2009年八年级下册数学水平试题及答案
八年级下册数学试题(附答案)
春季八年级期末调考数 学 试 题说明:1. 本试卷分为第Ⅰ卷和第Ⅱ卷. 第Ⅰ卷1~2页,第Ⅱ卷3~8页. 第Ⅰ卷的答案选项用2B 铅笔填涂在机读卡上;第Ⅱ卷用蓝、黑色钢笔或圆珠笔直接答在试卷上.2. 本试卷满分120分,答题时间为120分钟. 交卷时只交第Ⅱ卷,第Ⅰ卷由学生自己保存.第Ⅰ卷 选择题(36分)一、选择题(本大题共12个小题,每小题3分,共36分) 在每小题给出的四个选项中,有且仅有一项是符合题目要求的. 1. 如图,Rt △ABC 沿直角边BC 所在的直线向右平移得到△DEF ,下列结论中错误的是A. △ABC ≌△DEFB. ∠DEF =90°C. EC =CFD. AC =DF2. 函数中自变量x 的取值范围为A. x ≥2B. x >-2C. x <-2D. x ≥-23. 边长为1和2的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形. 设穿过的时间为t ,大正方形内除去小正方形部分的面积为S (阴影部分). S 随t 变化而变化的大致图象为A B C D4. 已知正比例函数y =kx (k ≠0)中,y 随x 的增大而增大. 反比例函数y =-xk过点(3,y 1),(2,y 2)和(-3,y 3),则y 1,y 2,y 3的大小关系为A .y 1<y 2<y 3B .y 1>y 2>y 3C .y 1>y 3>y 2D .y 3>y 1>y 25. 如图是学校小卖部“六一”儿童节期间儿童玩具、糖果、其它421+=x y物品等的销售额的扇形统计图. 若玩具的销售额为1800元,那么 糖果的销售额是A. 3000元B. 300元C. 30%D. 900元 6. 下列命题错误的是 A . 有三条边相等的三角形全等 B . 有两条边和一个角对应相等的三角形全等C. 有一条边和一个角对应相等的等腰三角形全等D. 有一条边和一锐角对应相等的直角三角形全等7. 如图△ABC 是等腰三角形,以两腰AB 、AC 为边向外作正方 形ABDE 和正方形ACFG ,则图中全等三角形有( )对.A. 2B. 3C. 4D. 58. 如果把分式ba ab+2中的a 和b 都扩大到原来的9倍,那么分式的值A. 扩大到原来的9倍B. 缩小9倍C. 是原来的91D. 不变9. 如图,ABCD 的周长为18cm ,点O 是对角线AC 的中点,过点O 作EF 垂直于AC ,分别交DC 、AB 于E 、F , 连结AE ,则△ADE 的周长为 A. 5cm B. 8cm C. 9cm D. 10cm10. 下列命题中,能判断四边形ABCD 是矩形的命题有 ①AC =BD ,AC ⊥BD ;②OA =OB =OC =OD ;③∠A =∠B =∠C =90°;④AB CD ,∠A =90°.A. 1个 B .2个 C .3个 D .4个11. 函数y =-kx +k (k ≠0)与y =xk的大致图象可能是A B C D12. 某服装厂准备加工300套演出服装. 在加工60套后,采用了新技术,使每天的工作效率是原来的2倍,结果共用9天完成任务. 设该厂原来每天加工x 套演出服装,则可列方程A.9260300=-x B.9602300=+x x C.960260300=+-x x D.960260300=--xx2009年春季八年级期末考试数 学 试 题全卷总分表第Ⅱ卷 非选择题(84分)二、填空题(本大题共8个小题,每小题3分,共24分)将解答结果直接填在题中的横线上.13. 在四边形ABCD 中,∠A:∠:B:∠C:∠D =1:2:1:2,则四边形ABCD 是 . 14. 一个纳米粒子的直径是0.000 000 035米,用科学记数 法表示为 米.15. 如图,在正方形ABCD 中,E 在BC 的延长线上,且 EC =AC ,AE 交CD 于点F ,则∠AFC = 度.16. 已知一组数据1,3,2,5,x 的平均数为3. 则样本的标准差为 . 17. 关于x 的方程32322=--+-xmx x 有增根,则m =. 18.已知点A(2,3)和点B (m ,-3)关于原点对称,则m = ;若点C 与点B 关于y 轴对称,则点C 的坐标为 . 19. 如图是甲、乙两地5月上旬的 日平均气温统计图,则甲、乙两地 这10天的日平均气温的方差大小 关系为:S 2甲 S 2乙.20. 已知等腰三角形的周长为10,底边为y ,腰为x. 请写出y 与x 的函数关系式及自变量x的取值范围 . 三、解答题(每题6分,共24分)21. 计算:20090-2)21(--+|-2008 |.22. 先化简,再求值:1311222+-+-+-x xx x x ,其中x =2.23. 解分式方程:93132-=--x x x .24. 作图题:在△ABC 中,∠C =90°,按下列 要求作图.(尺规作图,保留痕迹,不写作法)①作AB 边的垂直平分线,交AC 于点E ,交AB 于点F ;②连结CF ,作∠CFB 的平分线,交BC于点G . 四、几何证明题(本大题满分8分)25. 如图,在梯形ABCD 中,AB ∥DC ,AC 平分∠BCD ,AE ∥BC. 求证:四边形AECB 是菱形.五、几何证明题(本大题共9分)26. 如图,在等边△DAC 和等边△EBC 中,AE 、BD 分别与CD 、CE 交于点M 、N ,且A 、C 、B 三点在同一条直线上.求证:(1)AE =BD ;(2)CM =CN.六、解答题(本大题共9分)27. 如图,反比例函数y =xm(x >0)的图象经过A 、B 两点,且A 点的坐标为(2,-4),点B 的横坐标为4. 请根据图象的信息解答:(1)求反比例函数的解析式; (2)若AB 所在的直线的解析式为 y =kx +b (k ≠0),求出k 和b 的值.(3)求△ABO 的面积.七、(本大题共10分)28. 甲、乙两同学本期十次数学测验成绩如下表:(1)甲同学十次数学测验成绩的众数是;乙同学十次数学测验成绩的中位数是 .(2)甲同学本期数学测验成绩的平均分是 ;乙同学本期数学测验成绩的平均分是 ;乙同学本期数学测验成绩的极差是 .(3)你认为甲、乙两位同学,谁的成绩更稳定?通过计算加以说明.2009年春季八年级期末调考数学试题参考答案一、选择题(本大题共12个小题,每小题3分,共36分)1.C2.B3.A4.D5.D6.B7.D8.A9.C 10.B 11.C 12.C二、填空题(本大题共8个小题,每小题3分,共24分) 13. 平行四边形 14. 3.5×10-8 15. 112.5 16.217. -1 18. -2;(2,-3) 19. < 20. y =10-2x (25<x <5)注:18题第一空1分,第二空2分. 20题的函数关系式1分,x 的取值范围2分.三、解答题(每题6分,共24分)21.(共6分)解:20090-2)21(--+|-2008 |=1-4+2008 ……………………(每项算对,各给1分)……4分 =2005 …………………………………………………………………2分22.(共6分)解:原式=13)1)(1(122+-+-++-x x x x x x ……………………………………1分 =)1)(1()1)(3()1)(1(122-+--+-++-x x x x x x x x …………………………1分 =)1)(1(34122-+-++-x x x x x=)1)(1(22-+-x x x =)1)(1()1(2-+-x x x …………………………1分=12+x ………………………………………………………1分 当x =2时,12+x =122+=32………………………………………2分另解:原式=13)1)(1()1(2+-+-+-x xx x x ………………………………………2分 =1311+-++-x xx x ………………………………………………1分 =12+x …………………………………………………………1分 当x =2时,12+x =122+=32………………………………………2分23.(共6分)解:方程两边同乘以(x +3)(x -3),约去分母,得 ……………1分 x (x +3)-(x 2-9)=3. ………………………………………2分 解这个整式方程,得x =-2. ………………………………………………………………1分 检验:把x =-2代入x 2-9,得(-2)2-9≠0,所以,x =-2是原方程的解. ………………………………………………2分 24.(共6分)作出了AB 边的垂直平分线给3分; 作出了∠CFB 的平分线给3分. 注:若未标明字母扣1分.四、几何证明题(本大题满分8分)25. 证明:∵AB ∥DC ,AE ∥BC ,∴四边形ABCD 是平行四边形. …………2分∵AC 平分∠BCD ,∴∠ACB =∠ACE. …………………………………………………………1分 又AB ∥CD ,∴∠BAC =∠ACE (两直线平行,内错角相等), ……………………1分 ∴∠ACB =∠BAC (等量代换), …………………………………………1分 ∴BA =BC (等角对等边), ………………………………………………1分∴四边形ABCE 是菱形(有一组邻边相等的平行四边形是菱形). ……2分注:①若证得AE =EC ,或证得四边相等得菱形参照给分;②未批理由可不扣分. 五、几何证明题(本大题共9分)26.(1)(5分)证明:∵△ACD 和△BCE 是等边三角形,∴∠ACD =∠BCE =60°,∴∠ACD +∠DCE =∠BCE +∠DCE , 即∠ACE =∠DCB. …………………2分 在△ACE 和△DCB 中,AC =DC ,EC =BC (等边三角形三边相等),八年级期末考试数学试题(第Ⅱ卷) 第11页(共8页)∠ACE =∠DCB (已证),∴△ACE ≌△DCB (S.A.S.), ………………………………………………2分∴AE =BD (全等三角形的对应边相等). ………………………………1分(2)(4分)证明:∵△ACE ≌△DCB (已证),∴∠EAC =∠BDC ,即∠MAC =∠NDC. ……………………………………………………1分∵∠ACD =∠BCE =60°(已证),A 、C 、B 三点共线,∴∠ACD +∠BCE +∠DCN =180°,∴∠MCN =60°,即∠ACM =∠DCN =60°. ………………………………………………1分又AC =DC ,∴△ACM ≌△DCN (A.S.A.), …………………………………………1分∴CM =CN. ……………………………………………………………1分六、解答题(本大题共9分)27. 解:(1)(2分)把A 点的坐标(2,-4)代入y =xm 得-4=2m ,m =-8, ∴反比例函数的解析式为y =x 8-(x >0).……2分 注:若解析式未标明x >0,则只给1分.(2)(3分)当x =4时,y =x8-=-2,∴B (4,-2). ………………………………1分 ∵A (2,-4),B (4,-2)在直线y =kx +b 上,∴⎩⎨⎧+=-+=-b k b k 4224 ………………………………………………………………………1分 解之得k =1,b =-6. ………………………………………………………………1分(3)(4分)解一:作辅助线如图,则C (4,-4). …………………………………1分 S △ABO =S 正方形ODCE -S △ODA -S △OEB -S △ABC ………………………………………2分 =4×4-21×2×4-21×4×2-21×2×2 =16-4-4-2=6. ……………………………………………………………………………1分解二:如图,取AB 中点M ,连结OM ,(或作OM ⊥AB )∵OA =OB =2224+=25,∴OM ⊥AB (或AM =BM ) ………………1分而AB =22BN AN +=2222+=22 …1分八年级期末考试数学试题(第Ⅱ卷) 第12页(共8页) ∴AM =21AB =2 ∴OM =22AM OA -=22)2()52(-=32 ……………………1分∴S △AOB =21AB ·OM =21×22×32=6. …………………………1分 解三:S △ABO =S 矩形ACOD +S梯ABED -S △AOC -S △BOE ……2分 =2×4+21(2+4)×2-21×4×2-21×4×2 =8+6-4-4=6. ……………………………………2分解四:延长AB 交x 轴、y 轴于M 、N ,则M (6,0),N (0,6).S △AOB =S △MON -S △AOM -S △BON= … =6. 按解一的给分方法给分.七、(本大题共10分)28.(1)、(2)小题每空1分,共5分;(3)小题共5分.(1)98;98.(2)99;99;24.(3)1012=甲S [()()()()()2222299979998999999979998-+-+-+-+- ()()()()()22222999999989910799999998-+-+-+-+-+][]01640141041101+++++++++= 6.776101=⨯= ……………………………………………………………2分 ()()()[]222299110998999108101-+⋯+-+-=乙S []222222222211)2(9)13()1(1)1()3()10(9101+-++-+-++-+-+-+= []121481169111910081101+++++++++= 8.56568101=⨯= …………………………………………………………2分 ∵22<乙甲S S ,∴甲的成绩更稳定. ………………………………………………………1分注:①若第(3)小题,不是通过计算而得出正确结论,只给2分;若计算2甲S 正确,2乙S不正确而得出正确结论共给3分.②此题旨在考查学生计算能力,引起教师对培养学生计算能力的高度重视八年级期末考试数学试题(第Ⅱ卷)第13页(共8页)。
2009-2010学年度八年级数学下期期末考试 人教新课标版
2009—2010学年度下期期末考试八一、选择题1.D . 2.A . 3.B . 4.C . 5.C . 6.B二、填空题7.10; 8.2≥x ; 9.甲; 10. 2; 11. 9; 12.1:2; 13.①; 14.10<<S ;15.127或2. 三、解答题 16.原式=211a a a a--÷…………………2分 1(1)(1)a a a a a -=⨯+-……………………4分 11a =+. ……………………5分 如1a ≠-等,只要对化简结果解释正确就给分。
………………6分17.111BDC B D C ∆∆和相似. ……………………2分∵Rt ABC ∆∽111Rt A B C ∆,113,A B AB =∴111113AB BC A B B C ==. ……………………3分 由于111BDC B D C ∆∆和相似,根据相似多边形的周长比等于相似比,面积比等于相似比的平方. …………………4分 得:111BDC B D C ∆∆和周长比为1:3, ……………………5分面积比为1:9. ……………………6分18.∵BC ⊥DE ,∴∠B +∠BEO =90°.……………………2分又∵∠BEO =∠A +∠D =40°+ 30°=70°, ……………………5分∴∠B =90°- 70°=20.°……………………7分19.(1)如图. …………………3分(2)50; 60 504030 20102天 3天 4天 5天 6天 7天 (第19题图)25%0.25; …………………5分(3) 该市活动时间不少于4天的人数约是15000人. …………………7分20.(1)132°;…………………2分(2)过点O 作OE //BA ,∴∠BOE =∠α.∵AB //CD ,OE //BA, ∴OE //CD . (6)∴∠COE =∠β. ∴∠BOC =∠1+∠2=∠α +∠β=62°+70°=132°.…………………8分21. (1)设A 品牌电脑x 元/台,B 品牌课桌y 元/X ,则:⎩⎨⎧=+=+.900012012,900020010y x y x …………………2分 解得:⎩⎨⎧==.150,6000y x 答:每台A 品牌电脑与每X B 品牌课桌的价格分别是6000元、150元? .……4分(2)设购进A 品牌电脑m 台,B 品牌课桌n X .且m ≥35,n ≥600.m 、n 均为正整数.则:270000%80150%906000=⨯+⨯n m ,化简得4550n m -=,又35≥m ,即354550≥-n , 则675≤n .故675600≤≤n .若要保证m 为整数,则n 必须是45的倍数.…………………8分所以有如下两种方案: ①n =45×14=630,此时4550n m -==36 ; ②n =45×15=675,此时4550n m -==35. …………………10分 22. (1)∵四边形ABCD 是矩形,∴∠D =90°,AB //CD .∴∠AED =∠BAE .∵BF ⊥AE ,∴∠D =∠AFB =90°.∴△ADE ∽△BFA .∴AEAD AB BF =. …………………3分在Rt △ADE 中,由勾股定理可得8AE ==. 则6384BF AD AB AE ===. …………………5分 (2)若△AEB 为等腰三角形,可分类如下:分类1.当AE =BE 时,求得 BF ,理由如下: ∵AE =BE ,点E 在AB 的中垂线上,∴DE =12CD =12AB =5 .∴在Rt △ADE 中,由勾股定理可得AE 由(1)题得AE AD AB BF =,且AD =6,AB =10,∴AD BF AB AE =⋅==(不分母有理化也不扣分)…………………7分 分类2.当AE =AB 时,求得BF =6,理由如下:∵AE =AB=10, 且AD =6,AB =10, ∴6AD BF AB AE=⋅=…………………9分分类3.当AB =BE 时,求得BF =理由如下:∵AB =BE=10,且BC =AD =6,∴在Rt △BCE 中,由勾股定理可得8CE =. ∴DE =DC –EC =10–8=2.∴在Rt △ADE 中,由勾股定理可得AE =∴AD BF AB AE =⋅==(不分母有理化也不扣分)综述: BF =616130或6BF =或BF =.…………………11分。
2009学年第二学期八年级数学期末考试答案及评分标准
2009学年第二学期八年级数学科期末测试题参考答案一、选择题(本大题共10小题,每小题2分,满分20分.)二、填空题(共6题,每题2分,共12分.)11. 2x ≠; 12. 5; 13.31; 14. 对角线相等的梯形是等腰梯形;15. 222a b c +=;16. 222n-。
三、解答题(本大题共9小题,满分68分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分9分) 解:(1)2610453ab c ac b c= ---------- 3分(2)原式= 21(1)(1)(1)(1)x x x x x x -+⨯+-+ ----------- 5分=1x--------------- 7分 当2x =时原式的值=12--------------- 9分 18.(本小题满分6分) 解:(1)211=346)22ABC S AC BC cm =⨯⨯=△( --------------- 2分 (2)在Rt △ABC 中∵222AB AC BC =+ ∴22234AB =+∴AB =5 --------------- 4分 ∵1122AC BC AB CD = ∴1134522CD ⨯⨯=⨯⨯ ∴ 125CD =--------------- 6分 19.(本小题满分7分)解:(1)作AC ⊥x 轴交x 轴于C , --------------- 1分 ∵OA=AB ,∴OC BC =,又∵OB=2,1OC ∴=.又由162OAB S OB AC ∆=⨯=,得6AC =. --------------- 3分 ∴A 、B 点的坐标分别为(1,6)A 、()2,0B --------------- 5分(2)∵点A (1,6)在反比例函数图像上, ∴61k=,即6k =. --------------- 6分 ∴反比例函数的解析式为6y x=. --------------- 7分 20.(本小题满分8分)解:(1)购买一台A 型电视机所需费用:2400×(1-20%)=1920(元), --------------- 1分 购买一台B 型电视机所需费用:2000×(1-20%)=1600(元) --------------- 2分所以农民购买一台A 型电视机需1920元,购买一台B 型电视机需1600元. (2)答案开放.如:B 型电视机的销量呈逐渐增长趋势; --------------- 3分 A 、B 两种型号的电视机的销量较为接近; --------------- 4分 第3周的销量相同;B 型电视机第2周的销量为17台等等约可. (3)1918202221205A X ++++==,1617202324205B X ++++==由计算器计算得:22210A B S S ==,, --------------- 6分 ∵22A BS S <, ∴A 型号的电视机销量较稳定. --------------- 8分【评分说明:若没有通过计算,只是看图或猜到A 型号的电视机销量较稳定可给2分】21.(本小题满分8分) 解:(1)甲乙两地相距806480⨯=千米. --------------- 1分 汽车的速度v 与时间t 有怎样的函数关系为480(0)v t t=≥. -------------- 4分 【评分说明:没有0t ≥不扣分】(2)方法一、作函数480(0)v t t=≥的图象如图所示(图略), ------------- 5分 由图象观察可知, 当4t =(小时)时,120v =(千米/小时);当4t <(小时)时,120v >(千米/小时). ------------ 7分 即返程时的速度不能低于120(千米/小时). ----------- 8分(2)方法二、由(1)得480t v =, 若必须在4个小时之内回到甲地则有4804v<. -- 5分 0,4480v v >∴>,得120v >. ------------ 7分 即返程时的速度不能低于120(千米/小时). ----------- 8分22.(本小题满分8分) 证明:90ADB ∠=,∴在Rt △ADO 中,222AO AD DO =+ , --------------- 1分∵AD=8,DO=6,∴ 22286AO =+10AO ∴=. --------------- 3分 又∵AC=20,∴OC=A C -AO =20-10=10 --------------- 4分 ∴OC= AO=10. --------------- 5分 而DO=OB,∴四边形ABCD 为平行四边形. --------------- 6分(2)在Rt △ADO 中, 22222812208,AB AD DB AB =+=+=∴= ------ 7分∴四边形ABCD 的周长为:16+ -------------- 8分23.(本小题满分8分)解:(1)设列车平均提速x 千米/小时, --------------- 1分 依题意得:150200200S S x+=+. -----------------3分 即: 20020030000S Sx S +=+ 解得: 30000x S=------------------------4分 0S >,经检验30000x S=为所列方程的解. ------------5分 ∴列车平均提速30000S千米/小时 ------------------------ 6分 (2)若列车平均速度为350千米/小时,则此时列车平均提速350200150x =-=. ------------------7分30000150S=∴ , 解得:200S =千米 . ---------------------8分24.(本小题满分7分)解(1)∵四边形ABCD 是菱形,∴AD=AB , ------------------1分 ∵∠DAB ==60°∴△ABD 是等边三角形 ∴BD=AB=AD=6 ------------------2分(2)△DEF 是等边三角形, 理由如下: ------------------3分F EDCBA在△ADE 与△BDF 中,AD =BD ,∠DAE =∠DBF =60°,AE=BF,∴△OCE ≌△ODE (SAS ) ------------------4分 ∴DE=DF ,∠AD E=∠BDF∴∠AD E+∠E DB=∠BDF+∠E DB=60°, 即60EDF ∠=,∴△DEF 是等边三角形 ------------------5分 (3)△DEF 是等边三角形,∴当D E ⊥AB 时,DE 最短, 此时△DEF 的周长3l DE =最短. --------6分 这时, AE=12AB=3. 在Rt △A DE 中, ∵222AD AE DE =+ ∴22263DE =+ ∴DE=33得△DEF 的周长l 的最小值为33×3=93 ------------------7分 25.(本小题满分7分) (1)证明: 方法一 :∵四边形ABCD 是正方形∴12AE DE AC ==. ------------------1分 AC ⊥BD ,∠DAE=∠BAC=12BAD ∠=45°∴∠AEB=90° ∵AF 平分∠BAC∴∠EAF=12BAC ∠=22.5°∴∠DAF=67.5° ∴∠AFE=67.5°∴AD=DF ------------------2分 ∵DF=D E +EF, AD=AB∴E F +12AC =AB. ------------------3分 方法二:如图1,过点F 作FM ⊥AB 于点M ,在正方形ABCD 中, AC ⊥BD 于点E , ∴12AE AC =,∠ABD=∠CBD=45°. ---------1分∵AF 平分∠BAC ∴EF=MF ∵ AF=AF∴Rt △AMF ≌Rt △AEF∴AE=AM ------------------2分FEDCBAM EFDCBA图1∵∠MFB=∠ABF=45°∴MF=MB∴MB=EF∴E F+12AC=MB+AM=AB ------------------3分(2)F1E1、12A1C1与AB三者之间仍然成立有(1)的类似数量关系:F1E1+12A1C1=AB. ------------------4分证明:如图2,连结F1C1,过点F1作F1P⊥A1B于点P,F1Q⊥BC于点Q.∵A1F1平分∠BA1C1∴F1E1=PF1 ------------------5分同理:QF1=PF1∴F1E1=PF1= QF1又∵A1F1=A1F1∴Rt△A1E1F1≌Rt△A1PF1∴A1E1= A1P同理:Rt△QF1C1≌Rt△E1F1C1∴C1Q=C1E1 ------------------6分由题意:A1A=C1C∴A1B+BC1=AB+A1A+BC-C1C=AB+BC=2AB∵PB=PF1=QF1=QB∴A1B+BC1=A1P+PB+QB+C1Q= A1P+C1Q+2E1F1即:2AB=A1E1+C1E1+2E1F1=A1C1+2 E1F1∴F1E1+12A1C1=AB. ------------------7分QPAB CDE1F1A1图2C1。
2009-2010学年度第二学期期末考试八年级数学试卷 及答案
2009-2010学年度第二学期期末考试八年级数学试卷(考试时间:100分钟 试卷满分:110分 )一、选择题(每题2分,共20分)1.代数式-2x ,y x 23-,94,ts55,x+y ,π2x ,中是分式的有 ( )A .1个B .2个C .3个D .4个2.下列变形正确的是 ( )A .a b a b --= B .a ba b --=- C .a b a b -=-- D .aba b =--- 3.一鞋店试销一种新款女鞋,试销期间销售情况如下表:对于这个鞋店老板来说最关心哪种型号的鞋畅销,则下列统计量对鞋店老板来说最有价值的是 ( ) A.平均数 B.众数 C.中位数 D.方差4.有甲、乙两种水稻,测得每种水稻各10穴的分孽数后,计算出样本的方差分别为2甲S =8.8,2乙S =2.6,据此可以估计 ( )A.甲比乙种水稻分孽整齐B.乙种水稻分孽比甲种水稻整齐C.分孽整齐程度相同D.无法比较两种水稻的分孽整齐程度 5.下列命题正确的是 ( ) A .一组对边平行,另一组对边相等的四边形是平行四边形学校 班级 姓名 考号B .有一个角是直角的四边形是矩形C .对角线互相垂直的四边形是菱形D .一组邻边相等的矩形是正方形6.玉树地震后,某食品厂包装车间准备将80吨方便面包装后运往灾区。
要使包装所需的天数不超过8天,那么要求包装速度必须 ( ) A. 每天至少包装10吨 B. 每天至多包装20吨 C. 每天至少包装11吨 D. 每天至多包装19吨 7.如图,A 为反比例函数ky x图象上一点,AB 垂直x 轴于B 点,若S △AOB =4,则比例系数k 的值为 ( ) A.4 B.8 C.-4 D.-88. 如图,已知在等腰梯形ABCD 中,∠A=120°,那么∠C 为 ( ) A.30° B. 75° C.60° D. 120°9.下列命题中,为假命题的是 ( ) A.三角形的三个内角度数之比为1:2:3,那么这个三角形是直角三角形 B.三角形的两个内角度数之和90°,那么这个三角形是直角三角形 C.三角形的三边长度之比为1:1:2,那么这个三角形是直角三角形 D.三角形的三边长度分别为31、41、51,那么这个三角形是直角三角形 10.ΔABC 的三条边分别为a 、b 、c ,且a <b <c ,那么下列各式可能成立的是 ( ) A. a+b <c B. c-a >b C. a 2=b 2+c 2D. a 2+b 2=c 2第7题 第8题DCBA八年级数学第二学期期末试卷 第3页 共8页二、填空题(每题3分,共24分)11.一种病毒半径是6.29×10-3毫米,用小数表示为 毫米。
2009—2010学年八年级数学第二学期期末试卷13人教版
2009—2010学年第二学期八年级数学期末试卷13一、填空题(每小题2分,共20分)1、在括号内填入适当的代数式,使下列等式成立:yx y x xy x y ax xy -=--=22322)(;22。
2、化简:=-++-+ab b b a b a 12____________;=-+1x x x x ____________。
3、如果方程6324245-+=--x kx x x 有增根,则增根是____________。
4、已知正比例函数kx y =与反比例函数xy 3=的图像都过A )1,(m 则=m ____________,正比例函数的解析式是____________。
5、小明把一根70cm 长的木棒放到一个长、宽、高分别为30cm 、cm 40、cm 50的木箱中,他能放进去吗?答:____________(选填“能”或“不能”)6、在航天知识竞赛中包括甲同学在内的6名同学的平均分为74分,其中甲同学考了89分,则除甲以外的5名同学的平均分为____________分。
7、直角三角形中,以直角边为边长的两个正方形的面积为236cm ,264cm ,则以斜边为边长电话正方形的面积为____________2cm 。
8、已知直角三角形两直角边y x ,的长满足065422=+-+-y y x ,则第三边长为________。
9、若,311=-y x 则分式yxy x yxy x ---+2232的值为____________。
10、设有反比例函数),(,111y x xk y +=、),(22y x 为其图像上的两点,若210x x <<时,21y y >,则k 的取值范围是____________。
二、选择题(每小题3分,共18分)11、下列判断中正确的是 ( )A.四条边都相等的四边形是正方形B.四个角相等的四边形是正方形C.对角线互相垂直的平行四边形是正方形D.对角线互相垂直平分且相等的四边形是正方形 12、男孩戴维是城里的飞盘冠军,戈里是城里最可恶的踩高跷的人,两人约定一比高低。
09-10第二学期期末八年级答案
2009-2010学年第二学期期末八年级数学答案 第1页(共2页)2009—2010学年第二学期期末考试八年级数学试题参考答案及评分标准说明:1.阅卷过程中,如学生还有其它正确解法,可参照评分标准按步骤酌情给分.2.坚持每题评阅到底的原则,当学生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分.3.解答右端所注分数,表示正确做到这一步应得的累加分数.只给整数分数.一、选择题(每小题2分,共24分)13.3×10-4 14.6 15.16.K >3 17.70 18.7 19.2.5 20.三、解答题(本大题共6个小题,共60分.解答应写出文字说明或演算步骤)21. (每个5分,共10分解:(1)解: 原式=2x +4 …………………………………………………………………3分 x 不能是-1或1 ……………………………………………………………………………5分(2)解:x=1 ………………………………………………………………………………4分 经检验:x=1是增根,所以原方程无解 ……………………………………………………5分 22.(本小题满分8分)解:解:设河宽x 米,在Rt ΔABC 中,AC 2=AB 2+BC 2 …………………………………………………………………………………2分 1002=x 2+602 …………………………………………………………………………………4分 x=80 ……………………………………………………………………………………7分 答:河宽为80米. …………………………………………………………………………8分23.(本小题满分10分)证明:∵AC =DF ,AC ∥DF∴四边形ADFC 是平行四边形 ……………………………………………2分 ∴CF ∥AD ,CF =AD ………………………………………………4分 ∵AD =BE ∴CF =BE ,CF ∥BE ……………………………………6分 ∴四边形BEFC 是平行四边形 ……………………………………………8分 ∴∠FCB =∠E ……………………………………………10分 4526212009-2010学年第二学期期末八年级数学答案 第2页(共2页)24. (本小题满分10分)解:(1)因为点A(1,2)在反比例函数k y x=图象上,所以k =2, 所以反比例函数的解析式为xy 2= ……………………………………………5分 (2)因为点B (2,n )也在反比例函数x y 2=图象上,所以2n=2,解得n=1 所以点B 的坐标为(2,1)…………………………………………………………7分 因为A 点的纵坐标为2,点B 的纵坐标为1,所以△ABC 的BC 边上的高为2-1=1, …………………………………9分 又BC=2,所以△ABC 的面积=21×2×1=1. …………………………………10分 25.(本小题满分10分)解:(1)………………………………………………………………………每空均为1分(2)相同 甲 ………………………………………………………每空均为1分(3)建议如下:从折线图来看,甲品牌冰箱的月销售量呈上升趋势,甲的方差较大,说明上升的幅度更大,所以进货时可多进甲品牌冰箱.………………………………5分26.(本小题满分12分)解:(1)OE =OF .其证明如下:∵CE 是∠ACB 的平分线, ∴∠1=∠2.∵MN BC ∥,∴∠1=∠3. ∴∠2=∠3. ∴OE =OC . 同理可证OC =OF .∴OE =OF . …………………………………………………………………………5分(2)OE =OF 成立 ……………………………………………………………………7分(3)四边形AECF 是正方形. 当点O 运动到AC 中点时,∵OE =OF ,OA =OC , ∴四边形AECF 是平行四边形,∵有EF ∥BC ,∠ACB =90°∴∠AOE =90°,AC ⊥EF ,□AECF 菱形. ∵CE 是∠ACB 的平分线,CF 是∠ACD 的平分线A F N D CB M E O (图1) 1 2 3 B A D N F O E M (图3)2009-2010学年第二学期期末八年级数学答案 第3页(共2页) ∴∠ECF =21∠ACB +21∠ACD = 90° ∴菱形AECF 是正方形.…………………………………………………………………12分。
北师大版八年级数学下册试题及答案汇编(共11套)
北师大版八年级数学下册第一章测试题(试卷满分100分,时间120分钟)请同学们认真思考、认真解答,相信你会成功!一、选择题(每小题3分,共30分)1.当21-=x 时,多项式12-+kx x 的值小于0,那么k 的值为 [ ]. A .23-<k B .23<k C .23->k D .23>k2.同时满足不等式2124xx -<-和3316-≥-x x 的整数x 是 [ ].A .1,2,3B .0,1,2,3C .1,2,3,4D .0,1,2,3,43.若三个连续正奇数的和不大于27,则这样的奇数组有 [ ]. A .3组 B .4组 C .5组 D .6组 4.如果0>>a b ,那么 [ ]. A .b a 11->-B .b a 11<C .ba 11-<- D .a b ->- 5.某数的2倍加上5不大于这个数的3倍减去4,那么该数的范围是 [ ]. A .9>x B .9≥x C .9<x D .9≤x 6.不等式组⎩⎨⎧<>+72013x x 的正整数解的个数是 [ ].A .1B .2C .3D .47.关于x 的不等式组⎪⎩⎪⎨⎧+>++-<a x x x x 4231)3(32有四个整数解,则a 的取值范围是 [ ].A .25411-≤<-a B .25411-<≤-a C .25411-≤≤-a D .25411-<<-a8.已知关于x 的不等式组⎩⎨⎧+<-≥-122b a x b a x 的解集为53<≤x ,则a b 的值为 [ ].A .-2B .21-C .-4D .41- 9.不等式组⎩⎨⎧>-<+-m x x x 62的解集是4>x ,那么m 的取值范围是 [ ].A .4≥mB .4≤mC .4<mD .4=m10.现用 甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排 [ ]. A .4辆 B .5辆 C .6辆 D .7辆 二、填空题(每小题3分,共30分)1.若代数式2151--+t t 的值不小于-3,则t 的取值范围是_________. 2.不等式03≤-k x 的正数解是1,2,3,那么k 的取值范围是________. 3.若0)3)(2(>-+x x ,则x 的取值范围是________. 4.若b a <,用“<”或“>”号填空:2a______b a +,33ab -_____. 5.若11|1|-=--x x ,则x 的取值范围是_______. 6.如果不等式组⎩⎨⎧><m x x 5有解,那么m 的取值范围是_______.7.若不等式组⎩⎨⎧>-<-3212b x a x 的解集为11<<-x ,那么)3)(3(+-b a 的值等于_______.8.函数2151+-=x y ,1212+=x y ,使21y y <的最小整数是________. 9.如果关于x 的不等式5)1(+<-a x a 和42<x 的解集相同,则a 的值为________. 10.一次测验共出5道题,做对一题得一分,已知26人的平均分不少于4.8分,最低的得3分,至少有3人得4分,则得5分的有_______人.三、解答题(本大题,共40分) 1.(本题8分)解下列不等式(组):(1)1312523-+≥-x x ; (2)⎪⎩⎪⎨⎧<--+->++-.,021331215)1(2)5(7x x x x2.(本题8分)已知关于x ,y 的方程组⎩⎨⎧=+=+3135y x my x 的解为非负数,求整数m 的值.3.(本题6分)若关于x 的方程52)4(3+=+a x 的解大于关于x 的方程3)43(4)14(-=+x a x a 的解,求a 的取值范围.4.(本题8分)有人问一位老师,他所教的班有多少学生,老师说:“一半的学生在学数学,四分之一的学生在学音乐,七分之一的学生念外语,还剩下不足6位同学在操场踢足球”.试问这个班共有多少位学生?5.(本题10分)某食品厂生产的一种巧克力糖每千克成本为24元,其销售方案有如下两种:方案一:若直接给本厂设在武汉的门市部销售,则每千克售价为32元,但门市部每月需上缴有关费用2400元;方案二:若直接批发给本地超市销售,则出厂价为每千克28元.若每月只能按一种方案销售,且每种方案都能按月销售完当月产品,设该厂每月的销售量为xkg .(1)你若是厂长,应如何选择销售方案,可使工厂当月所获利润更大?(2)厂长看到会计送来的第一季度销售量与利润关系的报表后(下表),发现该表填写的销售量...与实际有不符之处,请找出不符之处,并计算第一季度的实际销量总量.四、探索题(每小题10,共20分)1.甲从一个鱼摊上买了三条鱼,平均每条a元,又从另一个鱼摊上买了两条鱼,平均每条b元,后来他又以每条2ba元的价格把鱼全部卖给了乙,请问甲会赚钱还是赔钱?并说明原因.2.随着教育改革的不断深入,素质教育的全面推进,某市中学生利用假期参加社会实践活动的越来越多.王伟同学在本市丁牌公司实习时,计划发展部给了他一份实习作业:在下述条件下规划出下月的产量.假如公司生产部有工人200名,每个工人每2小时可生产一件丁牌产品,每个工人的月劳动时间不超过192小时,本月将剩余原料60吨,下个月准备购进300吨,每件丁牌产品需原料20千克.经市场调查,预计下个月市场对丁牌产品需求量为16000件,公司准备充分保证市场需求.请你和王伟同学一起规划出下个月产量范围.北师大版八年级数学下册第一章测试题参考答案一、选择题 1.C 2.B 3.B提示:设三个连续奇数中间的一个为x ,则 27)2()2(≤+++-x x x . 解得 9≤x .所以72≤-x .所以 2-x 只能取1,3,5,7. 4.C 5.B 6.C 7.B提示:不等式组⎪⎩⎪⎨⎧+>++-<a x x x x 4231)3(32的解集为a x 428-<<.因为不等式组⎪⎩⎪⎨⎧+>++-<a x x x x 4231)3(32有四个整数解,所以134212≤-<a .解得25411-<≤-a . 8.A提示:不等式组⎩⎨⎧+<-≥-122b a x b a x 的解集为212++<≤+b a x b a .由题意,得⎪⎩⎪⎨⎧=++=+52123b a b a 解得⎩⎨⎧=-=63b a .则2163-=-=a b . 9.B 10.C 二、填空题 1.337≤t 2.129<≤k提示:不等式03≤-k x 的解集为 3kx ≤.因为不等式03≤-k x 的正数解是1,2,3,所以 433<≤k.所以129<≤k . 3.3>x 或2-<x 提示:由题意,得 ⎩⎨⎧>->+0302x x 或⎩⎨⎧<-<+0302x x前一个不等式的解集为3>x ,后一个不等式的解集为2-<x 4.<,> 5.1<x 6.5<m 7.-2提示:不等式组⎩⎨⎧>-<-3212b x a x 的解集为 2123+<<+a x b ,由题意,得⎪⎩⎪⎨⎧=+-=+121123a b 解得 ⎩⎨⎧-==21b a 所以2)32()31()3)(3(-=+-⨯-=+-b a . 8.0 9.7 10.22提示:设得5分的有x 人,若最低得3分的有1人,得4分的有3人,则22≤x ,且8.4284)25(35⨯≥⨯-++x x ,解得 8.21≥x .应取最小整数解,得 x=22.三、解答题1.解:(1)去分母,得 15)12(5)23(3-+≥-x x . 去括号,得1551069-+≥-x x 移项,合并同类项,得 4-≥-x . 两边都除以-1,得4≤x .(2)⎪⎩⎪⎨⎧<--+->++-.,021331215)1(2)5(7x x x x解不等式①,得 2>x .① ②解不等式②,得25>x . 所以,原不等式组的解集是25>x . 2.解:解方程组⎩⎨⎧=+=+3135y x m y x 得⎪⎪⎩⎪⎪⎨⎧-=-=23152331m y m x .由题意,得⎪⎪⎩⎪⎪⎨⎧≥-≥-0231502331m m解得 331531≤≤m .因为m 为整数,所以m 只能为7,8,9,10.3.解:因为方程52)4(3+=+a x 的解为372-=a x ,方程3)43(4)14(-=+x a x a 的解为a x 316-=.由题意,得a a 316372->-.解得 187>a .4.解:设该班共有x 位同学,则 6)742(<++-x x x x .∴6283<x .∴56<x .又∵x ,2x ,4x ,7x都是正整数,则x 是2,4,7的最小公倍数.∴28=x . 故该班共有学生28人. 5.解:(1)设利润为y 元.方案1:240082400)2432(1-=--=x x y , 方案2:x x y 4)2428(2=-=. 当x x 424008>-时,600>x ; 当x x 424008=-时,600=x ; 当x x 424008<-时,600<x . 即当600>x 时,选择方案1; 当600=x 时,任选一个方案均可; 当600<x 时,选择方案2.(2)由(1)可知当600=x 时,利润为2400元.一月份利润2000<2400,则600<x ,由4x=2000,得 x=500,故一月份不符.三月份利润5600>2400,则600>x ,由560024008=-x ,得 x=1000,故三月份不符. 二月份600=x 符合实际.故第一季度的实际销售量=500+600+1000=2100(kg ). 四、探索题1.解:买5条鱼所花的钱为:b a 23+,卖掉5条鱼所得的钱为:2)(525b a b a +=+⨯.则2)23(2)(5ab b a b a -=+-+. 当b a >时,02<-ab ,所以甲会赔钱.当b a <时,02>-ab ,所以甲会赚钱.当b a =时,02=-ab ,所以甲不赔不赚.2.解:设下个月生产量为x 件,根据题意,得⎪⎩⎪⎨⎧≥⨯+≤⨯≤.,,160001000)30060(202001922x x x 解得 1800016000≤≤x .即下个月生产量不少于16000件,不多于18000件.北师大版八年级数学下册第二章测试题1仔细审题,细心答题,相信你一定会有出色的表现! (时间90分钟 满分120分)一、精心选一选(每题4分,总共32分)1.下列各式中从左到右的变形属于分解因式的是( ).A.2(1)a a b a ab a +-=+-B.22(1)2a a a a --=-- C.2249(23)(23)a b a b a b -+=-++ D.121(2)x x x+=+2.把多项式-8a 2b 3c +16a 2b 2c 2-24a 3bc 3分解因式,应提的公因式是( ), A.-8a 2bc B. 2a 2b 2c 3C.-4abcD. 24a 3b 3c 33. 下列因式分解错误的是()A .22()()x y x y x y -=+- B .2269(3)x x x ++=+ C .2()x xy x x y +=+D .222()x y x y +=+4.下列多项式中,可以用平方差公式分解因式的是( ) A.x 2+1 B.-x 2+1 C.x 2-2 D.-x 2-1 5.把-6(x -y)2-3y(y -x)2分解因式,结果是( ). A.-3(x -y)2(2+y) B. -(x -y)2(6-3y) C.3(x -y)2(y +2)D. 3(x -y)2(y -2)6.下列各式中,能用完全平方公式分解因式的是( ). A.4x 2-2x +1 B.4x 2+4x -1 C.x 2-xy +y 2 D .x 2-x +127.把代数式269mx mx m -+分解因式,下列结果中正确的是A .2(3)m x +B .(3)(3)m x x +-8.式分解公式( ). A.))((22b a b a b a -+=-B.(a +C.2222)(b ab a b a +-=- D.)(2b a a ab a -=- 二、耐心填一填(每空4分,总共32分)1.2a 2b -6ab 2分解因式时,应提取的公因式是 . 2.-x -1=-(____________).3. 因式分解:=-822a .4.多项式92-x 与962++x x 的公因式是 .5.若a +b=2011,a -b=1,z 则a 2-b 2=_________________. 6.因式分解:1+4a 2-4a=______________________. 7.已知长方形的面积是2916a -(43a >),若一边长为34a +,则另一边长为________________.8.如果a 2+ma +121是一个完全平方式,那么m =________或_______. 三、用心算一算(共36分) 1.(20分)因式分解:(1)4x 2-16y 2; (2)()()()()a b x y b a x y ----+(3)x 2-10x +25; (4)()22241x x -+2.(5分)利用因式分解进行计算:(1)0.746×136+0.54×13.6+27.2;3.(满分5分)若2m n -=-,求mn n m -+222的值?4.(6分)3221-可以被10和20之间某两个数整除,求这两个数.北师大版八年级数学下册第二章测试题2仔细审题,细心答题,相信你一定会有出色的表现! (时间90分钟 满分120分)一、精心选一选(每题4分,总共32分)1.下列各式从左到右的变形中,是因式分解的为( )A.bx ax b a x -=-)(B.222)1)(1(1y x x y x ++-=+- C.)1)(1(12-+=-x x x D.c b a x c bx ax ++=++)( 2.下列多项式,不能运用平方差公式分解的是( )A.42+-m B.22y x -- C.122-y x D.412-x 3.若4x 2-mxy +9y 2是一个完全平方式,则m 的值为( ) A.6 B.±6 C.12 D.±12 4.下列多项式分解结果为()()y x y x -+-22的是( )A.224y x +B.224y x -C.224y x +-D.224y x -- 5.对于任何整数m ,多项式2(45)9m +-都能( )A.被8整除B.被m 整除C.被(m -1)整除D.被(2m -1)整除6.要在二次三项式x 2+□x-6的□中填上一个整数,使它能按x 2+(a +b )x +ab 型分解为(x +a )(x +b )的形式,那么这些数只能是 ( )A .1,-1;B .5,-5;C .1,-1,5,-5;D .以上答案都不对7.已知a=2012x+2009,b=2012x+2010,c=2012x+2011,则多项式a 2+b 2+c 2-ab-bc-ca 的值为( ) A.0 B.1 C.2 D.38.满足m 2+n 2+2m -6n +10=0的是( )A.m=1, n=3B.m=1,n=-3C.m=-1,n=-3D.m=-1,n=3 二、耐心填一填(每空4分,总共36分)1.分解因式a 2b 2-b 2= .2.分解因式2x 2-2x +21=______________ 3.已知正方形的面积是2269y xy x ++ (0x >,0y >),利用分解因式,写出表示该正方形的边长的代数式 . 4.若x 2+mx +16=(x -4)2,那么m =___________________.5.若x -y=2,xy=3则-x 2y +xy 2的值为________ .6.学习了用平方差公式分解因式后,在完成老师布置的练习时,小明将一道题记错了一个符号,他记成了-4x 2-9y 2,请你帮小明想一想,老师布置的原题可能是________. 7.如果多项式142+x 加上一个单项式以后,将成为一个整式完全平方式,那么加上的单项式是 . 8.请写出一个三项式,使它能先“提公因式”,再“运用公式”来分解.你编写的三项式是________,分解因式的结果是________. 三、用心算一算(共44分)1.(16分)分解因式(1)-x 3+2x 2-x (2) a 2-b 2+2b -12.(8分) 利用分解因式计算:20112010201020082010220102323-+-⨯-3.(10分)在三个整式2222,2,x xy y xy x ++中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解4.(10分)若3-=+b a ,1=ab ,求32232121ab b a b a ++的值四、拓广探索(共28分)1. (14分)阅读下题的解题过程:已知a 、b 、c 是△ABC 的三边,且满足222244a cbc a b -=-,试判断△ABC 的形状. 解:∵ 222244a cbc a b -=- (A )∴ 2222222()()()c a b a b a b -=+- (B ) ∴ 222c a b =+ (C )∴ △ABC 是直角三角形 (D ) 问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号 ; (2)错误的原因为 ; (3)本题正确的结论是 ;北师大版八年级数学下册第二章测试题(1)参考答案:一、1.C 2.A 3.D 4.B 5.A 6.D 7.D 8.A二、1. 2ab 2. x +1 3. 2(a +2)(a -2) 4. x +3 5. 2011 6. (2a-1)27. 3a-4 8.22 、-22三、1.(1)解原式=4(x 2-4y 2)=4(x +2y)(x -2y) (2)解原式=(a -b)(x -y +x +y)=2x(a -b)(3)解原式=(x -5)2(4)解原式=(x 2+1+2x)(x 2+1-2x)=(x +1)2(x -1)22.解原式=13.6(7.46+0.54+2)13.6×10=1363.解当m -n=-2时,原式=22)2(2)(222222=-=-=+-n m n mn m 4.因为()()()()()161616882121212121+-=++-,()()()()1684421212121=+++-,又因为42117+=,42115-=,所以3221-可以被10和20之间的15,17两个数整除.四、1.长为a +2b ,宽为a +b2. 解:(1)原式=x 2-4x +4-1=(x -2)2-1=(x -2+1)(x -2-1)=(x -1)(x -3)(2) 原式=x 2+2x +1+1=(x +1)2+1 因为(x +1)2≥0 所以原式有最小值,此时,x=-1北师大版八年级数学下册第一章测试题(2)参考答案:一、1.C 2.B 3.D 4.C 5.A 6.C 7.D 8.D 二、1.b2(a +1)(a -1) 2. 2(x -21)23. 3x +y4. -85.-66. -4x 2+9y 2或4x 2-9y 27. -4x 2、4x 、-4x 、4x 4、-18.答案不唯一如:a 2x -2ax +x x(a -1)2三、1.解原式=-x(x 2-2x +1)=-x(x -1)22. 解原式=a 2-(b 2-2b +1)=a 2-(b -1)2=(a +b -1)(a -b +1)3.解:222(2)222();x xy x x xy x x y ++=+=+ 或222(2)();y xy x x y ++=+或2222(2)(2)()();x xy y xy x y x y x y +-+=-=+- 或2222(2)(2)()().y xy x xy y x y x y x +-+=-=+- 4.解:当a +b=-3,ab=1时, 原式=21ab(a 2+2ab +b 2)=21ab(a +b)2=21×1×(-3)2=29 四、 1. (1)(C )(2)()22a b -可以为零(3)本题正确的结论是:由第(B )步 2222222()()()c a b a b a b -=+-可得:()()222220a b ca b ---=所以△ABC 是直角三角形或等腰三角北师大版八年级数学下册第三章测试题一、选择题(每小题3分,共30分)1.在下列各式mam x x b a x x a ,),1()3(,43,2,3222--÷++π中,是分式的有( ) A.2个 B.3个 C.4个 D.5个 2.要使分式733-x x有意义,则x 的取值范围是( )A.x=37B.x>37C.x<37D.x ≠=373.若分式4242--x x 的值为零,则x 等于( )A.2B.-2C.2±D.0 4.如果分式x+16的值为正整数,则整数x 的值的个数是( ) A.2个 B.3个 C.4个 D.5个5.有游客m 人,若果每n 个人住一个房间,结果还有一个人无房住,这客房的间数为( )A.n m 1- B.1-n m C.n m 1+ D.1+nm6.把a 千克盐溶于b 千克水中,得到一种盐水,若有这种盐水x 千克,则其中含盐( )A.ba ax+千克 B.b a bx +千克 C.b a x a ++千克 D.bax千克 7.计算)1(1x x x x -÷-所得的正确结论wei ( )A.11-xB.1C.11+xD.-1 8.把分式2222-+-+-x x x x 化简的正确结果为( ) A.482--x x B.482+-x x C.482-x xD.48222-+x x9.当x=33时,代数式)23(232xx x x x -+÷--的值是( ) A.213- B.213+ C.313- D.313+ 10.某工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走。
2009年第二学期期末考试八年级数学试卷
2009年第二学期期末考试八年级数学试卷(考试时间90分钟,满分100分)一. 选择题:(每小题2分,满分12分)1. 在平面直角坐标系中,直线32+-=x y 经过…………………………………… ( ) A. 第一、二、三象限 B. 第一、二、四象限 C. 第一、三、四象限 D. 第二、三、四象限2. 下列方程中有实数解的方程是 ………………………………………………………… ( ) A. 013=+x B.222-=-x xx C. 032=++x D. 0222=++x x3. 在四边形ABCD 中,AC 与BD 相交于点O ,要使四边形ABCD 是平行四边形应符合下列条件中的…………………………………………………………………………………………… ( ) A. AB//CD, BC=AD B. AB=CD, OA=OC C. AB//CD, OA=OC D. AB=CD, AC=BD4. 顺次联结等腰梯形各边中点所得到的四边形一定是……………………………………( ) A. 菱形 B. 矩形 C. 正方形 D. 等腰梯形5. 下列关于向量的等式中,正确的是…………………………………………………………( ) A. BA AB = B. CA BC AB =+ C. a b b a +=+ D. 0)(=-+a a6. 下列事件中,属于确定事件的事件有…………………………………………………… ( ) (1) 在上海,早晨太阳从西边升起; (2) 投两枚硬币,两枚硬币的正面都朝上;(3) 从装有10个红球的口袋内,随机摸出一个球为红球;(4) 从长度为15cm 、20cm 、30cm 、40cm 的4根小木棒中,任取3根为边可以拼成一个三角形. A. 1件 B. 2件 C. 3件 D. 4件 二.填空题:(每题2分,满分28分)7. 一次函数5-=x y 的图像在y 轴上的截距为_________8. 已知一次函数4)2(+-=x k y , y 随x 的增大而减小,那么k 的取值范围是_______ 9. 写出一个图像经过点 (-1, 2) 的一次函数的解析式_________ 10. 方程21+=x xx 的解是________ 11. 生产某种产品所需的成本y (万元)与数量x (吨)之间的关系如图所示, 那么生产30吨这一产品所需成本为_________万元 12. 抛一枚质地均匀的硬币,正面朝上的概率为21,因此抛20次硬币,必有10次正面朝上._________(填“对”或“错”).13. 从一副扑克牌中取出两组牌,一组为黑桃1、2、3,另一组为方块1、2、3,从这两组牌中各摸出一张,那么摸出的两张牌的牌面数字之和等于4的概率为__________ 14. 方程04324=-+x x 的实数解为_______________15. 如果一个多边形的内角和为1620°,那么这个多边形的边数是_______16. 已知:正方形ABCD 的边长为8cm ,那么边AB 的中点M 到对角线BD 的距离等于______ cm 17. 已知:在菱形ABCD 中,AC=10,BD=24,那么菱形ABCD 的面积为__________ 18. 已知等腰梯形ABCD 中,AD//BC ,AB=DC ,对角线A C ⊥BD, 梯形的高为10厘米,那么它的中位线的长为_________厘米. 三.简答题:(每题6分,满分24分)19. 解方程:632=-+x x 20. 解方程组:⎩⎨⎧=+=--320222y x y xy x21. 如图,已知:在□ABCD 中,点E 、F 在对角线BD 上,且BE=DF. (1) 在图中画出与的差向量并填空:-=_________(2) 图中与平行的向量是___________________22. 如图,已知:平行四边形ABCD 的对角线AC 与BD 相交于点O ,四边形OCDE 是平行四边形,AD 与OE 相交于点F. 求证:OE 与AD 互相平分.OEF ABCDEFABCD四. 解答题:(第23、24、25题每题7分,第26题9分,第27题10分,满分40分)23. 小明申请使用了某移动通信公司的手机来电畅听,这个公司推出的来电畅听业务规定:用户每月交费16元,可免费接听来电;而打出电话每分钟收费0.13元.(1) 试求小明一个月手机的通话费(包括接听电话和打出电话) y (元)与打出电话时间 x (分钟)的解析式;(2) 如果小明某个月的通话费是42元,试求小明该月打出电话的时间.24. 如图,已知:在平行四边形ABCD 中,点E 、F 、G 、H 分别在边AB 、BC 、CD 、DA 上,AE=CG ,AH=CF ,且EG 平分∠HEF.(1) 求证:△AE H ≌△CGF ;(2) 四边形EFGH 是菱形.25. 某校学生在获悉青海玉树地震后,纷纷拿出自己的零花钱,参加赈灾募捐活动.(1)班学生共募捐840元,(2)班学生共募捐1000元,(2)班学生的人均捐款数比(1)班学生的人均捐款数多5元,且人数比(1)班少2名,求(1)班和(2)班学生的人数.HGABCE DF26. 如图,一次函数42+=x y 的图像与x 、y 轴分别交于点A 、B ,以AB 为边作正方形ABCD. (1) 求点A 、B 、D 的坐标;(2) 设点M 在x 轴上,在如果△ABM 是等腰三角形,求点M 的坐标.27. 如图,在正方形ABCD 中,点P 是射线BC 上任意一点(点B 与点C 除外),联结DP ,分别过点C 、A 作直线DP 的垂线,垂足为点E 、F.(1) 当点P 在线段BC 的延长线上时,那么线段AF 、CE 、EF 之间有怎样的数量关系?请证明你的结论;(2) 当点P 在线段BC 上时,联结AP ,正方形的边长为2,设CE = x , AF = y ,求y 与x 的函数解析式,并写出函数的定义域;(3) 在(2)的条件下,当x =1时,求EF 的长.PEFA BCDA BCD。
2008-2009八年级下册数学期末检测考试试卷及答案
2008—2009学年度黄坑中学八年级数学第二学期期末考试试卷(满分:120分,时间:100分钟) ☆请将正确答案写在答题纸....上☆ 一、选择题: (每题3分,共30分) 1、下列约分正确的是( ) A 、=++yx y x B 、yx y x yxy x +-=--222)( C 、214222=yx xyD 、ba mb m a =++;2、化简mnm nm +-222的结果是( )A 、mn m 2- B 、mn m - C 、mn m + D 、nm n m +-;3、若092=-x,则62962-+-x x x的值为( )A 、0B 、-3C 、0或-3D 、14、已知反比例函数的图象经过点P (-2,1),则这个函数图象位于( ) A 、 一、三象限 B 、二、三象限 C 、二、四象限 D 、三、四象限5、某反比例函数的图象经过点(-2,3),则此函数图象也经过点( ) A 、(2,-3) B 、(-3,-3) C 、(2,3) D 、(-4,6)6、◇ABCD 中,∠C=108°,BE 平分∠ABC ,则∠ABE 等于( ) A 、18° B 、36° C 、72° D 、108°7、如图是一段楼梯,BC=2m ,AB=4m.若在楼梯上铺地毯至少要( ) A 、4m B 、6m C 、8m D 、10m8、如图,能判定四边形ABCD 是平行四边形的是( ) A 、AB//CD ,AD=BC B 、AB=CD ,AD=BC C 、∠A=∠B ,∠C= ∠D D 、AB=AD ,CB=CDC9、如果等腰梯形ABCD 两底的差等于一腰的长,那么它的一个下底角为( ) A 、75° B 、60° C 、45° D 、30°10、为了判断甲乙两班成绩哪个班较整齐通常需要比较两个班成绩的( ) A 、平均数 B 、中位数 C 、众数 D 、方差 二、填空题:(每题3分,共24分) 11、221ab ab=;12、化简mm --11的结果为 ; 13、分式b a +1与222b a a-的最简公分母为____________;14、若23=ba ,则bba +的值为 ;15、已知反比例函数图象经过(m ,2)和(-2,3),则m 的值为 ; 16、直角三角形三边长为6、8、10,则它斜边上的高为 ; 17、已知菱形两对角线长分别为6cm 和8cm ,则其面积为_ ______cm 2 ; 18、已知数据5,5,6,a ,7,7,8的平均数为6,则这组数据的中位数是___ _; 三、计算题:19、(本题满分8分) 约分22112mm m-+-;20、(本题满分8分) 通分232a;261ab-21、(本题满分8分) 计算:93629968122++∙+-÷++-a a a a a aa ;22、(本题满分8分) 解方程:423532=-+-xx x四、应用题23、(本题满分10分) 已知,反比例函数图象经过点A (2,6) (1)求这个反比例函数的解析式; (2)这个函数的图象位于哪些象限; (3)y 随x 的增大如何变化;(4)点P (3,4)是否在这个函数图象上;24、(本题满分8分)如图,菱形ABCD中AB=BD=5,求(1)∠BAC的度数;(2)求AC的长Array25、(本题满分8分)在△ABC中,∠C=90°,∠A,∠B的平分线交于点D,DE⊥BC于点E,DF⊥AC于点F,求证四边形CFDE是正方形。
八年级下册数学试题及答案解析
八年级下册数学试题及答案解析一次函数与不等式先生姓名家长签字一、学习指引1.知识要点(1)图形与平面直角坐标系(2)一次函数与不等式(3)一次函数与不等式的运用2.方法指引(1)熟知一次函数的图象与性质,实践效果一定要留意自变量取值.(2)一次函数的图象在X轴上方的局部X的取值相当于一次不等式大于0的解;一次函数的图象在X轴下方的局部X的取值相当于一次不等式小于0的解.(3)函数题一定要留意一种重要的数学思想即数形结合.(4)会用图象上的点、实践效果中的变量关系以及图象的外形和位置或具有的性质等各种条件,灵敏运用转化、分类讨论和方程等思想方法,用待定系数法来确定函数的解析式.一、典型例题(一)填空与选择1.如图,在直角坐标系中,点,,对△ 延续作旋转变换,依次失掉三角形①、②、③、④,那么三角形⑩的直角顶点的坐标为 .2.如图,将边长为1的正方形OAPB沿x轴正方向延续翻转2 007次,点P依次落在点P1, P2, P3, P4, ,P2 007的位置,那么P2 007 的横坐标x2 007=_ .3.假定直线y=mx+4,x=l,x=4和x轴围成的直角梯形的面积是7,那么m的值是( )A.-12B.- 23C.-32D.-24.直线y1=ax+b和y2=mx+n的图象如下图,依据图象填空.⑴ 当x_ _时,y1当x___ _时,y1=y2;当x___ ___时,y1⑵ 方程组是 .5.如图,直线经过,两点,那么不等式的解集为 .6.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,按如下图的方式放置.点A1,A2,A3,和点C1,C2,C3,区分在直线 (k0)和x轴上,点B1(1,1),B2(3,2),那么Bn的坐标是______________.(二)例题解说例1:某公司装修需用A型板材240块、B型板材180块,A 型板材规格是60 cm30 cm,B型板材规格是40 cm30 cm.现只能购得规格是150 cm30 cm的规范板材.一张规范板材尽能够多地裁出A型、B型板材,共有以下三种裁法:(图是裁法一的裁剪表示图)裁法一裁法二裁法三A型板材块数 1 2 0B型板材块数 2 m n设所购的规范板材全部裁完,其中按裁法一裁x张、按裁法二裁y张、按裁法三裁z张,且所裁出的A、B两种型号的板材刚好够用.(1)上表中,m = ,n = ;(2)区分求出y与x和z与x的函数关系式;(3)假定用Q表示所购规范板材的张数,求Q与x的函数关系式,并指出当x取何值时Q最小,此时按三种裁法各裁规范板材多少张?例2.512汶川大地震后,某健身器材销售公司经过外地红十字会向灾区献爱心,捐出了五月份全部销售利润.该公司五月份只售出甲、乙、丙三种型号器材假定干台,每种型号器材不少于8台,五月份支出包括这批器材进货款64万元和其他各项支出(含人员工资和杂项开支)3.8万元.这三种器材的进价和售价如下表,人员工资y1(万元)和杂项支出y2(万元)区分与总销售量x(台)成一次函数关系(如图). (1)求y1与x的函数解析式; (2)求五月份该公司的总销售量;(3)设公司五月份售出甲种型号器材t台,五月份总销售利润为W(万元),求W与t的函数关系式;(销售利润=销售额-进价-其他各项支出)(4)请推测该公司这次向灾区捐款金额的最大值.单位万元/台甲乙丙进价 0.9 1.2 1.1售价 1.2 1.6 1.3(例2图)例3.如图①,一条蜿蜒的公路上有A、B、C 三地,B、C 两地相距 150 千米,甲、乙两辆汽车区分从B、C 两地同时动身,沿公路匀速相向而行,区分驶往C、B 两地.甲、乙两车到A 地的距离、 (千米)与行驶时间 x(时)的关系如图②所示.依据图象停止以下探求:⑴请在图①中标出 A地的位置,并作简明的文字说明;⑵求图②中M点的坐标,并解释该点的实践意义;⑶在图②中补全甲车的函数图象,求甲车到 A地的距离与行驶时间x的函数关系式;⑷A地设有指挥中心,指挥中心及两车都配有对讲机,两部对讲机在15千米之内(含15千米)时可以相互通话,求两车可以同时与指挥中心用对讲机通话的时间.例4.一列慢车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时动身,设慢车行驶的时间为,两车之间的距离为,图中的折线表示与之间的函数关系.依据图象停止以下探求:信息读取(1)甲、乙两地之间的距离为 km;(2)请解释图中点的实践意义;图象了解(3)求慢车和慢车的速度;(4)求线段所表示的与之间的函数关系式,并写出自变量的取值范围;效果处置(5)假定第二列慢车也从甲地动身驶往乙地,速度与第一列慢车相反.在第一列慢车与慢车相遇30分钟后,第二列慢车与慢车相遇.求第二列慢车比第一列慢车晚动身多少小时? 例5.如图,直线y=- x+1区分与X轴,Y轴交于B,A.(1)求B,A的坐标;(2)把△AOB以直线AB为轴翻折,点O落在点C,以BC为一边做等边三角形△BCD,求D点的坐标.例6.如图,直线y=kx+8区分与x轴、y轴相交于A、B两点,O 为坐标原点,点A的坐标为(4,0).(1)求k的值;(2)假定P为y轴(点B除外)上的一点,过P作PC轴,交直线AB于C.设线段PC的长为n,点P的坐标为(0,m).①假设点P在线段BO(点B除外)上移动,求n与m的函数关系式,并求自变量m的取值范围;②假设点P在射线BO(B、O两点除外)上移动,连结PA,那么APC的面积S也随之发作变化。
初中数学八年级下册试题及答案数据的分析
初中数学八年级下册试题及答案数据的分析测试1 平均数(一)学习要求了解加权平均数的意义和求法,会求实际问题中一组数据的平均数.课堂学习检测一、填空题1.一组数据中有3个7,4个11和3个9,那么它们的平均数是______.2.某组学生进行“引体向上”测试,有2名学生做了8次,其余4名学生分别做了10次、7次、6次、9次,那么这组学生的平均成绩为______次,在平均成绩之上的有______人.3.某校一次歌咏比赛中,7位评委给8年级(1)班的歌曲打分如下:9.65,9.70,9.68,9.75,9.72,9.65,9.78,去掉一个最高分,再去掉一个最低分,计算平均分为该班最后得分,则8年级(1)班最后得分是______分.二、选择题4.如果数据2,3,x,4的平均数是3,那么x等于( ).(A)2 (B)3 (C)3.5 (D)45.某居民大院月底统计用电情况,其中3户用电45度,5户用电50度,6户用电42度,则每户平均用电( ).(A)41度(B)42度(C)45.5度(D)46度三、解答题6.甲、乙两支仪仗队队员的身高(单位:厘米)如下:甲队:178 177 179 178 177 178 177 179 178 179;乙队:178 179 176 178 180 178 176 178 177 180.(1)(2)甲队队员身高的平均数为______厘米,乙队队员身高的平均数为______厘米;(3)你认为哪支仪仗队更为整齐?简要说明理由.7假如学期总评按平时成绩、期中成绩、期末成绩各占1∶3∶6的比例来计算,那么小明和小颖的学期总评成绩谁较高?综合、运用、诊断一、填空题8.某公园对游园人数进行了10天统计,结果有4天是每天900人游园,有2天是每天1100人游园,有4天是每天800人游园,那么这10天平均每天游园人数是______人.9.如果10名学生的平均身高为1.65米,其中2名学生的平均身高为1.75米,那么余下8名学生的平均身高是______米.10.某校规定学生的学期体育成绩由三部分组成:体育课外活动占学期成绩的10%,理论测试占30%,体育技能测试占60%,一名同学上述三项成绩依次为90,92,73分,则这名同学本学期的体育成绩为______分,可以看出,三项成绩中______的成绩对学期成绩的影响最大.二、选择题11.为了解乡镇企业的水资源的利用情况,市水利管理部门抽查了部分乡镇企业在一个月中的用水情况,其中用水15吨的有3家,用水20吨的有5家,用水30吨的有7家,那么平均每家企业1个月用水( ).(A)23.7吨(B)21.6吨(C)20吨(D)5.416吨12.m个x1,n个x2和r个x3,由这些数据组成一组数据的平均数是( ).(A) (B) (C) (D)三、解答题13元,请估计这张卡是否够小明家用一个月(按30天计算),将结果填在后面的横线上.(只填“够”或“不够”)结果为:______.并说明为什么.14.四川汶川大地震发生后,某中学八年级(1)班共有40名同学参加了“我为灾区献爱心”的活动.活动结束后,生活委员小林将捐款情况进行了统计,并绘制成如右的统计图.(1)求这40名同学捐款的平均数;(2)该校共有学生1200名,请根据该班的捐款情况,估计这个中学的捐款总数大约是多少元?15.某地为了解从2004年以来初中学生参加基础教育课程改革的情况,随机调查了本地区1000名初中学习能力优秀的学生.调查时,每名学生可在动手能力、表达能力、创造能力、解题技巧、阅读能力和自主学习等六个方面中选择自己认为是优秀的项.调查后绘制了如下图所示的统计图.请根据统计图反映的信息解答下列问题:(1)学生获得优秀人数最多的一项和最有待加强的一项各是什么?(2)这1000名学生平均每人获得几个项目优秀?(3)若该地区共有2万名初中学生,请估计他们表达能力为优秀的学生有多少人?测试2 平均数(二)学习要求加强实际问题中平均数的计算,体会用样本平均数估计总体平均数的思想.课堂学习检测一、填空题1.已知7,4,5和x的平均数是5,则x=______.2.某校12名同学参加数学科普活动比赛,其中8名男同学的平均成绩为85分,其余的女同学的平均成绩为76分,则该校12名同学的平均成绩为______分.3.某班50名学生平均身高168cm,其中30名男生平均身高170cm,则20名女生的平均身高为______cm.二、选择题4.如果a、b、c的平均数是4,那么a-1,b-5和c+3的平均数是( ).(A)-1 (B)3 (C)5 (D)95那么这次知识问答全班的平均成绩是( )(结果保留整数).(A)80分(B)81分(C)82分(D)83分三、解答题6.某班有学生52人,期末数学考试平均成绩是72分.有两名同学下学期要转学,已知他俩的成绩分别为70分和80分.求他俩转学后该班的数学平均分.7.某瓜农采用大棚栽培技术种植了1亩地的两种西瓜,共产出了约600个西瓜.在西瓜上计算这10个西瓜的平均质量,并估计这1亩地的西瓜产量是多少千克.综合、运用、诊断一、填空题8.如果一组数据中有3个6、4个-1,2个-2、1个0和3个x,其平均数为x,那么x=______.9若该小组的平均成绩为7.7环,则成绩为8环的人数是______.二、选择题10.一次考试后,某学习小组组长算出全组5位同学数学的平均分为M,如果把M当成另一个同学的分数,与原来的5个分数一起,算出这6个分数的平均数为N,那么M∶N 为( ).(A)5∶6 (B)1∶1 (C)6∶5 (D)2∶111.某辆汽车从甲地以速度v1匀速行驶至乙地后,又从乙地以速度v2匀速返回甲地,则汽车在这个行驶过程中的平均速度是( ).(A) (B) (C) (D)12.某同学在用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此算出的平均数与实际平均数的差为( ).(A)3 (B)-3 (C)3.5 (D)-3.5三、解答题13.我国从2008年6月1日起执行“限塑令”.“限塑令”执行前,某校为了了解本校学生所在家庭使用塑料袋的数量情况,随机调查了10名学生所在家庭每月使用塑料袋的数量,结果如下(单位:只)65 70 85 75 79 74 91 81 95 85(1)计算这10名学生所在家庭平均每月使用塑料袋多少只?(2)“限塑令”执行后,家庭每月使用塑料袋数量预计将减少50%.根据上面的计算结果,估计该校1000名学生所在家庭每月使用塑料袋可减少多少只?拓展、探究、思考一、解答题14.某中学为了了解本校学生的身体发育情况,抽测了同年龄的40名女学生的身高情况,(1)频数分布表中的A=______;(2)这40名女学生的平均身高是______cm(精确到0.1cm).15.某人为了了解他所在地区的旅游情况,收集了该地区2004至2007年每年的旅游收入及入境旅游人数(其中缺少2006年入境旅游人数)的有关数据,整理并分别绘成图1,图2.图1 图2根据上述信息,回答下列问题:(1)该地区2004至2007年四年的年旅游收入的平均数是______亿元;(2)据了解,该地区2006年、2007年入境旅游人数的年增长率相同,那么2006年入境旅游人数是______万人;(3)根据第(2)小题中的信息,请把图2补画完整.测试3 中位数和众数(一)学习要求了解中位数和众数的意义,掌握它们的求法.课堂学习检测一、填空题1.学校篮球集训队11名队员进行定点投篮训练,将11名队员在1分钟内投进篮筐的球数由小到大排序后为6,7,8,9,9,9,9,10,10,10,12,这组数据的众数和中位数分别是______.2.资阳市某学校初中2008级有四个绿化小组,在植树节这天种下柏树的棵数如下:10,10,x,8,若这组数据的众数和平均数相等,那么它的中位数是______棵.3.已知数据1,2,x和5的平均数是2.5,则这组数据的众数是______.二、选择题4.对于数据2,4,4,5,3,9,4,5,1,8,其众数、中位数和平均数分别为( ).(A)4 4 6 (B)4 6 4.5 (C)4 4 4.5 (D)5 6 4.55.为了筹备班里的新年联欢会,班长以全班同学最爱吃哪几种水果做民意调查,以决定最终买什么水果.该次调查结果最终应该由数据的( )决定.(A)平均数(B)中位数(C)众数(D)无法确定6.一名射击运动员连续打靶8次,命中的环数如图所示,这组数据的众数与中位数分别为( )(A)9与8(B)8与9(C)8与8(D)8.5与9三、解答题7.公园里有甲、乙两群游客正在进行团体活动,两群游客的年龄如下(单位:岁):甲群:13 13 14 15 15 15 1 5 16 17 17;乙群:3 4 4 5 5 6 6 54 57.回答下列问题:(1)甲群游客的平均年龄是______岁,中位数是______岁,众数是______,其中______能较好地反映这群游客的年龄特征:(2)乙群游客的平均年龄是______岁,中位数是______岁,众数是______,其中______能较好地反映这群游客的年龄特征.8.某饮食公司为一学校提供午餐,有3元、4元和5元三种价格的饭菜供师生选择(每人限定一份).如图,是五月份的销售情况统计图,这个月一共销售了10400份饭菜,那么师生购买午餐费用的平均数、中位数和众数各是多少?综合、运用、诊断一、填空题9.10.如果数据20,30,50,90和x的众数是20,那么这组数据的中位数是______,平均数是______.二、选择题11.已知数据x,5,0,3,-1的平均数是1,那么它的中位数是( ).(A)0 (B)2.5 (C)1 (D)0.512.如果一组数据中有一个数据变动,那么( ).(A)平均数一定会变动(B)中位数一定会变动(C)众数一定会变动(D)平均数、中位数和众数可能都不变三、解答题13.某校八年级(1)班50名学生参加2009年贵阳市数学质量监控考试,全班学生的成绩统(1)该班学生考试成绩的众数是______;(2)该班学生考试成绩的中位数是______;(3)该班张华同学在这次考试中的成绩是83分,能不能说张华同学的成绩处于全班中游偏上水平?试说明理由.14.某中学要召开运动会,决定从九年级全部的150名女生中选30人,组成一个花队(要求参加花队的同学的身高尽可能接近).现在抽测了10名女生的身高,结果如下(单位:厘米):166 154 151 167 162 158 158 160 162 162.(1)依据数据估计,九年级全体女生的平均身高约是多少?(2)这10名女生的身高的中位数和众数各是多少?(3)请你依据本数据,设计一个挑选参加花队的女生的方案.(要简要说明)拓展、探究、思考一、选择题15.国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,我市就“你每天在校体育活动时间是多少”的问题随机调查了某区300名初中学生,根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:t<0.5h;B组:0.5h≤t<1h;C组:1h≤t<1.5h;D组:t≥1.5h.根据上述信息,你认为本次调查数据的中位数落在( ).(A)B组(B)C组(C)D组(D)A组二、解答题16.为了解某校九年级学生体育测试成绩情况,现从中随机抽取部分学生的体育成绩统计如下,其中右侧扇形统计图中的圆心角 为36°.体育成绩统计表根据上面提供的信息,回答下列问题:(1)写出样本容量、m的值及抽取部分学生体育成绩的中位数;(2)已知该校九年级共有500名学生,如果体育成绩达28分以上(含28分)为优秀,请估计该校九年级学生体育成绩达到优秀的总人数.测试4 中位数和众数(二)学习要求进一步理解平均数、中位数和众数所代表的不同的数据特征.课堂学习检测一、填空题1.在一组数据中,受最大的一个数据值影响最大的数据代表是______.2.数据2,2,1,5,-1,1的众数和中位数之和是______.二、选择题3.某班第一小组7名同学的毕业升学体育测试成绩(满分30分)依次为:25,23,25,23,27,30,25,这组数据的中位数和众数分别是( )(A)23 25 (B)23 23 (C)25 23 (D)25 254.为调查八年级学生完成作业的时间,某校抽查了8名学生完成作业的时间,依次是:75,70,90,70,70,58,80,55(单位:分钟),那么这组数据的众数、中位数和平均数依次为( ).(A)70 70 71 (B)70 71 70 (C)71 70 70 (D)70 70 70三、解答题5.某校九年级举行了一次数学测验,为了估计平均成绩,在619份试卷中抽取一部分试卷的成绩如下:有1人100分,2人90分,12人85分,8人80分,10人75分,5人70分.(1)求出样本平均数、中位数和众数;(2)估计全年级的平均分.6(2)假设副董事长的工资提升到2万元,董事长的工资提升到3万元,那么新的职工月工资的平均数、中位数和众数是什么?(3)你认为哪个统计量更能反映这个公司员工的工资水平?谈一谈你的看法.综合、运用、诊断一、填空题7.已知a<b<c<d,则数据a,a,b,c,d,b,c,c的众数为______,中位数为______,平均数为______.8.一组数据的中位数是m,众数是n,则将这组数据中每个数都减去a后,新数据的中位数是______,众数是______.二、选择题9.有7个数由小到大排列,其平均数是38.如果这组数中前4个数的平均数是33,后4个数的平均数是42,那么这7个数的中位数是( ).(A)34 (B)1 6 (C)38 (D)20三、解答题10.文艺会演中,参加演出的10个班各派1名代表担任评委给演出打分,1班和2班的成绩如下:(1)若根据平均数作为评选标准,两个班谁将获胜?你认为公平吗?为什么?(2)采用怎样的方法,对参赛的班级更为公平?如果采用你提供的方法,两个班谁将获胜? 11.某同学为了完成统计作业,对全校的耗电情况进行调查.他抽查了10天中全校每天的耗(1)写出上表中数据的众数和平均数;(2)由(1)获得的数据,估计该校一个月(按30天计算)的耗电量;(3)若当地每度电的定价是0.5元,写出该校应付的电费y(元)与天数x(取正整数)之间的函数关系式.拓展、探究、思考一、解答题12.在学校组织的“喜迎奥运,知荣明耻.文明出行”的知识竞赛中,每班参加比赛的人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为100分,90分,80分,70分.学校将某年级的1班和2班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)此次竞赛中,2班成绩在C级以上(包括C级)的人数为______;(2)(3)请从下列不同角度对这次竞赛成绩的结果进行分析:①从平均数和中位数的角度来比较1班和2班的成绩;②从平均数和众数的角度来比较1班和2班的成绩;③从B级以上(包括B级)的人数的角度来比较1班和2班的成绩.测试5 极差和方差(一)学习要求了解极差和方差的意义和求法,体会它们刻画数据波动的不同特征.课堂学习检测一、填空题1.一组数据100,97,99,103,101中,极差是______,方差是______.2.数据1,3,2,5和x的平均数是3,则这组数据的方差是______.3.一个样本的方差[(x1-3)2+(x2-3)2+…+(x n-3)2],则样本容量是______,样本平均数是______.二、选择题4.一组数据-1,0,3,5,x的极差是7,那么x的值可能有( ).(A)1个(B)2个(C)4个(D)6个5.已知样本数据1,2,4,3,5,下列说法不正确的是( ).(A)平均数是3 (B)中位数是4 (C)极差是4 (D)方差是2三、解答题6.甲、乙两组数据如下:甲组:10 9 11 8 12 13 10 7;乙组:7 8 9 10 11 12 11 12.分别计算出这两组数据的极差和方差,并说明哪一组数据波动较小.7.为检测一批橡胶制品的弹性,现抽取15条皮筋的抗拉伸程度的数据(单位:牛):5 4 4 4 5 7 3 3 5 56 6 3 6 6(1)这批橡胶制品的抗拉伸程度的极差为______牛;(2)若生产产品的抗拉伸程度的波动方差大于1.3,这家工厂就应对机器进行检修,现在这家工厂是否应检修生产设备?通过计算说明.综合、运用、诊断一、填空题8.随机从甲、乙两块试验田中各抽取100株麦苗测量高度,计算平均数和方差的结果:=13,=13,=3.6,=15.8,则小麦长势比较整齐的试验田是______.9.把一组数据中的每个数据都减去同一个非零数,则平均数______,方差______.(填“改变”或“不变”)二、选择题10.关于数据-4,1,2,-1,2,下面结果中,错误的是( ).(A)中位数为1 (B)方差为26(C)众数为2 (D)平均数为011.某工厂共有50名员工,他们的月工资方差是s2,现在给每个员工的月工资增加200元,那么他们的新工资的方差( ).(A)变为s2+200 (B)不变(C)变大了(D)变小了12.数据-1,0,3,5,x的极差为7,那么x等于( ).(A)6 (B)-2 (C)6或-2 (D)不能确定三、解答题13.甲、乙两个组各10名同学进行英语口语会话测试,每个人测试5次,每个同学合格的次数分别如下:甲组:4 1 2 2 1 3 3 1 2 1;乙组:4 3 0 2 1 3 3 0 1 3.(1)如果合格3次以上(含3次)为及格标准,请你说明哪个小组的及格率高;(2)请你比较两个小组口语会话的合格次数谁比较稳定.测试6 极差和方差(二)学习要求体会用样本方差估计总体方差的思想,掌握分析数据的思想和方法.课堂学习检测一、选择题1.如图是根据某地2008年4月上旬每天最低气温绘成的折线图,那么这段时间最低气温的极差、众数、平均数依次是( ).A.5°5°4°B.5°5° 4.5°C.2.8°5°4°D.2.8°5° 4.5°2.已知甲、乙两组数据的平均数都是5,甲组数据的方差=,乙组数据的方差=,那么下列说法正确的是( ).(A)甲组数据比乙组数据的波动大(B)乙组数据比甲组数据的波动大(C)甲组数据与乙组数据的波动一样大(D)甲、乙两组数据的波动大小不能比较二、填空题3.已知一组数据1,2,0,-1,x,1的平均数是1,则这组数据的极差为______.4.样本数据3,6,a,4,2的平均数是5,则这个样本的方差是______.综合、运用、诊断一、填空题5.样本数据3,6,a,4,2的平均数是5,则这个样本的方差是______.6.已知样本x1、x2,…,x n的方差是2,则样本3x1+2,3x2+2,…,3x n+2的方差是_____ ____.7.如图,是甲、乙两地5月上旬的日平均气温统计图,则甲、乙两地这6天日平均气温的方差大小关系为:______ (填“<”或“>”号),甲、乙两地气温更稳定的是:______.二、解答题8.星期天上午,茱萸湾动物园熊猫馆来了甲、乙两队游客,两队游客的年龄如下表所示:甲队.乙队:(1)(2)根据前面的统计分析,回答下列问题:①能代表甲队游客一般年龄的统计数据是_____________________;②平均数能较好地反映乙队游客的年龄特征吗?为什么?9.为了解某品牌A,B两种型号冰箱的销售状况,王明对其专卖店开业以来连续七个月的(1)完成下表((2)请你根据七个月的销售情况在图中绘制成折线统计图,并依据折线图的变化趋势,对专卖店今后的进货情况提出建议(字数控制在20~50字).参考答案第二十章数据的分析测试1 平均数(一)1.9.2.2.8;2.3.9.70.4.B.5.C.6.(1)略;(2)178,178;(3)甲队,理由略.7.小明8.900.9.1.625.10.80.4;体育技能测试.11.A.12.D.13.够用;∵30×10×1.7=510<600.14.(1)41元;(2)49200元.15.(1)解题技巧,动手能力;(2)2.84;(3)7000.测试2 平均数(二) 1.4.2.82.3.165.4.B.5.C.6.(分).7.10个西瓜的平均质量(千克),估计总产量是5×600=3000(千克).8.1.9.4.10.B.11.D.12.B.13.(1)80;(2)4000.14.(1)6;(2)158.8.15.(1)45;(2)220;(3)略.测试3 中位数和众数(一)1.9;9.2.11.3.2.4.C.5.C.6.C.7.(1)15,15,15,平均数、中位数和众数;(2)16,5,4、5和6,中位数和众数.8.按百分比计算得这个月3元、4元和5元的饭菜分别销售10400×20%=2080份,10400×65%=6760份,10400×15%=1560份,所以师生购买午餐费用的平均数是元;中位数和众数都是4元.9.1.75;1.70;1.69.10.30;42.11.A.12.A.13.(1)88;(2)86;(3)不能.因为83小于中位数.14.(1)平均身高为(厘米);(2)中位数是161厘米,众数是162厘米;(3)根据(1)(2)的计算可知,大多数女生的身高应该在160厘米和162厘米之间,因此可以选择这部分身高的女生组成花队.15.B.16.(1)50,5,28;(2)300.测试4 中位数和众数(二)1.平均数.2.2.5或3.5.3.D.4.A.5.(1)样本平均数是80分,中位数是80分,众数是85分;(2)估计全年级平均80分.6.(1)平均数是(元),中位数和众数都是1500(元);(2)平均数是(元),中位数和众数都是1500(元).(3)中位数和众数都能反映该公司员工的工资水平.而公司中少数人的工资与大多数人的工资差别较大,导致平均数和中位数偏差较大,所以平均数不能反映该公司员工的工资水平.7.8.m-a;n-a.9.A.10.(1) (分),(分),2班将获胜;我认为不公平,因为4号评委给两个班的打分明显有偏差,影响了公正性;(2)可以采取去掉一个最高分和一个最低分后,再计算平均数,这样1班获胜;也可以用中位数来衡量标准,也是1班获胜.11.(1)众数是113度,平均数是108度;(2)估计一个月的耗电量是108×30=3240(度);(3)解析式为y=54x(x是正整数).12.(1)21;(2)1班众数:90分;2班中位数:80分;(3)略测试5 极差和方差(一)1.6;4.2.2.3.12;3.4.B.5.B.6.甲组的极差是6,方差是3.5;乙组的极差是5,方差是3;说明乙组的波动较小.7.(1)4;(2)方差约是1.5,大于1.3,说明应该对机器进行检修.8.甲.9.改变;不变.10.B.11.B.12.C.13.(1)甲组及格率是30%,乙组及格率是50%,乙组及格率高;(2)=2,=2,=1,=1.8,甲组更稳定.测试6 极差和方差(二)1.B.2.B. 3.4.4.8.5.8.6.18.7.>,乙.8(2)①平均数;②不能;方差太大.9.(1)A型:平均数14;方差4.3(约);B型:中位数15.(2)略.第二十章数据的分析全章测试一、填空题1.从一组数据中取出m个x1,n个x2,p个x3组成一个数据样本,则这个样本的平均数为______.2.数据1,x,2,5的中位数是3,则x=______.3.甲、乙两人在相同情况下各射靶10次,环数的方差分别是=1.4,=1.2,则射击稳定性高的是______.4.某中学举行一次演讲比赛,分段统计参赛学生的成绩如下表(分数为整数,满分为100分),则这次比赛的平均成绩为______分.5.若x1、x2、x3的方差为4,则2x1+3,2x2+3,2x3+3的方差为______.二、选择题6.若x,y,z的平均数是6,则5x+3,5y-2,5z+5的平均数是( ).(A)6 (B)30 (C)33 (D)327.从某市5000名初一学生中,随机地抽取100名学生,测得他们的身高数据,得到一个样本,则这个样本数据的平均数、中位数、众数、方差四个统计量中,服装厂最感兴趣的是( ).(A)平均数(B)中位数(C)众数(D)方差8.小明对本班同学每天花多少零用钱进行了调查,计算出平均数为3,中位数为3,众数为2,极差为8,假如老师随机问一名同学每天花多少零用钱,最有可能得到的回答是( ).(A)3 (B)2 (C)8 (D)不能确定9.已知x1,x2,…,x10的平均数是a;x11,x12,…,x30的平均数是b,则x1,x2,…,x30的平均数是( ).(A) (B)(C) (D)10.甲乙两人在跳远练习中,6次成绩分别为(单位:米):甲:3.8 3.8 3.9 3.9 4 4;乙:3.8 3.9 3.9 3.9 3.9 4.则这次跳远练习中,甲乙两人成绩方差的大小关系是( ).(A)>(B)<(C)=(D)无法确定三、解答题11.某农户在山上种了脐橙果树44株,现进入第三年收获期,收获时,先随意采摘5株果树上的脐橙,称得每株树上的脐橙重量如下(单位:千克):35,35,34,39,37.若市场上的脐橙售价为每千克5元,估计这年该农户卖脐橙的收入为多少元?12.如图,是某单位职工年龄的频数分布直方图,根据图形提供的信息,回答下列问题:(1)该单位职工的平均年龄为多少?(2)该单位职工在哪个年龄段的人数最多?(3)该单位职工年龄的中位数在哪个年龄段内?13.学期末,假设在评选优秀干部时,思想表现、学习成绩、工作能力这三方面的重要比为3∶3∶4,通过计算说明谁应当选为优秀学生干部.14.如图是甲、乙二人在八年级下学期的9次数学考试成绩:(1)(2)请从不同的角度对两人的考试成绩进行分析.(至少写出三条)15.为了比较市场上甲、乙两种电子钟每日走时误差的情况,从这两种电子钟中,各随机抽取10台进行测试,两种电子钟走时误差的数据如下表(单位:秒):(2)计算甲、乙两种电子钟走时误差的方差;(3)根据经验,走时稳定性较好的电子钟质量更优,若两种类型的电子钟价格相同,请问:你买哪种电子钟?为什么?16.为了迎接新中国成立六十周年,某中学九年级组织了《祖国在我心》征文比赛,共收到一班、二班、三班、四班参赛学生的文章共100篇(参赛学生每人只交一篇),下面扇形统计图描述了各班参赛学生占总人数的百分比情况(尚不完整).比赛一、二等奖若干,结果全年级25人获奖,其中三班参赛学生的获奖率为20%,一、二、三、四班获奖人数的比为6∶7∶a∶5.(1)填空:①四班有______人参赛, =______°.②a=______,各班获奖学生数的众数是______.(2)获一等奖、二等奖的学生每人分别得到价值100元、60元的学习用品,购买这批奖品共用去1900元,问一等奖、二等奖的学生人数分别是多少?参考答案第二十章数据的分析全章测试1.2.4.3.乙.4.81.5.16.6.D.7.C.8.B.9.C.10.A.11.7920元.12.41,40~42,40~42.13.平均数分别为26.2,25.8,25.4,班长应当选,14.(1)(2)略.15.(1)甲种电子钟走时误差的平均数是:乙种电子钟走时误差的平均数是:∴两种电子钟走时误差的平均数都是0秒.(2)6秒2秒2∴甲乙两种电子钟走时误差的方差分别是6秒2和4.8秒2.(3)我会买乙种电子钟,因为平均数相同,且甲的方差比乙的大,说明乙的稳定性更好,故乙种电子钟的质量更优.16.(1)①25,90°;②7,7;(2)10,15.。
八年级下册数学测试卷及答案解析
⼋年级下册数学测试卷及答案解析书是灯,读书照亮了前⾯的路;书是桥,读书接通了彼此的岸;书是帆,读书推动了⼈⽣的船。
读书是⼀门⼈⽣的艺术,因为读书,⼈⽣才更精彩!下⾯给⼤家分享⼀些关于⼋年级下册数学测试卷及答案解析,希望对⼤家有所帮助。
⼀、选择题:1.下列各式从左到右,是因式分解的是()A.(y﹣1)(y+1)=y2﹣1B.x2y+xy2﹣1=xy(x+y)﹣1C.(x﹣2)(x﹣3)=(3﹣x)(2﹣x)D.x2﹣4x+4=(x﹣2)2【考点】因式分解的意义.【分析】根据因式分解就是把⼀个多项式变形成⼏个整式的积的形式的定义,利⽤排除法求解.【解答】解:A、是多项式乘法,不是因式分解,故本选项错误;B、结果不是积的形式,故本选项错误;C、不是对多项式变形,故本选项错误;D、运⽤完全平⽅公式分解x2﹣4x+4=(x﹣2)2,正确.故选D.【点评】这类问题的关键在于能否正确应⽤分解因式的定义来判断.2.下列四个图形中,既是轴对称图形⼜是中⼼对称图形的是()A.B.C.D.【考点】中⼼对称图形;轴对称图形.【分析】根据轴对称图形与中⼼对称图形的概念求解.【解答】解:A、不是轴对称图形,是中⼼对称图形;B、是轴对称图形,也是中⼼对称图形;C、是轴对称图形,不是中⼼对称图形;D、是轴对称图形,不是中⼼对称图形.故选B.【点评】本题考查了中⼼对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中⼼对称图形是要寻找对称中⼼,旋转180度后两部分重合.3.下列多项式中不能⽤平⽅差公式分解的是()A.a2﹣b2B.﹣x2﹣y2C.49x2﹣y2z2D.16m4n2﹣25p2【考点】因式分解﹣运⽤公式法.【分析】能⽤平⽅差公式分解的式⼦的特点是:两项都是平⽅项,符号相反.【解答】解:A、符合平⽅差公式的特点;B、两平⽅项的符号相同,不符和平⽅差公式结构特点;C、符合平⽅差公式的特点;D、符合平⽅差公式的特点.故选B.【点评】本题考查能⽤平⽅差公式分解的式⼦的特点,两平⽅项的符号相反是运⽤平⽅差公式的前提.4.函数y=kx+b(k、b为常数,k≠0)的图象如图,则关于x的不等式kx+b>0的解集为()A.x>0B.x<0C.x<2D.x>2【考点】⼀次函数与⼀元⼀次不等式.【分析】从图象上得到函数的增减性及与x轴的交点的横坐标,即能求得不等式kx+b>0的解集.【解答】解:函数y=kx+b的图象经过点(2,0),并且函数值y随x的增⼤⽽减⼩,所以当x<2时,函数值⼩于0,即关于x的不等式kx+b>0的解集是x<2.故选C.【点评】本题考查了⼀次函数与不等式(组)的关系及数形结合思想的应⽤,注意⼏个关键点(交点、原点等),做到数形结合.5.使分式有意义的x的值为()A.x≠1B.x≠2C.x≠1且x≠2D.x≠1或x≠2【考点】分式有意义的条件.【分析】根据分式有意义,分母不等于0列不等式求解即可.【解答】解:由题意得,(x﹣1)(x﹣2)≠0,解得x≠1且x≠2.故选C.【点评】本题考查了分式有意义的条件,从以下三个⽅⾯透彻理解分式的概念:(1)分式⽆意义?分母为零;(2)分式有意义?分母不为零;(3)分式值为零?分⼦为零且分母不为零.6.下列是最简分式的是()A.B.C.D.【考点】最简分式.【分析】先将选项中能化简的式⼦进⾏化简,不能化简的即为最简分式,本题得以解决.【解答】解:,⽆法化简,,,故选B.【点评】本题考查最简分式,解题的关键是明确最简分式的定义.7.如图所⽰的正⽅形⽹格中,⽹格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三⾓形,则点C的个数是()A.6B.7C.8D.9【考点】等腰三⾓形的判定.【专题】分类讨论.【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的⼀条腰.【解答】解:如上图:分情况讨论.①AB为等腰△ABC底边时,符合条件的C点有4个;②AB为等腰△ABC其中的⼀条腰时,符合条件的C点有4个.故选:C.【点评】本题考查了等腰三⾓形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利⽤数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.8.若不等式组的解集是x<2,则a的取值范围是()A.a<2B.a≤2C.a≥2D.⽆法确定【考点】解⼀元⼀次不等式组.【专题】计算题.【分析】解出不等式组的解集,与已知解集x<2⽐较,可以求出a的取值范围.【解答】解:由(1)得:x<2由(2)得:x<a< p="">因为不等式组的解集是x<2∴a≥2故选:C.【点评】本题是已知不等式组的解集,求不等式中另⼀未知数的问题.可以先将另⼀未知数当作已知处理,求出解集与已知解集⽐较,进⽽求得零⼀个未知数.9.下列式⼦:(1);(2);(3);(4),其中正确的有()A.1个B.2个C.3个D.4个【考点】分式的基本性质.【分析】根据分式的基本性质作答.【解答】解:(1),错误;(2),正确;(3)∵b与a的⼤⼩关系不确定,∴的值不确定,错误;(4),正确.故选B.【点评】在分式中,⽆论进⾏何种运算,如果要不改变分式的值,则所做变化必须遵循分式基本性质的要求.10.某煤矿原计划x天⽣存120t煤,由于采⽤新的技术,每天增加⽣存3t,因此提前2天完成,列出的⽅程为()A.==﹣3B.﹣3C.﹣3D.=﹣3【考点】由实际问题抽象出分式⽅程.【分析】设原计划x天⽣存120t煤,则实际(x﹣2)天⽣存120t煤,等量关系为:原计划⼯作效率=实际⼯作效率﹣3,依此可列出⽅程.【解答】解:设原计划x天⽣存120t煤,则实际(x﹣2)天⽣存120t煤,根据题意得,=﹣3.故选D.【点评】本题考查由实际问题抽象出分式⽅程,关键设出天数,以⼯作效率作为等量关系列⽅程.⼆、填空题:11.分解因式x2(x﹣y)+(y﹣x)=(x﹣y)(x+1)(x﹣1).【考点】提公因式法与公式法的综合运⽤.【分析】把(x﹣y)看作⼀个整体并提取,然后再利⽤平⽅差公式继续分解因式即可.【解答】解:x2(x﹣y)+(y﹣x)=x2(x﹣y)﹣(x﹣y)=(x﹣y)(x2﹣1)=(x﹣y)(x+1)(x﹣1).故答案为:(x﹣y)(x+1)(x﹣1).【点评】本题考查了⽤提公因式法和公式法进⾏因式分解,⼀个多项式有公因式⾸先提取公因式,然后再⽤其他⽅法进⾏因式分解,同时因式分解要彻底,直到不能分解为⽌.12.当x=﹣2时,分式⽆意义.若分式的值为0,则a=﹣2.【考点】分式的值为零的条件;分式有意义的条件.【分析】根据分母为零,分式⽆意义;分母不为零,分式有意义,分⼦为零分母不为零分式的值为零,可得答案.【解答】解:∵分式⽆意义,∴x+2=0,解得x=﹣2.∵分式的值为0,∴,解得a=﹣2.故答案为:=﹣2,﹣2.【点评】本题考查了分式有意义的条件,从以下三个⽅⾯透彻理解分式的概念:分式⽆意义?分母为零;分式有意义?分母不为零;分式值为零?分⼦为零且分母不为零.13.如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为6.【考点】线段垂直平分线的性质.【专题】计算题;压轴题.【分析】运⽤线段垂直平分线定理可得BE=CE,再根据已知条件“△EDC的周长为24,△ABC与四边形AEDC的周长之差为12”表⽰出线段之间的数量关系,联⽴关系式后求解.【解答】解:∵DE是BC边上的垂直平分线,∴BE=CE.∵△EDC的周长为24,∴ED+DC+EC=24,①∵△ABC与四边形AEDC的周长之差为12,∴(AB+AC+BC)﹣(AE+ED+DC+AC)=(AB+AC+BC)﹣(AE+DC+AC)﹣DE=12,∴BE+BD﹣DE=12,②∵BE=CE,BD=DC,∴①﹣②得,DE=6.故答案为:6.【点评】此题主要考查线段的垂直平分线的性质等⼏何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.14.若4a4﹣ka2b+25b2是⼀个完全平⽅式,则k=±20.【考点】完全平⽅式.【分析】根据4a4﹣ka2b+25b2是⼀个完全平⽅式,利⽤此式⾸末两项是2a2和5b这两个数的平⽅,那么中间⼀项为加上或减去2a2和5b积的2倍,进⽽求出k的值即可.【解答】解:∵4a4﹣ka2b+25b2是⼀个完全平⽅式,∴4a4﹣ka2b+25b2=(2a2±5b)2,=4a4±20a2b+25b2.∴k=±20,故答案为:±20.【点评】此题主要考查的是完全平⽅公式的应⽤;两数的平⽅和,再加上或减去它们积的2倍,就构成了⼀个完全平⽅式.注意积的2倍的符号,避免漏解.15.如图,在△ABC中,∠C=90°,AC=BC,斜边AB=2,O是AB的中点,以O为圆⼼,线段OC的长为半径画圆⼼⾓为90°的扇形OEF,弧EF经过点C,则图中阴影部分的⾯积为﹣.【考点】扇形⾯积的计算.【分析】连接OC,作OM⊥BC,ON⊥AC,证明△OMG≌△ONH,则S四边形OGCH=S四边形OMCN,求得扇形FOE的⾯积,则阴影部分的⾯积即可求得.【解答】解:连接OC,作OM⊥BC,ON⊥AC.∵CA=CB,∠ACB=90°,点O为AB的中点,∴OC=AB=1,四边形OMCN是正⽅形,OM=.则扇形FOE的⾯积是:=.∵OA=OB,∠AOB=90°,点D为AB的中点,∴OC平分∠BCA,⼜∵OM⊥BC,ON⊥AC,∴OM=ON,∵∠GOH=∠MON=90°,∴∠GOM=∠HON,则在△OMG和△ONH中,,∴△OMG≌△ONH(AAS),∴S四边形OGCH=S四边形OMCN=()2=.则阴影部分的⾯积是:﹣.故答案为:﹣.【点评】本题考查了三⾓形的全等的判定与扇形的⾯积的计算的综合题,正确证明△OMG≌△ONH,得到S四边形OGCH=S四边形OMCN是解题的关键.三、解答题16.(21分)(2016春?成都校级期中)(1)因式分解:2x2y﹣4xy2+2y3;(2)解⽅程:=+;(3)先化简,再求值(﹣x+1)÷,其中;(4)解不等式组,把解集在数轴上表⽰出来,且求出其整数解.【考点】分式的化简求值;提公因式法与公式法的综合运⽤;解分式⽅程;在数轴上表⽰不等式的解集;解⼀元⼀次不等式组;⼀元⼀次不等式组的整数解.【分析】(1)先提公因式,然后根据完全平⽅公式解答;(2)去分母后将原⽅程转化为整式⽅程解答.(3)将括号内统分,然后进⾏因式分解,化简即可;(4)分别求出不等式的解集,找到公共部分,在数轴上表⽰即可.【解答】解:(1)原式=2y(x2﹣2xy+y2)=2y(x﹣y)2;(2)去分母,得(x﹣2)2=(x+2)2+16去括号,得x2﹣4x+4=x2+4x+4+16移项合并同类项,得﹣8x=16系数化为1,得x=﹣2,当x=﹣2时,x+2=0,则x=﹣2是⽅程的增根.故⽅程⽆解;(3)原式=[﹣]?=?=?=﹣,当时,原式=﹣=﹣=﹣;(4)由①得x<2,由②得x≥﹣1,不等式组的解集为﹣1≤x<2,在数轴上表⽰为.【点评】本题考查的是分式的化简求值、因式分解、解⼀元⼀次不等式组、在数轴上表⽰不等式组的解集,考查内容较多,要细⼼解答.17.在如图所⽰的直⾓坐标系中,每个⼩⽅格都是边长为1的正⽅形,△ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1).(1)将△ABC沿y轴正⽅向平移3个单位得到△A1B1C1,画出△A1B1C1,并写出点B1坐标;(2)画出△A1B1C1以点O为旋转中⼼、顺时针⽅向旋转90度的△A2B2C2,并求出点C1经过的路径的长度.【考点】作图﹣旋转变换;作图﹣平移变换.【分析】(1)分别作出点A、B、C沿y轴正⽅向平移3个单位得到对应点,顺次连接即可得;(2)分别作出点A、B、C以点O为旋转中⼼、顺时针⽅向旋转90度得到对应点,顺次连接即可得,再根据弧长公式计算即可.【解答】解:(1)如图,△A1B1C1即为所求作三⾓形,点B1坐标为(﹣2,﹣1);(2)如图,△A2B2C2即为所求作三⾓形,∵OC==,∴==π.【点评】本题考查了平移作图、旋转作图,解答本题的关键是熟练平移的性质和旋转的性质及弧长公式.18.⼩明和同学⼀起去书店买书,他们先⽤15元买了⼀种科普书,⼜⽤15元买了⼀种⽂学书,科普书的价格⽐⽂学书的价格⾼出⼀半,因此他们买的⽂学书⽐科普书多⼀本,这种科普和⽂学书的价格各是多少?【考点】分式⽅程的应⽤.【专题】应⽤题.【分析】根据题意,设科普和⽂学书的价格分别为x和y元,则根据“科普书的价格⽐⽂学书的价格⾼出⼀半,买的⽂学书⽐科普书多⼀本“列⽅程组即可求解.【解答】解:设科普和⽂学书的价格分别为x和y元,则有:,解得:x=7.5,y=5,即这种科普和⽂学书的价格各是7.5元和5元.【点评】本题考查分式⽅程的应⽤,同时考查学⽣理解题意的能⼒,关键是根据“科普书的价格⽐⽂学书的价格⾼出⼀半,买的⽂学书⽐科普书多⼀本“列出⽅程组.19.已知关于x的⽅程=3的解是正数,求m的取值范围.【考点】解分式⽅程;解⼀元⼀次不等式.【专题】计算题.【分析】先解关于x的分式⽅程,求得x的值,然后再依据“解是正数”建⽴不等式求m的取值范围.【解答】解:原⽅程整理得:2x+m=3x﹣6,解得:x=m+6.因为x>0,所以m+6>0,即m>﹣6.①⼜因为原式是分式⽅程,所以x≠2,即m+6≠2,所以m≠﹣4.②由①②可得,m的取值范围为m>﹣6且m≠﹣4.【点评】本题主要考查了分式⽅程的解法及其增根产⽣的原因.解答本题时,易漏掉m≠4,这是因为忽略了x﹣2≠0这个隐含的条件⽽造成的,这应引起同学们的⾜够重视.20.(12分)(2016?河南模拟)问题:如图(1),点E、F分别在正⽅形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.【发现证明】⼩聪把△ABE绕点A逆时针旋转90°⾄△ADG,从⽽发现EF=BE+FD,请你利⽤图(1)证明上述结论.【类⽐引申】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满⾜∠BAD=2∠EAF关系时,仍有EF=BE+FD.【探究应⽤】如图(3),在某公园的同⼀⽔平⾯上,四条通道围成四边形ABCD.已知AB=AD=80⽶,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40(﹣1)⽶,现要在E、F 之间修⼀条笔直道路,求这条道路EF的长(结果取整数,参考数据:=1.41,=1.73)【考点】四边形综合题.【分析】【发现证明】根据旋转的性质可以得到△ADG≌△ABE,则GF=BE+DF,只要再证明△AFG≌△AFE即可.【类⽐引申】延长CB⾄M,使BM=DF,连接AM,证△ADF≌△ABM,证△FAE≌△MAE,即可得出答案;【探究应⽤】利⽤等边三⾓形的判定与性质得到△ABE是等边三⾓形,则BE=AB=80⽶.把△ABE绕点A逆时针旋转150°⾄△ADG,只要再证明∠BAD=2∠EAF即可得出EF=BE+FD.【解答】【发现证明】证明:如图(1),∵△ADG≌△ABE,∴AG=AE,∠DAG=∠BAE,DG=BE,⼜∵∠EAF=45°,即∠DAF+∠BEA=∠EAF=45°,∴∠GAF=∠FAE,在△GAF和△FAE中,,∴△AFG≌△AFE(SAS),∴GF=EF,⼜∵DG=BE,∴GF=BE+DF,∴BE+DF=EF;【类⽐引申】∠BAD=2∠EAF.理由如下:如图(2),延长CB⾄M,使BM=DF,连接AM,∵∠ABC+∠D=180°,∠ABC+∠ABM=180°,∴∠D=∠ABM,在△ABM和△ADF中,,∴△ABM≌△ADF(SAS),∴AF=AM,∠DAF=∠BAM,∵∠BAD=2∠EAF,∴∠DAF+∠BAE=∠EAF,∴∠EAB+∠BAM=∠EAM=∠EAF,在△FAE和△MAE中,,∴△FAE≌△MAE(SAS),∴EF=EM=BE+BM=BE+DF,即EF=BE+DF.故答案是:∠BAD=2∠EAF.【探究应⽤】如图3,把△ABE绕点A逆时针旋转150°⾄△ADG,连接AF,过A作AH⊥GD,垂⾜为H.∵∠BAD=150°,∠DAE=90°,∴∠BAE=60°.⼜∵∠B=60°,∴△ABE是等边三⾓形,∴BE=AB=80⽶.根据旋转的性质得到:∠ADG=∠B=60°,⼜∵∠ADF=120°,∴∠GDF=180°,即点G在CD的延长线上.易得,△ADG≌△ABE,∴AG=AE,∠DAG=∠BAE,DG=BE,⼜∵AH=80×=40,HF=HD+DF=40+40(﹣1)=40故∠HAF=45°,∴∠DAF=∠HAF﹣∠HAD=45°﹣30°=15°从⽽∠EAF=∠EAD﹣∠DAF=90°﹣15°=75°⼜∵∠BAD=150°=2×75°=2∠EAF∴根据上述推论有:EF=BE+DF=80+40(﹣1)≈109(⽶),即这条道路EF的长约为109⽶.【点评】此题主要考查了四边形综合题,关键是正确画出图形,证明∠BAD=2∠EAF.此题是⼀道综合题,难度较⼤,题⽬所给例题的思路,为解决此题做了较好的铺垫.⼋年级下册数学测试卷及答案解析。
人教版八年级下册数学《期中检测试题》附答案解析
人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________第I 卷一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列各式:3,2x ,32,2)2(x x +≥-其中二次根式的个数为( )A. B. C. D.2. 下列四组线段中,可以构成直角三角形的是( )A. 4,5,6B. 1.5,2,2.5C. 2,3,4D. 1,2, 3 3. 下列计算正确是( )A. 239-=B. ()233=C. ()233-=-D. 239=4. 杨伯家小院子的四棵小树E 、F 、G 、H 刚好在其四边形院子ABCD 各边的中点上,若在四边形EFGH 内种上小草,则这块草地的形状是( )A. 平行四边形B. 矩形C. 正方形D. 菱形5. 下列命题中,真命题是( )A. 对角线互相垂直的四边形是菱形B. 对角线互相垂直平分的四边形是正方形C. 对角线相等的四边形是矩形D. 对角线互相平分的四边形是平行四边形6. 如图,在▱ABCD 中,AC 、BD 为对角线,BC =6,BC 边上的高为4,则阴影部分的面积为( )A. 3B. 6C. 12D. 247. 如图,已知在Rt ABC 中,90,8ACB AB ∠=︒=,分别以,AC BC 为直径作半圆,面积分别记为12,S S ,则12S S +等于( )A. 2πB. 4πC. 6πD. 8π 8. 计算:()910232()3+⨯-=( ) A. 23+ B. 23- C. 23-+ D. 23--9. 用四张大小一样的长方形纸片拼成一个正方形ABCD (如图),它的面积是48,已知长方形的一边长33,AE =图中空白部分是一个正方形,则这个小正方形的周长为( )A. 23B. 43C. 83D. 310. 如图所示,在矩形ABCD 中,12,20AB AC ==,两条对角线相交于点.以OB OC 、为邻边作第个1OBB C ,对角线相交于点1A ,再以11A B 、1A C 为邻边作第个111A B C C ,对角线相交于点1O ;再以11O B 、11O C 为邻边作第个1121O B B C ……依此类推.则第个平行四边形的面积为( )A. B. C. D.第II 卷二、填空题(每题4分,满分24分,将答案填在答题纸上)11. 若二次根式x 2-有意义,则x 的取值范围是___.12. 若实数a 、b 满足240a b ++-=,则a b=_____. 13. 若菱形的两条对角线长分别是6㎝和8㎝,则该菱形的面积是㎝2. 14. 如图,在平行四边形ABCD 中,添加一个条件____,使平行四边形ABCD 是矩形.15. 如图,把矩形纸片ABCD 沿EF 折叠,使点落在边AD 上的点处,点落在点处,已知10,4,2AD CD B D =='=.则AE =____.16. 如图,小明在A 时测得某树的影长为2m,B 时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为_____m.三、解答题(本大题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.) 17. 计算:(1)54520+- (2)()(227227)+-.18. 如图,ABCD 中,E 、F 分别在AD 、BC 上,且//EF AB .求证:EF CD =.19. 如图,在ABC 中,AB =BC ,D 、E 、F 分别是BC 、AC 、AB 边上的中点.(1)求证:四边形BDEF 是菱形.(2)若10,AB cm =求四边形BDEF 的周长.20. 如图所示的一块空地,已知4,3,90,13,AD m CD m ADC AB m ==∠=︒=12BC m =,求这块空地的面积.21. 如图所示,ABCD 是一个正方形花园,,是它的两个门,且DE CF =.要修建两条路BE 和AF ,这两条路等长吗?它们有什么位置关系?为什么?22. 问题背景:在△ABC 中,AB 、BC 、AC 三边的长分别为5、10、13,求这个三角形的面积小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC (即△ABC 三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC 的高,而借用网格就能计算出它的面积.(1)请你利用上述方法求出△ABC 的面积.(2)在图2中画△DEF ,DE 、EF 、DF 三边的长分别为2、8、10①判断三角形形状,说明理由.②求这个三角形的面积.(直接写出答案)23. 如图,在四边形ABCD 中,连接AC 、BD ,已知90,ACB ADB ∠=∠=︒且点,E F 分别为AB 、CD 的中点,连接EF .(1)求证:EF CD ⊥.(2)若26AB CD ,求EF 的长.24. 先阅读下列材料,再解决问题:我们定义一组对边平行,另一组对边不平行的四边形叫做梯形,其中平行的两边叫梯形的底边,不平行的两边叫梯形的腰,连接梯形两腰中点的线段叫梯形的中位线.如图,,E F 分别是梯形ABCD 的两腰AB 和CD 的中点,即EF 为梯形ABCD 的中位线.请同学们思考梯形的中位线与两底有何数量关系与位置关系?并给予证明.猜想:已知:求证:证明:25. 如图所示,在四边形ABCD 中,//,90AD BC A ∠=︒,12,21,16AB BC AD ===.动点从点出发,沿射线BC 方向以每秒个单位长度的速度运动,动点Q 同时从点出发,在线段AD 上以每秒个单位长度的速度向点运动,当其中一个动点到达端点时另一个动点也随之停止运动.设运动的时间为秒.(1)填空:AQ = ;BP = ;的取值范围是 .(2)设DPQ 的面积为,请用含的式子表示.(3)当t = 时,PD PQ =.(4)当为何值时,以点,,,P C D Q 为顶点的四边形是平行四边形.答案与解析第I卷一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.x≥-其中二次根式的个数为()2)A. B. C. D.[答案]C[解析][分析]根据二次根式的定义逐一进行判断即可得答案.[详解∵x2≥0,x≥-是二次根式,x≥-,∵x≥-2,∴x+2≥0,2)2)综上二次根式有三个,故选C.a≥的式子是二次根式是解题的关键.[点睛]本题考查了二次根式的判断,)02. 下列四组线段中,可以构成直角三角形的是( )A. 4,5,6B. 1.5,2,2.5C. 2,3,4D. , 3[答案]B[解析]试题分析:由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可:A、42+52=41≠62,不可以构成直角三角形,故本选项错误;B、1.52+22=6.25=2.52,可以构成直角三角形,故本选项正确;C、22+32=13≠42,不可以构成直角三角形,故本选项错误;D 、()2221233+=≠,不可以构成直角三角形,故本选项错误.故选B .考点:勾股定理的逆定理.3. 下列计算正确的是( )A. 239-=B. ()233=C. ()233-=-D. 239=[答案]B[解析][分析]根据二次根式运算法则即可求解.[详解]A .23-,二次根号下不能为负,故A 选项错误B .()233=,故B 选项正确 C .()233-=,故C 选项错误D .233=,故D 选项错误故选:B[点睛]本题考查了二次根式的运算法则,二次根式的性质,被开方数要大于零.4. 杨伯家小院子的四棵小树E 、F 、G 、H 刚好在其四边形院子ABCD 各边的中点上,若在四边形EFGH 内种上小草,则这块草地的形状是( )A. 平行四边形B. 矩形C. 正方形D. 菱形 [答案]A[解析][分析]连接BD 、AC ,根据中位线定理可得四边形是平行四边形,即可得到结果;[详解]如图所示,连接AC 、BD ,∵E 、F 、G 、H 是四边形ABCD 各边的中点,∴∥∥EH BD FG ,12EH FG BD ==, ∴四边形EFGH 是平行四边形,故答案选A .[点睛]本题主要考查了中点四边形的知识点,准确构造三角形,借助中位线求解是解题的关键. 5. 下列命题中,真命题的是( )A. 对角线互相垂直的四边形是菱形B. 对角线互相垂直平分的四边形是正方形C. 对角线相等的四边形是矩形D. 对角线互相平分的四边形是平行四边形[答案]D[解析][分析]根据平行四边形、矩形、菱形、正方形的判定定理进行判断即可.[详解]对角线互相垂直且平分的四边形是菱形,故A 是假命题;对角线互相垂直平分且相等的四边形是正方形,故B 是假命题;对角线相等且平分的四边形是矩形,故C 是假命题;对角线互相平分的四边形是平行四边形,故D 是真命题.故选D .[点睛]本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6. 如图,在▱ABCD 中,AC 、BD 为对角线,BC =6,BC 边上的高为4,则阴影部分的面积为( )A. 3B. 6C. 12D. 24[答案]B[解析][分析] 根据平行四边形的性质可得出阴影部分的面积为平行四边形面积的14,再由平行四边形的面积得出答案即可.[详解]∵四边形ABCD 为平行四边形,∴OA =OC ,OB =OD ,∴111646244BOC ABC ABCD S S S ===⨯⨯=, 故选:B .[点睛]本题考查了平行四边形的面积和性质,解题的关键是掌握平行四边形的性质:对角线互相平分. 7. 如图,已知在Rt ABC 中,90,8ACB AB ∠=︒=,分别以,AC BC 为直径作半圆,面积分别记为12,S S ,则12S S +等于( )A. 2πB. 4πC. 6πD. 8π[答案]D[解析][分析]根据半圆面积公式结合勾股定理,知S 1+S 2等于以斜边为直径的半圆面积问题得解.[详解]∵在Rt ABC 中,90ACB ∠=︒,8AB =,∴22264AC BC AB +==, ∵22111228AC S AC ππ⎛⎫== ⎪⎝⎭,22211228BC S BC ππ⎛⎫== ⎪⎝⎭, ∴()2222212111188888S S AC BC AC BC AB πππππ+=+=+==. 故选:D .[点睛]本题主要考查了勾股定理的应用,关键是掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.8. 计算:(91022(+⨯-=( )A. 2B. 2C. 2-D. 2-[答案]B[解析][分析]逆用同底数幂的乘法法则把(102-转化成((922-⨯-,然后运用积的乘方运算法则以及平方差公式计算即可.[详解](91022(⨯99((222(=+⨯⨯ 9(222(⎡⎤=+⨯-⎣⎦2=-故选:B .[点睛]本题考查了同底数幂的乘法,积的乘方,二次根式,平方差公式的应用,逆用同底数幂的乘法法则把()1023-转化成()()92323-⨯-是解题的关键. 9. 用四张大小一样的长方形纸片拼成一个正方形ABCD (如图),它的面积是48,已知长方形的一边长33,AE =图中空白部分是一个正方形,则这个小正方形的周长为( )A. 23B. 43C. 3D. 3[答案]C[解析] [分析] 通过正方形的面积求出边长为48,根据图形之间的联系求出空白小正方形的边长3-233即可求解.[详解]解:∵正方形ABCD 的面积是48,∴3∵3∴333∴空白小正方形的边长333∴小正方形的周长为3故选C .[点睛]本题考查了正方形的面积与边长;解题的关键是能够观察出图形之间的联系. 10. 如图所示,在矩形ABCD 中,12,20AB AC ==,两条对角线相交于点.以OB OC 、为邻边作第个1OBB C ,对角线相交于点1A ,再以11A B 、1A C 为邻边作第个111A B C C ,对角线相交于点1O ;再以11O B 、11O C 为邻边作第个1121O B B C ……依此类推.则第个平行四边形的面积为( )A.B. C. D.[答案]C[解析][分析] 首先分别求得几个平行四边形的面积,即可得到规律:第n 个平行四边形的面积为1922n ,继而求得答案. [详解]解:∵在矩形ABCD 中,AB=12,AC=20,∴22201216-=,∴S 矩形ABCD =AB•BC=192,OB=OC ,∵以OB ,OC 为邻边作第1个平行四边形OBB 1C ,∴平行四边形OBB 1C 是菱形,OA 1是△ABC 的中位线, 可知111122OA AB OB ==, ∴112OB AB ==, ∴111116129622OBB C S BC OB ==⨯⨯=, 111111111612482222A B C C S BC OB ==⨯⨯⨯=, ∴第n 个平行四边形面积为:1922n , ∴第6个平行四边形的面积是:619232=, 故选:C .[点睛]此题考查了平行四边形的性质以及矩形的性质,通过计算找到规律是解题的关键.第II 卷二、填空题(每题4分,满分24分,将答案填在答题纸上)11. 若二次根式x 2-有意义,则x 的取值范围是___.[答案]x 2≥[解析][详解]试题分析:根据题意,使二次根式2x -有意义,即x ﹣2≥0,解得x≥2.故答案是x≥2.[点睛]考点:二次根式有意义的条件.12. 若实数a 、b 满足240a b ++-=,则a b =_____. [答案]﹣12 [解析]根据题意得:a+2=0,b-4=0,解得:a=-2,b=4,则a b =﹣12.故答案是﹣12. 13. 若菱形的两条对角线长分别是6㎝和8㎝,则该菱形的面积是㎝2. [答案]24[解析]已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.解:根据对角线的长可以求得菱形的面积,根据S=12ab=12×6×8=24cm 2, 故答案为24.14. 如图,在平行四边形ABCD 中,添加一个条件____,使平行四边形ABCD 是矩形.[答案]90A ∠=︒ (答案不唯一)[解析][分析]根据矩形的判定条件进行添加即可;[详解]根据判定条件:有一个角是90︒的平行四边形是矩形,只要有一个内角是90︒即可得出答案, 故90A ∠=︒(答案不唯一).[点睛]本题主要考查了矩形的判定,准确理解判定条件是解题的关键.15. 如图,把矩形纸片ABCD 沿EF 折叠,使点落在边AD 上的点处,点落在点处,已知10,4,2AD CD B D =='=.则AE =____.[答案][解析][分析]根据折叠的性质可得AE=A′E ,AB=A′B′,在Rt △A′B′E 中,根据勾股定理即可得到AE 的长.[详解]∵四边形ABCD 矩形,∴AB=CD=4,∠B=90,由折叠性质可得AE=A′E ,AB=A′B′=4,∠B′A′E=∠B=90,在Rt △A′B′E 中,A′B′2+A′E 2=B′E 2,42+A′E2=(10-2-A′E)2,解得A′E=3,即AE的长为3.故答案为:3.[点睛]本题考查了折叠的性质,矩形的性质以及勾股定理的应用,熟练掌握折叠的性质是关键.16. 如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为_____m.[答案]4[解析][分析]根据题意,画出示意图,易得:Rt△EDC∽Rt△CDF,进而可得EDDC=DCFD;即DC2=ED•FD,代入数据可得答案.[详解]如图:过点C作CD⊥EF,由题意得:△EFC是直角三角形,∠ECF=90°, ∴∠EDC=∠CDF=90°,∴∠E+∠ECD=∠ECD+∠DCF=90°,∴∠E=∠DCF,∴Rt△EDC∽Rt△CDF,有EDDC=DCFD;即DC2=EDFD,代入数据可得DC 2=16,DC =4;故答案为4.[点睛]本题考查了相似三角形的应用,能够将实际问题转化为相似三角形的问题是解题的关键.三、解答题(本大题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.) 17. 计算:(1)54520+- (2)()(227227)+-.[答案](1)25;(2)1[解析][分析](1)根据二次根式的加减运算法则计算即可;(2)根据二次根式的乘法运算法则结合平方差公式计算即可.[详解]解:()1原式53525=+- 4525=-25=.()2原式()()22227=- 87=-1=. [点睛]本题考查二次根式的运算,熟练掌握二次根式四则运算的法则是解题的关键.18. 如图,在ABCD 中,E 、F 分别在AD 、BC 上,且//EF AB .求证:EF CD =.[答案]证明见解析.[解析][分析]根据平行四边形的性质可得//,//AD BC AB CD ,再通过//EF AB 可判定四边形ABFE 是平行四边形,可得EF=CD .[详解]证明:四边形ABCD 是平行四边形,//,//AD BC AB CD ∴//,EF AB//,EF CD ∴四边形CDEF 是平行四边形EF CD ∴=.[点睛]此题主要考查了平行四边形的判定和性质,关键是掌握平行四边形对边平行且相等,两组对边分别平行的四边形是平行四边形.19. 如图,在ABC 中,AB =BC ,D 、E 、F 分别是BC 、AC 、AB 边上的中点.(1)求证:四边形BDEF 是菱形.(2)若10,AB cm =求四边形BDEF 的周长.[答案](1)证明见解析;(2)菱形BDEF 的周长为20cm .[解析][分析](1)由D 、E 、F 分别是BC 、AC 、AB 边上的中点,根据三角形中位线的性质,可得EF ∥BC ,ED ∥AB ,EF=12BC ,DE=12AB ,又由AB=BC ,即可证得四边形BDEF 是菱形; (2) 由三角形中位线的性质,可求得BF 的长,进而求得周长为4BF .[详解]解:(1)证明:D E F 、、分别是BC AC AB 、、边上的中点,// ,//,EF BC DE AB ∴ 11,22EF BC DE AB ==, 四边形BDEF 是平行四边形,又,AB BC =,DE EF ∴=平行四边形BDEF 是菱形.(2)10,AB =且是AB 边上的中点,15,2BF AB cm ∴== 由(1)知,四边形BDEF 是菱形,菱形BDEF 的周长为44520=⨯=BF cm .故答案为:20cm .[点睛]此题考查了菱形的判定与性质以及三角形中位线的性质.注意掌握三角形中位线定理的应用是解此题的关键.20. 如图所示的一块空地,已知4,3,90,13,AD m CD m ADC AB m ==∠=︒=12BC m =,求这块空地的面积.[答案]这块空地的面积是224m .[解析][分析]连接AC ,先利用勾股定理求出AC ,再根据勾股定理的逆定理判定△ABC 是直角三角形,那么△ABC 的面积减去△ACD 的面积就是所求的面积.[详解]连接AC ,90ADC ∠=︒,222224325AC AD DC ∴=+=+=12,13BC m AB m ==,22222251216913AC BC AB ∴+=+===,90ACB ∴∠=︒,()211512342422ACB ACD S S m ∴-=⨯⨯-⨯⨯= 这块空地的面积是224m .[点睛]本题考查了勾股定理、勾股定理的逆定理的应用,得到△ABC 是直角三角形是解题的关键,同时考查了直角三角形的面积公式.21. 如图所示,ABCD 是一个正方形花园,,是它的两个门,且DE CF =.要修建两条路BE 和AF ,这两条路等长吗?它们有什么位置关系?为什么?[答案]相等,BE AF ⊥,理由见解析[解析][分析]由DE =CF 可得AE =DF ,则可得△DAF ≌△ABE ,然后根据全等三角形的对应角相等可得出BE 与AF 的关系.[详解]解:BE =AF ,BE ⊥AF ;理由:∵四边形ABCD是正方形,∴AD=CD,DE=CF,∴AE=DF,又∠BAE=∠D=90°,AB=AD,∴△BAE≌△ADF∴BE=AF,∠ABE=∠F AD,∵∠ABE+∠AEB=90°,∴∠F AD+∠AEB=90°,∴BE⊥AF.故BE=AF,BE⊥AF.[点睛]本题考察了正方形的性质,全等三角形的判定与性质,主要利用了正方形的四条边都相等,每一个角都是直角的性质,同角的余角相等的性质,利用三角形全等证明相等的边是常用的方法之一,要熟练掌握并灵活运用.22. 问题背景:在△ABC中,AB、BC、AC三边的长分别为5、10、13,求这个三角形的面积小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC 三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你利用上述方法求出△ABC的面积.(2)在图2中画△DEF,DE、EF、DF2、810①判断三角形的形状,说明理由.②求这个三角形的面积.(直接写出答案)[答案](1)72;(2)画图见解析;①△DEF 是直角三角形,理由见解析;②2 [解析] 试题分析:(1)根据题目设置的问题背景,结合图形进行计算即可;(2)根据勾股定理,找到DE 、EF 、DF 的长分别为2、8、10,由勾股定理的逆定理可判断△DEF 是直角三角形.解:(1)S △ABC =3×3﹣12×1×2﹣12×2×3﹣12×1×3=72; (2)如图所示:∵DE =2,EF =22,DF =10,∴DE 2+EF 2=DF 2,∴△DEF 是直角三角形.△DEF 的面积=111231122132222⨯-⨯⨯-⨯⨯-⨯⨯=. 点睛:本题考查了勾股定理及作图的知识,解答本题关键是仔细理解问题背景,构图法求三角形的面积是经常用到的,同学们注意仔细掌握.23. 如图,在四边形ABCD 中,连接AC 、BD ,已知90,ACB ADB ∠=∠=︒且点,E F 分别为AB 、CD 的中点,连接EF .(1)求证:EF CD ⊥.(2)若26AB CD ,求EF 的长.[答案](1)证明见解析;(2)332EF =.[解析][分析](1)如图(见解析),先根据直角三角形的性质可得12CE AB =,12DE AB =,从而可得CE DE =,再根据等腰三角形的判定可得CDE △是等腰三角形,然后根据等腰三角形的三线合一即可得证;(2)先分别求出CE 、CF 的长,再结合(1)的结论,利用勾股定理即可得.[详解](1)如图,连接EC 和ED点是AB 的中点,90ACB ADB ∠=∠=︒在Rt ABC 中,12CE AB = 在Rt ABD △中,12DE AB = CE DE ∴=CDE ∴是等腰三角形又点是CD 的中点,即EF 是等腰CDE △的底边CD 上的中线EF CD ∴⊥;(2)26AB CD ==3CD ∴= 由(1)已证:132CE AB == 又点是CD 的中点1322CF CD ∴== 则在Rt CEF 中,由勾股定理得:22332EF CE CF =-=.[点睛]本题考查了直角三角形的性质、等腰三角形的判定与性质、勾股定理等知识点,掌握理解等腰三角形的三线合一是解题关键.24. 先阅读下列材料,再解决问题:我们定义一组对边平行,另一组对边不平行的四边形叫做梯形,其中平行的两边叫梯形的底边,不平行的两边叫梯形的腰,连接梯形两腰中点的线段叫梯形的中位线.如图,,E F分别是梯形ABCD的两腰AB和CD的中点,即EF为梯形ABCD的中位线.请同学们思考梯形的中位线与两底有何数量关系与位置关系?并给予证明.猜想:已知:求证:证明:[答案]猜想:12EF AD BC;////EF AD BC;已知:如图,,E F分别是梯形ABCD的两腰AB和的中点;求证:12EF AD BC;////EF AD BC;证明见解析.[解析][分析]根据题意写出猜想、已知和求证.连接AF并延长交BC于点G,则△ADF≌△GCF,可以证得EF是△ABG 的中位线,利用三角形的中位线定理即可证得.[详解]猜想:12EF AD BC;////EF AD BC已知:如图,,E F分别是梯形ABCD的两腰AB和的中点.求证:12EF AD BC;////EF AD BC.证明:如图,连接AF并延长交BC于点G.∵AD∥BC,点F是CD中点,∴∠DAF=∠G,DF=FC,在△ADF和△GCF中,DAF G DFA CFG DF FC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△GCF (AAS ),∴AF=FG ,AD=CG .又∵点E 是AB 中点,∴EF 是ABG 的中位线,∴EF ∥BG ,EF=12BG , 即EF ∥AD ∥BC ,EF=12(AD+BC). [点睛]本题是通过猜想并且证明梯形的中位线定理,考查了三角形中位线定理,全等三角形的判定和性质,通过辅助线转化成三角形的中位线的问题是解题的关键.25. 如图所示,在四边形ABCD 中,//,90AD BC A ∠=︒,12,21,16AB BC AD ===.动点从点出发,沿射线BC 方向以每秒个单位长度的速度运动,动点Q 同时从点出发,在线段AD 上以每秒个单位长度的速度向点运动,当其中一个动点到达端点时另一个动点也随之停止运动.设运动的时间为秒.(1)填空:AQ = ;BP = ;的取值范围是 .(2)设DPQ 的面积为,请用含的式子表示.(3)当t = 时,PD PQ =.(4)当为何值时,以点,,,P C D Q 为顶点的四边形是平行四边形.[答案](1),2,016t t t ≤≤;(2)966S t =-;(3)163t =;(4)当5t =或373时,以点,,,P C D Q 为顶点的四边形是平行四边形.[解析][分析](1)按照路程等于速度乘以时间,求解AQ ,BP ;时间最小为0,最大为点Q 动到点D 所花费的时间;(2)通过做垂直辅助线,根据已知条件并结合三角形面积公式求解本题(3)根据等腰三角形以及矩形的性质,结合三线合一以及路程公式求解本题;(4)本题需要根据动点情况分类讨论,并结合平行四边形性质列方程求解.[详解](1)∵距离=速度时间,Q 的运动速度为1,P 的运动速度为2,运动时间为t ,∴AQ=t ,BP=2t .∵AD=16,当点Q 运动到点D 时,动点停止运动,∴t 最大值为16,最小值为0,故016t ≤≤.(2)如图,过点作PM QD ⊥,∵//,90AD BC A ∠=︒,∴四边形ABPM 矩形,∴PM=AB=12.又∵AQ=t∴16QD t =-.()11161296622QDP S QD PM t t =••=⨯-⨯=-△. (3)由上一问可知四边形ABPM 是矩形,2AM BP t ∴==.又PD PQ =,2DM QM AM AQ BP AQ t t t ∴==-=-=-=,216AD AM DM t t =+=+=即316t =,163t ∴=. (4)当在线段BC 上时,因为平行四边形PCDQ ,则DQ PC =,∵16DQ t =-,212PC t =-,16212t t ∴-=-,解得:5t =;当在BC 延长线上时,同理:DQ=PC ,221PC t =-,16221t t ∴-=-, 解得:373t =; 综上所述:当5t =或373时,以点,,,P C D Q 为顶点的四边形是平行四边形. [点睛]本题考查几何动点问题,首先需要对运动路径有清晰理解,并且利用未知数表示未知线段,求解时具体问题具体分析,如本题主要利用面积公式,平行四边形性质求解,动点问题通常需要分类讨论.。
2008—2009学年度下学期八年级数学期末考试.doc
2008—2009学年度第二学期期末考试姓名: 班级: 得分: 一 选择题(3×10′=30′)1. 下面各式,正确的是 ( )A. 326x x x = B. b a c b c a =++ C. D. 0=--b a b a2.已知函数x k y 11=和xky 22=的图像都经过点(2,1),则1k 、2k 的值分别为: ( ) A. 1k =21,2k =2 B. 1k =2,2k =21 C. 1k =2,2k =2 D. 1k =21,2k =213.Rt △ABC 的两直角边长分别是3和4,若一个正方形的边长是△ABC 的斜边,则这个正方形的面积是 ( ) A .25 B .7 C .12 D .64.将直角三角形的三条边长同时扩大同一倍数,得到的三角形是 ( ) A 、钝角三角形 B 、直角三角形 C 、锐角三角形 D 、等腰三角形5. 在平行四边形ABCD 中,∠A=65°,则∠D 的度数是 ( )A. 105°B. 115°C. 125°D. 65°6.若梯形的上底长为4,中位线长为6,则此梯形的下底长为 ( ) A .5 B .8 C .12 D .167.在下列图形中,沿着虚线将长方形剪成两部分,那么由这两部分既能拼成三角形,又能拼成平行四边形和梯形的可能是 ( )8.使式子1||1-x 有意义的x 取值范围为 ( )A . x>0B . x ≠1 C. x ≠-1 D. x ≠±19.从射击成绩的平均数评价甲、乙两人的射击水平,则 ( ) A.甲比乙高 B.甲、乙一样C.乙比甲高D.不能确定10.数据 5、5、6 、7、7的方差是 ( ) A .0.4 B .0.8 C .1.2 D .2 二,填空(每空3分,共30分)11. 要使分式242--a a 的值为零,则a= 。
12. 数字0.000 000 010 5用科学记数法表示为 .13. 化简x 333-+-x x 的结果是________。
2009年初中八年级数学学科期末考试试卷
2009年下学期八年级数学学科期末考试试卷满分:100分 时量:120分钟 命题:袁斌卷面分(5分):以字迹书写是否工整(横平竖直),卷面是否干净整洁(无乱涂乱改)为标准,评出优、良、差三等。
优为5—4分,良为3—1分,差为0分。
每乱涂乱改一处,扣1分。
一、选择题,将正确答案填入下表(每小题3分,共24分)1、2的算术平方根是( )AB .C .D .22、一次课堂练习,小敏同学做了如下4道因式分解题,你认为小敏做得不够完整的一题是 ( )A. 32(1)xx x x -=-B. 2222()x xy y x y -+=-C. 22()x y xy xy x y -=- D. 22()()x y x y x y -=-+ 3、下列说法正确的是( )A .4的平方根是2BC .11=D .估算33和4之间4、尺规作图作AOB ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得OCP ODP △≌△的根据是( )A .SASB .ASAC .AASD .SSS5、已知一次函数1y kx =+,若y 随x 的增大而减小,则在平面直角坐标系中,它的图象经过( ) A .一、二、三象限 B .二、三、四象限 C .一、三、四象限 D .一、二、四象限6、如图,△ABC 是不等边三角形,且DE =BC ,以D 、E 为两个顶点作位置不同....的三角形,使所作三角形与△ABC 全等,这样的三角形可以画出 ( )A .2个B .4个C .6个D .8个7、如图1,在长方形MNPQ 中,动点R 从点N 出发,沿N →P →Q →M 方向运动至点M 处停止;设点R 运动的路程为x ,△MNR 的面积为y ,如果y 关于x 的函数图象如图2,则当x =9时,点R 应运动到( )A .N 处B .P 处C .Q 处 D8、直线l 1:1y k x b =+与直线l 2:2y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式12k x b k x +>的解集为( )A. x >-1B. x <-1C. x >-2D. x <-2座位号(图1) 第7题图第4题图 第6题图E D C B A第8题图二、填空题: (每空3分,共24分) 9、因式分解:22a a - ____________. 10、近似数0.030140有_______位有效数字.11、若一次函数3y x b =-+的图像经过原点,则b =________.12、如图,ACB A C B '''△≌△,BCB ∠'=30°,则ACA '∠的度数为________. 13、若x y +=222x y xy ---的值为___________.14、三角形三内角的度数之比为1:2:3,其中最短边的长为4 cm ,则最长边上的中线长为________. 15、某航空公司规定,旅客乘机所携带行李的质量x (kg )与其运费y (元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量为___________ kg.16、如图,有一块直角三角形纸片,两直角边AC =6 cm ,BC =8 cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD =____________ cm..三、解答题:(共47分) 17、(共8分,每小题4分)(1(2)分解因式:2221a ab b -+-18、已知在ABC △中,AB AC =,D 为BC 边的中点,过点D 作DE AB DF AC ⊥,⊥, 垂足分别为E F ,.求证:BED CFD △≌△; (5分)第16题图ABCD EA BE DCF 第12题图A BA 'B'第15题图19、方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC △的顶点坐标分别为(12)A ,,(31)B ,,(01)C -,. (6分) (1)把ABC △向上平移2个单位后得到对应△A 1B 1C 1, 直接写出C 点的对应点C 1的坐标为____________. (2分) (2)把ABC △关于y 轴做轴反射得到对应△A 2B 2C 2, 直接写出B 点的对应点B 2的坐标为____________. (2分) (3)把ABC △绕点C 按顺时针方向旋转90后得到∆A 3B 3C 3直接写出A 点的对应点A 3的坐标为____________. (2分)20、为迎接国庆60周年,某校举行以“祖国成长我成长”为主题的图片制作比赛,赛后整理参赛同学 (6分)请根据以上图表提供的信息,解答下列问题:(1)表中m 和n 所表示的数分别为:m =__________,n =__________;(2分) (2)请在图中,补全频数分布直方图;(2分)(3)如果比赛成绩80分以上(含80分)可以获得奖励,那么获奖率是多少? (2分)21、如图,一次函数3y kx k =-的图像经过点 (1,4),且分别交x 轴、y 轴于点A 、B 两点; (6分) (1)求直线AB 的解析式; (3分)(2)已知直线:2(6)l y x t t =-+>与直线AB 平行,且交x 轴于点C ,试求出△ABC 的面积S 关于t的函数表达式. (3分)频数分数(分)22、如图,P 是等边三角形ABC 内的一点,连结P A 、PB 、PC ,以BP 为边作∠PB Q =60°,且BQ =BP ,连结CQ ; (7分)(1)AP 与CQ 相等吗?若相等,请给予证明,若不相等,请说明理由. (4分) (2)若P A :PB :PC =3:4:5,连结PQ ,试判断△PQC 的形状,并说明理由. (3分)23、某校甲、乙两班参加植树活动。
09-10八下期末数学试卷(含答案)
O B NMA2009-2010学年第二学期期末考试试卷初二数学一、精心选一选(本大题共8小题,每小题3分,共24分) 1. 使分式42-x x有意义的x 的取值范围是 ( )=2 ≠2 ≠-2 ≠0 2. 若反比例函数xky =(k ≠0)的图象经过点(1,-3),则k 的值为 ( ) A. -3 B .3 C .31D .31-3.不等式2x -11<5-2x 的正整数解有 ( )'A .1个B . 2个C .3个D .4个4. 汶川大地震导致某铁路隧道被严重破坏,为了抢修其中一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车,问原计划每天修多少米设原计划每天修x 米.则下列方程中正确的是 ( )A .41205120=-+x x B .45120120=+-x x C.41205120=--x x D .45120120=--x x 5.有下面两个命题:①如果两个角是对顶角,那么这两个角相等;②如果一个等腰三角形有一个内角是60º.那么这个等腰三角形一定是等边三角形,则下列结论正确的是 ( ) A.只有命题①正确 B .只有命题②正确C.命题①、②都正确 D .命题①、②都不正确6.在一个暗箱里放有a 个除颜色外其他完全相同的球,这a 个球中红球只有3个.每次将 球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱,通过大量重复摸球试验后发现, {摸到红球的频率稳定在25%,那么可以推算出a 大约是 ( )A. 12B. 9C. 4D. 37. 如图,路灯距地面8米,身高1.6OA 所在的直线行走14米到点B 时,人影的长度 ( ) (A.增大1.5米B.减小1.5米C.增大3.5米D.减小3.5米8.已知△ABC 的三边长分别为20 cm 、50 cm 、60cm .现要利用长度分别为30cm 和60cm 的细木条各一根,做一个与△ABC 相似的三角形木架,要求以其中一根为一边,将另一根截成两段(允许有余料)作为另外两边,那么另外两边的长度(cm )分别为 ( )A A .10、25 、36或12、36 C. 12、36 D. 10、25或12、36 二、细心填一填(第9-13题每空2分,其余每题3分,共30分) 9. y = 时,分式12y y ++的值为0,化简21)1(xx x x -÷-的结果是_______ . 10. 不等式组⎩⎨⎧≥++<x x xx 1443的解集为_______ .~11.若关于x 的分式分程xkx -=--3132有增根,则k = . 12. 命题“菱形的对角线互相垂直”的逆命题是:—如果 ,那么 .13. 已知函数xay ax y -==4和的图象有两个交点,其中一个交点的 横坐标为1,则=a14.如图,在△ABC 中,点D 、E 分别在AB 和AC 上,且DE ∥BC , AD ∶DB =3∶2,18=∆ADE S ,则四边形BCED 的面积为_________ . 15. 如图,下列条件:① ∠B =∠ACD ;② ∠ADC =∠ACB ;BCAB CD AC =③.2AB AD AC ⋅=④其中单独能够判定△ABC ∽△ACD 的条件为 _______ .16. 老师在同一平面直角坐标系中画了一个反比例函数的图象和函数x y -=的图象,请同学们观察,并说出特征来.同学甲:双曲线与直线x y -=有两个交点;同学乙:双曲线上任意一点到两 坐标轴的距离的积都为5.请根据以上信息,写出反比例函数的关 》系式为 .17.从数字1、2、3中任取两个不同的数字组成一个两位数.则这个两 位数大于20概率是_______ .18.如图,△ABC 是一块锐角三角形材料,边BC =6cm ,高AD =4cm 要 把它加工成一个矩形零件.使矩形的一边在BC 上,其余两个顶点 分别在AB 、AC 上,要使矩形EGHF 成为正方形,EG 的长应为 cm . 19. 如图,正方形OEFG 和正方形ABCD 是位似图形,点F 的坐标为(1,1), 点C 的坐标为(4,2),则这两个正方CAB D E (第14题)CB…(第15题)(第18题)yG F CD形的位似中心的坐标是_____________ .三、用心做一做(第20题每小题4分,第21、22每题5分,其余每题6分,共30分)20. (1)解方程:10522112x x x +=-- (2)解不等式组12512x x x+⎧⎪⎨->⎪⎩≤,,并写出所有整数解. ~21. 先化简,再求值)()(222b a a b a bb a a --÷+,其中,a 、b 满足09|4|=-+-b a .22. 小明有红色、白色、蓝色上衣各一件,黄色、黑色长裤各一条.$(1)请用画树状图或列表的方法分析小明上衣和长裤有多少种不同的搭配情况; (2)其中小明穿蓝色上衣的概率是多少;23.某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座两种客车,42座客车的租金每辆为320元,60座客车的租金每辆为460元. (1)若学校单独租用这两种车辆各需多少钱(2)若学校同时租用这两种客车8辆(可以坐不满),而且要比单独租用一种车辆节省租金.请你帮助该学校选择一种最节省的租车方案.,24. 如图,在正方形ABCD 中,E F 、分别是边AD CD 、上的点,AE=ED ,DF=41DC ,连结EF 并延长交BC 的延长线于点G . (1)求证:ABE DEF △∽△;(2)若正方形的边长为4,求BG 的长。
八年级下册数学复习试题及答案
八年级下册数学复习试题一、单选题1.下列既是轴对称图形又是中心对称图形的是()A.B.C.D.2.顺次连接矩形的四边形中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形3.菱形的周长为20,其中的一条对角线长为6,则它的面积为( )A.24 B.25 C.30 D.484.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是( )A.△AFD≌△DCE B.AF=12ADC.AB=AF D.BE=AD﹣DF5.如图,□ABCD绕点A逆时针旋转32°,得到□AB′C′D′,若点B′与点B是对应点,若点B′恰好落在BC边上,则∠C=( )A.106°B.146°C.148°D.156°6.如图,正方形ABCD内有两点E、F满足AE=FC= 4,EF =6,AE⊥EF,CF⊥EF,则正方形ABCD的面积为( )A.24 B.25 C.48 D.50二、填空题7.调查某品牌洗衣机的使用寿命,采用的调查方式是________.8.在□ABCD中,∠A =60 ,则∠C=__________________.9.已知□ABCD,添加一个条件____,则四边形ABCD是矩形.10.样本的50个数据分别落在4个组内,第1、2、3组数据的个数分别是7、8、15,则落在第4组数据的频数为_____.11.某中学举行了一次演讲比赛,20名选手分数段统计如下表(分数均为整数,满分为100分):成绩在80分以上的为优秀,优秀率为___.12.为了合理疏导交通,需要对我区6000名中学生上学出行方式进行统计,调取100名志愿者,随机调查了10所学校500名中学生的出行方式,本次调查中样本容量是____.13.如图,在平行四边形ABCD周长为20,AC的垂直平分线交AD于点E,则△CDE的周长是____.14.如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,则点C的坐标是_____.15.如图,在矩形ABCD中,AB=4,BC=8,将矩形ABCD沿EF折叠,使点C与点A重合,则折痕EF的长为_____.16.如图,已知正方形ABCD的边长为2,连接AC、BD,CE平分∠ACD交BD于点E,则DE=____.17.如图,在△ABC中,点D在BC上,BD=AB,BM⊥AD于点M,N是AC的中点,连接MN.若AB=5,BC=9,则MN=_____.18.如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把∠B沿AE 折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为_____.三、解答题19.如图,在方格纸中,已知格点△ABC和格点O.(1)画出△ABC关于点O对称的△A1B1C1;(2)画出△ABC绕点O顺时针旋转90°的△A2B2C2 ;(3)若以点A、O、C、D为顶点的四边形是平行四边形,则点D的坐标为.20.如图,已知四边形ABCD为平行四边形,E、F为对角线BD上的两点,且BE = DF.求证:四边形AECF是平行四边形.21.某学校开展课外球类特色的体育活动,决定开设A:羽毛球、B:篮球、C:乒乓球、D:足球四种球类项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A项目的人数所占的百分比为,其所在扇形统计图中对应的圆心角度数是度;(2)请把条形统计图补充完整;(3)若该校有学生3000人,请根据样本估计全校最喜欢足球的学生人数约是多少?22.如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D 作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,ABCD的面积是.23.已知,如图,正方形ABCD中,以CD为边作等边三角形CDE,求∠AED的度数.(画出相应的图形并解答)24.已知,如图,在▱ABCD中,E是CD的中点,F是AE的中点,FC与BE交于点G.求证:GF=GC.25.我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.(发现结论)(1)如图,在□ABCD中,AB≠BC,将△ABC沿AC翻折至△AB′C,连结B′D,发现两个有趣的结论:①△EAC是等腰三角形②AC//B′D 请你选择其中一个结论加以证明..............(结论运用)(2)在□ABCD中,已知:BC=2,∠B=60°,将△ABC沿AC翻折至△AB′C,连结B′D(如上图).若四边形ACDB′是矩形,求AC的长.(方法拓展)(3)若ABAC=k,且以A、C、D、B′为顶点的四边形为正方形,则k的值为.26.在平面直角坐标系中,直线y=-3x b4分别与x轴、y轴交于点A、B,且点A的坐标为(8,0),四边形ABCD是正方形.(1)填空:b= ;(2)求点D的坐标;(3)点M是线段AB上的一个动点(点A、B除外),试探索在x上方是否存在另一个点N,使得以O、B、M、N为顶点的四边形是菱形?若不存在,请说明理由;若存在,请求出点N的坐标.参考答案1.A【解析】试题分析:结合选项根据轴对称图形与中心对称图形的概念求解即可.A、是轴对称图形,也是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,也不是中心对称图形考点:(1)中心对称图形;(2)轴对称图形2.C【解析】【分析】因为题中给出的条件是中点,所以可利用三角形中位线性质,以及矩形对角线相等去证明四条边都相等,从而说明是一个菱形.【详解】如图:连接AC、BD,在△ABD中,∵AH=HD,AE=EB∴EH=12 BD,同理FG=12BD,HG=12AC,EF=12AC,又∵在矩形ABCD中,AC=BD,∴EH=HG=GF=FE,∴四边形EFGH为菱形.故选:C.【点睛】考查了菱形的判定,菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义,②四边相等,③对角线互相垂直平分.3.A【解析】【分析】如图,根据菱形的性质可求出AO、AD,然后利用勾股定理求出DO,得到另一条对角线长,根据对角线长即可计算菱形的面积.【详解】解:如图,菱形ABCD的对角线AC=6,周长为20,则AO=3,AD=5,∴DO4=,∴BD=2DO=8,∴菱形ABCD的面积S=12×6×8=24,故选:A.【点睛】本题考查了菱形对角线互相垂直平分的性质、菱形各边长相等的性质、勾股定理的运用以及菱形面积的求法,本题中根据勾股定理求出DO的值是解题的关键.4.C【解析】A.由矩形ABCD,AF⊥DE可得∠C=∠AFD=90°,AD∥BC,∴∠ADF=∠DEC.又∵DE=AD,∴△AFD≌△DCE(AAS),故A正确;B.∵∠ADF不一定等于30°,∴直角三角形ADF中,AF不一定等于AD的一半,故B错误;C.由△AFD≌△DCE,可得AF=CD,由矩形ABCD,可得AB=CD,∴AB=AF,故C正确;D.由△AFD≌△DCE,可得CE=DF,由矩形ABCD,可得BC=AD,又∵BE=BC﹣EC,∴BE=AD ﹣DF,故D正确;故选B.5.A【解析】∵▱ABCD绕点A逆时针旋转32°,得到▱AB′C′D′′,∴AB=AB′,∠BAB′=32°,∴∠B=∠AB′B=(180°-32°)÷2=74°.∵四边形ABCD为平行四边形,∴AB∥CD,∴∠B+∠C=180°,∴∠C=180°-74°=106°.故选A.点睛:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了平行四边形的性质.6.D【解析】【分析】连接AC 交EF 于O ,首先证明△AOE ≌△COF ,求出OE=OF=3,然后利用勾股定理求出OC ,进而得到AC ,再利用勾股定理求出AB 2即可.【详解】解:如图,连接AC 交EF 于O ,∵AE=FC= 4,AE ⊥EF ,CF ⊥EF ,∠AOE =∠COF ,∴∠E =∠F =90°,∴△AOE ≌△COF (AAS ),∴OE=OF ,∵EF=6,∴OE=OF=3, ∴2222345OC OF FC ,∴AC=2OC=10,∵AB 2+BC 2=AC 2,AB=BC ,∴2AB 2=100,∴AB 2=50,即正方形ABCD 的面积为50,故选:D.【点睛】本题考查了全等三角形的判定和性质、正方形的性质以及勾股定理的应用,正确的作出辅助线,求出OC 的长是解题的关键.7.抽样调查【解析】调查某品牌洗衣机的使用寿命,采用的调查方式是抽样调查;故答案为:抽样调查. 8.60°【解析】试题解析:根据平行四边形的性质,平行四边形的对角相等,那么60A C ∠=∠=︒ .故本题的正确答案为60°.9.∠A=90°(答案不唯一)【解析】【分析】根据矩形的判定定理可得答案.【详解】解:已知□ABCD,添加一个条件∠A=90°(答案不唯一),则四边形ABCD是矩形,故答案为:∠A=90°(答案不唯一).【点睛】本题考查了矩形的判定,熟练掌握矩形的判定定理是解题的关键.10.20【解析】【分析】第4组数据的频数为50减去第1、2、3组的频数.【详解】解:第4组数据的频数为:50−7−8−15=20,故答案为:20.【点睛】此题主要考查了频数,关键是掌握频数的定义和计算方法.11.50%【解析】【分析】首先求出a的值,然后再计算优秀率即可.【详解】解:由题意得:a=20-2-8-4=6,∴优秀率为:64100%50% 20,故答案为:50%.【点睛】此题主要考查了频数和频率,关键是掌握频数的定义以及频率的计算方法.12.500【解析】【分析】根据样本容量的定义可得答案.【详解】解:本次调查中样本容量是500,故答案为:500.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.13.10【解析】【分析】根据平行四边形的性质可得CD+AD=10,然后根据线段垂直平分线的性质可得AE=CE,即可得△CDE的周长等于CD+AD.【详解】解:∵平行四边形ABCD的周长为20,∴CD+AD=10,∵AC的垂直平分线交AD于点E,∴AE=CE,∴△CDE的周长=CD+DE+CE=CD+DE+AE=CD+AD=10,故答案为:10.【点睛】此题考查了平行四边形的性质以及线段垂直平分线的性质.注意得到△CDE的周长等于CD +AD是关键.14.(﹣5,4).【解析】【分析】首先由A、B两点坐标,求出AB的长,根据菱形的性质可得AD=CD=AB,从而可得到点C的横坐标;接下来在△AOD中,利用勾股定理求出DO的长,结合上面的结果,即可确定出C点的坐标.【详解】由题知A(3,0),B(-2,0),D在y轴上,∴AB=3-(-2)=5,OA=3,BO=2,由菱形邻边相等可得AD=AB=5,在Rt△AOD中,由勾股定理得:=,由菱形对边相等且平行得CD=BA=5,所以C(-5,4).故答案为(﹣5,4).【点睛】本题考查了菱形的性质及坐标与图形的性质,运用勾股定理求出OD的长是解答本题的关键.15.【解析】【分析】设BE=x,表示出CE=8−x,根据翻折的性质可得AE=CE,然后在Rt△ABE中,利用勾股定理列出方程求出x,再根据翻折的性质可得∠AEF=∠CEF,根据两直线平行,内错角相等可得∠AFE=∠CEF,然后求出∠AEF=∠AFE,根据等角对等边可得AE=AF,过点E作EH⊥AD于H,可得四边形ABEH是矩形,根据矩形的性质求出EH、AH,然后求出FH,再利用勾股定理列式计算即可得解.【详解】解:设BE=x,则CE=BC−BE=8−x,∵沿EF翻折后点C与点A重合,∴AE=CE=8−x,在Rt△ABE中,AB2+BE2=AE2,即42+x2=(8−x)2,解得:x=3,∴AE=8−3=5,由翻折的性质得,∠AEF=∠CEF,∴∠AFE=∠CEF,∴∠AEF=∠AFE,∴AE=AF=5,过点E作EH⊥AD于H,则四边形ABEH是矩形,∴EH=AB=4,AH=BE=3,∴FH=AF−AH=5−3=2,在Rt△EFH中,EF=故答案为:【点睛】本题考查了翻折变换的性质、矩形的性质以及勾股定理等,熟记各性质并利用勾股定理列方程求出BE的长度是解题的关键,也是本题的突破口.16.2【解析】【分析】过点E作EF⊥DC于F,根据正方形的性质求得AC 和OD的长,由角平分线的性质求出CF,EF=DF=DC−CF=2OE=EF,再由DE=OD-OE即可..【详解】解:过E作EF⊥DC于F,∵四边形ABCD是正方形,∵CE 平分∠ACD 交BD 于点E ,∴OE =EF ,∵正方形ABCD 的边长为2,∴AC =∴CO =DO =12AC ,∴CF =CO ,∴EF =DF =DC−CF =2-∴OE =EF=2∴-(2=2-,故答案为:2.【点睛】本题考查了正方形的性质、角平分线的性质以及勾股定理的应用,熟知角的平分线上的点到角的两边的距离相等是解题的关键.17.2【解析】【分析】根据题意求出DC ,根据等腰三角形的三线合一得到AM =MD ,根据三角形中位线定理可得答案.【详解】解:∵BD =AB ,BM ⊥AD ,AB =5,∴BD =5,∵BC =9,∴DC =4,∵BD =AB ,BM ⊥AD ,∴AM =MD ,∵N 是AC 的中点,∴MN =12DC =2, 故答案为:2.【点睛】本题考查的是等腰三角形的性质和三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.18.3或6.【解析】【分析】当CEB ∆'为直角三角形时,有两种情况:①当点B ′落在矩形内部时,如答图1所示.连结AC ,先利用勾股定理计算出10AC =,根据折叠的性质得90AB E B ∠'=∠=︒,而当CEB ∆'为直角三角形时,只能得到90EB C ∠'=︒,所以点A 、B ′、C 共线,即B 沿AE 折叠,使点B 落在对角线AC 上的点B ′处,则EB EB =',6AB AB ='=,可计算出4CB '=,设BE x =,则EB x '=,8CE x =-,然后在Rt CEB ∆'中运用勾股定理可计算出x .②当点B ′落在AD 边上时,如答图2所示.此时四边形ABEB '为正方形.【详解】解:当CEB ∆'为直角三角形时,有两种情况:①当点B ′落在矩形内部时,如答图1所示.连结AC ,在Rt ABC ∆中,6AB =,8BC =,10AC ∴==,B ∠沿AE 折叠,使点B 落在点B ′处,90AB E B ∴∠'=∠=︒,当CEB ∆'为直角三角形时,只能得到90EB C ∠'=︒,∴点A 、B ′、C 共线,即B 沿AE 折叠,使点B 落在对角线AC 上的点B ′处,如图, EB EB ∴=',6AB AB ='=,1064CB ∴'=-=,设BE x =,则EB x '=,8CE x =-,在Rt CEB ∆'中,222EB CB CE '+'=,2224(8)x x ∴+=-,解得3x =,3BE ∴=;②当点B ′落在AD 边上时,如答图2所示.此时ABEB '为正方形,6BE AB ∴==.综上所述,BE 的长为3或6.故答案为:3或6.【点睛】本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.19.(1)见解析;(2)见解析;(3)(−2,2)或(−2,−4)或(2,−2).【解析】【分析】(1)分别作出点A 、B 、C 关于点O 对称的点A 1、B 1、C 1,然后顺次连接即可; (2)分别作出点A 、B 、C 绕点O 顺时针旋转90°后的对应点A 2、B 2、C 2,然后顺次连接即可;(3)根据平行四边形的性质,分情况找出符合题意的D 点位置即可.【详解】解:(1)如图所示,△A 1B 1C 1即为所求;(2)如图所示,△A 2B 2C 2即为所求;(3)如图所示,四边形ACOD1、四边形AD2CO、四边形ACD3O都是平行四边形,故点D的坐标为(−2,2)或(−2,−4)或(2,−2).【点睛】本题主要考查了作中心对称图形、作旋转图形以及平行四边形的性质,解决问题的关键是掌握中心对称的概念以及平行四边形的性质.作图时注意,中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.20.见解析.【解析】【分析】连接对角线AC交对角线BD于点O,可得OA=OC,OB=OD,然后求出OE=OF即可判定四边形AECF是平行四边形.【详解】证明:连接对角线AC交对角线BD于点O,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵点E,F是对角线BD上的两点,且BE=DF,∴OB−BE=OD−DF,即OE=OF,∴四边形AECF是平行四边形.【点睛】本题主要考查平行四边形的性质和判定,本题的关键是灵活运用知识找出线段之间的关系.21.(1)40%,144;(2)见详解;(3)600人【解析】【分析】(1)根据各项目百分比之和为1可得,再用A的百分比乘以360度可得答案;(2)先求出总人数,再根据A项目所占百分比求得其人数,即可补全条形图;(3)用总人数乘以D项目所占百分比可得答案.【详解】解:(1)样本中最喜欢A项目的人数所占的百分比为1-30%-10%-20%=40%,其所在扇形统计图中对应的圆心角度数是360°×40%=144度,故答案为:40%,144;(2)本次抽查的学生人数是:15÷30%=50(人),∴喜欢A:篮球的人数是:50-15-5-10=20(人),作图如下:(3)3000×20%=600人,答:根据样本估计全校最喜欢足球的学生人数约是600人.【点睛】本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(1)证明见解析;(2)4.【解析】【分析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.【详解】(1)∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四边形OCED是平行四边形,又∠COD=90°,∴平行四边形OCED是矩形;(2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2.∵四边形ABCD是菱形,∴AC=2OC=4,BD=2OD=2,∴菱形ABCD的面积为:12AC•BD=12×4×2=4,故答案为4.【点睛】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.23.图形见解析;∠AED的度数为15°或75°.【解析】【分析】当E在正方形ABCD内时,根据正方形ABCD,得到AD=CD,∠ADC=90°,由等边△CDE,得到CD=DE,∠CDE=60°,推出AD=DE,得出∠DAE=∠AED,根据三角形的内角和定理求出即可;当E在正方形ABCD外时,根据等边三角形CDE,推出∠ADE=150°,再根据三角形的内角和定理求出即可.【详解】解:有两种情况:(1)当E在正方形ABCD内时,如图①,∵四边形ABCD是正方形,∴AD=CD,∠ADC=90°,∵△CDE是等边三角形,∴CD=DE,∠CDE=60°,∴∠ADE=90°−60°=30°,∴AD=DE,∴∠AED=∠DAE=12(180°−∠ADE)=75°;(2)当E在正方形ABCD外时,如图②,∵△CDE是等边三角形,∴∠EDC=60°,∴∠ADE=90°+60°=150°,∴∠AED=∠DAE=12(180°−∠ADE)=15°,综上所述,∠AED的度数为15°或75°.【点睛】本题主要考查对正方形的性质,等边三角形的性质,等腰三角形的性质,三角形的内角和定理等知识点的理解和掌握,能综合运用这些性质进行推理是解此题的关键.24.证明见解析【解析】试题分析:取BE的中点H,连接FH,CH,利用三角形中位线定理求FH=12AB,利用平行四边形判断定理可得到CEFH是平行四边形,所以GF=GC. 试题解析:取BE的中点H,连接FH,CH,∵F是AE的中点,∴FH∥AB,FH=12AB.∵CD∥AB,CD=AB,CE=12CD,∴CE∥FH,且CE=FH.∴四边形CEFH是平行四边形.∴GF=GC.25.(1)证明见解析;(2)AC (3)k的值为1.【解析】【分析】(1)①由平行四边形的性质得出∠EAC=∠ACB,由翻折的性质得出∠ACB=∠ACB′,证出∠EAC=∠ACB′,得出AE=CE即可;②同①证明AE=CE,然后求出DE=B′E,证出∠CB′D=∠B′DA,由∠AEC=∠B′ED,得出∠ACB′=∠CB′D,即可得出AC//B′D;(2)由矩形的性质可得∠BAC=90°,然后利用含30°直角三角形的性质和勾股定理求解即可;(3)分两种情况讨论,分别作出图形,根据等腰直角三角形的性质求解即可.【详解】解:(1)选结论①,证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠EAC=∠ACB,由翻折的性质得:∠ACB=∠ACB′,BC=B′C,∴∠EAC=∠ACB′,∴AE=CE,即△ACE是等腰三角形;选结论②,证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠EAC=∠ACB,由翻折的性质得:∠ACB=∠ACB′,BC=B′C,∴∠EAC=∠ACB′,∴AE =CE ,∴DE =B′E ,∴∠CB′D =∠B′DA ,∵∠AEC =∠B′ED ,∴∠ACB′=∠CB′D ,∴AC//B′D ;(2)如图1所示:∵四边形ACDB′是矩形,∴∠CAB′=90°,∴∠BAC =90°,∵∠B =60°,BC=2,∴AB =1, ∴2222213AC BC AB ;(3)分两种情况:①如图2所示,∵四边形ACDB′是正方形,∴AB′=AC ,∵AB′=AB ,∴AB =AC ,即AB1AC k ==;②如图3所示,∵四边形ACB′D 是正方形,∴∠AB′B =45°,∠ACB′=90°,∵AB′=AB ,∴∠B =45°,∠ACB =90°, ∴△ABC 是等腰直角三角形,∴ABAC k ==综上所述,k 的值为1.【点睛】本题考查了平行四边形的性质、正方形的性质、矩形的性质、翻折变换、等腰直角三角形的性质以及勾股定理的应用;熟练掌握各性质并能进行推理计算是解决问题的关键.26.(1)6;(2)点D的坐标为(14,8);(3)存在,点N的坐标为(−4,3)或(14425,19225).【解析】【分析】(1)把(8,0)代入y=−34x+b即可求得b的值;(2)过点D作DE⊥x轴于点E,证明△OAB≌△EDA,即可求得AE和DE的长,则点D 的坐标即可求得;(3)分两种情况讨论:①当OM=MB=BN=NO时,求出点M的坐标即可;②当OB=BN=NM=MO=6时,求出对角线交点的坐标即可.【详解】解:(1)把(8,0)代入y=−34x+b,得:−6+b=0,解得:b=6,故答案是:6;(2)如图1,过点D作DE⊥x轴于点E,∵在正方形ABCD中,∠BAD=90°,∴∠1+∠2=90°,又∵在直角△OAB中,∠2+∠3=90°,∴∠1=∠3,在△OAB和△EDA中,9013AOB DEAAB AD∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△OAB≌△EDA(AAS),∴AE=OB,DE=OA,∵b=6,点A的坐标为(8,0),∴AE=OB=6,DE=OA=8,∴OE=8+6=14,∴点D的坐标为(14,8);(3)存在.①如图2,当OM=MB=BN=NO时,四边形OMBN为菱形,则MN在OB的中垂线上,即M的纵坐标是3,把y=3代入y=−34x+6中,得x=4,即M的坐标是(4,3),则点N的坐标为(−4,3);②如图3,当OB=BN=NM=MO=6时,四边形BOMN为菱形,连接ON交BM于F,∵ON⊥BM,∴直线ON的解析式为:y=43x,联立36443y xy x⎧=-+⎪⎪⎨⎪=⎪⎩,解得:72259625xy⎧=⎪⎪⎨⎪=⎪⎩,即点F的坐标为(7225,9625),∴点N的坐标为(14425,19225),综上所述,满足条件的点N的坐标为(−4,3)或(14425,19225).【点睛】本题考查了一次函数的图象和性质、正方形的性质、全等三角形的判定和性质以及菱形的性质等,注意掌握分类讨论思想与数形结合思想的应用.。
八年级下册数学期末试卷综合测试卷(word含答案)(1)
八年级下册数学期末试卷综合测试卷(word含答案)(1) 一、选择题1.函数y=35xx--的自变量x的取值范围是()A.x≠5B.x>3且x≠5C.x≥3D.x≥3且x≠5 2.由下列线段组成的三角形不是直角三角形的是()A.7,24,25 B.4,5,41C.3,5,4 D.4,5,6 3.下列关于平行四边形的命题中,错误的是()A.两组对角分别相等的四边形是平行四边形B.一组对边相等,另一组对边平行的四边形是平行四边形C.一组对边平行,一组对角相等的四边形是平行四边形D.一组对边平行且相等的四边形是平行四边形4.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数()cm183183183183方差 5.7 3.5 6.78.6要从中选择一名发挥稳定的运动员去参加比赛,应该选择()A.甲B.乙C.丙D.丁5.如图,已知矩形ABCD的对角线AC的长为10cm,连结矩形各边中点E、F、G、H得四边形EFGH,则四边形EFGH的周长为()cm.A.20 B.202C.203D.256.如图,已知E为邻边相等的平行四边形ABCD的边BC上一点,且∠DAE=∠B=80º,那么∠CDE的度数为()A.20º B.25º C.30º D.35º7.如图,在△ABC中,BC=2∠C=45°,若D是AC的三等分点(AD>CD),且AB =BD ,则AB 的长为( )A .2B .5C .3D .528.一条公路旁依次有A 、B 、C 三个村庄,甲、乙两人骑自行车分别从A 村、B 村同时出发前往C 村,甲、乙之间的距离()km s 与骑行时间()t h 之间的函数关系如图所示,下列结论:①A 、B 两村相距8km ;②甲出发2h 后到达C 村;③甲每小时比乙我骑行8km ;④相遇后,乙又骑行了15min 或45min 时两人相距2km .其中正确结论的个数是( )A .1B .2C .3D .4二、填空题9.若13x x --在实数范围内有意义,则x 的取值范围是____________. 10.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,已知4OA =,菱形ABCD 的面积为24,则BD 的长为______.11.如图,两个较大正方形的面积分别为225、289,则字母A 所代表的正方形的边长为_____12.如图,在矩形ABCD 中,点E 在AD 上,且EC 平分BED ∠,若1AB =,45EBC ∠=︒,则DE 的长为__________.13.已知一次函数y x b =-+的图象过点()8,2,那么此一次函数的解析式为__________. 14.若顺次连接四边形ABCD 四边中点所得的四边形是菱形,则原四边形的对角线AC 、BD 所满足的条件是________.15.在平面直角坐标系中,矩形OABC 的顶点O 为坐标原点,顶点A ,C 分别在x 轴和y 轴上,OA =4,OC =3,D 为AB 边的中点,E 是OA 边上的一个动点,当△CDE 的周长最小时,则点E 的坐标为_____.16.如图,∠ABD =∠BDC =90°,AB =12,BC =8,CD =10A 与点D 重合,折痕为HG ,则线段BH 的长为___.三、解答题17.计算:(1)218×12﹣24;(2)48÷3﹣12×12+24. 18.如图,在甲村到乙村的公路一旁有一块山地正在开发.现A 处需要爆破,已知点A 与公路上的停靠站B ,C 的距离分别为400 m 和300 m ,且AC ⊥AB .为了安全起见,如果爆破点A 周围半径260 m 的区域内不能有车辆和行人,问在进行爆破时,公路BC 段是否需要暂时封闭?为什么?19.如图,4×10长方形网格中,每个小正方形的顶点称为格点,每个小正方形的边长均为1,点A ,B ,E ,F 都在格点上,按下列要求作图,使得所画图形的顶点均在格点上. (1)在图中画出以AB 为边的正方形ABCD ;(2)在图中画出以EF 为边的等腰三角形EFG ,且△EFG 的周长为1010+; (3)在(1)(2)的条件下,连接CG ,则线段CG 的长为 .20.如图,在ABCD 中,两条对角线AC 和BD 相交于点O ,并且6BD =,8AC =,5BC =.(1)AC 与BD 有什么位置关系?为什么?(2)四边形ABCD 是菱形吗?为什么?21.阅读材料:规定初中考试不能使用计算器后,小明是这样解决问题的:已知a 23+,求2281a a -+的值.他是这样分析与解的:∵a 23+2323(23)(23)-=+-, ∴23a -= ∴2(2)3,a -= 2443a a -+=∴241a a -=-, ∴2281a a -+=2(24)1a a -+=2(1)11⨯-+=-.请你根据小明的分析过程,解决如下问题:(1)若a 21-,直接写出2481a a -+的值是 . (21315375121119+++++ 22.为丰富同学们的课余活动,某校成立了篮球课外兴趣小组,计划购买一批篮球,需购买A 、B 两种不同型号的篮球共300个.已知购买3个A 型篮球和2个B 型篮球共需340元,购买2个A 型篮球和1个B 型篮球共需要210元.(1)求购买一个A 型篮球、一个B 型篮球各需多少元?(2)若该校计划投入资金W 元用于购买这两种篮球,设购进的A 型篮球为t 个,求W 关于t 的函数关系式;(3)学校在体育用品专卖店购买A 、B 两种型号篮球共300个,经协商,专卖店给出如下优惠:A 种球每个降价8元,B 种球打9折,计算下来,学校共付费16740元,学校购买A 、B 两种篮球各多少个?23.如图,矩形ABCD 中,AB=4,AD=3,∠A 的角平分线交边CD 于点E .点P 从点A 出发沿射线AE 以每秒2个单位长度的速度运动,Q 为AP 的中点,过点Q 作QH ⊥AB 于点H ,在射线AE 的下方作平行四边形PQHM (点M 在点H 的右侧),设P 点运动时间为秒.(1)直接写出的面积(用含的代数式表示).(2)当点M 落在BC 边上时,求的值.(3)在运动过程中,整个图形中形成的三角形是否存在全等三角形?若存在,请写出所有全等三角形,并求出对应的的值;若不存在请说明理由(不能添加辅助线). 24.如图,在平面直角坐标系中,直线28y x =+与x 轴交于点A,与y 轴交于点B,过点B 的直线x 轴于点C ,且AB=BC .(1)求直线BC 的表达式(2)点P 为线段AB 上一点,点Q 为线段BC 延长线上一点,且AP=CQ,PQ 交x 轴于点P ,设点Q 的横坐标为m ,求PBQ ∆的面积(用含m 的代数式表示)(3)在(2)的条件下,点M 在y 轴的负半轴上,且MP=MQ ,若45BQM ︒∠=求点P 的坐标.25.如图,Rt △CEF 中,∠C =90°,∠CEF ,∠CFE 外角平分线交于点A ,过点A 分别作直线CE ,CF 的垂线,B ,D 为垂足.(1)∠EAF = °(直接写出结果不写解答过程);(2)①求证:四边形ABCD 是正方形.②若BE =EC =3,求DF 的长.(3)如图(2),在△PQR 中,∠QPR =45°,高PH =5,QH =2,则HR 的长度是 (直接写出结果不写解答过程).【参考答案】一、选择题1.D解析:D【分析】根据二次根式和分式有意义的条件列出不等式,求解不等式即可.【详解】根据题意得:x﹣3≥0且x﹣5≠0,解得x≥3且x≠5.∴自变量x的取值范围是x≥3且x≠5.故选:D.【点睛】本题考查了二次根式和分式由意义的条件,理解二次根式和分式由意义的条件是解题的关键.2.D解析:D【分析】根据勾股定理的逆定理对各选项进行逐一判断即可.【详解】解:A、∵72+242=625=252,∴能够成直角三角形,故本选项不符合题意;B、∵42+52412,∴能够成直角三角形,故本选项不符合题意;C、∵32+42=52,∴能够成直角三角形,故本选项不符合题意;D、∵42+52≠62,∴不能够成直角三角形,故本选项符合题意.故选:D.【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.3.B解析:B【解析】【分析】根据平行四边形的判定方法,一一判断即可.【详解】解:A. 两组对角分别相等的四边形是平行四边形,正确;根据平行四边形的判定方法,可得结论;B. 一组对边相等,另一组对边平行的四边形是平行四边形,错误;如:等腰梯形;C. 一组对边平行,一组对角相等的四边形是平行四边形正确,由题意可以证明两组对边分别平行,四边形是平行四边形;D. 一组对边平行且相等的四边形是平行四边形,正确,根据平行四边形的判定方法,可得结论.故选:B【点睛】本题考查平行四边形的判定,解题的关键是熟练掌握平行四边形的判定方法,属于中考基础题.4.B解析:B【解析】【分析】首先比较出甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的方差的大小关系,然后根据方差越大,波动性越大,判断出应该选择谁参加比赛即可.【详解】解:因为3.5<5.7<6.7<8.6,所以乙最近几次选拔赛成绩的方差最小,所以要从中选择一名发挥稳定的运动员去参加比赛,应该选择乙.故选:B.【点睛】此题主要考查了方差的含义和应用,要熟练掌握,解答此题的关键是要明确:方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.5.A解析:A【分析】连接BD,根据三角形中位线定理易得四边形EFGH的各边长等于矩形对角线的一半,而矩形对角线相等,从而算出周长即可.【详解】连接BD,∵H、G是AD与CD的中点,∴HG是△ACD的中位线,∴HG=1AC=5cm,同理EF=5cm,2∵四边形ABCD是矩形,∴根据矩形的对角线相等,即BD=AC=10cm,∵H、E是AD与AB的中点,∴EH是△ABD的中位线,∴EH=1BD=5cm,同理FG=5cm,2∴四边形EFGH的周长为20cm.故选A.【点睛】熟练掌握矩形对角线相等和三角形中位线等于第三边的一半的性质是解决本题的关键. 6.C解析:C【解析】【分析】依题意得出AE=AB=AD,∠ADE=50°,又因为∠B=80°故可推出∠ADC=80°,∠CDE=∠ADC-∠ADE,从而求解.【详解】∵AD∥BC,∴∠AEB=∠DAE=∠B=80°,∴AE=AB=AD,在三角形AED中,AE=AD,∠DAE=80°,∴∠ADE=50°,又∵∠B=80°,∴∠ADC=80°,∴∠CDE=∠ADC-∠ADE=30°.故选:C.【点睛】考查菱形的边的性质,同时综合利用三角形的内角和及等腰三角形的性质,解题关键是利用等腰三角形的性质求得∠ADE的度数.7.B解析:B【解析】【分析】作BE ⊥AC 于E ,根据等腰三角形三线合一性质可得AE =DE ,根据∠C =45°,得出∠EBC =180°-∠C -∠BEC =180°-45°-90°=45°,可得BE =CE ,利用勾股定理求出CE =BE =2,根据D 是AC 的三等分点得出AE =DE =121233AC AC ⨯==CD ,求出CD =1,利用勾股定理2222215AB BE AE =+=+=即可.【详解】解:作BE ⊥AC 于E ,∵AB =BD ,∴AE =DE ,∵∠C =45°,∴∠EBC =180°-∠C -∠BEC =180°-45°-90°=45°,∴BE =CE ,在Rt △BEC 中,∴()22222+222BE CE CE BC ===,∴CE =BE =2,∵D 是AC 的三等分点, ∴CD =13AC ,AD =AC -CD =1233AC AC AC -=, ∴AE =DE =121233AC AC ⨯==CD , ∴CE =CD +DE =2CD =2,∴CD =1,∴AE =1,在Rt △ABE 中,根据勾股定理2222215AB BE AE =+=+=.故选B .【点睛】本题考查等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段,掌握等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段是解题关键. 8.C解析:C【分析】由图像与纵轴的交点可得出A 、B 两地的距离;当s=0时,即为甲、乙相遇的时候,同理根据图像的拐点判断其他即可.【详解】解:由图像可知A 村、B 村相离8km ,故①正确;甲出发2h 后到达C 村,故②正确;当0≤t≤1时,易得一次函数的解析式为s=-8t+8,故甲的速度比乙的速度快8km/h ,故③正确;当1≤t≤1.5时,函数图象经过点(1,0)(1.5,4)设一次函数的解析式为s=kt+b则有:104 1.5k b k b =+⎧⎨=+⎩解得21k b =⎧⎨=⎩ ∴s=2t+1当s=2时,得2=2t+1,解得t=0.5<1,不符合题意,④错误.故答案为C.【点睛】本题考查了一次函数的应用和函数与方程的思想,解题的关键在于读懂图象,根据图像的信息进行解答.二、填空题9.1≥x 且3x ≠【解析】【分析】根据分母不等于0,且被开方数是非负数列式求解即可.【详解】由题意得10x -≥且30x -≠解得1≥x 且3x ≠故答案为:1≥x 且3x ≠【点睛】本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.10.A解析:6【解析】【分析】根据菱形的性质得到AC =8,根据菱形的面积等于两条对角线乘积的一半,即可求解.【详解】解:∵四边形ABCD 为菱形;∴AC =2OA =8,12ABCD S AC BD =⋅菱形, ∴12482BD =⨯⨯, ∴BD =6,故答案为:6【点睛】本题考查了菱形的性质,解题的关键是熟记菱形面积的两种表示法:(1)底乘高,(2)对角线乘积的一半,本题运用的是第二种.11.E解析:8【解析】【分析】根据正方形的面积等于边长的平方,由正方形PQED 的面积和正方形PRQF 的面积分别表示出PR 的平方及PQ 的平方,又三角形PQR 为直角三角形,根据勾股定理求出QR 的平方,即可求小正方形的边长.【详解】如图,∵正方形PQED 的面积等于225,∴即PQ 2=225,∵正方形PRGF 的面积为289,∴PR 2=289,又△PQR 为直角三角形,根据勾股定理得:PR 2=PQ 2+QR 2,∴QR 2=PR 2−PQ 2=289−225=64,∴QR=8,即字母A 所代表的正方形的边长为8.【点睛】本题考查勾股定理,根据勾股定理求出小正方形的面积是关键.12.D21【分析】由矩形的性质和角平分线的定义得出∠DEC =∠ECB =∠BEC ,推出BE =BC ,求得 AE =AB =1,然后依据勾股定理可求得BC 的长;【详解】解:∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠DEC =∠BCE ,∵EC 平分∠DEB ,∴∠DEC =∠BEC ,∴∠BEC =∠ECB ,∴BE =BC ,∵四边形ABCD 是矩形,∴∠A =90°,AD BC =∵∠ABE =45°,∴∠ABE =∠AEB =45°,∴AB =AE =1,由勾股定理得:BE ==,∴BC =AD =BE, ∴1DE AD AE =-,1.【点睛】本题考查了矩形的性质,等腰三角形的性质与判定,勾股定理的应用;熟练掌握矩形的性质,证出BE =BC 是解题的关键.13.10y x =-+【分析】用待定系数法即可得到答案.【详解】解:把()8,2代入y x b =-+得82b -+=,解得10b =,所以一次函数解析式为10y x =-+.故答案为10y x =-+【点睛】本题考查求一次函数解析式,解题的关键是熟练掌握待定系数法.14.A解析:AC BD =【分析】如下图,根据三角形中位线的定理,可得AG=EF=12AC ,GF=AE=12BD ,再根据菱形四条边相等的性质,可得出AC 与BD 的关系.【详解】如下图,点E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点∵点E、F是AB、BC的中点∴EF=12AC同理可得:AG=EF=12AC,GF=AE=12BD∵要使得四边形HEFG是菱形,则HE=EF=FG=GH ∴只需AC=BD即可故答案为:AC=BD【点睛】本题考查菱形的性质和三角形中位线的性质,解题关键是得出AG=EF=12 AC,GF=AE=12 BD.15.(,0)【分析】作点D关于x轴对称点F,根据题意求出D点的坐标,从而得到F点的坐标,同时连接CF,则CF与x轴的交点即为所求E点,此时满足△CDE的周长最小,利用CF的解析式求解即可.【详解】解析:(83,0)【分析】作点D关于x轴对称点F,根据题意求出D点的坐标,从而得到F点的坐标,同时连接CF,则CF与x轴的交点即为所求E点,此时满足△CDE的周长最小,利用CF的解析式求解即可.【详解】解:作点D关于x轴对称点F,如图,∵四边形OABC 是矩形,∴OC =BD =3,点C 的坐标为()0,3,∵D 为AB 边的中点,∴AD =32, ∵OA =4,∴D 点的坐标为34,2⎛⎫ ⎪⎝⎭,则F 点的坐标为34,2⎛⎫- ⎪⎝⎭, 根据轴对称的性质可得:EF =ED ,∴C △CDE =CD +CE +DE =CD +CE +EF ,其中CD 为定值,当CE +EF 值最小时,△CDE 周长最小,此时点C ,E ,F 三点共线,设直线CF 的解析式为:()0y kx b k =+≠,将()0,3和34,2⎛⎫- ⎪⎝⎭代入解析式得: 3342b k b =⎧⎪⎨+=-⎪⎩,解得:983k b ⎧=-⎪⎨⎪=⎩, ∴直线CF 的解析式为:938y x =-+, 令0y =,得:9308x -+=, 解得:83x =, ∴点E 坐标(83,0), 故答案为:803⎛⎫ ⎪⎝⎭,. 【点睛】本题考查一次函数与轴对称的综合运用,理解最短路径的求解方法,熟悉待定系数法求一次函数解析式是解题关键.16.5【分析】在Rt△BDC中由勾股定理可求出BD,根据翻折变换可得AH=HD,在Rt△BDH 中由勾股定理可得答案.【详解】解:在Rt△BDC中,∵BC=8,CD=2,∴BD=,由题意,得解析:5【分析】在Rt△BDC中由勾股定理可求出BD,根据翻折变换可得AH=HD,在Rt△BDH中由勾股定理可得答案.【详解】解:在Rt△BDC中,∵BC=8,CD=∴BD=由题意,得AH=HD,设BH=x,则AH=12﹣x=HD,在Rt△BDH中,由勾股定理得,HB2+BD2=HD2,即x2)2=(12﹣x)2,解得x=5,即HB=5,故答案为:5.【点睛】本题考查了翻折变换,勾股定理.掌握翻折变换的性质及勾股定理是解题的关键.三、解答题17.(1);(2)【分析】(1)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可;(2)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可.【详解】解:(1)解析:(1)2)4【分析】(1)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可;(2)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可.【详解】解:(1)===(22=4=4=【点睛】本题主要考查了利用二次根式的化简和二次根式的混合运算,熟练掌握相关计算法则是解题的关键.18.需要封闭,理由见解析【分析】过作于 先求解 再利用等面积法求解 再与260比较,可得答案.【详解】解:过作于所以进行爆破时,公路BC 段需要暂时封闭.【点睛】解析:需要封闭,理由见解析【分析】过A 作AK BC ⊥于,K 先求解,BC 再利用等面积法求解,AK 再与260比较,可得答案.【详解】解:过A 作AK BC ⊥于,K,400,300,AB AC AB AC22500,BC AB AC11,AB AC BC AK22AK300400500,240,AK240260,所以进行爆破时,公路BC段需要暂时封闭.【点睛】本题考查的是勾股定理的应用,利用等面积法求解直角三角形斜边上的高,掌握“等面积法求解直角三角形斜边上的高”是解题的关键.19.(1)见解析;(2)见解析;(3)【解析】【分析】(1)根据正方形的判定画出以AB为边的正方形ABCD即可;(2)画出以EF为边的等腰三角形EFG,且△EFG的周长为等腰三角形即可;(3)解析:(1)见解析;(2)见解析;(35【解析】【分析】(1)根据正方形的判定画出以AB为边的正方形ABCD即可;(2)画出以EF为边的等腰三角形EFG,且△EFG的周长为1010(3)由勾股定理求出CG即可.【详解】解:(1)如图,所作正方形ABCD即为以AB为边的正方形ABCD;(2)如图,所作△EFG即为以EF为边的等腰三角形EFG,且△EFG的周长为1010+(3)如图,CG22+512【点睛】本题考查作图-应用与设计,勾股定理,解题的关键是理解题意,根据GE=GF=5画出等腰三角形.20.(1)AC⊥BD,证明见解析;(2)四边形ABCD是菱形,见解析【分析】(1)首先根据平行四边形的性质得出OC, OB的长,再利用勾股定理逆定理求出∠BOC=90,可得AC与BD的位置关系;(解析:(1)AC⊥BD,证明见解析;(2)四边形ABCD是菱形,见解析【分析】(1)首先根据平行四边形的性质得出OC,OB的长,再利用勾股定理逆定理求出∠BOC=90︒,可得AC与BD的位置关系;(2)菱形的判定方法:对角线互相垂直平分的四边形是菱形,可得答案.【详解】解:(1)AC⊥BD;理由如下:在ABCD中,132==OB BD,142OC AC==∵22291625+=+==OB OC BC∴∠BOC=90︒∴AC⊥BD.(2)四边形ABCD是菱形∵四边形ABCD是平行四边形(已知),AC⊥BD(已证)∴四边形ABCD是菱形.【点睛】此题主要考查了菱形的判定,平行四边形的性质,以及勾股定理的逆定理的运用,解题的关键是根据条件证出BO2+CO2=CB2.21.(1)5;(2)5.【解析】【详解】试题分析: 根据平方差公式,可分母有理化,根据整体代入,可得答案.试题解析:(1)∵a=,∴4a2-8a+1=4×()2-8×()+1=5;(2)解析:(1)5;(2)5.【解析】【详解】试题分析: 根据平方差公式,可分母有理化,根据整体代入,可得答案.试题解析:(1)∵, ∴4a 2-8a+1)2-8×)+1=5;(2)原式=12×=12×) =12×10=5.点睛:本题主要考查了分母有理化,利用分母有理化化简是解答此题的关键. 22.(1)一个A 型篮球为80元,一个B 型篮球为50元;(2)函数解析式为:;(3)A 型篮球120个,则B 型篮球为180个.【分析】(1)设一个A 型篮球为x 元,一个B 型篮球为y 元,根据题意列出方程组求 解析:(1)一个A 型篮球为80元,一个B 型篮球为50元;(2)函数解析式为:()30150000300W t t =+≤≤;(3)A 型篮球120个,则B 型篮球为180个.【分析】(1)设一个A 型篮球为x 元,一个B 型篮球为y 元,根据题意列出方程组求解即可得; (2)A 型篮球t 个,则B 型篮球为()300t -个,根据单价、数量、总价的关系即可得; (3)根据A 型篮球与B 型篮球的优惠政策求出单价,然后代入(2)解析式中求解即可得.【详解】解:(1)设一个A 型篮球为x 元,一个B 型篮球为y 元,根据题意可得:323402210x y x y +=⎧⎨+=⎩, 解得:8050x y =⎧⎨=⎩,∴一个A 型篮球为80元,一个B 型篮球为50元;(2)A 型篮球t 个,则B 型篮球为()300t -个,根据题意可得:()()805030030150000300W t t t t =+-=+≤≤,∴函数解析式为:()30150000300W t t =+≤≤;(3)根据题意可得:A 型篮球单价为()808-元,B 型篮球单价为500.9⨯元,则()()16740808500.9300t t =-+⨯⨯-,解得:120t =,300180t -=,∴A 型篮球120个,则B 型篮球为180个. 【点睛】题目主要考查二元一次方程组及一次函数的应用,理解题意,列出相应方程是解题关键.23.(1);(2);(3)存在,如图2(见解析),当时,;如图3(见解析),当时,;如图4(见解析),当时,. 【分析】(1)先根据线段中点的定义可得,再根据矩形的性质、角平分线的定义可得,从而可得是解析:(1);(2);(3)存在,如图2(见解析),当时,;如图3(见解析),当时,;如图4(见解析),当时,.【分析】(1)先根据线段中点的定义可得,再根据矩形的性质、角平分线的定义可得,从而可得是等腰直角三角形,然后根据等腰直角三角形的性质可得AH 的长,最后根据等腰直角三角形的面积公式即可得; (2)先根据平行四边形的性质可得,从而可得,再根据三角形中位线定理可得是的中位线,从而可得,然后与(1)所求的建立等式求解即可得;(3)分①当点H 是AB 的中点时,;②当点Q 与点E 重合时,;③当时,三种情况,分别求解即可得.【详解】 (1)由题意得:,点Q 为AP 的中点,,四边形ABCD 是矩形,,是BAD的角平分线,,,是等腰直角三角形,,则的面积为;(2)如图1,四边形PQHM是平行四边形,,点M在BC边上,,点Q为AP的中点,是的中位线,,由(1)知,,则,解得;(3)由题意,有以下三种情况:①如图2,当点H是AB的中点时,则,四边形PQHM是平行四边形,,,在和中,,由(2)可知,此时;②如图3,当点Q与点E重合时,在和中,,,,则,解得;③如图4,当时,四边形ABCD是矩形,四边形PQHM是平行四边形,,,在和中,,,,在中,,是等腰直角三角形,,,在中,,是等腰直角三角形,,则由得:,解得;综上,如图2,当时,;如图3,当时,;如图4,当时,.【点睛】本题考查了矩形的性质、三角形中位线定理、三角形全等的判定定理与性质、等腰直角三角形的判定与性质等知识点,较难的是题(3),依据题意,正确分三种情况讨论并画出图形是解题关键.24.(1)y=-2x+8;(2)S=16m-2m2;(3)(-2,4)【解析】【分析】(1)先求出点A,点B坐标,由等腰三角形的性质可求点C坐标,由待定系数法可求BC 的解析式;(2)过点P作PG解析:(1)y=-2x+8;(2)S=16m-2m2;(3)(-2,4)【解析】【分析】(1)先求出点A,点B坐标,由等腰三角形的性质可求点C坐标,由待定系数法可求BC 的解析式;(2)过点P作PG⊥AC,PE∥BC交AC于E,过点Q作HQ⊥AC,由“AAS”可证△AGP≌△CHQ,可得AG=HC=m-4,PG=HQ=2m-8,由“AAS”可证△PEF≌△QCF,可得S△PEF=S△QCF,即可求解;(3)如图2,连接AM,CM,过点P作PE⊥AC,由“SSS”可证△APM≌△CQM,△ABM≌△CBM,可得∠PAM=∠MCQ,∠BQM=∠APM=45°,∠BAM=∠BCM,由“AAS”可证△APE≌△MAO,可得AE=OM,PE=AO=4,可求m的值,可得点P的坐标.【详解】解:(1)∵直线y=2x+8与x轴交于点A,与y轴交于点B,∴点B(0,8),点A(-4,0)∴AO=4,BO=8,∵AB=BC,BO⊥AC,∴AO=CO=4,∴点C(4,0),设直线BC解析式为:y=kx+b,由题意可得:804bk b=⎧⎨=+⎩,解得:28kb=-⎧⎨=⎩,∴直线BC解析式为:y=-2x+8;(2)如图1,过点P作PG⊥AC,PE∥BC交AC于E,过点Q作HQ⊥AC,设△PBQ的面积为S,∵AB=CB,∴∠BAC=∠BCA,∵点Q横坐标为m,∴点Q(m,-2m+8)∴HQ=2m-8,CH=m-4,∵AP=CQ,∠BAC=∠BCA=∠QCH,∠AGP=∠QHC=90°,∴△AGP≌△CHQ(AAS),∴AG=HC=m-4,PG=HQ=2m-8,∵PE∥BC,∴∠PEA=∠ACB,∠EPF=∠CQF,∴∠PEA=∠PAE,∴AP=PE,且AP=CQ,∴PE=CQ,且∠EPF=∠CQF,∠PFE=∠CFQ,∴△PEF≌△QCF(AAS)∴S△PEF=S△QCF,∴△PBQ的面积=四边形BCFP的面积+△CFQ的面积=四边形BCFP的面积+△PEF的面积=四边形PECB的面积,∴S=S△ABC-S△PAE=12×8×8-12×(2m-8)×(2m-8)=16m-2m2;(3)如图2,连接AM,CM,过点P作PE⊥AC,∵AB=BC,BO⊥AC,∴BO是AC的垂直平分线,∴AM=CM,且AP=CQ,PM=MQ,∴△APM≌△CQM(SSS)∴∠PAM=∠MCQ,∠BQM=∠APM=45°,∵AM=CM,AB=BC,BM=BM,∴△ABM≌△CBM(SSS)∴∠BAM=∠BCM,∴∠BCM=∠MCQ,且∠BCM+∠MCQ=180°,∴∠BCM=∠MCQ=∠PAM=90°,且∠APM=45°,∴∠APM=∠AMP=45°,∴AP=AM,∵∠PAO+∠MAO=90°,∠MAO+∠AMO=90°,∴∠PAO=∠AMO,且∠PEA=∠AOM=90°,AM=AP,∴△APE≌△MAO(AAS)∴AE=OM,PE=AO=4,∴2m-8=4,∴m=6,∴P(-2,4).【点睛】本题是一次函数综合题,考查了待定系数法求解析式,全等三角形的判定和性质,等腰三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.25.(1)45;(2)①见解析;②DF的长为2;(3)【分析】(1)根据平角的定义得到∠DFE+∠BEF=360°﹣90°=270°,根据角平分线的定义得到∠AFE=DFE,∠AEF=BEF,求得∠解析:(1)45;(2)①见解析;②DF的长为2;(3)15 7【分析】(1)根据平角的定义得到∠DFE+∠BEF=360°﹣90°=270°,根据角平分线的定义得到∠AFE=12∠DFE,∠AEF=12∠BEF,求得∠AEF+∠AFE=12(∠DFE+∠BEF),根据三角形的内角和定理即可得到结论;(2)①作AG⊥EF于G,如图1所示:则∠AGE=∠AGF=90°,先证明四边形ABCD是矩形,再由角平分线的性质得出AB=AD,即可得出四边形ABCD是正方形;②设DF=x,根据已知条件得到BC=6,由①得四边形ABCD是正方形,求得BC=CD=6,根据全等三角形的性质得到BE=EG=3,同理,GF=DF=x,根据勾股定理列方程即可得到结论;(3)把△PQH沿PQ翻折得△PQD,把△PRH沿PR翻折得△PRM,延长DQ、MR交于点G,由(1)(2)得:四边形PMGD是正方形,MR+DQ=QR,MR=HR,DQ=HQ=2,得出MG=DG=MP=PH=6,GQ=4,设MR=HR=a,则GR=6﹣a,QR=a+2,在Rt△GQR 中,由勾股定理得出方程,解方程即可.【详解】解:(1)∵∠C=90°,∴∠CFE+∠CEF=90°,∴∠DFE+∠BEF=360°﹣90°=270°,∵AF平分∠DFE,AE平分∠BEF,∴∠AFE=12∠DFE,∠AEF=12∠BEF,∴∠AEF +∠AFE =12(∠DFE +∠BEF )=12⨯270°=135°,∴∠EAF =180°﹣∠AEF ﹣∠AFE =45°, 故答案为:45;(2)①作AG ⊥EF 于G ,如图1所示:则∠AGE =∠AGF =90°, ∵AB ⊥CE ,AD ⊥CF , ∴∠B =∠D =90°=∠C , ∴四边形ABCD 是矩形,∵∠CEF ,∠CFE 外角平分线交于点A , ∴AB =AG ,AD =AG , ∴AB =AD ,∴四边形ABCD 是正方形; ②设DF =x , ∵BE =EC =3, ∴BC =6,由①得四边形ABCD 是正方形, ∴BC =CD =6,在Rt △ABE 与Rt △AGE 中,AB AGAE AE=⎧⎨=⎩ , ∴Rt △ABE ≌Rt △AGE (HL ), ∴BE =EG =3, 同理,GF =DF =x ,在Rt △CEF 中,EC 2+FC 2=EF 2, 即32+(6﹣x )2=(x +3)2, 解得:x =2, ∴DF 的长为2; (3)解:如图2所示:把△PQH沿PQ翻折得△PQD,把△PRH沿PR翻折得△PRM,延长DQ、MR交于点G,由(1)(2)得:四边形PMGD是正方形,MR+DQ=QR,MR=HR,DQ=HQ=2,∴MG=DG=MP=PH=5,∴GQ=3,设MR=HR=a,则GR=5﹣a,QR=a+2,在Rt△GQR中,由勾股定理得:(5﹣a)2+32=(2+a)2,解得:a=157,即HR=157;故答案为:157.【点睛】本题考查了正方形的判定与性质、全等三角形的判定与性质、角平分线的性质、勾股定理、矩形的判定、翻折变换的性质等知识;本题综合性强,有一定难度.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008学年下学期天河区期末考试八年级数学评分标准一、 细心选一选 (本题有10个小题, 每小题3分, 满分30分)二、耐心填一填 (本题有6个小题, 每小题3分, 共18分)三、用心答一答 (本题有9个小题, 共52分) 17.(本题满分10分)解方程:23=13x x --解:两边都乘以3)(1)x x --(得:-------------1分 23)3(1)x x -=-(--------------3分2633x x -=-------------6分2363x x -=-------------7分 3x -=------------8分 3x =-------------9分经检验3x =-是原方程的根。
-----------10分18.(本题满分10分)已知y 是x 的反比例函数,当1x =时,2y =. (1)求出y 与x 的函数关系式;(2)在所给的平面直角坐标系中(如图),画出此函数的一支图象(其中0x >). 解:(1)设反比例函数解析式为ky x=,---------1分 依题意得21k=,------------3分2k =.------------5分第18题∴所求的反比例函数解析式为2y x=. -------6分 (2注意:看列表是否与描点对应。
若图象没有体现描点,扣1分。
至于解析式不必写在图象边。
19.(本题满分12分)如图,四边形A BC D ,AB ∥DC ,55B ∠=°,185∠=°, 240∠=° (1)求∠D 的度数;(2)求证:四边形A BC D 是平行四边形.解:(1) ∵∠D+∠2+∠3=180°----------2分(可省略)∴∠D=180°-∠2-∠3 ---------3分=180°-40°-85°= 55° --------4分(2) ∵ AB ∥DC∴ ∠2 +∠ACB + ∠B = 180° ------------- 6分 ∴∠ACB =180°-∠B -∠2= 180°-55°-40°=85°------------------ 8分∵ ∠ACB=∠1=85° ------------------------------ 9分 ∴AD ∥ BC ------------------------------11分∴ 四边形A BC D 是平行四边形-----------------------------12分 或解 ∵ AB ∥DC∴ ∠2=∠CAB------------- 6分 又∠B=∠D=55°------------- 7分 AC=AC-------------8分 ∴△ACD ≌△CAB-----------9分 ∴AB=DC-------------11分∴四边形A BC D 是平行四边形-----------------------------12分20.(本题满分10分)天河集团对应聘者甲、乙、丙进行面试,并从专业知识、工作经验、仪表形象三方面给应聘者打分,每一方面满分20分,最后的打分制成条形统计图(如图).第19题第20题第21题(1)利用图中提供的信息,在专业知识方面3人得分的极差是多少?在工作经验方面3(2)如果专业知识、工作经验、仪表形象三个方面的重要性之比为10∶7∶3,那么作为人事 主管,你应该录用哪一位应聘者?为什么? (3)在(2)题的条件下,你对落聘者有何建议?解:(1)极差是18-14=4,-----------1分 众数是15-----------2分丙最有优势-----------3分(2)应录用乙--------------4分甲得分:14×1020+17×720+12×320=29520 乙得分:18×1020+15×720+11×320=31820丙得分:16×1020+15×720+14×320=30720-------7分∵乙得分最高∴应录用乙---------------------8分(3)对甲而言,应加强专业知识的学习,同时要注意自己的仪表形象.对丙而言,三方面都要努力.重点在专业知识和工作经验---------------10分21.(本题满分10分)如图,已知四边形ABCD 是等腰梯形,AB=DC ,AD ∥BC , AD=2,点P 为梯形内部一点,若PB=PC ,且PA ⊥PD . (1)求证:PA=PD ; (2)求PA 的长. 解:(1)解法一:∵四边形ABCD 是等腰梯形,AB=DC ∴∠ABC=∠DCB ----------------------------2分 又 PB=PC∴∠PBC=∠PCB -----------------------4分 ∴∠ABP=∠DCP-----------------------5分 ∴△ABP ≌△DCP------------------------6分∴PA=PD --------------------7分 解法二:∵PB=PC∴点P 在线段BC 的垂直平分线上---------------------------2分∵线段BC 的垂直平分线也是等腰梯形ABCD 的边AD 的垂直平分线---------------4分 即点P 也在线段AD 的垂直平分线上-----------------------------5分 ∴PA=PD --------------------7分(2)在Rt △PAD 中,222PA PD AD +=---------------8分即:2222PA = ---------------9分PA =分第Ⅱ卷(50分)22.(本题满分13分)如图,一次函数y kx b =+的图象与反比例函数my x=的图象相交于A 、B 两点. (1)根据图象,分别写出A 、B 的坐标; (2)求出反比例函数的解析式; (3)求出线段AB 的长度.解:(1) (6,2)A --(4,3)B ------------2分(2) 把4,3x y ==代入m y x=得34m=----------------------4分12m =-----------------------5分反比例函数的解析式为12y x=-----------------------6分(3)分别过点A ,B 作y 轴、x 轴的垂线,两线交于点 ∴点C 的坐标为(4,2)C ----------------------9分 在Rt △ACB 中,AC=10,BC=5 ---------------11分即:AB ==分或解:直线AB 与x 轴交于点D ,则点D 的坐标为(-2,0)-----8分(此处不详解不扣分)此时AD ==---------10分BD ==分AB=AD+BD=分23.(本题满分13分)广深铁路现已进入高速时代,现阶段列车的平均速度是200千米/小时.2011年还将提速,当深圳北站正式开通后,从深圳北站出发不到半个钟头就可到达广州,会让所有的乘客切实感受广深港同城化便捷.已知用相同的时间,列车现阶段行驶a 千米,提速后比现阶段多行驶150千米. (1)求列车平均提速多少千米/小时?(2)若提速后列车的平均速度是360千米/小时,则题中的a 为多少千米? 解:(1)设列车平均提速x 千米/小时,依题意得:--------------- 1分150200200a a x+=+. ---------------------------5分 20020030000a ax a +=+------------6分解得30000x a=--------------------------8分 0a >,经检验30000x a=为所列方程的解. ------------------9分 答:列车平均提速30000a千米/小时------------------------ 10分 (2)列车平均速度为360千米/小时,此时列车平均提速360120160x =-= ------------------11分30000160a=∴-------------------------12分 187.5a =千米---------------------13分24.(本题满分12分)如图,已知在矩形ABCD 中,AB=3,点E 在BC 上且∠BAE =30°,延长BC 到点F 使 CF =BE ,连结DF .(1)判断四边形AEFD 的形状,并说明理由; (2)求DF 的长度;(3)若四边形AEFD 是菱形,求菱形AEFD 的面积.第24题第25题解:(1)四边形AEFD 是平行四边形----------------1分由已知矩形ABCD 得AD ∥BC ,AD =BC ----------------2分又BE =CF , ∴AD=BC=EF .-------------------4分∴四边形AEFD 是平行四边形 ------------------5分(2)∵四边形AEFD 是平行四边形∴DF AE =-----------------6分 在Rt ABE 中,∠BAE =30°,AB=2, ∴2AE BE = ----------------7分 设2,AE x BE x ==则有2222+=3x x ()解得x =分DF AE ==分(2)∵四边形AEFD 是菱形∴AD AE==--------------- 10分3S AB AD =∙=⨯=菱形AECF 分或解:由AB=DC, ∠B=∠C, BE=CF 得△ABE ≌△DCF ---------------11分∴=3ABCD S S AB AD =∙=⨯=矩形菱形AECF 分25.(本题满分12分) 如图,已知双曲线ky x=(k >0)与直线/y k x =交于A ,B 两点,点P 在第一象限. (1)若点A 的坐标为(3,2),则k 的值为 ,/k 的值为 ;点B 的坐标为( , );(2)若点A (m ,m -1),P (m -2,m +3)都在双曲线的图象上.试求出m 的值;(3)如图,在(2)小题的条件下:①过原点O 和点P 作一条直线,交双曲线于另一点Q ,试证明四边形AP BQ 是平行四边形. ②如果M 为x 轴上一点,N 为y 轴上一点,以点P ,A , M ,N 为顶点的四边形是平行四边形,试求出点M 和点N 的坐标.解:(1)k 的值为 6 ,/k 的值为23;点B 的坐标为( -3 , -2 );M 1N 1M 2N 2 ………………………………3分(2)由题意可知,()()()131-+=+m m m m . ………………………………4分解得 m =3. ---------------------------------------5分(3)证明:①由m =3得 A (3,2),B (1,6);由此可得:A (-3,-2),B (-1,-6)……………………………6分∴OA OB ==OP OQ ===-----------------------7分∴四边形AP BQ 是平行四边形-----------------8分(2)存在两种情况,如图:①当M 点在x 轴的正半轴上,N 点在y 轴的正半轴上时,设M 1点坐标为(x 1,0),N 1点坐标为(0,y 1).∵ 四边形AN 1M 1B 为平行四边形,∴ 线段N 1M 1可看作由线段P A 向左平移1个单位,再向下平移2个单位得到的(也可看作向下平移2个单位,再向左平移1个单位得到的).---------9分 又A 点坐标为(3,2),P 点坐标为(1,6), ∴ N 1点坐标为(0,6-2),即N 1(0,4); M 1点坐标为(3-1,0),即M 1(2,0). ----10分 ②当M 点在x 轴的负半轴上,N 点在y 轴的负半轴上时, 设M 2点坐标为(x 2,0),N 2点坐标为(0,y 2). ∵ PA ∥N 1M 1,PA ∥M 2N 2,PA =N 1M 1,P A =M 2N 2,∴ N 1M 1∥M 2N 2,N 1M 1=M 2N 2. ∴ 0M 2= O M 1,O N 1=O N 2. ∴ M 2点坐标为(-2,0),N 2点坐标为(0,-4). …12分(注意: 没写过程的:只写出一种情况坐标得1分,写两种得2分过程不必这样详细。