龙岗区2015-2016学年第一学期期末学业评价试题高二理科数学试题参考答案

合集下载

学年上学期高二期末考试数学(理)试题(附答案)(2)

学年上学期高二期末考试数学(理)试题(附答案)(2)

2015-2016学年度上学期期末素质测试试卷高二数学(理科卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至4页.全卷满分150分,考试时间为120分钟.第Ⅰ卷(选择题 共60分)一、选择题(每小题5 分,共12小题,满分60分) 1.已知a b >,c d >,那么一定正确的是( ) (A)ad bc >(B)ac bd >(C)a c b d ->- (D)a dbc ->-2.双曲线2221x y -=的渐近线方程是 (A )0x y ±=(B )20x y ±=(C)0x = (D)0y =3.某市有大、中、小型商店共1500家,,它们的家数之比为1:5:9,要调查商店的每日零售额情况,要求从抽取其中的30家商店进行调查,则大、中、小型商店分别抽取家数是 (A )2,10,18 (B )4,10,16 (C )10,10,10 (D )8,10,124、在如图的电路图中,“开关A 的闭合”是“灯泡B 亮”的 (A )充分非必要条件 (B )必要非充分条件 (C )充要条件(D )既非充分又非必要条件5.在△ABC 中,15a =,10b =,60A =,则cos B =(A )13 (B(C(D)36.某程序框图如图所示,执行该程序后输出的S 的值是(A )23(B )34 (C ) 45(D ) 567.设()n f x 是等比数列21,,,,n x x x 的各项和,则()2n f 等于(A )21n- (B )121n +- (C )22n - (D )122n +-8.△ABC 的两个顶点为A(-1,0),B(1,0),△ABC 周长为6,则C 点轨迹为( )(A )22143x y +=(y ≠0) (B ) 22143y x +=(y ≠0) (C ) 22154x y += (y ≠0) (D ) 22154y x += (y ≠0) 9.设等差数列245,4,3,77的前n 和为n S ,若使得n S 最大,则n 等于(A )7 (B )8 (C )6或7 (D )7或810.若变量,x y 满足约束条件121y x x y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为m 和n ,则m n -=(A )5(B )6(C )7(D )811.在△ABC 中,两直角边和斜边分别为,,a b c ,若a b cx +=,试确定实数的取值范围 (A)((B)((C))(D)12.已知点A,B,C 在圆221x y +=上运动,且AB ⊥BC ,若点P 的坐标为(2,0),则PA PB PC ++的最大值为(A )6 (B )7 (C )8 (D )92015-2016学年度上学期期末素质测试试卷高二数学(理科卷) 第Ⅱ卷(非选择题 共90分)二、填空题(每小题5分,共4小题,满分20分)13.抛物线240x y +=的准线方程是___________.14.为了了解学生的视力情况,随机抽查了一批学生的视力,将抽查结果绘制成频率分布直方图(如图所示).若在[5.0,5.4]内的学生人数是2,则根据图中数据可得被样本数据在[3.8,4.2)内的人数是 .15.已知ABC ∆的一个内角为120︒,并且三边长构成公差为4的等差数列,则ABC ∆的面积为 ___ .16.在0a >,0b >的情况下,下面三个结论:①22ab a b a b ++≤; 2a b +≤; ③2a b + ④22b a a b a b ++≥. 其中正确的是_____________________.三、解答题(共6小题,满分70分) 17. (本题满分10分)已知函数6)(2++=ax x x f .(Ⅰ)当5=a 时,解不等式0)(<x f ;(Ⅱ)若不等式()0f x >的解集为R ,求实数a 的取值范围.18.(本题满分12分)在△ABC 中,已知2sin cos sin()B A A C =+. (Ⅰ)求角A ;(Ⅱ)若2BC =,△ABC AB .19.(本题满分12分)设{}n a 是公比为q 的等比数列. (Ⅰ)推导{}n a 的前n 项和n S 公式;(Ⅱ)设1q ≠,证明数列n S n ⎧⎫⎨⎬⎩⎭不是等比数列.20. 国家环境标准制定的空气质量指数与空气质量等级对应关系如下表: 由全国重点城市环境监测网获得2月份某五天甲城市和乙城市的空气质量指数数据用茎叶图表示如下:(Ⅰ)试根据上面的统计数据,判断甲、乙两个城市的空气质量指数的方差的大小关系(只需写出结果);(Ⅱ)试根据上面的统计数据,估计甲城市某一 天空气质量等级为2级良的概率;(Ⅲ)分别从甲城市和乙城市的统计数据中任取一个,试求这两个城市空气质量等级相同的概率.(注:])()()[(1222212x x x x x x ns n -++-+-=,其中x 为数据n x x x ,,,21 的平均数)空气质量指数 0-5051-100101-150151-200201-300300以上空气质量等级1级优2级良3级轻度污染4级中度污染5级重度污染6级严重污染21.(本题满分12分)如图,直三棱柱111C B A ABC -中,BC AC ⊥,21===CC BC AC ,M ,N 分别 为AC ,11C B 的中点.(Ⅰ)求证:MN // 平面11A ABB ;(Ⅱ)线段1CC 上是否存在点Q ,使⊥B A 1平面MNQ ?说明理由.22.(本题满分12分)已知椭圆2222:1(0)x y C a b a b+=>>的两个焦点分别为12(2,0),(2,0)F F -,离心率为32F 的直线l (斜率不为0)与椭圆C 交于,A B 两点,线段AB 的中点为D ,O 为坐标原点,直线OD 交椭圆于,M N 两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)当四边形12MF NF 为矩形时,求直线l 的方程.2015-2016学年度上学期期末素质测试试卷高二数学(理科卷)参考答案一、选择题:DCAB CCBA DBAB二、填空题:13、1y =;14、5;15、16、①②③④.17、解: (Ⅰ)当5=a 时,65)(2++=x x x f .由0)(<x f ,得652++x x <0.即 (0)3)(2<++x x ,所以 32x -<<-. ------------------5分 (Ⅱ)若不等式0)(>x f 的解集为R ,则有=∆0642<⨯-a . -----------------------8分 解得6262<<-a ,即实数a 的取值范围是)62,62(-.---------------10分18、解:(Ⅰ)解:由πA B C ++=,得sin()sin(π)sin A C B B +=-=.…………2分所以原式化为B A B sin cos sin 2=. 因为(0,π)B ∈,所以 0sin >B , 所以 21cos =A . ………………5分 因为(0,π)A ∈, 所以 π3A =. ………………6分 (Ⅱ)解:由余弦定理,得 222222cos BC AB AC AB AC A AB AC AB AC =+-⋅⋅=+-⋅…………8分因为 2BC =,1πsin 23AB AC ⋅⋅= 所以 228AB AC +=. ………………10分因为 4AB AC ⋅=, 所以 2AB =. ………………12分 19.解:设{}n a 的前n 项和为n S ,当1q =时,11111n n S a a q a q na -=+++=;--------------------1分 当1q ≠时,1111n n S a a q a q -=+++. ①1111n n n qS a q a q a q -=+++, ②----------------3分①-②得()()111nn q S a q -=-,所以 ()111n n a q S q-=-.----------5分所以 ()11, 1,1, 1.1n n n a qS a q q q =⎧⎪=-⎨≠⎪-⎩----------------------------7分(Ⅱ)证:由{}n a 是公比为q 的等比数列有10a ≠,若对任意的n N +∈,数列n S n ⎧⎫⎨⎬⎩⎭是等比数列,则考虑数列n S n ⎧⎫⎨⎬⎩⎭的前三项,有()()22311111111a q a q a q q ⎡⎤--⎢⎥=⋅--⎢⎥⎣⎦,--------------------9分化简得 2210q q -+=,即()210q -=,----------------10分 但1q ≠时,()210q ->,这一矛盾说明数列n S n ⎧⎫⎨⎬⎩⎭不是等比数列.---------------------12分20.解:(Ⅰ)甲城市的空气质量指数的方差大于乙城市的空气质量指数的方差.…………2分(Ⅱ)根据上面的统计数据,可得在这五天中甲城市空气质量等级为2级良的频率为35, 则估计甲城市某一天的空气质量等级为2级良的概率为35.………………5分, (Ⅲ)设事件A :从甲城市和乙城市的上述数据中分别任取一个,这两个城市的空气质量等级相同,由题意可知,从甲城市和乙城市的监测数据中分别任取一个,共有25个结果,分别记为:(29,43),(29,41),(29,55),(29,58)(29,78) (53,43),(53,41),(53,55),(53,58),(53,78), (57,43),(57,41),(57,55),(57,58),(57,78), (75,43),(75,41),(75,55),(75,58),(75,78), (106,43),(106,41),(106,55),(106,58),(106,78).其数据表示两城市空气质量等级相同的包括同为1级优的为甲29,乙41,乙43,同为2级良的为甲53,甲57,甲75,乙55,乙58,乙78. 则空气质量等级相同的为:(29,41),(29,43),(53,55),(53,58),(53,78), (57,55),(57,58),(57,78),(75,55),(75,58),(75,78).共11个结果. 则11()25P A =.所以这两个城市空气质量等级相同的概率为1125.…………12分21.(Ⅰ)证明:取AB 中点D ,连接DM ,1DB .在△ABC 中,因为 M 为AC 中点,所以BC DM //,BC DM 21=. 在矩形11B BCC 中,因为 N 为11C B 中点,所以BC N B //1,BC N B 211=. 所以 N B DM 1//,N B DM 1=.所以 四边形N MDB 1为平行四边形,所以 1//DB MN .……………4分 因为 ⊄MN 平面11A ABB ,⊂1DB 平面11A ABB ,所以 MN // 平面11A ABB . ………………6分 (Ⅱ)解:线段1CC 上存在点Q ,且Q 为1CC 中点时,有⊥B A 1平面MNQ . ………8分证明如下:连接1BC .在正方形C C BB 11中易证 1BC QN ⊥.又⊥11C A 平面C C BB 11,所以 QN C A ⊥11,从而⊥NQ 平面11BC A . 所以 1A B QN ⊥. ………………10分 同理可得 1A B MQ ⊥,所以⊥B A 1平面MNQ .故线段1CC 上存在点Q ,使得⊥B A 1平面MNQ . ………………12分 22.解:(Ⅰ)由题意可得2222,,c c a a b c =⎧⎪⎪=⎨⎪=+⎪⎩解得a =b =故椭圆的方程为22162x y +=. ……… 5分 (Ⅱ)由题意可知直线l 斜率存在,设其方程为(2)y k x =-,点11(,)A x y ,22(,)B x y ,33(,)M x y ,33(,)N x y --,由221,62(2),x y y k x ⎧+=⎪⎨⎪=-⎩得2222(13)121260k x k x k +-+-=,------------------7分 所以21221213k x x k +=+.因为121224(4)13ky y k x x k -+=+-=+,所以AB 中点22262(,)1313k kD k k -++.-----------------------------------------9分 因此直线OD 方程为30x ky +=()0k ¹.由2230,1,62x ky x y +=⎧⎪⎨+=⎪⎩解得232213y k =+,333x ky =-. 因为四边形12MF NF 为矩形,所以220F M F N ⋅=, 即3333(2,)(2,)0x y x y -⋅---=.所以223340x y --=.所以222(91)4013k k +-=+.解得k =.故直线l的方程为2)y x =-. ……… 12分。

广东省深圳市龙岗区2015-2016学年第一学期期末高二文科数学试题带答案

广东省深圳市龙岗区2015-2016学年第一学期期末高二文科数学试题带答案

龙岗区2015-2016学年第一学期期末质量监测试题高二(文科)数学本试卷分选择题和非选择题两部分,共4页,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生首先检查答题卡是否整洁无缺损;考生务必用规定的笔将自己的学校、班级、姓名和考号填写在答题卡指定的位置上。

同时,将监考教师发放的条形码正向准确粘贴在答题卡的贴条形码区。

请保持条形码整洁、不污损。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案;不能答在试卷上。

不按以上要求作答的答案无效。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.请保持答题卡的整洁,不折叠、不破损。

考试结束后,将试卷和答题卡一并交回。

第Ⅰ卷 选择题(共60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.抛物线28x y =的焦点F 的坐标是A .(2,0)-B .(2,0)C .(0,2)-D .(0,2)2.已知{}n a 是等比数列,134,1a a ==,则公比q =A .2B .2±C .21D .21±3.函数32()31f x x x =-+是减函数的区间为A .(2,)+∞B .(,2)-∞C .(,0)-∞D .(0,2)4.已知双曲线的渐近线方程是12y x =±,焦点在x 轴上,焦距为20,则它的方程为A BCD5.下列求导运算正确的是 A .233()1x x x '+=+B .21(log )ln 2x x '=C .3(3)3log x x e '=D .2(cos )2sin x x x x '=-6.“0,0m n >>”是“方程221mx ny +=表示椭圆”的 A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件7.已知等差数列{}n a ,62a =,则此数列的前11项的和11S =A .44B .33C .22D .118.“p q ∧是假命题”是“p ⌝为真命题”的 A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件9A BC D .3{|2}4x x x ≥≠且10.△ABC 的三边长分别为a ,b ,c ,点D 为BC 边上的中点,下列说法正确的是A BC D11.设0x >A .最大值1B .最小值1C .最大值5D .最小值5-12.在△ABC 中,a ,b ,c 为A ∠,B ∠,C ∠的对边,且cos2cos cos()1B B A C ++-=,则 A .a ,b ,c 成等差数列 B .a ,c ,b 成等差数列C .a ,c ,b 成等比数列D .a ,b ,c 成等比数列。

东莞数学(高二理科数学A卷)2015—2016学年度第一学期期末教学质量检查试题及参考答案

东莞数学(高二理科数学A卷)2015—2016学年度第一学期期末教学质量检查试题及参考答案

21. (本小题满分 12 分) 东莞某商城欲在国庆期间对某新上市商品开展促销活动,经测算该商品的销售量
a 万件与促销费用 x 万元满足 ax 20a 40x 755 。已知 a 万件该商品的进价成本为
300
商品的销售价定为 50
元 / 件。
a
(1) 将该商品的利润 y 万元表示为促销费用 x 万元的函数;
20.( 本小题满分 12 分)如图,在四棱锥 S ABCD 中,底面 ABCD 是正方形, SA 底面 ABCD ,SA AB , 点 M 是 SD 的中点, AN SC ,且交 SC 于点 N . (Ⅰ)求证: SC 平面 AMN . ; (Ⅱ)求二面角 D AC M 的余弦值.
第 20 题图
4
x2
B.
y2
1
42
y2
C.
x2
2
2
,该椭圆的方程为(
2
1
y2 x2
D.
42

1
8. 南沙群岛自古以来都是中国领土。 南沙海域有 A 、B 两个岛礁相距 100 海里,从 A 岛礁望 C 岛礁和 B 岛
礁成 60 0 的视角, 从 B 岛礁望 C 岛礁和 A 岛礁成 750 的视角, 我国兰州号军舰巡航在 A 岛礁处时接 B 岛
PN
MH ,证明点 H 恒在一条定直线上.
HN
6
参考答案
1. C; 2. A; 3. B;4. D;5. C; 6. D; 7. A; 8. B; 9. B; 10. A; 11. D; 12.D ;
13. an
2, (n 1)
;14. 2; 15.28;16. ①②④
4n 1, (n 2)
17.解:(Ⅰ) P : 1 x 5 , 当 m 2 时, q : 1 x 3

2015-2016学年度第一学期高二理科试卷及答案

2015-2016学年度第一学期高二理科试卷及答案

蚌埠市2015—2016学年度第一学期期末学业水平监测高二数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟。

第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的A 、B 、C 、D 的四个选项中,只有一个选项是符合题目要求的,请将正确答案的字母代号涂到答题卡上.(不用答题卡的,填在下面相应的答题栏内,用答题卡的不必填...) 1.直线320x y ++=的倾斜角为 【 】A. 6p -B.56pC. 3p- D. 23p 2.命题“2,20∃∈++≤x R x x a ”的否定是 【 】A.2,20x R x x a "?+? B.2,20x R x x a $?+> C.2,20x R xx a "?+> D.2,20x R x x a $?+?3.以下命题正确的是 【 】 A.经过空间中的三点,有且只有一个平面。

B.空间中,如果两个角的两条边分别对应平行,那么这两个角相等。

C.空间中,两条异面直线所成角的范围是(0,]2p。

D.如果直线l 平行于平面a 内的无数条直线,则直线l 平行于平面a 。

4. 已知圆M 的方程为22224510x y x y ++-+=,则下列说法中不正确的是 【 】A. 圆M 的圆心为5(1,)4-B.圆M 的半径为334C.圆M 被x 轴截得的弦长为3D. 圆M 被y 轴截得的弦长为1725. 已知,,a b c 是三条不重合的直线,,a b 是两个不重合的平面,直线l a Ì,则【 】A. //,////a c b c a b ÞB. //,////a b a b b b ÞC. //,////a c c a a a ÞD. ////a l a a Þ。

6.设a R Î,则“1a =-”是“直线21:()210l a a x y ++-=与直线2:(1)40l x a y +++=垂直”的 【 】A. 充分不必要条件B. 必要不充分条件C. 充要条件D.既不充分也不必要条件 7.某几何体的三视图(单位:cm )如图,则这个几何体 的表面积为(单位:cm 2) 【 】 A. 2443+ B. 4883+ C.2483+ D.4843+8.已知(3cos ,3sin ,1)P a a 和(2cos ,2sin ,1)Q b b ,则PQ的取值范围是 【 】A. [0,5]B. [1,25]C. [1,5]D. (1,5) 9.若直线l 的方向向量为(1,1,2)=-u ,平面a 的法向量为(3,3,6)=--n ,则 【 】A. //l aB. α⊥lC. l a ÌD. l 与a 斜交 10.已知矩形A BCD 的顶点都在半径为5的球P 的球面上,且4,3AB BC ==,则棱锥P ABCD -的体积为 【 】A. 53B. 303C.1033D.103 11.已知不等式组36032020x y x y x y +-≤⎧⎪+-≥⎨⎪--≤⎩表示的平面区域为D ,则区域D 的面积为 【 】A. 2B.3C.4D. 5 12. 在平面直角坐标系xOy 中,圆M 的方程为2282160x y x y +--+=,若直线30kx y -+=上至少存在一点,使得以该点为圆心,半径为1的圆与圆M 有公共点,则k 的取值范围为 【 】 A .4(,]3-∞- B .[0,)+?C .4[,0]3- D .4(,][0,)3-???蚌埠市2015—2016学年度第一学期期末学业水平监测高二数学(理科)题号 一 二 三总分 17 18 19 20 21 22 得分一、选择题答题栏:(不用答题卡的请将正确答案的字母代号填入下表;用答题卡的不必填....)题号 1 2 3 4 5 6 7 8 9 10 11 12 小计 答案第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.请将答案直接填在题中横线上.13.平面直角坐标系中,直线320x y -+=关于点(1,1)对称的直线方程是____________. 14.若命题“存在实数0[1,2]x Î,使得230xe x m ++-<”是假命题,则实数m 的取值范围为____________.15.已知正四棱锥侧面是正三角形,则侧棱与底面所成的角为_______.16.如图,已知平行六面体1111ABCD A B C D -中,1AC 与平面111,A BD CB D 交于,E F 两点,设K 为11△B CD 的外心,则1:K BED A BFD V V --=_______________。

广东省深圳市龙岗区2015-2016学年第一学期期末高二文科数学试题带答案

广东省深圳市龙岗区2015-2016学年第一学期期末高二文科数学试题带答案

广东省深圳市龙岗区2015-2016学年第一学期期末高二文科数学试题带答案龙岗区2015-2016学年第一学期期末质量监测测试题高二(文科)数学”本试卷包括选择题和非选择题两部分,共4页,满分150分。

考试时间为120分钟。

考生在答卷前应先检查答题卡是否整洁无损。

考生必须使用规定的笔将自己的学校、班级、姓名和考号填写在答题卡指定的位置上,并将监考教师发放的条形码正确粘贴在答题卡的贴条形码区。

请保持条形码整洁、不污损。

选择题共12小题,每小题5分,满分60分。

每小题给出四个选项,仅有一项符合题目要求。

1.求抛物线x^2=8y的焦点F的坐标。

A。

(-2,0) B。

(2,0) C。

(0,-2) D。

(0,2)2.已知{an}为等比数列,a1=4,a3=1,则公比q=A。

2 B。

±2 C。

1/2 D。

±1/23.函数f(x)=x^3-3x^2+1是减函数的区间为A。

(2,∞) B。

(-∞,2) C。

(-∞,0) D。

(0,2)4.已知双曲线的渐近线方程是y=±y0/x,焦点在x轴上,焦距为20,则它的方程为A。

x^2/y^2-2080=0 B。

x^2/y^2-2080=-1 C。

x^2/y^2-8020=0 D。

x^2/y^2-8020=-15.下列求导运算正确的是A。

(x+2)′=1 B。

(log2x)′=1/xln2 C。

(3x)′=3xlog3e D。

(x^2cosx)′=-2xsinx6.“m>0,n>0”是“方程mx^2+ny^2=1表示椭圆”的A。

充分而不必要条件 B。

必要而不充分条件 C。

充要条件 D。

既不充分也不必要条件7.已知等差数列{an},a6=2,则此数列的前11项的和S11=A。

44 B。

33 C。

22 D。

118.“请保持答题卡的整洁,不折叠、不破损。

考试结束后,将试卷和答题卡一并交回。

”是考试中的一项注意事项。

第Ⅱ卷非选择题(共90分)本大题共6小题,满分90分。

2015-2016高二期末考试理科数学试卷题(含答案)

2015-2016高二期末考试理科数学试卷题(含答案)

2015-2016学年第一学期宝安区期末调研测试卷高二理科数学2016.1本试卷共6页,22小题,满分150分•考试用时120分钟.注意事项:1 •答卷前,考生首先检查答题卡是否整洁无缺损,监考教师分发的考生信息条形码是否正确;之后务必用 0.5毫米黑色字迹的签字笔在答题卡指定位置填写自 己的学校、姓名和考生号,同时,将监考教师发放的条形码正向准确粘贴在答 题卡的贴条形码区,请保持条形码整洁、不污损2 •选择题每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上.不按要求 填涂的,答案无效.3 .非选择题必须用 0.5毫米黑色字迹的签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上,请注意每题答题空间,预先合理安排;如需改动,先 划掉原来的答案,然后再写上新的答案; 不准使用铅笔和涂改液.不按以上要求 作答无效. 4 •作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答.漏涂、错涂、多涂的答案无效.一、选择题:本大题共 12小题,每小题5分,满分 60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1 .不等式X 2-2x -5 - 2x 的解集是()A .| x 亠 5或 x _ -1 匚B .^x | x 5或 x ::: -1C . :x|-1 :: x ::5;—&—¥■—FD—►.| - 仁 x 二 5』 2.已知向量a =(-1,0,2),b = (1,1,0),且a kb 与2b -a 相互垂直,则k 值为( )2 24.若方程E :-上 y 1表示焦点在y 轴上的双曲线,则实数m 的取值范围为1 -m m -2() A . 1,2 B .:,1) (2, :: C . (-::,2) D . (1,::)5.在=ABC 中,a = 2、3,b= 2、2,B = 45,则角 A 等于()7 3 A .B .-553.“ x 2 = y 2”是“ x = y ”的()A .充分不必要条件C .必要不充分条件C .丄D . 15B .充分必要条件D .既不充分也不必要条件A. 30 B . 60 C . 60 或120 D . 30 或1506•已知-14盘,8成等差数列,—1,b ib ,b 3,-4成等比数列,那么 岂空 的值为( )b 255A • 5B • -5C •D •-227.若动点M(x, y)始终满足关系式.x 2 (y 2)^ . x 2 (y-2)2=8,则动点M 的轨迹方程为()2 2 2 2 2 2 2 2xy, xy, xy, xy,A •1 B •1 C •1 D • 116 12 12 16 12 16 16 128 •已知等差数列:a n [的前n 项和S n ,且满足S n 1 =n 2 -n -2,则a ^:()A • 4B • 2C • 0D • -2x - y _ 09•已知x, y 满足约束条件《x + yE2,若z = x + ay 的最大值为4,则a=()、y 兰0A • 3B • 2C • -2D • -310 •在 ABC 中,a =2,c =1,则角C 的取值范围是()(八31A •陀丿B • —,—<6 3 .丿C •—,— 丨 <6 2丿D • (0,611 •已知直线l :^kx 2k 1与抛物线C : y 2 = 4x ,若I 与C 有且仅有一个公共点,则实数k 的取值集合为()尸r f1 IA • J -1,- >B • {-1,。

广东省深圳市龙岗区2015-2016学年第一学期期末高二理科数学试题带答案

广东省深圳市龙岗区2015-2016学年第一学期期末高二理科数学试题带答案

广东省深圳市龙岗区2015-2016学年第一学期期末高二理科数学试题带答案龙岗区2015-2016学年第一学期期末质量监测试题高二(理科)数学本试卷共分为选择题和非选择题两部分,共22小题,满分150分,考试用时120分钟。

注意事项如下:1.答卷前,请检查答题卡是否整洁无缺损。

考生必须使用规定的笔将自己的学校、班级、姓名和考号填写在答题卡指定的位置上,并将监考教师发放的条形码正向准确粘贴在答题卡的贴条形码区。

请保持条形码整洁、不污损。

2.选择题请使用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,请用橡皮擦干净后,再选涂其他答案。

不按以上要求作答的答案无效。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上。

如需改动,请先划掉原来的答案,然后再写上新的答案。

不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.请保持答题卡的整洁,不折叠、不破损。

考试结束后,请将试卷和答题卡一并交回。

第Ⅰ卷选择题(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知命题p:x R,sinx1,则下列哪个命题是对p的否定?A.p:x R,sinx-1B.p:x R,sinx≥-1C.p:x R,sinx≤-1D.p:x R,sin(x2y2)+x≠12.1<k<4是方程4-kk-1的充分不必要条件。

A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件3.已知三角形ABC的三内角A,B,C成等差数列,且AB=1,BC=4,则该三角形面积为A.3B.2C.2/3D.4/34.在空间直角坐标系中,给定点M(2,-1,3),若点A与点M关于xOy平面对称,点B与点M关于x轴对称,则AB=?A.2B.4C.25D.375.当a<-1时,不等式(x-a)/(x+1)(x-3)≤0的解集是A.(-∞,-1)∪[a,3]B.(-∞,a)∪[-1,3]C.(-∞,a)∪(-1,3)D.(-∞,a]∪(-1,3)6.若椭圆(a>b>0)的方程为x^2/a^2+y^2/b^2=1,离心率为e,则双曲线x^2/a^2-y^2/b^2=1的离心率为?A.2√5/5B.√3/2C.√5/2D.√3/5以下省略)7.已知等比数列{a_n}中,a_3=7,前3项之和S_3=21,则公比q的值为1或-1.8.若不等式组{x+3y≥4,XXX表示平面区域被直线y=kx分为面积相等的两部分,则k的值是3/4.9.如图所示的5×5正方形表格中共有20个空格,若在每一个空格中填入一个正整数,使得每一行和每一列都成等差数列,则字母a所代表的正整数是18.10.不等式f(x)=ax^2-x-c>0的解集为{x|-2<x<1},则函数y=f(-x)的图象大致是关于y轴对称的。

2015-2016学年高二数学期末试卷及答案

2015-2016学年高二数学期末试卷及答案

2015—2016学年第一学期期末测试高二理科数学复习题必修3,选修2-3,选修2-1简易逻辑、圆锥曲线参考公式:用最小二乘法求线性回归方程y bx a =+的系数公式:121()()()niii ni i x x y y b x x ==--=-∑∑,a y bx =-,其中x ,y 是数据的平均数.第♊卷(本卷共 分)一、选择题:(本大题共 题,每小题 分,共 分,在每小题给出的四个选项中,只有一项是符合题目要求的).从一副扑克牌☎ 张✆中抽取一张牌,抽到牌❽❾的概率是☎ ✆✌ 154  127  118 227.设随机变量~(0,1)N ξ,若()1P pξ>=,则()10P ξ-<<= ☎ ✆✌ 2p 1p -  12p -  12p -.如图 所示的程序框图的功能是求♊、♋两处应分别填写图✌.5?i <,2S S =+.5?i ≤,2S S =.5?i <,2S S =+ .5?i ≤,2S S =.将参加夏令营的 名学生编号为: ,⑤, ,采用系统抽样方法抽取一个容量为 的样本,且随机抽得的号码为 这 名学生分住在三个营区,从 到 在第♊营区,从 到 在第♋营区,从 到 在第♌营区.三个营区被抽中的人数依次为 ☎ ✆✌.  .  .  . .如图 ,分别以正方形ABCD 的四条边为直径画半圆,重叠部分如图中阴影区域,若向该正方形内随机投一点,则该点落在阴影区域的概率为 ☎ ✆✌24π- 22-π 44π- 42-π(82x 展开式中不含..4x 项的系数的和为 ☎ ✆✌.  . . ..学校体育组新买2颗同样篮球,3颗同样排球,从中取出 颗发放给高一 个班,每班1颗,则不同的发放方法共☎ ✆✌. 种 . 种 . 种. 种.容量为100的样本数据,按从小到大的顺序分为8组,如下表:第三组的频数和频率分别是☎ ✆✌.14和0.14 .0.14和14 .141和0.14 . 31和141.“2012”含有数字0, 1, 2,且恰有两个数字 .则含有数字0, 1, 2,且恰有两个相同数字的四位数的个数为☎ ✆✌.18 .24 .27 .36一射手对靶射击,直到第一次命中为止每次命中的概率为 ,现有 颗子弹,命中后的剩余子弹数目ξ的期望为☎ ✆✌   经回归分析可得⍓与⌧线性相关,并由最小二乘法求得回归直线方程为ˆ 1.1y x a =+,则♋= ☎ ✆✌、  、  、  、 设随机变量ξ~ ☎☐✆η~ ☎☐✆若95)1(=≥ξp ,则)2(≥ηp 的值为 ☎ ✆☎✌✆8132 ☎✆ 2711 ☎✆ 8165 ☎✆ 8116第♋卷(本卷共计 分)二、填空题:(本大题共 小题,每小题 分,共 分).甲从学校乘车回家,途中有 个交通岗,假设在各交通岗遇红灯的事件是相互独立的,并且概率都是52,则甲回家途中遇红灯次数的期望为 。

2015-2016高二期末考试理科数学试卷题(含答案)

2015-2016高二期末考试理科数学试卷题(含答案)

页脚内容12015-2016学年第一学期宝安区期末调研测试卷高二理科数学 2016.1本试卷共6页,22小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生首先检查答题卡是否整洁无缺损,监考教师分发的考生信息条形码是否正确;之后务必用0.5毫米黑色字迹的签字笔在答题卡指定位置填写自己的学校、姓名和考生号,同时,将监考教师发放的条形码正向准确粘贴在答题卡的贴条形码区,请保持条形码整洁、不污损.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上.不按要求填涂的,答案无效.3.非选择题必须用0.5毫米黑色字迹的签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上,请注意每题答题空间,预先合理安排;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答.漏涂、错涂、多涂的答案无效.一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.不等式x x x 2522>--的解集是( )A .{}15|-≤≥x x x 或B .{}15|-<>x x x 或页脚内容2C .{}51|<<-x xD .{}51|≤≤-x x2.已知向量)0,1,1(),2,0,1(=-=b a ,且a b k a -+b 2与相互垂直,则k 值为()A .57 B .53C .51D .13.“22y x =”是“y x =”的()A .充分不必要条件B .充分必要条件C .必要不充分条件D .既不充分也不必要条件4.若方程121:22=---m y m x E 表示焦点在y 轴上的双曲线,则实数m 的取值范围为() A .()2,1 B .()+∞∞-,2()1,YC .)2,(-∞D .),1(+∞5.在︒===∆45,22,32,B b a ABC 中,则角A 等于( )A .︒30B .︒60C .︒︒12060或D .︒︒15030或6.已知8,,,121a a -成等差数列,4,,,,1321--b b b 成等比数列,那么221b a a ⋅的值为( ) A .5 B .5-C .25-D .257.若动点),(y x M 始终满足关系式8)2()2(2222=-++++y x y x ,则动点M 的轨迹方程为()页脚内容3A .1121622=+y x B .1161222=+y x C .1161222=-y x D .1121622=-y x 8.已知等差数列{}n a 的前n 项和n S ,且满足n n S n -=+21-2,则=1a ()A .4B .2C .0D .2-9.已知,x y 满足约束条件⎪⎩⎪⎨⎧≥≤+≥-020y y x y x ,若ay x z +=的最大值为4,则a =()A .3B .2C .2-D .3-10.在1,2,==∆c a ABC 中,则角C 的取值范围是( )A .⎪⎭⎫ ⎝⎛2,0πB .⎪⎭⎫ ⎝⎛3,6ππC .⎪⎭⎫⎝⎛2,6ππ D .]6,0(π11.已知直线x y C k kx y l 4:12:2=++=与抛物线,若C l 与有且仅有一个公共点,则实数k 的取值集合为()A .⎭⎬⎫⎩⎨⎧-21,1B .{}0,1-C .⎭⎬⎫⎩⎨⎧-21,0,1D .⎭⎬⎫⎩⎨⎧21,012.已知圆2221:b y x C =+与椭椭圆1:22222=+by a x C ,若在椭圆2C 上存在一点P ,使得由点P 所作的圆1C 的两条切线互相垂直,则椭圆2C 的离心率的取值范围是()A .]23,22[B .)1,21[ C .)1,23[ D .)1,22[页脚内容4二、填空题:本大题共4小题,每小题5分,满分20分.13.已知命题x m x f m x R x p )-(3)(:q ;1,:2=>+∈∀指数函数命题是增函数.若“q ∧p ”为假命题且“q ∨p ”为真命题,则实数m 的取值范围为.14.已知点N M ,分别是空间四面体OABC 的边BC OA 和的中点,P 为线段MN 的中点,若γμλ++=,则实数=++γμλ.15.设数列{}n a 的前n 项和为n S ,且111,1++⋅=-=n n n S S a a ,则数列{}n a 的通项公式=n a .16.已知双曲线149:22=-y x C ,点M 与曲线C 的焦点不重合,若点M 关于曲线C 的两个焦点的对称点分别为B A ,,且线段MN 的中点P 恰好在双曲线C 上,则=-||BN AN 三、解答题:本大题6小题,满分70分.解答须写出文字说明、证明过程和演算步骤. 17.(本小题满分10分)设命题034:22<+-a ax x p (其中0>a ,R x ∈),命题065:2≥-+-x x q ,R x ∈. (1)若1=a ,且q p ∧为真,求实数x 的取值范围;(2)若p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围. 18.(本小题满分12分)已知函数x x x g x x f 2)(,log )(22+==,数列{}n a 的前n 项和记为n S ,n b 为数列{}n b 的通项,n ∈N *.点),(),(n n S n n b 和分别在函数)()(x g x f 和的图象上.页脚内容5(1)求数列{}n a 和{}n b 的通项公式;(2)令)(112-⋅=n n n b f a C ,求数列{}n C 的前n 项和T n .19.(本小题满分12分)已知a 、b 、c 分别是ABC ∆的三个内角A 、B 、C所对的边(1)若ABC ∆面积,60,2,23︒===∆A c S ABC 求a 、b 的值; (2)若B c a cos =,且A c b sin =,试判断ABC ∆的形状.20.(本小题满分12分)已知直线l 过点)1,1(M ,且与x 轴,y 轴的正半轴分别相交于B A ,点,O 为坐标原点. (1)当||||OB OA +取得最小值时,直线l 的方程; (2)当22||||MB MA +取得最小值时,直线l 的方程.21.(本小题满分12分)如图所示,在长方体1111D C B A ABCD -中,11==AD AA ,E 为CD 的中点. (1)求证:11AD E B ⊥(2)若二面角11A E B A --的大小为30°,求AB 的长. 22.(本小题满分12分)页脚内容6如图示,B A ,分别是椭圆C :)0(12222>>=+b a b y a x 的左右顶点,F 为其右焦点,2是||AF 与||FB 的等差中项,是||AF 与||FB 的等比中项.点P 是椭圆C 上异于A 、B 的任一动点,过点A 作直线x l ⊥轴.以线段AF 为直径的圆交直线AP 于点M A 、,连接FM 交直线l 于点Q . (1)求椭圆C 的方程;(2)试问在x 轴上是否存在一个定点N ,使得直线PQ 必过该定点N ?若存在,求出N 点的坐标,若不存在,说明理由.宝安区2015-2016学年度第一学期期末调研考试试题高二数学(理科) 选择题:BACACBBDADCD 一、填空题13))2,1[∈m 14)4315)⎪⎩⎪⎨⎧≥-=-=)2()1(1)1(1n n n n a n 16)12三、解答题17[解] (1)当a =1时,由x 2-4x +3<0,得1<x <3,................1分 即命题p 为真时有1<x <3.命题q 为真时,32≤≤x ................2分MQABFOxyP⋅⋅l页脚内容7由p ∧q 为真命题知,p 与q 同时为真命题,则有2<x <3. 即实数x 的取值范围是(2,3).................4分 (2)由x 2-4ax +3a 2<0,得(x -3a )(x -a )<0. 又a >0,所以a <x <3a ,................6分由p ⌝是q ⌝的充分不必要条件知,q 是p 的充分不必要条件. 则有{32≤≤x }⊂{x |a <x <3a }.................8分所以⎩⎨⎧><332a a 解得1<a<2.即实数a 的取值范围是(1,2).................10分 18题解(1)n n n b b n 2log 2=⇒=………………. 2分)1(2)1(2212-+-=⇒+=-n n S n n S n n ………………. 4分故12+=n a n ………………. 6分(2)分分10)121121(218)12)(12(1+--=-+=n n n n C n故24121+-=n T n ……………. 12分 19.[解] 1)23sin 21==∆A bc S ABC Θ,2360sin 221=︒⋅∴b ,得1=b ………3分页脚内容8由余弦定理得:360cos 21221cos 222222=︒⋅⨯⨯-+=-+=A bc c b a ,所以3=a ………………………6分(2)由余弦定理得:2222222c b a acb c a c a =+⇒-+⋅=,所以︒=∠90C ……8分 在ABC Rt ∆中,c a A =sin ,所以a cac b =⋅= ……………………10分 所以ABC ∆是等腰直角三角形;……………………………12分20.[解] (1)设A (a,0),B (0,b )(a >0,b >0).……………….1分 设直线l 的方程为+=1,则+=1,……………….3分所以|OA |+|OB |=a +b =(a +b ))11(ba +=2++≥2+2=4,……………….5分当且仅当a =b =2时取等号,此时直线l 的方程为x +y -2=0.……………….6分 (2)设直线l 的斜率为k ,则k <0,直线l 的方程为y -1=k (x -1),则⎪⎭⎫⎝⎛-0,11k A ,B (0,1-k ),……………….7分所以|MA |2+|MB |2=2111⎪⎭⎫ ⎝⎛+-k +12+12+(1-1+k )2=2+k 2+≥2+2=4.当且仅当k 2=,即k =-1时,上式等号成立……………….11分页脚内容9∴当|MA |2+|MB |2取得最小值时,直线l 的方程为x +y -2=0..……………….12分 21[解] (1)证明:以A 为原点,,,的方向分别为x轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系.………1分设AB =a ,则A (0,0,0),D (0,1,0),D 1(0,1,1),)0,1,2(a E ,B 1(a,0,1),=(a,0,1),)0,1,2(aAE =. 故=(0,1,1),)1,1,2(1--=a E B …………….2分∵·=-×0+1×1+(-1)×1=0,……………….3分∴B 1E ⊥AD 1.………….4分(2)连结A 1D ,B 1C ,由长方体ABCD ­A 1B 1C 1D 1及AA 1=AD =1,得AD 1⊥A 1D . ∵B 1C ∥A 1D ,∴AD 1⊥B 1C .确良.……………….5分 又由(1)知B 1E ⊥AD 1,且B 1C ∩B 1E =B 1, ∴AD 1⊥平面DCB 1A 1,∴是平面A 1B 1E 的一个法向量,此时=(0,1,1)..……………….6分 设与n 所成的角为θ, 则cos θ==..……………….8分 ∵二面角A ­B 1E ­A 1的大小为30°,页脚内容10∴|cos θ|=cos30°,即=,………………10分 解得a =2,即AB 的长为2.………………12分22.(1)由题意得AF a c =+,FB a c =-,........................................................1分即2()()2a c a c a c a c ++-=⎧⎪⎨+⋅-=⎪⎩()(),..........................................................................................2分 解得:1,2==c a ,2223b a b ∴=-=,........................................................................................3分∴所求椭圆的方程为:13422=+y x ........................................................................4分 (2)假设在x 轴上存在一个定点)0,(n N ,使得直线PQ 必过定点)0,(n N ............5分 设动点),(00y x P ,由于P 点异于B 、A ,故00≠y 且20±≠x由点P 在椭圆上,故有4)4(31202222200x y b y a x -=⇒=+.......① (6)分又由(I )知)0,1(),0,2(F A -,所以直线AP 的斜率200+=x y K AP .............................7分睢宁县文华中学2009----2010学年度第二学期教务处工作计划页脚内容11又点M 是以线段AF 为直径的圆与直线AP 的交点,所以FM AP ⊥, 所以00211y x k k K k AP MF MF AP +-=-=⇒-=⋅,.................................8分 所以直线FM 的方程:)1(200-+-=x y x y ................................................................9分 联立l FM 、的方程⎪⎩⎪⎨⎧-=+-=2200x y x y ,得交点))2(3,2(00y x Q +-. 所以Q 、P 两点连线的斜率)2()2(32)2(3000200000++-=++-=x y x y x y x y k PQ ......② 将.①式代入②式,并整理得:004)2(3y x K PQ +-=.........................................................10分 又N 、P 两点连线的斜率nx y k PN -=00 若直线QP 必过定点)0,(n N ,则必有PN PQ K k =恒成立 即nx y y x -=+-00004)2(3整理得:))(2(340020n x x y -+-=....③......................11分 将.①式代入③式,得))(2(34)4(340020n x x x -+-=-⨯ 解得:2=n睢宁县文华中学2009----2010学年度第二学期教务处工作计划页脚内容12 故直线PQ 过定点()20,.....................................12分。

广东省深圳市龙岗区2015-2016学年第一学期期末高二政治试题带答案

广东省深圳市龙岗区2015-2016学年第一学期期末高二政治试题带答案

龙岗区2015-2016学年第一学期期末质量监测试题高二政治试题本试卷共8页,共26题,满分100分。

考试用时90分钟。

注意事项:1.答卷前,考生首先检查答题卡是否整洁无缺损;考生务必用规定的笔将自己的学校、班级、姓名和考号填写在答题卡指定的位置上。

同时,将监考教师发放的条形码正向准确粘贴在答题卡的贴条形码区。

请保持条形码整洁、不污损。

2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案;不能答在试卷上。

不按以上要求作答的答案无效。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.请保持答题卡的整洁,不折叠、不破损。

考试结束后,将试卷和答题卡一并交回。

Ⅰ选择题部分(共48分)一、单项选择题:本大题共12小题,每小题2分,满分24分。

在每小题给出的四个选项中,只有一项是最符合题意的。

1.“正能量之地”是一个传递正能量的网站,每天准时推送精选的正能量故事、正能量的句子、正能量语录、励志格言、正能量歌曲等优秀作品,旨在带给你满满的正能量。

“正能量”()①具有凝聚人心、振奋精神的作用②为经济和社会发展提供物质保障③能够发挥积极的导向和示范作用④是社会主义核心价值体系的基础A.①②B.①③C.②③D.③④2.“如果一个孩子生活在批评之中,他就学会了谴责;如果一个孩子生活在表扬之中,他就学会了感激;如果一个孩子生活在认可之中,他就学会了自爱……”这体现的文化生活道理有()①一定的文化环境决定人的发展②人的成长总是会受到环境影响③文化对人的影响是深远持久的④文化对人的影响是潜移默化的A.①③B.①④C.②③D.②④3.2015年10月22日,《中国文化产业年度发展报告2015》由北京大学出版社正式出版发行。

报告认为,文化产业作为一种新兴产业,已经成为主要经济增长点和引领经济发展的重要引擎。

2015-2016第一学期高二期末考试理科数学试题及答案

2015-2016第一学期高二期末考试理科数学试题及答案

2016学年度第一学期高二年级期末教学质量检测理科数学试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分。

考试时间120分钟。

注意事项:1、答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、班级和考号填写在答题卷上。

2、必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

第Ⅰ卷 选择题(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.“0x >”是0>”成立的A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件 2.抛物线24y x =的焦点坐标是A .(1,0)B .(0,1)C .1(,0)16 D .1(0,)163.与圆8)3()3(22=-+-y x 相切,且在y x 、轴上截距相等的直线有A .4条B .3条C .2条D .1条 4.设l 是直线,,αβ是两个不同的平面,则下列结论正确的是A .若l ∥α,l ∥β,则//αβB .若//l α,l ⊥β,则α⊥βC .若α⊥β,l ⊥α,则l ⊥βD .若α⊥β, //l α,则l ⊥β 5.已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0,则⌝p 是A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<06.设(2,1,3)a x = ,(1,2,9)b y =-,若a 与b 为共线向量,则A .1x =,1y =B .12x =,12y =- C .16x =,32y =- D .16x =-,32y =7.已知椭圆2215x y m +=的离心率5e =,则m 的值为 A .3 BCD .253或38.如图,在正方体1111ABCD A BC D -中,,,M N P 分别是111,,B B B C CD 的中点,则MN 与1D P 所成角的余弦值为 A.5-B.5CD .9.如图,G 是ABC ∆的重心,,,OA a OB b OC c ===,则OG =A .122333a b c ++B .221333a b c ++C .222333a b c ++D .111333a b c ++10.已知双曲线22214x yb-=的右焦点与抛物线y 2=12x 的焦 点重合,则该双曲线的焦点到其渐近线的距离等于A. BC .3D .5 二、填空题:本大题共4小题,每小题5分,满分20分11.若直线x +a y+2=0和2x+3y+1=0互相垂直,则a =12.若一个圆锥的侧面展开图是面积为π2的半圆面,则该圆锥的体积为 。

2015-2016学年高二上学期期末考试数学(理)试题及答案

2015-2016学年高二上学期期末考试数学(理)试题及答案

N D 1C 1B 1A 12015-2016学年第一学期高二年级期末质量抽测数 学 试 卷(理科)(满分150分,考试时间 120分钟)2016.1考生须知: 1. 本试卷共6页,分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分。

2. 答题前考生务必将答题卡上的学校、班级、姓名、考试编号用黑色字迹的签字笔填写。

3. 答题卡上第I 卷(选择题)必须用2B 铅笔作答,第II 卷(非选择题)必须用黑色字迹的签字笔作答,作图时可以使用2B 铅笔。

请按照题号顺序在各题目的答题区内作答,未在对应的答题区域内作答或超出答题区域作答的均不得分。

4. 修改时,选择题部分用塑料橡皮擦涂干净,不得使用涂改液。

保持答题卡整洁,不要折叠、折皱、破损。

不得在答题卡上做任何标记。

5. 考试结束后,考生务必将答题卡交监考老师收回,试卷自己妥善保存。

第Ⅰ卷(选择题 共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项.)(1)抛物线210y x =的焦点到准线的距离为(A )52(C )5 (C )10 (D )20 (2)过点(2,1)-且倾斜角为060的直线方程为(A) 10y --=( B) 330y --=( C)10y -+=( D) 330y -+=(3)若命题p 是真命题,命题q 是假命题,则下列命题一定是真命题的是(A)p q ∧ (B )()p q ⌝∨ (C)()p q ⌝∧ (D )()()p q ⌝∨⌝(4)已知平面α和直线,a b ,若//a α,则“b a ⊥”是“b α⊥”的(A)充分而不必要条件 ( B )必要而不充分条件 ( C)充分必要条件 (D)既不充分也不必要条件 (5)如图,在正方体1111ABCD A B C D -中,点,M N 分别是面对角线111A B B D 与的中点,若1,,,DA DC DD === a b c 则MN =CA 1俯视图侧(左)视图正(主)视图(A)1()2+-c b a ( B) 1()2+-a b c ( C) 1()2-a c ( D) 1()2-c a(6)已知双曲线22221(0,0)x y a b a b-=>>(A) y =( B) y x = ( C) 12y x =± ( D) 2y x =±(7)某三棱锥的三视图如图所示,则该三棱锥的表面积是(A )2+( B)2( C)4+( D)4(8)从点(2,1)P -向圆222220x y mx y m +--+=作切线,当切线长最短时m 的值为(A )1- (B )0 (C )1 (D )2(9)已知点12,F F 是椭圆22:14x C y +=的焦点,点M 在椭圆C上且满足12MF MF +=uuu r uuu u r 则12MF F ∆的面积为(A)(B) (C ) 1 (D) 2 (10) 如图,在棱长为1的正方体1111ABCD A B C D -中,点M 是左侧面11ADD A 上的一个动点,满足11BC BM ⋅= ,则1BC 与BM的夹角的最大值为(A) 30︒ ( B) 45︒ ( C ) 60︒ ( D) 75︒P D 1C 1B 1A 1D C BA第Ⅱ卷(非选择题 共100分)二、填空题(本大题共6小题,每小题5分,共30分)(11)若命题2:R,220p x x x ∃∈++>,则:p ⌝ . (12) 已知(1,3,1)=-a ,(1,1,3)=--b ,则-=a b ______________.(13)若直线()110a x y +++=与直线220x ay ++=平行,则a 的值为____ .(14)如图,在长方体ABCD -A 1B 1C 1D 1中,设 11AD AA ==, 2AB =,P 是11C D 的中点,则11BC A P 与所成角的大小为____________, 11BC A P ⋅=___________.(15)已知P 是抛物线28y x =上的一点,过点P 向其准线作垂线交于点E ,定点(2,5)A ,则PA PE +的最小值为_________;此时点P 的坐标为_________ .(16)已知直线:10l kx y -+=()k ∈R .若存在实数k ,使直线l 与曲线C 交于,A B 两点,且||||AB k =,则称曲线C 具有性质P .给定下列三条曲线方程: ① y x =-; ② 2220x y y +-=; ③ 2(1)y x =+. 其中,具有性质P 的曲线的序号是________________ .三、解答题(本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.) (17)(本小题满分14分)已知圆22:2410C x y x y +--+=. (I)求过点(3,1)M 的圆C 的切线方程;(II)若直线:40l ax y -+=与圆C 相交于,A B 两点,且弦AB的长为a 的值.(18)(本小题满分14分)OD 1C 1B 1A 1D CBA N MDCBAP在直平行六面体1111ABCD A B C D -中,底面ABCD 是菱形,60DAB ∠=︒,AC BD O = ,11AB AA ==.(I)求证:111//OC AB D 平面;(II)求证:1111AB D ACC A ⊥平面平面; (III)求三棱锥111A AB D -的体积. (19)(本小题满分14分)已知椭圆2222:1(0)x y C a b a b +=>>(0,1)A -.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)如果过点3(0,)5B 的直线与椭圆交于,M N 两点(,M N 点与A 点不重合),求证:AMN ∆为直角三角形.(20)(本小题满分14分)如图,在四棱锥P A B C D -中,P A A B C D ⊥底面,底面A B C D 为直角梯形,//,90A D B C B A D ∠=︒22PA AD AB BC ====,过AD 的平面分别交PB PC ,于,M N 两点.(I )求证://MN BC ;(II )若,M N 分别为,PB PC 的中点,①求证:PB DN ⊥;②求二面角P DN A --的余弦值.(21)(本小题满分14分)抛物线22(0)y px p =>与直线1y x =+相切,112212(,),(,)()A x y B x y x x ≠是抛物线上两个动点,F 为抛物线的焦点,且8AF BF +=. (I ) 求p 的值;(II ) 线段AB 的垂直平分线l 与x 轴的交点是否为定点,若是,求出交点坐标,若不是,说明理由;(III )求直线l 的斜率的取值范围.2015-2016学年第一学期高二年级期末质量抽测数学试卷参考答案及评分标准 (理科) 2016.1一、选择题(本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目二、填空题(本大题共6小题,每小题5分,共30分)(11)2:,220p x x x ⌝∀∈++≤R(12) 6 (13)1或2- (14)60︒;1 (15)5;(2,4) (16)②③ 三、解答题(本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.) (17)(本小题满分14分)解:(I )圆C 的方程可化为22(1)(2)4x y -+-=,圆心(1,2)C ,半径是2. …2分①当切线斜率存在时,设切线方程为1(3)y k x -=-,即310kx y k --+=. ……3分因为2d ===,所以34k =. …………6分 ②当切线斜率不存在时,直线方程为3x =,与圆C 相切. ……… 7分所以过点(3,1)M 的圆C 的切线方程为3x =或3450x y --=. ………8分(II )因为弦AB 的长为O 1ABCDA 1B 1C 1D 1O所以点C 到直线l的距离为11d ==. ……10分即11d ==. …………12分所以34a =-. …………14分(18)(本小题满分14分)证明:(I) 如图,在直平行六面体1111ABCD A B C D -中,设11111AC B D O = ,连接1AO .因为1111//AA CC AA CC =且,所以四边形11AAC C 是平行四边形.所以1111//AC AC AC AC =且. ……1分因为底面ABCD 是菱形, 所以1111//O C AO O C AO =且. 所以四边形11AOC O 是平行四边形.所以11//AO OC . ……2分 因为111AO AB D ⊂平面,111OC AB D ⊄平面所以111//OC AB D 平面. ……4分(II)因为11111AA A B C D ⊥平面,111111B D A B C D ⊂平面,所以111B D AA ⊥. ……5分 因为底面ABCD 是棱形,所以1111B D AC ⊥. ……6分因为1111AA AC A = ,所以1111B D ACC A ⊥平面. ……7分 因为1111B D AB D ⊂平面, ……8分 所以1111AB D ACC A ⊥平面平面. ……9分 (III)由题意可知,11111AA A B C D ⊥平面,所以1AA 为三棱锥111A A B D -的高. ……10分因为111111111111111332A AB D A A B D A B D V V S AA --∆==⋅=⨯⨯=.所以三棱锥111A AB D -. ……14分(19)(本小题满分14分)解:(Ⅰ)因为椭圆经过点(0,1)A -,e =,所以1b =. ……1分由c e a ===2a =. ……3分 所以椭圆C 的标准方程为2214x y +=. ……4分(Ⅱ)若过点3(0,)5的直线MN 的斜率不存在,此时,M N 两点中有一个点与A 点重合,不满足题目条件. ……5分若过点3(0,)5的直线MN 的斜率存在,设其斜率为k ,则MN 的方程为35y kx =+,由223514y kx x y ⎧=+⎪⎪⎨⎪+=⎪⎩可得222464(14)0525k x kx ++-=. ……7分设1122(,),(,)M x y N x y ,则122122245(14)64,25(14)0k x x k x x k ⎧+=-⎪+⎪⎪⋅=-⎨+⎪⎪∆>⎪⎩, ……9分 所以1212266()55(14)y y k x x k +=++=+, 221212122391009()52525(14)k y y k x x k x x k -+⋅=⋅+++=+. ……11分因为(0,1)A -,所以1122121212(,1)(,1)()1AM AN x y x y x x y y y y ⋅=+⋅+=++++22264100925(14)25(14)k k k -+=-+++26105(14)k ++=+所以AM AN ⊥,AMN ∆为直角三角形得证. ……14分(20)(本小题满分14分)证明:(I )因为底面ABCD 为直角梯形, 所以//BC AD .因为,,BC ADNM AD ADNM ⊄⊂平面平面所以//BC ADNM 平面. ……2分 因为,BC PBC PBC ADNM MN ⊂= 平面平面平面,所以//MN BC . ……4分 (II )①因为,M N 分别为,PB PC 的中点,PA AB =,所以PB MA ⊥. ……5分 因为90,BAD ∠=︒ 所以DA AB ⊥.因为PA ABCD ⊥底面,所以DA PA ⊥. 因为PA AB A = ,所以DA PAB ⊥平面.所以PB DA ⊥. ……7分 因为AM DA A = ,所以PB ADNM ⊥平面因为DN ADNM ⊂平面,所以PB DN ⊥. ……9分 ②如图,以A 为坐标原点,建立空间直角坐标系A xyz -. ……10分 则(0,0,0),(2,0,0),(2,1,0),(0,2,0),(0,0,2)A B C D P . ……11分由(II )可知,PB ADNM ⊥平面,所以ADNM 平面的法向量为(2,0,2)BP =-. ……12分设平面PDN 的法向量为(,,)x y z =n因为(2,1,2)PC =- ,(0,2,2)PD =-,所以00PC PD ⎧⋅=⎪⎨⋅=⎪⎩n n .即220220x y z y z +-=⎧⎨-=⎩. 令2z =,则2y =,1x =. 所以(1,2,2)=n所以cos ,6BP BP BP ⋅〈〉===n n n所以二面角P DN A --……14分(21)(本小题满分14分)解:(I )因为抛物线22(0)y px p =>与直线1y x =+相切,所以由221y px y x ⎧=⎨=+⎩ 得:2220(0)y py p p -+=>有两个相等实根. …2分即2484(2)0p p p p ∆=-=-=得:2p =为所求. ……4分 (II )法一:抛物线24y x =的准线1x =.且8AF BF +=,所以由定义得1228x x ++=,则126x x +=. ………5分 设直线AB 的垂直平分线l 与x 轴的交点(,0)C m . 由C 在AB 的垂直平分线上,从而AC BC = ………6分即22221122()()x m y x m y -+=-+. 所以22221221()()x m x m y y ---=-.即12122112(2)()444()x x m x x x x x x +--=-=-- ………8分 因为12x x ≠,所以1224x x m +-=-. 又因为126x x +=,所以5m =, 所以点C 的坐标为(5,0).即直线AB 的垂直平分线l 与x 轴的交点为定点(5,0). ………10分 法二:由112212(,),(,)()A x y B x y x x ≠可知直线AB 的斜率存在,设直线AB 的方程为y kx m =+.由24y x y kx m⎧=⎨=+⎩可得222(24)0k x km x m +-+=. ………5分 所以12221224216160km x x k m x x k km -⎧+=⎪⎪⎪⋅=⎨⎪∆=-+>⎪⎪⎩. ………6分因为抛物线24y x =的准线1x =.且8AF BF +=,所以由定义得1228x x ++=,则126x x +=. ………7分所以232km k +=.设线段AB 的中点为00(,)M x y . 则12003,32x x x y k m +===+. 所以(3,3)M k m +. ………8分 所以线段AB 的垂直平分线的方程为13(3)y k m x k--=--. ………9分 令0y =,可得2335x m mk =++=.即直线AB 的垂直平分线l 与x 轴的交点为定点(5,0).………10分 (III )法一:设直线l 的斜率为1k ,由(II )可设直线l 方程为1(5)y k x =-.设AB 的中点00(,)M x y ,由12032x x x +==.可得0(3,)M y .因为直线l 过点0(3,)M y ,所以012y k =-.………11分 又因为点0(3,)M y 在抛物线24y x =的内部,所以2012y <.…12分 即21412k < ,则213k <.因为12x x ≠,则10k ≠. …13分所以1k 的取值范围为( .………14分 法二:设直线l 的斜率为1k ,则11k k =-.由(II )可知223km k =-.因为16160km ∆=-+>,即1km <, …11分所以2231k -<.所以213k >. 即21113k >. 所以2103k <<. …12分 因为12x x ≠,则10k ≠. …13分 所以1k的取值范围为( . ………14分。

广东省深圳市龙岗区2015-2016学年第一学期期末高二语文试题带答案

广东省深圳市龙岗区2015-2016学年第一学期期末高二语文试题带答案

龙岗区2015-2016学年第一学期期末质量监测试题高二语文本试卷共6页,共15小题,满分150分。

考试用时150分钟。

注意事项:1.答卷前,考生首先检查答题卡是否整洁无缺损;考生务必用规定的笔将自己的学校、班级、姓名和考号填写在答题卡指定的位置上。

同时,将监考教师发放的条形码正向准确粘贴在答题卡的贴条形码区。

请保持条形码整洁、不污损。

2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案;不能答在试卷上。

不按以上要求作答的答案无效。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.请保持答题卡的整洁,不折叠、不破损。

考试结束后,将试卷和答题卡一并交回。

一、古诗文阅读(55分)阅读下面的文言文,完成1~5小题。

留侯张良者,其先韩人也。

大父..开地,相韩昭侯、宣惠王、襄哀王。

良年少,未宦事韩。

韩破,良家僮三百人,弟死不葬,悉□家财求客刺秦王,为韩报仇。

良尝学礼淮阳。

东见仓海君。

得力士,为铁椎重百二十斤。

秦皇帝东游,良与客狙击秦始皇帝博浪沙中,误中副车。

秦皇帝大怒,大索天下,求贼甚急,为张良故也。

良乃更名姓,亡匿下邳。

良尝闲从容步游下邳圯上,有一老父,衣褐,至良所,直堕其履圯下,顾谓良曰:‚孺.子.,下取履!‛良鄂然,欲殴之。

为其老,强忍,下取履。

父曰:‚履我!‛良业为取履,因长跪履之。

父以足受,笑而去。

良殊大惊,随目之。

父去里所,复还,曰:‚孺子可教矣。

后五日平明,与我会此。

‛良□怪之,跪曰:‚诺。

‛五日平明,良往。

父已先在,怒曰:‚与老人期,后,何也?‛去,曰:‚后五日早会。

‛五日鸡鸣,良往。

父又先在,复怒曰:‚后,何也?‛去,曰:‚后五日复早来。

‛五日,良夜未半往。

有顷,父亦来,喜曰:‚当如是。

‛出一编书,曰:‚读此则为王者师矣。

广东省深圳市龙岗区2015-2016学年第一学期期末高二化学试题带答案

广东省深圳市龙岗区2015-2016学年第一学期期末高二化学试题带答案

龙岗区2015-2016学年第一学期期末质量监测试题高二化学本试卷共6页,满分100分,考试用时90分钟。

注意事项:1.答卷前,考生首先检查答题卡是否整洁无缺损;考生务必用规定的笔将自己的学校、班级、姓名和考号填写在答题卡指定的位置上。

同时,将监考教师发放的条形码正向准确粘贴在答题卡的贴条形码区。

请保持条形码整洁、不污损。

2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案;不能答在试卷上。

不按以上要求作答的答案无效。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.请保持答题卡的整洁,不折叠、不破损。

考试结束后,将试卷和答题卡一并交回。

5.可能用到的相对原子质量:H 1 C 12 N 14 O 16 Na 23 S 32 Cl 35.5 Cu 64 Fe 56 I 127一、单项选择题(1~11题,每小题4分,共44分)1.“雾霾”成为近几年热词,下列措施不能..消除雾霾的是A.机动车安装尾气净化器B.改变用燃烧方式使植物变肥料的方法C.开发新能源,减少化石燃料的使用D.提议将所有发电厂、化工厂搬迁到郊区2.下列叙述正确的是A.强电解质溶液的导电性不一定比弱电解质溶液的导电性强B.常温下,将pH=3的醋酸溶液稀释到原体积的10倍后,溶液的pH=4C.若测得雨水的pH小于7,则下的是酸雨D.在通风橱中进行有毒气体实验符合“绿色化学”思想3.下列有关实验的说法不正确...的是A.测定中和热实验的玻璃仪器只需烧杯、量筒和温度计B.用25mL碱式滴定管量取13.50mL Na2CO3溶液C.用10mL量筒量取5.5mL硫酸溶液D.用广泛pH试纸不能测得某碱溶液的pH为12.74.如图所示的钢铁腐蚀中,下列说法正确的是A.碳表面发生氧化反应B.钢铁被腐蚀的最终产物为FeOC.生活中钢铁制品的腐蚀以图①所示为主D.图②中,正极反应式为O2+4e-+2H2O===4OH-5.已知:Ksp(AgCl)=1.8×10-10,Ksp(AgBr)=7.8×10-13。

2015-2016学年高二(上)期末数学试卷(理科)(解析版)

2015-2016学年高二(上)期末数学试卷(理科)(解析版)

2015-2016学年高二(上)期末数学试卷(理科)一、选择题(共12小题,每小题5分,共60分)1.在空间直角坐标系中,A(1,2,3),B(2,2,0),则=()A.(1,0,﹣3)B.(﹣1,0,3)C.(3,4,3)D.(1,0,3)2.抛物线y2=4x的准线方程为()A.x=2 B.x=﹣2 C.x=1 D.x=﹣13.椭圆+=1的离心率是()A.B.C.D.4.命题“存在x0∈R,2≤0”的否定是()A.不存在x0∈R,2>0 B.存在x0∈R,2≥0C.对任意的x∈R,2x≤0 D.对任意的x∈R,2x>05.如图,在平行六面体ABCD﹣A1B1C1D1中,M为AC与BD的交点,若=,=,=.则下列向量中与相等的向量是()A.﹣++B.C.D.﹣﹣+6.命题p:“不等式的解集为{x|x≤0或x≥1}”;命题q:“不等式x2>4的解集为{x|x>2}”,则()A.p真q假B.p假q真C.命题“p且q”为真D.命题“p或q”为假7.已知A,B为平面内两个定点,过该平面内动点m作直线AB的垂线,垂足为N.若=λ•,其中λ为常数,则动点m的轨迹不可能是()A.圆B.椭圆 C.双曲线D.抛物线8.设abc≠0,“ac>0”是“曲线ax2+by2=c为椭圆”的()A.充分非必要条件B.必要非充分条件C.充分必要条件 D.既非充分又非必要条件9.已知双曲线的两个焦点为F1(﹣,0)、F2(,0),P是此双曲线上的一点,且PF1⊥PF2,|PF1|•|PF2|=2,则该双曲线的方程是()A.﹣=1 B.﹣=1 C.﹣y2=1 D.x2﹣=110.如图,正三棱柱ABC﹣A1B1C1中,AB=AA1,则AC1与平面BB1C1C所成的角的正弦值为()A.B. C.D.11.已知定点B,且|AB|=4,动点P满足|PA|﹣|PB|=3,则|PA|的最小值是()A.B.C.D.512.椭圆:(a>b>0),左右焦点分别是F1,F2,焦距为2c,若直线与椭圆交于M点,满足∠MF1F2=2∠MF2F1,则离心率是()A.B.C.D.二、填空题(共4小题,每小题5分,共20分)13.椭圆+=1上一点P到它的一个焦点的距离等于3,那么点P到另一个焦点的距离等于.14.已知平行六面体ABCD﹣A1B1C1D1所有棱长均为1,∠BAD=∠BAA1=∠DAA1=60°,则AC1的长为.15.给出下列命题:①直线l的方向向量为=(1,﹣1,2),直线m的方向向量=(2,1,﹣),则l与m垂直;②直线l的方向向量=(0,1,﹣1),平面α的法向量=(1,﹣1,﹣1),则l⊥α;③平面α、β的法向量分别为=(0,1,3),=(1,0,2),则α∥β;④平面α经过三点A(1,0,﹣1),B(0,1,0),C(﹣1,2,0),向量=(1,u,t)是平面α的法向量,则u+t=1.其中真命题的是.(把你认为正确命题的序号都填上)16.过抛物线x2=2py(p>0)的焦点F作倾斜角为30°的直线,与抛物线分别交于A,B两点(点A 在y轴左侧),则=.三、解答题(本大题共6小题,共70分)17.已知命题P:方程表示双曲线,命题q:点(2,a)在圆x2+(y﹣1)2=8的内部.若pΛq为假命题,¬q也为假命题,求实数a的取值范围.18.命题:若点O和点F(﹣2,0)分别是双曲线﹣y2=1(a>0)的中心和左焦点,点P为双曲线右支上的任意一点,则•的取值范围为[3+2,+∞).判断此命题的真假,若为真命题,请做出证明;若为假命题,请说明理由.19.如图,在直三棱柱ABC﹣A1B1C1中,AA1=BC=AB=2,AB⊥BC,求二面角B1﹣A1C﹣C1的大小.20.如图,设点A和B为抛物线y2=4px(p>0)上原点以外的两个动点,已知OA⊥OB,OM⊥AB.求点M的轨迹方程,并说明它表示什么曲线.21.如图,四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,E为BC的中点,(Ⅰ)求异面直线NE与AM所成角的余弦值;(Ⅱ)在线段AN上是否存在点S,使得ES⊥平面AMN?若存在,求线段AS的长;若不存在,请说明理由.22.已知,椭圆C过点A,两个焦点为(﹣1,0),(1,0).(1)求椭圆C的方程;(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值.2015-2016学年高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,共60分)1.在空间直角坐标系中,A(1,2,3),B(2,2,0),则=()A.(1,0,﹣3)B.(﹣1,0,3)C.(3,4,3)D.(1,0,3)【考点】空间向量运算的坐标表示.【专题】对应思想;定义法;空间向量及应用.【分析】根据空间向量的坐标表示,求出即可.【解答】解:空间直角坐标系中,A(1,2,3),B(2,2,0),∴=(2﹣1,2﹣2,0﹣3)=(1,0,﹣3).故选:A.【点评】本题考查了空间向量的坐标表示与应用问题,是基础题.2.抛物线y2=4x的准线方程为()A.x=2 B.x=﹣2 C.x=1 D.x=﹣1【考点】抛物线的简单性质.【专题】计算题.【分析】利用抛物线的标准方程,有2p=4,,可求抛物线的准线方程.【解答】解:抛物线y2=4x的焦点在x轴上,且,∴抛物线的准线方程是x=﹣1.故选D.【点评】本小题主要考查抛物线的标准方程、抛物线的简单性质等基础知识,考查运算求解能力,考查数形结合思想.属于基础题.3.椭圆+=1的离心率是()A.B.C.D.【考点】椭圆的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】椭圆+=1中a=3,b=2,求出c,即可求出椭圆+=1的离心率.【解答】解:∵椭圆+=1中a=3,b=2,∴c==,∴e==,故选:C.【点评】此题考查学生掌握椭圆的离心率的求法,灵活运用椭圆的简单性质化简求值,是一道基础题.4.命题“存在x0∈R,2≤0”的否定是()A.不存在x0∈R,2>0 B.存在x0∈R,2≥0C.对任意的x∈R,2x≤0 D.对任意的x∈R,2x>0【考点】特称命题;命题的否定.【专题】简易逻辑.【分析】根据特称命题的否定是全称命题,直接写出该命题的否定命题即可.【解答】解:根据特称命题的否定是全称命题,得;命题“存在x0∈R,2≤0”的否定是“对任意的x∈R,都有2x>0”.故选:D.【点评】本题考查了全称命题与特称命题的应用问题,解题时应根据特称命题的否定是全称命题,写出答案即可,是基础题.5.如图,在平行六面体ABCD﹣A1B1C1D1中,M为AC与BD的交点,若=,=,=.则下列向量中与相等的向量是()A.﹣++B.C.D.﹣﹣+【考点】相等向量与相反向量.【分析】由题意可得=+=+=+[﹣],化简得到结果.【解答】解:由题意可得=+=+=+=+(﹣)=+(﹣)=﹣++,故选A.【点评】本题主要考查两个向量的加减法的法则,以及其几何意义,属于基础题.6.命题p:“不等式的解集为{x|x≤0或x≥1}”;命题q:“不等式x2>4的解集为{x|x>2}”,则()A.p真q假B.p假q真C.命题“p且q”为真D.命题“p或q”为假【考点】复合命题的真假.【专题】计算题.【分析】先判断两个命题的真假,然后再依据或且非命题的真假判断规则判断那一个选项是正确的.【解答】解:∵x=1时,不等式没有意义,所以命题p错误;又不等式x2>4的解集为{x|x >2或x<﹣2}”,故命题q错误.∴A,B,C不对,D正确应选D.【点评】考查复合命题真假的判断方法,其步骤是先判断相关命题的真假,然后再复合命题的真假判断规则来判断复合命题的真假.7.已知A,B为平面内两个定点,过该平面内动点m作直线AB的垂线,垂足为N.若=λ•,其中λ为常数,则动点m的轨迹不可能是()A.圆B.椭圆 C.双曲线D.抛物线【考点】轨迹方程.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】建立直角坐标系,设出A、B坐标,以及M坐标,通过已知条件求出M的方程,然后判断选项.【解答】解:以AB所在直线为x轴,AB中垂线为y轴,建立坐标系,设M(x,y),A(﹣a,0)、B(a,0);因为=λ•,所以y2=λ(x+a)(a﹣x),即λx2+y2=λa2,当λ=1时,轨迹是圆.当λ>0且λ≠1时,是椭圆的轨迹方程;当λ<0时,是双曲线的轨迹方程.当λ=0时,是直线的轨迹方程;综上,方程不表示抛物线的方程.故选D.【点评】本题考查曲线轨迹方程的求法,轨迹方程与轨迹的对应关系,考查分类讨论思想、分析问题解决问题的能力以及计算能力.8.设abc≠0,“ac>0”是“曲线ax2+by2=c为椭圆”的()A.充分非必要条件B.必要非充分条件C.充分必要条件 D.既非充分又非必要条件【考点】必要条件、充分条件与充要条件的判断;椭圆的定义.【分析】要判断:“ac>0”是“曲线ax2+by2=c为椭圆”的什么条件,我们要在前提条件abc≠0的情况下,先判断,“ac>0”时“曲线ax2+by2=c是否为椭圆”,然后在判断“曲线ax2+by2=c为椭圆”时,“ac >0”是否成立,然后根据充要条件的定义进行总结.【解答】解:若曲线ax2+by2=c为椭圆,则一定有abc≠0,ac>0;反之,当abc≠0,ac>0时,可能有a=b,方程表示圆,故“abc≠0,ac>0”是“曲线ax2+by2=c为椭圆”的必要非充分条件.故选B【点评】判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q 为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.9.已知双曲线的两个焦点为F1(﹣,0)、F2(,0),P是此双曲线上的一点,且PF1⊥PF2,|PF1|•|PF2|=2,则该双曲线的方程是()A.﹣=1 B.﹣=1 C.﹣y2=1 D.x2﹣=1【考点】双曲线的标准方程.【分析】先设双曲线的方程,再由题意列方程组,处理方程组可求得a,进而求得b,则问题解决.【解答】解:设双曲线的方程为﹣=1.由题意得||PF1|﹣|PF2||=2a,|PF1|2+|PF2|2=(2)2=20.又∵|PF1|•|PF2|=2,∴4a2=20﹣2×2=16∴a2=4,b2=5﹣4=1.所以双曲线的方程为﹣y2=1.故选C.【点评】本题主要考查双曲线的定义与标准方程,同时考查处理方程组的能力.10.如图,正三棱柱ABC﹣A1B1C1中,AB=AA1,则AC1与平面BB1C1C所成的角的正弦值为()A.B. C.D.【考点】直线与平面所成的角.【专题】计算题.【分析】要求AC1与平面BB1C1C所成的角的正弦值,在平面BB1C1C作出AC1的射影,利用解三角形,求出所求结果即可.【解答】解:由题意可知底面三角形是正三角形,过A作AD⊥BC于D,连接DC1,则∠AC1D为所求,sin∠AC1D===故选C【点评】本题是中档题,考查直线与平面所成角正弦值的求法,考查计算能力,熟练掌握基本定理、基本方法是解决本题的关键.11.已知定点B,且|AB|=4,动点P满足|PA|﹣|PB|=3,则|PA|的最小值是()A.B.C.D.5【考点】双曲线的简单性质.【专题】计算题.【分析】由|AB|=4,|PA|﹣|PB|=3可知动点在双曲线右支上,所以|PA|的最小值为右顶点到A的距离.【解答】解:因为|AB|=4,|PA|﹣|PB|=3,故满足条件的点在双曲线右支上,则|PA|的最小值为右顶点到A的距离2+=.故选C.【点评】本题考查双曲线的基本性质,解题时要注意公式的灵活运用.12.椭圆:(a>b>0),左右焦点分别是F1,F2,焦距为2c,若直线与椭圆交于M点,满足∠MF1F2=2∠MF2F1,则离心率是()A.B.C.D.【考点】椭圆的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】依题意知,直线y=(x+c)经过椭圆的左焦点F1(﹣c,0),且倾斜角为60°,从而知∠MF2F1=30°,设|MF1|=x,利用椭圆的定义即可求得其离心率.【解答】解:∵椭圆的方程为+=1(a>b>0),作图如右图:∵椭圆的焦距为2c,∴直线y=(x+c)经过椭圆的左焦点F1(﹣c,0),又直线y=(x+c)与椭圆交于M点,∴倾斜角∠MF1F2=60°,又∠MF1F2=2∠MF2F1,∴∠MF2F1=30°,∴∠F1MF2=90°.设|MF1|=x,则|MF2|=x,|F1F2|=2c=2x,故x=c.∴|MF1|+|MF2|=(+1)x=(+1)c,又|MF1|+|MF2|=2a,∴2a=(+1)c,∴该椭圆的离心率e===﹣1.故选:B.【点评】本题考查椭圆的简单性质,着重考查直线与椭圆的位置关系,突出椭圆定义的考查,理解得到直线y=(x+c)经过椭圆的左焦点F1(﹣c,0)是关键,属于中档题.二、填空题(共4小题,每小题5分,共20分)13.椭圆+=1上一点P到它的一个焦点的距离等于3,那么点P到另一个焦点的距离等于5.【考点】椭圆的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】先根据条件求出a=4;再根据椭圆定义得到关于所求距离d的等式即可得到结论.【解答】解:设所求距离为d,由题得:a=4.根据椭圆的定义得:2a=3+d⇒d=2a﹣3=5.故答案为:5.【点评】本题主要考查了椭圆的性质,此类型的题目一般运用圆锥曲线的定义求解,会使得问题简单化.属基础题.14.已知平行六面体ABCD﹣A1B1C1D1所有棱长均为1,∠BAD=∠BAA1=∠DAA1=60°,则AC1的长为.【考点】棱柱的结构特征.【专题】计算题;转化思想;综合法;空间位置关系与距离.【分析】由已知得=,由此利用向量法能求出AC1的长.【解答】解:∵平行六面体ABCD﹣A1B1C1D1所有棱长均为1,∠BAD=∠BAA1=∠DAA1=60°,∴=,∴2=()2=+2||•||cos60°+2•||cos60°+2•cos60°=1+1+1+++=6,∴AC1的长为||=.故答案为:.【点评】本题考查线段长的求法,是基础题,解题时要认真审题,注意向量法的合理运用.15.给出下列命题:①直线l的方向向量为=(1,﹣1,2),直线m的方向向量=(2,1,﹣),则l与m垂直;②直线l的方向向量=(0,1,﹣1),平面α的法向量=(1,﹣1,﹣1),则l⊥α;③平面α、β的法向量分别为=(0,1,3),=(1,0,2),则α∥β;④平面α经过三点A(1,0,﹣1),B(0,1,0),C(﹣1,2,0),向量=(1,u,t)是平面α的法向量,则u+t=1.其中真命题的是①④.(把你认为正确命题的序号都填上)【考点】平面的法向量.【专题】对应思想;综合法;空间向量及应用.【分析】①根据直线l、m的方向向量与垂直,得出l⊥m;②根据直线l的方向向量与平面α的法向量垂直,不能判断l⊥α;③根据平面α、β的法向量与不共线,不能得出α∥β;④求出向量与的坐标表示,再利用平面α的法向量,列出方程组求出u+t的值.【解答】解:对于①,∵=(1,﹣1,2),=(2,1,﹣),∴•=1×2﹣1×1+2×(﹣)=0,∴⊥,∴直线l与m垂直,①正确;对于②,=(0,1,﹣1),=(1,﹣1,﹣1),∴•=0×1+1×(﹣1)+(﹣1)×(﹣1)=0,∴⊥,∴l∥α或l⊂α,②错误;对于③,∵=(0,1,3),=(1,0,2),∴与不共线,∴α∥β不成立,③错误;对于④,∵点A(1,0,﹣1),B(0,1,0),C(﹣1,2,0),∴=(﹣1,1,1),=(﹣1,1,0),向量=(1,u,t)是平面α的法向量,∴,即;则u+t=1,④正确.综上,以上真命题的序号是①④.故答案为:①④.【点评】本题考查了空间向量的应用问题,也考查了直线的方向向量与平面的法向量的应用问题,是综合性题目.16.过抛物线x2=2py(p>0)的焦点F作倾斜角为30°的直线,与抛物线分别交于A,B两点(点A 在y轴左侧),则=3.【考点】抛物线的简单性质.【专题】综合题;方程思想;综合法;圆锥曲线的定义、性质与方程.【分析】作AA1⊥x轴,BB1⊥x轴.则可知AA1∥OF∥BB1,根据比例线段的性质可知==,根据抛物线的焦点和直线的倾斜角可表示出直线的方程,与抛物线方程联立消去x,根据韦达定理求得x A+x B和x A x B的表达式,进而可求得x A x B=﹣()2,整理后两边同除以x A2得关于的一元二次方程,求得的值,进而求得.【解答】解:如图,作AA1⊥x轴,BB1⊥x轴.则AA1∥OF∥BB1,∴==,又已知x A<0,x B>0,∴=﹣,∵直线AB方程为y=xtan30°+即y=x+,与x2=2py联立得x2﹣px﹣p2=0 ∴x A+x B=p,x A•x B=﹣p2,∴x A x B=﹣p2=﹣()2=﹣(x A2+x B2+2x A x B)∴3x A2+3x B2+10x A x B=0两边同除以x A2(x A2≠0)得3()2+10+3=0∴=﹣3或﹣.又∵x A+x B=p>0,∴x A>﹣x B,∴<﹣1,∴=﹣=3.故答案为:3【点评】本题主要考查了抛物线的性质,直线与抛物线的关系以及比例线段的知识.考查了学生综合分析问题和解决问题的能力.三、解答题(本大题共6小题,共70分)17.已知命题P:方程表示双曲线,命题q:点(2,a)在圆x2+(y﹣1)2=8的内部.若pΛq为假命题,¬q也为假命题,求实数a的取值范围.【考点】命题的真假判断与应用;点与圆的位置关系;双曲线的定义.【专题】计算题;综合题.【分析】根据双曲线的标准方程的特点把命题p转化为a>1或a<﹣3,根据点圆位置关系的判定把命题q转化为﹣1<a<3,根据pΛq为假命题,¬q也为假命题,最后取交集即可.【解答】解:∵方程表示双曲线,∴(3+a)(a﹣1)>0,解得:a>1或a<﹣3,即命题P:a>1或a<﹣3;∵点(2,a)在圆x2+(y﹣1)2=8的内部,∴4+(a﹣1)2<8的内部,解得:﹣1<a<3,即命题q:﹣1<a<3,由pΛq为假命题,¬q也为假命题,∴实数a的取值范围是﹣1<a≤1.【点评】本题主要考查了双曲线的简单性质,以及点圆位置关系的判定方法.考查了学生分析问题和解决问题的能力.属中档题.18.命题:若点O和点F(﹣2,0)分别是双曲线﹣y2=1(a>0)的中心和左焦点,点P为双曲线右支上的任意一点,则•的取值范围为[3+2,+∞).判断此命题的真假,若为真命题,请做出证明;若为假命题,请说明理由.【考点】双曲线的简单性质.【专题】证明题;转化思想;综合法;圆锥曲线的定义、性质与方程.【分析】先求出双曲线方程为,设点P(x0,y0),则,(x0),由此能证明•的取值范围为[3+2,+∞).【解答】解:此命题为真命题.证明如下:∵F(﹣2,0)是已知双曲线的左焦点,∴a2+1=4,解得a2=3,∴双曲线方程为,设点P(x0,y0),则有=1,(),解得,(x0),∵=(x0+2,y0),=(x0,y0),∴==x0(x0+2)+=,这个二次函数的对称轴为,∵,∴当时,取得最小值=3+2,∴•的取值范围为[3+2,+∞).【点评】本题考查命题真假的判断与证明,是中档题,解题时要认真审题,注意双曲线的性质的合理运用.19.如图,在直三棱柱ABC﹣A1B1C1中,AA1=BC=AB=2,AB⊥BC,求二面角B1﹣A1C﹣C1的大小.【考点】向量在几何中的应用;与二面角有关的立体几何综合题.【专题】计算题;向量法.【分析】建立空间直角坐标系,求出2个平面的法向量的坐标,设二面角的大小为θ,显然θ为锐角,设2个法向量的夹角φ,利用2个向量的数量积可求cosφ,则由cosθ=|cosφ|求出二面角的大小θ.【解答】解:如图,建立空间直角坐标系.则A(2,0,0),C(0,2,0),A1(2,0,2),B1(0,0,2),C1(0,2,2),设AC的中点为M,∵BM⊥AC,BM⊥CC1.∴BM⊥平面A1C1C,即=(1,1,0)是平面A1C1C的一个法向量.设平面A1B1C的一个法向量是n=(x,y,z).=(﹣2,2,﹣2),=(﹣2,0,0),∴令z=1,解得x=0,y=1.∴n=(0,1,1),设法向量n与的夹角为φ,二面角B1﹣A1C﹣C1的大小为θ,显然θ为锐角.∵cosθ=|cosφ|==,解得:θ=.∴二面角B1﹣A1C﹣C1的大小为.【点评】本题考查利用向量求二面角的大小的方法,设二面角的大小为θ,2个平面法向量的夹角φ,则θ和φ相等或互补,这两个角的余弦值相等或相反.20.如图,设点A和B为抛物线y2=4px(p>0)上原点以外的两个动点,已知OA⊥OB,OM⊥AB.求点M的轨迹方程,并说明它表示什么曲线.【考点】轨迹方程;抛物线的应用.【专题】计算题.【分析】由OA⊥OB可得A、B两点的横坐标之积和纵坐标之积均为定值,由OM⊥AB可用斜率处理,得到M的坐标和A、B坐标的联系,再注意到M在AB上,由以上关系即可得到M点的轨迹方程;此题还可以考虑设出直线AB的方程解决.【解答】解:如图,点A,B在抛物线y2=4px上,设,OA、OB的斜率分别为k OA、k OB.∴由OA⊥AB,得①依点A在AB上,得直线AB方程②由OM⊥AB,得直线OM方程③设点M(x,y),则x,y满足②、③两式,将②式两边同时乘以,并利用③式,可得﹣•(﹣)+=﹣x2+,整理得④由③、④两式得由①式知,y A y B=﹣16p2∴x2+y2﹣4px=0因为A、B是原点以外的两点,所以x>0所以M的轨迹是以(2p,0)为圆心,以2p为半径的圆,去掉坐标原点.【点评】本小题主要考查直线、抛物线的基础知识,考查由动点求轨迹方程的基本方法以及方程化简的基本技能.21.如图,四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,E为BC的中点,(Ⅰ)求异面直线NE与AM所成角的余弦值;(Ⅱ)在线段AN上是否存在点S,使得ES⊥平面AMN?若存在,求线段AS的长;若不存在,请说明理由.【考点】直线与平面垂直的判定;点、线、面间的距离计算.【专题】空间位置关系与距离.【分析】建立空间如图所示的坐标系,求得、的坐标,可得cos<>的值,再取绝对值,即为异面直线NE与AM所成角的余弦值.假设在线段AN上存在点S,使得ES⊥平面AMN,求得=(0,1,1),可设=λ•=(0,λ,λ).由ES⊥平面AMN可得,解得λ的值,可得的坐标以及||的值,从而得出结论.【解答】解:以点D为原点,以DA所在的直线为x轴、以DC所在的直线为y轴、以DM所在的直线为z轴,建立空间坐标系.则有题意可得D(0,0,0)、A(1,0,0)、B(1,1,0)、M(0,0,1)、N(1,1,1)、E(,1,0).∴=(﹣,0,﹣1),=(﹣1,0,1),cos<>==﹣,故异面直线NE与AM所成角的余弦值为.假设在线段AN上存在点S,使得ES⊥平面AMN,∵=(0,1,1),可设=λ•=(0,λ,λ).又=(,﹣1,0),=+=(,λ﹣1,λ),由ES⊥平面AMN可得,即,解得λ=.此时,=(0,,),||=,故当||=时,ES⊥平面AMN.【点评】本题主要考查直线和平面垂直的判定定理的应用,用坐标法求异面直线所成的角,用坐标法证明两条直线互相垂直,体现了转化的数学思想,属于中档题.22.已知,椭圆C过点A,两个焦点为(﹣1,0),(1,0).(1)求椭圆C的方程;(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值.【考点】椭圆的应用;椭圆的标准方程;直线与圆锥曲线的综合问题.【专题】计算题;压轴题.【分析】(Ⅰ)由题意,c=1,可设椭圆方程代入已知条件得,求出b,由此能够求出椭圆方程.(Ⅱ)设直线AE方程为:,代入得,再点在椭圆上,结合直线的位置关系进行求解.【解答】解:(Ⅰ)由题意,c=1,可设椭圆方程为,解得b2=3,(舍去)所以椭圆方程为.(Ⅱ)设直线AE方程为:,代入得设E(x E,y E),F(x F,y F),因为点在椭圆上,所以由韦达定理得:,,所以,.又直线AF的斜率与AE的斜率互为相反数,在上式中以﹣K代K,可得,所以直线EF的斜率即直线EF的斜率为定值,其值为.【点评】本题综合考查直线与椭圆的位置关系,解题时要认真审题,仔细解答,避免出错.。

(新课标)2015-2016学年高二上学期期末考试数学试卷(理)

(新课标)2015-2016学年高二上学期期末考试数学试卷(理)

2015-2016学年度上学期(期末)考试高二数学理试题【新课标】试卷说明:1、本试卷满分150分,答题时间120分钟。

2、请将答案直接填涂在答题卡上,考试结束只交答题卡。

第Ⅰ卷(选择题 满分60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.复数z =-3+i2+i的共轭复数是( )A .-1+iB .-1-iC .2+iD .2-i2.已知命题p :∃x 0∈C ,x 20+1<0,则 ( )A .¬p:∀x ∈C ,x 2+1≤0B .¬p:∀x ∈C ,x 2+1<0C .¬p:∀x ∈C ,x 2+1≥0D .¬p:∀x ∈C ,x 2+1>03.某单位有职工75人,其中青年职工35人,中年职工25人,老年职工15人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本容量为15,则样本中的青年职工人数为 ( )A .7B .15C .25D .35 4.已知一个家庭有两个小孩,则两个孩子都是女孩的概率为( )A .14B .13C .12D .235.双曲线x 2-y 2m=1的离心率大于2的充分必要条件是( )A .m >12B .m ≥1 C.m >1 D .m >26.下列命题中,假命题...是( ) A .若命题p 和q 满足p ∨q 为真,p ∧q 为假,,则命题p 与q 必一真一假 B .互为逆否命题的两个命题真假相同C .“事件A 与B 互斥”是“事件A 与B 对立”的必要不充分条件D .若f (x ) =2x ,则f ′(x )=x ·2x -17.阅读右面的程序框图,若输入的n 是100,则输出的变量S 的值是( )A .5 049B .5 050C .5 051D .5 0528.用秦九韶算法求多项式f (x )=7x 7+6x 6+5x 5+4x 4+3x 3+2x 2+x 的值,当x =3时,v 3的值为( )A .789B .262C .86D .279.椭圆满足这样的光学性质:从椭圆的一个焦点发射光线,经椭圆反射后,反射光线经过椭圆的另一个焦点。

龙岗区2015-2016学年第一学期期末学业评价试题高二文科数学参考答案201601

龙岗区2015-2016学年第一学期期末学业评价试题高二文科数学参考答案201601

高二文科数学参考答案说明:1.参考答案与评分参考给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.二、填空题:(4*5=20分)13.0201610200≤-+->∀x x x , 14.3315.②⑤ 16.12-n n 三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤。

17.(1)△ABC 中,41cos -=A ,415cos 1sin 2=-=∴A A …………………1分24153sin 21=∴=bc A bc 又 …………………3分 由余弦定理得64cos 22)(cos 22222=--+=-+=A bc bc c b A bc c b a , ……5分 8=∴a …………………6分(2) 由正弦定理得C B cb Cc B b A a sin sin sin sin sin ++===, …………………9分16155sin sin =+∴C B …………………10分 18.当p 为真时,则⎩⎨⎧>++>082822k k k …………………1分解得24-<<-k 或4>k ………………… 2分当q 为真时,0)5)(1(<--k k 即51<<k ; ………………… 4分 由题设,p 或q 为真,p 且q 为假则p 和q 有且只有一个正确,则 ………………… 5分(1)p 正确q 不正确,∴⎩⎨⎧≥≤>-<<-51424k k k k 或或,524≥-<<-∴k k 或 ………… 7分(2)q 正确p 不正确∴⎩⎨⎧<<≤≤--≤51424k k k 或∴41≤<k ; ………………… 9分∴综上所述,若p 或q 为真,p 且q 为假,k 的取值范围是24-<<-k 或41≤<k 或5≥k . …………………10分19.设空调机、洗衣机的月供应量分别是x ,y 台,总利润是z ,可得线性约束条件为:⎪⎪⎩⎪⎪⎨⎧∈≥∈≥≤+≤+N y y N x x y x y x ,0,0902********,即⎪⎪⎩⎪⎪⎨⎧∈≥∈≥≤+≤+Ny y N x x y x y x ,0,0902530 …………………3分目标函数为 y x z 46+= …………………4分 作出二元一次不等式组所表示的平面区域,即可行域…………………7分考虑y x z 46+=,随z 变化的一族平行直线,是直线在y 轴上的截距,当取最大值时,z 的值最大,当然直线要与可行域相交,由图可得,当直线经过可行域上的点M 时,截距最大,即z 最大. …………………9分解方程组⎩⎨⎧=+=+902530y x y x ,得M 的坐标为⎩⎨⎧==2010y x …………………10分∴140204106max =⨯+⨯=z (百元) …………………11分 答:当月供应量为空调机10台,洗衣机20台时,可获最大利润14000元 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

龙岗区2015-2016学年第一学期期末学业评价试题
高二(理科)数学答案
二、填空题
13、700 14、156 15、22<a 16、
52
三、解答题 17、解:若方程2
20x x m ++=有一个正根和一个负根,则244(2)0,20.m m ⎧∆=-->⎨-<⎩…………2分
解得2m >,即p 为真时,得2m >…………3分
若方程244(2)10x m x +-+=无实根,
则2216(2)1616(43)0m m m ∆=--=-+<…………5分
解得13m <<,即q 为真时,13m <<。

…………6分
∵p 或q 为真,∴p 、q 至少有一为真,又p 且q 为假,∴p 、q 至少有一为假。

因此,p 、q 两命题应一真一假…………8分
∴⎩⎨⎧≥≤>31,2m m m 或或⎩⎨⎧<<≤.
31,2m m 解得3m ≥或12m <≤。

…………10分
18、解:(1)由正弦定理和2cos cos cos b A c A a C ⋅=⋅+⋅得
2sin cos sin cos sin cos B A C A A C =⋅+⋅…………2分
sin()A C =+sin B =, …………4分
1sin 0,cos ,2
B A ≠∴= …………5分 又0180o o A << ,60o A ∴=.…………6分
(2)由余弦定理得:22222272cos ()3a b c bc A b c bc b c bc ==+-=+-=+-…………9分 代入4b c +=得3bc =,…………10分
故ABC ∆面积为1sin 2S bc A ==。

…………12分
19、解:设每月生产地毯A 、B 分别为x 匹、y 匹,利润为Z 元,那么
441400,631800,261800,0,0.
x y x y x y x y +≤⎧⎪+≤⎪⎪+≤⎨⎪≥⎪≥⎪⎩①………………………………4分
目标函数为12080Z x y =+………………………………5分
作出二元一次不等式①所表示的平面区域(阴影部分)即可行域。

把12080Z x y =+变形为280y x Z =-
+,得到斜率为32-,纵截距为180
Z ,随Z 变化的一组平行直线。

如图,当直线31280y x Z =-+经过可行域上M 时,截距180Z 最大,即Z 最大……9分 解方程组441400,631800.
x y x y +=⎧⎨+=⎩得M 的坐标为x=250 , y=100…………10分
所以max 1208038000.Z x y =+=……………………………11分
答:公司每月生产地毯A 、B 分别为250 、100匹时,能获得最大利润,最大利润是38000元……12分
21、解法1:(1)如图PA ⊥平面ABC ,
BC ⊂平面ABC ,
,BC PA ∴⊥……1分
又BC AC ⊥,,AC PA A ⋂=
BC ∴⊥平面PAC ,
……2分
又AF ⊂平面PAC ,,,
BC AF PC AF ∴⊥⊥又
,,BC PC C AF PBC ⋂=
∴⊥平面……3分
又PB ⊂平面PBC ,,PB AF ∴
⊥ ……4分
又,PB AE AE AF A ⊥⋂=,
PB ∴⊥平面AEF ……6分
(2)以
BC 的平行线为x 轴所在直线,建立如图所示的空间直角坐标系. ……7分
有(0,0,0)A ,(0,2,0)C ,(0,0,2)P ,
在直角三角形ACB 中由sin CAB ∠=得cos tan CAB CAB ∠=∠=得由tan ,BC CAB AC ∠=得BC =可得B 点坐标是(-。

……9分
由(1)的证明知向量(2,2)PB =-- ,()
CB =- 分别是平面PAF
,平面AEF 的法向量.0cos ,,45.2PB CB PB CB PB CB PB CB
⋅==∴=⋅ 结合图知二面角P AF E --的大小是450.……12分 解法2:(1)同上.
(2) PB ⊥平面AFE,∴PF 是平面AFE 的一条斜线,PF 在面AFE 内的射影是EF . ……7分 ⊂AF AFE,AF PF ⊥,∴(,AF EF PF PAF ⊥⊂三垂线定理的逆定理)又平面,FE AFE ⊂平面,PAF AFE AF ⋂平面平面=,PFE ∴∠即是所求二面角P AF E --的平面角. ……9分
在直角三角形PBC 中可求得
PC=045.BC CPB ==又又知0,45.PB EF PFE ⊥∴∠=
∴二面角P AF E --的大小是45 。

……12分
22、解:(1)由题意,可设抛物线方程为()022>=p px y .由13422=-=-b a ,得1=c .
∴抛物线的焦点为,.
∴抛物线D 的方程为x y 42=. ……3分
(2)设()()1122,,,,A x y B x y 由于O 为PQ 中点,故当x l ⊥轴时由抛物线的对称性知.4AQP BQP ∠=∠ 分
当l 不垂直x 轴时,设l :()4-=x k y ,
由()
⎩⎨⎧=-=x y x k y 442()
0161242222=++-⇒k x k x k , ()2122
12
421516k x x k x x ⎧+⎪+=∴⎨⎪⋅=⎩ 分 ()4441111+-=+=x x k x y k AQ , ()2222444
BQ k x y k x x -==++, ()()()()()()
121212232216320,4444AQ BQ k x x k k k x x x x -⋅-∴+===++++ ∴.7AQP BQP ∠=∠ 分
(3)如图,设存在直线a x m =:满足题意,则圆心⎪⎭⎫ ⎝⎛+2,2
411y x M ,过M 作直线a x =的垂线,垂足为E ,可得,,222ME MG EG -=即222ME MA EG
-==()2121212444⎪⎭⎫ ⎝⎛-+-+-a x y x =()()()2121212144
4441a x a x x y -+++--+=()211144a x a x x -++- =()2
134a x a a -+-…………11分 当3=a 时,32=EG ,此时直线m 被以AP 为直径的圆截得的弦长恒为定值32
因此存在直线3:=x m 满足题意 ……12分
()0,12=∴
p。

相关文档
最新文档