地球化学英文原版 part1 of 19 appendix

合集下载

地球化学 (1)

地球化学 (1)

2. 该方程式所有的参数与矿物或岩石的U,Pb含量无关 ,只与Pb同位素比值有关;
3. 方程式的左边为放射性成因的(207Pb/206Pb)*,即:
207 Pb /204 Pb 206 Pb /204 Pb
0
207 Pb *
➢ 在氧化条件下,U形成UO22+络合物(U价态为的+6),易溶于 水,此时为活动元素(mobile element)。
➢ U和Th在硅酸盐矿物中的含量很低,含U,Th的主要矿物有 :uraninite (沥青铀矿),thorianite(方钍石),zircon(锆石), thorite(硅酸钍矿),allanite(褐帘石),monazite(独居石), apatite(磷灰石),xenotime(磷钇矿),sphene(榍石)
206Pb, 207Pb, 208Pb;中间 产物的半衰 期非常短;
U, Th, Pb 的地球化学特征
Isotope 238U 235U 234U 232Th
Abundance (%) 99.2743 0.7200 0.0055 100.00
Halflife (years) 4.468×109
0.7038×109 2.45×105
14.010×109
Decay Constant (y-1) 1.55125×10-10 9.8485×10-10 2.829×10-6 4.9475×10-11
适合定年的矿物
Although U and Th occur in a large number of minerals, only a few are suitable for dating by the U, Th-Pb methods. To be useful for dating, a mineral must be retentive with respect to U, Th , Pb and the intermediate daughters, and it should be widely distributed in a variety of rocks. 适合定年的矿物主要有:Zircon(锆石), Baddeleyite( 斜锆石), Monazite(独居石), Apatite(磷灰石), Sphene(Titanite)(榍石), Garnet(石榴石), Rutile(金红 石), Perovskite(钙钛矿), Ilmenite (钙钛矿), Cassiterite( 锡石), Calcite(方解石)

同位素地球化学19

同位素地球化学19

I SOTOPIC E VOLUTION OF THE M ANTLE IVT HE O RIGIN OF M ANTLE P LUMES AND THE C OMMON C OMPONENT INP LUMESDetermining how the various geochemical reservoirs of the mantle have evolved is among the most vexing problems in geochemistry. The principal observation to be explained is that mantle plumes in-variably have less depleted isotopic signatures than MORB, and the isotopic compositions of some indicate net enrichment in incompatible elements. As we saw in the previous lecture, mantle plumes were initially thought to consist of primitive mantle (e.g., Schilling, 1973). As we found, mixing be-tween primitive and depleted mantle can explain the Sr and Nd isotopic compositions of some plumes, but virtually none of the Pb isotope data can be explained this way, nor are the trace element compositions of OIB consistent with plumes being composed of primitive mantle. Indeed, although ‘primitive mantle’ has proved to be a useful hypothetical concept, no mantle-derived basalts or xeno-liths have appropriate compositions to be ‘primitive mantle’ or derived from it. It is possible that n o part of the mantle retains its original, primitive, composition (on the other hand, to have survived, primitive mantle must not participate in volcanism and other such processes, so the absence of evi-dence for a primitive mantle reservoir is not evidence of its absence).Hofmann and White (1982) suggested mantle plumes obtain their unique geochemical signature through deep recycling of oceanic crust (Figure 19.1). Partial melting at mid-ocean ridges creates oce-anic crust that is less depleted in incompatible elements than the depleted upper mantle. The oceanic crust is apparently inevitably subducted as virtually none is preserved at the surface, so it clearly is recycled back into the mantle. The question is what becomes of it? Hofmann and White noted t h a t once oceanic crust reaches depths ofabout 90 km it converts to eclogitewhich is more dense than peri-dotite. Because it is rich in Fe, andgarnet-forming components, it re-mains denser than peridotite at a l l depths greater than 90 km (except, perhaps, just at the 660 discontinu-ity due to the negative Clapeyron slope). Thus it will sink to the base of the convecting region. If the man-tle is chemically stratified, with a Fe-rich lower mantle, oceanic crust would sink to a thermal boundary layer at the 660 discontinuity. If the entire mantle convects as a sin-gle unit, that is if it is not chemi-cally stratified, ocean crust will sink to base of the mantle, becoming embedded in thermal boundary layer there (D´´). Hofmann and White originally suggested radioac-tive heating would ultimately cause it to become buoyant. However, heat conducted into it from below, from either the lower mantle orthe Figure 19.1. Cartoon illustrating the oceanic crustal recycling model of Hofmann and White (1982). Oceanic crust is trans-formed into eclogite and post-eclogite assemblages upon sub-duction. It separates from the less dense underlying litho-sphere and sinks to the deep mantle where it accumulates. Eventually, it becomes sufficiently hot to form plumes t h a t rise to the surface, producing oceanic island volcanism. After Hofmann and White (1982).core, is likely a more important heat source. In any case, upon sufficient heating, it rises, melting near the surface to create intraplate volcanos.As we shall see in a subsequent lecture, sediment appears often, if not always, to be subducted along with the oceanic crust. This subducted sediment would also contribute to incompatible element en-richment of plumes. Varying amounts, types, and ages of subducted sediment may be responsible for some of the geochemical variety displayed by plumes. Since sediment is ultimately derived from the continents, recycling of oceanic crust, continental crust, mantle plumes, and oceanic island basalts may all be part of a grand geochemical cycle. Tectonic erosion of continental crust in subduction zones and delamination of continental crust may be alternative mechanisms for deep recycling of continental crust.Because the major element chemistry of OIB is often similar to that of MORB, it seems unlikely plumes could be composed entirely of recycled oceanic crust. Presumably, they consist primarily of peridotite, with a subordinate fraction of oceanic crust. However, because the oceanic crust has much higher incompatible element concentrations than peridotite, it provides most of the isotopic and in-compatible element “flavor” of plumes.Trace elements provide some evidence that some plumes contain a recycled sediment component. The Pb/Ce ratio is particularly useful indicator of the presence of sediment for several reasons. First, the Pb/Ce ratio is comparatively uniform in MORB and many OIB. Second, the Pb/Ce ratio is an or-der of magnitude higher in sediments than in the mantle (typically, Pb/Ce is greater than 0.3 in sed-iments and <0.04 in MORB). Third, sediments have two orders of magnitude higher concentrations of Pb (typically 20 ppm or more) than the mantle (less than 0.05 ppm), so that addition of even small amounts of sediment to mantle shifts the Pb/Ce ratio. Finally, the near constancy of Pb/Ce in most basalts suggests this ratio is not significantly changed in by magmatic processes such as partial melt-ing and fractional crystallization. There is a strong correlation between isotope ratios and Pb/Ce in basalts from the Society Islands. As Figure 19.2 shows, the correlation is consistent with mixing be-tween recycled sediment and mantle.An alternative origin for mantle plumes was proposed by McKenzie and O’Nions (1983). They noted the common evidence for incompatible element enrichment in the subcontinental lithosphere (which we discuss in the next section) and suggestedthis material may occasionally become de-laminated. Because it is cold, it would alsosink to the deep mantle. As in the case of theHofmann and White model, it would bestored in a thermal boundary layer, heated,and rise in the form of mantle plumes. How-ever, as we shall see in the next section, re-cent studies have shown that the Os isotope composition of the subcontinental litho-sphere is quite distinctive, and quite differ-ent from that of mantle plumes. This sug-gests that “delaminated” subcontinental lithosphere does not contribute to mantle plumes. Because mantle plumes come in sev-eral geochemical varieties, it is possible that both mechanisms operate. Indeed, other as yet unknown processes may be in-volved as well.Most oceanic islands show some vari-ability in their isotopic compositions, defin-ing elongated arrays on plots of isotope ra-tios. Such elongated arrays suggest mixing. This raises the rather obvious questionof Figure 19.2. Pb/Ce and 207Pb/204Pb in basalts from the Societies Islands studied by White and Duncan (1996).A calculated mixing line between depleted mantle and sediment passes through the data. Also shown are estimated Pb/Ce ratios of average continental crust and bulk silicate Earth (BSE).what is mixing with what. In a fewcases, the Comores are a good example,the elongate arrays seems to reflect mix-ing between different plume reservoirs.The Comores data defines a trend in iso-topic space that appears to be the resultof mixing between an EMI and a HIMUcomponent. In other cases, such as theGalapagos, the plume is clearly mixingwith the depleted mantle. However, inmany cases, the cause of the isotopicvariation is less clear.Hart et al. (1992) plotted oceanic ba-salt isotope data in three dimensions,with axes of 87Sr/86Sr, 143Nd/144Nd, and206Pb/204Pb (Figure 19.3). Principal com-ponent analysis confirmed that 97.5% ofthe variance in the oceanic basalt iso-tope data could be accounted for by these ratios (leaving 2.5% to be accounted forb y 207Pb/204P b , 208Pb/204P b , and 176Hf/177Hf). They found that most of the data plotted within a tetrahedron defined by the hypothetical end mem-bers EM1, EM2, HIMU, and DMM. They also noticed that many arrays were elongated toward the base of this tetra-hedron on the DMM-HIMU join. From this they concluded that in many, if not most cases, mantle plumes appear to mixing with a previously unidentified component, which they named “FOZO” (an acronym for Focal Zone), that has the approximate isotopic composition of 87Sr/86Sr = 0.7025, e Nd = +9,and 206Pb/204Pb = 19.5. They suggested that FOZO is the isotopic composition of the lower mantle and that plumes rising from the core mantle boundary entrain and mix with this lower mantle material.It is unclear, however, whether such a composition for the lower mantle can be fitted to reasonable isotopic mass balances for the Earth. A rather similar idea was presented by Farley et al. (1992),who point out that this additional component, which they called “PHEM”, seems to be associated with high 3He/4He. White (1995) concurred with these ideas, but argued that the 87Sr/86Sr of FOZO is higher, and the e Nd lower, than estimated by Hart et al. (1992) and probably closer to the values chosen by Farley et al. (1992). Hanan and Graham (1996) used Pb and He isotope ratios to deduce yet another potential common component of plumes, which they called “C”. The “C” composition of Hanan and Graham is similar to the PHEM of Farley et al. (1992) and may be just another name for the same thing. “C “ and “PHEM” occur in the interior of the tetrahedron shown if Figure 19.3.Hanan and Graham (1996) argued that “C” is the principal component of plumes, the other compo-nents just add “flavor”.T HE S UBCONTINENTAL L ITHOSPHEREFigure 19.4a shows Sr and Nd isotopic variations in continental basalts. The data span a much larger range than oceanic basalts. Some, but not all, of this variation reflects the effects of assimila-tion of continental crust on the isotopic signatures of the mantle-derived magmas. Assimilation ef-fects can be avoided by considering only the data on peridotite xenoliths in continental basalts, the data for which is shown in Figure 19.4b. As may be seen, the range of values is reduced, but neverthe-less much greater than that observed in oceanic basalts. One needs be cautious in directlycomparingFigure19.3. Three dimension plot of 87Sr/86Sr,143Nd/144Nd, and 206Pb/204Pb. Most oceanic basalt data plot within a tetrahedron defined by the composition of EMI, EMII, HIMU, and DMM components. Oceanic is-lands and island chains tend to form elongate isotopic arrays, many of which seem to point toward a focal zone (FOZO) at the base of the tetrahedron. Adapted from Hart et al. (1992).the heterogeneity observed in xenolith data to basalt data because the two represent different scales of sampling of the mantle. Basalts are created by melting of regions that have characteristic scales of tens of kilometers, and perhaps greater in some cases. The magma generation process undoubtedly averages out very small-scale heterogeneities. Xenoliths, on the other hand, have characteristic di-mensions of centimeters. Thus variations in isotope ratios in basalts reflect large scale heterogeneity in the mantle, while xenoliths reflect small scale heterogeneity. Despite this, it appears that the subcontinental lithosphere is more heterogeneous, even on relatively large scales, than is the suboce-anic mantle.It appears that the subcontinental lithosphere can be quite old, and, at least in some cases, has the same age as the crust it underlies. Studies of xenoliths and inclusions in diamond from South African kimberlites suggests the mantle is 3–3.5 Ga old in this region, ages similar to that of the South Afri-can craton. The greater isotopic heterogeneity of the subcontinental lithosphere probably reflects its0.51350.51300.51250.51200.5115-15-5051015eNd.5110.5114.5118.5122.5126.5130.5134143N d /144N d 87Sr/86Sr143N d /144N d 87Sr/86SrFigure 19.4. (a) top. Sr and Nd isotope ratios in continental basalts. (b) bot-tom. Sr and Nd isotope ratios in xenoliths in continental basalts. After Zin-dler and Hart (1986).long-term stability, which allows variations in parent-daughter ratios to be expressed in variations in radiogenic isotope ratios. Convective mixing in the suboceanic mantle will tend to destroy hetero-geneity in it.Though many xenoliths have isotopic compositions indicating incompatible element enrichment,others xenoliths show parts of the subcontinental lithosphere can be extremely incompatible element depleted. e Nd values of +500 have been recorded in garnets in eclogites from the Roberts Victor mine kimberlite. These eclogites appear to be rafts of subducted oceanic crust stranded in the subcontinen-tal lithosphere over 3 Ga ago, an interpretation supported by highly variable oxygen isotope ratios in the eclogites. They apparently suffered extreme LRE depletion around that time, perhaps by a small degree of melting or dehydration after subduction. Much of the subcontinental lithosphere may consist of mantle from which partial melts have been extracted to form the continental crust. Inter-esting, when the upper mantle undergoes melting both the melt and residual solid will have a den-sity that is less than the original material. This residue is less dense is because garnet, a very dense phase, is preferentially removed during melting. Thus both the crustal and mantle parts of the conti-nental lithosphere have relatively low density, which may help to explain its stability.If the subcontinental lithosphere is residual material from which melts have been extracted, why are xenoliths and basalts with “enriched” isotopic signatures so common? What process or processes could have produced this incompatible element enrichment of many parts of the subcontinental litho-sphere? One possibility, first suggested by Brooks et al. (1976), is that partial melts from mantle plumes migrate upward into the lithosphere, where they freeze. The extent to which upwelling mantle can melt will depend o n the depth to which it rises.Where continental lithosphere prevents plumes from rising above 200 km depth or so, the degree of melting is likely to be quite small, meaning the melts would be quite incompatible element enriched. These melts could then migrate upward into the lithosphere, reacting with it and enriching it in incompati-ble elements. Yet another possi-bility is that hydrous fluids re-leased during dehydration of subducting oceanic lithosphere may migrate into the continen-tal lithosphere and react with it (Hawkesworth, 1990). Judg-ing from studies of island arcmagmas, such fluids appear to be particularly enriched in solu-ble incompatible elements, suchas the alkalis and alkaline earths. These processes in which lithosphere reacts with melts or fluids is known as man-tle metasomatism *. Petro-* Metasomatism is defined in metamorphic petrology as a subsolidus process that results in a net change in the composi-tion of the metamorphic rock. Usually this is accomplished by the flow of aqueous solutions through the rock. The-50-40-30-20-1001020e Nd g Os Figure 19.5. e Nd vs. g O s in xenoliths from the subcontinental lithosphere and oceanic island basalts. Despite low and vari-able e Nd , the subcontinental lithosphere appears to be charac-terized by systematically low g O s (g O s is the percent deviation of the 187Os/188Os ratio from the condritic value).graphic studies of some xenoliths clearly reveal features, such as the secondary growth of hydrous minerals such as phlogopite (Mg-rich mica) and richterite (an alkali-rich amphibole) indicative of such metasomatism.Recent studies of Os isotope ratios in xenoliths from the subcontinental lithosphere have been par-ticularly enlightening. Most xenoliths derived from below regions of old continental crust have low Os isotope ratios, which imply that low Re/Os ratios were established long ago. The low Re/Os ra-tios are consistent with the idea that this material undergone partial melting in the past, since Re is moderately incompatible, and would partition into the melt, while Os is highly compatible, and would remain in the solid. Despite their low 187Os/188Os ratios, many of these same xenoliths have quite low e Nd (Figure 19.5). The low e Nd suggests incompatible element enrichment, and hence would appear to be inconsistent with the high 187Os/188Os ratios (Figure 19.5). The explanation of this paradox appears to be that Os was not affected by the metasomatism that enriched these regions in incompatible elements and decreased Sm/Nd ratios (e.g., Carlson and Irving, 1994). Apparently, nei-ther Re nor Os are transported effectively by metasomatic fluids. If the fluids are aqueous, this is perhaps not surprising, since these elements have low solubilities under reducing conditions. If the fluids are silicate melts, it is unclear why they do not transport Re. The answer may have to do with dependence of the Re partition coefficient on composition and oxygen fugacity.Regardless of why it arises, these unusual Os-Nd isotope systematics provide the continental lithosphere with a distinctive isotopic signature and geochemists with a means of identifying conti-nental lithosphere. In an earlier section, we discussed the hypothesis of McKenzie and O’Nions t h a t subcontinental lithosphere can delaminate and sink to the bottom of the mantle where it is incorpo-rated into mantle plumes. The distinctive isotope signatures of mantle plumes on the one hand and subcontinental lithosphere on the other (Figure 19.5) is inconsistent with this hypothesis.Continental flood basalts provide another interesting example. These are huge outpouring of ba-saltic lava that apparently occurred within relatively short time intervals, a few million years and possibly less in some cases. The great oceanic plateaus, such as Ontong-Java and Kerguelen are the marine equivalents. A number of continental floods basalts can be clearly associated withmantle plumes. For example, the Deccan Traps erupted 65 million years ago when India lay di-rectly over the Reunion mantle plume, and the Parana in Brazil and Etendeka in Namibia were erupted 130 million years ago over the Tristan da Cunha mantle plume when Africa and South America were rifting. These observations have given rise to the idea that continental flood ba-salts are produced when new mantle plumes ar-rive at the surface. Fluid dynamic experiments and simulations show that new plumes willhave large bulbous heads. When the heads ar-rive in the upper mantle, they melt, producing a pulse of volcanism. Others, however, have ar-gued on geochemical grounds that continental flood basalts are produced by melting of the con-tinental lithosphere. Because mantle plumes and continental lithosphere have such different Os and Nd isotope signatures, Os-Nd systemat-ics provide a means of discriminating betweenterm ‘mantle metasomatism’ is widely used to refer to reaction between rock and silicate liquid as well as between rock and aqueous solution.-10-50+5+10-15g OS e Nd Figure 19.6. e Nd of picritic basalts from the Karroo flood basalts plotted against g O s . The fall between the fields. Three lines, illustrating 3 mixing mod-els (different concentrations of Os and Nd in the end-members), connect the fields of xenoliths from the subcontinental lithosphere and oceanic island basalts (i.e., mantle plumes). The data fall close to these lines, suggesting they are mixtures of melts of lithosphere and a mantle plume. After Ellam etal. (1992).these possibilities. Because of the difficulties in determining Os isotope ratios in basalts, only one such study has been carried out thus far. In it, Ellam et al. (1992) found that the Karroo flood basalts,erupted in South Africa 190 million years ago, have Os and Nd isotope compositions that lie on mix-ing lines connecting mantle plume compositions and continental lithosphere compositions (Figure 19.6). Thus at least in this case, then both a mantle plume and continental lithosphere appear to have contributed to the magmas. The data also demonstrate the assimilation of continental crust cannot explain the low e Nd observed in these basalts.I SOTOPIC E VOLUTION OF THE C RUST & M ANTLE T HROUGH T IMEAn important and as yet largely unanswered question is how the mantle chemistry has changed through time; in other words, how did the chemical variations the we observe today originate? W e know the MORB source has been depleted in incompatible elements through extraction of partial melts. Presumably, this depletion is related to growth of the continental crust. Since the MORB source, or the depleted mantle as it is called, constitutes a major part of the mantle, let's consider evo-lution of this reservoir first. We can start by asking how the crust has grown with time, i.e. what is the rate of crustal growth; the mechanism of crustal growth is even less well understood. As Figure 19.7 indicates, there are a variety of possible answers to this question. These can be broken into three types: (1) more or less linear growth through time, such as the curve marked O'N (= O'Nions), (2) ac-celerating growth, e.g., curve V & J (=Verzier and Jansen) and H & R (Hurley and Rand), and (3) early rapid growth followed by later slow growth or no growth, e.g., curve Am (=Armstrong). The present consensus is that continental growth has been either linear or more rapid in the early part of Earth's history; late continental growth models are inconsistent with the presently available data. One of the most provocative models is that of the late R. L. Armstrong. He argued the crust reached its pre-sent size by about 4.0 Ga. Since then, new additions to crust have been balanced by losses through ero-sion and subduction to the mantle. A more extreme model is that of Fyfe (curve F), in which the recy-cling rate is greater than the crust creation rate in the latter part of Earth history.Let's consider the effect these different continental growth models might have on the isotopic evo-lution of the mantle. The reason we want to consider isotope ratios is that, due to the time-integrat-ing effect, present day mantle isotope ratios are path-dependent, element concentrations or ratios are,in general, path-independent. To under-stand this, consider 3 simple models ofmantle evolution. In case 1, partial melt-ing at 4.0 Ga increases the Sm/Nd of themantle by 20%. Case 2, several meltingevents over time increase Sm/Nd by 20%.In case 3, partial melting 100 Ma ago in-creases Sm/Nd by 20%. All three casesresult in identical present day mantleSm/Nd ratios 20% lower than chon-drites. But the three different modelslead to very different time-averaged Sm-Nd ratios and therefore to different pre-sent Nd isotope ratios. 143Nd/144Nd ishighest in case 1, intermediate in case 2and only slightly different from chon-dritic in case 3. Thus isotopic composition of the depleted mantle is a strong func-tion of the rate and timing of crustal growth.While isotope ratios in modern basaltsand xenoliths provide some indication of Figure 19.7. Models of the rates of crustal growth. AM:Armstrong (1981), R&S: Rymer and Schubert (1984), F:Fyfe (1978), D & W: DePaolo and Wasserburg (1979), M & T: McLennan and Taylor (1982), O’N: O’Nions and Hamilton (1981), V & S: Veizer and Jansen (1979), H &R: Hurley and Rand (1969).the evolutionary aspect of mantle geochemistry, addi-tional information can be obtained by examining howisotopic compositions of mantle-derived magmas havechanged through time. To illustrate this, consider three other scenarios for evolution of the crust-mantleevolution. In the first scenario, the continental crust is created in one pulse at 4.5 Ga. The mantle Sm/Nd ra-tio increases at this time and remains fixed thereafter.In this case, e Nd in the depleted mantle should increaselinearly through time (curve A in Figure 19.8; ra-diogenic growth is in general non-linear, but in thiscase, the half-life of 147Sm is so long that the e l t ap-proximates 1 + l t very well, and the growth is effec-tively linear). In the second scenario, the crust grows continuously through time. The Sm/Nd ratio in the mantle therefore increases with time. In this case e Nd follows a concave upward path (curve B in Figure 19.8). In the third case, crust is created at 4.5 Ga, but after that there is a net return of crust to the mantle, so that the Sm/Nd ratio in the mantle decreases with time. In this case, e Nd follows a concave downwardpath (curve C in Figure 19.8).There are some limitations to isotopic studies of ancient mantle-derived rocks. The first is the scar-city of appropriate samples. The second is that we often do not know the tectonic environment in which the magmas were erupted or emplaced. A third is that such samples are preserved only in the continental crust, where there is the danger of assimilation. Finally, the weathering and metamor-phism can affect the isotopic compositions. For the latter reason, Nd and Hf isotope systems are most useful in such studies because they are relatively robust with respect to these effects.Now let's consider how Nd and Hf isotope ratios actually have grown in the mantle. Figure 19.9shows initial e Nd values as a function of time for rocks containing a large mantle component at the time of formation. There are several features of the data that are somewhat surprising. First, even the oldest known rocks appear to have been derived from a mantle that had experienced LRE deple-tion at significantly earlier (afew hundred million years) times.Second, if we view those rockswith maximum e Nd at any giventime as reflecting the compositionof the mantle and others as hav-ing experienced crustal contami-nation, then the mantle does notseem to have become increasinglyLRE depleted with time. Thedata are more consistent with aone-time depletion event near 4.55Ga and approximately closed sys-tem (or at least constant Sm/Nd)evolution since then (Model A inFig. 19.8).The discovery that 3.8 Ga rocks had e Nd between +2 and +4 was particularly surprising. The de-pletion of the source of these rockse NdAge Figure 19.8. Evolution of e Nd in the mantle for three scenarios of crustal growth. A: all crust is created at 4.5 Ga, B: continuous crust creation through time, C: crust creation at 4.5 Ga followed by net return of crust to themantle.Figure 19.9. e Nd in rock suites for which there is little evidence of involvement of much older crust in their genesis (after Smith and Ludden, 1989).suggests the existence of a complimentaryenriched reservoir such as the continentalcrust, which must have formed severalhundred million years earlier (becausetime is required before high Sm/Nd ra-tios are manifest by high e Nd . However,there was, and is, precious little evidencefor significant amounts of crust severalhundred Ma older than 3.8 Ga. The zir-cons in quartzite from the Jack Hills andMt. Narryer and a very small volumefrom the Great Slave Province are theonly bits of continental crust as older or older than 4.0 Ga that have been identi-fied to date. If significant continental crust was created before 4.0 Ga, it has since been largely destroyed.Recent Hf isotope studies of some of the oldest rocks, the Isua gneisses from Green-land (3.8 Ga), suggests that the highpositive initial e Nd may have been dis-turbed by subsequent metamorphism. e Nd and e Hf aregenerally well correlated with e Hf values being about twice those of e Nd (Figure 11.1) Thus, the samples with e Nd of +4 should have e Hf of about +8. Vervoort et al. (1996) found that e Hf in these samples are only around +4. Thus while the Hf isotope ratios confirmthat mantle depletion occurred early, it does not ap-pear to have been as severe as suggested by some of the Nd isotope data.There is also some Pb isotope evidence for very early mantle differentiation. Figure 19.10 shows ini-tial Pb isotope ratios from sulfide ores associated with submarine volcanic rocks that erupted in the Abitibi Belt of Canada around 2.7 Ga ago. The dataplot virtually along the 2.7 Ga Geochron (the Geo-chron as it was 2.7 Ga ago). The most straightfor-ward interpretation of this data is that it reflectsheterogeneity in the mantle that dates from the time the Earth formed, or shortly thereafter.If the crust has grown through time, we wouldhave expected the upper mantle to have become cor-respondingly increasingly depleted, and to have fol-lowed an e Nd evolution along a concave upward curve.This does not seem to be the case. This point is illus-trated in Figure 19.11 from DePaolo (1983). Though there is considerably more data available now than when that paper was written and DePaolo’s curved evolution lines may no longer be appropriate hismain point remains valid: e Nd and e Hf do not followconcave upward evolution paths. There are two alternative explanations. In the first scenario, the crustal mass has remained relatively constant since very early in Earth's history. Although new por-51015200510AGE, Ga e Nd e Hf Figure 19.11. Initial e Nd and e Hf in mantle-derived rocks as a function of time (after DePaolo, 1983).Figure 19.10. 207Pb/204Pb–206Pb/204Pb plot showing Pb iso-topic fields volcanogenic massive sulfide deposits from the Abitibi greenstone belt. Also shown in this dia-gram are single-stage Pb growth curves corresponding to m values of 7, 8, and 9 and isochrons at 2.5, 2.7, and 2.9Ga assuming an age for the Earth of 4.52 Ga. From Ver-voort, et al. (1994).。

地球化学专业英语词汇

地球化学专业英语词汇

地球化学专业英语词汇摘要:地球化学是一门研究地球及其组成、结构、演化和变化的自然科学。

地球化学专业的学习需要掌握一些基本的英语词汇,以便阅读和理解相关的文献、报告和数据。

本文根据地球化学的主要内容,将英语词汇分为以下几个部分:地球构造、岩石和矿物、地球化学过程、地球化学分析和方法、地球化学应用和专业术语。

每个部分给出了一些常用或重要的英语词汇,并列出了中文和英文的对照。

一、地球构造地球构造是指地球内部的结构和组成,以及它们之间的相互作用。

地球构造是影响地球表面形态和动力学的重要因素,也是地球化学研究的基础。

以下是一些与地球构造相关的英语词汇:中文英文地球Earth地核core内核inner core外核outer core地幔mantle上地幔upper mantle下地幔lower mantle地壳crust大陆地壳continental crust海洋地壳oceanic crust岩石圈lithosphere滑动圈asthenosphere板块plate板块运动plate tectonics板块边界plate boundary构造带tectonic belt构造单元tectonic unit构造环境tectonic setting构造活动tectonic activity二、岩石和矿物岩石和矿物是地球化学研究的主要对象,它们记录了地球历史上发生过的各种物理、化学和生物过程。

岩石是由一个或多个矿物组成的固态聚合体,根据形成方式可以分为火成岩、沉积岩和变质岩。

矿物是具有一定的化学成分和结晶结构的自然形成的无机固体。

以下是一些与岩石和矿物相关的英语词汇:中文英文岩石rock火成岩igneous rock沉积岩sedimentary rock变质岩metamorphic rock岩浆岩magmatic rock火山岩volcanic rock侵入岩intrusive rock喷出岩extrusive rock碎屑岩clastic rock化学沉积岩chemical sedimentary rock生物沉积岩biogenic sedimentary rock原生变质岩protolith metamorphic rock接触变质岩contact metamorphic rock区域变质岩regional metamorphic rock热变质岩thermal metamorphic rock压力变质岩pressure metamorphic rock矿物mineral晶体crystal晶面crystal face晶轴crystal axis晶系crystal system对称元素symmetry element对称性symmetry矿物学mineralogy矿物化学mineral chemistry矿物物理mineral physics矿物光学mineral optics三、地球化学过程地球化学过程是指地球内外发生的各种化学反应和物质迁移,它们造成了地球各部分的化学组成和同位素比例的差异和变化。

应用地球化学元素丰度数据手册-原版

应用地球化学元素丰度数据手册-原版

应用地球化学元素丰度数据手册迟清华鄢明才编著地质出版社·北京·1内容提要本书汇编了国内外不同研究者提出的火成岩、沉积岩、变质岩、土壤、水系沉积物、泛滥平原沉积物、浅海沉积物和大陆地壳的化学组成与元素丰度,同时列出了勘查地球化学和环境地球化学研究中常用的中国主要地球化学标准物质的标准值,所提供内容均为地球化学工作者所必须了解的各种重要地质介质的地球化学基础数据。

本书供从事地球化学、岩石学、勘查地球化学、生态环境与农业地球化学、地质样品分析测试、矿产勘查、基础地质等领域的研究者阅读,也可供地球科学其它领域的研究者使用。

图书在版编目(CIP)数据应用地球化学元素丰度数据手册/迟清华,鄢明才编著. -北京:地质出版社,2007.12ISBN 978-7-116-05536-0Ⅰ. 应… Ⅱ. ①迟…②鄢…Ⅲ. 地球化学丰度-化学元素-数据-手册Ⅳ. P595-62中国版本图书馆CIP数据核字(2007)第185917号责任编辑:王永奉陈军中责任校对:李玫出版发行:地质出版社社址邮编:北京市海淀区学院路31号,100083电话:(010)82324508(邮购部)网址:电子邮箱:zbs@传真:(010)82310759印刷:北京地大彩印厂开本:889mm×1194mm 1/16印张:10.25字数:260千字印数:1-3000册版次:2007年12月北京第1版•第1次印刷定价:28.00元书号:ISBN 978-7-116-05536-0(如对本书有建议或意见,敬请致电本社;如本社有印装问题,本社负责调换)2关于应用地球化学元素丰度数据手册(代序)地球化学元素丰度数据,即地壳五个圈内多种元素在各种介质、各种尺度内含量的统计数据。

它是应用地球化学研究解决资源与环境问题上重要的资料。

将这些数据资料汇编在一起将使研究人员节省不少查找文献的劳动与时间。

这本小册子就是按照这样的想法编汇的。

地球化学讲义第二章

地球化学讲义第二章

Si↓↓++ Si Si ↓ ↓ ↓ +
架状: Al ↓ ↓ + Si ↓ ↓ ++ Al 链状: Al ↓ ↓ + Si ↓ ↓ ↓ + : 如何代换?岛状: Si ↓ ↓ ↓ ↓ Si与Al不能代 换 :
Al ↓ ↓ +
( ↓ 共价电子对,+自由电子) Al—O(1.7Å)与Si—O(1.61Å)其键长相差6%,两者间易发生代换。
中国地质大学地球科学学院地球化学系制作,2011年7月21日更新
第22页/共52页
地 球 化 学
键性不同,彼此不能置换
Cu,Hg是亲硫元素,倾向于形成共价键 Na,Ca是亲氧元素,倾向于形成离子键
代换中,不同键性的相对关系接近,是代换的一个重 要条件。
自然界中: Si(Si4+ ,0.39Å), Al(Al3+,0.57Å)代换十分普遍 铝硅酸盐
地 球 化 学
一、自然界元素结合的类型及特点
自然界元素结合分两种: 同种或性质相似元素的结合--非极性键,一般形成共价键; 异种元素结合--极性键,一般形成离子键。 自然界元素结合特点: 多键性和过渡性; 自然界形成的化合物(矿物)都是不纯的,每一种矿物 都构成一个成分复杂、含量变化的混合物系列
中国地质大学地球科学学院地球化学系制作,2011年7月21日更新
第3页/共52页
第二章 自然体系中元 素 共 生 结 合 规 律
地 球 化 学
本章内容
自然界元素结合的类型及特点 元素的地球化学亲和性 类质同象代换及微量元素共生结合 规律 晶体场理论在解释过渡族元素结合 规律上的应用
中国地质大学地球科学学院地球化学系制作,2011年7月21日更新

同位素地球化学1

同位素地球化学1

§1.2 放射性衰变定律 放射性母体核素衰变成稳定子体产生的速率与任一时间t时的 原子数n成正比:
dn n dt
这里λ 是比例常数,它是每个放射性核素的特征值,称之为衰变 常数(以时间的倒数单位表示)。衰变常数表示了一给定放射性 原子在规定的时间内衰变的几率。dn/dt项是母体原子数的变化 率,为负是因为此变化率随时间减小。整理上式,我们得到:
沉积物埋藏和压实后,随后被抬升、褶皱与破裂,使得氧化性的 地下水活化和浓缩矿石形成宽度超过1m的几乎纯铀氧化物的矿 脉。 然而,作为反应堆运行,与现在的0.72%水平相比,在那时依 赖于更高的235U浓度(3%),在终止时间内通过α衰变,浓度减小 了。 裂变现象的地球化学证据:1.自裂变产生的元素丰度特征。如, 观测过量的稀土元素和象Zr这类的其它不活泼元素。碱金属和 碱土金属可能也是富集的,但随后通过淋滤被消去。2.一些元素 的特征同位素丰度仅能由裂变加以解释。
§1.3 分析技术
为了使用放射成因同位素作为定年工具与示踪剂,必须使用 先进、精确的仪器将不同质量的核素分离开,这种仪器就是现代 广泛使用的质谱计。在这种仪器中,使用扇形磁铁,使真空下离 子化的核素先通过高电压加速,然后在磁场中分离不同质荷比的 核素。
m 2V r 2 e H
2
因为产生的大多数离子是单电价的,不同的核素将被分成简 单的质量谱。每一个质量的相对丰度由其相应的离子电流(由法拉 第筒或电子倍增器捕获)确定。其它的质量分离方法(如四极杆、 飞行时间分析器)也可用于质量分析,但它们对于精确的同位素比 值测量很少广泛应用。
德国产的MAT261固体质谱计
德国产的MAT251稳定同位素质谱计
固体同位素分析前处理超纯实验室
固体同位素分析前处理超纯实验室

《地球化学》章节笔记

《地球化学》章节笔记

《地球化学》章节笔记第一章:导论一、地球化学概述1. 地球化学的定义:地球化学是应用化学原理和方法,研究地球及其组成部分的化学组成、化学性质、化学作用和化学演化规律的学科。

它是地质学的一个分支,同时与物理学、生物学、大气科学等多个学科有着密切的联系。

2. 地球化学的研究对象:- 地球的固体部分,包括岩石、矿物、土壤等;- 地球的流体部分,包括大气、水体、地下水等;- 地球生物体,包括植物、动物、微生物等;- 地球内部,包括地壳、地幔、地核等。

3. 地球化学的研究内容:- 地球物质的化学组成及其时空变化;- 地球内部和外部的化学过程;- 元素的迁移、富集和分散规律;- 地球化学循环及其与生物圈的相互作用;- 地球化学在资源、环境、生态等领域的应用。

二、地球化学的研究方法与意义1. 地球化学的研究方法:- 野外调查与采样:包括地质填图、钻孔、槽探、岩心采样等;- 实验室分析:包括光学显微镜观察、X射线衍射、电子探针、电感耦合等离子体质谱(ICP-MS)、原子吸收光谱(AAS)等;- 地球化学数据处理:包括统计学分析、多元回归、聚类分析等;- 地球化学模型:建立地球化学过程的理论模型和数值模型;- 同位素示踪:利用稳定同位素和放射性同位素研究地球化学过程。

2. 地球化学研究的意义:- 揭示地球的形成和演化历史;- 了解地球内部结构、成分和动力学过程;- 探索矿产资源的形成机制和分布规律;- 评估和治理环境污染问题;- 理解地球生物圈的化学循环和生态平衡;- 为可持续发展提供科学依据。

三、地球化学的发展历程与现状1. 地球化学的发展历程:- 起源阶段:19世纪初,地质学家开始关注矿物的化学组成;- 形成阶段:19世纪末至20世纪初,维克托·戈尔德施密特等科学家奠定了地球化学的基础;- 发展阶段:20世纪中叶,地球化学在理论、方法、应用等方面取得显著进展;- 现代阶段:20世纪末至今,地球化学与分子生物学、环境科学等学科交叉,形成新的研究领域。

地球化学资料1

地球化学资料1

地球化学资料1地球化学资料(1120101)第⼀章地球化学定义DefinitionB.И.韦尔纳茨基(1922):地球化学科学地研究地壳中的化学元素(chemical elements),即地壳的原⼦,在可能的范围内也研究整个地球的原⼦。

地球化学研究原⼦的历史、它们在时间和空间上的运动(movement)和分配(partitioning),以及它们在整个地球上的成因(origin)关系。

V.M.费尔斯曼(1922):地球化学研究地壳中化学元素---原⼦的历史及其在⾃然界各种不同的热⼒学(thermodynamical)与物理化学条件(physical-chemical conditions)下的⾏为。

V.M.哥尔德施密特(1933):地球化学是根据原⼦和离⼦的性质,研究化学元素在矿物、矿⽯、岩⽯、⼟壤、⽔及⼤⽓圈中的分布和含量以及这些元素在⾃然界中的迁移。

地球化学的主要⽬的,⼀⽅⾯是要定量地确定地球及其各部分的成分,另⼀⽅⾯是要发现控制各种元素分配的规律(laws governing element distribution and partitioning)。

V.V.谢尔宾娜(1972):研究地球的化学作⽤的科学---化学元素的迁移、它们的集中和分散,地球及其层圈的化学成分、分布、分配和化学元素在地壳中的结合。

(地球化学基础)涂光炽(1985):地球化学是研究地球(包括部分天体celestial bodies)的化学组成(chemical composition)、化学作⽤(chemical process)和化学演化(chemical evolution)的科学。

刘英俊等(1987):地球化学研究地壳(尽可能整个地球)中的化学成分和化学元素及其同位素在地壳中的分布、分配、共⽣组合associations、集中分散enrichment-dispersion及迁移循徊migration cycles规律、运动形式forms of movement和全部运动历史的科学。

地球化学,第一章1

地球化学,第一章1

第九页,共46页。
费尔斯曼
一、基本概念 分配是指元素在各宇宙体或地质体内 部 分元 ( 中不 配素 太 的分 阳 整同 进布 、 体部 行行是 (分 观星指 平或察、元均区的陨素)段参石在含中考、某量地个。的点球宇含来、宙量自地体。元圈或对素、地元的地质壳体素分)
3 分布与丰度
布。
分布
丰度
平均含量
在南极已采集15000块陨石
为什么?
1965,英国,Barwell 陨石
第二十七页,共46页。
2.5.1 陨石类型
铁陨石
石陨石
石铁陨石
球粒陨石
主要由金属Ni, 主要由硅酸盐矿物
Fe(占90%以上) 组成(90%以上)。
构成
无球粒陨石
由数量上大体 相等的Fe-Ni
和硅酸盐矿物组 成
球粒状硅酸盐 集合体
含量
平均含量
丰度的表示方法
已经建立的丰度体系
与元素丰度有关的几个名词
一种化学元素在某个自然体中 的重量占这个自然体的全部化 学元素总重量(即自然体的总 重量)的相对份额(如百分 数),称为该元素在自然体中 的丰度。
第六页,共46页。
一、基本概念
丰度的表示方法
重量丰度W
W
a

M
X
• W0
常量元素
10-4~ 10-3 Li 、Be、 B 、Cu、 Ba、 Rb 、Ge、Tb、Ho、Tm 、 In、 Ta
与地球和陨石成分对比及意义
碱金属和挥发性元素(Bi、Hg、Zn、Cd、Tl、Pb、Ge、C和Br)较贫 相对富含耐熔元素Ti、V、Cr、Mn、Fe、Co、Ni、Sc、Zr、Nb、Mo、Y及REE
万亿分之

地球化学讲义第一章

地球化学讲义第一章

中国地质大学地球科学学院地球化学系制作,2010年6月1日更新
第21页/共68页
由表可知:
地 球 化 学
对于这样的数据我们应有一个正确的的评价: 首先这是一种估计值,是反映目前人类对太阳系的认识 水平,这个估计值不可能是很精确的,随着人们对太阳系以 至于宇宙体系的探索的不断深入,这个估计值会不断的修正; 它反映了元素在太阳系分布的总体规律,虽然还是很粗 略的,但从总的方面来看,它反映了元素在太阳系分布的总 体规律. 如果我们把太阳系元素丰度的各种数值先取对数,随后 对应其原子序数作出曲线图(如下图)时,我们会发现太阳 系元素丰度具有以下规律:
中国地质大学地球科学学院地球化学系制作,2010年6月1日更新
第18页/共68页
地 球 化 学
2.陨石的平均化学成分
要计算陨石的平均化学成分必须要解决两个问题:首先要了 解各类陨石的平均化学成分;其次要统计各类陨石的比例.各 学者采用的方法不一致.(V.M.Goldschmidt 采用硅酸盐:镍铁:陨硫铁=10:2:1).陨石的平均化学成分计算结果如下:
宇航员
月球车
火星车
中国地质大学地球科学学院地球化学系制作,2010年6月1日更新
第12页/共68页
地 球 化 学
太阳系景观
中国地质大学地球科学学院地球化学系制作,2010年6月1日更新
第13页/共68页
地 球 化 学
(二) 陨石的化学成分
陨石是从星际空间降落到地球表面上来的行星物体的碎片.陨石 是空间化学研究的重要对象,具有重要的研究意义: ① 它是认识宇宙天体,行星的成分,性质及其演化的最易获取, 数量最大的地外物质; ② 也是认识地球的组成,内部构造和起源的主要资料来源; ③ 陨石中的60多种有机化合物是非生物合成的"前生物物质", 对探索生命前期的化学演化开拓了新的途径; ④ 可作为某些元素和同位素的标准样品(稀土元素,铅,硫同位 素).

地球化学

地球化学
编辑本段
发展阶段
地球化学的发展过程大致可以分为3个时期:
萌芽时期
19世纪一些工业先进国家逐渐开展的系统的地质调查和填图、矿产资源的寻找及开发利用促进了地球化学的萌芽。1838年,德国C.F.舍恩拜因首先提出“地球化学”这个名词。19世纪中叶以后,分析化学中的重量分析、容量分析逐渐完善;化学元素周期律的发现以及原子结构理论的重大突破(如放射性的发现),为地球化学的形成奠定了基础。
1908年,美国克拉克发表《地球化学资料》一书。挪威戈尔德施密特在《元素的地球化学分布规则》中指出化学元素在地球上的分布,这使地球化学从主要研究地壳的化学纽成转向探讨化学元素在地球中分布的控制规律。
1927年他组织和领导了世界上第一个地球化学研究机构——生物地球化学实验室。
1907年美国化学家博尔特伍德发表了第一批化学铀-铅法年龄数据。30~40年代铀-钍-铅法、钾-氩法、钾-锶法、普通铅法、碳-14法等逐步发展完善,使同位素地质年代学初具规模。
在这个时期,中国在元素地球化学、同位素地质年代学方面取得了一批重要成果,如1961年李璞等发表了中国第一批同位素年龄数据;1962年黎彤等发表了中国各种岩浆岩平均化学成分资料;1963年中国科学院完成了中国锂铍铌钽稀土元素地球化学总结,提出了这些矿种的重要矿床类型和分布规律。
编辑本段
分支学科
基于研究对象和手段不同,地球化学形成了一些分支学科。
元素
它从岩石等天然样品中化学元素含量与组合出发,研究各个元素在地球各部分以及宇宙天体中的分布、迁移与演化。在矿产资源研究中,元素地球化学发挥了重要作用,微量元素地球化学研究提供了成岩、成矿作用的地球化学指示剂,并为成岩、成矿作用的定量模型奠定了基础。
同位素
根据自然界的核衰变、裂变及其他核反应过程所引起的同位素变异,以及物理、化学和生物过程引起的同位素分馏,研究天体、地球以及各种地质体的形成时间、物质来源与演化历史。同位素地质年代学已建立了一整套同位素年龄测定方法,为地球与天体的演化提供了重要的时间坐标。已测得:太阳系各行星形成的年龄为45~46亿年,太阳系元素的年龄为50~58亿年。在矿产资源研究中,同位素地球化学可以提供成岩、成矿作用的多方面信息,为探索某些地质体和矿床的形成机制和物质来源提供依据。

地球化学第二章-1

地球化学第二章-1

2021/4/9
35
2021/4/9
36
四、电离和电价
元素损失或获得电子的数目为电价,元素 周期表外环上的元素电价很容易确定,但 过渡族元素相对复杂,可能具有1个或多 个电价,大部分为2价或3价,但也有元 素,如U,可高达6价。
2021/4/9
37
2021/4/9
38
第一节 元素的基本参数
在同一原子中,最多只有二个电子处于同一状 态(相同的n,l,m),并且这两个电子的自旋必 须相反。
特定轨道中只能充填两个自旋方向相反的电子。 每一层最多电子数N=2n2。
2021/4/9
19
一、电子构型
1. 主量子数
n=1,2,3…
2. 角量子数
1. l=0,1,2,…n-1 2. S,p,d,f for l=0,1,2,3
42
2021/4/9
43
3.电负性
电负性是决定原子 得失电子的关键参 数,两个中性原子 中电负性高的原子 易接受电子变为阴 离子。
2021/4/9
44
%
3.电负性
离 子 键 比 例 ( )
电负性差异
2021/4/9
两个相互作用的原 子,电负性相差越 大,键的离子性越 强,越易形成离子 键;反之,电负性 相差越小,越易形 成共价键。
地 球中 化国
海 洋
学大 学
Geochemistry Ocean university of china
计算地核中Si、Mg、Fe、Na四种元素的丰度,并讨论地球 不同圈层的地球化学组成特征,解释地球的演化分异过程。
2021/4/9
21
22.8 6.26
0.267
16.3 15.4 31.9 0.18

石油英语词汇g2

石油英语词汇g2

石油英语词汇(G2)GEN 产生GEN 发生器GEN 通用的genera genus的复数general accountant 总会计师general accounting office 总会计室General Administration for industry and Commerce 工商行政管理总局general administrative expense 一般管理费用general agency 总代理general agreement on participation 参股总协定General Agreement on Tariff and Trade 关税及贸易总协定general alarm lamp 公用报警灯general and administrative expense 管理费用general annual report 年度总决算;年度总报告general arrangement 总布置general assembly drawing 总装图general assignment 总任务;综合性作业general average clause 共同海损条款general average 平均值;共同海损general axiom 普通公理general bathymetric chart of the ocean 海洋通用海深曲线general chart 一览图general chemistry 普通化学general circulation models 总循环模式general circulation 大气环流general computer 通用计算机general contingency reserve 一般意外损失准备金general contractor 总承包者general corrosion 全面腐蚀general counsellor 总顾问General Customs Administration 海关总署general data 主要数据general description of construction 施工说明书general drawing 总图general electronic interface 通用电子线路接口general electronics unit 通用电子线路单元general equilibrium theory 综合平衡理论general estimate 总概算general expense 一般费用general expression 通式general facies model 综合相模式general final accounts 总决算general form 通用式general formula 通式general geology 普通地质学general heading 通用标题general instability 总体失稳;总体不稳定general instrument rack 通用机柜general integral 一般积分general interpretative program 通用解释程序general journal 普通日记帐General Land Office Survey 土地总署general layout 总平面布置图general ledger 总分类帐;总帐;一般分类帐general linear model 一般线性模型general list 总清单;总帐目general management 全面管理general manager 总经理general map 一览图;普通地图general material balance 总物质平衡general meeting of shareholders 股东大会general monitor 通用监测仪general neutron log 普通中子测井general neutron logging tool 普通中子测井仪general office 总局general order notice 一般定货通知general outline 概要general overhaul 大修general petrochemical works 石油化工总厂general physics 普通物理学general plan 总体规划general policy 总方针general power of attorney 全权代理委任;全权委托书;全权代理权general preferencial system 普通优惠制general pressure 总压力general principles 总则;原则general probability 总概率general program 通用程序general purpose computer 通用计算机general purpose diagnostic program 通用诊断程序general purpose digital computer 通用数字计算机general purpose engine oil 通用内燃机油general purpose interface 通用接口general purpose language 通用语言general purpose polystyrene 通用聚苯乙烯general purpose register 通用寄存器general purpose tanker 通用油轮general radiation scattering 连续辐射散射general reconstruction 大修general recursive function 一般递归函数general register 通用寄存器general remark 一般说明general routine 通用程序general rule 原则上general scale 基本比例尺general service oil 通用内燃机油general sketch 示意图general solution 通解general strike 一般走向general surface instrumentation system 通用地面仪器General Tax Bureau of the Ministry of Finance 财政部税务总局general term 通项general trend 总走向general view 鸟瞰图general 一般的;综合的;普遍的;全体的;总的;全面的;总则;将军general-purpose program 通用程序general-purpose 通用的generality 一般性;概括;概论;大多数;大部分generalization on cost-volume-profit analysis 成本-产量-利润分析原理generalization 概括generalize 普遍化;推广;总结generalized approximant 广义近似式generalized Bingham body 广义宾汉体generalized Born Series 广义博恩级数generalized case 一般情况generalized columnar section 综合柱状剖面图generalized conductivity 广义电导率generalized contour 简化等高线generalized coordinate 广义坐标generalized Darcy's law 广义达西定律generalized data management system 通用资料管理系统generalized discriminant analysis 广义判别分析generalized distance 广义距离generalized Fick's law 广义菲克定律generalized Fourier analysis 广义傅里叶分析generalized function 广义函数generalized geologic map 综合地质图generalized geological section 综合地质柱状图generalized inverse matrix 广义逆矩阵generalized isoreflectance contour map 广义反射率等值线图generalized least square method 广义最小二乘方generalized linear inversion 广义线性反演generalized model 广义模型generalized mutual impedance 广义互阻抗generalized Newtonian fluid 广义牛顿流体generalized particle Reynolds number 综合颗粒雷诺数generalized Poisson process 广义泊松过程generalized primary reflection 广义一次反射generalized Radon transform 广义拉冬变换generalized ray theory 广义射线理论generalized reciprocal method 广义互逆法generalized Reynolds number 广义雷诺数generalized routine 广义例程;广义程序generalized section 综合剖面generalized stochastic matrix 广义随机矩阵generalized stratigraphic chart 综合地层图generalized system of preferences 普遍优惠制generalized theorem 推广定理generalized upper bound constraint 广义上界约束generalized variance 广义方差generalized 推广的generally accepted 通用的;普遍承认的generant 母点;产生的;母点的generated address 合成地址generated code 合成码generating area 发源区域generating capacity 发电容量generating cutting 滚切法generating line 母线generating machine 发电机generating method 展成法generating plant 发电厂generating rock 生油岩generating set 发电设备generating unit 发电机组generating 发电;发生;滚铣法;产生的generation length 世代长度generation parameter 生油参数generation 发生generative basin 生油盆地generative fold 增长褶皱generative kerogen 生油干酪根generative window 生油窗generator drive 发电机传动generator gate 脉冲发生器;产生门generator matrix 生成矩阵generator program 生成程序generator set 发电机组generator shaft 发电机轴generator tube 锅炉炉管generator 发生器;发电机;振荡器;沸腾器;发送器;传感器;母线;母点;母面;生成元generatrices generatrix的复数generatrix of tank 油罐外廓母线generatrix 母点generic 一般的;属的;类的generitype 属典型种genescope 频率特性观测仪geneses genesis的复数genesis of oil 石油的成因genesis of sediment 沉积物的成因genesis 发生Genesse formation 金尼西层GENESYS 通用工程系统genetic classification 成因分类genetic code 遗传密码genetic composition 原生成分genetic damage 遗传损害genetic development 成因演化过程genetic engineering 遗传工程genetic feature 成因特征genetic increment of strata 地层的成因增量genetic interval of strata 地层成因段genetic model 成因模式genetic porosity 原生孔隙度genetic potential 生油潜力genetic relationship 亲缘关系genetic separation 成因划分genetic sequence of strata 地层的成因序列genetic type 成因类型genetics 遗传学;发生学geneva cam 星形轮geneva cross 十字形接头geneva gear 十字轮机构geneva motion 间歇运动Geneva nomenclature 日内瓦命名法Geneva 日内瓦geniculate 膝状的Geniculatus 膝曲牙形石属genius 天才;才能;特质;精神genlock 集中同步系统;强制同步系统genome 基因组genset 发电机组genthelvite 锌日光榴石gentle anticline 平缓背斜gentle asymmetric fold 平缓不对称褶皱gentle breeze 微风gentle flank dip 平缓侧翼倾斜gentle folding 平缓褶皱作用gentle homocline 平缓同斜层gentle regional uplift 平缓区域隆起gentle slope 平缓倾斜gentle structure 平缓构造gentleman 先生gentleman's agreement 君子协定gentlemen gentleman的复数gently dipping 平缓下降的gently-dipping domal structure 平缓穹窿构造gently-dipping monoclinal slope 平缓单斜坡genuine shale 纯页岩genuine 真实的genus 类genus-range-zone 属延限带genus-zone 属带GEO 同步轨道geo 狭长潮道geo- 地球geo-based file 大地原始编码文件geo-referenced data 大地编码资料geo-stationary orbit 静止轨道geoacoustic model 地声学模型geoacoustics 地声学geoastronomy 天体地质学geoastrophysics 天文地球物理学geobarometry 地压力测定法geobased observation 大地原始观测geobasin 地盆geobiochemistry 地球生物化学geobiontic algae 地生藻类geobody shadow feature 地物阴影特征geobotanical criteria 地植物标志geobotanical deciphering 地植物解译geobotanical guide 地植物指示geobotanical indicator 地植物指示geobotanical mapping 地植物填图geobotanical method 地植物法geobotanical prospecting 地植物勘探geobotanical reconnaissance 地植物踏勘geobotanical regionalization 地植物分区geobotanical response 地植物响应geobotanical sample 地植物样品geobotany 地植物学geocenter =geocentregeocentre 地心geocentric angle 地心角geocentric coordinate 地心坐标geocentric horizon 地心地平面geocentric latitude 地心纬度geocentric longitude 地心经度geocentric origin 地心原点geocerain 硬蜡geocerellite 树脂酸geoceric acid 硬脂酸geocerin 硬蜡geocerite 硬蜡geochemical abundance 地球化学丰度geochemical activity 地球化学活性geochemical affinity 地球化学亲和力geochemical agent 地球化学营力geochemical analysis 地球化学分析geochemical anomaly 地球化学异常geochemical background 地球化学背景geochemical balance 地球化学平衡geochemical behavior 地球化学行为geochemical calibration 地球化学校准geochemical circulation 地球化学循环geochemical column 地球化学柱状图;地球化学柱剖面geochemical correlation 地球化学相关geochemical criterion 地球化学标准geochemical cycle 地球化学旋回geochemical detailed survey 地球化学详查geochemical differentiation 地球化学分异作用geochemical dispersion pattern 地球化学分散模式geochemical dispersion 地球化学分散geochemical division 地球化学分离geochemical drainage survey 地球化学水系测量geochemical enrichment 地球化学富集geochemical environment 地球化学环境geochemical evolution 地球化学演化geochemical exploration 化探geochemical facies 地球化学相geochemical factor 地球化学因素geochemical family 地球化学族geochemical field 地球化学领域geochemical fossil 古地球化学指标geochemical gradient 地球化学梯度geochemical halo 地球化学晕geochemical heritage 地球化学继承性geochemical high 地球化学最高值geochemical history 地化历史geochemical indicator 地球化学指标geochemical information 地球化学信息geochemical inheritance 地球化学继承性geochemical inhomogeneity 地球化学不均一性geochemical investigation 地球化学研究geochemical isograds 地球化学等值线图geochemical log 地球化学录井geochemical logging 地球化学测井geochemical map 地球化学图geochemical mapping 地球化学填图geochemical material balance 地球化学物质平衡geochemical migration 地球化学运移geochemical milieu 地球化学环境geochemical mobility 地球化学活动性geochemical origin 地球化学成因geochemical pattern 地球化学格局geochemical phase 地球化学相geochemical potential 地球化学位势geochemical process 地球化学过程geochemical profile 地球化学剖面geochemical prospecting 地球化学勘探geochemical reconnaissance 地球化学普查geochemical reference sample 地球化学参照样品geochemical regularity 地球化学规律性geochemical remote sensing correlation 地球化学遥感相关geochemical sample 地球化学样品geochemical section 地球化学剖面geochemical signature 地球化学标记geochemical sphere 地球化学圈geochemical standard sample 地球化学标准样geochemical structure 地球化学结构geochemical survey 地球化学测量geochemical table 地球化学表geochemical tracer 地球化学示踪物geochemical vegetation survey 地球化学植物测量geochemical zone 地球化学区geochemistry 地球化学geochromatography 地质色层geochron 地质年代geochrone 地质时标准单位geochronic geology 地史学geochronic 地质年代的geochronologic chart 地质年代表geochronologic data 地史资料geochronologic sequence 地质年代顺序geochronologic unit 地质年代单位geochronologic 地质年代的geochronological interval 地质年代间隔geochronological system 地质年代学体系geochronology 地质年代学geochronometer 地质时标geochronometric scale 地质年表geochronometry 地质年代测定法geochrony 地质年代学geocosmogony 地球宇宙进化论geocratic motion 造陆运动geocratic movement 造陆运动;大陆扩展运动geocratic phase 造陆期geocycle 地质旋回geocyclic 地质旋回的;地球旋转的geocyclicity 地质旋回性geod 大地测量学geode 晶洞geodepression 地洼geodepressional region 地洼区geodesic base line 大地测量基线geodesic curvature 大地曲率geodesic line 大地线geodesic measurement 大地测量geodesic satellite 测地卫星geodesic 短程线的geodesy 大地测量学geodetic astronomy 大地天文学geodetic azimuth 大地方位角geodetic base line 大地测量基线geodetic coordinates 大地坐标geodetic data 大地测量资料geodetic datum 大地基准点geodetic dial 大地测量度盘geodetic earth orbiting satellite 大地测量轨道卫星geodetic gravimeter 大地型重力仪geodetic gravity meter 大地型重力仪geodetic latitude 测地纬度geodetic meridian 大地子午线geodetic network 大地控制网geodetic parallel 大地纬圈geodetic point 大地测量点geodetic reference system 测地参考系统geodetic satellite 测地卫星geodetic station 大地测量点geodetic surveying 大地测量geodetic 测地的geodiferous 含晶洞的geodimeter 光速测距仪GEODIP 地层倾角测井图形识别程序geodome 地穹geodynamic pressure 地动压力geodynamics 地球动力学geoecology 地生态学geoecotype 地理生态型geoelectric cross section 地电剖面geoelectric section 地电剖面geoelectric survey 地电测量geoelectric 大地电流的geoelectrical resistivity 地电阻率geoelectricity 地电geoelectrics 地电学geoevolution 地球演化geoevolutionism 地球演化论geoexploration 地质勘探geofacies 地质相geofactor 地质因素geofault 地质断层Geoflex 爆炸索geoflex 弯曲造山带geofluid 岩石孔隙中的各种流体geofracture 区域性大断裂geog 地理geog 地理的geogeny 地球成因学geoglyphics 化石遗迹geognosy 记录地质学geogram 综合地质柱状图geographic coordinate 地理坐标geographic distribution 地理分布geographic entity 地理特征geographic equator 赤道geographic horizon 地平geographic isolation 地理隔离geographic landscape 地理景观geographic latitude 地理纬度geographic location 地理位置geographic longitude 地理经度geographic map 地理图geographic meridian 地理子午圈geographic mesh 经纬线网geographic mile 地理英里geographic net 地理坐标格网geographic north 地理北geographic orientation 地理方位geographic position 地理位置geographic proximity 地理相邻性geographic value 地理值geographic =geographical 地理的geography 地理学;地理;地形geohistory 地史geohydrologic 地下水文的geohydrology 水文地质学geoid contour 地球体等高线geoid height 大地水准面高geoid surface 大地水准面geoid undulation 大地水准面波动geoid warping 大地水准面翘曲geoid 地球体;大地水准面geoidal azimuth 大地水准方位geoidal height 大地水准面高度geoidal horizon 大地水准面地平圈geoidal profile 大地水准剖面geoinduction 大地感应geoisotherm 等地温线;等地温面geoisothermal surface 地热等温面geoisothermal 等地温线的geol 地质geol 地质的geol 地质师GEOLAB 地质实验室geoline 凡士林;石油geolipid 地质类脂geolock 推靠器geologic age 地质时代geologic agent 地质因素geologic anomaly 地质异常geologic aspects 地质概况geologic background 地质背景geologic barometer 地质压力计geologic basin 地质盆地geologic body 地质体geologic characteristic 地质特征geologic chemistry 地质化学geologic chronology 地质年代学geologic climate unit 气候-地层单元geologic climate 古气候geologic clock 地质年代表geologic column section 地质柱状剖面图geologic column 地质柱状剖面geologic columnar section 地质柱状剖面图geologic compass 地质罗盘geologic condition 地质条件geologic correlation 地层对比geologic cross section 地质横剖面geologic cycle 地质旋回geologic dating 地质年龄测定geologic description 地质描述geologic drilling 构造钻井geologic dynamic simulation 地质动态模拟geologic element 地质单元geologic entity 地质特征geologic environment 地质环境geologic epoch 地质时期geologic era 地质时代geologic erosion 地质侵蚀作用geologic examination 地质调查geologic exploration 地质勘探geologic facies 地质相geologic feature 地质特征geologic formation 地质建造geologic framework 地质结构;地质格架geologic function 地质作用geologic hazard 地质灾害geologic high 地质上的隆起geologic history 地史geologic horizon 地质层位geologic information 地质资料geologic interpretation 地质解释geologic log 地质柱状图geologic low 地质上的凹陷;下部地质建造geologic map 地质图geologic mapping 地质制图geologic media 地质环境geologic model 地质模型geologic modelling 地质模拟geologic noise 地质噪声geologic norm 天然地质环境geologic observation spot 地质观察点geologic oceanography 海洋地质学geologic origin 地质成因geologic painting 地质色标geologic parameter 地质参数geologic period 地质时代geologic photography 地质摄影学geologic position 地层层位;地质位置geologic premise 地质前提geologic profile 地质剖面geologic property 地质性质geologic prospecting 地质勘探geologic province 地质区域geologic quadrangle map 地质标准地形图图幅geologic range 地质延续时限geologic reconnaissance 地质踏勘geologic record 地质记录;地史geologic reef 地质礁geologic remote sensing 地质遥感geologic reserve 地质储量geologic reservoir description 油藏地质描述geologic risk 地质风险geologic satellite 地质卫星geologic section 地质剖面geologic sedimentation 地质沉积geologic setting 地质条件;地质环境geologic sketch map 地质素描图geologic static simulation 地质静态模拟geologic structure 地质构造geologic substratum 地质基底geologic survey 地质测量Geologic Survey 地质调查所geologic symbols 地质符号geologic synchronism 地质同期性geologic time scale 地质年代表geologic time unit 地质时间单位geologic time 地质时代geologic tracer 地质示踪剂geologic trap configuration 地质圈闭构造geologic trap 地质圈闭geologic trend 地质构造方向geologic unit 地质单元geologic well log 钻井地质柱状图geologic window 构造窗geologic zonation 地质分带geologic =geological 地质的geologic-palaeontologic method 地质古生物学方法Geological Association of Canada 加拿大地质协会geological base map 井位图geological retrieval and storage program 地质检索和存储程序geological retrieval and synopsis program 地质检索和摘要程序geological =geologicgeologist 地质学家geolograph chart 地质编录图Geolograph 钻井记录仪geology 地质学geolyte 光沸石geom 几何学geom) 几何学的geomagnetic activity 地磁活动性geomagnetic anomaly 地磁异常geomagnetic axis 地磁轴geomagnetic chart 地磁图geomagnetic coordinates 地磁坐标geomagnetic disturbance 地磁扰动geomagnetic diurnal change 地磁日变geomagnetic element 地磁要素geomagnetic equator 地磁赤道geomagnetic field 地磁场geomagnetic indices 地磁指数geomagnetic meridian 地磁子午线geomagnetic observation 地磁观测geomagnetic observatory 地磁台geomagnetic polarity reversal 地磁极性倒转geomagnetic polarity time scale 地磁极性年代表geomagnetic pole 地磁极geomagnetic pulsations 地磁脉动geomagnetic reversal 地磁倒转geomagnetic storm 地磁暴geomagnetic survey 地磁测量geomagnetic time scale 地磁年代表geomagnetic 地磁的geomagnetism 地磁geomagnetization 地磁化作用geomagnetochronology 地磁年代学geomathematics 数学地质geomechanics 地质力学geomembrane 地质处理用膜geometer 几何学家;地形测量家geometric aberration 几何象差geometric accuracy 几何精度geometric acoustics 几何声学;射线声学geometric analysis 几何分析geometric anisotropy 几何异向性geometric arrangement of well 井位布置geometric asymmetry 几何不对称性geometric average 几何平均geometric brightness 几何亮度geometric center 几何中心geometric condition 几何条件geometric configuration 几何形状geometric construction 几何作图;几何构造geometric correction 几何校正geometric covariogram 几何协方差图geometric diagram 几何图解geometric distortion 几何畸变geometric divergence 几何发散geometric draught 型体吃水geometric ellipsoid 几何椭球geometric error 几何误差geometric factor 几何因子geometric fidelity 几何保真度geometric figure 几何图形geometric freeboard 型体干舷geometric frequency function 几何频率函数geometric grade scale 几何粒级标准geometric identity 几何尺寸一致geometric image characteristics 几何图象特征geometric isomer 几何异构体geometric isomeride 几何异构体geometric isomerism 几何异构geometric leveling 几何水准测量geometric locus 几何轨迹geometric mean 几何平均geometric metamerism 几何位变异构geometric model 几何模型geometric optics 几何光学geometric ornament 几何形装饰geometric parameter 几何参数geometric pattern 几何图样geometric permeability model 渗透率几何模型geometric point 图解点geometric position 几何位置geometric probability 几何概率geometric progression 等比级数geometric projection 几何投影geometric proportion 等比geometric rate allocation factor 几何速率分配因子geometric ray tracing 几何射线追踪geometric relationship 几何关系geometric resolution 几何分辨力geometric response 几何响应geometric scheme 几何图案geometric seismology 几何地震学geometric series 几何级数geometric shadow 几何影区geometric shape 几何形态geometric similarity 几何相似性geometric sounding 几何测深geometric spreading 几何扩展geometric stereoisomer 立体几何异构体geometric stereoisomeride 立体几何异构体geometric symmetry 几何对称geometric transformation 几何变换geometric warping 几何扭曲geometric well pattern 面积井网geometric =geometrical 几何的geometrician =geometergeometry correction 几何校正geometry factor 几何因数geometry 几何学geomicrobiology 地质微生物学geomonoclinal 地单斜的geomonocline 地单斜geomonomer 地质有机单体geomorphic accident 地貌突变geomorphic anomaly 地貌异常geomorphic cycle 地貌旋回geomorphic development 地貌发育geomorphic feature 地貌特征geomorphic geology 地貌学geomorphic interpretability 地貌解译能力geomorphic interpretation 地貌解译geomorphic process 地貌形成过程geomorphic province 地貌区域geomorphic trap 地貌圈闭geomorphic unit 地貌单元geomorphic 地形的;地貌的geomorphologic anomaly 地貌异常geomorphologic deciphering 地貌解译geomorphologic description 地貌描述geomorphologic element 地貌成分geomorphologic expression 地貌显示geomorphologic guide 地貌指示geomorphologic interpretation 地貌解译geomorphologic map 地貌图geomorphologic method 地貌法geomorphologic principle 地貌原理geomorphologic sequence 地貌序列geomorphologic structural interpretation 地貌构造解译geomorphologic =geomorphological 地貌的;地形的geomorphology 地貌学geonomy 地球学geooptimal 最佳地质的geopetal criterion 示顶底标志geopetal fabric 示顶底组构geopetal structure 示顶底构造geopetal 向地性geopetality 觅序性geoph 地球物理的geoph 地球物理学geophone arrangement 检波器排列geophone array 检波器组合geophone assembly 检波器组件geophone break aligned plot 检波器波跳校直图geophone cable 检波器电缆geophone calibration 检波器标定geophone characteristic 检波器特性geophone coupling 检波器耦合geophone damping 检波器阻尼geophone distance 检波组距geophone distortion 检波器失真geophone element 检波器元件geophone flyer 检波器小线geophone group center 检波器组中心geophone group interval 检波器组间隔geophone group 检波器组geophone interval 检波点距geophone layout 检波器布设geophone leader cable 小线geophone line 大线geophone offset 炮检距geophone pattern 检波器组合形式geophone response 检波器响应geophone sensitivity 检波器灵敏度geophone separation 检波器间隔geophone signal 检波器信号geophone station 检波站geophone time starting point 检波器时间起点geophone 地震检波器geophoto 地质考察用航空摄影geophys 地球物理的geophys 地球物理学geophysical anomaly 地球物理异常Geophysical Data Center 地球物理数据中心geophysical detection 地球物理检测geophysical exploration 地球物理勘探geophysical field 地球物理场geophysical information 地球物理信息geophysical investigation 地球物理调查geophysical jetting bit 钻地震井用的喷射钻头geophysical map 地球物理图geophysical modeling 地球物理模拟geophysical probing technique 地球物理探测技术geophysical prospecting 地球物理勘探geophysical prospection 地球物理勘探geophysical reconnaissance 地球物理勘测geophysical rig 物探用钻机geophysical survey 地球物理勘探geophysical synthesis 地球物理合成geophysical tomography 地球物理层析成象geophysical vessel 物探船geophysical well logging 地球物理测井geophysical workstation 地球物理工作站geophysical year 地球物理年geophysical 地球物理的geophysicist 地球物理学家geophysics 地球物理学GEOPLAN 地球物理语言geopolar 地极的geopolitical implication 地缘政治牵涉geopolitical 地理政治的geopolitics 地理政治学geopolymer 地质聚合物geopotential surface 重力势面geopotential 地势geopressure geothermal resources 高压地热资源geopressure gradient 高压梯度geopressure 异常地层压力geopressured aquifer 高压含水层geopressured basin 高压盆地geopressured deposit 高压型沉积geopressured energy well 高压能源井geopressured geothermal area 高压地热区geopressured geothermal energy 高压地热能geopressured reservoir 高压型储层geopressured sequence 高压层序geopressured well 高压井geoprobe 地球探测火箭GEOS 测地卫星GEOS 大地测量轨道卫星GEOS 地下勘探图示系统GEOSAT 地质卫星geoscience 地学geoscientist 地学科学家geosere 极顶群落系列geospace 地球空间geosphere 岩石圈;地圈geostatic gradient 地静压力梯度geostatic load 地静压负荷geostatic pressure 地静压力geostatic ratio 地静压比geostationary satellite 通信卫星geostationary 对地静止的;对地同步的geostatistic transitive theory 地质统计传递论geostatistical analysis 地质统计分析geostatistics 地质统计学geosteam 地热蒸汽geosteering 地质导向geostratigraphic scale 全球地层表geostratigraphic standards 全球地层标准geostratigraphic 全球地层学的geostratigraphy 全球地层学geostrome 洲际地层geostrophic current 地转流geostrophic cycle 地转旋回geostrophic motion 地转运动geostrophic wind 地转风geosuture 地断裂带geosynchronous orbit 对地同步轨道geosynchronous satellite sensing 对地同步卫星传感geosynchronous 对地静止的;对地同步的geosynclinal anticlinorium 地槽内复背斜geosynclinal area 地槽区geosynclinal axis 地槽轴geosynclinal bicouple 地槽双联体geosynclinal couple 地槽偶geosynclinal cycle 地槽旋回geosynclinal facies 地槽相geosynclinal folded system 地槽褶皱系geosynclinal folding 地槽褶皱作用geosynclinal migration 地槽迁移geosynclinal orogenesis 地槽造山作用geosynclinal pile 地槽堆积geosynclinal polarity 地槽极性geosynclinal prism 地槽堆积柱geosynclinal region 地槽区geosynclinal sedimentation 地槽沉积作用geosynclinal subsidence 地槽沉陷geosynclinal synclinorium 地槽内复向斜geosynclinal system 地槽系geosynclinal trough 地槽式槽地geosynclinal zone 地槽带geosynclinal 地槽的geosyncline fold buildings 地槽褶皱组合体geosyncline 地槽geosynclinic 地槽的geotechnical property 岩土力学性质geotechnical 土工技术的geotechnics 土工技术geotechnique =geotechnicsgeotechnology 地质工艺学;地下资源开发工程学geotectocline 大地构造槽geotectogene 坳陷带geotectogenesis 大地构造成因geotectology 大地构造学geotectonic areal division 大地构造分区geotectonic component 大地构造组成geotectonic cycle 大地构造旋回geotectonic evolution 大地构造演化geotectonic framework 大地构造构架geotectonic geology 大地构造学geotectonic map 大地构造图geotectonic movement 地壳构造运动geotectonic system 大地构造体系geotectonic unit 大地构造单位geotectonic valley 大地构造谷geotectonic 大地构造的geotectonics 大地构造geotector 地震检波器geotemperature 地热温度;地温geotextile 土工布geotexture 地体结构geotherm 地热geothermal anomaly 地热异常geothermal area 地热区geothermal capacity 地热能容量geothermal degree 地热增温级geothermal energy 地热能geothermal equilibrium 地温平衡geothermal gas 地热气geothermal gradient 地温梯度geothermal heat flow 地热流geothermal infrared anomaly 地热红外异常geothermal metamorphism 地热变质作用geothermal method 地热法geothermal power generation 地热电站geothermal producing zone 地热生产层geothermal profile 地温剖面geothermal prospecting 地热勘探geothermal reservoir 地热储层geothermal steam 地热蒸汽geothermal temperature 地温geothermal turbodrill 地热涡轮钻具geothermal turbodrilling 地热涡轮钻井geothermal well 地热井geothermal 地热的geothermic degree 地温梯度geothermic depth 地温深度geothermic 地热的geothermics 地热学geothermometer 地温计geothermometry 地热温度测量geothermy 地热学geotomography 地层层析成象法geoundation 大地波动运动geranial NFDAF 牛儿醛geraniene NFDAF 牛儿醛萜烯geraniol NFDAF 牛儿醇geraniolene NFDAF 牛儿烯germ 微生物;细菌;病菌germ-free box 无菌箱German type tectonism 日耳曼型构造运动germanate 锗酸盐Germanic type structure 日耳曼型构造germanium cryosonde 锗低温探头germanium detector 锗探测器germanium diode 锗二极管germanium semiconductor triode 锗半导体三极管germanium transistor 锗晶体管germanium 锗germanotype orogenesis 日耳曼型造山运动germanotype structure 日耳曼型构造germanotype tectonics 日耳曼型构造germanotype 日耳曼型的germicide 杀菌剂germifuge 杀菌剂Geronimo 安全下滑装置gerotor pump 摆线泵gerotor 内齿轮油泵Gerronostroma 柱层孔虫属gersdorffite 砷硫镍矿GERT 图解评审法gesso 石膏粉gestation period of investment 酝酿投资阶段get away shot 解脱点火get stuck 卡钻getter 吸气剂getting out of order 发生故障GEU 通用电子线路单元geyser 间歇泉;间歇自喷井;热水锅炉geyserite 硅华GFC 凝胶过滤色谱法GFP 玻璃纤维增强塑料ggaiene 愈创烯gheddic acid 三十四酸ghizite 云沸橄玄岩ghost arrival 虚反射初至ghost cancellation 虚反射消去法ghost delay time 虚反射延迟时间ghost elimination 虚反射消除ghost energy 虚反射能量ghost filter 虚反射滤波器ghost identification 虚反射识别ghost impulse 虚反射脉冲ghost path 虚反射路径ghost peak 假峰ghost pulse 虚脉冲ghost reflection 虚反射ghost stratigraphy 残迹地层ghost structure 幻影构造ghost wavelet 虚反射子波GHOST 全球水平探测技术GHOST 图形输出系统ghost 虚反射ghost-producing boundary 产生虚反射边界ghosted downgoing wave 虚反射下行波ghosted upgoing wave 虚反射上行波ghosting interface 虚反射界面ghosting 虚反射GHOUL 图形输出语言GHz 千兆赫gi 吉耳GI 天然气指数GI 通用接口GI 注气GI-style pipe line 军用轻便型管道Gi. 吉伯giant accumulations 巨型油气藏giant brain 大型计算机giant crane 巨型起重机giant crystal 伟晶giant field 特大油、气田giant gas field 特大气田giant molecule 大分子giant oilfield 特大油田giant 巨大的giant-grained 巨粒的giant-powered computer 大型计算机gib screw 固定螺钉gib 夹子gib-head key 带凸头的键gib-head taper key 圆头锥形键gibben plain 砾漠gibber 三棱石gibberish 无用数据gibbet 起重臂gibbosity 突起;凸状;凸圆Gibbs distribution 吉布斯分布Gibbs indophenol test 吉布斯靛酚试验Gibbs phase rule 吉布斯相律gibbs 吉布斯Gibbs' effect 吉布斯效应Gibbs-Duhem equation 吉布斯-杜亨公式Gibbs-Markov model 吉布斯-马尔科夫模型gibbsite 三水铝石;水榴石;四水磷铝石gibbsitic laterite 富含三水铝石的红土gibbsitite 三水铝岩gibelite 歪长粗面岩gieseckite 绿假霞石gift 礼物;天赋;才能;授与;赠送gig 提升机giga- 千兆giga-electron-volt 千兆电子伏gigacycle per second 千兆赫gigacycle 千兆周gigahertz 千兆赫Gigantamynodon 巨两栖犀属gigantic breccia 巨角砾gigayear 十亿年GIIP 天然气原始地质储量Gilbert epoch 吉尔伯特反向期gilbert 吉伯Gilbert-type delta 吉尔伯特型三角洲gilding 镀金;装金;金箔;镀金材料gill 吉耳Gilliland diagram 吉利兰线图Gilsa normal event 吉尔萨正向事件gilsonite cement 硬沥青水泥gilsonite 天然沥青gilt 镀金材料;镀金的gimbal correction 常平架校正gimbal error 常平架误差gimbal joint 万向接头gimbal lock 常平架锁定gimbal suspension 常平架悬挂gimbal 平衡环;万向支架;常平架gimbal-mounted 用万向架固定的gimbaled geophone 万向架固定式检波器gimballed base 平衡基座gimlet 手钻;锥子gimmick 骗局;绞合电容器gin pole 安装用起重架;安装拔杆;起重拔杆;储罐支柱gin truck 起重架卡车gin 三脚起重机;绞车gin-block 单轮滑车gin-pole truck 起重架卡车Ginkgoaceae 银杏科gipsmantle 石膏盖层GIR 通用机柜girbotol process 乙醇胺法Girbotol unit 吉博托法装置gird 横梁;保安带;包带;扎线;护环;束;缠上;佩带;赋予;围绕;包围;准备girder bridge 板梁桥girder construction 桁架结构girder frame 梁式桁架girder longitudinal 纵梁girder pole 桁架式柱girder 梁girdle axis 环带轴girdle band 环带girdle of fire 环太平洋火山带girdle 环带Giro banks 汇划银行giro 旋翼机girt 围梁girth welding 环形焊接;焊圆焊缝;周围焊接。

地球化学翻译

地球化学翻译

挪威斯匹次卑尔根岛Kaffioyra和朗伊尔城煤中微量元素的地球化学分布Lucyna Lewińska-Preis a, Monika J. Fabiańska a,, Stanisław Ćmiel a, Andrzej Kita ba.波兰索斯诺维茨Będzińska街60号西里西亚大学地球科学学院,41-200b.波兰卡托维兹Szkolna街9号西里西亚大学数理化学院,40-006摘要早第三系的含沥青低等级烟煤((Raver=0.63 -0.69%,,依次为)分布在斯匹次卑尔根(挪威)的两个地区:Kaffioyra和朗伊尔城,都被分析找出发生下列微量元素的分布:铍, 镉, 钴, 铬, 铜, 锂, 锰, 钼, 镍, 铅, 钒, 锌.。

电感耦合等离子体原子发射光谱(ICP - AES)的被用来从煤燃烧产生的灰、它们的提取物以及大分子组分。

对微量元素浓聚物进行调查可以用于找出发生变异的方向以及微量元素对这些区域的煤中无机物和有机物的亲和力。

这些煤中显微组分和它的基本组成也被确定。

Kaffioyra和朗伊尔城的煤显示了它们在有机物质和矿物质组成上的差异,反映在它们的岩石学属性和元素组成上。

Kaffioyra煤的特点是有含量较高的镜质组组分,较低的inetrinite组分,以及较低的碳,氢,硫浓聚物。

在Kaffioyra煤表现出较高的粘土矿物和碳酸盐含量比朗伊尔城煤。

在煤灰渣微量元素上斯匹次卑尔根地区的煤低于在世界烟煤中这些元素的平均含量。

这两个地区的煤微量元素浓度和其发生变异的趋向上是不同的。

这两个区域的煤中微量元素的载体是原产地的生物起源吸附质的灰,而在原产地的微量元素高浓度浓聚物的terrigenic输入也发挥了重要作用。

关键词:烟煤微量元素有机物无机物提取物高分子组分1.引言1.1、分布在煤中的微量元素煤中的微量元素可以被发现无论是作为分离的矿产品的主要或者微量部分或者作为无机部分的吸附元素,但是在有机部分它们就赋存在有机金属上,螯合,或离子交换化合物。

地球化学ppt课件

地球化学ppt课件
即碳酸钙的氧同位素组成是温度的函数。温度升高时,相对 较轻的16O由于有较高的活性,易于迁移,在同位素交换反应 中将优先被吸收进生物壳体内,致使18O含量相对减少,δ180 值随温度的上升而下降。
最适用于有孔虫同位素分析的关系式: t=16.9-4.4(δs-δw)+0.10(δs-δw)2 式中,δs:壳体中氧同位素值,δw:水体的氧同位素值
环境地球化学 第21页
+ 冰期与间冰期对碳酸盐溶解作用的影响不同,也会引起 海水中CO2总含量的变化。 经计算,末次冰期极盛期的CO2含量稍高于间冰期, 两者的比值为1.15±0.5。
这样,由海水表温、盐度、冰川体积等因素变化引 起的大气CO2浓度变化仅占实际变化的5%。因此,如果 当时不存在其它海水化学性质的变化,则大气CO2含量将 保持近于恒定。
环境地球化学 第4页
4氧同位素应用
(l)查明地质时期海水古温度的变化趋势
通过生物氧同位素研究法确定了自晚白垩纪(约7000 万年前)以来全球气候有逐渐变冷的趋势。
Emiliani(1954)根据底栖有孔虫δ180值逐渐递增的 趋势,确定了自白垩纪以来,全球大洋深水平均温度曾从 13oC逐渐下降到目前的2oC左右。
由于在任何时候、任何地区,底栖有孔虫氧同位素温 度始终低于浮游有孔虫的氧同位素温度,表明大洋的底层 水系由高纬地区的表层水下沉扩散而来,所以,从新生代 底层水的这种变冷趋势可以推出高纬地区的表层水以致大 气圈也存在着逐渐变冷的趋势。
环境地球化学 第5页

北 半 球
极 冰 盖
南极海冰 大量形成
冰形
盖成
环境地球化学 第24页
热带东太平洋V19-30柱状样15万年来浮游有孔虫N.dutertrei与底栖有孔虫 U.sentioncosa碳同位素组分的差值(Δδ13C) 变化图

地球科学大辞典-地球化学

地球科学大辞典-地球化学

演化,确定了各种蛇绿岩的划分标志、双变质带的存在、壳幔的再循环,划分了碰撞花岗 岩,指出了碰撞型花岗岩浆系由地壳增厚导致部分熔融的结果等。岩石地球化学是近代岩石 学和地球化学的交叉学科。 【构造地球化学】tectonogeochemistry 研究各种层次构造作用中元素(同位素)的分配和迁 移,分散和富集。研究内容主要有:区域及矿区构造地球化学调查,构造应力作用下矿物、 元素、同位素变化规律,应力作用下流体、流体动力学地球化学性状,深部构造地球化学特 征,构造地球化学机理的模拟实验,以及为资源勘查、工程建设、灾害防治提供依据的应用 构造地球化学研究。构造地球化学强调构造不仅是机械过程,而且有化学作用过程;构造不 仅在控矿中提供流体迁移的通道和物质沉淀、富集的空间,而且导致元素的重新分配、组合 和调整。构造地球化学既研究构造作用中的地球化学过程,又研究化学过程中所引起的构造 作用。构造地球化学是构造地质学与地球化学交叉形成的一门新兴的边缘学科。 【区域地球化学】regional geochemistry 以区域岩石圈(全球岩石圈子系统)为对象,开展 有关该子系统化学组成、化学作用和化学演化的综合研究的地球化学分支学科。区域地球化 学不仅能帮助认识所研究区域岩石圈与构造的发展演化、岩石矿产的形成规律,而且还对全 球地球科学理论的发展作出了贡献。近 20 年来,区域地球化学综合了区域岩石学,区域地壳 和地幔、区域构造环境和区域成矿作用及区域地球化学填图等成果,肯定了大洋和大陆岩石 圈地幔组成存在着不均一性,阐明了各种构造环境下的成岩、成矿作用,讨论了板块汇聚带 各种地质作用和地球化学过程的特征,等等。 【历史地球化学】history geochemistry 通过对各类地质体中元素、同位素的含量分布,赋 存状态等系统研究,从历史演化的角度讨论地壳的发展与演化;生物圈、大气圈和水圈的演 化;地质历史过程中表生作用的发展;地质历史过程中内生作用的演化。 【沉积地球化学】sedimentary geochemistry 以沉积地壳为研究对象,研究各类沉积岩和沉 积矿床的化学组成、元素在沉积作用、成岩作用和成矿作用过程中的迁移和富集规律。注重 研究沉积地壳的化学演化、物源区性质及其与地质历史时期全球变化的联系。沉积地球化学 是沉积地质学和地球化学交叉形成的一门分支学科。现代沉积地球化学研究方向:①碳、硫 等元素的沉积地球化学循环;②生物成矿作用地球化学研究;③缺氧事件与黑色页岩沉积地 球化学研究;④成岩作用地球化学研究;⑤碳酸盐沉积生物地球化学研究;⑥沉积地球化学 研究和板块构造分析等。 【生物地球化学】biogeochemistry 是通过追踪化学元素迁移转化来研究生命与其周围环境 的科学。全球生物地球化学循环是研究元素的各种化合物在生物圈、水圈、大气圈、岩石土 壤圈之间的迁移和转化。研究生物圈在生物有机体参与下发生的地球化学过程。这一术语首 先由维尔纳斯基(В .И . В е р н а д с к и й )在 1902 年提出,作为分支学科,生物地球 化学在 20 世纪 20 年代基本形成。生物是地球演化的巨大地质营力,地球上几乎所有重大现 象和过程都离不开生物地球化学作用。例如,大气圈的形成与耗损,土壤圈的形成与退化, 水资源的变化和水质的恶化,全球变化等。生物地球化学的研究将为生物圈的开发利用和保 护、环境保护、为智慧圈的建立提供重要的科学依据,为卫生保健和预防医学、探矿以及资 源的合理开发利用等方面作出独特的贡献。 【有机地球化学】organic geochemistry 有机地球化学是地球化学的一个重要分支,也是一 门新的边缘学科,主要研究天然产出的有机质的组成、结构和性质,以及它们在地质体中的 分布、转化和参与地质营力的作用等。有机地球化学在确立有机成油学说和干酪根生油理论 的基础上,对油、气的成因、烃源岩的判识、油气形成环境、油气运移与成藏、油气勘查与 开发等方面提供了依据。此外,通过有机质的研究探讨生命的起源。它与能源、矿产资源、 海洋、环境和生命科学等重大应用和基础理论领域有着十分密切的联系。有机地球化学有两 个重要的分支领域,一是基础研究领域,当前的基础研究主要集中于以下几个方面:地质体

地球化学

地球化学

地球化学Geochemistry0 绪论人类赖以生存的地球,以及整个宇宙都是由永恒运动的物质构成的;从化学观点看,是由92种化学元素和354种核素组成的。

存在于地球内部的不稳定核素自发地进行衰变,释出能量,提供地球物质运动的主要能源;于是岩石熔融、岩浆活动、火山喷溢、构造运动、地表的风化剥蚀、沉积作用等等,造成全球规模的地质作用。

这种持续几十亿年的地质构造变动不断地改变着地球的外貌和内部结构,也推动着92种元素及其同位素进行化合、分异、迁移、活动。

地质作用经久不息,元素迁移演化不止。

地球科学面对一个经历几十亿年发展演化,并且目前仍是处于强烈变动中的“活”的地球。

地质作用中不但形成了各种宏观的地质体,同时造成地质产物中不同的物质组成,以及元素和同位素结合状态的微观现象。

正是这些宏观的和微观的地质现象记录着地球变迁的历史。

地球科学的任务就在于准确地判读这一宏伟的自然“史卷”。

地球是一个巨大的化学机器a huge chemical machine,它的驱动力是地球内部的热和地球表面来自太阳的热。

地球内部热驱动地幔中的对流-convection。

对流将深部物质带到大洋中脊的地表,温度和压力的降低导致部分组分的分离separation或分异differenciation形成玄武岩熔岩。

玄武岩富集silicon,aluminium,calcium and the alkali metals,然后固结为组成洋壳的岩石,然后作为大洋岩石圈板块的一部分飘离开大洋中脊。

最后在消减带subduction zones板块向下再次进入地幔中。

与此伴随的是进一步的化学分离,产生的流体向上进入大陆地壳作为富二氧化硅的花岗岩类固结,成为大陆地壳突出的组成部分。

另一方面,地表岩石暴露于阳光之下,水和空气浸透了岩石。

这是地球化学机器的第二部分,在大气圈中活动性气体和有机质的参与下,与地壳岩石发生反应,产生又一次的化学分异,这种情况下的化学分离特别清晰,如二氧化硅集中于石英砂和燧石中、铝进入粘土矿物中、钙进入灰岩中,而一些重金属进入矿石中。

地球化学0

地球化学0
Geochemistry is a marginal subject that is combined from geology and chemistry. 1. It is a branch of earth science,对象,
方法,思维类同
2. It emphasizes chemical movement (含生物化学运动形式) 3. The foundation is theory of chemistry subject (相对地质学)
In general:“见微知著”
from a small clue one can see that is coming
thermodynamic system
地球化学的研究方法,其特点是 Pay attention to geological elements,所研究的对象、体系的 地质意义要清楚,即样品必须要有代表性。 Acute thinking of geochemistry,can distinguish microcosmic geochemical information from the geological phenomena.
Basic Issue 1 :
1. The composition and variation of element and its isotope in the natural system——元素的丰度规律问题 abundance rules,它是一切地球化学研
究的基础和起点,地球化学的诞生正是从丰度 研究开始。“量”quantity
地球化学是研究地球和太阳系各行星的化学组成以及在地球演化 过程中元素和同位素的运动与变化规律的科学(NSFC,1993)。
object:earth、crust and natural system
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档