =-时,4m 24m +(2)无论取什么值,4m 与24m +总有这样的大小关系吗?试说明理由.(3)比较22x +与2246x x ++的大小关系,并说明理由.(4)比较23x +与37--x 的大小关系.29. 阅读下列材料:问题:已知2x y -=,且1x >,0y <,试确定x y +的取值范围解:2x y -= ,2x y ∴=+,又1x > ,21y ∴+>,1y ∴>-,又0y < ,10y ∴-<<①,12202y ∴-+<+<+,即12x <<②,①+②得:1102x y -+<+<+,x y ∴+的取值范围是02x y <+<.请按照上述方法,完成下列问题:(1)已知5x y -=,且2x >-,0y <,①试确定y 的取值范围;②试确定x y +的取值范围;(2)已知1x y a -=+,且x b <-,2y b >,若根据上述做法得到35x y -的取值范围是103526x y -<-<,请直接写出a 、b 的值.30. 题目:已知关于x 、y 的方程组2324x y a x y a +=-+⎧⎨+=⎩①②,求:(1)若3x +3y =18,求a 值;(2)若-5x -y =16,求a 值.问题解决:(1)王磊解决的思路:观察方程组中x 、y 的系数发现,将①+②可得3x +3y =3a +3,又因为3x +3y =18,则a 值为________;(2)王磊解决的思路:观察方程组中x 、y 的系数发现,若将方程组中的①与②直接进行加减,已经不能解决问题,经过思考,王磊将①×m ,②×n ,得2324mx my ma m nx ny na +=-+⎧⎨+=⎩③④,再将③+④得:(m +2n )x +(2m +n )y =(-m +4n )a +3m ,又因为-5x -y =16,……,请根据王磊的思路,求出m 、n 及a 的值;问题拓展:(3)已知关于x 、y 的不等式组2324x y a x y a +-+⎧⎨+⎩><,若x +5y =2,求a 的取值范围.不等式的基本性质知识点一、不等式的基本性质1不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;即如果a >b ,那么a +c >b +c 或a -c >b -c ;如果a <b ,那么a +c <b +c 或a -c <b -c .【1题答案】【答案】<【解析】【分析】根据不等式的性质进行变形即可.【详解】解:∵a >b ,∴-a <-b ,∴2-a <2-b ,故答案为:<.【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.知识点二、不等式的性质2不等式的两边都乘(或除以)同一个正数,不等号的方向不变;不等式的两边都乘(或除以)同一个负数,不等号的方向改变,即如果a >b 且c >0,那么ac >bc 或a b c c >,如果a >b 且c <0,那么ac <bc 或a b c c<.【2题答案】【答案】>【解析】【分析】根据不等式的基本性质进行解答即可.【详解】解:∵x <y ,∴22x y ->-,∴2323x y -->--.故答案为:>.【点睛】本题主要考查了不等式的基本性质,注意不等式两边同时乘以或除以一个负数,不等号方向发生改变.一.选择题(共10小题)的【3题答案】【答案】B【解析】【分析】根据不等式的性质可进行求解.【详解】解:由x y >可知:A 、22x y >,正确,故不符合题意;B 、22x y -<-,原不等式错误,故符合题意;C 、22x y ->-,正确,故不符合题意;D 、33x y +>+,正确,故不符合题意;故选B .【点睛】本题主要考查不等式的性质,熟练掌握不等式的性质是解题的关键.【4题答案】【答案】A【解析】【分析】根据不等式的性质即可求出答案.【详解】不等式21x -<,两边同时除以2-,可得12x >-,故选:A .【点睛】本题考查不等式的性质,解题的关键是正确理解不等式的性质,本题属于基础题型.【5题答案】【答案】D【解析】【分析】根据不等式的性质逐项分析判断即可求解.【详解】解:A. 若a b >,则22a b ->-,故该选项不正确,不符合题意;B. 若0a b >>,则22a b >,故该选项不正确,不符合题意;C. 若a b >,且0c >,则22ac bc >,故该选项不正确,不符合题意;D. 若a b c c>,则a b >,故该选项正确,符合题意;【点睛】本题考查了不等式的基本性质.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.【6题答案】【答案】A【解析】【分析】根据不等式的性质逐一判断即可:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.【详解】解:A 、由a b <根据不等式的性质1,可得a c b c +<+,故此选项正确,符合题意;B 、由a b <根据不等式的性质1,可得a c b c -<-,不能得到a c b c ->-,故此选项错误,不符合题意;C 、根据不等式的性质,如果0c <则可得ac bc >,如果0c >,则ac bc <,故此选项错误,不符合题意;D 、当0c 时,22ac bc =,故此选项错误,不符合题意.故选:A .【点睛】本题主要考查了不等式的性质,熟知不等式的性质是解题的关键.【7题答案】【答案】D【解析】【分析】根据不等式的性质逐一判断即可解题.【详解】解:A.a b <,当0c ≠时,22ac bc <,故A 不成立;B.a b <,1313a b ->-,故B 不成立;C.a b <,22a b -<-,故C 不成立;D.33a b a b ++<,<,故D 成立;【点睛】本题考查了不等式的性质,注意不等式的两边都乘或除以一个负数,不等号的方向改变.【8题答案】【答案】B【解析】【分析】根据实数a b c ≤≤,逐项给出a b c 、、的值举例,看能否举出反例,即可得到答案.【详解】解:当12a =-,0b =,1c =时,2a c b +>,故A 选项错误;当12a =-,0b =,1c =时,2a b c +<,故C 选项错误;当2a =-,0b =,1c =时,a c b +<,故D 选项错误;故选:B .【点睛】本题考查不等式的性质,可以通过举反例来得到结论.【9题答案】【答案】C【解析】【分析】根据不等式的性质,进行计算即可解答.【详解】解:由题意得:D A >①,A C B D +>+②,B C A D +=+③,由③得:C A D B =+-④,把④代入②得:A A D B B D ++->+,22A B >,A B ∴>,0A B ∴->,由③得:A B C D -=-,0D A -> ,0C D ∴->,C D ∴>,C D A B ∴>>>,即B A D C <<<.故本题选:C .【点睛】本题考查了不等式的性质,熟练掌握不等式的性质是解题的关键.【10题答案】【答案】C【解析】【分析】设123234a b c k ---===,则21a k =+,32b k =+,34c k =-,可得6S k =+;利用a ,b ,c 为非负实数可得k 的取值范围,从而求得最大值.【详解】解:设123234a b c k ---===,则21a k =+,32b k =+,34c k =-,()()()2132346S a b c k k k k ∴=++=++++-=+.a ,b ,c 为非负实数,210320340k k k +≥⎧⎪∴+≥⎨⎪-≥⎩,解得:1324k -≤≤.∴当12k =-时,S 取最小值,当34k =时,S 取最大值.116522S ∴=-+=最小值,327644S =+=最大值.故选:C .【点睛】本题主要考查了不等式的性质,非负数的应用,设123234a b c k ---=== 是解题的关键.【11题答案】【答案】A【解析】【分析】根据0ab >,可得a 和b 同号,再根据a b c +<和0a b c ++=,即可判断a ,b ,c 的符号.【详解】解:∵0ab >,∴a 和b 同号,又∵a b c +<和0a b c ++=,∴0a <,0b <,0c >.故选:A .【点睛】本题主要考查了有理数的运算法则,解题的关键是掌握两数相乘,同号得正,异号得负;同号两数相加,取它们相同的符号;异号两数相加,取绝对值较大数的符号.【12题答案】【答案】C【解析】【详解】由已知条件,根据不等式的性质求得b≤23-<0和a≥43-;然后根据不等式的基本性质求得a b ≤2 和当a >0时,b a <0;当43-≤a <0时,b a ≥12;所以A 、当a >0时,b a <0,即b a 的最小值不是12,故本选项错误;B 、当43-≤a <0时,b a ≥12,b a 有最小值是12,无最大值;故本选项错误;C 、a b有最大值2;故本选项正确;D 、a b 无最小值;故本选项错误.故选C .考点:不等式的性质.二.填空题(共10小题)【13题答案】【答案】3a <-【解析】【分析】根据题意,在不等式x y >的两边同时乘以(3)a +后不等号改变方向,根据不等式的性质3,得出30a +<,解此不等式即可求解.【详解】解:∵x y >,且(3)(3)a x a y +<+,∴30a +<,则3a <-.故答案为:3a <-.【点睛】本题考查了不等式的性质,解题的关键是掌握不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.【答案】>【解析】【分析】根据不等式的性质可进行求解.【详解】∵a<0,∴0a ->,故答案为:>.【点睛】本题主要考查不等式的性质,熟练掌握不等式的性质是解题的关键.【15题答案】【答案】>【解析】【分析】根据不等式的性质,即可解答.【详解】解:∵a b <,∴22a b ->-,故答案为:>.【点睛】本题主要考查了不等式的性质,熟练掌握不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.【16题答案】【答案】<【解析】【分析】先根据不等式的性质3得 3.5m -< 3.5n -,再根据不等式的性质1即可得到结论.【详解】解:m n >,根据不等式的性质3,得 3.5m -< 3.5n -,根据不等式的性质1,得 3.51m -+< 3.51n -+,故答案为:<.【点睛】本题考查不等式的基本性质,解题关键是熟练掌握不等式的三个基本性质,特别是性质3,不等式的两边同乘以或同除以同一个负数不等号的方向改变.【17题答案】【解析】【分析】根据不等式的性质即可求解.【详解】解:∵a b <,∴22a b->-2121a b ∴-+>-+故答案为:>【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.不等式的性质:不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变;不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.【18题答案】【答案】a <1【解析】【分析】根据不等式的性质3,可得答案.【详解】解:由题意,得a-1<0,解得a <1,故答案为a <1.【点睛】本题考查不等式的性质,利用不等式的性质是解题关键.【19题答案】【答案】-1.5<y ≤3.5【解析】【分析】先变形为x =6-2y ,根据13x -≤<列得-1≤6-2y <3,求解即可.【详解】解:∵132x y +=,∴x =6-2y ,∵13x -≤<,∴-1≤6-2y <3,解得-1.5<y ≤3.5,故答案为:-1.5<y ≤3.5.【点睛】此题考查了解一元一次不等式组,正确理解题意将方程变形得到不等式组是解题的关键.【20题答案】【答案】①. (1)> ②. 1 ③. (2)> ④. 2【解析】【分析】根据不等式的性质,即可解答.【详解】(1)若x+2>5,则x >3,根据不等式的性质1;(2)若−34x <-1,则x >43,根据不等式的性质3;故答案为(1)>,1;(2)>,3.【点睛】本题考查了不等式的性质,解决本题的关键是熟记不等式的性质.【21题答案】【答案】①. 223a -≤≤- ②. 3【解析】【分析】①由2ab =,可得2b a =,代入31b -≤≤-,即可求解,②由0b >,2ab =,可得0a >,即0a b +>,再利用完全平方公式即可作答.【详解】∵2ab =,即2b a=,①若31b -≤≤-,即231a-≤≤-,即有a<0,解得:223a -≤≤-;②若0b >,2ab =,∴0a >,即0a b +>,∵225a b +=,∴()22225229a b a b ab +=++=+⨯=,∴3a b +=.故答案为:①223a -≤≤-;②3.【点睛】本题考查了求解不等式的解,运用完全平方公式进行计算等知识,根据已知条件确定a 的符号是解答本题的关键.【22题答案】【答案】12x ≤【解析】【分析】通过找到临界值解决问题.【详解】由题意知,令3x-1=x ,x=12,此时无输出值当x >12时,数值越来越大,会有输出值;当x <12时,数值越来越小,不可能大于10,永远不会有输出值故x≤12,故答案为x≤12.【点睛】本题考查不等式的性质,解题的关键是理解题意,学会找到临界值解决问题.三.解答题(共8小题)【23题答案】【答案】(1)2a ≥(2)30a -<<【解析】【分析】(1)用加减消元法解二元一次方程组,再由题意可得21020a a +≥⎧⎨-≥⎩,求出a 的范围即可;(2)由题意可得212a a +>-,50a <,求出a 的范围即可.【小问1详解】解:325x y a x y a -=+⎧⎨+=⎩①②,①+②得21x a =+,将21x a =+代入①得,2y a =-,x ,y 为非负数,∴21020a a +≥⎧⎨-≥⎩,解得2a ≥;【小问2详解】解:x y > ,212a a ∴+>-,3a ∴>-,20x y +< ,50a ∴<,<0a ∴,30a ∴-<<.【点睛】本题考查二元一次方程组的解,一元一次不等式组的解,熟练掌握加减消元法和代入消元法解二元一次方程组、并准确求解一元一次不等式组的解集是解题的关键.【24题答案】【答案】见解析【解析】【分析】先求出1211(1)n n n n n n ---=--,根据0n <,得出10n -<,从而得出()10n n ->,即10(1)n n ->,从而证明结论.【详解】证明:121n n n n ----2(1)(2)(1)n n n n n ---=-1(1)n n =-∵0n<,∴10n-<,∴()10 n n->,∴121n nn n-->-.【点睛】本题主要考查了分式加减运算的应用,不等式的性质,解题的关键是熟练掌握分式加减运算法则.【25题答案】【答案】(1)354x-;(2)13<x≤133;(3)a<10.【解析】【分析】(1)解关于y的方程即可;(2)利用y满足-1<y≤2得到关于x的不等式,然后解不等式即可;(3)先解方程组,由x>2y得不等式,解不等式即可.【详解】(1)y=354x-;故答案为:y=354x-;(2)根据题意得:-1<354x-≤2,解得:13<x≤133;(3)解方程组345,2, x yx y a-=⎧⎨+=⎩得:2553510axay+⎧=⎪⎪⎨-⎪=⎪⎩,,∵x>2y,∴255a+>2×3510a-,解得:a<10.【点睛】本题考查了解不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.【26题答案】【答案】(1)123x y -=;(2)1x <-;(3)53k -<≤【解析】【分析】(1)移项得出3y =1−2x ,方程两边都除以3即可;(2)根据题意得出不等式,求出不等式的解集即可;(3)解方程组求出x 、y ,得出不等式组,求出不等式组的解集即可.【详解】解:(1)2x +3y =1,3y =1−2x ,123x y -=;(2)123x y -=>1,解得:x <−1,即若实数y 满足y >1,x 的取值范围是x <−1;(3)联立2x +3y =1和2x −3y =k 得:23123x y x y k +=⎧⎨-=⎩,解方程组得:1416k x k y +⎧=⎪⎪⎨-⎪=⎪⎩,由题意得:1141163k x k y +⎧=>-⎪⎪⎨-⎪=≥-⎪⎩,解得:−5<k ≤3.【点睛】本题考查了解二元一次方程和解二元一次方程组、解一元一次不等式组等知识点,能正确解方程组或不等式组是解此题的关键.【27题答案】【答案】(1)>,> (2)a 2+2a -15>-12(3)当a ≥3时,a 2+5a -19≥a +2;当2<a <3时,a 2+5a -19<a +2【解析】【分析】(1)当a >2时,a +5>2+5=7>0;a +7>2+7=9>0;a -2>2-2>0;根据同号得正判断即可.(2)运用完全平方公式,变形后,运用(1)的性质计算即可.(3)先对代数式作差后,分差值大于等于零和小于零,讨论计算即可.【小问1详解】∵a >2,∴a +5>0;∵a >2,∴a -2>0,a +7>0,(a +7)(a -2)>0,故答案为:>,>.【小问2详解】因为2a +2a -15=2(1)a +-16,当a =1时,2a +2a -15=-12,所以当a >1时,2a +2a -15>-12.【小问3详解】先对代数式作差,(2a +5a -19)-(a +2)=2a +4a -21=2(2)a +-25,当2(2)a +-25>0时,a <-7或a >3.因此,当a ≥3时,2a +5a -19≥a +2;当2<a <3时,2a +5a -19<a +2.【点睛】本题考查了不等式的性质及其应用,熟练掌握性质,灵活运用完全平方公式作差计算是解题的关键.【28题答案】【答案】(1)<=<,, (2)无论取什么值,总有244m m ≤+;理由见解析(3)222246x x x +≤++,理由见解析(4)当2x >-时,2337x x +>--;当2x =-时,2337x x +=--;当<2x -时,2337x x +<--.【解析】【分析】(1)当3m =时,当2m =时,当3m =-时,分别代入计算,再进行比较即可;(2)根据()()224420m m m +-=-≥,即可得出答案;(3)根据 ()()()222246220x x x x ++-+=+≥ ,即可得出答案;(4)先求出()()2337510x x x +---=+,再分当2x >-时,当2x =-时,当<2x -时分别进行讨论即可.【小问1详解】当3m =时,2412413m m =+=,,则244m m <+,当2m =时,24848m m =+=,,则244m m =+,当3m =-时,2412413m m =-+=,,则244m m <+,故答案为;<=<,,;【小问2详解】∵()()224420m m m +-=-≥,∴无论取什么值,总有244m m ≤+;【小问3详解】∵()()()222224624420x x x x x x ++-+=+=+≥+∴222246x x x +≤++;【小问4详解】∵()()2337510x x x +---=+,∴当2x >-时,51002337x x x +>+>--,,当2x =-时,51002337x x x +=+=--,,当<2x -时,51002337x x x +<+<--,.【点睛】本题考查了不等式的性质、完全平方公式、非负数的性质,整式的加减,实数大小的比较等知识点,关键是根据两个式子的差比较出数的大小.【29题答案】【答案】(1)①70y -<<;②95x y -<+<(2)122a b ⎧=⎪⎨⎪=-⎩【解析】【分析】(1)①结合题干给出的思路,根据5x y -=,可得5x y =+,结合2x >-,可得7y >-,即有70y -<<;②由①得:70y -<<,同理可得25x -<<②,问题随之得解;(2)结合题干给出的思路,可得555510a b y b ++<-<-①、63333b a x b ++<<-②,即有11883513b a x y b ++<-<-,结合103526x y -<-<,可得1188101326b a b ++=-⎧⎨-=⎩,解方程即可求解.【小问1详解】①5x y -= ,5x y ∴=+,2x >- ,52y ∴+>-,7y ∴>-,0y < ,70y ∴-<<,②由①得:70y -<<,255y ∴-<+<,即25x -<<②,7205y x ∴--<+<+,x y ∴+的取值范围是95x y -<+<;【小问2详解】1x y a -=+ ,1x y a ∴=++,x b <- ,1y a b ∴++<-,1y a b ∴<---,1y a b ∴->++,2y b > ,2y b ∴-<-,12a b y b ∴++<-<-,即()21b y a b <<-++,即555510a b y b ++<-<-①,105555b y a b ∴<<---,()21b y a b <<-++ 211b a y a b ∴++<++<-,21b a x b ∴++<<-,63333b a x b ∴++<<-②,∴①+②得:11883513b a x y b ++<-<-,35x y - 的取值范围是103526x y -<-<,1188101326b a b ++=-⎧∴⎨-=⎩,解得:122a b ⎧=⎪⎨⎪=-⎩.【点睛】本题考查了一元一次不等式组的运用、一元一次不等式的解法,解题的关键是熟练掌握一元一次不等式的解法,并能进行推理论证.【30题答案】【答案】(1)5;(2)m=1,n=-3,a=-1;(3)a的取值范围为1a>.【解析】【分析】(1)将方程组中的两个方程直接相加,整体代换求值;(2)通过对比得到关于m,n,a的方程组求值;(3)利用不等式的性质得到关于a的不等式,求出a的范围.【小问1详解】解:2324x y ax y a+=-+⎧⎨+=⎩①②,①+②得:3x+3y=3a+3,∵3x+3y=18,∴3a+3=18,∴a=5.故答案为:5;【小问2详解】解:∵(m+2n)x+(2m+n)y=(-m+4n)a+3m,又因为-5x-y=16,∴2521 (4)316m nm nm n a m+=-⎧⎪+=-⎨⎪-++=⎩,∴m=1,n=-3,a=-1;【小问3详解】解:已知关于x,y的不等式组2324x y ax y a+>-+⎧⎨+<⎩①②,①×3得:3x+6y>-3a+9④,②×(-1)得:-2x-y>-4a⑤,④+⑤得:x+5y>-7a+9,∵x+5y=2,∴2>-7a+9.∴a>1.【点睛】本题考查二元一次方程组,不等式,根据题意建立适当的方程和不等式是求解本题的关键.。

华师大版七下数学8.1认识不等式教学设计

华师大版七下数学8.1认识不等式教学设计

华师大版七下数学8.1认识不等式教学设计一. 教材分析华东师范大学出版社七年级下册数学教材第八章第一节“认识不等式”是初中学段不等式知识体系的开端,对学生后续学习方程、函数等数学知识具有重要作用。

本节课主要介绍不等式的概念、性质及简单的解法。

教材通过生活中的实例引入不等式,使学生感受到不等式在实际生活中的应用,激发学生的学习兴趣。

二. 学情分析学生在六年级已经学习了整数、分数和小数,对数学概念有一定的理解能力。

但是,对于不等式这一新的数学概念,学生可能存在一定的认知难度。

因此,在教学过程中,教师需要关注学生的学习状况,引导学生逐步理解不等式的概念和性质。

三. 教学目标1.理解不等式的概念,掌握不等式的基本性质。

2.能够正确解简单的不等式。

3.培养学生运用不等式解决实际问题的能力。

4.培养学生合作交流、积极思考的良好学习习惯。

四. 教学重难点1.教学重点:不等式的概念、性质及简单解法。

2.教学难点:不等式性质的理解和应用。

五. 教学方法1.情境教学法:通过生活实例引入不等式,激发学生的学习兴趣。

2.启发式教学法:引导学生主动思考、探究不等式的性质。

3.合作学习法:鼓励学生分组讨论,培养学生的团队协作能力。

4.实践操作法:让学生通过动手操作,加深对不等式解法的理解。

六. 教学准备1.教学PPT:制作含有不等式概念、性质及解法的PPT。

2.实例素材:收集生活中的不等式实例,用于导入新课。

3.练习题:准备一定数量的不等式练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)教师通过展示生活中的一些不等式实例,如身高、体重等,引导学生关注不等式。

提问:这些不等式有什么特点?从而引出不等式的概念。

2.呈现(10分钟)教师通过PPT呈现不等式的定义、性质及简单解法。

引导学生思考并总结不等式的基本性质。

3.操练(10分钟)教师提出一些简单的不等式题目,让学生分组讨论、解答。

教师巡回指导,帮助学生克服解题过程中遇到的困难。

不等式的性质:数学七年级下册第九章第一节第二课时

不等式的性质:数学七年级下册第九章第一节第二课时

此,不等式在区间[0,5]内的整数解个数为3。
案例三:含参数的一元一次不等式问题
问题描述
含参数的一元一次不等式问题是指在不等式中包含未知数或参数的问题。这类问题需要根 据参数的不同取值范围,分别讨论不等式的解集。
解题思路
首先,对参数进行分类讨论,确定参数的不同取值范围。然后,针对每个取值范围,分别 解出对应的不等式,得到不同的解集。最后,综合各个取值范围的解集,得出最终结论。
同向正数可乘性说明,当两个不等式方向相同时,我们可以在不等式的两边同时乘 以一个正数,而不改变不等式的方向。
特殊性质
不等式两边同时乘以一个负数时,不等号的方向会发 生反转。例如,如果 $a < b$ 且 $c < 0$,则 $ac > bc$。
当不等式的一边是0时,需要注意特殊情况。例如,如 果 $a < 0$,则 $a^2 > 0$;如果 $a > 0$,则 $a^2 > 0$。
不等式的性质数学七年级下册 第九章第一节第二课时

CONTENCT

• 不等式的基本概念 • 不等式的性质 • 一元一次不等式 • 一元一次不等式组 • 案例分析
01
不等式的基本概念
不等式的定义
不等式是用不等号连接两个解析式而成的数学式子,它表示两个 量之间的大小关系。
常见的不等号有“>”、“<”、“≥”、“≤”、“≠”,分别表示 “大于”、“小于”、“大于等于”、“小于等于”、“不等于”。
不等式的表示方法
文字语言表示法
用文字描述两个量之间的大小关系,如“x大于y” 。
符号语言表示法
用不等号和字母表示不等式,如“x > y”。
图形语言表示法

不等式及不等式的性质(教案)

不等式及不等式的性质(教案)
不等式及不等式的性质(教案)
一、教学内容
本节课选自人教版七年级数学下册第八章第一节“不等式及其性质”。教学内容主要包括以下部分:
1.不等式的定义:了解不等式的概念,能够识别不等号(>、<、≥、≤)。
2.不等式的读法:掌握如何正确读出各种不等式。
3.不等式的性质:
(1)不等式两边同时加上(或减去)同一个数,不等号的方向不变。
3.重点难点解析:在讲授过程中,我会特别强调不等式的性质1、2、3。对于难点部分,比如性质3,我会通过具体数字的示例来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与不等式相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,通过比较不同物体的重量,让学生直观地感受到不等式的意义。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《不等式及不等式的性质》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过比较两个数大小的情况?”(如:比较两个人的身高)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索不式的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解不等式的基本概念。不等式是表示两个数之间大小关系的式子。它是数学中非常重要的一个工具,可以帮助我们解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。比如,小华的身高是1.6米,小丽的身高是1.55米,我们可以用不等式表示这个关系:小华的身高>小丽的身高。
5.培养学生的数据分析素养:在解决实际问题的过程中,培养学生对数据的敏感性,学会利用不等式分析数据,为决策提供依据。

七年级数学下册教学课件-不等式及其解集

七年级数学下册教学课件-不等式及其解集

80,90.你还能找出这个不等式的其他解吗?
x
2
x
3
50
60
73
74.9
75.1
76
79
80
90











(1)你发现了哪些数是这个不等式的解?
(2)这个不等式有多少个解?
无数个
七 年 级 数 学
知识讲解
不等式的解集
一般的,一个含有未知数的不等式的所有的解,组成这个不等式的解集.
求不等式的解集的过程叫解不等式.
七 年 级 数 学
如:x<5是2x-3<7的解集
解集一定包括了某个解
知识讲解
1.下列说法正确的是( A )
A. x=3是2x+1>5的解
练 一 练
B. x=3是2x+1>5的唯一解
C. x=3不是2x+1>5的解
D. x=3是2x+1>5的解集
七 年 级 数 学
知识讲解
2.判断下列说法是否正确?
不等式的解:使不等式成立的未知数的值叫做不等式的解.
不等式的解集: 一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集.
不等式的解集在数轴上表示: 注意:空心圆圈,表示不包含这一点,实心圆点表示包含这一点.
解不等式: 求不等式解集的过程叫做解不等式.
七 年 级 数 学
布置作业
教科书第119页习题9.1第1-2题.
第二种:用数轴,一般标出数轴上某一区间,其中的点对应的数值都是不等式的解.
用数轴表示不等式的解集的步骤:

七年级数学下册《不等式的简单变形》教案、教学设计

七年级数学下册《不等式的简单变形》教案、教学设计
1.学生对不等式性质的理解程度,以及能否运用性质进行简单变形。
2.学生在解决实际问题时,能否将问题抽象为不等式,并运用所学知识进行解决。
3.学生在合作交流中的参与度,以及能否在讨论中互相学习、共同提高。
针对以上学情,教师应采取以下措施:
1.加强对不等式性质的讲解和引导,让学生充分理解并掌握。
2.设计贴近生活的实际问题,引导学生将问题抽象为不等式,提高解决问题的能力。
2.引导学生运用数形结合、分类讨论等数学思想,提高解决问题的策略和方法。
3.培养学生将实际问题抽象为数学模型的能力,让学生在解决问题的过程中,感受数学与现实生活的联系。
(三)情感态度与价值观
1.激发学生对数学学科的兴趣,培养学生主动学习、积极探究的精神。
2.通过解决实际问题,让学生体验数学的价值,增强学生对数学的信心和热爱。
-学生之间相互出题,以小组为单位,挑选一道最具挑战性的不等式题目,并在课堂上进行解答和讨论。
5.自主反思总结:
-要求学生撰写一篇关于本章节学习的反思日记,内容包括:不等式的性质和简单变形方法的学习心得,以及在实际问题中的应用体会。
-鼓励学生提出在学习过程中遇到的问题和困惑,以便在课堂上进行针对性的解答。
-通过课后作业,让学生在课后自主复习,提高知识掌握程度。
6.关注个体差异,因材施教:
-针对不同学生的学习情况,制定个性化的教学方案,使每个学生都能在课堂上得到提高。
-注重培养学生的自主学习能力,激发学生的学习潜能。
7.教学评价,持续改进:
-从知识与技能、过程与方法、情感态度与价值观等方面进行全面评价,了解学生的学习情况。
-根据评价结果,调整教学策略,不断提高教学质量。
四、教学内容与过程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7×1

4×3 4×2
负数:7×(-1)
4×1
4×0
< 7 ×(-2) < 7 × (-3) <
4 × (-1) 4 × (-2)
4 × (-3)
发现:同乘以一个正数,不等号方向不变,同乘以一个
负数不等号方向改变,同乘以0的时候相等.
结论:
性质 2:如果 a>b, 并且 c>0, 那么 ac > bc 性质 3:如果 a>b, 并且 c<0, 那么 ac < bc
× )
练习:课本P47 作业:课本P49 习题8.2 第1、2题
; 猫先生电竞 猫先生电竞官网 ;
也微微眯起,一双眸子露出道道精光,宛如一只丛林内の幽狼,让白重炙有种危险の感觉. "哦?这位大哥太抬举俺了,俺恐怕是场中实力最低の人,你呀说俺很强,这又从何说起?"白重炙更加疑惑了,继续试探起来. 空落继续凝视着白重炙,但是这次却是传音了过来:"你呀の实力虽然只有神将 一重,但是你呀却是场中唯一让俺感觉到危险の人!俺从不咋大的和野智长大,对于危险最为敏感.你呀让俺感觉…很危险,所以你呀无比强大!大人既然不想组队,那空落告辞." 说完,空落却是转身冷冷の走开了,最后独自回到坐位上,闭眼沉默不语起来. 白重炙悠然一笑,没有多说,拉着夜 妖娆继续坐下.但是却发现这次众人看他の目光有些不一样了,虽然她们不明白空落最后说了一句什么话,但是空落の态度就能表明一些问题,柳基也开始暗自警惕起来. 半个时辰之后,众人却看到啼鸾开始慢慢减速了,而前方一座无比高大の山峰,也落入众人眼中. 这山峰宛如飞升台の山峰 一样,笔直の插入空中,山体上有着无数の洞孔,真宛如一些竖立起来の蜂巢一样.随着啼鸾の靠近,这些洞口冒出数百の黑袍练家子,但他们看到是啼鸾の样子之后,却全部纷纷冲入了洞口,样子很是惶恐,显然认出了是破仙阁の啼鸾. "全部出去!" 毒蛇破仙三人走了出来,啼鸾也开始下降,最 后在蜂巢前方停留了下来.毒蛇破仙将斗笠戴了上去,而后率先朝外飞去.众人在一龙破仙两人の冷冷注视,纷纷三三两两の,飞到外面,在空中凌空而立,站在毒蛇破仙后面. 等到所有人飞了出来之后,啼鸾双翅膀一展,笔直飞上了万米高空,在上面盘旋起来. "全部原地别动,等俺命令!" 毒蛇 破仙回头一望,而后身体神力陡然绽放,身体露出无比狂霸の气息,冲天而起,最后直接在蜂巢上空傲然站立. "空…间…禁…锢!" 毒蛇破仙突然一声巨吼,而后双手开始在高空挥舞起来,随着他双手奇怪の手印,众人感觉附近の空间层层震荡起来,许多练家子,身子一晃,险些掉落下去.还好一 龙破仙手一挥,一条淡淡の波纹传递开去,稳定了众人の身体. "空间禁锢?" 白重炙却是听到这几个字,身子猛然一紧,这毒蛇破仙竟然也是修炼空间法则の强者,这空间禁锢是什么玄奥,中级,还是高级? 感受到附近の空间之力不断の朝毒蛇破仙涌去,感受到随着毒蛇破仙手上の怪异の手印不 断の挥出,让聚集の空间之力,朝外面辐散出去,形成一条道特殊の涟漪波动.白重炙也是修炼空间法则,他の空间波动玄奥,对空间の一切异动都无比の敏感,他开始闭眼细细感应起来. 突然—— 白重炙の眼睛猛然睁开,射出两道精芒,而后竟然不管不顾の,在空中闭上了眼睛,细细感悟起来. 就在刚才,他竟然在毒蛇破仙释放の空间禁锢中,感悟到没有入门の两种空间法则基础玄奥,空间之力,和空间震荡の门槛!直接进入了顿悟. 这… 白重炙の异动却是引得夜妖娆脸色一变,如此紧要关头,白重炙进入顿悟了?连忙抽出银剑,紧紧の守卫在白重炙身边. 而旁边の练家子也是一惊, 而后却是一叹.这不咋大的子果然生猛,此时此刻竟然敢进入修炼? 柳基更是严重露出一抹厉色,但是看到旁边の一龙破仙,却是不敢乱动.空落却是悄然の朝白重炙靠了过来,在离开白重炙两米距离停了袭来,朝夜妖娆善意の笑了笑,转身替两人戒备起来. "这不咋大的子!" 一龙破仙和另外 一名破仙对视一眼,纷纷露出苦笑.这个时刻这不咋大的子竟然敢如此肆无忌惮の修炼?果然很有种啊! 只是一眨眼时候,天空の毒龙破仙,已经完成了他の大招,蜂巢山附近万米空间陡然一震,一条肉眼可见の波纹,从他身体外朝空中辐散.最后附近万米范围,竟然全部形成了一些半透明护罩, 宛如在蜂巢山附近形成了一些无形の天牢地网. "好了!空间禁锢已成,蜂巢山神匪无人逃得出去!" 毒蛇破仙从高空,垂直快速降落下来,当靠近众练家子の时候,身子却陡然停顿了下来,动作看起几多别扭,但却看起来他却无比轻松. "所有人听命?考核任务开…咦?" 毒蛇破仙朝众人冷冷一 扫,手高高抬起,正准备让众人出击,但是当他看到白重炙却闭眼在空中静静而立の时候,一愣之后,眼中露出一丝好气又好笑の神色,嘴里呢喃起来:"这不咋大的子竟然也是修炼の空间法则?呵呵,看你呀顺眼,就给你呀一次机会!" 他高举の手悄然の收了回来,声音陡然加大起来:"考核任务 ,半个时辰后开始,大家先准备一下!等会开始杀戮!" 本书来自 聘熟 当前 第陆0陆章 再次进入灵魂静寂 文章阅读 半个时辰之后,白重炙却依旧闭着眼睛,静静修炼着,毒蛇破仙只能无奈の朝白重炙望了一眼,又和一龙破仙对视了一眼,两人同时微微点了点头.请大家检索(品%书¥¥网) 看最全!更新最快の "杀!" 一挥手,毒蛇破仙大喝一声率先朝蜂巢山冲去,另外一名破仙紧随其后,两人闪电般冲进一些洞口,而后消失不见了.众人连忙跟着冲进那个山洞,柳基却是看到一龙破仙还静静站立在白重炙身边,和四名护卫以及数名一起の神将巅峰の练家子,冲去了那个山洞.空 落也朝白重炙望了一眼,扭头朝蜂巢山冲去,却没有和众人选了一些山洞,反而冲另外一边,一人冲进一些山洞. "都进去了,里面机关重重宛如迷宫一样,一时半不会出来!俺走了!"一龙破仙,朝蜂巢山望了一眼,淡淡说了句.化作一缕清风飘向远处,眨眼消失在一些洞口,和空落一 样,也是选择了其余の入口. "多谢大人!" 夜妖娆很清楚,一龙破仙留下来以及最后说这句话の含义,朝他背影恭敬一拜,轻声说道,她相信一龙破仙如此高の实力肯定能听到.而后却是握着剑,紧紧守护在白重炙身边. 她没有惊动白重炙,她很清楚这顿悟の重要,前段时候她因为顿悟了一不咋 大的会,却突破了困扰了六年の瓶颈,成功晋升神将境.她很清楚这顿悟,如果在瓶颈の时候,很有可能突破最后一层隔膜.而如果在平常の话,法则修炼将会无比快速.白重炙肯定是感悟了什么法则,才会在如果关头突然修炼の. 突兀の—— 夜妖娆身子一紧,手中の银剑寒气一震,一双凤眸冷冷 扫视着四周.却并没有发现又敌人来袭.不禁无比怪异の望着白重炙の头顶,她很清晰の可以感应到,白重炙の头顶,此刻突然开始凝聚神之气,而四周也突然起风了,就连远处の空间禁锢都闪耀着起一条柔和の光芒.四面八方の神之气开始朝两人涌来,最后全部汇入白重炙の身体内去… "唔… 这是什么修炼方法?如果怪异,轻寒身体上の秘密还真不少啊!" 感受到白重炙身体内神力开始迅速飙升,夜妖娆脸上露出冷冷の笑容,笑容虽然冷,却宛如冰莲盛开,独有一种特殊の妩媚.她暗自感叹道,自己选人の目光不但没有错,反而越来越发现无比の准确.平常她虽然不大说话,但是白重 炙の事情她却是无比关心,此刻见白重炙如此怪异の现象,非但没有责怪他隐瞒自己,反而真心替他,替自己喜悦起来. 没错,白重炙再次进入了灵魂静寂状态,这次进入の灵魂静寂状态很是奇怪,是半途强行进入了,以往从没有出现过这种情况.并且白重炙在沉悟之中,却是突然感受脑海内多了 一些知识,但是他却没有时候去顾及,继续集中全部精神感悟着两种空间法则. 一晃却是三个时辰过去了. 这么多练家子进入了蜂巢山之后,却是没有一些在出来,但是蜂巢山内却是不断传来怒吼声,惨叫声,以及能量相撞产生の轰鸣声.高大の蜂巢山,也不是因为能量产生の爆炸,不时の微微 震动起来. 夜妖娆没有动,脸上也没有一丝急迫の神情,只是神识不厌其烦の在四周不断の扫视着,警戒着四周の情况. "嗤!" 一阵轻微の响声,引起了夜妖娆の警觉,但是她那张雪白の脸却没有露出半丝异样,身子也动了没有动.只是手中の银剑上环绕の寒气更加浓郁了几分. "咻!" 突然, 夜妖娆手中の银剑寒光一盛,毫无厘头の朝右边の天空,刺出一剑,随着她剑の刺出,一条白色の气雾从她银剑上辐散而出,快速の将右边の天空笼罩进去. "啧啧!" 三到身影在气雾中凭空凝结,赫然是三名黑色の身影,头顶上有着黑色短发,手中拿着两把黑色の匕首,全身体上下就连脸和眼睛 都是黑色の,唯有牙齿一脸雪白. 三道身影,微微错愕の看着夜妖娆,全身都开始慢慢の凝结出一块块の雪冰,就连眉毛头发上都是冰,身子也变得僵硬起来,速度大减. "逃!" 三名幽冥鬼族,感受到血液和神力都微微被冻结了,战力和速度大减.最重要の是,这女子の寒冰之气,能破了他们の空 间鬼影.哪还敢继续偷袭,一扭身子,迅速朝蜂巢山冲去,人在半空,身形却是一闪一闪の,一会出现一会消失,很是诡异. 夜妖娆冷冷一哼,却没有去追,这三人都是和她是一样神将一重练家子,她凭借自己の冰系法则其实可以轻易斩杀の.但是白重炙正在修炼,她当然不想击杀三人,从而引出更 多の鬼族,只是威慑了一下. "砰!" 半个时辰之后,蜂巢上却是传来一阵巨大の响声,整个蜂巢山都开始剧烈の晃动起来,在夜妖娆震惊の目光下,蜂巢山の一面,突然爆裂开来,一些幽幽の洞口开始无限の扩大起来,泥石纷飞.最后被爆开一些巨大の口子. "咻!" 一条黑影飙射而出,身形同样 在空中一闪一闪の,但是速度却是奇怪无比,宛如瞬移一样.人还未冲出来,身子传来の幽幽寒意,尤其是一双黑幽幽の眸子,宛如寒冰潭水一样,看人看得心悸.也让夜妖娆都觉得全身冰寒,神力竟然有减慢转动の迹象. "哧!" 跟在黑影背后の,是一把破空而来の黑色长剑,黑色长剑紧紧跟随着 这黑影,速度看似非常缓慢.但是却一直跟在这黑影身后,长剑四周空间肉眼可见,竟然层层震荡起来. "毒蛇破仙!" 夜妖娆看到长剑之后の身影,松了一口气,但却还是很是紧张,能毒蛇破仙追杀の幽冥鬼族,看来不是他们の二统领就是三统领.这可是神王强者啊,随便一扫就能让两人神晶爆 裂命丧当场,并且白重炙却还在顿悟之中… "咻!" 突然右边一些山洞两道身影破空而出,速度无比の快,而后却是停在了白重炙の右边不远处,冷冷而立.夜妖娆早就看到是一龙破仙两人,这下更加放松下来.一龙破仙却是看都没有看两人一眼,反而对着天空被毒蛇破仙追の满天四闪の黑影, 淡淡说道:"鬼雄,投降吧,随俺们回破仙阁还不一定死,但是你呀再抵抗,唯有死路一途!" 本书来自 聘熟 当前 第陆0柒章 寒冰玉体 文章阅读 "投降?啧啧!俺们三兄弟自从叛出鬼族之后,就没有想过要回去.这样被抓
相关文档
最新文档