拉丝配模表
拉丝机说明书含配模表
使用说明书型号LHD-560+450/11名称伺服电机非滑动铝合金大拉机目录1.技术规范2.机器用途3.机器结构说明4.运输及安装5.设备维护事项6.电气系统7.配模参考表 .附录:1.电气原理图及电气接线图. 1套2.机器用途本机可用于铝合金Φ9.5mm,普铝Φ9.5-Φ12拉制成铝合金圆线Φ2.5-5.0 铝圆线Φ1.8-5 型线: 5-25.3.机器结构说明本机由双工位摆臂式放线架、11模拉线机,储线装置、双盘自动收线装置、拉线润滑油系统、齿轮润滑油系统、电气控制系统等组成。
3.1 放线装置放线装置为双工位摆臂式放线架。
可放置二盘铝杆实现不停车接头,放线架高度4800mm,摆臂长度1650mm,摆臂角度50度。
放线起理顺材之用,其支柱也可用为扶梯,以便操作者上下理线。
线材经过滚轮改变方向,从压臂度下进入拉线主机。
3.2 拉线主机拉线主机由拉线齿轮箱、拉线油箱及密封罩壳、模座、旋转模座、电机等构成。
具有刚性好,易于操作等优点。
3.2.1 拉线主齿轮箱于拉线润滑油系统采用独立分体结构。
3.3 储线装置该装由两个储线轮、导轮、气缸等组成。
两个储线轮上下设置,上储线轮可沿导轨上下滑动,而下储线轮固定不动,进线进入储线轮后,在两储线轮上绕三圈,由上储线轮出来,入顶端出线导轮后直接收线装置。
4 运输及安装4.1本设备装卸箱时应防止磕碰、清点零部件数目,不得有遗漏,并检查设备有无损坏现象。
由于拉线主机较长,吊装时应特别注意吊装受力位置,为确保运输安全,各零部件应定位牢固可靠,不得有窜动,并且有防漏防潮防震保护措施。
4.2机器的基础尺寸参考机器基础图,并和实物复校,基础尺寸应大于机器轮廓尺寸,视上壤情况确定其厚度(不小于45cm)校准水平及各部件基础标高,位置准确无误后,放入地脚螺栓,进行二次灌浆,于固后校正水平,垫料,方可紧固螺栓。
本机组中,放线装置、拉线润滑油箱拉线齿轮润滑油箱、轧头穿模机、电气控制箱安装位置,用户可根据场地作适当调整。
高碳钢拉丝
低碳钢(AISI1005~1026)的含碳量为0.06%~0.28%,中碳钢(AISI1029~1053)的含碳量为0.25%~0.55%,高碳钢(AISI1055~1095)的含碳量为0.60%~1.03%高碳钢拉丝模具的配比这是预应力高碳钢拉丝模具的配比示意,你做个电子表格,按面积压缩率20-25%左右是配模就是了。
外径压缩率进线 12.5 21.0% 1.261道模 11.11 24.0% 1.312道模 9.69 24.0% 1.313道模 8.44 24.0% 1.314道模 7.36 23.0% 1.035道模 6.46 22.0% 1.286道模 5.70 22.0% 1.287道模 5.04拉丝模是金属丝通过一种模具,使其由粗到细,逐步达到人们所需要的尺寸,这种特殊的模具就是拉丝模. 拉丝模的模蕊一般是用天然钻石,人造钻石(人造钻石有GE,PCD,合成料等). 铜线拉丝模是属于软线拉丝模.还有硬线拉丝模,如拉钨丝等. 铜线拉丝模压缩区的角度一般为16-18度,定径长度为30-40% 而钨丝拉丝模压缩区的角度就比较小,一般在12-14度,定行长度为60-70%。
拉丝模具干式连续式直线拉丝机(一列式入线)青岛李李机械有限公司入线直径与卷筒的关系高碳钢2.0 低碳钢2.5 卷筒直径250*6 7 8高碳钢2.4 低碳钢3.0 卷筒直径300*6 7 8高碳钢2.8 低碳钢3.5 卷筒直径350*4 6 7 8模300*3 4 5 6高碳钢3.2 低碳钢4.0 卷筒直径405*6 7 8 350*3 4 5高碳钢3.5 低碳钢4.5 卷筒直径450高碳钢4.0 低碳钢5.0 卷筒直径510*4 405*3高碳钢5.0 低碳钢6.0 卷筒直径560 510*3高碳钢5.5 低碳钢7.0 卷筒直径610*4 510*3高碳钢6.5 低碳钢8.5 卷筒直径710*4 610*3高碳钢7.0-10 低碳钢10-12 卷筒直径760*4 710*3 4高碳钢12 低碳钢13 卷筒直径900*4 760*3 4高碳钢13 低碳钢16 卷筒直径900 *5 6 7高碳钢16 低碳钢20 卷筒直径1200*4 900*3 4高碳钢丝760*3模+710*4模进10--5.5 出4.5 3.8 平均速比1.256 650米/分高碳钢丝760*3模+710*4模进9.0--5.5 出3.2 1.8 平均速比1.34 1200米/分高碳钢丝510*11模进5.5--4.0 出2.1--1.0 平均速比1.2 1200米/分高碳钢丝710*2模+610*8模进7.0--3.55 出2.6--1.35 平均速比1.22 1200米/分。
拉丝配模资料2
1 1 1 1 1 1 1 1
— — 1 00 22 . 0 00 1 1. 0 8 0 0 1 0 0 砺 1 00 0 0 1 0 0 67 1. 0 3 01 1. 0 8 01 1, C 2 06 1 0 0 61 1 0 0 01 1 00 47
算 出各 级 值 , 都 保 留 四 位 小 数 。此 时可 也 用 计 算 器 从末 后起 按 f2 l1l … 连续 l・ -i-… l rl
作出全部必要的核算。
主 题 词 : 滑 动 式拉 线机 拉 线
.
/
配 模 计算
/
/
采 用 低 滑 动 及 徽 滑 动 配 摸
~ ” 6
.
安
算 出各 级 值后, 应核 算各 级实际
的基 要求 件 本 和条
1.低 , 滑 动配 模 计 算 最 终 应 达 到 如 下 微 要 求 [: ()局 部滑 动 系 数 f~ 一 应 等 于 1 1 】 l 2 或微 量大 于 1., 2 局 部滑 动 系 数 一 应在 0 () 1
d ≥画、 l , 2:2..×√1 : 2 5 .u=2 4 .7
0 如血 船 坞 ¨ 蝎 埔
反 向配模 计算 法
设 己 知十 七 模 中拉机 的 各级鼓 轮 速 比 如 表 2 所 列, 求 成 品线 径 为 05 I 要 .4mm’ 试 作 低 滑 动配 模 并 求 其 进 线 直 径应 为 多大 ?
运算, 每乘上一数就获得一个 值 , 写下来再
乘 , 至 得 到 T- 直 。
8 .查看垒 部计算结果表明
() l 龟l 1 ~ 均符 台等 于 1 0或 微 量 大 于 . 1. 0的要 求 } ()l 1 0 4 ,也 符合 预定 要 求; 2 r I 2为 .5 7 ()q n铜 杆经 十 三道 拉 伸 后 , 可 得 3 , m】 8 的 最 小成 品 线为 姐 .6IZ,不 宜 再 小; 3 ] ̄ O () 另经 计算 ,十 三道 的累 积 精 动 系 数 4
拉丝配模计算
拉丝配模计算信息来源:金属制品日期:2013-12-30 点击:33 文字大小:[大][中][小]拉丝的方式有单拉和连拉两种,单次拉丝机每次通过一个模具拉拔,当一盘丝拉完后,将丝材从卷筒上取下,重新穿头,进行下道次的拉拔。
为提高拉拔速度和减少辅助操作时间,提高生产效率,常将数台单拉机串联起来,组成连续拉丝机,这样一次可连续穿几个模子,实现连续拉拔。
显而易见,在连续拉拔中,丝材直径变细,长度增加,要保证连拉正常运行,丝材与各卷筒(塔轮)之间有一定的配合关系的。
根据通过模具后丝材与卷筒(塔轮)有无相对运动,连续拉丝机可分为非滑动式和滑动式两种。
老式积线式滑轮拉丝机和现代直线式拉丝机拉拔过程中丝材与卷筒之间没有相对滑动,称为非滑动式拉丝机。
水箱式拉丝机拉拔过程中,丝材和塔轮之间存在相对滑动,称为滑动式拉丝机。
9.1. 非滑动拉丝机配模计算9.1.1. 拉拔道次估算减面率是实际生产中最常使用的变形参数,用同一道次减面率连续拉拔数道次后的总减面率,并不等于各道次减面率之和,为便于根据总减面率确定拉拔道次,提供道次减面率与总减面率计算表,如表12。
拉拔时,总减面率的选择和各道次之间减面率分配方法可参考本文6.6节提供的原则确定。
此外线材直径和强度与摩擦力也有一定的关系。
摩擦力过小,牵引力不足,易引起断丝。
摩擦力过大,在滑动时,丝材不易松开,将引起该级阶梯伸出端丝材松弛,塔轮表面压线,甚至断头。
丝材在塔轮表面缠绕圈数过多和塔轮表面出现粗糙或出现沟槽都是造成摩擦力过大的主要原因。
因此,实际操作中一般前几个模子出线端绕2~3圈,接近成品时绕1~2圈。
拉拔较细丝时,所绕圈数应更少,甚至只绕半圈。
十四模拉丝机一般只绕半圈。
9.2.2. 滑动式拉丝机配模计算在滑动式拉丝机上,除最后一道次(K道次)线速等于轮速(B K=V K),因而没有滑动外,其余各道次的轮速均大于线速(V n>B n)。
表示滑动程度大小的概念有:绝对滑动量,相对滑动率(简称滑动率),相对前滑系数(简称滑动系数),累计滑动率,累计滑动系数。
利用EXCEL自带VB编辑器进行拉丝配模计(投)
利用EXCEL 自带VB 编辑功能进行拉丝配模计算郭佩民(宇宙钢丝绳有限公司,贵州 贵阳 550017)摘 要 介绍钢丝在连续拉拔加工时常用的6种配模工艺,利用EXCEL 软件自带的VB 编辑功能,以第1道次部分压缩率稍小、第2道最大、以后依次减小的配模工艺为例,编制出拉丝配模工艺计算表。
给出编制的配模程序,并以进线Ф3.3 mm,出线Ф1.2 mm ,拉拔10道次为例,说明软件的使用方法和计算结果。
应用表明,采用该方法可以快捷、直观、方便地计算出拉丝配模结果,适应性强,稍作改动就可以应用到各种拉拔工艺上。
关键词 EXCEL 表格;VB 编辑器;配模计算;拉拔工艺 中图分类号 TG3521 拉丝配模的计算在钢丝的连续拉拔生产过程中,进行拉丝配模的计算是一项极为重要的工作,钢丝生产企业技术人员很早就进行过探讨,[1-4]文献[5]就用EXCEL 表格对水箱拉丝机的配模进行了计算,用EXCEL 软件自带的VB 编辑功能可以更简捷、快速地制定出拉拔工艺要求的配模参数。
在钢丝生产过程中,确定钢丝拉拔道次以后,在总压缩率相同的条件下通常有6种各道次部分压缩率的分配方式,[6]如图1所示。
在图1中,曲线1表示拉拔中各道次部分压缩率平均分配;曲线2表示拉拔中第一道次部分压缩率最大,以后依次减小;曲线3表示拉拔中第1道次部分压缩率最大,中间平,以后依次减小;曲线4表示拉拔中第1道次部分压缩率最小,第3、4道最大,以后依次减小;曲线5表示拉拔中第1道次部分压缩率稍小,第2道最大,以后依次减小;曲线6表示拉拔中各道次部分率交替变化,形成“波浪”式分配。
图1 6种拉拔工艺的拉丝模部分压缩率分配方式在实际生产中,常常采用曲线5的拉丝配模方式进行生产,这种方式可以使拉拔后的成品钢丝获得良好的综合性能,因此,笔者以曲线5的拉拔配模工艺为例进行程序编制。
2 拉丝配模计算程序的编制 2.1 编制过程根据拉拔工艺曲线5的配模方式,先依据平均压缩率确定第1道次的部分压缩率,再确定第2道次与第1道次的比值,然后利用计算机强大的计算功能,在预设的基准系数上使用循环计算得出各道次的部分压缩率。
拉丝原理及配模
拉丝原理及配模在拉丝领域,人们普遍使用滑动式水箱拉丝机,也就是卷筒与钢丝线速度存在差距,这样钢丝才能在与卷筒的接触面打滑,从而产生滑动摩擦力,这个力量带动钢丝在每个模具前后实现拉拔。
首先是拉丝生产的效率问题,参照钢丝生产效率的计算,最关键的是机器的利用率,出线的大小,以及最快收线速度。
如果按每小时多少公斤来计算生产效率,那么生产效率=收线速度*铜包钢截面积*铜包钢密度*机器利用率。
机器利用率是指24小时内机器实际全速运行的时间,如果通过统计,在假设100%利用率的前提下得出利用率误差的最大和最小值,或者做分类统计,那么我们可以得到平均误差,从而确定拉丝生产的效率评估。
其次是拉丝的机理问题,参照有关复合线材的滑动拉拔过程,我们知道金属塑性变形一般是通过位错在滑移面上的运动来实现的,多晶体变形时还要通过各晶粒的协调来进行。
由于晶界的复杂性和不均匀性、原始晶体颗粒的不均匀性等原因,塑性变形在金属内部也不会绝对均匀,这种变形的不均匀性会对铜包钢线的后续变形产生影响。
在冷变形时,金属会产生应变强化效应,由于铜层的应变硬化指数比钢芯的大,因此在拉拔过程中,铜层的应变强化比较明显(俗话说变硬变得快),即继续变形所需增加的应力更高,因此在铜包钢的拉拔过程中,铜层才不至于在较大的应力作用下遭到破坏,同时由于应变强化的存在,随变形量的加大,变形也会逐渐趋于均匀。
韩国科技工作者通过研究发现,工作区角度,总变形量都会导致铜层比例的不同变化,这与应变强化是有直接关系的,在我公司常规生产中,通过分析统计发现,铜层变化几乎可以忽略。
再次是模具的工作问题,学习模具供应商样本提供的切面图可以知道,模具内部结构主要分六个区域,入口区,润滑区,压缩区,定径区,安全角,出口区,最关键的是压缩区的屈服挤压的应力以及定径区的摩擦力。
经过模具时的拉拔应力与铜包钢本身的屈服应力,压缩比,工作区角度,材料摩擦系数以及后拉应力决定。
而铜包钢本身的屈服应力同样是依据加法原理,由铜的屈服应力、钢的屈服应力按贡献比例累加得到。
拉丝配模的三种方法
拉丝配模的三种方法
C.计算线材的延伸系数:μ1=ν1*τ2=1.15*1.049=1.206
μn=1.2*1.005=1.206
D.确定进出线规格:进线:2.80;出线:1.00
E.配模计算:dn=dn-1*n
(1.00-1.098-1.206-1.325-1.455-1.597-1.754-1.927-2.116-2.323-2.552-2.800)
小结:通过以上三种配模方法比较,低滑动拉线从节能方面占有很大优势。
并且拉丝油损耗降低,塔轮寿命延长,综合效益明显。
三种配模方法因地制宜,根据技术水平、管理水平,合理选用。
三种配模方法各有特点,C法,对设备、模具要求不严;X法和J法对设备精度要求高,对模具公差要求严,操作者的操作水平要求高。
X法与系列套模(见《中拉丝机使用系列套模提高模具利用率》)相结合,效果更好。
想要低滑动拉线节能取得好效果,使用模具和润滑系统也很重要。
多方面的提升,才能提高生产水平、技术水平,公司才能整体上一台阶,才能最终达到节能目的。
拉丝工作扳表
拉丝工作扳表拉丝工作是一项重要的金属加工工艺,广泛应用于各个行业。
它通过将金属材料经过一系列的拉伸和压制,使其截面积减小而长度增加,从而改变材料的形状和性能。
本文将介绍拉丝工作的原理、设备和应用。
一、拉丝工作的原理拉丝工作是利用金属材料的塑性变形特性,通过拉力的作用将材料拉伸,使其截面积减小,从而改变材料的形状和性能。
在拉丝过程中,金属材料会受到拉力的作用,从而发生塑性变形,使材料的截面积减小,同时长度增加。
拉丝工作的原理可以简单概括为:拉伸-压缩-拉伸。
二、拉丝工作的设备拉丝工作需要使用专门的设备,其中主要包括拉丝机和模具。
拉丝机是拉丝工作的核心设备,它通过电机的驱动,将金属材料拉伸并通过模具进行塑性变形。
拉丝机通常由电机、减速器、传动装置、夹具等组成,不同规格的拉丝机适用于不同直径和长度的金属材料。
模具是拉丝工作中的关键部件,它决定了金属材料的形状和尺寸。
根据需求,可以设计不同形状的模具,如圆形、方形、六角形等。
三、拉丝工作的应用拉丝工作在各个行业都有广泛的应用。
首先,它在制造业中起到至关重要的作用。
例如,拉丝工作可以用于生产各种金属零件,如螺栓、螺母、紧固件等。
其次,拉丝工作在建筑业中也有广泛应用。
例如,拉丝工作可以用于制作钢筋,用于加固混凝土结构,提高建筑物的强度和稳定性。
此外,拉丝工作还可以应用于汽车制造、电子产品制造、航空航天等领域。
拉丝工作是一项重要的金属加工工艺,通过将金属材料经过一系列的拉伸和压制,改变其形状和性能。
拉丝工作的原理是利用金属材料的塑性变形特性,通过拉力的作用将材料拉伸。
拉丝工作需要使用专门的设备,如拉丝机和模具。
拉丝工作在制造业、建筑业等领域都有广泛的应用。
通过拉丝工作,可以生产各种金属零件,加固混凝土结构,提高建筑物的强度和稳定性,同时也可以应用于汽车制造、电子产品制造、航空航天等领域。
拉丝工作的发展将进一步推动各个行业的发展,为人们的生活带来更多便利和舒适。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.配模指南-拉丝配模四个步骤和关键数据计算方法概要:拉丝配模是金属丝拉拔时根据坯料尺寸及金属丝尺寸确定拉拔道次、拉丝模模孔尺寸及形状的工作,也叫拉拔程序或拉拔路线的制定。
可以分为单道次拉丝配模和多道次拉丝配模。
拉丝配模主要步骤包括以下四个步骤:1.选择坯料;
2.确定中间退火次数;
3.确定拉拔道次和分配道次延伸系数;
4.配模校核.文章就圆形断面金属拉丝和异型断面金属拉丝两种情况,具体介绍拉丝配模步骤和计算方法。
2.滑动式拉丝机配模原理及配模计算实例介绍概要:拉丝配模指的是我们拉制过程中,对每道拉伸线模进行选择的方法。
合理的配模有两个要点,一是机械;滑动式拉丝机有其固定的拉线轮速比,通过实动式拉丝机配模计算实例,计算拉7.2mm铜杆至1.6mm铜线的相关数据;正文开始:写在前面:拉丝配模方法很多,很容易造成混淆,其中最根本的就是滑动系数的取值问题。
取大了有何优、缺点,取小一点又有何优、缺点,弄明白了,就会在工作中游刃有余。
死套某点,在实际中是不可能做到的。
不是简单计算,用公式一算就满足了。
如果你厂有50台机。
同是拉6种以上规格丝,如果按照某一种公式死套,想想最小要配几套模具。
所谓拉丝模具配完后,就要估计哪只模可能会引起断线。
哪个模会缩丝。
要估计断线是何原因,不要一断线就是铜杆空心,实际上,70%以上的空心铜与断线是自己拉丝造成的。
拉丝模具配模方法最常见的有以下三种:1.应用绝对滑动系数配模方法(J法),应用基础:拉丝机连续拉线,线材在每个塔轮上,单位时间体积是相等的。
2.传统理论配模方法(C法配模),以往定义符号从进线始,这里为了计算机计算方便(用Execl电子表格),刚好相反从出口模开始.3.新理论配模方法(X法配模),应用基础:即安全(不断线)顺利(能连续)拉线,又能把滑动降到最低.三种配模方法各有特点.C法,对设备,模具要求不严;X法和J法对设备精度要求高,对模具公差要求严,操作者的操作水平要求高.X法与系列套模相结合,效果更好.下面对这三种配模方法做具体介绍:一、应用绝对滑动系数配模方法(J法)
应用基础:拉丝机连续拉线,线材在每个塔轮上,单位时间体积是相等的。
即U1*S1=Un*Sn (U1:线材在定速轮上速度,S1:定速轮上线材的截面积)
那么
Τn=Vn/Un
Un=Vn/Tn,U1=V1
设:绝对速比Kn=V1/Vn
安全滑动系数Τ2=τ2;其余的Τ3=Τ2+0.001....Τn=Τn-1+0.001A.确定拉丝机机械参数:
每种拉丝机说明书都有设备参数,机械延伸率(或不同叫法),也就是拉丝机相邻塔轮增速比,有的说明书有说明计算。
LH-280/17拉丝机的增速比是:
1.20:1,(最后一道:1.15:1)。
B.滑动系数:
1.安全滑动系数Τ2=τ2=(1.2/1.15)*1.005=1.049.
2.Τ3-Τn 取:Τ3=Τ2+0.001....Τn=Τn-1+0.001(穿模时,留相对滑动量)C.确定进出线规格:进线:2.80;出线:1.00D.配模计算:
1.先假定定速轮的V1=1000,利用机相邻塔轮增速比,计算出Vn
2.通过绝对速比Kn=V1/Vn,再计算Kn
3.通过dn=d1×√Kn*Τn,计算出各个模具的规格。
(实际利用EXCEL很方便)
(1.00-1.098-1.204-1.319-1.446-1.585-1.737-1.903-2.086-2.286-2.506-2.746-2.800)二、传统理论配模方法(C法配模)
符号定义及有关公式
以往定义符号从进线始,这里为了计算机计算方便(用Execl电子表格),刚好相反从出口模开始。
1. 各道模子孔径:(出口模)d1,d2,d3…dn….
2. 各道延伸系数:(定速辊始)μ1,μ2,μ3…μn…
3. 各塔轮增速比:(定速辊始)ν1ν2ν3…νn…
4. 各道滑动系数:τ1τ2τ3….τn…
5. 第n个塔轮绝对(累计)滑动系数:Τn=Vn/Un
6. 第n个塔轮的线速度:Vn
7. 第n个塔轮上铜线的速度:Un
8. μn=νn*τn
9. dn=dn-1*√μn
下面以LH-280/17拉丝机为例,说明配模计算方法:
A.确定拉丝机机械参数:
每种拉丝机说明书都有设备参数,机械延伸率(或不同叫法),也就是拉丝机相邻塔轮增速比,有的说明书有说明计算。
LH-280/17拉丝机的增速比是:
1.20:1,(最后一道:1.15:1),即:νn=1.2B.滑动系数τn:
中拉机一般取:1.02-1.04,取τn=1.03C.计算线材的延伸系数:μn=νn*τn=1.2*1.03=1.236D.确定进出线规格:进线:2.80;出线:1.00E.配模计算
1.0-1.112-1.236-1.374-1.528-1.698-1.888-
2.099-2.334-2.595-2.800三、新理论配模方法(X 法配模)
低滑动拉线基础是:即安全(不断线)顺利(能连续)拉线,又能把滑动降到最低。
因此滑动系数最低规范要求:
1.τ3- τn要求1.0-1.01,在配模计算中平均取:1.005
2.安全滑动系数τ2
这里介绍确定安全滑动系数τ2的方法,LH-280/17拉丝机,具备满足了低滑动拉线的性能的结构,安全滑动系数是通过降低最后一道塔轮增速比来实现的。
因此,安全滑动系数τ2=(1.2/1.15)*1.005=1.049.
如:LH-200/17 拉丝机安全滑动系数τ2=(1.2/1.15)*1.005=1.049;
B22拉丝机,设计的安全滑动系数τ2= (1.175/1.15)*1.005=1.027;
B32拉丝机安全滑动系数τ2=(1.15/1.12)*1.005=1.032;
S20 拉丝机安全滑动系数τ2=(1.12/1.08)*1.005=1.042;
S24拉丝机安全滑动系数τ2= (1.1/1.08)*1.005=1.024。
A.确定拉丝机机械参数:
每种拉丝机说明书都有设备参数,机械延伸率(或不同叫法),也就是拉丝机相邻塔轮增速比,有的说明书有说明计算。
LH-280/17拉丝机的增速比是:
1.20:1,(最后一道:1.15:1),即:νn=1.2
B.滑动系数:
1.τ3-τn取1.005
2.安全滑动系数τ2=(1.2/1.15)*1.005=1.049
C.计算线材的延伸系数:μ1=ν1*τ2=1.15*1.049=1.206
μn=1.2*1.005=1.206
D.确定进出线规格:进线:2.80;出线:1.00
E.配模计算:dn=dn-1*√μn (1.00-1.098-1.206-1.325-1.455-1.597-1.754-1.927-2.116-2.323-2.552-2.800)小结:通过以上三种配模方法比较,低滑动拉线从节能方面占有很大优势。
并且拉丝油损耗降低,塔轮寿命延长,综合效益明显。
三种配模方法因地制宜,根据技术水平、管理水平,合理选用。
三种配模方法各有特点,C法,对设备、模具要求不严;X法和J法对设备精度要求高,对模具公差要求严,操作者的操作水平要求高。
X法与系列套模(见《中拉丝机使用系列套模提高模具利用率》)相结合,效果更好。
想要低滑动拉线节能取得好效果,使用模具和润滑系统也很重要。
多方面的提升,才能提高生产水平、技术水平,公司才能整体上一台阶,才能最终达到节能目的。