川大15春《高等数学(理)》第一次在线作业答案
《高等数学(一)》作业参考答案
《高等数学(一)》作业参考答案一、求下列函数的定义域(1)[0,+∞];(2)(-1,∞+)。
(3)(,1)(1,)-∞-∞ ;二、用区间表示变量的变化范围:(1)(],6-∞(2)[]2,0 (3)[]3,5-三、求下列极限(1)[]3313)1(lim )1(lim e x x x x x x x =+=+∞→∞→; (2)hh xh h x h x h h 202202lim )(lim +=-+→→ =x h x h 2)2(lim 0=+→(3)lim 1n n n →∞== (4)2211lim 1lim 2lim 12(lim x x x x x x x x ∞→∞→∞→∞→+-=+- =2 (5)0lim 1=∞→x x , 且2arctan π≤x , 0arctan lim =∴∞→xx x (6)xx x x x x x x sin 2sin 2lim sin 22cos 1lim 200→→=- =1sin lim 0=→xx x ; (7))2)(1)(1(61lim 6)12)(2)(1(lim1213n n n n n n n n n +++=+++∞→∞→ =;31(8)00sin 555lim lim ;sin 222x x x x x x →→== (9))45)(1()45(lim 145lim 11x x x x x x x x x x +----=---→→ =2454lim 1=+-→x x x (10)31lim 3lim 13(lim 33=+=+∞→∞→∞→nn n n n ; (11);1lim sin )sin(lim 550550==→→xx x x x x (12)33lim 3tan lim 00==→→x x xx x x (13)32000sin 1cos sin 1lim lim lim 366x x x x x x x x x x →→→--=== (14)2222112211lim lim 134324x x x x x x x x x x →∞→∞+-+-==-+-+四、求下列函数的微分:(1)[])4sin(+=wt A d dy=)4sin(+wt Ad=)4()4cos(++wt d wt A=dt wt Aw )4cos(+(2)[])3cos(x e d dy x -=-=)3cos()3cos(x d e de x x x -+---=dx x e dx x e x x )3sin()3cos(-+----=[]dx x x e x )3cos()3sin(----五、求下列函数的导数 (1)463'2+-=x x y ;(2)x x x y 2sin cos sin 2'==;(3))'ln 1(ln 11'2221x x y +⋅+⋅= =x x xx x x221ln 1ln ln 12ln 2+=+⋅(4)'1sin '(cos )tan ;cos cos x y x x x x-===- (5);ln 1ln )ln ('221'xx x x x x x y x -=-⋅== (6)'2')21()21(1)211('x x x y +⋅+-=+= =2)21(2x +-; (7)4)7(5'+=x y ;(8) 221212)'1('x x xe x e y ++=+⋅=;(9)3.013.13.13.1'x x y ==-; (10)22212)'1(11'x x x x y +=+⋅+=; (11)313)52(8)52()52(4'+=+⋅+=x x x y (12)x x x x y ln 1)'(ln ln 1'==六、求下列函数的二阶导数(1)x y +=11', 2)1(1''x y +-=; (2)x x e x xe y 22222'+=x x x x e x xe xe e y 222224442''+++==)241(222x x e x ++(3),cos 'x y = ;sin ''x y -=七、求下列不定积分(1)12x dx c-==⎰; (2)dx x xdx ⎰⎰+=22cos 1cos 2 =c x x ++2sin 4121; (3)c x x dx ++=+⎰1ln 1; (4)⎰⎰-=x xd xdx cos sin sin 23=x d x cos )cos 1(2⎰-- =⎰⎰-x d x xd cos cos cos 2 =c x x +-cos cos 313; (5)⎰⎰--=-14)14(4114x x d x dx =c x +-14ln 41; (6)⎰⎰⎰+=+x dx xdx dx x x822(8=28ln x x c ++; (7)dx x dx x x ⎰⎰+-=+)111(1222 =c x x +-arctan ; (8);21ln 2121)21(2121c x x x d x dx +--=---=-⎰⎰ (9);cos ln cos cos cos sin tan c x x x d dx x x xdx +-=-==⎰⎰⎰(10)⎰⎰⎰-==x d x x x xdx xdx x ln 21ln 21ln 21ln 222 =⎰-xdx x x 21ln 212 =c x x x +-2241ln 21 (11) c x dx x xxdx +==⎰⎰3532353 (12)4222232223313(1)11(3)arctan 111x x x x dx dx x dx x x C x x x++++==+=+++++⎰⎰⎰ 八、求下列定积分:(1)[];2cos sin 00=-=⎰ππx xdx (2)[]11121arctan 1dx x x --=+⎰ =244)(πππ=--。
川大《高等数学(理)》14秋在线作业1答案
?
正确答案:B
15.题目见图
A.
有一条渐近线
B.有二条渐近线
C.有三条渐近线
D.无渐近线
?
正确答案:B
16.题目见图
A. A
B. B
C.
C
D. D
?
正确答案:B
17.题目见图
A. 2
B. 1
C. -1
D. 0
?
正确答案:D
18.题目见图
A. A
B. B
C. C
D. D
?
正确答案:A
19.题面见图
-1
B. 0
C. 1
D.
不存在
?
正确答案:D
25.题目见图
A. A
B. B
C. C
D. D
?
正确答案:A
26.题目见图
A. 0
B. 1
C. 2
D. 3
?
正确答案:C
27.题目见图
A.
A
B.
B
C.
C
D. D
?
正确答案:C
28.题目见图
A. 2
B. 1
C. 0
D. -1
?
正确答案:C
29.题目见图
A.
A
33.题目见图
A.
e-1
B.
e
C. 1
D.
0
?
正确答案:B
34.题目见图
A. A
B. B
C. C
D. D
?
正确答案:C
35.题目见图
A. A
B. B
C. C
D. D
?
正确答案:B
四川大学2020年春季《高等数学(理)》在线作业3标准答案
20.
题目见图
A.有一条渐近线
B.有二条渐近线
C.有三条渐近线
D.无渐近线
正确答案:B
21.
题目见图
A.(1,-2,3)
B.(1,2,-3)
C.(-1,2,3)
D.(-1,-2,-3)
正确答案:B
22.题目见图
A.A
B.B
C.C
D.D
31.题目见图
A.A
B.B
C.C
D.D
正确答案:D
32.题目见图
A.A
B.B
C.C
D.D
正确答案:C
33.
题目见图
A.A
B.B
C.C
D.D
正确答案:A
34.题目见图
A.0
B.1
C.2
D.3
正确答案:B
35.题目见图
A.A
B.B
A.A
B.B
C.C
D.D
正确答案:A
16.题目见图
A.A
B.B
C.C
D.D
正确答案:D
17.题目见图
A.-3
B.-2
C.-1
D.0
正确答案:C
18.
题目见图
A.A
B.B
C.C
D.D
正确答案:B
19.题目见图
A.1
B.2
C.3
D.4
A.-1
B.0
C.1
D.不存在
正确答案:D
28.
川大《公共经济学(1)》15春在线作业1满分答案
B.凯恩斯
C.马斯格雷夫
D.庇古
?
正确答案:D
7.最早提出赤字财政的经济学家是:
A.庇古
B.凯恩斯
C.马斯格雷夫
D.亚当·斯密
?
正确答案:B
8.在经济衰退的时候应该采取以下哪项政策:
A.提高利率
B.扩大政府支出
C.降低存款准备金率
D.增加税收
?
正确答案:B
9.财政政策手段不包括:
A.税收政策
2.下面可以描述宏观经济的变量包括:
A.经济增长
B.就业水平
C.物价水平
D.国家收支
?
正确答案:ABCD
3.下列属于自然垄断性质的行业是
A.铁路
B.自来水
C.粮食
D.电话
?
正确答案:AB
4.下列属于对财产课税的是:
A.财产税
B.继承税
C. .所得税
D.遗产税
?
正确答案:ABD
5.下列属于政府干预市场基本原则的是:
D.行为调节
?
正确答案:ABCD
三,判断题
1.地方政府在供给公共物品中总比中央政府具有优势。
A.错误
B.正确
?
正确答案:A
2.亚当斯密在其著作《国富论》中提出了著名的政府预算三大功能,即配置、稳定和再分配功能。
A.错误
B.正确
?
正确答案:A
3.边际分析是宏观经济学的重要分析工具。
A.错误
B.正确
?
正确答案:A
《公共经济学(1)》15春在线作业1
一,单选题
1.经济学中将你的所失就是我的所得,所得与所失相抵的现象成为:
A.合作收益
大学高等数学试题一答案
《数学试题一》参考答案 一、填空题1、-32、z=(x ²+y ²)3、1ln y y yx dx x xdy -+4、21zye -5、x+y=06、2πR ²7、28、22π二、选择题1、D2、C3、B4、B5、C三、1、解:sin 1lim 1x xx y xy →∞→∞⎛⎫+ ⎪⎝⎭=1..sin 1lim 1xy x xxyx y xy →∞→∞⎛⎫+ ⎪⎝⎭=sin lim xyx y e→∞→∞=0e =12、解:令u=x+y ,D=xy //12..zf u f v f yf xu xv xδδδδδδδδδδ=+=+2//12///122().z f yf x y yf f f y yyδδδδδδδδ=+∂=++其中 /////11112f fx fyδδ=+ /////22122f f x f yδδ=+所以 2///////////////1112221221112222()()zf xf f y f xf f x y f xyf f x yδδ=++++=++++∂四、 解:所求直线的方向向量10443152i j S i j k k⎛⎫ ⎪=-=--- ⎪ ⎪ ⎪-⎝⎭即方向向量(4,3,1)S =---所求直线方程为325431x y z +--==---五、1、解:令2222222x 1x y x y y +=--+=得 ①即在XOY 面上的投影为22x 1y +=由题知P=X Q= -Y R=Z 由高斯公式得xdydz ydzdx zdxdy-+∑⎰⎰22215(111)6dv dv d d dz ρπρπθρρ-ΩΩ=-+===⎰⎰⎰⎰⎰⎰⎰⎰⎰曲面积分为56π。
2、解:连接OA 补全图形,由题知:sin 2xP e y x y=--c o s xQ e y x=-则cos 1xQe y x∂=-∂ c o s 2xPe y y∂=-∂ 由格林公式得(s i n2)(c o s )()2xxLDDQP e y x y dx e y x dy dxdy dxdy x yπ∂∂--+-=-==∂∂⎰⎰⎰⎰⎰ 对AO 段202(sin 2)(cos )(2)222x xLLxdx xdx e y x y dx e y x dy ππ-=-=---+-=--=+⎰⎰⎰所以六、1、解:由111lim1,R=1n n n n nxn∞-→∞=+=±∑得收敛半径R=1,当时幂级数均发散因此:11S x S x 0x n n nx∞-=→∑收敛域为I=(-1,1),设和函数为()即()=两边从积分x1221111()(1.............)x (1,1)1............1-xxn nxnnnn n n s x dx nxdx xxx x x x x x x ∞∞∞-=-=====+++++∈-=+++++∑∑∑⎰⎰当时()x21()11x s x dx x xx =--⎰所以两边对求导数得s(x)=所以和函数()21()1s x x =-(1,1)x ∈-122111111111122248489114nn n n n n n n n -∞∞∞+===⎛⎫⎛⎫===⨯=⎪ ⎪⎝⎭⎝⎭⎛⎫- ⎪⎝⎭∑∑∑2、解:2()ln(32)ln(1)ln(2)ln(1)ln(1)ln 22x f x x x x x x =++=+++=++++得(]1(1)ln(1),1,11nn n x xx n ∞+=-+=∈-+∑[]11(1)1ln(1)ln(1),2,22122n nn n x x x x n +∞+=-⎛⎫+==+∈- ⎪+⎝⎭∑(]11111(1)11(1)()ln(1)ln 2(1)ln 2,1,11221nnn n n n n n f x xx xx n n ∞∞++++==--=+++=++∈-++∑∑七、解:作拉格朗日函数 M λ、为参数 2L(,,)(1)()x y z x y z z M x y λ=+++-++则22120,120,10,x ,1,1x y z L ux L uy L y x y λλ=+==+==+===-+=得又,111,,m in 122222x y ==±=-所以由题知,最值一定存在,且在极值点取得,则max=1+八、证明:12n 1111,lim ,(......)n n n n n n n n n n n u u s s s s u u u u s u ∞∞∞∞→∞====∴=∴+++=∑∑∑∑ 绝对收敛收敛,设部分和为则是个常数收敛。
15秋福师《高等数学(一)》在线作业一 答案
福师《高等数学(一)》在线作业一一、单选题(共40 道试题,共80 分。
)1. 题面见图片....正确答案:2.....正确答案:3....正确答案:4. 题面见图片....正确答案:5.....正确答案:6.....正确答案:7.....正确答案:8.....正确答案:9.....正确答案:10....正确答案:11.....正确答案:12.....正确答案:13. 题面见图片....正确答案:14....正确答案:15.....正确答案:16.....正确答案:17.....正确答案:18.....正确答案:19.....正确答案:20.....正确答案:21. 题面见图片...正确答案:22. 题面见图片....正确答案:23.....正确答案:24.....正确答案:25....正确答案:26.题面见图片....正确答案:27.....正确答案:28.....正确答案:29.....正确答案:30. 题面见图片....正确答案:31.....正确答案:32.....正确答案:33. 题面见图片....正确答案:34.....正确答案:35. 题面见图片....正确答案:36.....正确答案:37. 题面见图片....正确答案:38.....正确答案:39. 题面见图片....正确答案:40. 题面见图片....正确答案:福师《高等数学(一)》在线作业一二、判断题(共10 道试题,共20 分。
)1.. 错误. 正确正确答案:2.. 错误. 正确正确答案:3.. 错误. 正确正确答案:4.. 错误. 正确正确答案:5.. 错误. 正确正确答案:6.. 错误. 正确正确答案:7.. 错误. 正确正确答案:8.. 错误. 正确正确答案:9.. 错误. 正确正确答案:10.. 错误. 正确正确答案:。
2015 川大高等数学竞赛 参考答案(1)
2、设[0, 1]上的连续函数 f (x)在(0, 1)内可导, f (0) = f (1) = 0,| f (x)| < 1, 求证: max f (x)
x∈[0,1]
1 。 2 1,求
Ω
3、设Ω : 3x2 + 2y2 + z4 4、计算曲面积分
[(x + y)2 + z2 ]dxdydz。
2014 2015 2016 dydz + dzdx + dxdy,其中Σ 2 2 cos y z cos2 z Σ x cos x 是球面x2 + y2 + z2 = 1的外侧。 5、判断级数 ∑
cos x x2 +sin2 x
x →0
;
2、 lim
x →0
=
; ; ;
∞
3、 x(1 + x)−3 ln(1 + x2 )dx = 4、区域D : | ln x| + | ln y| 5、实数α 只有满足条件 6、直线L1 : 1的面积等于
时,无穷级数 ∑ ln 1 +
n=1
(−1)n 才收敛 ; nα 。
1 − x2 − y2 ,D : x2 + y2 1,θ ∈ [0, 2π ],
1分. . . . . . . . . . . . 令x = ρ cos θ , y = ρ sin θ ,0 1分. . . . . . . . . . . . 则I =
2π 1 0 dθ 0
1 − ρ2
2分. . . . . . . . . . . . = 16120π
n=2
∞
∞ 1 ∞ (−1)n | = ∑ √ 发散,∴ ∑ n + (−1)n n=1 n n=2
国家开放大学《高等数学基础》第1—4次作业参考答案
3.在下列方程中, y y ( x ) 是由方程确定的函数,求 y :
(1) y cos x e 2 y
(2) y cos y ln x
(3) 2 x sin y
x2
y
(4) y x ln y
(5) ln x e y y 2
(6) y 2 1 e x sin y
D. f ( x) x 1 , g ( x)
x2 1
x 1
2.设函数 f (x) 的定义域为 (,) ,则函数 f ( x) f ( x) 的图形关于(C)对
称.
A.坐标原点
B. x 轴
C. y 轴
D. y x
3.下列函数中为奇函数是(B).
A. y ln(1 x 2 )
(3) y ln x
(4) y x sin x
ห้องสมุดไป่ตู้(四)证明题
设 f (x) 是可导的奇函数,试证 f (x) 是偶函数.
第三次作业
(一)单项选择题
1.若函数 f (x) 满足条件(D),则存在 (a , b) ,使得 f ( )
A. 在 (a , b) 内连续
B. 在 (a , b) 内可导
讨论 f (x) 的连续性.
参考答案:
第二次作业
(一)单项选择题
1.设 f (0) 0 且极限 lim
x 0
f ( x)
f ( x)
存在,则 lim
(B).
x 0
x
x
A. f (0)
B. f (0)
C. f (x)
D. 0
2.设 f (x) 在 x0 可导,则 lim
h 0
川大版高等数学(第一册)部分课后题答案[1]
高数第一册 第一章习题1.13.(1)(,1)(1,)(2){|1,}1(1,1)(1,)(3)(1,1)x x x R -∞-⋃-+∞≠±∈∞-⋃-⋃+∞-或(-,) (4)22903[3,1)(1,3]10x x x x x ⎧⎫-≥⇒-⎪⎪⇒--⋃⎨⎬-⇒⎪⎪⎩⎭≤ ≤3>>1或<-1 2222(5)(,3)(6)sin 0,,()241(7)114(1),11(1)3x x k x k k z x x x x x x πππ-∞≠≠≠∈⎡⎤≤⇒≤⇒≤+⇒-⎢⎥++⎣⎦(8)0ln 0x x x x x ⎧⎫⇒⇒⎨⎬⇒⎩⎭> >0>1>>1(9)[1,2]-(10)21()x x x f x x x x x x x x ⎧⎫⇒⎪⎪⎪⎪=⇒⇒≠⇒∴⎨⎬⎪⎪⎪⎪⇒⎩⎭-1 <00≤≤10即0<<1 < 0和0<≤2e 1≤≤27.(1)(2)(3)(4)(5)奇函数偶函数偶函数偶函数非奇非偶 (6)2()()f x f x -==偶函数 (7)11()lnln ()11x xf x f x x x+--==-=--+奇函数) (8)2112()()2112x xxxf x f x -----===-++奇函数 (9)()sin cos f x x x -=--非奇非偶 13.(1)22(())(2)24,(())2,xxxx f x f f x x R ϕϕ====∈(2)11(())(0,1)111x f f x x xx-==≠-- (3)32221,()(1)3(1)256()56(1)(1)5(1)6x t f t t t t t f x x x f x x x +==---+=-+∴=-++=+-++则x=t-1,或:14.[]22(1)(0)0.(2)0,111111(3)01(4)1lg ,lg 1,lg 1,.1(5)11()(6)1log (16)y x x y x y y x y x x y y y xx y x y y x xy xx x y x x x =≤≤+∞=≥=-++===≠-+==-=--=≠-+∞⎧=≤≤∞反函数反函数x=,x-1=,x=1+反函数y ,定义域反函数定义域x >0反函数,定义域(x )-<<1反函数16)<<+⎫⎪⎬⎪⎩⎭习题1.22。
2015年普通高等学校招生全国统一考试数学理试题精品解析(四川卷)
2015年高考四川卷理数试题解析(精编版)(解析版)第Ⅰ卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.设集合{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则AB =( )(){|13}A x x -<< (){|11}B x x -<< (){|12}C x x << (){|23}D x x <<【答案】A【考点定位】集合的基本运算.【名师点睛】集合的概念及运算一直是高考的热点,几乎是每年必考内容,属于容易题.一般是结合不等式,函数的定义域值域考查,解题的关键是结合韦恩图或数轴解答. 2.设i 是虚数单位,则复数32i i-( ) (A )-i (B )-3i (C )i. (D )3i 【答案】C【考点定位】复数的基本运算.【名师点睛】复数的概念及运算也是高考的热点,几乎是每年必考内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可.3.执行如图所示的程序框图,输出S 的值是( )(A )2-(B )2(C )-12 (D )12【答案】D【考点定位】程序框图.【名师点睛】程序框图也是高考的热点,几乎是每年必考内容,多半是考循环结构,基本方法是将每次循环的结果一一列举出来.4.下列函数中,最小正周期为且图象关于原点对称的函数是( )()cos(2)2A y x π=+ ()sin(2)2B y x π=+ ()sin 2cos 2C y x x =+ ()sin cos D y x x =+【答案】A【考点定位】三角函数的性质.【名师点睛】本题不是直接据条件求结果,而是从4个选项中找出符合条件的一项,故一般是逐项检验,但这类题常常可采用排除法.很明显,C 、D 选项中的函数既不是奇函数也不是偶函数,而B 选项中的函数是偶函数,故均可排除,所以选A.5.过双曲线2213y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则AB =( )(B)(D )【答案】D【考点定位】双曲线.【名师点睛】双曲线22221x y a b-=的渐近线方程为22220x y a b -=,将直线2x =代入这个渐近线方程,便可得交点A 、B 的纵坐标,从而快速得出||AB 的值.6.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有( ) (A )144个 (B )120个 (C )96个 (D )72个 【答案】B【考点定位】排列组合.【名师点睛】利用排列组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏.在本题中,万位与个位是两个特殊位置,应根据这两个位置的限制条件来进行分类.7.设四边形ABCD 为平行四边形,6AB =,4AD =.若点M ,N 满足3BM MC =,2DN NC =,则AM NM ⋅=( )(A )20 (B )15 (C )9 (D )6 【答案】C【考点定位】平面向量.【名师点睛】涉及图形的向量运算问题,一般应选两个向量作为基底,选基底的原则是这两个向量有尽量多的已知元素.本题中,由于6AB =,4AD =故可选,AB AD 作为基底.8.设a ,b 都是不等于1的正数,则“333ab>>”是“log 3log 3a b <”的 ( ) (A )充要条件 (B )充分不必要条件 (C )必要不充分条件 (D )既不充分也不必要条件【答案】B【考点定位】命题与逻辑.【名师点睛】充分性必要性的判断问题,首先是分清条件和结论,然后考察条件推结论,结论推条件是否成立.这类问题往往与函数、三角、不等式等数学知识结合起来考. 9.如果函数()()()()21281002f x m x n x m n =-+-+≥≥,在区间122⎡⎤⎢⎥⎣⎦,上单调递减,则mn 的最大值为( )(A )16 (B )18 (C )25 (D )812【答案】B【考点定位】函数与不等式的综合应用.【名师点睛】首先弄清抛物线的开口方向和对称轴,结合所给单调区间找到m 、n 满足的条件,然后利用基本不等式求解.本题将函数的单调性与基本不等式结合考查,检测了学生综合运用知识解题的能力.在知识的交汇点命题,这是高考的一个方向,这类题往往以中高档题的形式出现.10.设直线l 与抛物线24y x =相交于A ,B 两点,与圆()()22250x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( ) (A )()13, (B )()14, (C )()23, (D )()24, 【答案】D【考点定位】直线与圆锥曲线,不等式.【名师点睛】首先应结合图形进行分析.结合图形易知,只要圆的半径小于5,那么必有两条直线(即与x 轴垂直的两条切线)满足题设,因此只需直线的斜率存在时,再有两条直线满足题设即可.接下来要解决的问题是当直线的斜率存在时,圆的半径的范围是什么.涉及直线与圆锥曲线的交点及弦的中点的问题,常常采用“点差法”.在本题中利用点差法可得,中点必在直线3x =上,由此可确定中点的纵坐标0y 的范围,利用这个范围即可得到r 的取值范围.第Ⅱ卷(共100分)二、填空题(每题5分,满分25分,将答案填在答题纸上)11.在5(21)x -的展开式中,含2x 的项的系数是 (用数字作答). 【答案】40-.【考点定位】二项式定理.【名师点睛】涉及二项式定理的题,一般利用其通项公式求解. 12.=+ 75sin 15sin .【考点定位】三角恒等变换及特殊角的三角函数值.【名师点睛】这是一个来自于课本的题,这告诉我们一定要立足于课本.首先将两个角统一为一个角,然后再化为一个三角函数一般地,有sin cos )a b αααϕ+=+.第二种方法是直接凑为特殊角,利用特殊角的三角函数值求解.13.某食品的保鲜时间y (单位:小时)与储存温度x (单位:C)满足函数关系bkx ey +=( 718.2=e 为自然对数的底数,k 、b 为常数)。
川大版高等数学(第一册)部分课后题答案[1]1
高数第一册 第一章习题1.13.(1)(,1)(1,)(2){|1,}1(1,1)(1,)(3)(1,1)x x x R -∞-⋃-+∞≠±∈∞-⋃-⋃+∞-或(-,) (4)22903[3,1)(1,3]10x x x x x ⎧⎫-≥⇒-⎪⎪⇒--⋃⎨⎬-⇒⎪⎪⎩⎭≤ ≤3>>1或<-12222(5)(,3)(6)sin 0,,()241(7)114(1),11(1)3x x k x k k z x x x x x x πππ-∞≠≠≠∈⎡⎤≤⇒≤⇒≤+⇒-⎢⎥++⎣⎦(8)0ln 0x x x x x ⎧⎫⇒⇒⎨⎬⇒⎩⎭> >0>1>>1(9)[1,2]-(10)21()x x x f x x x x x x x x ⎧⎫⇒⎪⎪⎪⎪=⇒⇒≠⇒∴⎨⎬⎪⎪⎪⎪⇒⎩⎭-1 <00≤≤10即0<<1 < 0和0<≤2e 1≤≤27.(1)(2)(3)(4)(5)奇函数偶函数偶函数偶函数非奇非偶 (6)2233()(1)(1)()f x x x f x -=++-=偶函数(7)11()lnln ()11x xf x f x x x+--==-=--+奇函数) (8)2112()()2112x xxxf x f x -----===-++奇函数 (9)()sin cos f x x x -=--非奇非偶13.(1)22(())(2)24,(())2,x x x xf x f f x x R ϕϕ====∈(2)11(())(0,1)111x f f x x xx-==≠-- (3)32221,()(1)3(1)256()56(1)(1)5(1)6x t f t t t t t f x x x f x x x +==---+=-+∴=-++=+-++则x=t-1,或:14.[]2222(1)(0)0.(2)10,1111111(3)01(4)1lg ,lg 1,lg 1,.1(5)11()(6)1log (16)y x x y x x y x y y x y x x y y y xx y x y y x xy xx x y x x x x =≤≤+∞=≥=----++===≠-+==-=--=≠-+∞⎧=≤≤∞反函数定义域定义域反函数x=,x-1=,x=1+反函数y ,定义域反函数定义域x >0反函数,定义域(x )-<<1反函数(16)<<+⎫⎪⎪⎨⎬⎪⎪⎩⎭习题1.22。
川大版高等数学(第一册)部分课后题详细答案
高数第一册 第一章 习题1.13.(1)(,1)(1,)(2){|1,}1(1,1)(1,)(3)(1,1)x x x R -∞-⋃-+∞≠±∈∞-⋃-⋃+∞-或(-,)(4)22903[3,1)(1,3]10x x x x x ⎧⎫-≥⇒-⎪⎪⇒--⋃⎨⎬-⇒⎪⎪⎩⎭≤ ≤3>>1或<-12222(5)(,3)(6)sin 0,,()241(7)114(1),11(1)3x x k x k k z x x x x x x πππ-∞≠≠≠∈⎡⎤≤⇒≤⇒≤+⇒-⎢⎥++⎣⎦(8)0ln 0x x x x x ⎧⎫⇒⇒⎨⎬⇒⎩⎭> >0>1>>1(9)[1,2]-(10)21()x x x f x x x x x x x x ⎧⎫⇒⎪⎪⎪⎪=⇒⇒≠⇒∴⎨⎬⎪⎪⎪⎪⇒⎩⎭-1 <00≤≤10即0<<1 < 0和0<≤2e 1≤≤27.(1)(2)(3)(4)(5)奇函数偶函数偶函数偶函数非奇非偶(6)2()()f x f x -=+=偶函数(7)11()lnln ()11x xf x f x x x+--==-=--+奇函数)(8)2112()()2112x xx xf x f x -----===-++奇函数(9)()sin cos f x x x -=--非奇非偶 13.(1)22(())(2)24,(())2,xxxx f x f f x x Rϕϕ====∈(2)11(())(0,1)111x f f x x xx-==≠--(3)32221,()(1)3(1)256()56(1)(1)5(1)6x t f t t t t t f x x x f x x x +==---+=-+∴=-++=+-++则x=t-1,或:14.[]22(1)(0)0.(2)0,111111(3)01(4)1lg ,lg 1,lg 1,.1(5)11()(6)1log (16)y x x y x y y x y x x y y y xx y x y y x xy xx x y x x x =≤≤+∞=≥=++===≠-+==-=--=≠-+∞⎧=≤≤∞反函数反函数x=,x-1=,x=1+反函数y ,定义域反函数定义域x >0反函数,定义域(x )-<<1反函数16)<<+⎫⎪⎬⎪⎩⎭习题1.2 2。
最新川大版高等数学(第一册)部分课后题答案[1]
川大版高等数学(第一册)部分课后题答案[1]高数第一册 第一章习题1.1«Skip Record If...»(4)«Skip Record If...»«Skip Record If...»(8)«Skip Record If...»«Skip Record If...»(10)«Skip Record If...»7.«Skip Record If...»(6)«Skip Record If...»(7)«Skip Record If...»)(8)«Skip Record If...»(9)«Skip Record If...»13.(1)«Skip Record If...»(2)«Skip Record If...»(3)32221,()(1)3(1)256()56(1)(1)5(1)6x t f t t t t t f x x x f x x x +==---+=-+∴=-++=+-++则x=t-1,或:14.«Skip Record If...»习题1.22。
(1) «Skip Record If...»,解不等式«Skip Record If...»,得«Skip Record If...»(2) «Skip Record If...»,解不等式«Skip Record If...»,得«Skip Record If...»(3) «Skip Record If...»,解不等式«Skip Record If...»,得«Skip Record If...»当«Skip Record If...»时,«Skip Record If...»(4) «Skip Record If...»,解不等式«Skip Record If...»,得«Skip Record If...»3.证:«Skip Record If...»«Skip Record If...»,有«Skip Record If...»。
川大版高等数学(第一册)部分课后题详细答案
高数第一册 第一章 习题1.13.(1)(,1)(1,)(2){|1,}1(1,1)(1,)(3)(1,1)x x x R -∞-⋃-+∞≠±∈∞-⋃-⋃+∞-或(-,) (4)22903[3,1)(1,3]10x x x x x ⎧⎫-≥⇒-⎪⎪⇒--⋃⎨⎬-⇒⎪⎪⎩⎭≤ ≤3>>1或<-12222(5)(,3)(6)sin 0,,()241(7)114(1),11(1)3x x k x k k z x x x x x x πππ-∞≠≠≠∈⎡⎤≤⇒≤⇒≤+⇒-⎢⎥++⎣⎦(8)0ln 0x x x x x ⎧⎫⇒⇒⎨⎬⇒⎩⎭> >0>1>>1(9)[1,2]-(10)21()x x x f x x x x x x x x ⎧⎫⇒⎪⎪⎪⎪=⇒⇒≠⇒∴⎨⎬⎪⎪⎪⎪⇒⎩⎭-1 <00≤≤10即0<<1 < 0和0<≤2e 1≤≤27.(1)(2)(3)(4)(5)奇函数偶函数偶函数偶函数非奇非偶(6)2()()f x f x -=+=偶函数(7)11()lnln ()11x xf x f x x x+--==-=--+奇函数)(8)2112()()2112x xx xf x f x -----===-++奇函数(9)()sin cos f x x x -=--非奇非偶 13.(1)22(())(2)24,(())2,xxxx f x f f x x Rϕϕ====∈(2)11(())(0,1)111x f f x x xx-==≠--(3)32221,()(1)3(1)256()56(1)(1)5(1)6x t f t t t t t f x x x f x x x +==---+=-+∴=-++=+-++则x=t-1,或:14.[]22(1)(0)0.(2)0,111111(3)01(4)1lg ,lg 1,lg 1,.1(5)11()(6)1log (16)y x x y x y y x y x x y y y xx y x y y x xy xx x y x x x =≤≤+∞=≥=++===≠-+==-=--=≠-+∞⎧=≤≤∞反函数反函数x=,x-1=,x=1+反函数y ,定义域反函数定义域x >0反函数,定义域(x )-<<1反函数16)<<+⎫⎪⎬⎪⎩⎭习题1.2 2。
川大《高等数学(理)》专科第一次作业问题详解
《高等数学(理)》专科第一次作业答案你的得分: 100.0完成日期:2013年12月03日 21点29分一、单项选择题。
本大题共25个小题,每小题 4.0 分,共100.0分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.( B )A.奇函数B.偶函数C.非奇非偶函数D.以上均不对2.( A )A. AB. BC. CD. D3.( B )A.0B. 1C. 24.( D )A.-1B.0C. 1D.不存在5.( B )A.有一条渐近线B.有二条渐近线C.有三条渐近线D.无渐近线6.( C )A. AB. BC. CD. D7.( C )B. BC. CD. D8.( C )A. AB. BC. CD. D9.( D )A. AB. BC. CD. D10.( C )A. AC. CD. D11.( C )A. AB. BC. CD. D12.( B )A. AB. BC. CD. D13.( D )A. AB. BC. C14.( D )A. AB. BC. CD. D15.( C )A. AB. BC. CD. D16.( B )A. AB. BC. CD. D17.( B )A. AB. BC. CD. D18.( B )A.0B. 1C. 2D. 319.( D )A. AB. BC. CD. D20.( C )A. AB. BC. CD. D21.( B )A. AB. BC. CD. D22.( B )A. AB. BC. CD. D23.( C )A. AB. BC. CD. D24.( B )A. AB. BC. CD. D25.( C )A. AB. BC. CD. D@Copyright2007 四川大学网络教育学院版权所有。
大工16春《高等数学》在线作业1满分答案
大工16春《高等数学》在线作业1满分答案一、单选题(共10道试题,共60分。
)
1。
题目见图片
答案是:D
2。
题目见图片
答案是:A
3.题目见图片
答案是:B
4.题目见图片
答案是:C
答案是:B
6。
题目见图片
答案是:B
7.题目见图片
答案是:B
8。
题目见图片
答案是:D
9。
题目见图片
答案是:C
答案是:A
二、判断题(共10道试题,共40分。
) 1。
题目见图片
A。
错误
B。
正确
答案是:B
2.题目见图片
A. 错误
B。
正确
答案是:B
3.题目见图片
A。
错误
B. 正确
答案是:A
A。
错误
B. 正确
答案是:B
5.题目见图片
A。
错误
B。
正确
答案是:B
6.题目见图片
A。
错误
B。
正确
答案是:B
7。
题目见图片
A. 错误
B. 正确
答案是:B
8.题目见图片
A. 错误
B. 正确
答案是:B
A。
错误
B。
正确
答案是:B
10。
题目见图片
A. 错误
B。
正确
答案是:B。
川大版高等数学(第一册)部分课后题详细答案
高数第一册 第一章 习题1.13.(1)(,1)(1,)(2){|1,}1(1,1)(1,)(3)(1,1)x x x R -∞-⋃-+∞≠±∈∞-⋃-⋃+∞-或(-,) (4)22903[3,1)(1,3]10x x x x x ⎧⎫-≥⇒-⎪⎪⇒--⋃⎨⎬-⇒⎪⎪⎩⎭≤ ≤3>>1或<-12222(5)(,3)(6)sin 0,,()241(7)114(1),11(1)3x x k x k k z x x x x x x πππ-∞≠≠≠∈⎡⎤≤⇒≤⇒≤+⇒-⎢⎥++⎣⎦(8)0ln 0x x x x x ⎧⎫⇒⇒⎨⎬⇒⎩⎭> >0>1>>1(9)[1,2]-(10)21()x x x f x x x x x x x x ⎧⎫⇒⎪⎪⎪⎪=⇒⇒≠⇒∴⎨⎬⎪⎪⎪⎪⇒⎩⎭-1 <00≤≤10即0<<1 < 0和0<≤2e 1≤≤27.(1)(2)(3)(4)(5)奇函数偶函数偶函数偶函数非奇非偶(6)2()()f x f x -=+=偶函数(7)11()lnln ()11x xf x f x x x+--==-=--+奇函数)(8)2112()()2112x xx xf x f x -----===-++奇函数(9)()sin cos f x x x -=--非奇非偶 13.(1)22(())(2)24,(())2,xxxx f x f f x x Rϕϕ====∈(2)11(())(0,1)111x f f x x xx-==≠--(3)32221,()(1)3(1)256()56(1)(1)5(1)6x t f t t t t t f x x x f x x x +==---+=-+∴=-++=+-++则x=t-1,或:14.[]22(1)(0)0.(2)0,111111(3)01(4)1lg ,lg 1,lg 1,.1(5)11()(6)1log (16)y x x y x y y x y x x y y y xx y x y y x xy xx x y x x x =≤≤+∞=≥=++===≠-+==-=--=≠-+∞⎧=≤≤∞反函数反函数x=,x-1=,x=1+反函数y ,定义域反函数定义域x >0反函数,定义域(x )-<<1反函数16)<<+⎫⎪⎬⎪⎩⎭习题1.2 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
川大15春《高等数学(理)》第一次在线作业答案
你的得分: 97.5
完成日期:2015年05月23日 09点39分
说明:每道小题括号里的答案是您最高分那次所选的答案,标准答案将在本次作业结束(即2015年09月10日)后显示在题目旁边。
一、单项选择题。
本大题共40个小题,每小题 2.5 分,共100.0分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.
( B )
A.奇函数
B.偶函数
C.非奇非偶函数
D.以上均不对
2.
( B )
A. A
B. B
C. C
D. D
3.
( B )
A. A
B. B
C. C
D. D
4.
( A )
A. A
B. B
C. C
D. D
5.
( A )
A.垂直
B.斜交
C.平行
D.重合
6.下列命题正确的是()
( D )
A.
B.
C.
D.
7.
( A )
A.绝对收敛
B.条件收敛
C.发散
D.
8.
( B )
A.0
B. 1
C. 2
D. 3
9.
( D )
A.-1
B.0
C. 1
D.不存在
10.
( B )
A.有一条渐近线
B.有二条渐近线
C.有三条渐近线
D.无渐近线
11.
( C )
A. 1
B. 2
C. 3
D. 4
12.当X→2时,下列函数中不是无穷小量的是()
( C )
A.
B.
C.
D.
13.
( C )
A. A
B. B
C. C
D. D
14.
( C )
A. A
B. B
C. C
D. D
15.
( B )
A. A
B. B
C. C
D. D
16.
( B )
A. A
B. B
C. C
D. D
17.
( B )
A. A
B. B
C. C
D. D
18.
( C )
A.0
B. 1
C. 2
D. 3
19.
( B )
A.
B.
C. 1
20.
( A )
A. A
B. B
C. C
D. D
21.
( C )
A. 2
B. 1
C.0
D.-1
22.
( D )
A. A
B. B
C. C
D. D
23.
( C )
A. A
B. B
C. C
24.
( B )
A. 4
B. 6
C. 2
D. 3
25.
( D )
A. A
B. B
C. C
D. D
26.
( C )
A. A
B. B
C. C
D. D
27.
( B )
A.(0,12)
B.(1,10)
C.(2,8)
D.(3,12)
28.
( B )
A.仅有一条
B.至少有一条
C.不一定存在
D.不存在
29.
( B )
A.0
B. 1
C. 2
D. 3
30.
( D )
A. A
B. B
C. C
D. D
31.
( C )
A. A
B. B
C. C
D. D
32.
( B )
A.-1
B.0
C.
D. 2
33.
( B )
A.e-1
B. e
C. 1
D.0
34.
( A )
A. A
B. B
C. C
D. D
35.
( B )
A. A
B. B
C. C
D. D
36.
( C )
A. A
B. B
C. C
D. D
37.
( B )
A.在点(1,2)处取最大值5
B.在点(1,2)处取最小值-5
C.在点(0,0)处取最大值0
D.在点(0,0)处取最小值0
38.
( C )
A. A
B. B
C. C
D. D
39.
( C )
A. 1
B. 2
C. 3
D. 4
40.
( D )
A. 2
B. 1
C.-1
D.0。