七年级数学第1卷(试题)

合集下载

人教版七年级上册数学 第一章 有理数 单元测试卷(含答案解析)

人教版七年级上册数学 第一章 有理数 单元测试卷(含答案解析)

人教版七年级上册数学第一章有理数单元测试卷一、单选题(共10小题,每小题3分,共30分)1.自2021年1月1日起,全市启动九类重点人群新冠疫苗接种工作.昌平设置46个疫苗接种点位,共配备医务人员1200多名.截至3月28日18时,昌平区累计新冠疫苗接种共完成1015000人次,整体接种秩序井然.将1015000用科学记数法表示应为()A.10.15×106B.1.015×106C.0.1015×107D.1.015×1072.12的相反数是()A.2B.﹣2C.12D.﹣123.下列四个数中,最小的数是()A.−|−3|B.(−3)2C.3D.04.点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A.|b|<2<|a|B.1﹣2a>1﹣2bC.﹣a<b<2D.a<﹣2<﹣b5.下列说法中错误的是()A.正分数、负分数统称分数B.零是整数,但不是分数C.正整数、负整数统称整数D.零既不是正数,也不是负数6.我们常用的数是十进制数,而计算机程序处理数据使用的只有数码0和1的二进制数,这二者可以相互换算,如将二进制数1011换算成十进制数应为:1×23+0×22+1×21+1×20=11.按此方式,则将十进制数7换算成二进制数应为()A.101B.110C.111D.11017.为求1+2+22+23+…+22008的值,可令S=1+2+22+23+…+22008,则2S=2+22+23+24+…+22009,因此2S-S=22009-1,所以1+2+22+23+…+22008=22009-1.仿照以上推理计算出1+3+32+33+…+32018的值是()A.32019-1B.32018-1C.32019−12D.32018−128.有理数a,b,c在数轴上对应的点的位置如图所示,则下列各式正确的个数有()①abc<0;①a−b+c<0;①|a|a+|b|b+|c|c=3;①|a−b|−|b+c|+|a−c|=2a.A.4个B.3个C.2个D.1个9.如图,数轴上每个刻度为1个单位长,则A,B 分别对应数a,b,且b-2a=7,那么数轴上原点的位置在()A.A 点B.B 点C.C 点D.D 点10.若abc≠0,则|a|a+|b|b+c|c|的值为()A.±3或±1B.±3或0或±1C.±3或0D.0或±1二、填空题(共5小题,每小题3分,共15分)11.据报道,某节日期间某市地铁二号线载客量达到17340000人次,再创历史新高.将数据17340000用科学记数法表示为.12.“ ★”定义新运算:对于任意有理数a、b,都有,例如: 7★4=42−7−1=8,那么(−5)★(−3)=.13.如图,小强有5张写着不同的数字的卡片:从中取出2张卡片,最大的乘积是,最小的商是.14.三个有理数a、b、c满足abc>0,则|a|a+|b|b+|c|c的值为.。

七年级数学第一章测试卷

七年级数学第一章测试卷

一、选择题(每题3分,共30分)1. 下列各数中,是整数的是()A. 3.14B. -2.5C. 0.001D. -32. 下列各数中,是负数的是()A. 2B. -3C. 0D. 1.53. 下列各数中,是正数的是()A. -1B. 0C. -0.5D. 14. 下列各数中,是偶数的是()A. 3B. 4C. 5D. 65. 下列各数中,是奇数的是()A. 2B. 3C. 4D. 56. 下列各数中,是最简整数的是()A. 12B. 18C. 24D. 367. 下列各数中,是质数的是()A. 11B. 12C. 13D. 148. 下列各数中,是合数的是()A. 9B. 10C. 11D. 129. 下列各数中,绝对值最大的是()A. -3B. -2C. -1D. 010. 下列各数中,绝对值最小的是()A. -3B. -2C. -1D. 0二、填空题(每题3分,共30分)11. 整数0既不是正数,也不是______数。

12. -5的绝对值是______。

13. 下列各数中,是奇数的是______,是偶数的是______。

14. 下列各数中,是质数的是______,是合数的是______。

15. 下列各数中,最简整数是______。

16. 下列各数中,绝对值最大的是______。

17. 下列各数中,绝对值最小的是______。

18. 下列各数中,是正数的是______。

19. 下列各数中,是负数的是______。

20. 下列各数中,是整数的是______。

三、解答题(每题10分,共30分)21. 列出比-2大而比-1小的两个整数。

22. 判断下列各数是质数还是合数,并说明理由。

a. 29b. 3523. 将下列各数写成最简整数形式。

a. 24b. 42四、应用题(每题10分,共20分)24. 小明有5个苹果,小红有8个苹果,他们两个一共有多少个苹果?25. 小华家养了15只鸡,比养了10只鸭的数目多5只,请问小华家养了多少只鸭?答案:一、选择题1. D2. B3. D4. B5. D6. B7. A8. B9. A 10. D二、填空题11. 负 12. 5 13. -1,0;2,4 14. a. 质数;b. 合数 15. 3,5,7,11,13,17,19,23 16. -5 17. 0 18. 1,2,3,… 19. -1,-2,-3,… 20. 0,±1,±2,±3,…三、解答题21. -1,0(答案不唯一)22. a. 29是质数,因为它只有1和29两个因数;b. 35是合数,因为它有1、5、7和35四个因数。

人教版数学七年级上册第1章 有理数 测试卷(含答案)

人教版数学七年级上册第1章 有理数 测试卷(含答案)

人教版数学七年级上册第1章有理数测试卷(含答案)一、选择题(本大题10小题,每小题3分,共30分)1.(3分)在1,0,2,﹣3这四个数中,最大的数是()A.1B.0C.2D.﹣32.(3分)2的相反数是()A.B.C.﹣2D.23.(3分)﹣5的绝对值是()A.5B.﹣5C.D.﹣4.(3分)﹣2的倒数是()A.2B.﹣2C.D.﹣5.(3分)下列说法正确的是()A.带正号的数是正数,带负号的数是负数B.一个数的相反数,不是正数,就是负数C.倒数等于本身的数有2个D.零除以任何数等于零6.(3分)在有理数中,绝对值等于它本身的数有()A.1个B.2个C.3个D.无穷多个7.(3分)比﹣2大3的数是()A.1B.﹣1C.﹣5D.﹣68.(3分)下列算式正确的是()A.3﹣(﹣3)=6B.﹣(﹣3)=﹣|﹣3|C.(﹣3)2=﹣6D.﹣32=9 9.(3分)据报道,2014年第一季度,广东省实现地区生产总值约1.36万亿元,用科学记数法表示为()A.0.136×1012元B.1.36×1012元C.1.36×1011元D.13.6×1011元10.(3分)近似数2.7×103是精确到()A.十分位B.个位C.百位D.千位二、填空题(本大题6小题,每小题4分,共24分)11.(4分)如果温度上升3℃记作+3℃,那么下降3℃记作.12.(4分)已知|a|=4,那么a=.13.(4分)在数轴上,与表示﹣3的点距离2个单位长度的点表示的数是.14.(4分)比较大小:3223.15.(4分)若(a﹣1)2+|b+2|=0,那么a+b=.16.(4分)观察下列依次排列的一列数:﹣2,4,﹣6,8,﹣10…按它的排列规律,则第10个数为.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)把下列各数在数轴上表示出来,并用“>“号连结起来.﹣3,﹣1.5,﹣1,2.5,4.18.(6分)﹣8﹣6+22﹣919.(6分)计算:﹣8÷(﹣2)+4×(﹣5).四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)小强有5张卡片写着不同的数字的卡片:他想从中取出2张卡片,使这2张卡片上数字乘积最大.你知道应该如何抽取吗?最大的乘积是多少吗?21.(7分)计算:(﹣+﹣)×(﹣12).22.(7分)计算:﹣22+3×(﹣1)4﹣(﹣4)×2.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)若|a|=5,|b|=3,求a+b的值.24.(9分)某班抽查了10名同学的期末成绩,以80分为基准,超出的记作为正数,不足的记为负数,记录的结果如下:+8,﹣3,+12,﹣7,﹣10,﹣3,﹣8,+1,0,+10(1)这10名同学中最高分数是多少?最低分数是多少?(2)这10名同学的平均成绩是多少.25.(9分)一辆汽车沿着南北方向的公路来回行驶,某天早晨从A地出发,晚上最后到达B地,约定向北正方向(如:+7表示汽车向北行驶7千米),当天行驶记录如下:+18,﹣9,+7,﹣14,﹣6,12,﹣6,+8.(单位:千米)问:(1)B地在A地的何方,相距多少千米?(2)若汽车行驶1千米耗油0.35升,那么这一天共耗油多少升?参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)1.(3分)在1,0,2,﹣3这四个数中,最大的数是()A.1B.0C.2D.﹣3【考点】有理数大小比较.【分析】根据正数大于0,0大于负数,可得答案.【解答】解:﹣3<0<1<2,故选:C.【点评】本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.2.(3分)2的相反数是()A.B.C.﹣2D.2【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:2的相反数是﹣2,故选:C.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.3.(3分)﹣5的绝对值是()A.5B.﹣5C.D.﹣【考点】绝对值.【分析】根据绝对值的性质求解.【解答】解:根据负数的绝对值等于它的相反数,得|﹣5|=5.故选A.【点评】此题主要考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.4.(3分)﹣2的倒数是()A.2B.﹣2C.D.﹣【考点】倒数.【分析】根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵﹣2×()=1,∴﹣2的倒数是﹣.故选D.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.5.(3分)下列说法正确的是()A.带正号的数是正数,带负号的数是负数B.一个数的相反数,不是正数,就是负数C.倒数等于本身的数有2个D.零除以任何数等于零【考点】有理数.【分析】利用有理数的定义判断即可得到结果.【解答】解:A、带正号的数不一定为正数,例如+(﹣2);带负号的数不一定为负数,例如﹣(﹣2),故错误;B、一个数的相反数,不是正数,就是负数,例如0的相反数是0,故错误;C、倒数等于本身的数有2个,是1和﹣1,正确;D、零除以任何数(0除外)等于零,故错误;故选:C.【点评】此题考查了有理数,熟练掌握有理数的定义是解本题的关键.6.(3分)在有理数中,绝对值等于它本身的数有()A.1个B.2个C.3个D.无穷多个【考点】绝对值.【分析】根据绝对值的意义求解.【解答】解:在有理数中,绝对值等于它本身的数有0和所有正数.故选D.【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.7.(3分)比﹣2大3的数是()A.1B.﹣1C.﹣5D.﹣6【考点】有理数的加法.【分析】先根据题意列出算式,然后利用加法法则计算即可.【解答】解:﹣2+3=1.故选:A.【点评】本题主要考查的是有理数的加法法则,掌握有理数的加法法则是解题的关键.8.(3分)下列算式正确的是()A.3﹣(﹣3)=6B.﹣(﹣3)=﹣|﹣3|C.(﹣3)2=﹣6D.﹣32=9【考点】有理数的乘方;相反数;有理数的减法.【分析】根据有理数的减法和有理数的乘方,即可解答.【解答】解:A、3﹣(﹣3)=6,正确;B、﹣(﹣3)=3,﹣|﹣3|=﹣3,故本选项错误;C、(﹣3)2=9,故本选项错误;D、﹣32=﹣9,故本选项错误;故选:A.【点评】本题考查了有理数的减法和有理数的乘方,解决本题的关键是熟记有理数的乘方和有理数的减法.9.(3分)据报道,2014年第一季度,广东省实现地区生产总值约1.36万亿元,用科学记数法表示为()A.0.136×1012元B.1.36×1012元C.1.36×1011元D.13.6×1011元【考点】科学记数法—表示较大的数.【分析】根据科学记数法的表示方法:a×10n,可得答案.【解答】解:1.36万亿元,用科学记数法表示为1.36×1012元,故选:B.【点评】本题考查了科学记数法,科学记数法中确定n的值是解题关键,指数n 是整数数位减1.10.(3分)近似数2.7×103是精确到()A.十分位B.个位C.百位D.千位【考点】近似数和有效数字.【分析】由于2.7×103=2700,而7在百位上,则近似数2.7×103精确到百位.【解答】解:∵2.7×103=2700,∴近似数2.7×103精确到百位.故选C.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起,到这个数完为止,所有这些数字叫这个数的有效数字.二、填空题(本大题6小题,每小题4分,共24分)11.(4分)如果温度上升3℃记作+3℃,那么下降3℃记作﹣3℃.【考点】正数和负数.【分析】此题主要用正负数来表示具有意义相反的两种量:上升记为正,则下降就记为负.【解答】解:∵温度上升3℃记作+3℃,∴下降3℃记作﹣3℃.故答案为:﹣3℃.【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.12.(4分)已知|a|=4,那么a=±4.【考点】绝对值.【分析】∵|+4|=4,|﹣4|=4,∴绝对值等于4的数有2个,即+4和﹣4,另外,此类题也可借助数轴加深理解.在数轴上,到原点距离等于4的数有2个,分别位于原点两边,关于原点对称.【解答】解:∵绝对值等于4的数有2个,即+4和﹣4,∴a=±4.【点评】绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.本题是绝对值性质的逆向运用,此类题要注意答案一般有2个,除非绝对值为0的数才有一个为0.13.(4分)在数轴上,与表示﹣3的点距离2个单位长度的点表示的数是﹣5或﹣1.【考点】数轴.【专题】探究型.【分析】由于所求点在﹣3的哪侧不能确定,所以应分在﹣3的左侧和在﹣3的右侧两种情况讨论.【解答】解:当所求点在﹣3的左侧时,则距离2个单位长度的点表示的数是﹣3﹣2=﹣5;当所求点在﹣3的右侧时,则距离2个单位长度的点表示的数是﹣3+2=﹣1.故答案为:﹣5或﹣1.【点评】本题考查的是数轴的特点,即数轴上右边的点表示的数总比左边的大.14.(4分)比较大小:32>23.【考点】有理数的乘方;有理数大小比较.【专题】计算题.【分析】分别计算32和23,再比较大小即可.【解答】解:∵32=9,23=8,∴9>8,即32>23.故答案为:>.【点评】本题考查了有理数的乘方以及有理数的大小比较,是基础知识要熟练掌握.15.(4分)若(a﹣1)2+|b+2|=0,那么a+b=﹣1.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列式求出a、b,然后相加即可得解.【解答】解:根据题意得,a﹣1=0,b+2=0,解得a=1,b=﹣2,所以,a+b=1+(﹣2)=﹣1.故答案为:﹣1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.(4分)观察下列依次排列的一列数:﹣2,4,﹣6,8,﹣10…按它的排列规律,则第10个数为20.【考点】规律型:数字的变化类.【分析】观察不难发现,这列数的绝对值是从2开始的连续偶数,并且第偶数个数是正数,第奇数个数是负数,然后写出第10个数即可.【解答】解:∵﹣2,4,﹣6,8,﹣10…,∴第10个数是正数数,且绝对值为2×10=20,∴第10个数是20,故答案为:20.【点评】本题是对数字变化规律的考查,比较简单,难点在于从绝对值和符号两个部分考虑求解.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)把下列各数在数轴上表示出来,并用“>“号连结起来.﹣3,﹣1.5,﹣1,2.5,4.【考点】有理数大小比较;数轴.【分析】先在数轴上表示各个数,再比较即可.【解答】解:4>2.5>﹣1>﹣1.5>﹣3.【点评】本题考查了有理数的大小比较,数轴的应用,能正确在数轴上表示各个数是解此题的关键,注意:在数轴上表示各个数,右边的数总比左边的数大.18.(6分)﹣8﹣6+22﹣9【考点】有理数的加减混合运算.【分析】直接进行有理数的加减运算.【解答】解:原式=﹣23+22=﹣1.【点评】本题考查有理数的运算,属于基础题,注意运算的顺序是关键.19.(6分)计算:﹣8÷(﹣2)+4×(﹣5).【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式先计算乘除运算,再计算加减运算即可得到结果.【解答】解:原式=4﹣20=﹣16,故答案为:﹣16【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)小强有5张卡片写着不同的数字的卡片:他想从中取出2张卡片,使这2张卡片上数字乘积最大.你知道应该如何抽取吗?最大的乘积是多少吗?【考点】规律型:数字的变化类.【分析】分析几个数可知要使抽取的数最大,需同时抽两个最大正数或两个最小的负数,即可使乘积最大.【解答】解:抽取﹣3和﹣8.最大乘积为(﹣3)×(﹣8)=24.【点评】两个负数的乘积为正数,且这两个负数越小,其乘积越大.21.(7分)计算:(﹣+﹣)×(﹣12).【考点】有理数的混合运算.【专题】计算题.【分析】根据有理数的混合运算的运算方法,应用乘法分配律,求出算式的值是多少即可.【解答】解:(﹣+﹣)×(﹣12)=(﹣)×(﹣12)+×(﹣12)﹣×(﹣12)=2﹣9+5=﹣2【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,注意乘法运算定律的应用.22.(7分)计算:﹣22+3×(﹣1)4﹣(﹣4)×2.【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:原式=﹣4+3+8=7.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)若|a|=5,|b|=3,求a+b的值.【考点】有理数的加法;绝对值.【分析】|a|=5,则a=±5,同理b=±3,则求a+b的值就应分几种情况讨论.【解答】解:∵|a|=5,∴a=±5,同理b=±3.当a=5,b=3时,a+b=8;当a=5,b=﹣3时,a+b=2;当a=﹣5,b=3时,a+b=﹣2;当a=﹣5,b=﹣3时,a+b=﹣8.【点评】正确地进行讨论是本题解决的关键.规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.24.(9分)某班抽查了10名同学的期末成绩,以80分为基准,超出的记作为正数,不足的记为负数,记录的结果如下:+8,﹣3,+12,﹣7,﹣10,﹣3,﹣8,+1,0,+10(1)这10名同学中最高分数是多少?最低分数是多少?(2)这10名同学的平均成绩是多少.【考点】正数和负数.【分析】(1)根据正负数的意义解答即可;(2)求出所有记录的和的平均数,再加上基准分即可.【解答】解:(1)最高分为:80+12=92分,最低分为:80﹣10=70分;(2)8﹣3+12﹣7﹣10﹣3﹣8+1+0+10=8+12+1+10+0﹣3﹣7﹣10﹣3﹣8=31﹣31=0,所以,10名同学的平均成绩80+0=80分.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.25.(9分)一辆汽车沿着南北方向的公路来回行驶,某天早晨从A地出发,晚上最后到达B地,约定向北正方向(如:+7表示汽车向北行驶7千米),当天行驶记录如下:+18,﹣9,+7,﹣14,﹣6,12,﹣6,+8.(单位:千米)问:(1)B地在A地的何方,相距多少千米?(2)若汽车行驶1千米耗油0.35升,那么这一天共耗油多少升?【考点】正数和负数.【专题】应用题.【分析】(1)把当天记录相加,然后根据正数和负数的规定解答即可;(2)先求出行驶记录的绝对值的和,再乘以0.35计算即可得解.【解答】解:(1)18﹣9+7﹣14﹣6+12﹣6+8=45﹣35=10,所以,B地在A地北方10千米;(2)18+9+7+14+6+12+6+8=80千米80×0.35=28升.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.。

浙教版七年级数学上册第1章有理数单元测试题含答案

浙教版七年级数学上册第1章有理数单元测试题含答案

第1章 有理数本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷30分,第Ⅱ卷90分, 共120分,考试时间120分钟. 第Ⅰ卷 (选择题 共30分)一、选择题(每小题3分,共30分) 1.-2的相反数是( )A .-2B .2C .12D .-122.在数0,2,-3,-1.2中,属于负整数的是( ) A .0 B .2 C .-3 D .-1.23.如图1,数轴上点A 表示的数可能是( )图1A .-3.7B .-3.2C .-2.7D .-2.24.在-4,0,-1,3这四个数中,最大的数是( )A .-4B .0C .-1D .35.若|x|=5,则x 的值是( )A .5B .-5C .±5D .156.如图2,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是( )图27.在体育课的跳远比赛中,以4.00米为标准,如果小东跳出了4.22米,可记做+0.22米,那么小东跳出了3.85米,应记做( )A .-0.15米B .+0.22米C .+0.15米D .-0.22米8.在数轴上,绝对值相等的两个数对应的点之间的距离为4,则这两个数分别是( )A .4和-4B .2和-4C .2和-2D .-2和49.一件商品的成本价是100元,提高50%后标价,又以8折出售,则这件商品的售价是( )A .150元B .120元C .100元D .80元10.探索规律:根据如图3中箭头指向的规律,可知从2016到2018箭头的方向图是( )图3图4请将选择题答案填入下表:题号 1 2 3 4 5 6 7 8 9 10 总分 答案第Ⅱ卷 (非选择题 共90分)二、填空题(每小题4分,共24分)11.在数-1,0,2中,负数是__________. 12.比较下列各对数的大小:(1)-13________0; (2)-34________-45;(3)+1________-100.13.在数-2,-113,5中,最小数的绝对值与最大数的和是__________.14. 在数轴上,比-3.2大的最小负整数是__________;不小于-2而小于3.1的非负整数是______________.15.到原点的距离小于3的点表示的数中整数有__________.16.在数轴上,点A 表示的数是1,点B ,C 表示的数互为相反数,且点C 与点A 间的距离为3,则点B 表示的数是____________.三、解答题(共66分)17.(6分)把下列各数填入相应的横线内: -5.7,+17,-34,0,-13,1213,2018,-0.168.正有理数:________________________; 负有理数:________________________; 整数:________________________; 分数:________________________. 18.(6分)比较下列各数的大小: (1)-5 和-6; (2)-23 和-56;(3)-3.14和-π; (4)0和-|-3.5|.19.(6分)在数轴上画出表示下列各数的点:1.5,-3,0,-212,同时画出表示它们相反数的点,并用“<”将这些数连接起来.20.(8分)若|a|=5,|b|=1,求a,b的值.21.(8分)小明的爸爸是车间主任,他们工厂为一家汽车厂生产了一批零件,为了检查这批零件是否合格,从中抽取了8个进行检查,比规定直径长的毫米数记做正数,比规定直径短的毫米数记做负数,检查记录(单位:毫米)如下:第1个第2个第3个第4个第5个第6个第7个第8个+0.4-0.2-0.1+0.2+0.3-0.3-0.4+0.5你认为第几个零件最好?怎样用所学过的绝对值的知识说明什么样的零件好些?22.(10分)王老师是七年级(1)班的数学老师.有一天,王老师上课时拿出一支2B铅笔让同学们估计它的长度,她先请五名同学把估计的数字写在黑板上,如图5所示,然后让学生用直尺量一量,如图6所示.(单位:厘米)(1)根据图6读出铅笔的长度大约是17.7厘米,以它为基准,规定大于这个值的厘米数为正,小于这个值的厘米数为负,用正、负数表示图5中的五个数;(2)哪一名同学的估计值最接近这支2B铅笔的长度?图5 图623.(10分)(1)对于式子|x|+13,当x等于什么值时有最小值?最小值是多少?(2)对于式子2-|x|,当x等于什么值时有最大值?最大值是多少?24.(12分)观察下面一列数,探求其规律:1 2,-23,34,-45,56,-67,….(1)写出第7,8,9个数;(2)第2018个数是什么?(3)如果这一列数无限排列下去,与哪两个数越来越接近?1.B 2.C 3.C 4.D 5.C 6.C 7.A 8.C 9. B 10. A 11.-112.(1)< (2)> (3)> 13.714.-3 0,1,2,3 15.±1,±2,0 16.2或-417.解:正有理数:+17,1213,2018;负有理数:-5.7,-34,-13,-0.168;整数:+17,0,-13,2018; 分数:-5.7,-34,1213,-0.168.18.解:(1)-5>-6. (2)-23>-56.(3)-3.14>-π. (4)0>-|-3.5|. 19.解:如图所示.由数轴可知:-3<-212<-1.5<0<1.5<212<3.20.解:∵|a |=5,|b |=1, ∴a =±5,b =±1.21.解:第3个零件最好.根据绝对值的意义,绝对值越小,说明零件与规定的直径的偏差越小,所以表中绝对值最小的那个零件最好.22.解:(1)这五个数可分别记做:-2.7厘米,+0.3厘米,-0.7厘米,+2.3厘米,-1.7厘米.(2)估计值为18厘米的这名同学的估计值最接近这支2B 铅笔的长度. 23.解:(1)当x =0时,|x |+13有最小值,最小值为13. (2)当x =0时,2-|x |有最大值,最大值为2. 24. 解:(1)第7,8,9个数分别为78,-89,910.(2)-20182019.(3)与1和-1越来越接近.。

人教版七年级数学第一章测试题

人教版七年级数学第一章测试题

a 10第一章测试卷一、选择题:(每题2分,共30分)1.下列说法正确的是( )A 。

所有的整数都是正数 B.不是正数的数一定是负数C.0不是最小的有理数 D 。

正有理数包括整数和分数2。

12的相反数的绝对值是( ) A 。

—12 B 。

2 C 。

-2 D 。

123.有理数a 、b 在数轴上的位置如图1-1所示,那么下列式子中成立的是( ) A 。

a 〉b B 。

a<b C.ab 〉0 D.0a b4.在数轴上,原点及原点右边的点表示的数是( ) A 。

正数 B 。

负数 C.非正数 D.非负数5.如果一个有理数的绝对值是正数,那么这个数必定是( )A.是正数B.不是0 C 。

是负数 D 。

以上都不对6。

下列各组数中,不是互为相反意义的量的是( )A.收入200元与支出20元 B 。

上升10米和下降7米C.超过0。

05mm 与不足0。

03m D 。

增大2岁与减少2升7。

下列说法正确的是( )A 。

-a 一定是负数; B.│a │一定是正数; C.│a │一定不是负数; D 。

-│a │一定是负数8。

如果一个数的平方等于它的倒数,那么这个数一定是( )A 。

0 B.1 C 。

-1 D.±19。

如果两个有理数的和除以它们的积,所得的商为零,那么,这两个有理数( )A.互为相反数但不等于零; B 。

互为倒数; C 。

有一个等于零; D 。

都等于零10.若0〈m<1,m 、m 2、1m的大小关系是( ) A.m 〈m 2<1m ; B.m 2<m<1m ; C.1m <m<m 2; D.1m<m 2<m 11。

4604608取近似值,保留三个有效数字,结果是( )A 。

4.60×106B 。

4600000;C 。

4.61×106D 。

4。

605×10612.下列各项判断正确的是( )A 。

a+b 一定大于a —b;B 。

数学七年级第一章测试卷

数学七年级第一章测试卷

一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的是:A. -3B. 2C. 0D. -52. 若a > 0,b < 0,则下列不等式中错误的是:A. a + b > 0B. a - b > aC. -a < bD. ab < 03. 下列各数中,是有理数的是:A. √2B. πC. 1/3D. √(-1)4. 已知数轴上点A表示的数为2,点B表示的数为-5,则点A和点B之间的距离是:A. 7B. 3C. -7D. -35. 在数轴上,点A表示的数是-3,点B表示的数是1,若点C在点A的左边,且AC=AB,则点C表示的数是:B. -5C. -6D. -76. 若一个数的相反数是-5,则这个数是:A. 5B. -5C. 0D. 不确定7. 下列各数中,属于无理数的是:A. √9B. 1/2C. √16D. √28. 已知数轴上点A表示的数为-4,点B表示的数为2,若点C在数轴上,且BC=AB,则点C表示的数是:A. -6B. -2C. 6D. 29. 若一个数的倒数是-1/3,则这个数是:A. -3B. 3C. 1/310. 在数轴上,点A表示的数是-2,点B表示的数是5,若点C在点A的右边,且AC=CB,则点C表示的数是:A. 3B. 4C. 5D. 6二、填空题(每题5分,共20分)11. 有理数的分类包括:_______、_______、_______。

12. 绝对值表示一个数与0的距离,所以绝对值总是_______。

13. 一个数的相反数与它的和是_______。

14. 若一个数的倒数是-1/4,则这个数是_______。

三、解答题(每题10分,共30分)15. 判断下列说法是否正确,并说明理由:(1)所有的整数都是有理数。

(2)所有的有理数都是整数。

(3)一个数的倒数乘以这个数等于1。

16. 已知数轴上点A表示的数为-5,点B表示的数为3,求点A和点B之间的距离。

人教版七年级数学上册第一章 有理数单元测试卷(含答案)

人教版七年级数学上册第一章 有理数单元测试卷(含答案)

人教版七年级数学上册第一章有理数一、选择题1.在−π3,3.1415,0,−0.333…,−227,2.010010001…中,非负数的个数( )A .2个B .3个C .4个D .5个2.长江干流上的葛洲坝、三峡向家坝、溪洛渡、白鹤滩、乌东德6座巨型梯级水电站,共同构成目前世界上最大的清洁能源走廊,总装机容量71695000千瓦,将71695000用科学记数法表示为( )A .7.1695×107B .716.95×105C .7.1695×106D .71.695×1063.生产厂家检测4个篮球的质量,结果如图所示,超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )A .B .C .D .4.下列说法正确的是( )A .1是最小的自然数B .平方等于它本身的数只有1C .任何有理数都有倒数D .绝对值最小的数是05.计算 3−(−3) 的结果是( )A .6B .3C .0D .-66.下列说法:①有理数与数轴上的点一一对应;②1的平方根是它本身;③立方根是它本身的数是0,1;④对于任意一个实数a ,都可以用1a表示它的倒数.⑤任何无理数都是无限不循环小数.正确的有( )个.A .0B .1C .2D .37.把数轴上表示数2的点移动3个单位后,表示的数为( )A .5B .1C .5或-1D .5或18.如果|a|=−a ,那么a 一定是( )A .正数B .负数C .非正数D .非负数9.法国的“小九九”从“一 一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算7×8和8×9的两个示例,且左手伸出的手指数不大于右手伸出的手指数.若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是( )7×8=?8×9=?因为两手伸出的手指数的和为5,未伸出的手指数的积为6,所以7×8=56.7×8=10×(2+3)+3×2=56因为两手伸出的手指数的和为7,未伸出的手指数的积为2,所以8×9=72.8×9=10×(3+4)+2×1=72A .2,4B .1,4C .3,4D .3,110.如图是节选课本110页上的阅读材料,请根据材料提供的方法求和:11×2+12×3+13×4+⋅⋅⋅+12020×2021,它的值是( )上题是利用一系列等式相加消去项达到求和,这种方法不仅限于整数求和,如1−12=11×2①12−13=12×3②13−14=13×4③14−15=14×5④ ……继续写出上述第n 个算式,并把这些算式两边分别相加,会得到:11×2+12×3+13×4+⋅⋅⋅+1n ×(n +1).A .1B .20202021C .20192020D .12021二、填空题11.12的相反数是  . 12.-2的绝对值是 13.定义一种新运算“⊗”,规则如下:a ⊗b =a 2−ab ,例如:3⊗1=32−3×1=6,则4⊗[2⊗(−5)]的值为  .14.如图所示的运算程序中,若开始输入的值为−2,则输出的结果为  .15.若a−2+|3−b |=0,则3a +2b = .16.若a ,b ,c 都不为0,则 a |a|+b |b|+c |c|+abc|abc|的值可能是 .三、解答题17.把下列各数在数轴上表示出来,并用“<”号把它们连接起来.−3,|−3|,32,(−2)2,−(−2)18.将有理数−2.5,0,212,2023,−35%,0.6分别填在相应的大括号里.整数:{ …};负数:{ …};正分数:{ …}19.小明有5张写着不同数字的卡片,完成下列各问题:(1)把卡片上的5个数在数轴上表示出来;(2)从中取出3张卡片,将这3张卡片上的数字相乘,乘积的最大值为 ;(3)从中取出2张卡片,将这2张卡片上的数字相除,商的最小值为 20.把相同的瓷碗按如图方式整齐地叠放在一起.叠放4个时,测量的高度为9.5cm;叠放6个时,测量的高度为12.5cm.(1)根据题意,可知每增加一个瓷碗,高度增加 cm;(2)求碗高;(3)若叠放10个瓷碗,高度为 cm.21.若a,b互为相反数,c,d互为倒数,m的绝对值为2.(1)直接写出a+b=______,cd=____,m=____.(2)求m−cd+3a+3bm的值.22.我们知道,|a|可以理解为|a−0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a−b|,反过来,式子|a−b|的几何意义是:数轴上表示数a的点和表示数b的点之间的距离,利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是_________,数轴上表示数−1的点和表示数−3的点之间的距离是_________.(2)数轴上点A用数a表示,则①若|a−3|=5,那么a的值是_________.②|a−3|+|a+6|有最小值,最小值是_________;③求|a+1|+|a+2|+|a+3|+⋯+|a+2021|+|a+2022|+|a+2023|的最小值.23.数轴上点A表示的数为10,点M,N分别以每秒a个单位长度,每秒b个单位长度的速度沿数轴运动,a,b满足|a-5|+(b-6)2=0.(1)请直接与出a= ,b= ;(2)如图1,点M从A出发沿数轴向左运动,到达原点后立即返回向右运动:同时点N从原点0出发沿数轴向左运动,运动时间为t,点P为线段ON的中点若MP=MA,求t的值:(3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为t时M运动到点A的右侧,若此时以M,N,O,A为端点的所有线段的长度和为142,求此时点M对应的数.答案解析部分1.【答案】B 2.【答案】A 3.【答案】B 4.【答案】D 5.【答案】A 6.【答案】B 7.【答案】C 8.【答案】C 9.【答案】A 10.【答案】B 11.【答案】﹣ 1212.【答案】213.【答案】−4014.【答案】815.【答案】1216.【答案】0或4或﹣417.【答案】图见解答,−3<32<−(−2)<|−3|<(−2)218.【答案】解:整数:0,2023;负数:−2.5,−35%;正分数:212,0.6.19.【答案】(1)解:如图所示(2)50(3)-820.【答案】(1)1.5(2)解:设碗高为xcm ,根据题意得x+1.5×3=9.5.解方程得,x=5 .答:碗高为5cm.(3)18.521.【答案】(1)0,1,±2;(2)1或−322.【答案】(1)5,2(2)①8或−2;②9;③1023132 23.【答案】(1)5;6(2)解:①点M未到达O时(0<t≤2时),NP=OP=3t,AM=5t,OM=10-5t,MP=3t+10-5t即3t+10-5t=5t,解得t=10 7,②点M到达O返回,未到达A点或刚到达A点时,即当(2<t≤4时),OM=5t-10,AM=20-5t,MP=3t+5t-10即3t+5t-10=20-5t,解得t=30 13③点M到达O返回时,在A点右侧,即t>4时OM=5t-10,AM=5t-20,MP=3t+5t-10,即3t+5t-10=5t-20,解得t=−103(不符合题意舍去).综上t=107或t=3013;(3)解:如下图:根据题意:NO=6t,OM=5t,所以MN=6t+5t=11t依题意:NO+OA+AM+AN+OM+MN=MN+MN+OA+MN=33t+10=142,解得t=4.此时M对应的数为20.。

人教版数学七年级上册-有理数单元测试卷

人教版数学七年级上册-有理数单元测试卷

人教版数学七年级上册-有理数单元测试卷考试范围:第1章有理数;考试时间:100分钟;满分:120分学校:___________姓名:___________班级:___________考号:___________ 题号一二三总分得分第Ⅰ卷(选择题)评卷人得分一.选择题(共10小题)1.如果电梯上升5层记为+5.那么电梯下降2层应记为()A.+2 B.﹣2 C.+5 D.﹣52.我国首艘国产航母于2018年4月26日正式下水,排水量约为65000吨,将65000用科学记数法表示为()A.6.5×10﹣4B.6.5×104C.﹣6.5×104D.65×1043.按括号内的要求用四舍五人法取近似数,下列正确的是()A.403.53≈403(精确到个位)B.2.604≈2.60(精确到十分位)C.0.0234≈0.0(精确到0.1)D.0.0136≈0.014(精确到0.0001)4.2018的相反数是()A.﹣2018 B.2018 C.﹣ D.5.如图,点A所表示的数的绝对值是()A.3 B.﹣3 C.D.6.如图,a、b两个数在数轴上的位置如图所示,则下列各式正确的是()A.a+b<0 B.ab<0 C.b﹣a<0 D.7.在下列执行异号两数相加的步骤中,错误的是()①求两个有理数的绝对值;②比较两个有理数绝对值的大小;③将绝对值较大数的符号作为结果的符号;④将两个有理数绝对值的和作为结果的绝对值A.①B.②C.③D.④8.我国是最早认识负数,并进行相关运算的国家.在古代数学名著《九章算术》里,就记载了利用算筹实施“正负术”的方法,图1表示的是计算3+(﹣4)的过程.按照这种方法,图2表示的过程应是在计算()A.B.D.5+29.时代超市出售的三种品牌月饼袋上,分别标有质量为:(500±5)g、(500±10)g、(500±20)g的字样,从中任意拿出两袋,它们的质量最多相差()A.10g B.20g C.30g D.40g10.下列说法:①若|a|=a,则a=0;②若a,b互为相反数,且ab≠0,则=﹣1;③若a2=b2,则a=b;④若a<0,b<0,则|ab﹣a|=ab﹣a.其中正确的个数有()A.1个B.2个C.3个D.4个第Ⅱ卷(非选择题)评卷人得分二.填空题(共5小题)11.一种零件的直径尺寸在图纸上是30±(单位:mm),它表示这种零件的标准尺寸是30mm,加工要求尺寸最大不超过mm.12.将数轴上表示﹣1的点A向右移动5个单位长度,此时点A所对应的数为.13.某市2018年元旦的最低气温为﹣1℃,最高气温为7℃,这一天的最高气温比最低气温高℃.14.若a、b互为倒数,则4ab=.15.在数﹣5,1,﹣3,5,﹣2中任取三个数相乘,其中最大的积是,最小的积是.评卷人得分三.解答题(共7小题)16.请你把下列各数填入表示它所在的数集的圈里:﹣2,﹣20%,﹣0.13,﹣7,10,,21,6.2,4.7,﹣8这四个集合合并在一起(填“是”或“不是”)全体有理数集合,若不是,缺少的是.17.计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13(2)4﹣8×(﹣)3(3)(4)18.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A、B两点的位置,分别写出它们所表示的有理数A:B:;(2)观察数轴,与点A的距离为4的点表示的数是:;(3)若将数轴折叠,使得A点与﹣3表示的点重合,则B点与数表示的点重合.19.有理数a、b、c在数轴上的位置如图,化简:|b﹣c|+|a+b|﹣|c﹣a|的值.20.阅读理解:数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如图,线段AB=1=0﹣(﹣1);线段BC=2=2﹣0;线段AC=3=2﹣(﹣1)问题(1)数轴上点M、N代表的数分别为﹣9和1,则线段MN=;(2)数轴上点E、F代表的数分别为﹣6和﹣3,则线段EF=;(3)数轴上的两个点之间的距离为5,其中一个点表示的数为2,则另一个点表示的数为m,求m.21.用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2+2ab+a.如:1☆3=1×32+2×1×3+1=16.(1)求(﹣2)☆3的值;(2)若(☆3)=8,求a的值.22.某公司股票上周五在股市收盘价(收市时的价格)为每股25.8元股,在接下来的一周交易日内,老何记下该股票每日收盘价比前一天的涨跌情况(记上涨为正,单位:元)﹒星期一二三四五每股涨跌(元)+2 ﹣0.5 +1.5 ﹣1.8 +0.8根据上表回答下列问题:(1)星期二收盘时,该股票每股多少元?(2)本周内该股票收盘时的最高价和最低价分别是多少元?(3)已知老何在周一收盘时买进该公司股票1000股,在周四以收盘价格将全部股票卖出.已知买入与卖出股票均需支付成交金额的3‰(千分之三)的交易费,问老何的收益情况如何?参考答案与试题解析一.选择题(共10小题)1.解:∵电梯上升5层记为+5,∴电梯下降2层应记为:﹣2.故选:B.2.解:65000=6.5×104,故选:B.3.解:403.53≈404(精确到个位),故选项A错误,2.604≈2.6(精确到十分位),故选项B错误,0.0234≈0.0(精确到0.1),故选项C正确,0.0136≈0.0136(精确到0.0001),故选项D错误,故选:C.4.解:2018的相反数是:﹣2018.故选:A.5.解:|﹣3|=3,故选:A.6.解:∵a在原点的左侧,b再原点的右侧,∴a<0,b>0,∴ab<0,∴B正确;∵a到原点的距离小于b到原点的距离,∴|a|<|b|,∴a+b>0,b﹣a>0,∴A、C错误;∵a、b异号,∴<0,∴D错误.故选:B.7.解:执行异号两数相加的步骤:①求两个有理数的绝对值,正确;②比较两个有理数绝对值的大小,正确;③将绝对值较大数的符号作为结果的符号,正确;④将两个有理数绝对值的和作为结果的绝对值,错误.故选:D.8.解:由图1知:白色表示正数,黑色表示负数,所以图2表示的过程应是在计算5+(﹣2),故选:C.9.解:由题意知:任意拿出两袋,最重的是520g,最轻的是480g,所以质量相差520﹣480=40(g).故选:D.10.解:①若|a|=a,则a=0或a为正数,错误;②若a,b互为相反数,且ab≠0,则=﹣1,正确;③若a2=b2,则a=b或a=﹣b,错误;④若a<0,b<0,所以ab﹣a>0,则|ab﹣a|=ab﹣a,正确;故选:B.二.填空题(共5小题)11.解:根据正数和负数的意义可知,图纸上是30±0.03(单位:mm),它表示这种零件的标准尺寸是30mm,误差不超过0.03mm;加工要求尺寸最大不超过30.03mm.故答案为:30.0312.解:﹣1+5=4.答:此时点A所对应的数为4.故答案为:4.13.解:由题意可得:这一天的最高气温比最低气温高7﹣(﹣1)=8(℃).故答案为:8.14.解:∵a、b两实数互为倒数,ab=1,∴4ab=4,故答案为:4.15.解:在数﹣5,1,﹣3,5,﹣2中任取三个数相乘,其中最大的积必须为正数,即(﹣5)×(﹣3)×5=75,最小的积为负数,即(﹣5)×(﹣3)×(﹣2)=﹣30.故答案为:75;﹣30.三.解答题(共7小题)16.这四个集合合并在一起不是全体有理数集合,缺少的是0.故答案为:不是;0.17.解:(1)原式=﹣20﹣14+18﹣13=﹣47+18=﹣29;(2)原式=4﹣8×(﹣)=4+1=5;(3)原式=(﹣﹣+)×36=﹣×36﹣×36+×36=﹣27﹣20+21=﹣26;(4)原式=÷﹣×16=×﹣=﹣=﹣.18.解:(1)由数轴上AB两点的位置可知,A点表示1,B点表示﹣2.5.故答案为:1,﹣2.5;(2)∵A点表示1,∴与点A的距离为4的点表示的数是5或﹣3.故答案为:5或﹣3;(3)∵A点与﹣3表示的点重合,∴其中点==﹣1,∵点B表示﹣2.5,∴与B点重合的数=﹣2+2.5=0.5.故答案为:0.5.19.解:由数轴可得,a<0<b<c,|b|<|a|<|c|,∴b﹣c<0,a+b<0,c﹣a>0,∴|b﹣c|+|a+b|﹣|c﹣a|=c﹣b﹣a﹣b﹣c+a=﹣2b.20.解:(1)∵点M、N代表的数分别为﹣9和1,∴线段MN=1﹣(﹣9)=10;故答案为:10;(2)∵点E、F代表的数分别为﹣6和﹣3,∴线段EF=﹣3﹣(﹣6)=3;故答案为:3;(3)由题可得,|m﹣2|=5,解得m=﹣3或7,∴m值为﹣3或7.21.解:(1)(﹣2)☆3=﹣2×32+2×(﹣2)×3+(﹣2)=﹣32;(2)☆3=×32+2××3+=8a+8=8,解得:a=0.22.解:(1)25.8+2﹣0.5=27.3(元);(2)周一25.8+2=27.8(元),周二27.3元,周三27.3+1.5=28.8(元),周四28.8﹣1.8=27(元),周五27+0.8=27.8(元)∴本周最高价为28.8元,最低价为27元;(3)(27﹣27.8)×1000﹣(27.8+27)×1000×3‰=﹣964.4(元),答:老何亏损了964.4元.。

七年级数学第一章有理数测试试卷及答案(共6套)

七年级数学第一章有理数测试试卷及答案(共6套)

七年级数学第一章有理数测试题(一)一、 选择题(每题3分,共30分)1、1999年国家财政收入达到11377亿元,用四舍五入法保留两个有效数字的近似值为( )亿元(A )4101.1⨯ (B )5101.1⨯ (C )3104.11⨯ (D )3103.11⨯ 2、大于–3.5,小于2.5的整数共有( )个。

(A )6 (B )5 (C )4 (D )33、已知数b a ,在数轴上对应的点在原点两侧,并且到原点的位置相等;数y x ,是互为倒数,那么xy b a 2||2-+的值等于( )(A )2 (B )–2 (C )1 (D )–14、如果两个有理数的积是正数,和也是正数,那么这两个有理数( ) (A )同号,且均为负数 (B )异号,且正数的绝对值比负数的绝对值大 (C )同号,且均为正数 (D )异号,且负数的绝对值比正数的绝对值大5、在下列说法中,正确的个数是( )⑴任何一个有理数都可以用数轴上的一个点来表示 ⑵数轴上的每一个点都表示一个有理数 ⑶任何有理数的绝对值都不可能是负数 ⑷每个有理数都有相反数A 、1B 、2C 、3D 、46、如果一个数的相反数比它本身大,那么这个数为( ) A 、正数 B 、负数 C 、整数 D 、不等于零的有理数7、下列说法正确的是( )A 、几个有理数相乘,当因数有奇数个时,积为负;B 、几个有理数相乘,当正因数有奇数个时,积为负;C 、几个有理数相乘,当负因数有奇数个时,积为负;D 、几个有理数相乘,当积为负数时,负因数有奇数个; 8、在有理数中,绝对值等于它本身的数有( )A.1个B.2个C. 3个D.无穷多个 9、下列计算正确的是()A.-22=-4B.-(-2)2=4C.(-3)2=6D.(-1)3=1 10、如果a <0,那么a 和它的相反数的差的绝对值等于( ) A.a B.0 C.-a D.-2a 二、填空题:(每题2分,共42分) 1、()642=。

七年级上册数学第一单元测试卷

七年级上册数学第一单元测试卷

第一单元有理数单元测试人教版数学七年级上册一、单选题(40分)1.如果温度上升6℃,记作6+℃,那么温度下降2℃()A .2-℃B .2+℃C .4-℃D .4+℃2.在下列选项中,具有相反意义的量是()A .盈利3万元和支出3万元B .增长100%和亏损100%C .胜两局和负三局D .前进和后退3.有理数中()A .有最大的负数B .有最小的整数C .有绝对值最小的数D .不是正有理数就是负有理数4.我国古代数学著作《九章算术》中首次正式引入负数,如果支出500元记作500-元,那么收入800元记作()A .800-元B .300-元C .300元D .800元5.下列数轴的画法正确的是()A .B .C .D .6.下列说法正确的是()A .数轴上的一个点可以表示不同的有理数B .数轴上有两个不同的点可以表示同一个有理数C .任何有理数都可以在数轴上找到与它对应的唯一的点D .有的有理数不能在数轴上表示出来7.若方程0p x -=无解,方程0q x -=有一个解,方程0r x -=有两个解,则()A .p q r <<B .<<p r qC .q p r <<D .r q p <<8.如图所示,把数轴上的点A 先向左移动3个单位,再向右移动7个单位得到点B ,若A 与B 表示的数互为相反数,则点A 表示的数是()A .0.5B .1-C .2-D .3-9.某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是()A .先打九五折,再打九五折B .先提价50%,再打六折C .先提价30%,再降价30%D .先提价25%,再降价25%10.如图,正六边形ABCDEF (每条边都相等)在数轴上的位置如图所示,点A 、F 对应的数分别为2-和1-,现将正六边形ABCDEF 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点E 所对应的数为0,连续翻转后数轴上2025这个数所对应的点是()A .A 点B .B 点C .C 点D .F 点二、填空题(20分)11.在数轴上与表示3-的点距离4个单位长度的点表示的数是.12.如果收入900元记作900+元,那么支出800元记作元.13.如图,点A 和B 在数轴上表示的数分别是20-和40,点C 在线段..AB 上移动,图中的三条线段AB AC 、和BC ,当其中有一条线段的长度是另外一条线段长度的2倍时,则点C 在数轴上表示的数为.14.按规定,食品包装袋上都应标明袋内装有食品多少克,如表是A B C D 、、、四种饼干的检验结果,“+、-”分别表示比标准重量多和少,用绝对值判断最符合标准的一种食品是.(填写饼干型号)AB C D 10+(g )8.5+(g )5+(g )3-(g )三、解答题15.(8分)画出数轴,在数轴上表示下列各数,并按从小到大用“<”把这些数连接起来.3.5,−2,0, 1.6-,13-,3 2.16.(8分)下列说法是否正确?正确的在括号内打“√”,不正确的打“×”(1)一个有理数不是正数就是负数.()(2)符号不同的两个数互为相反数.()(3)任何一个有理数都有相反数.()(4)如果一个数的相反数等于它的绝对值,那么这个数一定是负数.()17.(10分)小虫从某地点0出发在一直线上来回爬行,假定向右爬行的路程记为正,向左爬行的路程记为负,爬行的路程依次为(单位:厘米)5,3,10,8,6,9,12,10+-+---+-,问:(1)小虫是否回到原点0?(2)爬行过程中,如果每爬行1厘米奖励5粒芝麻,则小虫可得到多少粒芝麻?18.(14分)先阅读,并探究相关的问题:【阅读】a b -的几何意义是数轴上a ,b 两数所对的点A ,B 之间的距离,记作AB a b =-,如25-的几何意义:表示2与5两数在数轴上所对应的两点之间的距离;63+可以看做()63--,几何意义可理解为6与3-两数在数轴上对应的两点之间的距离.(1)数轴上表示x 和2-的两点A 和B 之间的距离可表示为____________;如果5AB =,求出x 的值;(2)探究:43x x ++-是否存在最小值,若存在,求出最小值;若不存在,请说明理由;参考答案:1.A2.C3.C4.D5.D6.C7.A8.C9.B10.B11.1或7-12.800-13.0或10或2014.D15.,−2< 1.6-<13-<0<32<3.516.(1)×(2)×(3)√(4)×17.(1)小虫没有回到原点(2)小虫可得到315粒芝麻18.(1)2x +,3x =或7-(2)存在,最小值是7。

2020年浙教版七年级数学上册第一章有理数单元同步试题(含答案)

2020年浙教版七年级数学上册第一章有理数单元同步试题(含答案)

浙教版数学七上第一章有理数单元测试第Ⅰ卷(选择题)一.选择题(共10小题)1.下列各式中无论m为何值,一定是正数的是()A.|m|B.|m+1|C.|m|+1 D.﹣(﹣m)2.已知a,b,c为非零的实数,则的可能值的个数为()A.4 B.5 C.6 D.73.已知a,b,c在数轴上的位置如图所示,化简|a+c|﹣|a﹣2b|﹣|c+2b|的结果是()A.4b+2c B.0 C.2c D.2a+2c4.|a|+|b|=|a+b|,则a,b关系是()A.a,b的绝对值相等B.a,b异号C.a+b的和是非负数D.a,b同号或其中至少一个为零5.如图,数轴上的六个点满足AB=BC=CD=DE=EF,则在点B、C、D、E对应的数中,最接近﹣10的点是()A.点B B.点C C.点D D.点E6.代数式|x﹣1|+|x+2|+|x﹣3|的最小值为()A.2 B.3 C.5 D.67.如图,数轴上有A,B,C,D四个整数点(即各点均表示整数),且2AB=BC=3CD.若A,D两点所表示的数分别是﹣5和6,则线段BD的中点所表示的数是()A.6 B.5 C.3 D.28.小嘉全班在操场上围坐成一圈.若以班长为第1人,依顺时针方向算人数,小嘉是第17人;若以班长为第1人,依逆时针方向算人数,小嘉是第21人.求小嘉班上共有多少人()A.36 B.37 C.38 D.399.10个互不相等的有理数,每9个的和都是“分母为22的既约真分数(分子与分母无公约数的真分数)”,则这10个有理数的和为()A.B.C.D.10.对于两个数,M=2008×20 092 009,N=2009×20 082 008.则()A.M=N B.M>N C.M<N D.无法确定第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共15小题)11.如图,x是0到4之间(包括0,4)的一个实数,那么|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|的最小值等于.12.如图,A点的初始位置位于数轴上表示1的点,现对A点做如下移动:第1次向左移动3个单位长度至B点,第2次从B点向右移动6个单位长度至C点,第3次从C点向左移动9个单位长度至D点,第4次从D点向右移动12个单位长度至E点,…,依此类推.这样第次移动到的点到原点的距离为2018.13.如图,在数轴上,点A表示的数为﹣1,点B表示的数为4,C是点B关于点A的对称点,则点C表示的数为.14.数轴上100个点所表示的数分别为a1、a2、a3…、a100,且当i为奇数时,a i+1﹣a i=2,当i 为偶数时,a i﹣a i=1,①a5﹣a1=;②若a100﹣a11=2m﹣6,则m=.+115.如果一个零件的实际长度为a,测量结果是b,则称|b﹣a|为绝对误差,为相对误差.现有一零件实际长度为5.0cm,测量结果是4.8cm,则本次测量的相对误差是.16.已知数轴上两点A、B对应的数分别是6,﹣8,M、N、P为数轴上三个动点,点M从A 点出发速度为每秒2个单位,点N从点B出发速度为M点的3倍,点P从原点出发速度为每秒1个单位.(1)若点M向右运动,同时点N向左运动,经过秒M与点N相距54个单位;(2)若点M、N、P同时都向右运动,经过秒点P到点M,N的距离相等.17.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x 的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x<1时,化简[x]+(x)+[x)的结果是.18.已知m、n、p都是整数,且|m﹣n|+|p﹣m|=1,则p﹣n=.19.点A1、A2、A3、…、A n(n为正整数)都在数轴上.点A2在点A1的左边,且A1A2=1;点A3在点A2的右边,且A2A3=2;点A4在点A3的左边,且A3A4=3;…,点A2018在点A2017的左边,且A2017A2018=2017,若点A2018所表示的数为2018,则点A1所表示的数为.20.一只小球落在数轴上的某点P0,第一次从p0向左跳1个单位到P1,第二次从P1向右跳2个单位到P2,第三次从P2向左跳3个单位到P3,第四次从P3向右跳4个单位到P4…,若小球从原点出发,按以上规律跳了6次时,它落在数轴上的点P6所表示的数是;若小球按以上规律跳了2n次时,它落在数轴上的点P2n所表示的数恰好是n+2,则这只小球的初始位置点P0所表示的数是.21.已知a,b,c,d为有理数,且|2a+b+c+2d+1|=2a+b﹣c﹣2d﹣2,则(2a+b﹣)(2c+4d+3)=.22.在数轴上,点P表示的数是a,点P′表示的数是,我们称点P′是点P的“相关点”,已知数轴上A1的相关点为A2,点A2的相关点为A3,点A3的相关点为A4…,这样依次得到点A1、A2、A3、A4,…,A n.若点A1在数轴表示的数是,则点A2016在数轴上表示的数是.23.一个点A从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位;….(1)第一次移动后这个点在数轴上表示的数是;(2)第二次移动后这个点在数轴上表示的数是;(3)第五次移动后这个点在数轴上表示的数是;(4)第n次移动后这个点在数轴上表示的数是.24.电影《哈利•波特》中,小哈利波特穿越墙进入“站台”的镜头(如示意图的Q站台),构思奇妙,能给观众留下深刻的印象.若A、B站台分别位于﹣,处,AP=2PB,则P站台用类似电影的方法可称为“站台”.25.四个数w、x、y、z满足x﹣2001=y+2002=z﹣2003=w+2004,那么其中最小的数是,最大的数是.评卷人得分三.解答题(共15小题)26.“幸福是奋斗出来的”,在数轴上,若C到A的距离刚好是3,则C点叫做A的“幸福点”,若C到A、B的距离之和为6,则C叫做A、B的“幸福中心”(1)如图1,点A表示的数为﹣1,则A的幸福点C所表示的数应该是;(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N所表示的数为﹣2,点C就是M、N的幸福中心,则C所表示的数可以是(填一个即可);(3)如图3,A、B、P为数轴上三点,点A所表示的数为﹣1,点B所表示的数为4,点P所表示的数为8,现有一只电子蚂蚁从点P出发,以2个单位每秒的速度向左运动,当经过多少秒时,电子蚂蚁是A和B的幸福中心?27.在东西向的马路上有一个巡岗亭A,巡岗员甲从岗亭A出发以13km/h速度匀速来回巡逻,如果规定向东巡逻为正,向西巡逻为负,巡逻情况记录如下:(单位:千米)第一次第二次第三次第四次第五次第六次第七次4﹣53﹣4﹣36﹣1(1)求第六次结束时甲的位置(在岗亭A的东边还是西边?距离多远?)(2)在第几次结束时距岗亭A最远?距离A多远?(3)巡逻过程中配置无线对讲机,并一直与留守在岗亭A的乙进行通话,问在甲巡逻过程中,甲与乙的保持通话时长共多少小时?28.随着人们的生活水平的提高,家用轿车越来越多地进入家庭.小明家买了一辆小轿车,他连续记录了7天中每天行驶的路程(如下表),以50km为标准,多于50km的记为“+”,不足50km的记为“﹣”,刚好50km的记为“0”.第一天第二天第三天第四天第五天第六天第七天路程(km)﹣9﹣130﹣14﹣16+33+19(1)求出这7天的行驶路程中最多的一天比最少的一天多行驶多少千米?(2)若每行驶100km需用汽油8升,每升汽油6.5元,计算小明家这7天的汽油费用共是多少元?29.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)|4﹣(﹣2)|的值.(2)若|x﹣2|=5,求x的值是多少?(3)同理|x﹣4|+|x+2|=6表示数轴上有理数x所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x,使得|x﹣4|+|x+2|=6,写出求解的过程.30.阅读下面文字,根据所给信息解答下面问题:把几个数用大括号括起来,中间用逗号隔开,如:{3,4};{﹣3,6,8,18},其中大括号内的数称其为集合的元素.如果一个集合满足:只要其中有一个元素a,使得﹣2a+4也是这个集合的元素,这样的集合称为条件集合.例如;{3,﹣2},因为﹣2×3+4=﹣2,﹣2恰好是这个集合的元素所以吕{3,﹣2}是条件集合:例如;(﹣2,9,8,},因为﹣2×(﹣2)+4=8,8恰好是这个集合的元素,所以{﹣2,9,8,}是条件集合.(1)集合{﹣4,12}是否是条件集合?(2)集合{,﹣,}是否是条件集合?(3)若集合{8,n}和{m}都是条件集合.求m、n的值.31.已知买入股票与卖出股票均需支付成交金额的0.5%的交易费,张先生上周星期五在股市收盘价每股20元买进某公司的股票1000股,下表为本周交易日内,该股票每天收盘时每股的涨跌情况:星期星期一星期二星期三星期四星期五每股涨跌/+2+3﹣2.5+3﹣2元注:①涨记作“+”,跌记作“﹣”;②表中记录的数据每天收盘价格与前一天收盘价格的变化量,星期一的数据是与上星期五收盘价格的变化量.(1)直接判断:本周内该股票收盘时,价格最高的是那一天?(2)求本周星期五收盘时,该股票每股多少元?(3)若张先生在本周的星期五以收盘价将全部股票卖出,求卖出股票应支付的交易费.32.在学习绝对值后,我们知道,表示a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点与原点的距离.|5﹣3|表示5、3在数轴上对应两点之间的距离,而|x+1|=|x ﹣(﹣1)|表示x,﹣1在数轴上对应两点之间的距离;一般的,点A、B之间的距离可表示为|a﹣b|.请根据绝对值的意义并结合数轴解答下列问题:(1)数轴上表示4和1的两点之间的距离是;若数轴上表示x、1的距离为4,即|x ﹣1|=4,则x的值为.(2)点A、B、C在数轴上分别表示有理数x、﹣3、1,那么,点A到点B的距离与点A到点C的距离之和可表示为(用含绝对值的式子表示),满足|x﹣4|+|x+1|=7的x的值为;(3)由以上探索猜想,对于任何有理数x,|x﹣4|+|x+5|是否有最小值?如果有,写出最小值,并写出此时x的取值范围;如果没有,说明理由.33.已知数轴上三点M,O,N对应的数分别为﹣1,0,3,点P为数轴上任意一点,其对应的数为x.(1)MN的长为;(2)如果点P到点M、点N的距离相等,那么x的值是;(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x的值;若不存在,请说明理由.(4)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.34.阅读与理解:如图,一只甲虫在5×5的方格(每个方格边长均为1)上沿着网格线爬行.若我们规定:在如图网格中,向上(或向右)爬行记为“+”,向下(或向左)爬行记为“﹣”,并且第一个数表示左右方向,第二个数表示上下方向.例如:从A到B记为:A→B(+1,+4),从D到C记为:D→C(﹣1,+2).思考与应用:(1)图中A→C(,),B→C(,),D→A(,)(2)若甲虫从A到P的行走路线依次为:(+3,+2)→(+1,+3)→(+1,﹣2),请在图中标出P的位置.(3)若甲虫的行走路线为A→(+1,+4)→(+2,0)→(+1,﹣2)→(﹣4,﹣2),请计算该甲虫走过的总路程.35.已知M、N在数轴上,M对应的数是﹣3,点N在M的右边,且距M点4个单位长度,点P、Q是数轴上两个动点;(1)直接写出点N所对应的数;(2)当点P到点M、N的距离之和是5个单位时,点P所对应的数是多少?(3)如果P、Q分别从点M、N出发,均沿数轴向左运动,点P每秒走2个单位长度,先出发5秒钟,点Q每秒走3个单位长度,当P、Q两点相距2个单位长度时,点P、Q对应的数各是多少?36.2017年国庆节放假八天,高速公路免费通行,各地风景区游人如织其中,其中闻名于世的北京故宫,在10月1日的游客人数就已经达到了7万人,接下来的七天中,每天的游客人数变化(单位:万人)如下表(正数表示比前一天多的人数,负数表示比前一天少的人数).(1)10月3日的人数为万人.(2)这八天,游客人数最多的是10月日,达到万人.游客人数最少的是10月日,为万人.(3)这8天参观故宫的总人数约为万人(结果精确到万位);(4)如果你们一家人打算在下一个国庆节参观故宫,请你对你们的出行日期提一个建议.37.同学们都知道:|3﹣(﹣2)|表示3与﹣2之差的绝对值,实际上也可理解为3与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示x与3的两点之间的距离可以表示为.(2)如果|x﹣3|=5,则x=.(3)同理|x+2|+|x﹣1|表示数轴上有理数x所对应的点到﹣2和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+2|+|x﹣1|=3,这样的整数是.(4)由以上探索猜想对于任何有理数x,|x+3|+|x﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.38.数学实验室:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B 两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:①数轴上表示2和5两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是.②数轴上表示x和﹣2的两点之间的距离表示为.数轴上表示x和5的两点之间的距离表示为.③若x表示一个有理数,则|x﹣1|+|x+3|的最小值=.④若x表示一个有理数,且|x+3|+|x﹣2|=5,则满足条件的所有整数x的是.⑤若x表示一个有理数,当x为,式子|x+2|+|x﹣3|+|x﹣5|有最小值为.39.观察下列两个等式:3+2=3×2﹣1,4+﹣1,给出定义如下:我们称使等式a+b=ab﹣1成立的一对有理数a,b为“椒江有理数对”,记为(a,b),如:数对(3,2),(4,)都是“椒江有理数对”.(1)数对(﹣2,1),(5,)中是“椒江有理数对”的是;(2)若(a,3)是“椒江有理数对”,求a的值;(3)若(m,n)是“椒江有理数对”,则(﹣n,﹣m)“椒江有理数对”(填“是”、“不是”或“不确定”).(4)请再写出一对符合条件的“椒江有理数对”(注意:不能与题目中已有的“椒江有理数对”重复)40.在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答问题.【提出问题】三个有理数a,b,c满足abc>0,求的值.【解决问题】解:由题意,得a,b,c三个有理数都为正数或其中一个为正数,另两个为负数.①a,b,c都是正数,即a>0,b>0,c>0时,则;②当a,b,c中有一个为正数,另两个为负数时,不妨设a>0,b<0,c<0,则.综上所述,值为3或﹣1.【探究】请根据上面的解题思路解答下面的问题:(1)三个有理数a,b,c满足abc<0,求的值;(2)若a,b,c为三个不为0的有理数,且,求的值.参考答案与试题解析一.选择题(共10小题)1.下列各式中无论m为何值,一定是正数的是()A.|m|B.|m+1|C.|m|+1 D.﹣(﹣m)【分析】直接利用绝对值的意义分析得出答案.【解答】解:A、|m|≥0,是非负数,不合题意;B、|m+1|≥0,是非负数,不合题意;C、|m|+1,一定是正数,符合题意;D、﹣(﹣m)=m,无法确定它的符号,故此选项错误.故选:C.【点评】此题主要考查了绝对值的意义,正确分析各数的符号是解题关键.2.已知a,b,c为非零的实数,则的可能值的个数为()A.4 B.5 C.6 D.7【分析】分a、b、c三个数都是正数,两个正数,一个正数,都是负数四种情况,根据绝对值的性质去掉绝对值号,再根据有理数的加法运算法则进行计算即可得解.【解答】解:①a、b、c三个数都是正数时,a>0,ab>0,ac>0,bc>0,原式=1+1+1+1=4;②a、b、c中有两个正数时,设为a>0,b>0,c<0,则ab>0,ac<0,bc<0,原式=1+1﹣1﹣1=0;设为a>0,b<0,c>0,则ab<0,ac>0,bc<0,原式=1﹣1+1﹣1=0;设为a<0,b>0,c>0,则ab<0,ac<0,bc>0,原式=﹣1﹣1﹣1+1=﹣2;③a、b、c有一个正数时,设为a>0,b<0,c<0,则ab<0,ac<0,bc>0,原式=1﹣1﹣1+1=0;设为a<0,b>0,c<0,则ab<0,ac>0,bc<0,原式=﹣1﹣1+1﹣1=﹣2;设为a<0,b<0,c>0,则ab>0,ac<0,bc<0,原式=﹣1+1﹣1﹣1=﹣2;④a、b、c三个数都是负数时,即a<0,b<0,c<0,则ab>0,ac>0,bc>0,原式=﹣1+1+1+1=2.综上所述,的可能值的个数为4.故选:A.【点评】本题考查了有理数的除法,绝对值的性质,难点在于根据三个数的正数的个数分情况讨论.3.已知a,b,c在数轴上的位置如图所示,化简|a+c|﹣|a﹣2b|﹣|c+2b|的结果是()A.4b+2c B.0 C.2c D.2a+2c【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:由数轴上点的位置得:b<a<0<c,且|b|>|c|>|a|,∴a+c>0,a﹣2b>0,c+2b<0,∴原式=a+c﹣a+2b+c+2b=2c+4b.故选:A.【点评】此题考查了数轴以及绝对值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.4.|a|+|b|=|a+b|,则a,b关系是()A.a,b的绝对值相等B.a,b异号C.a+b的和是非负数D.a,b同号或其中至少一个为零【分析】根据绝对值都是非负数,|a|+|b|=|a+b|,可得答案.【解答】解:∵|a|+|b|=|a+b|,∴a、b满足的关系是a、b同号或a、b有一个为0,或同时为0,故选:D.【点评】本题考查了绝对值,绝对值都是非负数,根据绝对值的和等于和的绝对值,得出两数的关系.5.如图,数轴上的六个点满足AB=BC=CD=DE=EF,则在点B、C、D、E对应的数中,最接近﹣10的点是()A.点B B.点C C.点D D.点E【分析】根据数轴上两点间的距离求出AF,然后求出AB的长度,再求出B、C、D表示的数,然后确定出与﹣10接近的点即可.【解答】解:由图可知,AF=﹣4﹣(﹣13)=﹣4+13=9,∵AB=BC=CD=DE=EF,∴AB==1.8,∴点B表示的数是﹣13+1.8=﹣11.2,点C表示的数是﹣13+1.8×2=﹣9.4,点D表示的数是﹣13+1.8×3=﹣7.6,∴最接近﹣10的点是点C.故选:B.【点评】本题考查了数轴以及线段等分点的定义,主要利用了数轴上两点间距离的求解,是基础题.6.代数式|x﹣1|+|x+2|+|x﹣3|的最小值为()A.2 B.3 C.5 D.6【分析】分为四种情况,去绝对值符号进行合并,即可得出答案.【解答】解:∵①当x<﹣2时,|x﹣1|+|x+2|+|x﹣3|=1﹣x﹣x﹣2+3﹣x=2﹣3x>8,②当﹣2≤x<1时,|x﹣1|+|x+2|+|x﹣3|=1﹣x+x+2+3﹣x=6﹣x,即5<6﹣x≤8③当1≤x<3时,|x﹣1|+|x+2|+|x﹣3|=x﹣1+x+2+3﹣x=4+x,即5≤4+x<7,④当x≥3时,|x﹣1|+|x+2|+|x﹣3|=x﹣1+x+2+x﹣3=3x﹣2≥7,∴|x﹣1|+|x+2|+|x﹣3|的最小值是5.故选:C.【点评】本题考查了绝对值的应用,注意:正数的绝对值等于它本身,0的绝对值式0,负数的绝对值等于它的相反数.7.如图,数轴上有A,B,C,D四个整数点(即各点均表示整数),且2AB=BC=3CD.若A,D两点所表示的数分别是﹣5和6,则线段BD的中点所表示的数是()A.6 B.5 C.3 D.2【分析】首先设出BC,根据2AB=BC=3CD表示出AB、CD,求出线段AD的长度,即可得出答案.【解答】解:设BC=6x,∵2AB=BC=3CD,∴AB=3x,CD=2x,∴AD=AB+BC+CD=11x,∵A,D两点所表示的数分别是﹣5和6,∴11x=11,解得:x=1,∴AB=3,CD=2,∴B,D两点所表示的数分别是﹣2和6,∴线段BD的中点表示的数是2.故选:D.【点评】题目考查了数轴的有关概念,利用数轴上的点、线段相关性质,考察学生对数轴知识的掌握情况,题目难易程度适中,适合学生课后训练.8.小嘉全班在操场上围坐成一圈.若以班长为第1人,依顺时针方向算人数,小嘉是第17人;若以班长为第1人,依逆时针方向算人数,小嘉是第21人.求小嘉班上共有多少人()A.36 B.37 C.38 D.39【分析】若以班长为第1人,依顺时针方向算人数,小嘉是第17人,此时共有17人;若以班长为第1人,依逆时针方向算人数,小嘉是第21人,此时共有21人,但班长和小嘉两次都数了,所以要减去2.【解答】解:根据题意小嘉和班长两次都数了,所以17+21﹣2=36.故选:A.【点评】主要考查正负数在实际生活中的应用.本题中班长和小嘉两次都数了,可能有学生考虑不到.9.10个互不相等的有理数,每9个的和都是“分母为22的既约真分数(分子与分母无公约数的真分数)”,则这10个有理数的和为()A.B.C.D.【分析】有条件:分母为22的既约真分数(分子与分母无公约数的真分数,用列举法逐个尝试即可得出答案.【解答】解:这10个有理数,每9个相加,一共得出另外10个数,由于原10个有理数互不相等,可以轻易得出它们相加后得出的另外10个数也是互不相等的,而这10个数根据题意都是分母22的既约真分数,而满足这个条件的真分数恰好正好有10个,∴这10项分别是:1/22,3/22,5/22,7/22,9/22,13/22,15/22,17/22,19/22,21/22.它们每一个都是原来10个有理数其中9个相加的和,那么,如果再把这10个以22为分母的真分数相加,得出来的结果必然是原来的10个有理数之和的9倍.所以,10个真分数相加得出结果为5,于是所求的10个有理数之和为5/9.故选:D.【点评】其实根据这个结果,还可逐一减去每一个真分数,从而得出每一个有理数具体的值10.对于两个数,M=2008×20 092 009,N=2009×20 082 008.则()A.M=N B.M>N C.M<N D.无法确定【分析】根据有理数大小比较的方法,以及乘法分配律可解.【解答】解:根据数的分成和乘法分配律,可得M=2008×(20 090 000+2009)=2008×20 090 000+2008×2009=2008×2009×10000+2008×2009=2009×20 080 000+2008×2009,N=2009×(20 080 000+2008)=2009×20 080 000+2009×2008,所以M=N.故选:A.【点评】熟练运用乘法分配律进行数的计算,然后比较各部分即可.二.填空题(共15小题)11.如图,x是0到4之间(包括0,4)的一个实数,那么|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|的最小值等于4.【分析】根据数轴上两点间的距离公式以及绝对值的意义,可求|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|的最小值.【解答】解:根据|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|的几何意义,可得|x﹣1|+|x﹣2|+|x﹣3|+|x ﹣4|表示x到数轴上1,2,3,4四个数的距离之和,∴当x在2和3之间的任意位置时,|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|有最小值,最小值为4.故答案为:4.【点评】本题主要考查了数轴以及数轴上两点间的距离公式的综合应用,解决问题的关键是掌握:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值.解题时注意:数轴上任意两点分别表示的数是a、b,则这两点间的距离可表示为|a﹣b|.12.如图,A点的初始位置位于数轴上表示1的点,现对A点做如下移动:第1次向左移动3个单位长度至B点,第2次从B点向右移动6个单位长度至C点,第3次从C点向左移动9个单位长度至D点,第4次从D点向右移动12个单位长度至E点,…,依此类推.这样第1345次移动到的点到原点的距离为2018.【分析】根据数轴上点的坐标变化和平移规律(左减右加),分别求出点所对应的数,进而求出点到原点的距离;然后对奇数项、偶数项分别探究,找出其中的规律(相邻两数都相差3),写出表达式就可解决问题.【解答】解:第1次点A向左移动3个单位长度至点B,则B表示的数,1﹣3=﹣2;第2次从点B向右移动6个单位长度至点C,则C表示的数为﹣2+6=4;第3次从点C向左移动9个单位长度至点D,则D表示的数为4﹣9=﹣5;第4次从点D向右移动12个单位长度至点E,则点E表示的数为﹣5+12=7;第5次从点E向左移动15个单位长度至点F,则F表示的数为7﹣15=﹣8;…;由以上数据可知,当移动次数为奇数时,点在数轴上所表示的数满足:﹣(3n+1),当移动次数为偶数时,点在数轴上所表示的数满足:(3n+2),当移动次数为奇数时,﹣(3n+1)=﹣2018,n=1345,当移动次数为偶数时,(3n+2)=2018,n=(不合题意).故答案为:1345.【点评】本题考查了数轴,以及用正负数可以表示具有相反意义的量,还考查了数轴上点的坐标变化和平移规律(左减右加),考查了一列数的规律探究.对这列数的奇数项、偶数项分别进行探究是解决这道题的关键.13.如图,在数轴上,点A表示的数为﹣1,点B表示的数为4,C是点B关于点A的对称点,则点C表示的数为﹣6.【分析】先根据已知条件可以确定线段AB的长度,然后根据点B、点C关于点A对称,设设点C所表示的数为x,列出方程即可解决.【解答】解:设点C所表示的数为x,∵数轴上A、B两点表示的数分别为﹣1和4,点B关于点A的对称点是点C,∴AB=4﹣(﹣1),AC=﹣1﹣x,根据题意AB=AC,∴4﹣(﹣1)=﹣1﹣x,解得x=﹣6.故答案为:﹣6.【点评】本题主要考查实数与数轴的对应关系和轴对称的性质,熟练掌握对称性质是解本题的关键.14.数轴上100个点所表示的数分别为a1、a2、a3…、a100,且当i为奇数时,a i+1﹣a i=2,当i ﹣a i=1,①a5﹣a1=6;②若a100﹣a11=2m﹣6,则m=70.为偶数时,a i+1﹣a i=2,当i为偶数时,a i+1﹣a i=1寻找规律【分析】依题意当i为奇数时,a i+1可得a5﹣a1=a5﹣a4+a4﹣a3+a3﹣a2+a2﹣a1=(a5﹣a4)+(a4﹣a3)+(a3﹣a2)+(a2﹣a1)=1+2+1+2+1=6 a100﹣a11=a100﹣a99+a99﹣a98+…+a12﹣a11=(a100﹣a99)+(a99﹣a98+)…+(a12﹣a11)=2+1+2+1+…+2=2×45+1×44=134从而得到答案.﹣a i=2,当i为偶数时,a i+1﹣a i=1【解答】解:①∵当i为奇数时,a i+1∴a5﹣a1=a5﹣a4+a4﹣a3+a3﹣a2+a2﹣a1=(a5﹣a4)+(a4﹣a3)+(a3﹣a2)+(a2﹣a1)=1+2+1+2=6;②∵a100﹣a11=a100﹣a99+a99﹣a98+…+a12﹣a11=(a100﹣a99)+(a99﹣a98+)…+(a12﹣a11)=2+1+2+1+…+2=2×45+1×44=134∴a100﹣a11=134=2m﹣6,∴m=70故答案为:6、70.【点评】本题主要考查了通过找规律解决问题,解题的关键点是找规律.15.如果一个零件的实际长度为a,测量结果是b,则称|b﹣a|为绝对误差,为相对误差.现有一零件实际长度为5.0cm,测量结果是4.8cm,则本次测量的相对误差是0.04.【分析】根据相对误差的计算公式代入计算即可.【解答】解:若实际长度为5.0cm,测量结果是4.8cm,则本次测量的相对误差为=0.04,故答案为:0.04.【点评】本题考查了有理数的减法和绝对值,正确理解绝对误差,相对误差的意义是解题的关键.16.已知数轴上两点A、B对应的数分别是6,﹣8,M、N、P为数轴上三个动点,点M从A 点出发速度为每秒2个单位,点N从点B出发速度为M点的3倍,点P从原点出发速度为每秒1个单位.(1)若点M向右运动,同时点N向左运动,经过5秒M与点N相距54个单位;(2)若点M、N、P同时都向右运动,经过或秒点P到点M,N的距离相等.【分析】(1)设经过x秒点M与点N相距54个单位,由点M从A点出发速度为每秒2个单位,点N从点B出发速度为M点的3倍,得出2x+6x+14=54求出即可;(2)首先设经过t秒点P到点M,N的距离相等,得出(2t+6)﹣t=(6t﹣8)﹣t或(2t+6)﹣t=t﹣(6t﹣8),进而求出即可.【解答】解:(1)设经过x秒点M与点N相距54个单位.依题意可列方程为:2x+6x+14=54,解方程,得x=5.故答案为:5.(2)设经过t秒点P到点M,N的距离相等.(2t+6)﹣t=(6t﹣8)﹣t或(2t+6)﹣t=t﹣(6t﹣8),t+6=5t﹣8或t+6=8﹣5tt=或t=,故答案为:或.【点评】此题主要考查了数轴,根据已知点运动速度得出以及距离之间的关系得出等式是解题关键.17.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x 的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x<1时,化简[x]+(x)+[x)的结果是﹣2或﹣1或0或1或2.【分析】分五种情况讨论x的范围:①﹣1<x<﹣0.5,②﹣0.5<x<0,③x=0,④0<x<0.5,⑤0.5<x<1即可得到答案.【解答】解:①﹣1<x<﹣0.5时,[x]+(x)+[x)=﹣1+0﹣1=﹣2;②﹣0.5<x<0时,[x]+(x)+[x)=﹣1+0+0=﹣1;③x=0时,[x]+(x)+[x)=0+0+0=0;④0<x<0.5时,[x]+(x)+[x)=0+1+0=1;⑤0.5<x<1时,[x]+(x)+[x)=0+1+1=2.故答案为:﹣2或﹣1或0或1或2.【点评】本题考查了学生对[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数)的理解,难度适中,解此题的关键是分类讨论思想的应用.18.已知m、n、p都是整数,且|m﹣n|+|p﹣m|=1,则p﹣n=±1.【分析】由于|m﹣n|+|p﹣m|=1,且m、n、p都是整数,那么只有两种情况:①|m﹣n|=1,p﹣m=0;②m﹣n=0,|p﹣m|=1;这两种情况都可以得出p﹣n=±1;从而求解.【解答】解:因为m,n,p都是整数,|m﹣n|+|p﹣m|=1,则有:①|m﹣n|=1,p﹣m=0;解得p﹣n=±1;②|p﹣m|=1,m﹣n=0;解得p﹣n=±1.综合上述两种情况可得:p﹣n=±1.故答案为:±1.【点评】本题主要考查了非负数的性质,根据已知条件求出p、n的关系式是解答本题的关键.19.点A1、A2、A3、…、A n(n为正整数)都在数轴上.点A2在点A1的左边,且A1A2=1;点A3在点A2的右边,且A2A3=2;点A4在点A3的左边,且A3A4=3;…,点A2018在点A2017的左边,且A2017A2018=2017,若点A2018所表示的数为2018,则点A1所表示的数为3027.【分析】根据题意得出规律:当n为奇数时,A n﹣A1=,当n为偶数时,A n=A1﹣,把n=2018代入求出即可.【解答】解:根据题意得:当n为奇数时,A n﹣A1=,当n为偶数时,A n﹣A1=﹣,2018为偶数,代入上述规律A2018﹣A1=﹣=﹣1009解得A1=3027.故答案为:3027.【点评】此题考查数字的变化规律,找出数字之间的联系,利用运算规律解决问题.20.一只小球落在数轴上的某点P0,第一次从p0向左跳1个单位到P1,第二次从P1向右跳2个单位到P2,第三次从P2向左跳3个单位到P3,第四次从P3向右跳4个单位到P4…,若小球从原点出发,按以上规律跳了6次时,它落在数轴上的点P6所表示的数是3;若小球按以上规律跳了2n次时,它落在数轴上的点P2n所表示的数恰好是n+2,则这只小球的初始位置点P0所表示的数是2.【分析】根据题意,可以发现题目中每次跳跃后相对于初始点的距离,从而可以解答本题.【解答】解:由题意可得,小球从原点出发,按以上规律跳了6次时,它落在数轴上的点P6所表示的数是6÷2=3,小球按以上规律跳了2n次时,它落在数轴上的点P2n所表示的数恰好是n+2,则这只小球的初始位置点P0所表示的数是:n+2﹣(2n÷2)=2,故答案为:3,2.。

浙教版七年级数学上册第一章测试题及答案

浙教版七年级数学上册第一章测试题及答案

浙教版七年级数学上册第一章测试题及答案第1章 测试卷一、选择题(每题3分,共30分)1. -15的相反数是( )A. -15B. 15C. -5D. 52. 如果潜水艇下潜3 m 记做-3 m ,那么潜水艇上浮4 m 记做( )A. 4 mB. -4 mC. 7 mD. 1 m3. 在0,1,-12,-1四个数中,最小的是( )A. 0B. 1C. -12D. -14. 数轴上表示-12的点到原点的距离是( )A. -12B. 12C. -2D. 25. 一个数的绝对值等于3,这个数是( )A. 3B. -3C. 3或-3D. 136. 下列各数:0. 01,10,-6. 67,-13,0,-90,-(-3),-|-2|,其中是负数的共有( )A. 2个B. 3个C. 4个D. 5个7. 下列说法正确的是( )A. 符号不同的两个数互为相反数B. 零的绝对值是它本身C. 一个数的绝对值一定是它本身D. 在有理数中,没有绝对值最小的数8. 如图所示的数轴被墨迹盖住了一部分,被盖住的整数点有( )(第8题)A. 7个B. 8个C. 9个D. 10个9. 在数轴上与表示-3的点的距离等于5的点所表示的数是( )A. -8B. 2C. -8和2D. 110. 如果a ,b 表示的是有理数,并且|a |+|b |=0,那么( )A. a ,b 的值不存在B. a 和b 符号相反C. a ,b 都不为0D. a =b =0二、填空题(每题3分,共24分)11. 在一批零件的检测中,如果一个零件的质量超过标准质量0. 05 g ,记做+0. 05g ,那么-0. 03 g 表示____________________.12. 在有理数-3,0,20,-1. 25,134,-|-12|,-(-5)中,正整数是__________,负整数是__________,非负数是________________.13. 最大的负整数是________,最小的正整数是________,绝对值最小的有理数是________.14. 比较大小:-34________-45(填“>”或“<”).15. 若|a -2|与|4-b |互为相反数,则b -a -1的值是________.16. 下面是杭州钱塘江段某年雨季一周内的水位变化情况(其中0表示警戒水位,高于警戒水位为正),则水位最高的是星期________.17. 数轴上-1所对应的点为A ,将A 点向右平移4个单位长度再向左平移6个单位长度,则此时A 点到原点的距离为________个单位长度.18. 在数轴上,点A 表示的数是1,点B ,C 表示的数互为相反数,且点C 与点A 间的距离为3,则点B 表示的数是________.三、解答题(19,20,21题每题6分,22,23题每题8分,24题12分,共46分)19. 把下列各数填在相应的横线上:15,-12,0. 81,-3,227,-3. 1,-4,171,0,3. 14,1. 6.正数:____________________________;负分数:________________________;非负整数:________________________;有理数:________________________.20. 如图,数轴上的点A,B,C,D,E大致分别表示什么数?其中哪些数互为相反数?(第20题)21. 在如图所示的数轴上表示下列各数,并按从小到大的顺序用“<”把这些数连接起来.-12,0,-2. 5,-3,112.(第21题)22. 为了有效控制酒后驾驶,A市某交警的汽车在一条南北方向的大街上巡逻,规定向北为正,向南为负,已知从出发点开始所行驶的路程(单位:千米)为+3,-2,+1,+2,-3,-1,+2.(1)若此时遇到紧急情况要求这辆汽车回到出发点,请问司机该如何行驶?(2)当该辆汽车回到出发点时,一共行驶了多少千米?23. 在社会实践活动中,环保小组甲、乙、丙三位同学一起连续五天记录了高峰时段10分钟内通过解放路的车辆数(向东为正,向西为负),如下表.(1)若每辆汽车排放的尾气一样多,哪一天的污染指数最高?哪一天的污染指数最低?(2)假如在这10分钟内,车辆数不超过60辆时,空气质量为良,车辆数超过60辆时,空气质量为差. 请你对这五天的空气质量作一个评价.24. 如图,在数轴上,点A表示的数是-30,点B表示的数是170.(第24题)(1)一只电子青蛙M,从点B出发,以每秒4个单位长度的速度向左运动. 同时另一只电子青蛙N,从点A出发,以每秒6个单位长度的速度向右运动. 假设它们在点C处相遇,求点C表示的数.(3)两只电子青蛙在点C处相遇后,继续沿原来的运动方向运动. 当电子青蛙M到达点A时,问:电子青蛙N处在什么位置?(4)如果电子青蛙M从点B出发向右运动,同时电子青蛙N也向右运动. (1)中其他条件不变,假设它们在点D处相遇,求点D所表示的数.答案一、1.B点拨:根据只有符号不同的两个数互为相反数求解即可.2.A3.D4.B点拨:数轴上的点到原点的距离就是该点所表示的数的绝对值.5.C点拨:因为|3|=3,|-3|=3,所以这个数是3或-3.6.C点拨:注意-(-3)=3,-|-2|=-2.7.B点拨:A.只有符号不同的两个数互为相反数,故本选项错误;B.零的绝对值是它本身,故本选项正确;C.零和正数的绝对值是它本身,故本选项错误;D.在有理数中,绝对值最小的数是零,故本选项错误.8.B9.C点拨:本题运用数形结合思想进行解答.在数轴上与表示-3的点的距离等于5的点,可能在表示-3的点的左边,也可能在表示-3的点的右边,据此即可求解.10.D二、11.零件的质量低于标准质量0.03 g12.20,-(-5);-3,-|-12|;0,20,134,-(-5)点拨:-|-12|=-12,-(-5)=5.13.-1;1;0点拨:最大的负整数是-1;最小的正整数是1;正数和负数的绝对值都是正数,0的绝对值是0,所以绝对值最小的有理数是0.14.>15.1点拨:根据|a-2|与|4-b|互为相反数,可得|a-2|+|4-b|=0,由绝对值的非负性可得a=2,b=4,所以b-a-1=4-2-1=1.16.二点拨:因为+0.41>+0.30>+0.25>+0.10>0>-0.13>-0.2,所以星期二的水位最高.17.318.2或-4三、19.解:正数:15,0.81,227,171,3.14,1.6;负分数:-12,-3.1;非负整数:15,171,0;有理数:15,-12,0.81,-3,227,-3.1,-4,171,0,3.14,1.6.20.解:由数轴上各点到原点的距离的大小可知各点所表示的数大致为:点A所表示的数是-3.8;点B所表示的数是-2.2;点C所表示的数是-0.8;点D所表示的数是0.8;点E所表示的数是2.2.故互为相反数的数有-0.8和0.8,-2.2和2.2.点拨:本题运用了数形结合思想,可根据数轴上各点到原点的距离估计出各点所表示的数,再根据相反数的定义解答.答案不唯一.21.解:各数在数轴上表示如图.(第21题)按从小到大的顺序排列为-3<-2.5<-12<0<112.22.解:(1)这辆汽车向北行驶了3+1+2+2=8(千米),向南行驶了2+3+1=6(千米),故此时这辆汽车应向南行驶8-6=2(千米).(2)|+3|+|-2|+|+1|+|+2|+|-3|+|-1|+|+2|+|-2|=16(千米).答:一共行驶了16千米.23.解:(1)由表可知,五天高峰时段10分钟内通过解放路的车辆数分别为65辆、40辆、50辆、85辆、55辆,所以第四天的污染指数最高,第二天的污染指数最低.(2)第二天、第三天、第五天的空气质量为良,第一天、第四天的空气质量为差.点拨:(1)污染指数的高低取决于车辆数的多少,车辆数越大,污染指数越高,反之,则越低,与汽车的行驶方向无关.(2)车辆数与汽车的行驶方向无关,只要求出每天通过的汽车辆数,再与60比较即可.24.解:(1)相遇时间为|-30-170|÷(6+4)=20(s).所以点C所表示的数是170-4×20=90.(2)当电子青蛙M到达点A时,相遇后所用的时间是|90-(-30)|÷4=30(s),所以电子青蛙N相遇后移动的距离是6×30=180,90+180=270,所以电子青蛙N处在表示270的点的位置.(3)它们在点D处相遇,所用的时间是|-30-170|÷(6-4)=100(s).电子青蛙M移动的距离为4×100=400,400+170=570,所以点D所表示的数是570.。

七年级数学第一章测试卷

七年级数学第一章测试卷

七年级数学第一章测试卷一、选择题(每题 3 分,共30 分)1.若气温上升2℃记作+2℃,那么气温下降3℃记作()。

A. -2℃B. +2℃C. -3℃D. +3℃2.下列各数中,最小的数是()。

A. 0B. -1C. -2D. 13.数轴上表示-3 的点与表示2 的点之间的距离是()。

A. 1B. 5C. -5D. -14.一个数的绝对值是5,则这个数是()。

A. 5B. -5C. 5 或-5D. 05.下列说法正确的是()。

A.正数和负数统称为有理数B.0 是最小的整数C.正整数、负整数和0 统称为整数D.有理数包括整数、分数和06.若a、b 互为相反数,则下列式子一定成立的是()。

A. a + b = 0B. a - b = 0C. ab = 0D. a÷b = 07.若|a| = 3,|b| = 2,且a>b,则a + b 的值为()。

A. 5 或1B. -5 或-1C. 5 或-1D. -5 或18.计算:(-2)+(-2)×(-2)的结果是()。

A. -6B. -2C. 2D. 69.下列各数中,是负数的是()。

A. |-2|B. (-2)²C. -(-2)D. -2²10.若|x| = 3,|y| = 4,且xy<0,则x + y 的值为()。

A. 1 或-1B. 7 或-7C. 1 或7D. -1 或-7二、填空题(每题 3 分,共18 分)11.-5 的相反数是______。

12.比较大小:-3______-4(填“>”“<”或“=”)。

13.绝对值小于4 的所有整数的和是______。

14.若a<0,b<0,则a + b______0(填“>”“<”或“=”)。

15.数轴上与表示-1 的点距离为3 的点所表示的数是______。

16.若规定“*”的运算法则为:a*b = ab - 1,则(-2)*3 的值为______。

三、解答题(共52 分)17.(8 分)把下列各数分别填在相应的集合里。

(人教版)初中数学七年级上册 全册测试卷一(附答案)

(人教版)初中数学七年级上册 全册测试卷一(附答案)

(人教版)初中数学七年级上册全册测试卷一(附答案)第一章综合测试一、选择题(每小题4分,共28分) 1.(舟山中考)6-的绝对值是( ) A.6B.6-C.16D.16-2.(台州中考)在12,0,1,2-这四个数中,最小的数是( )A.12B.0C.1D.2-3.下列各数:0.8-,123-,8.2--(), 2.7+-(),17-+(), 2 012+-.其中负数的个数是( ) A.6B.5C.4D.34.下列运算结果等于1的是( ) A.33-+-()() B.33---()() C.33-⨯-()D.33-÷-()()5.(福州中考)2010年某市启动了历史上规模最大的轨道交通投资建设,预计某市轨道交通投资将达到51 800 000 000元人民币.将51 800 000 000用科学记数法表示正确的是( ) A.105.1810⨯ B.951.810⨯ C.110.51810⨯D.851810⨯6.(吉林中考)如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是( )ABCD7.(舟山中考)一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,被截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是( )A.2 010B.2 011C.2 012D.2 013二、填空题(每小题5分,共25分) 8.3-的倒数是_______.9.(河南中考)计算:212-+-=()_______.10.用“<”“>”或“=”填空: (1)0.02-_______1;(2)45-_______56-;(3)34⎛⎫-- ⎪⎝⎭_______[(0.75)]-+-.11.绝对值大于1而小于4的整数有_______,其和为_______. 12.若a ,b 互为相反数,x ,y 互为倒数,则()xa b xy y+-=_______ 三、解答题(共47分)13.(14分)(1)2432232(2)(4)5⨯-÷---⨯;(2)2531324524864⎡⎛⎫⎤-+-⨯÷ ⎪⎢⎥⎣⎝⎭⎦.14.(10分)“十一”黄金周期间,某商场家电部大力促销,收银情况一直看好.下表为当天与前一天的营业额的涨跌情况(单位:万元).已知9月30日的营业额为26万元:(1)黄金周内营业额最低的是哪一天?那天的营业额是多少?(直接回答,不必写过程) (2)黄金周内平均每天的营业额是多少?15.(11分)有一出租车在一条南北走向直的公路上进行出租运营服务,如果规定向北为正,向南为负,出租车运营8次的行车里程如下(单位:千米):13+,7-,11+,10-,5-,9+,12-,8+.(1)将最后一位乘客送到目的地时,该出租车在出发点的什么方向?距离出发点多远? (2)若出租车耗油量为a 升/千米,则以上8次出租运营服务共耗油多少升?16.(12分)(中山中考)阅读下列材料:112(123012)3⨯=⨯⨯-⨯⨯,123(234123)3⨯=⨯⨯-⨯⨯,134(345234)3⨯=⨯⨯-⨯⨯,由以上三个等式相加,可得1122334345203⨯+⨯+⨯=⨯⨯⨯=.读完以上材料,请你计算下列各题:(1)1223341011⨯+⨯+⨯+⋯+⨯(写出过程); (2)122334(1)n n ⨯+⨯+⨯+⋯+⨯+=_______; (3)123234345789⨯⨯+⨯⨯+⨯⨯+⋯+⨯⨯=_______.第一章综合测试答案解析一、 1.【答案】A 2.【答案】【解析】正数大于0,负数小于0,正数大于负数,所以上述四个数中最小的数是2-. 3.【答案】C 4.【答案】D【解析】因为336-+-=-()(); 330---=()(); 339-⨯-=();331÷-=(-)().5.【答案】A6.【答案】C7.【答案】D 二、8.【答案】13- 9.【答案】5 10.【答案】(1)< (2)> (3)=【解析】(1)因为负数小于正数,所以0.02-<1.(2)因为40.85-=,50.836-≈,又因为5465-->,所以4556-->.(3)因为330.7544⎛⎫--== ⎪⎝⎭,[(0.75)]0.75-+-=, 所以3[(0.75)]4⎛⎫--=-+- ⎪⎝⎭.11.【答案】23±±, 0 12.【答案】1- 三、13.【答案】(1)原式2916(8)165=⨯-÷--⨯18280=+- 60=-(2)原式253131242424248645⎛⎫-⨯-⨯+⨯⨯ ⎪⎝⎭= 2519418245⎛⎫=--+⨯ ⎪⎝⎭ 2515245⎛⎫=+⨯ ⎪⎝⎭25115551124552424=⨯+⨯=+=.14.【答案】(1)10月7日的营业额最低,营业额是26万元.(2)30333535343126732++++++÷=(),即黄金周内每天的平均营业额是32万元. 15.【答案】(1)137111059128+-+--+-+ 131198710512=++++----()()4134=- 7=(千米).答:将最后一位乘客送到目的地时,该出租车在出发点向北方向,距离出发点有7千米. (2)()1371111059128175a a ++-+++-+-+++-++⨯=(升). 答:以上8次出租运营服务共耗油75a 升. 16.【答案】(1)1223341011⨯+⨯+⨯+⋯+⨯111(123012)(23412 3) (10111291011)333=⨯⨯-⨯⨯+⨯⨯-⨯⨯++⨯⨯-⨯⨯L 11011124403=⨯⨯⨯=. (2)1(1)(2)3n n n ++(3)123234345789⨯⨯+⨯⨯+⨯⨯++⨯⨯L1111(23451234)(12340123)(789106789)444=⨯⨯⨯-⨯⨯⨯++⨯⨯⨯-⨯⨯⨯+⨯⨯⨯-⨯⨯⨯L 178910 1 2604=⨯⨯⨯⨯=.第二章综合测试一、选择题(每小题4分,共28分) 1.下列说法正确的是( ) A.x 的指数是0B.x 的系数是0C.3-是一次单项式D.23ab -的系数是23-2.下列式子中,整式的个数为( )1x a +,abc ,225b ab -,πy x+,2xy -,5- A.3B.4C.5D.63.若A 是3次多项式,B 也是3次多项式,则A B +一定是( ) A.6次多项式B.次数不低于3次的多项式C.次数不高于3次的整式D.以上答案都不正确4.单项式233πxy z -的系数和次数分别是( )A.π-,5B.1-,6C.3x -,6D.3-,7 5.四个连续偶数中,最小的一个为22n -(),则最大的一个是( ) A.2(2)3n -+ B.2(1)n + C.23n +D.2(2)n +6.()223422x x x x --+=-,括号内应填( )A.2532x x --B.23x x -+C.232x x -++D.232x x -+-7.(衢州中考)如图,边长为3m +()的正方形纸片剪出一个边长为m 的正方形之后剩余部分又剪拼成一个长方形(不重叠无缝隙).若拼成的长方形一边长为3,则另一边长是( )A.23m +B.26m +C.3m +D.6m +二、填空题(每小题5分,共25分)8.已知单项式312n a b +与223m a b --是同类项,则23m n +=______. 9.254143a b ab --+是______次______项式,常数项为______. 10.若40.5m x y -与36m x y 的次数相同,则m =______. 11.(绥化中考)若2345x x --的值为7,则2453x x --的值为______. 12.如图所示,它是一个程序计算器,用字母及符号把它的程序表达出来为______,如果输入3m =,那么输出______.三、解答题(共47分)13.(10分)试说明把一个两位数的十位上的数字与个位上的数字互换位置后所得的新两位数与原两位数之和可被11整除。

北师大版七年级上学期期末考试数学试卷(含答案)一

北师大版七年级上学期期末考试数学试卷(含答案)一

北师大版七年级数学第一学期期末考试试题及答案本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共2页,满分为48分;第Ⅱ卷共4页,满分为102分.本试题共6页,满分为150分.考试时间为120分钟.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的考点、姓名、准考证号、座号填写在答题卡上和试卷规定的位置上.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.第I 卷(选择题共48分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣12的相反数是( )A .12B .121C .121-D .﹣12 2.下列各图中,表示“射线CD ”的是( )A .B .C .D .3.下列图形中,不是正方体表面展开图的是( )A .B .C .D .4.小明投掷一枚硬币100次,出现“正面朝上”51次,则“正面朝上”的频率为( )A .49B .51C .0.49D .0.515.由5个相同的小正方体组成的几何体如图所示,从正面看该几何体得到的平面图形是( )A .B .C .D .6.世界文化遗产﹣﹣长城的总长约为2100000m ,数据2100000用科学记数法可表示为( )A .0.21×107B .2.1×105C .2.1×106D .21×1057.下列各选项中不是同类项的是( )A .﹣3与13B .2a 与2bC .5x 2y 与﹣2x 2yD .﹣xy 与2yx8.下列调查中最适合采用全面调查的是( )A .调查七(1)班学生定制校服的尺寸B .调查市场上奶制品的质量情况C .调查黄河水质情况D .调查全市《习语近人》节目的观看情况9.若x =1是关于x 的方程2x +a =0的解,则a 的值为( )A .﹣1B .﹣2C .1D .210.一幢房子一面墙的形状由一个长方形和一个三角形组成(如图),若把该墙面设计成长方形形状,面积保持不变,且底边长仍为a ,则这面墙的高度应该为( )A .2b +hB .h b 21C .b +2hD .b +h 11.如图,在正方形ABCD 中,E 为DC 边上一点,沿线段BE 对折后,若∠ABF 比∠EBF 大15°,则∠EBC 的度数是( )A .15°B .20°C .25°D .30°第11题图 第12题图 12.“格子乘法”作为两个数相乘的一种计算方法,最早在15世纪由意大利数学家帕乔利提出,在明代的《算法统宗》一书中被称为“铺地锦”.如图1,计算47×51,将乘数47计入上行,乘数51计入右行,然后以乘数47的每位数字乘以乘数51的每位数字,将结果计入相应的格子中,最后按斜行加起来,得2397.如图2,用“格子乘法”表示两个两位数相乘,则a 的值为( )A .2B .3C .4D .5第Ⅱ卷(非选择题共102分)注意事项:1.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.2.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.﹣23= .14.五边形的对角线一共有 条.15.在空气的成分中,氮气约占78%,氧气约占21%,其他微量气体约占1%.若要表示以上信息,最合适的统计图是 .16.如图是一个生日蛋糕盒,这个盒子棱数一共有 条.17.下面的框图表示了小明解方程3(x +5)+x =﹣5的流程:其中,步骤“③”的依据是 .18.已知1<x <a ,写一个符合条件的x (用含a 的代数式表示): .三、解答题:(本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(本题4分)计算:(﹣3.2)+12.5+(﹣16.8)﹣(﹣2.5).20.(本题4分)化简:(x +2)﹣(3﹣2x ).21.(本题4分)解方程:3x ﹣2=4+x .22.(本题5分)根据下列语句,画出图形.如图,已知四点A ,B ,C ,D .①画直线AB ;②连接AC 、BD ,相交于点O ;③画射线AD ,BC ,交于点P .23.(本题5分)解方程:36231=+--x x24.(本题6分)如图,是由6个大小相同的小立方体块搭建的几何体,其中每个小正方体的棱长为1厘米.请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.25.(本题6分)先化简,再求值:xy +2y 2+2(x 2﹣y 2)﹣2(x 2﹣xy ),其中x =﹣3,y =2.26.(本题6分)有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:(1)与标准重量比较,8筐白菜总计超过或不足多少千克?(2)若白菜每千克售价2元,则出售这8筐白菜可卖多少元?27.(本题8分)某学校计划在八年级开设“折扇”“刺绣”“剪纸”“陶艺”四门校本课程,要求每人必须参加,并且只能选择其中一门课程,为了解学生对这四门课程的选择情况,学校从八年级全体学生中随机抽取部分学生进行问卷调查,并根据调查结果绘制成如图所示的条形统计图和扇形统计图.(部分信息未给出)请你根据以上信息解决下列问题:(1)参加问卷调查的学生人数为名,补全条形统计图(画图并标注相应数据);(2)“陶艺”课程所对应的扇形圆心角的度数是°?(3)若该校八年级一共有1000名学生,试估计选择“刺绣”课程的学生有多少名?28.(本题8分)某校七年级(1)班想买一些运动器材供班上同学大课间活动使用,班主任安排班长去商店买篮球和排球,下面是班长与售货员的对话:班长:阿姨,您好!售货员:同学,你好,想买点什么?根据这段对话,请你求出篮球和排球的单价各是多少元?29.(本题10分)阅读下面材料:数学课上,老师给出了如下问题如图1,∠AOB=80°,OC平分∠AOB,若∠BOD=20°,请你补全图形,并求∠COD的度数.以下是小明的解答过程:解:如图2,因为OC平分∠AOB,∠AOB=80°,所以∠BOC=∠AOB=°.因为∠BOD=20°,所以∠COD=∠BOC + =°.小静说:“我觉得这个题有两种情况,小明考虑的是OD在∠AOB外部的情况,事实上,OD还可能在∠AOB的内部”.完成以下问题:(1)请你将小明的解答过程补充完整;(2)根据小静的想法,请你在图3中画出另一种情况对应的图形,并求出此时∠COD的度数.30.(本题12分)在数学综合实践活动课上,小亮同学借助于两根小木棒m、n研究数学问题:如图,他把两根木棒放在数轴上,木棒的端点A、B、C、D在数轴上对应的数分别为a、b、c、d,已知|a+5|+(b+1)2=0,c=3,d=8.(1)求m和n的长度;(2)小亮把木棒m、n同时沿x轴正方向移动,m、n的速度分别为4个单位/s和3个单位/s,设平移时间为t (s)①若在平移过程中原点O恰好是木棒m的中点,则t=(s);②在平移过程中,当木棒m、n重叠部分的长为2个单位长度时,求t的值.。

人教版七年级上册数学第1章测试卷及答案

人教版七年级上册数学第1章测试卷及答案

XX 学校 用心用情 服务教育!精品基础教育教学资料,仅供参考,需要可下载使用!人教版七年级数学上册第一章《有理数》数学试题卷(满分120分,时间90分钟)一、选择题 (每题3分,共30分)1. 下列各数中,最大的数( )A. 2-B. 1-C. 0D. 12. 下列各组数中都是正数或都是负数的是( )A.4、2、-3B.3.6、7、13C. 6-、0.5-、0D.0、4、83. 下列说法错误..的是( ) A. 0的绝对值是0B. 正数的绝对值是本身C. 任意一个数的绝对值必是正数D. 互为相反数的两个数绝对值相等4. 在数轴上表示2-,0, 6.3,15-的点中,在原点右边的整数点有( ) A. 0个B. 1个C. 2个D. 3个5.15-的相反数是( )A.15B.15-C. 15±D.1156. 15-=( ) A. 15-B.15C. 5D. 5-7. 计算()31-+-的结果是( ) A. 2B. 2-C. 4D. 4-8. 下列计算错误的是( )XX 学校 用心用情 服务教育!A. ()220---=B. 347--=-C. ()7310---=-D. 12153-=-9. 对于式子()32-,下列说法不正确的是( )A. 指数是3B. 底数是2-C. 幂是8-D. 表示3个2相乘10. 据统计,地球上的海洋面积约为361 000 0002km ,该数字用科学记数法表示为3.6110n⨯,则n 的值为( )A. 6B. 7C. 8D. 9二、填空题(每小题3分,共30分)11. 已知下列各数: 3.14-,24,27+,172-,516,0.01-,0其中整数有 个. 12. 数轴上表示互为相反数的两个点之间的距离为4,则这两个数是 . 13. ()5--的相反数是 . 14. 绝对值不大于3的整数有 .15. 已知两个数是3和5-,则这两个数的和的绝对值是 . 16. 若m 、n 互为相反数,则8m n ++= . 17. ()5--的相反数是 .18. 若利民商店平均每天可盈利120元,则一个月(按30天算)的利润是 元;若利民商店每天亏损20元,则一周(7天)的利润是 元. 19. ()3540000-⨯用科学记数法表示为 .20. 8.4348精确到0.01的近似数是 .三、解答题(共60分)21. 计算(每小题5分,共20分)①()()()5352-++++-②()()29---③()()1.23-⨯- ④()32122316293⎛⎫--⨯-÷- ⎪⎝⎭22. (8分)把有理数5,1-,0,6-,π,0.3,132-,154+,0.72-分别填入下列数集内。

人教版七年级数学上册第一章有理数综合测试题(含答案)

人教版七年级数学上册第一章有理数综合测试题(含答案)

第一章有理数综合测试卷第Ⅰ卷 (选择题 共30分)一、选择题(每题3分,共30分) 1.6.0009精确到千分位是( ) A .6.0 B .6.00 C .6.000 D .6.0012.某商场购进某品牌上衣30件,下列与购进某品牌上衣30件具有相反意义的量是( )A .发给员工这种上衣10件B .售出这种上衣10件C .这种上衣剩余10件D .穿着这种上衣10件3.在-0.4217中用数字3替换其中的一个非零数字后,使所得的数最小,则被替换的数字是( )A .4B .2C .1D .74.对下列各式计算结果的符号判断正确的是( ) A .(-2)×(-213)×(-3)<0 B .(-5)-5+1>0C .(-1)+(-13)+12>0 D .(-1)×(-2)<05.两数相减,如果差等于减数的相反数,那么下列结论中正确的是( ) A .减数一定是零 B .被减数一定是零C .原来两数互为相反数D .原来两数的和等于1 6.下面是小卢做的数学作业,其中正确的是( )①0-(+47)=47;②0-(-714)=714;③(+15)-0=-15;④(-15)+0=-15.A .①②B .①③C .①④D .②④7.某工厂为了完成一项任务,第一天工作15分钟,以后的五天中,后一天的工作时间都是前一天的2倍,则第六天的工作时间是( )A .1.5小时B .3小时C .4.8小时D .8小时8.计算12÷(-3)-2×(-3)的结果是( )A.-18 B.-10 C.2 D.189.如图1,数轴上的点P,O,Q,R,S表示某城市一条大街上的五个公交车站点,有一辆公交车距P站点3 km,距Q站点0.7 km,则这辆公交车的位置在( )图1A.R站点与S站点之间 B.P站点与O站点之间C.O站点与Q站点之间 D.Q站点与R站点之间10.计算机中常用的十六进制是逢16进1的记数制,采用数字0~9和字母A~F共16个记数符号,这些符号与十进制的数的对应关系如下表:例如,用十六进制表示5+A=F,3+F=12,E+D=1B,那么A+C=( )A.16 B.1C C.1A D.22请将选择题答案填入下表:第Ⅱ卷(非选择题共70分)二、填空题(每题3分,共18分)11.倒数为3的数是________.12.已知a-3与b+4互为相反数,则a+b=________.13.每袋大米以50 kg 为标准,其中超过标准的千克数记为正数,不足标准的千克数记为负数,则图2中自左向右数第3袋大米的实际重量是________kg .图214.若|x +2|+|y -3|=0,则x -y 的值为________.15.2016年春节期间,在网络上搜索“开放二孩”,能搜索到与之相关的结果个数约为45100000,这个数用科学记数法表示为__________.16.为了缓解城市拥堵,某市对非居民区的公共停车场制定了不同的收费标准(见下表).如果小王某次停车3小时,缴费24元,请你判断小王该次停车所在地区的类别是________(填“一类、二类、三类”中的一个).三、解答题(共52分)17.(本小题满分6分)把下列各数分别填在相应的括号里: -7,3.01,2018,-0.142,0.1,0,99,-75.整数集合:{ …}; 分数集合:{ …}; 负有理数集合:{ …}.18.(本小题满分6分)一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续向东走了1千米到达小红家,又向西走了10千米到达小刚家,最后回到百货大楼.(1)以百货大楼为原点,以向东的方向为正方向,用1个单位长度表示1千米,请你在数轴上表示出小明、小红、小刚家的位置;(2)小明家与小刚家相距多远?图319.(本小题满分6分)规定“*”是一种新的运算法则:a*b=a2-b2,其中a,b为有理数.(1)求2*6的值;(2)求3*[(-2)*3]的值.20.(本小题满分6分)计算: (1)-14-(1-0.5)÷3×[2-(-3)2];(2)0.7×1949+234×(-14)+0.7×59+14×(-14).21.(本小题满分6分)小宇在做分数的乘除法练习时,把一个数乘-213错写成除以-213,得到的结果是1835,这道题的正确结果应该是多少?22.(本小题满分7分)小明有5张写着不同数的卡片,请你分别按要求抽出卡片,写出符合要求的算式:-3 -5 0 +3 +4(1)从中取出2张卡片,使这2张卡片上的数的乘积最大; (2)从中取出2张卡片,使这2张卡片上的数相除的商最小;(3)从中取出2张卡片,使这2张卡片上的数通过有理数的运算后得到的结果最大;(4)从中取出4张卡片,使这4张卡片通过有理数的运算后得到的结果为24.(写出一种即可)23.(本小题满分7分)某检修小组乘车从A地出发,在东西方向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶路程记录如下(单位:千米):(1)在第________次记录时距A地最远;(2)求收工时距A地多远;(3)若每千米耗油0.1升,每升汽油需7.2元,则检修小组工作一天需汽油费多少元?24.(本小题满分8分)股民吉姆上星期买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况(上涨记为正,下跌记为负,星期六、星期日股市休市)(单位:元):(1)星期三收盘时,每股是多少元?(2)本周内每股最高价是多少元?最低价是多少元?(3)已知吉姆买进股票时付了1.5‰的手续费,卖出时还需付成交额的1.5‰的手续费和1‰的交易税,如果吉姆在星期五收盘前将股票全部卖出,他的收益情况如何?1.D 2.B 3.B 4.A 5.B 6.D 7.D 8.C 9.D 10.A 11.1312.-1 13.49.3 14.-5 15.4.51×10716.二类 17.解:整数集合:{-7,2018,0,99,…};分数集合:⎩⎨⎧⎭⎬⎫3.01,-0.142,0.1,-75,…;负有理数集合:⎩⎨⎧⎭⎬⎫-7,-0.142,-75,….18.解:(1)如图:(2)根据(1)可得小明家与小刚家相距4-(-5)=9(千米). 19.解:(1)根据题意,得2*6=22-62=4-36=-32. (2)根据题意,得(-2)*3=4-9=-5, 则3*[(-2)*3]=3*(-5)=9-25=-16.20.解:(1)原式=-1-0.5×13×(2-9)=-1-16×(-7)=-1+76=16.(2)原式=0.7×(1949+59)+(-14)×(234+14)=0.7×20-14×3=14-14×3=14×(1-3)=14×(-2)=-28.21.解:根据题意,得1835×(-73)×(-73)=145.22.解:(1)(-3)×(-5)=15. (2)-5÷(+3)=-53.(3)(-5)4=625.(4)答案不唯一,如[(-3)-(-5)]×(+3)×(+4)=2×12=24. 23.解:(1)由题意,得第一次距A 地|-3|=3(千米);第二次距A地|-3+8|=5(千米);第三次距A地|-3+8-9|=4(千米);第四次距A地|-3+8-9+10|=6(千米);第五次距A地|-3+8-9+10+4|=10(千米);而第六次、第七次是向相反的方向又行驶了8千米,所以在第五次记录时距A地最远.故答案为五.(2)根据题意,得-3+8-9+10+4-6-2=2(千米).答:收工时距A地2千米.(3)根据题意,得检修小组工作一天行驶的路程为|-3|+|+8|+|-9|+|+10|+|+4|+|-6|+|-2|=42(千米),42×0.1×7.2=30.24(元).答:检修小组工作一天需汽油费30.24元.24.解:(1)星期三收盘时,每股是27+4+4.5-1=34.5(元).(2)本周内每股最高价为27+4+4.5=35.5(元),最低价为27+4+4.5-1-2.5-6=26(元).(3)买入成本:1000×27×(1+1.5‰)=27040.5(元),卖出所得:1000×26×(1-1.5‰-1‰)=25935(元).收益:25935-27040.5=-1105.5(元).答:如果吉姆在星期五收盘前将股票全部卖出,他将亏损1105.5元.。

人教版七年级数学上册 第1章 有理数 综合测试卷(含答案)

人教版七年级数学上册   第1章   有理数   综合测试卷(含答案)

人教版数学七年级上册第一章有理数综合测试卷(时间90分钟,满分120分)题号一二三总分得分第Ⅰ卷(选择题)一.选择题(本大题共10小题,每小题3分,共30分)1.下列说法中正确的是()A.任何有理数的绝对值都是正数B.最大的负有理数是-1C.0是最小的数D.如果两个数互为相反数,那么它们的绝对值相等2.若m-2的相反数是5,那么-m的值是( )A.+7 B.-7C.+3 D.-33.在有理数|-1|,(-1)2018,-(-1),(-1)2019,-|-1|中,负数的个数是()A.0个B.1个C.2个D.3个4.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是()C .(+39)+(-7)D .(+39)-(+7)6.已知a >0,b <0,|a|<|b|<1,那么下列判断正确的是( ) A .1-b >-b >1+a >a B .1+a >a >1-b >-b C .1+a >1-b >a >-b D .1-b >1+a >-b >a7.近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程将达到23 000公里,将23 000用科学记数法表示应为( ) A .2.3×104 B .23×103 C .2.3×103 D .0.23×1058. 运用加法的运算律计算(+613)+(-18)+(+423)+(-6.8)+18+(-3.2)最适当的是( )A .[(+613)+(+423)+18]+[(-18)+(-6.8)+(-3.2)]B .[(+613)+(-6.8)+(+4)=+[(-18)+18+(-3.2)]C .[(+613)+(-18)=+[(+4)+(-6.8)]+[18+(-3.2)]D .[(+613)+(+423)]+[(-18)+18]+[(-3.2)+(-6.8)]9.若ab≠0,则a |a|+|b|b 的值不可能是( )A .2B .0C .-2D .110.计算机是将信息转换成二进制数进行处理的.二进制即“逢2进1”,如(1101)2表示二进制数,将它转换成十进制形式是1×23+1×22+0×21+1=13,那么将二进制(1 111)2转换成十进制形式是数( ) A .8 B .15 C .20 D .30第Ⅱ卷(非选择题)二.填空题(共8小题,3*8=24)11.如果全班某次数学测试的平均成绩为83分,某同学考了85分,记作+2分,得分80分应记作__________. 12.数轴上一个点先向左移动2个单位长度,再向右移动6个单位长度,终点所表示的数是-2,那么原来的点表示的数是_________.13. 若m ,n 互为相反数,x ,y 互为倒数.求2019m +2019n -2020xy 的值是_______________.14.若a 和b 是符号相反的两个数,在数轴上a 所对应的点和b 所对应的点相距6个单位长度,如果a =2,则b 的值为________.15.在数轴上与表示-1的点相距4个单位长度的点表示的数是___________.17.如图是一个计算程序,若输入a 的值为-1,则输出的结果应为_________.18.-32,(-2)3,(-13)2,(-12)3的大小顺序是________________________________.三.解答题(共9小题,66分)19. (6分)已知|x|=5,|y|=3,且x>y.求x +y 的值.20. (6分) 有一根长为64米的钢筋,第一次截去一半,第二次截去剩下的一半,如此下去,截去第六次后剩下的钢筋长多少米?21. (6分)武汉市质量技术监督局从某食品厂生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,把超过或不足的部分分别用正、负数来表示,记录如下表:与标准质量的差值(单位:克) -6 -2 0 1 3 4 袋数143453(1)若标准质量为450克,则抽样检测的20袋食品的总质量为多少克? (2)若该种食品的合格标准为450±5 g ,求该食品的抽样检测的合格率.22. (6分)在社会实践活动中,环保小组甲、乙、丙三位同学一起连续5天调查高峰时段10分钟内通过解放路的车流情况(向东为正,向西为负).作了如下记录:(1)若每辆汽车排放的尾气一样多,哪一天的污染指数最高?哪一天的污染指数最低?(2)假如车流量不超过60辆时,空气质量为良,车流量超过60辆时,空气质量为差,请你对这五天的空气质量作一个评价.23. (6分)阅读第①小题的计算方法,再计算第②小题. ①-556+(-923)+1734+(-312)解:原式=[(-5)+(-56)]+[(-9)+(-23)]+(17+34)+[(-3)+(-12)]=[(-5)+(-9)+(-3)+17]+[(-56)+(-23)+(-12)+34]=0+(-114)=-114. 上述这种方法叫做拆项法.灵活运用加法的交换律、结合律可使运算简便. ②仿照上面的方法计算:(-2 01923)+(-2 02056)+4 038+(-12).24. (8分)计算: (1)-191718×6;(2)-370×(-14)+0.25×24.5+512×25%.(3)(-1)3-14×[2-(-3)2];(4)-|-9|÷(-3)+(12-23)×12-(-3)2;25. (8分)小华在电脑上设计了一个有理数运算程序:输入a ,加*键,再输入b ,且a≠b ,得到运算a*b =ab÷(a -b).(1)求2*(-3)和(-3)*2的值;(2)猜想a*b 与b*a 的关系(不必说明理由);(3)若|x +4|=m*n ,|y -8|=n*m ,且m≠n ,求yx -xy 的值.26. (10分)计算 (1)-223+52-45-52-13;(2)(-76+34+1112-1324)×3÷(-112);(3)(-3)2-(-12)×(13-56)+(-22)÷(-23).第1个等式:a1=11×3=12×(1-13);第2个等式:a2=13×5=12×(13-15);第3个等式:a3=15×7=12×(15-17);第4个等式:a4=17×9=12×(17-19);……请解答下列问题:(1)按以上规律列出第5个等式:a5=_______=_____________;(2)求a1+a2+a3+a4+…+a100的值.参考答案:11. -3分 12. -6 13. -2020 14. -4 15. 3或-5 16. 3或13 17. 718. (-13)2>(-12)3>(-2)3>-3219. 解:因为|x|=5,所以x =±5. 因为|y|=3,所以y =±3. 由题意,可知x >y , 所以x =5,y =±3. x +y =5±3=8或220. 解:由题意可得64×(12)6=64×164=1(米),答:截去第六次后剩下的钢筋长1米21. 解:(1)450×20+(-6)+(-2)×4+1×4+3×5+4×3 =9000-6-8+4+15+12 =9017(克) (2)1920=95% 22. 解:(1)25+40=65(辆), 20+20=40(辆),30+20=50(辆), 35+50=85(辆),35+20=55(辆). 因为40<50<55<65<85,所以第四天的污染指数最高,第二天的污染指数最低 (2)因为65>60,40<60,50<60,85>60,55<60,所以第二天、第三天、第五天空气质量为良,第一天、第四天空气质量为差 23. 解:原式=(-2 019-23)+(-2 020-56)+4 038+(-12)=(-2 019-2 020+4 038)+(-23-56-12)=(-1)+(-23-56-12)24. 解:(1)原式=(-20+118)×6=-20×6+118×6=-120+13=-11923(2)原式=370×14+14×2412+512×14=14×(370+2412+512) =14×400 =100(3)原式=-1-14×[2-9]=-1-14×[-7]=-1+74=34(4)原式=-9÷(-3)+(- 16)×12-9=3-2-9 =-825. 解:(1)2*(-3)=2×(-3)÷[2-(-3)]=-65,(-3)*2=(-3)×2÷[(-3)-2]=65(2)a*b 与b*a 互为相反数(3)因为m*n 与n*m 互为相反数,所以|x +4|+|y -8|=0, x +4=0,y -8=0,解得x =-4,y =8, 所以yx -xy =-2+32=3026. 解:(1)-223+52-45-52-13=(-223-13)+(52-52)-45=-3+0-45=-345;(2)(-7+3+11-13)×3÷(-1)=-76×(-36)+34×(-36)+1112×(-36)-1324×(-36)=42-27-33+392=32; (3)(-3)2-(-12)×(13-56)+(-22)÷(-23)=9+12×13-12×56+(-4)×(-32)=9+4-10+6 =9. 27. 解:(1)19×11,12×(19-111) (2)a 1+a 2+a 3+a 4+…+a 100=12×(1-13)+12×(13-15)+…+12×(1199-1201)=12×(1-13+13-15+…+1199-1201) =12×(1-1201) =100201。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学 (第1页,共4页) 七年级数学 (第2页,共4页)
柳林中学2013—2014学年上学期期中考试
七年级数学试题(2013年11月)
命题人:付萍 审题人:靳强
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页,满分120分,考试用时90分钟。

第Ⅰ卷(选择题) 一、选择题(每题3分,共30分)
1. 如果□+2=0,那么“□”内应填的有理数是( )
A .-2
B .21-
C .21±
D .2
1
2下列不是单项式的是( )
A. a
B.
32xy C.2
b
a + D. 0 3 下列各组数中,不是互为相反意义的量的是( )
A.收入200元与支出20元
B.上升10米和下降7米
C.超过0.05mm 与不足0.03m
D.增大2岁与减少2升 4.如图所示的图形为四位同学画的数轴,其中正确的是( )
5. 数轴上点A 表示-4,点B 表示2,则A 、B 两点间的距离的是 ( ) (A )-2 (B )-6 (C ) 6 (D )2
6. 下列各题去括号所得结果正确的是( )
A 、2
2
(2)2x x y z x x y z --+=-++ B 、(231)231x x y x x y --+-=+-+ C 、3[5(1)]351x x x x x x ---=--+
D 、2
2
(1)(2)12x x x x ---=---
7. 某商品的价格为m 元,涨价%10后,9折优惠出售,则该产品的售价为( )
A.m %90元
B.m %99元
C.m %110元
D.m %81元
8. 某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg ,(25±0.2)kg ,(25±
0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差( ) A 、0.8kg B 、0.6kg C 、0.5kg D 、0.4kg 9. 下列各组中的两项,不是同类项的是( ) A .y x 2-与22yx B .R π2与R 2π C .n m 2-与
22
1
mn D .23与32 10. 为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:
按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( ) A .26n +
B .86n +
C .44n +
D .8n。

相关文档
最新文档