初中数学难点去绝对值符号

合集下载

初一数学绝对值知识点、考点及例题梳理

初一数学绝对值知识点、考点及例题梳理

初一数学绝对值知识点、考点及例题梳理绝对值是初一上册数学的重难点之一,很多同学绝对值的学习中都存在着一些问题,所有问题的根源大都是对绝对值的概念理解不透彻,没有建立起完整的知识体系,在此梳理下在绝对值学习中需要注意的一些要点。

在绝对值的学习中,首先需要去理解和掌握的就是绝对值的概念,什么是绝对值呢?在数轴上,一个数所对应的点与原点之间的距离。

在概念的理解中需要注意,绝对值这个概念是从数轴引出的,它表示的是距离,绝对值本质上是数轴上两点之间的距离,哪两点之间的距离呢?表示某个数的点和原点。

那么由绝对值的定义,我们可以得到有关绝对值的那些性质呢?因为绝对值表示的是距离,从日常经验可知,距离最小为0,不可能为负数,所以就得出了绝对值最重要的一条性质:绝对值具有非负性。

从绝对值的定义出发,结合绝对值的非负性,可以得到绝对值的代数意义,也看成是绝对值性质的推广:正数的绝对值等于它本身;0的绝对值是0;负数的绝对值等于它的相反数。

以上三条需要牢记。

这是求绝对值和简化绝对值的方法基础。

除过绝对值的定义和性质之外,在绝对值的学习中还需要注意以下细节和要点:任何数都有绝对值,只有一个,而且是非负的。

但是有两个数的绝对值等于正数,而且是相反的。

很多同学容易漏掉其中的一个,比较容易出错。

在有关绝对值的运算,在解含有绝对值的方程中,经常需要运用到分类讨论思路。

绝对值的概念来源于数轴,代表数轴上两点之间的距离。

绝对值与数轴有着密切的关系,在绝对值相关题目的分析和求解中,一定要注意数形结合思想的应用。

特别是在绝对值的几何意义的理解和应用上,需要结合数轴来分析和解决。

绝对值等于它本身的数是正数和0,绝对值等于它的相反数的数是负数和0.1.解决问题的关键是理解绝对值的定义和性质,把握其非负性。

2、求一个数的绝对值,先判定这个数是正数、负数还是0,再根据绝对值的性质确定最终的结果。

3、利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小。

去绝对值常用方法

去绝对值常用方法

去绝对值常用“六招”(初一)去绝对值常用“六招”(初一)绝对值是初中数学的一个重要概念,是后续学习的必备知识。

解绝对值问题要求高,难度大,不易把握,解题易陷入困境。

下面就教同学们去绝对值的常用几招。

一、根据定义去绝对值例1、当a = -5,b = 2,c = - 8时,求3│a│-2│b│- │c│的值分析:这里给出的是确定的数,所以根据绝对值的意义即正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

代值后即可去掉绝对值。

解:因为:a = -5<0,b =2>0,c = -8<0所以由绝对值的意义,原式= 3 [ -(-5)] – 2 ×2 - [ - ( - 8 ) ] = 7二、从数轴上“读取”相关信息去绝对值例2、有理数a、b、c在数轴上的位置如图所示,且│a│=│b│,化简│c-a│+│c-b│+│a+b│-│a│分析:本题的关键是确定c - a、c-b、a + b的正负性,由数轴上点的位置特征,即可去绝对值。

解:由已知及数轴上点的位置特征知:a<0<c<b 且- a = b从而c – a >0 ,c - b<0,a + b = 0故原式= c - a + [ - ( c – b ) ] + 0 - ( - a ) = b 三、由非负数性质去绝对值例3:已知│a2-25│+ ( b – 2 )2= 0,求ab的值。

分析:因为绝对值、完全平方数为非负数,几个非负数的和为零,则这几个数均为“0”。

解:因为│a2-25│+ ( b – 2 )2= 0 由绝对值和非负数的性质:a2-25 = 0 且b – 2 = 0即a = 5b = 2 或a = - 5b = 2故ab = 10或ab = - 10四、用分类讨论法去绝对值例4、若abc≠0,求+ + 的值。

分析:因abc≠0,所以只需考虑a、b、c同为正号还是同为负号;两个同为正(负)号,另一个为负(正)号,共八种情况。

初中数学知识点分数的绝对值

初中数学知识点分数的绝对值

初中数学知识点分数的绝对值绝对值是初中数学中的重要概念之一,用来表示一个数与零的距离。

在学习数学的过程中,我们不仅需要理解绝对值的定义和性质,还需要学会运用绝对值解决实际问题。

本文将详细介绍初中数学中关于分数的绝对值的相关知识点。

一、绝对值的定义绝对值是一个数的非负值。

对于实数x,当x大于等于零时,绝对值等于x;当x小于零时,绝对值等于-x。

可以用以下符号来表示绝对值:|x|。

二、含分数的绝对值对于含有分数的绝对值,我们需要根据分数的正负情况进行讨论。

以下分别对正分数、负分数和零进行介绍。

1. 正分数的绝对值对于正分数a/b(a>0, b>0),它的绝对值等于它本身,即|a/b| = a/b。

例如,|3/4| = 3/4。

2. 负分数的绝对值对于负分数a/b(a<0, b>0),它的绝对值等于它的相反数,即|a/b|= -a/b。

例如,|-2/5| = 2/5。

3. 零的绝对值零的绝对值等于零,即|0| = 0。

三、绝对值的性质绝对值具有以下几个重要的性质,对于任何实数a和b都成立。

1. 非负性对于任何实数a,都有|a| ≥ 0。

即绝对值的结果总是非负数。

2. 与零的关系对于任何实数a,当且仅当a等于零时,|a| = 0。

3. 正负性对于任何非零实数a,当a大于零时,|a| = a;当a小于零时,|a| = -a。

4. 三角不等式对于任何实数a和b,都有|a + b| ≤ |a| + |b|。

即两个数的绝对值之和不超过它们的绝对值之和。

四、绝对值的应用举例绝对值不仅在数学中有重要的理论意义,也有广泛的实际应用。

以下是一些练习题,通过解答这些题目,可以更好地理解和应用绝对值的知识。

例题1:计算|-5/6|的值。

解:由绝对值的定义可知,|-5/6| = 5/6。

例题2:计算|4/9| + |-1/3|的值。

解:根据绝对值的性质,|4/9| + |-1/3| = 4/9 + 1/3 = 4/9 + 3/9 = 7/9。

绝对值大全(零点分段法、化简、最值)..

绝对值大全(零点分段法、化简、最值)..

绝对值⼤全(零点分段法、化简、最值)..绝对值⼤全(零点分段法、化简、最值)⼀、去绝对值符号的⼏种常⽤⽅法解含绝对值不等式的基本思路是去掉绝对值符号,使不等式变为不含绝对值符号的⼀般不等式,⽽后,其解法与⼀般不等式的解法相同。

因此掌握去掉绝对值符号的⽅法和途径是解题关键。

1利⽤定义法去掉绝对值符号根据实数含绝对值的意义,即|x |=(0)(0)x x x x ≥??-(0)c x c c c -<<>≤?;|x |>c (0)0(0)(0)x c x c c x c x R c <->>??≠=∈或2利⽤不等式的性质去掉绝对值符号利⽤不等式的性质转化|x |c (c >0)来解,如|ax b +|>c (c >0)可为ax b +>c 或ax b +<-c ;|ax b +|对于含绝对值的双向不等式应化为不等式组求解,也可利⽤结论―a ≤|x |≤b ?a ≤x ≤b 或-b ≤x ≤-a ‖来求解,这是种典型的转化与化归的数学思想⽅法。

3利⽤平⽅法去掉绝对值符号对于两边都含有―单项‖绝对值的不等式,利⽤|x |2=2x 可在两边脱去绝对值符号来解,这样解题要⽐按绝对值定义去讨论脱去绝对值符号解题更为简捷,解题时还要注意不等式两边变量与参变量的取值范围,如果没有明确不等式两边均为⾮负数,需要进⾏分类讨论,只有不等式两边均为⾮负数(式)时,才可以直接⽤两边平⽅去掉绝对值,尤其是解含参数不等式时更必须注意这⼀点。

4利⽤零点分段法去掉绝对值符号所谓零点分段法,是指:若数1x ,2x ,……,n x 分别使含有|x -1x |,|x -2x |,……,|x -n x |的代数式中相应绝对值为零,称1x ,2x ,……,n x 为相应绝对值的零点,零点1x ,2x ,……,n x 将数轴分为m +1段,利⽤绝对值的意义化去绝对值符号,得到代数式在各段上的简化式,从⽽化为不含绝对值符号的⼀般不等式来解,即令每项等于零,得到的值作为讨论的分区点,然后再分区间讨论绝对值不等式,最后应求出解集的并集。

七年级数学上学期 绝对值重难点突破(含解析)

七年级数学上学期 绝对值重难点突破(含解析)

初中数学人教版七年级上学期第一章有理数绝对值重难点突破一、解答题1.(8分)(2020七上·硚口期中)已知是有理数.(1)当时,先判断的正、负符号,再求的值;(2)当时,直接写出的值.2.(8分)(2021七上·相城月考)已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a﹣b|3.(10分)(2021七上·苏州月考)如图所示,有理数a,b,c在数轴上的对应点分别是A、B、C,原点为点O.①化简:|a﹣c|+2|c﹣b|﹣|b﹣a|.②若B为线段AC的中点,OA=6,OA=4OB,求c的值.4.(12分)(2020七上·金华期中)数轴是一个非常重要的数学工具,实数和数轴上的点能建立一一对应的关系,它建立了数与形的联系,是初中“数形结合”的基础。

我们知道一个数在数轴上对应的点到原点的距离叫做这个数的绝对值,如:,:表示数的点到原点的距离。

同样的,:表示数的点到表示数3的点的距离。

请结合数轴解决下列问题:①当时,表示什么意思?________;②若,则________;③若,则的值是________;④求使的值最小的所有符合条件的整数.二、综合题5.(10分)(2021七上·薛城期中)数轴上两点之间的距离等于这两个点所对应的数的差的绝对值,例如:点A、B在数轴上对应的数分别是a、b,则点A、B两点间的距离表示为.利用上述结论,回答以下问题(1)若点A在数轴上表示-3,点B在数轴上表示1,那么AB=;(2)若数轴上两点C、D表示的数为x、-1①C、D两点之间的距离可用含x的式子表示为;②若该两点之间的距离是3,那么x值为;(3)若数轴上表示a的点位于-5和2之间,化简.6.(11分)(2021七上·建昌期中)“数形结合”是重要的数学思想.如:表示与差的绝对值,实际上也可以理解为与在数轴上所对应的两个点之间的距离.进一步地,数轴上两个点A,B所对应的数分别用,表示,那么A,B两点之间的距离表示为.利用此结论,回答以下问题:(1)数轴上表示和两点之间的距离是.(2)可理解为与两数在数轴上所对应的两点之间的距离;可理解为与两数在数轴上所对应的两点之间的距离.(3)若,则.(4)若表示一个有理数,的最小值为.(5)直接写出所有符合条件的整数x,使得,的值为7.(10分)(2021七上·温岭期中)点A、B在数轴上分别表示数a,b,A、B两点之间的距离表示为|AB|.数轴上A、B两点之间的距离|AB|=|a-b|回答下列问题:(1)数轴上表示-1和-4的两点之间的距离是;(2)数轴上表示x和-1的两点A之和B之间的距离是,如果|AB|=2,那么x的值是;(3)若x表示一个有理数,且﹣1<x<3,则|x﹣3|+|x+1|=;(4)若x表示一个有理数,且|x﹣1|+|x+2|>3,则有理数x的取值范围是.8.(15分)(2020七上·武汉期中)(问题背景)在数轴上,点表示数在原点的左边,点表示的数在原点的右边,如图1,所示,则有:①;②线段的长度等于.(问题解决)点、点、点在数轴上的位置如图2所示,三点对应的数分别为,、.①线段的长度为▲;②若点为线段的中点,则点表示的数是▲;③化简:.(关联运用)①已知:点、点、点、点在数轴上的位置如图3所示,点对应的数为,点对应的数为,若定长线段沿数轴正方向以每秒个单位长度匀速运动,经过原点需要1秒,完全经过线段需要2秒,求的值;②已知,当式子取最小值时,相应的的取值范围是▲,式子的最小值是▲.(用含、的式子表示)9.(16分)(2020七上·孝南期中)已知是最小的正整数,且,满足,请回答:(1)请直接写出,,的值:=,=,=;(2)在(1)的条件下,若点为一动点,其对应的数为,点在0到1之间运动,即时,化简:;(3)在(1)(2)的条件下,,,分别对应的点、、开始在数轴上运动,若点以每秒1个单位长度的速度向左运动,同时,点和点分别以每秒2个单位长度和5个单位长度的速度向右运动,假设秒钟过后,若点与点之间的距离表示为,点与点之间的距离表示为.请问:的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求其值.答案解析部分一、解答题1.【答案】(1)解:,;(2)解:当同正时,;当两正一负时,;当一正两负时,;当同负时,;综上:或±1.【考点】绝对值及有理数的绝对值,代数式求值【解析】【分析】(1)利用有理数的乘法法则可知a,b同号,再利用有理数的加法法则,结合已知可得到a,b同为负数,然后化简绝对值,可求出结果。

初中数学绝对值重点难点突破(含练习题和答案)

初中数学绝对值重点难点突破(含练习题和答案)

初中数学知识点绝对值重点难点突破(含练习题和答案)一、绝对值定义数轴上表示数a的点与原点的距离,叫做数a的绝对值。

数a的绝对值记作|a|,读作a的绝对值.二、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即(1)如果a>0,那么|a|=a;(2)如果a=0,那么|a|=0;(3)如果a<0,那么|a|=-a.用式子可表示为:三、重点归纳①绝对值为正数的数有两个,它们互为相反数.②两个互为相反数的数的绝对值相等.反之,绝对值相等的两个数相等或互为相反数。

③求一个数的绝对值就是去绝对值符号,所以求一个数的绝对值,必须先判断绝对值符号里的数,再去绝对值符号.如果绝对值里的数是非负数,那么这个数的绝对值就是它本身,如果绝对值里面的数是负数,那么这个数的绝对值就是它的相反数,当绝对值里面的数的正负性不能确定时,要分类讨论,即将其分成大于0、小于0、等于0、这三类来计论。

例题1|x-2|的绝对值为答案解析(1)如果x-2>0,即x>2,那么|x-2|=x-2(2)如果x-2=0,即x=2,那么|x-2|=0(3)如果x-2<0,即x<2,那么|x-2|=2-x④一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大,离原点的距离越近,绝对值越小。

⑤在数轴上,由于距离总是正数和零,则有理数的绝对值不可能是负数,因此任何一个有理数的绝对值都是非负数,即a取任意有理数,都有|a|≥0.绝对值的这一性质表现为:(1) |a|≥0,即 |a| 有最小值;(2)若几个非负数的和为零,则每一个非负数都为零,即|a|+|b| +|c|+…+|z|=0,则a=b=c=…=z=0.例题2已知|3-x|+(2x-y)²=0,那么x+y的值为答案 9解析由绝对值和偶次幂的非负性可得3-x=0,x=3;2x-y=0,y=6,所以x+y=9.练习题1、检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,4个足球检测质量分别是,+0.9,-3.6,-0.8,+2.5,从轻重的角度看,最接近标准的是。

七年级数学专题-绝对值问题的几种解法

七年级数学专题-绝对值问题的几种解法

小结:
• 这节课你有什么收获?
一、直接推理法
说明: 本题是直接利用有理数加法法则和有理数乘法法则确定字母符号
二、巧用数轴法
说明:本题是通过数轴,运用数形结合的方法确定字母的大小顺序, 从而达到去掉绝对值的目的.
三、零点分段法
说明:本题是求两个绝对值和的问题.解题的关键是如何同时 去掉两个绝对值符号
四、分类讨论法
练习:
思路点拨 解本例的关键是利用绝对值的几何意义确定括号内每个式子的 取值范围
绝对值问题几种解法
• 绝对值是初中代数中的一个基本概念, 在竞赛中经常会遇到含有绝对值符号 的问题,同学们要注意知识的创新运 用, 掌握好方法,顺利解决这些问 题.
知识回顾
• 1.去绝对值的符号法则: • 2.绝对值基本性质 • ①非负性:
• 3.绝对值的几; |a-b|表示数a 、数 b的两点 间的距离.

绝对值大全(零点分段法、化简、最值)

绝对值大全(零点分段法、化简、最值)

绝对值大全(零点分段法、化简、最值)一、去绝对值符号得几种常用方法解含绝对值不等式得基本思路就是去掉绝对值符号,使不等式变为不含绝对值符号得一般不等式,而后,其解法与一般不等式得解法相同。

因此掌握去掉绝对值符号得方法与途径就是解题关键。

1利用定义法去掉绝对值符号根据实数含绝对值得意义,即||=,有||〈;||>2利用不等式得性质去掉绝对值符号利用不等式得性质转化||<或||>(>0)来解,如||〉(>0)可为>或<-;||〈可化为-<+<,再由此求出原不等式得解集。

对于含绝对值得双向不等式应化为不等式组求解,也可利用结论“≤||≤≤≤或-≤≤-”来求解,这就是种典型得转化与化归得数学思想方法。

3利用平方法去掉绝对值符号对于两边都含有“单项”绝对值得不等式,利用||=可在两边脱去绝对值符号来解,这样解题要比按绝对值定义去讨论脱去绝对值符号解题更为简捷,解题时还要注意不等式两边变量与参变量得取值范围,如果没有明确不等式两边均为非负数,需要进行分类讨论,只有不等式两边均为非负数(式)时,才可以直接用两边平方去掉绝对值,尤其就是解含参数不等式时更必须注意这一点。

4利用零点分段法去掉绝对值符号所谓零点分段法,就是指:若数,,……,分别使含有|-|,|—|,……,|—|得代数式中相应绝对值为零,称,,……,为相应绝对值得零点,零点,,……,将数轴分为+1段,利用绝对值得意义化去绝对值符号,得到代数式在各段上得简化式,从而化为不含绝对值符号得一般不等式来解,即令每项等于零,得到得值作为讨论得分区点,然后再分区间讨论绝对值不等式,最后应求出解集得并集。

零点分段法就是解含绝对值符号得不等式得常用解法,这种方法主要体现了化归、分类讨论等数学思想方法,它可以把求解条理化、思路直观化。

5利用数形结合去掉绝对值符号解绝对值不等式有时要利用数形结合,利用绝对值得几何意义画出数轴,将绝对值转化为数轴上两点间得距离求解。

初一数学绝对值知识点与经典例题

初一数学绝对值知识点与经典例题

初一数学绝对值知识点与经典例题绝对值的性质及化简绝对值有几何意义和代数意义。

在数轴上,一个数a的绝对值表示数a的点与原点的距离,记作|a|。

正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.绝对值的运算符号是“| |”,取绝对值的结果总是非负数。

任何一个有理数都由符号和绝对值两部分组成。

例如,-5的符号是负号,绝对值是5.对于字母a的绝对值,可以根据不同的情况进行分类讨论。

如果a大于0,则|a|=a;如果a等于0,则|a|=0;如果a小于0,则|a|=-a。

利用绝对值比较两个负有理数的大小时,绝对值大的反而小。

绝对值具有非负性,即|a|≥0.如果若干个非负数的和为0,则这些非负数都必为0.例如,如果a+b+c=0,则a=0,b=0,c=0.绝对值还有其他重要的性质。

任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即|a|≥a,且|a|≥-a;如果a=b,则|a|=|b|;如果a不等于0,则|a^2|=a^2;对于任意的a和b,有||a|-|b||≤|a±b|≤|a|+|b|。

去掉绝对值符号的基本步骤是找零点,分区间,定正负,去符号。

解绝对值不等式需要将式子中的绝对值符号化为一般代数式类型来解,可以使用换元法、讨论法、平方法等方法。

证明绝对值不等式可以利用不等式:|a|-|b|≦|a+b|≦|a|+|b|,对绝对值内的式子进行分拆组合、添项减项,使要证的式子与已知的式子联系起来。

在一些考试中,会出现绝对值相关的题目,例如已知|x-2|+|y-3|=1,求x+y的值。

若x+3+y+1+z+5=K,则x-y-z=K-9.总结:若干非负数之和为K,则它们的和至少为K。

先化简,再求值:3a^2b-2ab^2-2(ab-2a^2b)+2ab=4a^2b-2ab^2+4ab。

其中a、b满足a+3b+1+(2a-4)^2=K。

二)绝对值的性质例1】若a<0,则4a+7|a|等于()C.-3a例2】一个数与这个数的绝对值相等,那么这个数是()A.1例3】已知|x|=5,|y|=2,且xy>0,则x-y的值等于()A.7或-7例4】若x^2=-1,则x是()B.负数例5】已知:a>0,b1-b>a>-b例6】已知a,b互为相反数,且|a-b|=6,则|b-1|的值为()D.2或4例7】a<0,ab<0,计算|b-a+1|-|a-b-5|,结果为()B.-4例8】若|x+y|=y-x,则有()D.x=0,y≥0或y=0,x≤0例9】已知:x0,且|y|>|z|>|x|,那么|x+z|+|y+z|-|x-y|的值()A.是正数例10】给出下面说法:1)互为相反数的两数的绝对值相等;2)一个数的绝对值等于本身,这个数不是负数;3)若|m|>m,则m<0;4)若|a|>|b|,则a>b,其中正确的有()B.(1)(2)(4)例11】已知a,b,c为三个有理数,它们在数轴上的对应位置如图所示,则|c-b|-|b-a|-|a-c|=1.巩固】已知a、b、c、d都是整数,且|a+b|+|b+c|+|c+d|+|d+a|=2,求|a+d|的值。

绝对值大全(零点分段法、化简、最值)精编版

绝对值大全(零点分段法、化简、最值)精编版

绝对值大全(零点分段法、化简、最值)一、去绝对值符号的几种常用方法解含绝对值不等式的基本思路是去掉绝对值符号,使不等式变为不含绝对值符号的一般不等式,而后,其解法与一般不等式的解法相同。

因此掌握去掉绝对值符号的方法和途径是解题关键。

1利用定义法去掉绝对值符号根据实数含绝对值的意义,即|x |=(0)(0)x x x x ≥⎧⎨-<⎩,有|x |<c (0)(0)c x c c c -<<>⎧⇔⎨∅≤⎩;|x |>c (0)0(0)(0)x c x c c x c x R c <->>⎧⎪⇔≠=⎨⎪∈<⎩或2利用不等式的性质去掉绝对值符号利用不等式的性质转化|x |<c 或|x |>c (c >0)来解,如|ax b +|>c (c >0)可为ax b +>c 或ax b +<-c ;|ax b +|<c 可化为-c <ax +b <c ,再由此求出原不等式的解集。

对于含绝对值的双向不等式应化为不等式组求解,也可利用结论“a ≤|x |≤b ⇔a ≤x ≤b 或-b ≤x ≤-a ”来求解,这是种典型的转化与化归的数学思想方法。

3利用平方法去掉绝对值符号对于两边都含有“单项”绝对值的不等式,利用|x |2=2x 可在两边脱去绝对值符号来解,这样解题要比按绝对值定义去讨论脱去绝对值符号解题更为简捷,解题时还要注意不等式两边变量与参变量的取值范围,如果没有明确不等式两边均为非负数,需要进行分类讨论,只有不等式两边均为非负数(式)时,才可以直接用两边平方去掉绝对值,尤其是解含参数不等式时更必须注意这一点。

4利用零点分段法去掉绝对值符号所谓零点分段法,是指:若数1x ,2x ,……,n x 分别使含有|x -1x |,|x -2x |,……,|x -n x |的代数式中相应绝对值为零,称1x ,2x ,……,n x 为相应绝对值的零点,零点1x ,2x ,……,n x 将数轴分为m +1段,利用绝对值的意义化去绝对值符号,得到代数式在各段上的简化式,从而化为不含绝对值符号的一般不等式来解,即令每项等于零,得到的值作为讨论的分区点,然后再分区间讨论绝对值不等式,最后应求出解集的并集。

绝对值大全(零点分段法、化简、最值)

绝对值大全(零点分段法、化简、最值)

绝对值大全(零点分段法、化简、最值)一、去绝对值符号的几种常用方法解含绝对值不等式的基本思路是去掉绝对值符号,使不等式变为不含绝对值符号的一般不等式,而后,其解法与一般不等式的解法相同。

因此掌握去掉绝对值符号的方法和途径是解题关键。

1利用定义法去掉绝对值符号根据实数含绝对值的意义,即|x |=(0)(0)x x x x ≥⎧⎨-<⎩,有|x |<c (0)(0)c x c c c -<<>⎧⇔⎨∅≤⎩;|x |>c (0)0(0)(0)x c x c c x c x R c <->>⎧⎪⇔≠=⎨⎪∈<⎩或2利用不等式的性质去掉绝对值符号利用不等式的性质转化|x |<c 或|x |>c (c >0)来解,如|ax b +|>c (c >0)可为ax b +>c 或ax b +<-c ;|ax b +|<c 可化为-c <ax +b <c ,再由此求出原不等式的解集。

对于含绝对值的双向不等式应化为不等式组求解,也可利用结论“a ≤|x |≤b ⇔a ≤x ≤b 或-b ≤x ≤-a ”来求解,这是种典型的转化与化归的数学思想方法。

3利用平方法去掉绝对值符号对于两边都含有“单项”绝对值的不等式,利用|x |2=2x 可在两边脱去绝对值符号来解,这样解题要比按绝对值定义去讨论脱去绝对值符号解题更为简捷,解题时还要注意不等式两边变量与参变量的取值范围,如果没有明确不等式两边均为非负数,需要进行分类讨论,只有不等式两边均为非负数(式)时,才可以直接用两边平方去掉绝对值,尤其是解含参数不等式时更必须注意这一点。

4利用零点分段法去掉绝对值符号所谓零点分段法,是指:若数1x ,2x ,……,n x 分别使含有|x -1x |,|x -2x |,……,|x -n x |的代数式中相应绝对值为零,称1x ,2x ,……,n x 为相应绝对值的零点,零点1x ,2x ,……,n x 将数轴分为m +1段,利用绝对值的意义化去绝对值符号,得到代数式在各段上的简化式,从而化为不含绝对值符号的一般不等式来解,即令每项等于零,得到的值作为讨论的分区点,然后再分区间讨论绝对值不等式,最后应求出解集的并集。

七年级绝对值知识点梳理

七年级绝对值知识点梳理

七年级绝对值知识点梳理在初中数学中,绝对值是一个非常重要的知识点。

掌握好绝对值的概念和性质,不仅可以帮助我们更好地理解数学知识,还可以为我们的学习打下坚实的基础。

在这篇文章中,我将为大家梳理七年级绝对值知识点,希望对大家的学习有所帮助。

一、绝对值的定义在了解绝对值的相关知识之前,我们首先需要知道绝对值的定义。

在数学中,绝对值是一个非负数,它表示一个数离原点的距离。

举个例子,数轴上点A表示数a,点B表示数-b,则AB的长度就等于|a-b|,也就是a和b之间的距离。

二、绝对值的性质掌握好绝对值的性质可以让我们更好地运用它来进行数学运算。

以下是绝对值的三个性质:1. 非负性任何数的绝对值都是非负数,即|a|≥0。

2. 对称性对于任意数a,有|a|=|-a|。

3. 三角不等式对于任意两个数a、b,有|a+b|≤|a|+|b|。

三、绝对值的简单运算掌握好绝对值的运算方法可以让我们更好地解决数学问题。

以下是绝对值的简单运算:1. 消去绝对值符号如果一个数的绝对值符号内部已经有一个负号,则可以直接去掉绝对值符号,并将内部的负号变为正号。

例如,|-7|=-(7)=-7。

2. 加减运算对于两个数a、b的加减运算,可以利用绝对值的三角不等式来进行。

例如,求|3-5|=|-2|=2;3. 乘除运算对于两个数a、b的乘除运算,可以利用绝对值的性质来进行。

例如,求|3×(-5)|=|-15|=15,而|3|×|-5|=3×5=15。

四、绝对值的应用在日常生活中,绝对值不仅可以帮助我们解决数学运算的问题,还可以用于其他方面的应用,例如统计学中计算误差、物理学中计算电荷等等。

以下是绝对值的几个应用:1. 计算误差在测量过程中,由于种种原因,常会出现误差。

此时可以用绝对值来表示误差量,避免负误差的出现。

2. 计算距离在几何学中,我们可以用绝对值来计算点之间的距离。

例如,求点A和点B之间的距离,可以用|AB|表示。

中考数学复习微专题:分类例说绝对值化简问题

中考数学复习微专题:分类例说绝对值化简问题

分类例说绝对值化简问题绝对值化简问题在初中数学中是一个难点,学生在解题时存在如下一些障碍:首先,不理解去绝对值的真正含义,不知道去绝对值是一种运算,求一个数的绝对值就是根据绝对值的性质去掉绝对值符号.其次,对绝对值的性质理解有偏差,0既不是正数,也不是负数,它是正数与负数的分界线,0没有正负性,0=0=0±.非负数的绝对值是它本身,非正数的绝对值是它相反数.运用性质解题就很少出错.再次,在解答不等式、二次根式及化简绝对值的综合试题时,不会合理运用不等式的性质来确定绝对值内的代数式的符号.下面对几种典型问题作出分析.一、已知不等式的解集.化简绝对值例1 已知1x <-,化简: 3113x x +--分析 要去掉绝对值,确定31x +,13x -的符号是关键,根据条件运用不等式的性质就可以确定31x +,13x -的符号.1x <-,33x ∴<-(根据不等式的性质2),312x +<- (根据不等式的性质1),就可以确定31x +的符号为负号.同理,由不等式的性质3,可以先得出3x -的符号,再由不等式的性质1可以得出13x -的符号,1x <- ,33x ∴->(根据不等式的性质3),134x ∴-> (根据不等式的性质1),可以得出13x -的符号为正号,根据绝对值的性质就可以轻松化简. 解1x <- 3120x ∴+<-<,1340x ->>(31)(13)x x ∴=-+--原式3113x x =---+2=-二、通过求不等式的解集,再化简绝对值例2 已知2(1)3x x -<-,化简:242x x +---分析要去掉绝对值,就得知道2x +,42x --的符号.要知道2x +,42x --的符号就得知道x 的解集,要知道x 的解集就要运用不等式的解法求出其解.求出x 的解集后由例1的方法就可以确定2x +,42x --的符号,进而化简绝对值.解 2(1)3x x -<-解得:2x <-20x ∴+<,420x -->(2)(42)x x ∴=-+---原式=2x +三、已知不等式的解集,化简多重绝对值例2 已知3x <-,化简: 321x +-+分析 要去掉绝对值符号,我们只能从最里面一层一层的去掉.先由不等式的性质用例1的方法判断1x +的符号,去掉第一个绝对值,然后再合并同类项后判断符号,去掉第二个绝对值,最后去掉第三个绝对值.解答本题的关键是确定去绝对值符号的顺序.解 3x <-120x ∴+<-<32(1)x ∴=+---原式=3+3x +3x <-,30x ∴+<3(3)x x ∴=+--=-原式3x <-, 30x ∴-><x ∴=-原式四、已知不等式组的解集,化简绝对值例4 -23x <<,化简:23x x +--分析 要去掉绝对符号,只要知道2x +,3x -的符号即可,但是这里已知条件是不等式组的解集,该如何用呢?实际上只要我们按照不等式的性质代进去一试结论就有了. -23x <<,021x ∴<+<(由不等式的性质1),同样,可以确定2x +的符号为正号; -23x <<,530x ∴-<-<由不等式的性质1),可以确定3x -的符号为负号.这样去绝对值符号就迎刃而解.解 -23x <<021x ∴<+<,530x -<-<,2(3)x x ∴=+--原式=21x +五、先解不等式组,再化简绝对值例5 已知不等式组415x -< ① 215222x x -<-+ ②化简:451x x +--分析 要去掉绝对值得知道45x +,1x -的符号.必须运用解不等式组的方法先求得x 的解集,再运用例4的方法确定45x +,1x -的符号,然后化简绝对值.解 解不等式①,得54x >- 解不等式②,得1x <514x ∴-<< 0459x ∴<+<,9104x -<-< 45(1)x x ∴=+--原式=51x +六、已知不等式组的解集,变形二次根式后再化简绝对值例6 已知01x <<,化简:2x +分析 本题涉及到了二次根式的性质2a =a =的运用.解答时先将二次根式变形,进行第一次化简,再根据不等式的性质确定绝对值内的式子的符号,最后就可以化简绝对值.解 原式 (1)12x x x x =+-----01x <<110x ∴-<-<,221x -<-<-1(1)(2)x x x x ∴=+-----原式=22x -七、解不等式组,再变形二次根式化简绝对值例7 已知 53m +> ①220m -< ②化简: 1m -分析 本题涉及了一元一次不等式组的解法,二次根式的性质a =的运用.解答时,先求出m 的解集,再将二次根式转化为绝对值,由不等式的性质确定绝对值内代数式的符号,然后由绝对值的性质化简.解 121m m m =-++--原式由不等式①,得2m >-由不等式②,得1m <21m ∴-<<310m ∴-<-<,023m <+<,013m <-<(1)21m m m ∴=--++--原式1(2)(1)m m m =-+++--2m =+八、由方程组的解建立不等式组,求出解集,再化简绝对值例8 已知关于x 、y 的方程组x-y=3a+6 ①x+y=-a-12 ②的解,满足0y x <≤,化简:31a a -++分析 要去掉绝对值,得知道a 的解集,必须先求出二元一次方程组的解,由二元一 次方程组的解建立不等式组,求出a 的解集;最后根据不等式的性质,结合零点分段法分 类讨论,确定3a -a ,1a +的符号,然后化简绝对值.解 由① + ②得226x a =-,3x a =- ③把③代入②,得29y a =--∴329x a y a =-⎧⎨=--⎩0y x <≤∴29330a a a --<-⎧⎨-≤⎩解得23a -<≤∴530a -<-≤当13a -≤≤时,014a ≤+≤=314a a ∴-++=原式当21a -<<-时110a -<+<=3(1)22a a a ∴-+--=-+原式九、由二次根式性质求不等式的解集,根据二次根式的性质变形为绝对值,再化简例9 已知x y 、为实数,且3y <,化简3y - 分析 要解答此题,最终还是要化简绝对值.先根据二次根式的性质求出y 的解集,再将a =将二次根式转化为绝对值,最后由不等式的性质确定绝对值里面的式子的符号.解 由题意,得1010x x -≥⎧⎨-≥⎩1x ∴=3y x <-3y ∴<3041y y ∴-<-<-,(3)y ∴=--原式34y y =-+--3(4)y y =-+--34y y =-+-+1=-十、由二次根式的性质建立不等式组求出解集,再变形为绝对值化简例10 化简: 2223x --+-分析 要化简此题,需要运用二次根式的性质2a =a =对化简式变形,再运用隐含条件10x -≥,20x +≥建立不等式组求出x 的解集,并运用完全平方公式将二次根式变形后转化为绝对值,最后由不等式的性质判断绝对值里面的式子的符号,就可以去掉绝对值符号,进而达到化简目的.解 由题意,得 1020x x -≥⎧⎨+≥⎩解得21x -≤≤2356220x x ∴≤-≤-≤-≤,=1(2)(3)x x x --+-原式12223x x x x =-----+-32(22)x x =-+--3222x x =-+-+x =-综上,绝对值的化简问题,一般都与不等式或不等式组、二次根式综合在一起,从而增加了化简的难度.但是万变不离其宗,只要大家熟练掌握不等式的性质、二次根式的性质和绝对值的性质,运用这些性质进行变形、化简,确定绝对值内的代数式的符号,那么绝对值化简的问题就很简单.。

七年级数学专题绝对值问题的几种解法ppt课件

七年级数学专题绝对值问题的几种解法ppt课件

为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
三、零点分段法
说明:本题是求两个绝对值和的问题.解题的关键是如何同时 去掉两个绝对值符号
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
一、直接推理法
说明: 本题是直接利用有理数加法法则和有理数乘法法则确定字母符号
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
二、巧用数轴法
说明:本题是通过数轴,运用数形结合的方法确定字母的大小顺序, 从而达到去掉绝对值的目的.
小结:学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
练习:
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
知识回顾
• 1.去绝对值的符号法则: • 2.绝对值基本性质 • ①非负性:
• 3.绝对值的几何意义 • 从数轴上看, |a|表示数 a的点到原点的距
离(长度,非负); |a-b|表示数a 、数 b的两点 间的距离.
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能

去绝对值符号的几种常用方法

去绝对值符号的几种常用方法

去绝对值符号的几种常用方法本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March去绝对值符号的几种常用方法周健良绝对值是初中数学的一个难点.如何化去绝对值的符号呢?下面介绍几种去绝对值符号的常用方法.一、用绝对值的定义例1 已知1<a <3,求|1-a|+|3-a|的值.分析 由1<a 知1-a 是负数,由a <3知3-a 是正数,根据绝对值的定义可化去|1-a|+|3-a|的绝对值的符号.解 ∵1<a <3,∴1-a <0,3-a >0,故|1-a|+|3-a|= a -1+3-a=2.例2 计算|2131-|+|3141-|+|4151-|+…+|91101-| 解 原式=10191514141313121-+⋅⋅⋅+-+-+-5210121=-=. 评析 绝对值的定义也是去绝对值符号的一种方法.先判断绝对值符号里的代数式的值的符号,然后确定去绝对值符号后是原代数式本身还是它的相反数.二、用绝对值的性质例3 已知|a|=3,|b|=4,求|a +b|的值.解 ∵|a|=3,|b|=4,∴a=±3,b=±4.①当a=3,b=4时,|a+b|=3+4=7;②当a=3,b=-4时,|a+b|=|3+(-4)|=1;③当a=-3,b=4时,|a+b|=|-3+4|=1;④当a=-3,b=4时,|a+b|=|(-3)+(-4)|=7.例4 已知|a-1|+|ab-2|=0,求()()()()()()2006200612211111+++⋅⋅⋅+++++++b a b a b a ab 的值.解 ∵|a-1|+|ab-2|=0, ∴|a-1|=0,|ab-2|=0,解得a=1,b=2.∴原式=200820071541431321211⨯+⋅⋅⋅+⨯+⨯+⨯+⨯ =2008120071514141313121211-+⋅⋅⋅+-+-+-+-=20082007200811=-. 评析 互为相反数的绝对值相等,任何一个数的绝对值都是非负数.运用这些性质可去绝对值符号.三、用数形结合例5 数a 、b 、c 在数轴上对应的位置如图所示,化简|a+c|-|a|+|b|.解 由图示可得:b <0,c >a >0,∴a+c >0.原式= a+c-a+(-b )= c-b.评析在数轴上,有关的点所对应的数的符号一目了然,并且知道其到原点的距离的大小.透过图形,可以看清绝对值符号里代数式的值的符号,故能去绝对值符号.四、用分段比较例6比较a、|a|、-|a|、|-a|、-|-a|的大小.解①当a=0时,a=|a|=-|a|=|-a|=-|-a|=0;②当a>0时, a=|a|=|-a|>-|a|=-|-a|;③当a<0时,a=-|a|=-|-a|<|a|=|-a|.例7 求代数式|x+1|-|x+2|+|x-3|的最小值.分析代数式中有三个绝对值的符号,x分别取三个特殊值代入计算,比较结果,便可得出结论.解①当x =-1时,原式=|-1+1|-|-1+2|+|-1-3|=0-1+4=3;②当x =-2时,原式=|-2+1|-|-2+2|+|-2-3|=1-0+5=6;③当x =3时,原式=|3+1|-|3+2|+|3-3|=4-5+0=-1.综上所述,|x+1|-|x+2|+|x-3|的最小值是-1.评析最小的绝对值是0.由几个绝对值的和、差组成的代数式,若求其最小值,则应分别令各绝对值为0(称为分段),求出相应的字母的值后,再分别代入原代数式,计算结果.通过比较,得出结论.。

解绝对值题的关键:去绝对值符号

解绝对值题的关键:去绝对值符号

带绝对值符号的运算在初中数学教学中,如何去掉绝对值符号?因为这一问题看似简单,所以往往容易被人们忽视。

其实它既是初中数学教学的一个重点,也是初中数学教学的一个难点,还是学生容易搞错的问题。

那么,如何去掉绝对值符号呢?我认为应从以下几个方面着手:一、要理解数a的绝对值的定义。

在中学数学教科书中,数a的绝对值是这样定义的,“在数轴上,表示数a的点到原点的距离叫做数a的绝对值。

”学习这个定义应让学生理解,数a的绝对值所表示的是一段距离,那么,不论数a本身是正数还是负数,它的绝对值都应该是一个非负数。

二、要弄清楚怎样去求数a的绝对值。

从数a的绝对值的定义可知,一个正数的绝对值肯定是它的本身,一个负数的绝对值必定是它的相反数,零的绝对值就是零.在这里要让学生重点理解的是,当a是一个负数时,怎样去表示a的相反数(可表示为“-a”),以及绝对值符号的双重作用(一是非负的作用,二是括号的作用)。

三、掌握初中数学常见去掉绝对值符号的几种题型。

1、对于形如︱a︱的一类问题只要根据绝对值的3个性质,判断出a的3种情况,便能快速去掉绝对值符号。

当a〉0时,︱a︱=a(性质1:正数的绝对值是它本身);当a=0 时︱a︱=0(性质2:0的绝对值是0);当a〈0 时;︱a︱=–a (性质3:负数的绝对值是它的相反数) 。

2、对于形如︱a+b︱的一类问题首先要把a+b看作是一个整体,再判断a+b的3种情况,根据绝对值的3个性质,便能快速去掉绝对值符号进行化简。

当a+b〉0时,︱a+b︱=(a+b) =a +b(性质1:正数的绝对值是它本身);当a+b=0 时,︱a+b︱=(a+b)=0(性质2:0的绝对值是0);当a+b〈0 时,︱a+b︱=–(a+b)=–a—b (性质3:负数的绝对值是它的相反数)。

3、对于形如︱a—b︱的一类问题同样,仍然要把a—b看作一个整体,判断出a—b 的3种情况,根据绝对值的3个性质,去掉绝对值符号进行化简。

绝对值大全(零点分段法、化简、最值)

绝对值大全(零点分段法、化简、最值)

绝对值大全(零点分段法、化简、最值)绝对值大全(零点分段法、化简、最值)一、去绝对值符号的几种常用方法解含绝对值不等式的基本思路是去掉绝对值符号,使不等式变为不含绝对值符号的一般不等式,而后,其解法与一般不等式的解法相同。

因此掌握去掉绝对值符号的方法和途径是解题关键。

1利用定义法去掉绝对值符号根据实数含绝对值的意义,即|x |=(0)(0)x x x x ≥⎧⎨-<⎩,有|x |<c (0)(0)c x c c c -<<>⎧⇔⎨∅≤⎩;|x |>c (0)0(0)(0)x c x c c x c x R c <->>⎧⎪⇔≠=⎨⎪∈<⎩或2利用不等式的性质去掉绝对值符号4利用零点分段法去掉绝对值符号所谓零点分段法,是指:若数x,2x,……,n x1分别使含有|x-x|,|x-2x|,……,|x-n x|的代数式1中相应绝对值为零,称x,2x,……,n x为相应绝对1值的零点,零点x,2x,……,n x将数轴分为m+11段,利用绝对值的意义化去绝对值符号,得到代数式在各段上的简化式,从而化为不含绝对值符号的一般不等式来解,即令每项等于零,得到的值作为讨论的分区点,然后再分区间讨论绝对值不等式,最后应求出解集的并集。

零点分段法是解含绝对值符号的不等式的常用解法,这种方法主要体现了化归、分类讨论等数学思想方法,它可以把求解条理化、思路直观化。

5利用数形结合去掉绝对值符号解绝对值不等式有时要利用数形结合,利用绝对值的几何意义画出数轴,将绝对值转化为数轴上两点间的距离求解。

数形结合法较为形象、直观,可以使复杂问题简单化,此解法适用于-+-<(m为正常数)类型不等式。

-+->或||||x a x b m||||x a x b m对||||ax b cx d m+++>(或<m),当|a|≠|c|时一般不用。

二、如何化简绝对值绝对值的知识是初中代数的重要内容,在中考和各类竞赛中经常出现,含有绝对值符号的数学问题又是学生遇到的难点之一,解决这类问题的方法通常是利用绝对值的意义,将绝对值符号化去,将问题转化为不含绝对值符号的问题,确定绝对值符号内部分的正负,借以去掉绝对值符号的方法大致有三种类型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

带绝对值符号的运算
在初中数学教学中,如何去掉绝对值符号?因为这一问题看似简单,所以往往容易被人们忽视。

其实它既是初中数学教学的一个重点,也是初中数学教学的一个难点,还是学生容易搞错的问题。

那么,如何去掉绝对值符号呢?我认为应从以下几个方面着手:
一、要理解数a的绝对值的定义。

在中学数学教科书中,数a的绝对值是这样定义的,“在数轴上,表示数a的点到原点的距离叫做数a的绝对值。

”学习这个定义应让学生理解,数a的绝对值所表示的是一段距离,那么,不论数a本身是正数还是负数,它的绝对值都应该是一个非负数。

二、要弄清楚怎样去求数a的绝对值。

从数a的绝对值的定义可知,一个正数的绝对值肯定是它的本身,一个负数的绝对值必定是它的相反数,零的绝对值就是零。

在这里要让学生重点理解的是,当a是一个负数时,怎样去表示a的相反数(可表示为“-a”),以及绝对值符号的双重作用(一是非负的作用,二是括号的作用)。

三、掌握初中数学常见去掉绝对值符号的几种题型。

1、对于形如︱a︱的一类问题
只要根据绝对值的3个性质,判断出a的3种情况,便能快速去掉绝对值符号。

当a>0时,︱a︱=a(性质1:正数的绝对值是它本身);
当a=0 时︱a︱=0(性质2:0的绝对值是0) ;
当a<0 时;︱a︱=–a (性质3:负数的绝对值是它的相反数) 。

2、对于形如︱a+b︱的一类问题
首先要把a+b看作是一个整体,再判断a+b的3种情况,根据绝对值的3个性质,便能快速去掉绝对值符号进行化简。

当a+b>0时,︱a+b︱=(a+b) =a +b(性质1:正数的绝对值是它本身);
当a+b=0 时,︱a+b︱=(a+b) =0(性质2:0的绝对值是0);
当a+b<0 时,︱a+b︱=–(a+b)=–a-b (性质3:负数的绝对值是它的相反数)。

3、对于形如︱a-b︱的一类问题
同样,仍然要把a-b看作一个整体,判断出a-b 的3种情况,根据绝对值的3个性质,去掉绝对值符号进行化简。

但在去括号时最容易出现错误。

如何快速去掉绝对值符号,条件非常简单,只要你能判断出a与b的大小即可(不论正负)。

因为︱大-小︱=︱小-大︱=大-小,所以当a>b时,︱a-b︱=(a-b)= a-b,︱b-a︱=(a-b)= a-b 。

口诀:无论是大减小,还是小减大,去掉绝对值,都是大减小。

4、对于数轴型的一类问题,
根据3的口诀来化简,更快捷有效。

如︱a-b︱的一类问题,只要判断出a在b的右边(不论正负),便可得到︱a-b︱=(a-b)=a-b,︱b-a︱=(a-b)=a-b 。

(都是大的数a减去小的数b )
5、对于绝对值符号前有正、负号的运算
非常简单,去掉绝对值符号的同时,不要忘记打括号。

前面是正号的无所谓,如果是负号,忘记打括号就惨了,差之毫厘失之千里也!
去绝对值化简专题练习:
(1)设化简的结果是()。

(A)(B)(C)(D)
(2) 实数a、b、c在数轴上的位置如图所示,则代数式的值等于()。

(A)(B)(C)(D)
(3) 已知,化简的结果是。

(4) 已知,化简的结果是。

(5) 已知,化简的结果是。

(6) 已知a、b、c、d满足且,那么(提示:可借助数轴完成)
(7) 若,则有()。

(A)(B)(C)(D)
(8) 有理数a、b、c在数轴上的位置如图所示,则式子化简结果为().
(A)(B)(C)(D)
(9) 有理数a、b在数轴上的对应点如图所示,那么下列四个式子,
中负数的个数是().
(A)0 (B)1 (C)2 (D)3
(10) 化简
(11) 设x是实数,下列四个结论中正确的是()。

(A)y没有最小值
(B)有有限多个x使y取到最小值
(C)只有一个x使y取得最小值
(D)有无穷多个x使y取得最小值。

相关文档
最新文档