高三数学一轮复习精品教案2:线面、面面垂直的判定与性质教学设计

合集下载

高三数学复习教案立体几何线面垂直

高三数学复习教案立体几何线面垂直

A 0A 0A 0(B 0)A 0A 0(A 0)A 0B 0B 0B 0B 0B BB B B A A A AA A A αO ABC αO A B 高三数学复习教案立体几何线面垂直线面平行的判定定理:假如不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和那个平面平行推理模式:,,////l m l m l ααα⊄⊂⇒线面平行的性质定理:假如一条直线和一个平面平行,通过这条直线的平面和那个平面相交,那么这条直线和交线平行推理模式://,,//l l m l m αβαβ⊂=⇒4 线面垂直定义:假如一条直线和一个平面相交,同时和那个平面内的任意一条直线都垂直,我们就讲这条直线和那个平面互相垂直其中直线叫做平面的垂线,平面叫做直线的垂面交点叫做垂足 直线与平面垂直简称线面垂直,记作:a ⊥α直线与平面垂直的判定定理:假如一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于那个平面6 直线和平面垂直的性质定理:假如两条直线同垂直于一个平面,那麽这两条直线平行 7.平面几何中,点、线段在直线上射影的概念及性质: 8 斜线,垂线,射影 ⑴垂线 自一点向平面引垂线,垂足叫这点在那个平面上的射影. 那个点和垂足间的线段叫做这点到那个平面的垂线段.⑵斜线 一条直线和一个平面相交,但不和那个平面垂直,这条直线叫做那个平面的斜线斜线和平面的交点叫斜足;斜线上一点与斜足间的线段叫这点到那个平面的斜线段 ⑶射影 过斜线上斜足外的一点向平面引垂线,过垂足和斜足的直线叫做斜线在那个平面内的射影垂足和斜足间线段叫这点到那个平面的斜线段在那个平面内的射影 直线与平面平行,直线在平面由射影是一条直线直线与平面垂直射影是点线任一点在平面内的射影一定在斜线的射影上9.射影长相等定理:从平面外一点向那个平面所引的垂线段和斜线中⑴射影相交两条斜线相交;射影较长的斜线段也较长⑵相等的斜线段射影相等,较长的斜线段射影较长;⑶垂线段比任何一条斜线段都短10.直线和平面所成角〔1〕定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和那个平面所成的角一直线垂直于平面,所成的角是直角一直线平行于平面或在平面内,所成角为0︒角。

高中数学线面垂直变化教案

高中数学线面垂直变化教案

高中数学线面垂直变化教案
教学目标:
1. 理解线面垂直的概念,能正确判断线面是否垂直。

2. 掌握线面垂直关系的性质和判定方法。

3. 能够解决相关的问题,提高数学推理和解决问题的能力。

教学重点:
1. 理解线面垂直的定义及性质。

2. 掌握线面垂直的判定方法和求解技巧。

教学难点:
1. 理解线面垂直的判定方法并灵活运用。

2. 解决实际问题中线面垂直关系的应用。

教学过程:
一、导入:通过提问引入线面垂直的概念,引导学生思考线面垂直的意义和特点。

二、讲解:介绍线面垂直的定义和性质,以及线面垂直的判定方法,通过案例分析详细说明线面垂直关系。

三、练习:让学生进行练习,巩固理论知识,提高解题能力。

四、拓展:引导学生思考线面垂直在日常生活中的应用,如建筑设计、机械加工等领域。

五、总结:对本节课的内容进行总结,强调线面垂直的重要性及应用。

教学反思:通过引导学生思考线面垂直的概念和性质,以案例分析为例详细讲解线面垂直的判定方法,能够帮助学生更好地理解和掌握线面垂直的知识,在解题过程中培养学生的逻辑思维能力和问题解决能力。

高中数学优秀教案线面垂直

高中数学优秀教案线面垂直

高中数学优秀教案线面垂直
课型:新授课
教学目标:
1. 理解线面垂直的概念;
2. 能够判断线段和平面是否垂直;
3. 能够应用线面垂直的性质解决实际问题。

教学重难点:
1. 线面垂直的性质;
2. 如何判断线段和平面是否垂直。

教学准备:
1. 教材《高中数学》相关教学内容;
2. 板书、彩色粉笔、投影仪;
3. 实物模型:线段、平面。

教学过程:
一、导入(5分钟)
教师向学生展示实物模型,让学生观察线段和平面的相互关系,引出线面垂直的概念。

二、讲解(15分钟)
1. 带领学生理解线面垂直的性质,并讲解判断线段和平面是否垂直的方法;
2. 通过例题分析,帮助学生掌握线面垂直的应用技巧。

三、练习(20分钟)
1. 分发练习题,让学生独立完成;
2. 随堂检测,及时纠正学生的错误。

四、拓展(10分钟)
教师展示一些拓展性的问题,激发学生兴趣,引导学生深入思考线面垂直的相关问题。

五、总结(5分钟)
对本节课所学内容进行总结,并对学生提出的问题进行解答。

六、课后作业
布置相关的课后作业,巩固所学知识。

教学反思:
1. 本节课注重引导学生理解线面垂直的性质,并通过实际问题让学生应用所学知识;
2. 在练习环节要及时纠正学生的错误,以确保他们正确掌握线面垂直的判断方法;
3. 在拓展环节要精心设计问题,引导学生拓展思维,培养他们的解决问题能力。

2018届高三数学第一轮复习《直线、平面垂直的判定与性质》学案

2018届高三数学第一轮复习《直线、平面垂直的判定与性质》学案

直线、平面垂直的判定与性质一、学习目标:1. 认识和理解空间中线面垂直、面面垂直的有关性质与判定定理,并能够证明相关性质定理;2. 能运用线面垂直、面面垂直的判定及性质定理证明一些空间图形的垂直关系的简单命题.二、学习重点:能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.三、学习难点:能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.四、学习过程:知识梳理1.直线与平面垂直(1)直线和平面垂直的定义:如果一条直线l与平面α内的直线都垂直,就说直线l与平面α互相垂直.(2)判定定理与性质定理2.平面与平面垂直(1)平面与平面垂直的定义:两个平面相交,如果它们所成的二面角是,就说这两个平面互相垂直.(2)判定定理与性质定理3.直线与平面所成的角(1)定义:平面的一条斜线和它在平面上的射影所成的锐角,叫做这条斜线和这个平面所成的角.(2)线面角θ的范围:θ∈⎣⎢⎡⎦⎥⎤0,π2. 4.二面角的有关概念(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.(2)二面角的平面角:过二面角棱上的任一点,在两个半平面内分别作与棱垂直的射线,则两射线所成的角叫做二面角的平面角.诊 断 自 测1.判断正误(在括号内打“√”或“×”)(1)直线l 与平面α内无数条直线都垂直,则l ⊥α.( )(2)过一点作已知直线的垂面有且只有一个.( )(3)若两条直线垂直,则这两条直线相交.( )(4)若两平面垂直,则其中一个平面内的任意一条直线垂直于另一个平面.( )(5)若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥β.( )2.设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“α⊥β”是“a ⊥b ”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.(2015·浙江卷)设α,β是两个不同的平面,l ,m 是两条不同的直线,且l ⊂α,m ⊂β( )A.若l ⊥β,则α⊥βB.若α⊥β,则l ⊥mC.若l ∥β,则α∥βD.若α∥β,则l ∥m4.(2014·四川卷)如图,在正方体ABCD -A 1B 1C 1D 1中,点O 为线段BD 的中点.设点P 在线段CC 1上,直线OP 与平面A 1BD 所成的角为α,则sin α的取值范围是( )A.⎣⎡⎦⎤33,1 B.⎣⎡⎦⎤63,1 C.⎣⎡⎦⎤63,223 D.⎣⎡⎦⎤223,15.(人教A 必修2P67练习2改编)在三棱锥P -ABC 中,点P 在平面ABC 中的射影为点O ,(1)若P A =PB =PC ,则点O 是△ABC 的________心.(2)若P A ⊥PB ,PB ⊥PC ,PC ⊥P A ,则点O 是△ABC 的________心.考点一 线面垂直的判定与性质【例1】 如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,P A =AB =BC ,E 是PC 的中点.证明:(1)CD ⊥AE ;(2)PD ⊥平面ABE .【训练1】如图,在四棱锥P -ABCD 中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,AB =2,∠BAD =π3,M 为BC 上一点,且BM =12.证明:BC ⊥平面POM .考点二 面面垂直的判定与性质【例2】 如图,在四棱锥P -ABCD 中,AB ∥CD ,AB ⊥AD ,CD =2AB ,平面P AD ⊥底面ABCD ,P A ⊥AD .E 和F 分别是CD 和PC 的中点.求证:(1)P A ⊥底面ABCD ;(2)BE ∥平面P AD ;(3)平面BEF ⊥平面PCD .【训练2】 如图所示,在四棱锥P -ABCD 中,底面ABCD 是正方形,侧面P AD ⊥底面ABCD .(1)求证:P A ⊥CD ;(2)若P A =PD =22AD ,求证:平面P AB ⊥平面PCD .考点三直线、平面垂直的综合应用【例3】如图所示,在四棱锥P-ABCD中,平面P AD⊥平面ABCD,AB∥DC,△P AD是等边三角形,已知BD=2AD=8,AB=2DC=4 5.(1)设M是PC上的一点,求证:平面MBD⊥平面P AD;(2)求四棱锥P-ABCD的体积.【训练3】(2015·江苏卷)如图,在直三棱柱ABC-AB1C1中,已知AC⊥BC,BC=CC1.设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.。

教学设计2:线面、面面垂直的判定与性质

教学设计2:线面、面面垂直的判定与性质

第5课时 直线、平面垂直的判定与性质1.直线与平面垂直(1)定义:如果直线l 与平面α内的任意一条直线都垂直,则直线l 与平面α垂直. (2)判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直. (3)性质定理:垂直于同一个平面的两条直线平行. 2.二面角的有关概念(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.(2)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.3.平面与平面垂直(1)定义:如果两个平面所成的二面角是直二面角,就说这两个平面互相垂直. (2)判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.(3)性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.4.直线和平面所成的角(1)平面的一条斜线和它在平面上的射影所成的锐角叫做这条直线和这个平面所成的角. (2)当直线与平面垂直和平行(或直线在平面内)时,规定直线和平面所成的角分别为90°和0°.1.(人教A 版教材习题改编)给出下列四个命题:①垂直于同一平面的两条直线相互平行;②垂直于同一平面的两个平面相互平行;③若一个平面内有无数条直线与另一个平面都平行,那么这两个平面相互平行;④若一条直线垂直于一个平面内的任一直线,那么这条直线垂直于这个平面.其中真命题的个数是()A.1B.2C.3D.4【解析】由线面垂直的性质定理知①正确;由线面垂直的定义知④正确,故选B.【答案】B2.已知直线a,b和平面α,且a⊥b,a⊥α,则b与α的位置关系为()A.b⊂αB.b∥αC.b⊂α或b∥αD.b与α相交【解析】由a⊥b,a⊥α知b⊂α或b∥α,但直线b不与α相交.【答案】C3.边长为a的正方形ABCD沿对角线BD折成直二面角,则AC的长为()A.2aB.22a C.32a D.a【解析】如图所示:取BD的中点O连接A′O,CO,则∠A′OC是二面角A′—BD—C的平面角.即∠A′OC=90°,又A′O=CO=22a,∴A′C=a22+a22=a,即折叠后AC的长(A′C)为a.【答案】D4.下列命题中错误..的是()A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β【解析】A显然正确,根据面面垂直的判定,B正确.对于命题C,设α∩γ=m,β∩γ=n,在平面γ内取一点P不在l上,过P作直线a,b,使a⊥m,b⊥n.∵γ⊥α,a⊥m,则a⊥α,∴a⊥l,同理有b⊥l.又a∩b=P,a⊂γ,b⊂γ,∴l ⊥γ.故命题C正确.对于命题D,设α∩β=l,则l⊂α,且l⊂β.故在α内存在直线不垂直于平面β,即命题D 错误. 【答案】 D5.(2012·浙江高考)设l 是直线,α,β是两个不同的平面( ) A .若l ∥α,l ∥β,则α∥β B .若l ∥α,l ⊥β,则α⊥β C .若α⊥β,l ⊥α,则l ⊥β D .若α⊥β,l ∥α,则l ⊥β【解析】 设α∩β=a ,若直线l ∥a ,且l ⊄α,l ⊄β,则l ∥α,l ∥β,因此α不一定平行于β,故A 错误;由于l ∥α,故在α内存在直线l ′∥l ,又因为l ⊥β,所以l ′⊥β,故α⊥β,所以B 正确;若α⊥β,在β内作交线的垂线l ,则l ⊥α,此时l 在平面β内,因此C 错误;已知α⊥β,若α∩β=a ,l ∥a ,且l 不在平面α,β内,则l ∥α且l ∥β,因此D 错误.【答案】 B图7-5-1(2012·广东高考)如图7-5-1所示,在四棱锥P -ABCD 中,AB ⊥平面P AD ,AB ∥CD ,PD =AD ,E 是PB 的中点,F 是DC 上的点且DF =12AB ,PH 为△P AD 中AD 边上的高.(1)证明:PH ⊥平面ABCD ;(2)若PH =1,AD =2,FC =1,求三棱锥E -BCF 的体积; (3)证明:EF ⊥平面P AB .【思路点拨】 (1)证PH ⊥AB ,PH ⊥AD .(2)连接BH ,取BH 的中点G ,证明EG ⊥平面ABCD ,且EG =12PH .(3)取P A 的中点M ,连接MD ,ME ,证明MD ⊥平面P AB ,MD ∥EF . 【尝试解答】 (1)因为AB ⊥平面P AD ,PH ⊂平面P AD , 所以PH ⊥AB .因为PH 为△P AD 中AD 边上的高,所以PH ⊥AD .因为PH ⊄平面ABCD ,AB ∩AD =A ,AB ,AD ⊂平面ABCD ,所以PH ⊥平面ABCD .(2)如图,连接BH ,取BH 的中点G ,连接EG . 因为E 是PB 的中点, 所以EG ∥PH , 且EG =12PH =12.因为PH ⊥平面ABCD , 所以EG ⊥平面ABCD .因为AB ⊥平面P AD ,AD ⊂平面P AD ,所以AB ⊥AD ,所以底面ABCD 为直角梯形, 所以V E -BCF =13S △BCF ·EG =13·12·FC ·AD ·EG =212.(3)取P A 中点M ,连接MD ,ME .因为E 是PB 的中点,所以ME 綊12AB .又因为DF 綊12AB ,所以ME 綊DF ,所以四边形MEFD 是平行四边形,所以EF ∥MD .因为PD =AD ,所以MD ⊥P A . 因为AB ⊥平面P AD ,所以MD ⊥AB .因为P A ∩AB =A ,所以MD ⊥平面P AB ,所以EF ⊥平面P AB .,1.证明直线和平面垂直的常用方法有:(1)判定定理;(2)垂直于平面的传递性(a ∥b ,a ⊥α⇒b ⊥α);(3)面面平行的性质(a ⊥α,α∥β⇒a ⊥β).(4)面面垂直的性质. 2.证明线面垂直的核心是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.3.线面垂直的性质,常用来证明线线垂直.图7-5-2(2013·大连模拟)如图7-5-2,四边形ABCD 为正方形,QA ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .(1)证明:PQ ⊥平面DCQ ;(2)求棱锥Q —ABCD 的体积与棱锥P —DCQ 的体积的比值. 【解】 (1)证明 由条件知四边形PDAQ 为直角梯形. 因为QA ⊥平面ABCD ,所以QA ⊥DC ,又四边形ABCD 为正方形,DC ⊥AD ,又QA ∩AD =A , 所以DC ⊥平面PDAQ ,可得PQ ⊥DC . 在直角梯形PDAQ 中可得DQ =PQ =22PD ,则PQ ⊥QD . 又DQ ∩DC =D ,所以PQ ⊥平面DCQ . (2)设AB =a .由题设知AQ 为棱锥Q —ABCD 的高, 所以棱锥Q —ABCD 的体积V 1=13a 3.由(1)知PQ 为棱锥P —DCQ 的高, 而PQ =2a ,△DCQ 的面积为22a 2, 所以棱锥P —DCQ 的体积V 2=13a 3.故棱锥Q —ABCD 的体积与棱锥P —DCQ 的体积的比值为1.图7-5-3(2012·课标全国卷)如图7-5-3,在三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB =90°,AC =BC =12AA 1,D 是棱AA 1的中点.(1)证明:平面BDC 1⊥平面BDC ;(2)平面BDC 1分此棱柱为两部分,求这两部分体积的比. 【思路点拨】 (1)证明DC 1⊥平面BDC .(2)先求四棱锥B —DACC 1的体积,再求三棱柱ABC —A 1B 1C 1的体积.【尝试解答】 (1)由题设知BC ⊥CC 1,BC ⊥AC ,CC 1∩AC =C ,所以BC ⊥平面ACC 1A 1. 又DC 1⊂平面ACC 1A 1,所以DC 1⊥BC .由题设知∠A 1DC 1=∠ADC =45°,所以∠CDC 1=90°,即DC 1⊥DC . 又DC ∩BC =C ,所以DC 1⊥平面BDC . 又DC 1⊂平面BDC 1,故平面BDC 1⊥平面BDC . (2)设棱锥B -DACC 1的体积为V 1,AC =1.由题意得 V 1=13×1+22×1×1=12.又三棱柱ABC -A 1B 1C 1的体积V =1,所以(V -V 1)∶V 1=1∶1. 故平面BDC 1分此棱柱所得两部分体积的比为1∶1.,1.解答本题(1)的关键是通过证明BC ⊥平面ACC 1A 1来证明DC 1⊥BC .2.证明面面垂直常用面面垂直的判定定理或定义法.(1)利用判定定理证明面面垂直实质是证明线面垂直,与其中一个平面垂直的直线的选取至关重要,要根据条件的直观图准确选取.(2)利用定义证明面面垂直实质是证明线线垂直,即证明两平面形成的二面角是直角.图7-5-4(2013·无锡模拟)如图7-5-4所示,在四棱锥P —ABCD 中,平面P AD ⊥平面ABCD ,AB =AD ,∠BAD =60°,E ,F 分别是AP ,AD 的中点.求证:(1)直线EF ∥平面PCD ; (2)平面BEF ⊥平面P AD .【证明】 (1)如图,在△P AD 中,因为E ,F 分别为AP ,AD 的中点,所以EF ∥PD . 又因为EF ⊄平面PCD ,PD ⊂平面PCD ,所以直线EF∥平面PCD.(2)连接BD.因为AB=AD,∠BAD=60°,所以△ABD为正三角形.因为F是AD的中点,所以BF⊥AD.因为平面P AD⊥平面ABCD,BF⊂平面ABCD,平面P AD∩平面ABCD=AD,所以BF⊥平面P AD.又因为BF⊂平面BEF.所以平面BEF⊥平面P AD.图7-5-5(2013·哈尔滨模拟)如图7-5-5所示,四棱锥P—ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(1)证明:P A⊥BD;(2)设PD=AD=1,求棱锥D—PBC的高.【思路点拨】(1)证明BD⊥平面P AD.(2)作DE⊥PB,证明DE⊥平面PBC,在△PDB中计算DE的长.【尝试解答】(1)因为∠DAB=60°,AB=2AD,由余弦定理,BD=3AD,从而AB2=AD2+BD2,故AD⊥BD,又PD⊥底面ABCD,可得BD⊥PD,所以BD⊥平面P AD,故P A⊥BD.(2)如图,作DE⊥PB,垂足为E.已知PD⊥底面ABCD,则PD⊥BC.由(1)知BD⊥AD,又BC∥AD,∴BC⊥BD.故BC⊥平面PBD,BC⊥DE.则DE⊥平面PBC.∵AD=1,AB=2,∠DAB=60°,∴BD= 3.又PD=1,∴PB=2.根据DE·PB=PD·BD,得DE=3 2,即棱锥D—PBC的高为3 2.,1.解答本题的关键是通过计算证明AD⊥BD,这也是解题中容易忽视的方法.2.面面垂直的性质是用来推证线面垂直的重要依据,其核心是其中一个面内的直线与交线垂直.在其中一个面内作交线的垂线,这是常作的辅助线.3.空间的直线与直线、直线与平面、平面与平面的垂直或平行问题常常互相转化,将空间问题化归为平面问题是处理立体几何问题的重要思想.图7-5-6如图7-5-6所示,平行四边形ABCD中,∠DAB=60°,AB=2,AD=4,将△CBD沿BD折起到△EBD的位置,使平面EDB⊥平面ABD.(1)求证:AB⊥DE;(2)求三棱锥E—ABD的侧面积.【解】(1)证明在△ABD中,∵AB=2,AD=4,∠DAB=60°,∴BD=AB2+AD2-2AB·AD cos∠DAB=23,∴AB⊥BD.又∵平面EBD⊥平面ABD,平面EBD∩平面ABD=BD,AB⊂平面ABD,∴AB⊥平面EBD,∵DE⊂平面EBD,∴AB⊥DE.(2)由(1)知AB⊥BD,CD∥AB,∴CD⊥BD,从而DE⊥BD.在Rt△DBE中,∵DB=23,DE=DC=AB=2,∴S△DBE=12DB·DE=2 3.又∵AB⊥平面EBD,BE⊂平面EBD,∴AB⊥BE.∵BE=BC=AD=4,∴S△ABE=12AB·BE=4.∵DE⊥BD,平面EBD⊥平面ABD,∴ED⊥平面ABD,又AD⊂平面ABD,∴ED⊥AD,∴S△ADE=12AD·DE=4.综上,三棱锥E—ABD的侧面积S=8+2 3.(2013·广州模拟)如图7-5-7,在锥体P—ABCD中,ABCD是边长为1的菱形,且∠DAB=60°,P A=PD=2,PB=2,E,F分别是BC,PC的中点.图7-5-7(1)证明:AD⊥平面DEF;(2)求二面角P—AD—B的余弦值.【思路点拨】(1)取AD的中点G,则平面PGB∥平面DEF,只需证AD⊥平面PGB 即可.(2)作出二面角的平面角∠PGB,在△PGB中求解.【尝试解答】(1)取AD中点G,连接PG,BG.∵四边形ABCD为菱形,且E,G分别为BC,AD中点,则BG綊DE.又F为PC中点,则EF∥PB,则平面DEF∥平面GBP.∵G是AD中点且P A=PD,∴PG ⊥AD .在△ABG 中,AG =12,AB =1,且∠DAB =60°,由余弦定理得BG =32,AB 2=AG 2+BG 2,则AG ⊥BG . ∵PG ∩BG =G ,∴AD ⊥平面PGB ,即AD ⊥平面DEF . (2)由(1)知二面角P —AD —B 的平面角为∠PGB . 在Rt △PGA 中,PG =P A 2-AG 2=72. 在△PGB 中,BG =32,PB =2,由余弦定理知,cos ∠PGB =PG 2+BG 2-PB 22PG ·BG =74+34-42×72×32=-217.,1.第(1)问关键是利用平面PGB ∥平面DEF ,若AD ⊥平面PGB ,则一定有AD ⊥平面DEF .2.求线面角、二面角的常用方法.(1)线面角的求法:找出斜线在平面上的射影,关键是作垂线,找垂足,要把线面角转化到一个三角形中求解.(2)二面角的大小求法:二面角的大小用它的平面角来度量.平面角的作法常见的有:①定义法;②垂面法.注意利用等腰、等边三角形的性质.图7-5-8(2012·湖南高考)如图7-5-8所示,在四棱锥P -ABCD 中,PA⊥平面ABCD ,底面ABCD 是等腰梯形,AD ∥BC ,AC ⊥BD .(1)证明:BD ⊥PC ;(2)若AD =4,BC =2,直线PD 与平面P AC 所成的角为30°,求四棱锥P -ABCD 的体积.【解】 (1)证明 因为P A ⊥平面ABCD ,BD ⊂平面ABCD ,所以P A ⊥BD .又AC ⊥BD ,P A ∩AC =A ,所以BD ⊥平面P AC .而PC ⊂平面P AC ,所以BD ⊥PC .(2)如图所示,设AC 和BD 相交于点O ,连接PO ,由(1)知,BD ⊥平面P AC ,所以∠DPO 是直线PD 和平面P AC 所成的角.从而∠DPO =30°.由BD ⊥平面P AC ,PO ⊂平面P AC 知,BD ⊥PO .在Rt △POD 中,由∠DPO =30°得PD =2OD .因为四边形ABCD 为等腰梯形,AC ⊥BD ,所以△AOD ,△BOC 均为等腰直角三角形.从而梯形ABCD 的高为12AD +12BC =12×(4+2)=3,于是梯形ABCD 的面积S =12×(4+2)×3=9. 在等腰直角三角形AOD 中,OD =22AD =22, 所以PD =2OD =42,P A =PD 2-AD 2=4.故四棱锥P -ABCD 的体积为V =13×S ×P A =13×9×4=12.一种关系 垂直问题的转化关系三类证法1.证明线线垂直的方法(1)定义:两条直线所成的角为90°;(2)平面几何中证明线线垂直的方法;(3)线面垂直的性质:a ⊥α,b ⊂α⇒a ⊥b ;(4)线面垂直的性质:a ⊥α,b ∥α⇒a ⊥b .2.证明线面垂直的方法(1)线面垂直的定义:a 与α内任何直线都垂直⇒a ⊥α;(2)判定定理1:⎭⎪⎬⎪⎫m 、n ⊂α,m ∩n =A l ⊥m ,l ⊥n ⇒l ⊥α; (3)判定定理2:a ∥b ,a ⊥α⇒b ⊥α;(4)面面平行的性质:α∥β,a ⊥α⇒a ⊥β;(5)面面垂直的性质:α⊥β,α∩β=l ,a ⊂α,a ⊥l ⇒a ⊥β.3.证明面面垂直的方法(1)利用定义:两个平面相交,所成的二面角是直二面角;(2)判定定理:a ⊂α,a ⊥β⇒α⊥β.通过近两年的高考试题看,线线、线面、面面垂直的判定与性质的应用是考查的重点和热点,主要考查空间想象能力和推理论证能力,以及转化思想的应用.题型全面,但主要以解答题的形式考查,规范解答至关重要.规范解答之十一 立体几何中探索性问题的求解策略(14分)(2012·北京高考)如图7-5-9(1),在Rt △ABC 中,∠C =90°,D ,E 分别为AC ,AB 的中点,点F 为线段CD 上的一点,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1F ⊥CD ,如图7-5-9(2).图7-5-9(1)求证:DE ∥平面A 1CB .(2)求证:A 1F ⊥BE .(3)线段A 1B 上是否存在点Q ,使A 1C ⊥平面DEQ ?说明理由.【规范解答】 (1)因为D ,E 分别为AC ,AB的中点,所以DE∥BC.2分又因为DE⊄平面A1CB,所以DE∥平面A1CB.4分(2)由已知得AC⊥BC且DE∥BC,所以DE⊥AC.所以DE⊥A1D,DE⊥CD.所以DE⊥平面A1DC.而A1F⊂平面A1DC,6分所以DE⊥A1F.又因为A1F⊥CD,CD∩DE=D,所以A1F⊥平面BCDE,又BE⊂平面BCDE,所以A1F⊥BE.9分(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,则PQ∥BC.又因为DE∥BC,所以DE∥PQ.所以平面DEQ即为平面DEP.由(2)知,DE⊥平面A1DC,所以DE⊥A1C.又因为P是等腰三角形DA1C底边A1C的中点,所以A1C⊥DP.又DP∩DE=D,所以A1C⊥平面DEP.12分从而A1C⊥平面DEQ.故线段A1B上存在点Q,使得A1C⊥平面DEQ.14分【解题程序】第一步:根据三角形中位线证明DE∥BC.从而证明DE∥平面A1CB;第二步:利用线面垂直的判定定理证明DE⊥平面A1DC;第三步:通过证明A1F⊥平面BCDE来证明A1F⊥BE;第四步:分别取A1C,A1B的中点P,Q,证明P、Q、D、E四点共面;第五步:通过证明PD⊥A1C来证明A1C⊥平面DEQ.易错提示:(1)想不到或不会利用DE⊥A1D,导致无法求解.(2)对于是否存在型问题没有解题思路,从而无法作出辅助线,导致思路受阻.防范措施:(1)对于平面图形的折叠问题,一定要注意折叠前后的不变量与可变量,要有意识地注意折叠前后不变的垂直性与平行性.(2)对于是否存在型问题,首先要分析条件,看结论需要的条件已有哪些,分析欲使结论成立,还需要什么条件,结合所求,不难作出辅助线.1.(2013·青岛质检)设α、β为两个不同的平面,m、n为两条不同的直线,且m⊂α,n⊂β,有两个命题,p:若m∥n,则α∥β;q:若m⊥β,则α⊥β.那么()A.“p或q”是假命题B.“p且q”是真命题C.“非p或q”是假命题D.“非p且q”是真命题【解析】依题意得,命题p是假命题,命题q为真命题,所以“非p且q”是真命题.【答案】D图7-5-102.(2012·福建高考)如图7-5-10,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M为棱DD1上的一点.(1)求三棱锥A-MCC1的体积;(2)当A1M+MC取得最小值时,求证:B1M⊥平面MAC.【解】 (1)由长方体ABCD -A 1B 1C 1D 1知, AD ⊥平面CDD 1C 1,∴点A 到平面CDD 1C 1的距离等于AD =1.又S △MCC 1=12CC 1·CD =12×2×1=1, ∴VA -MCC 1=13AD ·S △MCC 1=13.(2)证明 将侧面CDD 1C 1绕DD 1逆时针转90°展开,与侧面ADD 1A 1共面(如图), 当A 1,M ,C ′共线时,A 1M +MC 取得最小值. 由AD =CD =1,AA 1=2,得M 为DD 1的中点.连接A 1M 、B 1M ,在△C 1MC 中,MC 1=2,MC =2,CC 1=2,∴CC 21=MC 21+MC 2,得∠CMC 1=90°,即CM ⊥MC 1.又由长方体ABCD -A 1B 1C 1D 1知,B 1C 1⊥平面CDD 1C 1.∴B 1C 1⊥CM .又B 1C 1∩C 1M =C 1,∴CM ⊥平面B 1C 1M ,得CM ⊥B 1M .同理可证,B 1M ⊥AM .又AM ∩MC =M ,∴B 1M ⊥平面MAC .。

高中数学面面垂直判定教案

高中数学面面垂直判定教案

高中数学面面垂直判定教案
教学目标:
1. 了解什么是垂直面。

2. 学会判断两个平面是否垂直。

3. 掌握垂直平面的相关性质和定理。

教学准备:
1. 教材:高中数学教科书
2. 教具:黑板、彩色粉笔、几何工具箱、投影仪
3. 辅助教学资料:包含平面垂直判定例题的练习册
教学步骤:
一、导入
1. 显示一个三维图形,引导学生思考其中的平面之间可能存在的关系。

2. 引导学生提出平面的垂直关系,并与垂直直线进行对比。

二、概念讲解
1. 解释垂直平面的定义。

2. 理论性讲解平面垂直的判定方法。

三、例题演练
1. 利用黑板进行示范,解答几个基础的垂直平面判定题目。

2. 让学生自行尝试几道练习题,并及时纠正。

四、深化延伸
1. 引导学生思考:如何用平面方程去判断两个平面是否垂直?
2. 讲解垂直平面的性质及相关定理。

五、课堂小结
1. 复习本节课所学的知识点,并强调重点。

2. 鼓励学生在课后多进行练习,巩固所学内容。

六、作业布置
1. 布置一定量的平面垂直判定练习题作为课后作业。

2. 提醒学生及时复习本节课所学内容。

教学反思:
1. 观察学生的学习情况,及时调整教学步骤和讲解方式。

2. 鼓励学生多提出问题,促进思维的拓展和深入。

3. 关注学生的作业情况,及时纠正错误,巩固学习成果。

高三数学总复习 两个平面垂直的判定和性质(二)教案

高三数学总复习 两个平面垂直的判定和性质(二)教案

芯衣州星海市涌泉学校师范大学附属中学高三数学总复习教案:两个平面垂直的断定和性质(二)一、素质教育目的(一)知识教学点1.两个平面垂直的性质定理.2.异面直线上两点间的间隔公式.(二)才能训练点1.弄清反证法与同一法之间的关系,并会应用同一法证题,进一步培养学生的逻辑思维才能.2.掌握两个平面垂直的性质定理,理解面面垂直问题可能化为线面垂直的问题.3.异面直线上任意两点间的间隔公式不仅可用于求其值,还可以证明两条异面直线的间隔是异面直线上两点的间隔中最小的.另外,还可解决分别在二面角的面内两点的间隔问题.二、教学重点、难点、疑点及解决方法1.教学重点:掌握两个平面垂直的性质;会运用异面直线上两点间的间隔公式.2.教学难点:异面直线上两点间间隔公式的应用.3.教学疑点:(1)弄清反证法与同一法的联络与区别.(2)正确理解、应用异面直线上两点间的间隔公式:EF=三、课时安排本课题安排2课时.本节课为第二课时,主要讲解两个平面垂直的性质及异面直线上两点间的间隔公式.四、教与学的过程设计(一)复习两个平面垂直的定义,断定师:什么是两个平面互相垂直?生:两个平面相交,假设所成的二面角是直二面角,就说这两个平面互相垂直.师:如何断定两个平面互相垂直?生:第一种方法根据定义,断定两个平面所成的二面角是直二面角;第二种方法是根据断定定理,断定其中一个平面内有一条直线垂直于另一个平面.(二)两个平面垂直的性质师:今天我们接着研究两个平面垂直的性质.两个平面垂直的性质定理:假设两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.:平面α⊥β,α∩β=CD,ABα且AB⊥CD于B.求证:AB⊥β.证明:在平面β内引直线BE⊥CD,那么∠ABE是二面角α-CD-β的平面角.∵α⊥β,∴AB⊥BE.又∵AB⊥CD,∴AB⊥β.师:从性质定理可以得出,把面面垂直的问题转化为线面垂直的问题.例1假设两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面的直线,在第一个平面内.:α⊥β,P∈α,P∈a,a⊥β.求证:aα.师提示:要证明aα,一般用反证法,即否认结论→推出矛盾→肯定结论.下面请同学们写出它的证明过程.其中c为α与β的交线.∵α⊥β,∴b⊥β.又∵P∈α,P∈a,a⊥β,这与“过一点P有且只有一条直线与平面垂直〞矛盾.∴aα.师:如今我们来看课本P.44的证明,这种方法叫同一法.什么是同一法呢?(幻灯显示)一个命题,假设它的题设和结论所指的事物都是唯一的,那么原命题和它的逆命题中,只要有一个成立,另一个就一定成立,这个道理叫做同一法那么.在符合同一法那么的前提下,代替证明原命题而证明它的逆命题成立的一种方法叫做同一法.同一法的一般步骤是什么?(幻灯显示)1.不从条件入手,而另作图形使它具有求证的结论中所提的特性;2.证明所作的图形的特性,与条件符合;3.因为条件和求证的结论所指的事物都是唯一的,从而推出所作的图形与条件要求的是一个东西,由此断定原命题成立.证明(同一法):设α∩β=c,过点P在平面α内作直线b⊥c,根据上面的定理有b⊥β.因为经过一点只能有一条直线与平面β垂直,所以直线a应与直线b重合.即aα.师:比较反证法与同一法,我们可以知道:凡可用同一法证明的命题也可用反证法来证;反证法可适用于各种命题,同一法只适用于符合同一法那么的命题.另外,例1的结论也可作为两个平面垂直的另一个性质,可直接应用.下面请同学们一齐完成例2.(三)异面直线上两点间的间隔例2两条异面直线a、b所成的角为θ,它们的公垂线段AA'的长度为d.在直线a、b上分别取点E、F,设,A'E=m,AF=n,求EF.解:设经过b与a平行的平面为α,经过a和AA'的平面为β,α∩β=c,那么c∥a,因此b、c 所成的角等于θ,且AA'⊥C.又∵AA'⊥b,∴AA'⊥α.根据两个平面垂直的断定定理,β⊥α,在平面β内作EG⊥C,那么EG=AA'.并且根据两个平面垂直的性质定理,EG⊥α.连结FG,那么EG⊥FG.在Rt△FEG中.EF2=EG2+FG2∵AG=m,∴在△AFG中.FG2=m2+n2-2mncosθ.又∵EG2=d2∴EF2=dw+m2+n2-2mncosθ.假设点F(或者者E)在点A(或者者A')的另一侧,那么EF2=d2+m2+n2+2mncosθ.师:例2不仅求出两条异面直线上任意两点间的间隔公式,还解决了下面的三个问题:(1)证明了两条异面直线公垂线的存在性.(2)证明两条异面直线的间隔是异面直线上两点的间隔最小的.∵AA'=EG,且AA',EG是平面α的垂线,而EF是斜线,∴AA'<EF.如在实际中,两条穿插的高压电线假设放电时,火花正是通过它们的最短间隔.(3)也可以解决分别在二面角的面内两点的间隔问题,请看下面练习.(四)练习在60°二面角的枝上,有两个点A、B,AC、BD分别是在这个二面角的两个面内垂直于AB的线段.:AB=4cm,AC=6cm,BD=8cm,利用异面直线上两点间隔公式求CD.(P.45中练习3)∴AC与BD是异面直线.∵AB⊥AC交于点A,AB⊥BD交于点B,∴AB是AC、BD的公垂线,AC、BC所成角是60°.AB=4cm,AC=6cm,BD=8cm.师点评:根据二面角的平面角来求异面直线上两点间的间隔时,应用异面直线上两点间的间隔公式一定要注意cosθ前正负号的选择(当θ≤90°时取“-〞号).(五)总结本节课我们学习了两个平面垂直的性质及异面直线上两点间间隔的求法.正确理解、掌握异面直线上两点间的间隔公式及其应用是本节课学习的关键.五、作业P.46中习题六9、10(2)、11、12.。

高三数学 第61课时 线面垂直、面面垂直教案

高三数学 第61课时 线面垂直、面面垂直教案

用心 爱心 专心439 课题:线面垂直、面面垂直教学目标:掌握线面垂直、面面垂直的证明方法,并能熟练解决相应问题. (一) 主要知识及主要方法:1.线面垂直的证明:()1判定定理;()2如果两条平行线中一条垂直于一个平面,那么另一条也垂直于这个平面;()3一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面;()4两个平面垂直,在一个平面内垂直于它们交线的直线垂直于另一个平面.()5如果两个相交平面都与第三个平面垂直,那么它们的交线与第三个平面垂直.()6向量法:PQ α⊥⇔PQ AB PQ AC ⎧⊥⎪⎨⊥⎪⎩ ⇔0PQ AB PQ AC ⎧=⎪⎨=⎪⎩2.面面垂直的证明:()1计算二面角的平面角为90︒ ;()2如果一个平面经过另一个平面的一条垂线,那么这两个平面垂直;(二)典例分析:问题1.(07福建)如图,正三棱柱111ABC A B C - 的所有棱长都为2,D 为1CC 中点.()1求证:1AB ⊥平面1A BD ;()2略; ()3略.(要求可用多种方法,至少要用向量法证明)问题2.(07湖北)如图,在三棱锥V ABC -中,VC ⊥底面ABC , AC BC ⊥,D 是AB 的中点,且AC BC a ==, VDC θ∠=π02θ⎛⎫<< ⎪⎝⎭.()1求证:平面VAB ⊥VCD ;()2略.αABCPQVCBDAAB C D1A1C 1B用心 爱心专心440问题3. (07安徽)如图,在六面体1111ABCD A B C D -中,四边形 ABCD 是边长为2的正方形,四边形1111A B C D 是边长为1的正方形,1DD ⊥平面1111A B C D ,1DD ⊥平面ABCD ,12DD =.()1求证:11A C 与AC 共面,11B D 与BD 共面. ()2求证:平面11A ACC ⊥平面11B BDD ;()3略.(四)课后作业:1.如图所示,正方形ABCD 中,E 、F 分别是AB 、AD的中点,将此正方形沿EF 折成直二面角后,异面直线AF 与BE 所成角的余弦值为 .2.(07届高三湖北八校联考)如图,在四棱锥E ABCD -中,AB ⊥平面BCE , CD ⊥平面BCE ,22AB BC CE CD ====,120BCE ∠=︒。

《空间中垂直关系的证明——面面垂直》教学设计

《空间中垂直关系的证明——面面垂直》教学设计
求如下:
(1) 能以相关的定义、公理和定理为出发点ꎬ认识和
理解空间中线面垂直、面面垂直的判定与性质定理.
(2) 会运用线面垂直、面面垂直的判定及性质定理证
明一些简单空间图形的垂直关系问题.
(3) 灵活处理好“ 线线、线面、面面” 三种垂直关系的
相互转化ꎬ为后续计算相关的角度问题与距离问题奠定
逻辑推理基础ꎬ积累逻辑推理经验.
ACC1 A1 ⊥平面 A1 BD.
面垂直.
关键问题:线面垂直.
问题 6 还有没有其它的
证明方法?
证明:记直线 AC 与 BD 的
交点为点 O. 连接 A1 O
∵ 平 面 ABCD 为 正 方 形ꎬ
∴ AO⊥BD
又 ∵ A1 D = A1 Bꎬ ∴ BD ⊥
图5
A1 Oꎬ且 A1 O∩AO = O
证明 ∵ 平面 AC 为正方形ꎬ∴ AC⊥BD
又∵ AA1 ⊥平面 ABCDꎬ∴ AA1 ⊥BD
∴ BD⊥平面 AA1 C1 Cꎬ且 BD⫋平面 BB1 D1 D
∴ 平面 AA1 C1 C⊥平面 BB1 D1 D
问题 5 问题 1 与问题 4 的证明过程有什么区别与联
系? (变与不变)总结证明面面垂直的关键问题是什么?
成立. 其中的垂直关系并没有变.
设计说明 研究面面垂直模型ꎬ以及面面垂直模型
的关键问题和本质. ( 线面垂直和线线垂直) 以及如何在
面面垂直模型中找准( 线面垂直) .
板块三:拓模与升华
问题 9: 如图 1ꎬ要使平面 PAD⊥平面 ABCDꎬ需要添
加什么条件?
图 3 图 4
收稿日期:2021 - 01 - 25
作者简介:邓丽(1981. 10 - ) ꎬ女ꎬ四川省南充人ꎬ硕士ꎬ中学高级教师ꎬ从事中学数学教学研究.

高三一轮复习教案31直线、平面垂直的判定与性质教师版文档

高三一轮复习教案31直线、平面垂直的判定与性质教师版文档

优质写作材料,仅供学习参考直线、平面垂直的判定与性质2014高考会这样考 1.考查垂直关系的命题的判定;2.考查线线、线面、面面垂直关系的判定和性质;3.考查平行和垂直的综合问题;4.考查空间想象能力,逻辑思维能力和转化思想.复习备考要这样做 1.熟记、理解线面垂直关系的判定与性质定理;2.解题中规范使用数学语言,严格证题过程;3.重视转化思想的应用,解题中要以寻找线线垂直作为突破.1.直线与平面垂直(1)判定直线和平面垂直的方法①定义法.②利用判定定理:一条直线和一个平面内的两条相交直线都垂直,则该直线和此平面垂直.③推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条直线也垂直这个平面.(2)直线和平面垂直的性质①直线垂直于平面,则垂直于平面内任意直线.②垂直于同一个平面的两条直线平行.③垂直于同一条直线的两平面平行.2.斜线和平面所成的角斜线和它在平面内的射影所成的锐角,叫斜线和平面所成的角.3.平面与平面垂直(1)平面与平面垂直的判定方法①定义法.②利用判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.(2)平面与平面垂直的性质两平面垂直,则一个平面内垂直于交线的直线垂直于另一个平面.4.二面角的有关概念(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.(2)二面角的平面角:二面角棱上的一点,在两个半平面内分别作与棱垂直的射线,则两射线所成的角叫做二面角的平面角.[难点正本疑点清源]1.两个平面垂直的性质定理两个平面垂直的性质定理,即如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面是作点到平面距离的依据,要过平面外一点P作平面的垂线,通常是先作(找)一个过点P并且和α垂直的平面β,设β∩α=l,在β内作直线a⊥l,则a⊥α. 2.两平面垂直的判定(1)两个平面所成的二面角是直角;(2)一个平面经过另一平面的垂线.1.一平面垂直于另一平面的一条平行线,则这两个平面的位置关系是__________.答案垂直解析由线面平行的性质定理知,该面必有一直线与已知直线平行,再根据“两平行线中一条垂直于一平面,另一条也垂直于该平面”得出结论.2. △ABC中,∠ABC=90°,P A⊥平面ABC,则图中直角三角形的个数是________.答案 43.α、β是两个不同的平面,m、n是平面α及β之外的两条不同的直线,给出四个论断:①m⊥n;②α⊥β;③n⊥β;④m⊥α,以其中三个论断作为条件,剩余的一个论断作为结论,写出你认为正确的一个命题____________________________.答案可填①③④⇒②与②③④⇒①中的一个4.设a,b,c是三条不同的直线,α,β是两个不同的平面,则a⊥b的一个充分条件是() A.a⊥c,b⊥c B.α⊥β,a⊂α,b⊂βC.a⊥α,b∥αD.a⊥α,b⊥α答案 C解析对于选项C,在平面α内作c∥b,因为a⊥α,所以a⊥c,故a⊥b;A,B选项中,直线a,b可能是平行直线,也可能是异面直线;D选项中一定有a∥b. 5.(2011·辽宁)如图,四棱锥S-ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正..确的是()A.AC⊥SBB.AB∥平面SCDC.SA与平面SBD所成的角等于SC与平面SBD所成的角D.AB与SC所成的角等于DC与SA所成的角答案 D解析易证AC⊥平面SBD,因而AC⊥SB,A正确;AB∥DC,DC⊂平面SCD,故AB∥平面SCD,B 正确;由于SA,SC与平面SBD的相对位置一样,因而所成的角相同.题型一直线与平面垂直的判定与性质例1如图所示,在四棱锥P—ABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.思维启迪:第(1)问通过DC⊥平面P AC证明;也可通过AE⊥平面PCD得到结论;第(2)问利用线面垂直的判定定理证明直线PD与平面ABE内的两条相交直线垂直.证明(1)在四棱锥P—ABCD中,∵P A⊥底面ABCD,CD⊂平面ABCD,∴P A⊥CD.∵AC⊥CD,P A∩AC=A,∴CD⊥平面P AC.而AE⊂平面P AC,∴CD⊥AE.(2)由P A=AB=BC,∠ABC=60°,可得AC=P A.∵E是PC的中点,∴AE⊥PC.由(1),知AE⊥CD,且PC∩CD=C,∴AE⊥平面PCD.而PD⊂平面PCD,∴AE⊥PD.∵P A⊥底面ABCD,∴P A⊥AB.又∵AB⊥AD且P A∩AD=A,∴AB⊥平面P AD,而PD⊂平面P AD,∴AB⊥PD.又∵AB∩AE=A,∴PD⊥平面ABE.探究提高破解此类问题的关键在于熟练把握空间垂直关系的判定与性质,注意平面图形中的一些线线垂直关系的灵活利用,这是证明空间垂直关系的基础.由于“线线垂直”、“线面垂直”、“面面垂直”之间可以相互转化,因此整个证明过程围绕着线面垂直这个核心而展开,这是化解空间垂直关系难点的技巧所在.(2012·陕西)(1)如图所示,证明命题“a是平面π内的一条直线,b是π外的一条直线(b不垂直于π),c是直线b在π上的投影,若a⊥b,则a⊥c”为真;(2)写出上述命题的逆命题,并判断其真假(不需证明).(1)证明方法一如图,过直线b上任一点作平面π的垂线n,设直线a,b,c,n的方向向量分别是a,b,c,n,则b,c,n共面.根据平面向量基本定理,存在实数λ,μ使得c=λb+μn,则a·c=a·(λb+μn)=λ(a·b)+μ(a·n).因为a⊥b,所以a·b=0.又因为a⊂π,n⊥π,所以a·n=0.故a·c=0,从而a⊥c.方法二如图,记c∩b=A,P为直线b上异于点A的任意一点,过P作PO⊥π,垂足为O,则O∈c.因为PO⊥π,a⊂π,所以直线PO⊥a.又a⊥b,b⊂平面P AO,PO∩b=P,所以a⊥平面P AO.又c⊂平面P AO,所以a⊥c.(2)解逆命题为a是平面π内的一条直线,b是π外的一条直线(b不垂直于π),c是直线b在π上的投影,若a⊥c,则a⊥b.逆命题为真命题.题型二平面与平面垂直的判定与性质例2(2012·江苏)如图,在直三棱柱ABC-A 1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.思维启迪:(1)证明两个平面垂直,关键是在一个平面内找到另一个平面的一条直线;(2)两个平面垂直的性质是证明的突破点.证明(1)因为ABC-A1B1C1是直三棱柱,所以CC1⊥平面ABC.又AD⊂平面ABC,所以CC1⊥AD.又因为AD⊥DE,CC1,DE⊂平面BCC1B1,CC1∩DE=E,所以AD⊥平面BCC1B1.又AD⊂平面ADE,所以平面ADE⊥平面BCC1B1.(2)因为A1B1=A1C1,F为B1C1的中点,所以A1F⊥B1C1.因为CC1⊥平面A1B1C1,且A1F⊂平面A1B1C1,所以CC1⊥A1F.又因为CC1,B1C1⊂平面BCC1B1,CC1∩B1C1=C1,所以A1F⊥平面BCC1B1.由(1)知AD⊥平面BCC1B1,所以A1F∥AD.又AD⊂平面ADE,A1F⊄平面ADE,所以A1F∥平面ADE.探究提高面面垂直的关键是线面垂直,线面垂直的证明方法主要有判定定理法、平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面)、面面垂直性质定理法,本题就是用的面面垂直性质定理法,这种方法是证明线面垂直、作线面角、二面角的一种核心方法.(2011·江苏)如图,在四棱锥P-ABCD中,平面P AD⊥平面ABCD,AB=AD,∠BAD=60°,E,F分别是AP,AD的中点.求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面P AD.证明(1)如图,在△P AD中,因为E,F分别为AP,AD的中点,所以EF∥PD.又因为EF⊄平面PCD,PD⊂平面PCD,所以直线EF∥平面PCD.(2)连接BD.因为AB=AD,∠BAD=60°,所以△ABD为正三角形.因为F是AD的中点,所以BF⊥AD.因为平面P AD⊥平面ABCD,BF⊂平面ABCD,平面P AD∩平面ABCD=AD,所以BF⊥平面P AD.又因为BF⊂平面BEF,所以平面BEF⊥平面P AD.题型三 线面、面面垂直的综合应用例3 如图所示,在四棱锥P —ABCD 中,平面P AD ⊥平面ABCD ,AB ∥DC ,△P AD 是等边三角形,已知BD =2AD =8,AB =2DC =4 5. (1)设M 是PC 上的一点,求证:平面MBD ⊥平面P AD ; (2)求四棱锥P —ABCD 的体积.思维启迪:(1)因为两平面垂直与M 点位置无关,所以在平面MBD 内一定有一条直线垂直于平面P AD ,考虑证明BD ⊥平面P AD . (2)四棱锥底面为一梯形,高为P 到面ABCD 的距离. (1)证明 在△ABD 中,∵AD =4,BD =8,AB =45, ∴AD 2+BD 2=AB 2.∴AD ⊥BD .又∵面P AD ⊥面ABCD ,面P AD ∩面ABCD =AD , BD ⊂面ABCD ,∴BD ⊥面P AD . 又BD ⊂面BDM , ∴面MBD ⊥面P AD . (2)解 过P 作PO ⊥AD , ∵面P AD ⊥面ABCD , ∴PO ⊥面ABCD ,即PO 为四棱锥P —ABCD 的高. 又△P AD 是边长为4的等边三角形, ∴PO =2 3.在底面四边形ABCD 中,AB ∥DC ,AB =2DC , ∴四边形ABCD 为梯形.在Rt △ADB 中,斜边AB 边上的高为4×845=855,此即为梯形的高. ∴S 四边形ABCD =25+452×855=24. ∴V P —ABCD =13×24×23=16 3.探究提高 当两个平面垂直时,常作的辅助线是在其中一个面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直.如图所示,已知长方体ABCD —A 1B 1C 1D 1的底面ABCD为正方形,E 为线段AD 1的中点,F 为线段BD 1的中点, (1)求证:EF ∥平面ABCD ; (2)设M 为线段C 1C 的中点,当D 1DAD的比值为多少时,DF ⊥平面D 1MB ?并说明理由.(1)证明 ∵E 为线段AD 1的中点,F 为线段BD 1的中点,∴EF ∥AB .∵EF ⊄平面ABCD ,AB ⊂平面ABCD , ∴EF ∥平面ABCD .(2)解 当D 1DAD =2时,DF ⊥平面D 1MB .∵ABCD 是正方形,∴AC ⊥BD . ∵D 1D ⊥平面ABC ,∴D 1D ⊥AC . ∴AC ⊥平面BB 1D 1D ,∴AC ⊥DF .∵F ,M 分别是BD 1,CC 1的中点,∴FM ∥AC .∴DF ⊥FM . ∵D 1D =2AD ,∴D 1D =BD .∴矩形D 1DBB 1为正方形. ∵F 为BD 1的中点,∴DF ⊥BD 1. ∵FM ∩BD 1=F ,∴DF ⊥平面D 1MB . 题型四 线面角、二面角的求法例4 如图,在四棱锥P —ABCD 中,P A ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,P A =AB =BC ,E 是PC 的中点. (1)求PB 和平面P AD 所成的角的大小; (2)证明AE ⊥平面PCD ;(3)求二面角A —PD —C 的正弦值.思维启迪:(1)先找出PB 和平面P AD 所成的角,线面角的定义要能灵活运用;(2)可以利用线面垂直根据二面角的定义作角. (1)解 在四棱锥P —ABCD 中, 因P A ⊥底面ABCD ,AB ⊂平面ABCD , 故P A ⊥AB .又AB ⊥AD ,P A ∩AD =A , 从而AB ⊥平面P AD ,故PB 在平面P AD 内的射影为P A , 从而∠APB 为PB 和平面P AD 所成的角. 在Rt △P AB 中,AB =P A ,故∠APB =45°. 所以PB 和平面P AD 所成的角的大小为45°. (2)证明 在四棱锥P —ABCD 中,因P A ⊥底面ABCD ,CD ⊂平面ABCD , 故CD ⊥P A .由条件CD ⊥AC ,P A ∩AC =A , ∴CD ⊥平面P AC .又AE ⊂平面P AC ,∴AE ⊥CD .由P A =AB =BC ,∠ABC =60°,可得AC =P A . ∵E 是PC 的中点,∴AE ⊥PC .又PC ∩CD =C ,综上得AE ⊥平面PCD .(3)解 过点E 作EM ⊥PD ,垂足为M ,连接AM ,如图所示. 由(2)知,AE ⊥平面PCD ,AM 在平面PCD 内的射影是EM , 则AM ⊥PD .因此∠AME 是二面角A —PD —C 的平面角. 由已知,可得∠CAD =30°. 设AC =a ,可得P A =a ,AD =233a ,PD =213a ,AE =22a .在Rt △ADP 中,∵AM ⊥PD ,∴AM ·PD =P A ·AD , 则AM =P A ·AD PD =a ·233a 213a =277a .在Rt △AEM 中,sin ∠AME =AE AM =144.所以二面角A —PD —C 的正弦值为144. 探究提高 (1)求直线与平面所成的角的一般步骤:①找直线与平面所成的角,即通过找直线在平面上的射影来完成; ②计算,要把直线与平面所成的角转化到一个三角形中求解.(2)作二面角的平面角可以通过垂线法进行,在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角.正方体ABCD -A 1B 1C 1D 1中,BB 1与平面ACD 1所成角的余弦值为 ( )A.23B.33C.23D.63答案 D解析 如图,连接BD 交AC 于O ,连接D 1O ,由于BB 1∥DD 1,∴DD 1与平面ACD 1所成的角就是BB 1与平面ACD 1所成的角.易知∠DD 1O 即为所求.设正方体的棱长为1, 则DD 1=1,DO =22,D 1O =62, ∴cos ∠DD 1O =DD 1D 1O =26=63.∴BB 1与平面ACD 1所成角的余弦值为63.解答过程要规范典例:(12分)如图所示,M ,N ,K 分别是正方体ABCD —A 1B 1C 1D 1的棱AB ,CD ,C 1D 1的中点. 求证:(1)AN ∥平面A 1MK ; (2)平面A 1B 1C ⊥平面A 1MK .审题视角 (1)要证线面平行,需证线线平行.(2)要证面面垂直, 需证线面垂直,要证线面垂直,需证线线垂直. 规范解答证明 (1)如图所示,连接NK . 在正方体ABCD —A 1B 1C 1D 1中,∵四边形AA 1D 1D ,DD 1C 1C 都为正方形,∴AA 1∥DD 1,AA 1=DD 1,C 1D 1∥CD ,C 1D 1=CD .[2分] ∵N ,K 分别为CD ,C 1D 1的中点, ∴DN ∥D 1K ,DN =D 1K ,∴四边形DD 1KN 为平行四边形.[3分] ∴KN ∥DD 1,KN =DD 1, ∴AA 1∥KN ,AA 1=KN .∴四边形AA 1KN 为平行四边形.∴AN ∥A 1K .[4分] ∵A 1K ⊂平面A 1MK ,AN ⊄平面A 1MK , ∴AN ∥平面A 1MK .[6分](2)如图所示,连接BC 1.在正方体ABCD —A 1B 1C 1D 1中, AB ∥C 1D 1,AB =C 1D 1.∵M ,K 分别为AB ,C 1D 1的中点,∴BM ∥C 1K ,BM =C 1K . ∴四边形BC 1KM 为平行四边形.∴MK ∥BC 1.[8分]在正方体ABCD —A 1B 1C 1D 1中,A 1B 1⊥平面BB 1C 1C , BC 1⊂平面BB 1C 1C ,∴A 1B 1⊥BC 1. ∵MK ∥BC 1,∴A 1B 1⊥MK .∵四边形BB 1C 1C 为正方形,∴BC 1⊥B 1C .[10分]∴MK ⊥B 1C .∵A 1B 1⊂平面A 1B 1C ,B 1C ⊂平面A 1B 1C ,A 1B 1∩B 1C =B 1,∴MK ⊥平面A 1B 1C .又∵MK ⊂平面A 1MK ,∴平面A 1MK ⊥平面A 1B 1C .[12分]温馨提醒 (1)步骤规范是答题得满分的最后保证,包括使用定理的严谨性,书写过程的流畅性.(2)本题证明常犯错误:①定理应用不严谨.如:要证AN ∥平面A 1MK ,必须强调AN ⊄平面A 1MK .②解题过程不完整,缺少关键步骤,如第(1)问中,应先证四边形ANKA 1为平行四边形.第(2)问中,缺少必要的条件,使思维不严谨,过程不流畅.方法与技巧1. 证明线面垂直的方法(1)线面垂直的定义:a 与α内任何直线都垂直⇒a ⊥α; (2)判定定理1:⎭⎪⎬⎪⎫m 、n ⊂α,m ∩n =A l ⊥m ,l ⊥n ⇒l ⊥α; (3)判定定理2:a ∥b ,a ⊥α⇒b ⊥α; (4)面面平行的性质:α∥β,a ⊥α⇒a ⊥β;(5)面面垂直的性质:α⊥β,α∩β=l ,a ⊂α,a ⊥l ⇒a ⊥β. 2. 证明线线垂直的方法(1)定义:两条直线所成的角为90°; (2)平面几何中证明线线垂直的方法; (3)线面垂直的性质:a ⊥α,b ⊂α⇒a ⊥b ; (4)线面垂直的性质:a ⊥α,b ∥α⇒a ⊥b . 3. 证明面面垂直的方法(1)利用定义:两个平面相交,所成的二面角是直二面角; (2)判定定理:a ⊂α,a ⊥β⇒α⊥β. 4. 转化思想:垂直关系的转化在证明两平面垂直时一般先从现有的直线中寻找平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决.失误与防范1.在解决直线与平面垂直的问题过程中,要注意直线与平面垂直定义、判定定理和性质定理的联合交替使用,即注意线线垂直和线面垂直的互相转化.2.面面垂直的性质定理是作辅助线的一个重要依据.我们要作一个平面的一条垂线,通常是先找这个平面的一个垂面,在这个垂面中,作交线的垂线即可.A组专项基础训练(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1.设l,m是两条不同的直线,α是一个平面,则下列命题正确的是() A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥mD.若l∥α,m∥α,则l∥m答案 B解析若l⊥m,m⊂α,则l与α可能平行、相交或l⊂α;若l⊥α,l∥m,则m⊥α;若l∥α,m⊂α,则l与m可能平行或异面;若l∥α,m∥α,则l与m可能平行、相交或异面,故只有B选项正确.2.已知平面α与平面β相交,直线m⊥α,则() A.β内必存在直线与m平行,且存在直线与m垂直B.β内不一定存在直线与m平行,不一定存在直线与m垂直C.β内不一定存在直线与m平行,但必存在直线与m垂直D.β内必存在直线与m平行,不一定存在直线与m垂直答案 C解析如图,在平面β内的直线若与α,β的交线a平行,则有m与之垂直.但却不一定在β内有与m平行的直线,只有当α⊥β时才存在.3.已知m是平面α的一条斜线,点A∉α,l为过点A的一条动直线,那么下列情形可能出现的是()A.l∥m,l⊥αB.l⊥m,l⊥αC.l⊥m,l∥αD.l∥m,l∥α答案 C解析设m在平面α内的射影为n,当l⊥n且与α无公共点时,l⊥m,l∥α.4.正方体ABCD—A′B′C′D′中,E为A′C′的中点,则直线CE垂直于() A.A′C′B.BD C.A′D′D.AA′答案 B解析连接B′D′,∵B′D′⊥A′C′,B′D′⊥CC′,且A′C′∩CC′=C′,∴B′D′⊥平面CC′E.而CE⊂平面CC′E,∴B′D′⊥CE.又∵BD∥B′D′,∴BD⊥CE.二、填空题(每小题5分,共15分)5. 如图,∠BAC=90°,PC⊥平面ABC,则在△ABC,△P AC的边所在的直线中:与PC垂直的直线有______________;与AP垂直的直线有________.答案AB,BC,AC AB解析∵PC⊥平面ABC,∴PC垂直于直线AB,BC,AC;∵AB⊥AC,AB⊥PC,∴AB⊥平面P AC,∴AB⊥PC.与AP垂直的直线是AB.6. 如图,P A⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E、F分别是点A在PB、PC上的正投影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确结论的序号是________.答案①②③解析由题意知P A⊥平面ABC,∴P A⊥BC.又AC⊥BC,P A∩AC=A,∴BC⊥平面P AC.∴BC⊥AF.∵AF⊥PC,BC∩PC=C,∴AF⊥平面PBC,∴AF⊥PB,AF⊥BC.又AE ⊥PB ,AE ∩AF =A ,∴PB ⊥平面AEF . ∴PB ⊥EF .故①②③正确.7. 已知平面α,β和直线m ,给出条件:①m ∥α;②m ⊥α;③m ⊂α;④α∥β.当满足条件________时,有m ⊥β.(填所选条件的序号) 答案 ②④解析 若m ⊥α,α∥β,则m ⊥β. 三、解答题(共22分)8. (10分)如图所示,在斜三棱柱A 1B 1C 1—ABC 中,底面是等腰三角形,A 1B 1=A 1C 1,侧面BB 1C 1C ⊥底面A 1B 1C 1. (1)若D 是BC 的中点,求证:AD ⊥CC 1;(2)过侧面BB 1C 1C 的对角线BC 1的平面交侧棱于M ,若AM =MA 1,求证:截面MBC 1⊥侧面BB 1C 1C .证明 (1)∵AB =AC ,D 是BC 的中点,∴AD ⊥BC . ∵底面ABC ⊥侧面BB 1C 1C , ∴AD ⊥侧面BB 1C 1C ,∴AD ⊥CC 1.(2)如图,延长B 1A 1与BM 的延长线交于点N ,连接C 1N . ∵AM =MA 1,∴MA 1綊12BB 1,∴NA 1=A 1B 1. ∵A 1B 1=A 1C 1, ∴A 1C 1=A 1N =A 1B 1, ∴NC 1⊥C 1B 1.∵底面NB 1C 1⊥侧面BB 1C 1C ,∴C 1N ⊥侧面BB 1C 1C , ∴截面C 1NB ⊥侧面BB 1C 1C , 即截面MBC 1⊥侧面BB 1C 1C .9. (12分)如图,在正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是CD 、A 1D 1的中点.(1)求证:AB 1⊥BF ; (2)求证:AE ⊥BF ;(3)棱CC 1上是否存在点P ,使BF ⊥平面AEP ?若存在,确定点P 的位置,若不存在,说明理由.(1)证明 连接A 1B ,则AB 1⊥A 1B , 又∵AB 1⊥A 1F ,且A 1B ∩A 1F =A 1,∴AB1⊥平面A1BF.又BF⊂平面A1BF,∴AB1⊥BF.(2)证明取AD中点G,连接FG,BG,则FG⊥AE,又∵△BAG≌△ADE,∴∠ABG=∠DAE.∴AE⊥BG.又∵BG∩FG=G,∴AE⊥平面BFG.又BF⊂平面BFG,∴AE⊥BF.(3)解存在.取CC1中点P,即为所求.连接EP,AP,C1D,∵EP∥C1D,C1D∥AB1,∴EP∥AB1.由(1)知AB1⊥BF,∴BF⊥EP.又由(2)知AE⊥BF,且AE∩EP=E,∴BF⊥平面AEP.B组专项能力提升(时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1.已知l,m是不同的两条直线,α,β是不重合的两个平面,则下列命题中为真命题的是() A.若l⊥α,α⊥β,则l∥βB.若l∥α,α⊥β,则l∥βC.若l⊥m,α∥β,m⊂β,则l⊥αD.若l⊥α,α∥β,m⊂β,则l⊥m答案 D解析∵l⊥α,α∥β,∴l⊥β.又∵m⊂β,∴l⊥m.2.(2012·浙江)已知矩形ABCD,AB=1,BC=2,将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中() A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直答案 B解析找出图形在翻折过程中变化的量与不变的量.对于选项A ,过点A 作AE ⊥BD ,垂足为E ,过点C 作CF ⊥BD ,垂足为F , 在图(1)中,由边AB ,BC 不相等可知点E ,F 不重合. 在图(2)中,连接CE ,若直线AC 与直线BD 垂直, 又∵AC ∩AE =A ,∴BD ⊥面ACE ,∴BD ⊥CE ,与点E ,F 不重合相矛盾,故A 错误. 对于选项B ,若AB ⊥CD , 又∵AB ⊥AD ,AD ∩CD =D , ∴AB ⊥面ADC ,∴AB ⊥AC ,由AB <BC 可知存在这样的等腰直角三角形,使得直线AB 与直线CD 垂直,故B 正确.对于选项C ,若AD ⊥BC ,又∵DC ⊥BC ,AD ∩DC =D ,∴BC ⊥面ADC , ∴BC ⊥AC .已知BC =2,AB =1,BC >AB , ∴不存在这样的直角三角形.∴C 错误. 由上可知D 错误,故选B.3. 已知三棱锥S -ABC 中,底面ABC 为边长等于2的等边三角形,SA 垂直于底面ABC ,SA =3,那么直线AB 与平面SBC 所成角的正弦值为( )A.34B.54C.74D.34答案 D解析 如图所示,过点A 作AD ⊥BC 于点D ,连接SD ;作AG ⊥SD 于点G ,连接GB .∵SA ⊥底面ABC ,△ABC 为等边三角形, ∴BC ⊥SA ,BC ⊥AD . ∴BC ⊥平面SAD .又AG ⊂平面SAD ,∴AG ⊥BC . 又AG ⊥SD ,∴AG ⊥平面SBC .∴∠ABG 即为直线AB 与平面SBC 所成的角. ∵AB =2,SA =3,∴AD =3,SD =2 3. 在Rt △SAD 中,AG =SA ·AD SD =32,∴sin ∠ABG =AG AB =322=34.二、填空题(每小题5分,共15分)4. 已知P 为△ABC 所在平面外一点,且P A 、PB 、PC 两两垂直,则下列命题:①P A ⊥BC ;②PB ⊥AC ;③PC ⊥AB ;④AB ⊥BC . 其中正确的个数是________. 答案 3解析 如图所示.∵P A ⊥PC 、P A ⊥PB ,PC ∩PB =P , ∴P A ⊥平面PBC . 又∵BC ⊂平面PBC , ∴P A ⊥BC .同理PB ⊥AC 、PC ⊥AB .但AB 不一定垂直于BC . 5. 在正四棱锥P —ABCD 中,P A =32AB ,M 是BC 的中点,G 是△P AD 的重心,则在平面P AD 中经过G 点且与直线PM 垂直的直线有________条. 答案 无数解析 设正四棱锥的底面边长为a ,(如图)则侧棱长为32a . 由PM ⊥BC , ∴PM =⎝⎛⎭⎫32a 2-⎝⎛⎭⎫a 22=22a . 连接PG 并延长与AD 相交于N 点,则PN =22a ,MN =AB =a , ∴PM 2+PN 2=MN 2,∴PM ⊥PN ,又PM ⊥AD ,PN ∩AD =N ,∴PM ⊥面P AD ,∴在平面P AD 中经过G 点的任意一条直线都与PM 垂直.6. 已知a 、b 、l 表示三条不同的直线,α、β、γ表示三个不同的平面,有下列四个命题:①若α∩β=a ,β∩γ=b ,且a ∥b ,则α∥γ;②若a 、b 相交,且都在α、β外,a ∥α,a ∥β,b ∥α,b ∥β,则α∥β; ③若α⊥β,α∩β=a ,b ⊂β,a ⊥b ,则b ⊥α; ④若a ⊂α,b ⊂α,l ⊥a ,l ⊥b ,l ⊄α,则l ⊥α. 其中正确命题的序号是________. 答案 ②③解析①在正方体A1B1C1D1—ABCD中,可令平面A1B1CD为α,平面DCC1D1为β,平面A1B1C1D1为γ,又平面A1B1CD∩平面DCC1D1=CD,平面A1B1C1D1∩平面DCC1D1=C1D1,则CD与C1D1所在的直线分别表示a,b,因为CD∥C1D1,但平面A1B1CD与平面A1B1C1D1不平行,即α与γ不平行,故①错误.②因为a、b相交,假设其确定的平面为γ,根据a∥α,b∥α,可得γ∥α.同理可得γ∥β,因此α∥β,②正确.③由两平面垂直,在一个平面内垂直于交线的直线和另一个平面垂直,易知③正确.④当a∥b时,l垂直于平面α内两条不相交直线,不可得出l⊥α,④错误.三、解答题7.(13分)如图,在三棱柱ABC—A1B1C1中,AA1⊥BC,∠A1AC=60°,A1A=AC=BC=1,A1B= 2.(1)求证:平面A1BC⊥平面ACC1A1;(2)如果D为AB中点,求证:BC1∥平面A1CD.证明(1)因为∠A1AC=60°,A1A=AC=1,所以△A1AC为等边三角形.所以A1C=1.因为BC=1,A1B=2,所以A1C2+BC2=A1B2.所以∠A1CB=90°,即A1C⊥BC.因为BC⊥A1A,BC⊥A1C,AA1∩A1C=A1,所以BC⊥平面ACC1A1.因为BC⊂平面A1BC,所以平面A1BC⊥平面ACC1A1.(2)连接AC1交A1C于点O,连接OD.因为ACC1A1为平行四边形,所以O为AC1的中点.因为D为AB的中点,所以OD∥BC1.因为OD⊂平面A1CD,BC1⊄平面A1CD,所以BC1∥平面A1CD.(写作材料仅供学习) (写作材料仅供学习) (写作材料仅供学习) (写作材料仅供学习) (写作材料仅供学习) (写作材料仅供学习) (写作材料仅供学习) (写作材料仅供学习) (写作材料仅供学习) (写作材料仅供学习)。

线面垂直判定定理教案

线面垂直判定定理教案

线面垂直判定定理教案简介本教案旨在教授学生如何判定两个几何图形中的线段和面是否垂直。

学生将研究使用线面垂直判定定理来解决此类问题。

本教案适用于中学数学教育。

目标- 理解线面垂直判定定理的概念和原理- 能够应用线面垂直判定定理来判断线段和面的垂直关系- 解决实际问题时能够运用线面垂直判定定理教学内容1. 线面垂直判定定理的定义和表述- 线面垂直判定定理指出,如果一条线段与一个平面垂直相交,那么这条线段上的任意一条线都与这个平面垂直相交。

2. 线面垂直判定定理的证明- 通过几何图形和推理,证明线面垂直判定定理的正确性。

3. 判断线面垂直的方法- 学生将研究如何判断给定的线段和平面是否垂直相交。

教师将提供一些示例问题,引导学生运用线面垂直判定定理来解决。

4. 实际问题的应用- 学生将解决一些实际问题,例如判断建筑物的柱子是否与地面垂直相交等,以应用线面垂直判定定理。

教学步骤1. 引入线面垂直判定定理的概念- 教师将简要介绍线面垂直判定定理的概念,并提出一个简单的问题,引发学生思考。

2. 讲解线面垂直判定定理的定义和原理- 教师将详细讲解线面垂直判定定理的定义和原理,帮助学生理解其中的关键概念和推理过程。

3. 展示线面垂直判定定理的证明- 教师将通过几何图形和推理,展示线面垂直判定定理的证明过程,加深学生对该定理的理解和信任。

4. 指导学生判断线面垂直的方法- 教师将提供一些示例问题,引导学生应用线面垂直判定定理来判断线段和平面的垂直关系。

教师将指导学生分析问题,找出关键信息,并运用定理进行判断。

5. 解决实际问题- 教师将提供一些实际问题,让学生运用线面垂直判定定理来解决。

学生将应用所学的知识和技巧,分析问题并给出合理的判断。

6. 总结和讨论- 教师将对本节课的内容进行总结,并与学生讨论他们对线面垂直判定定理的理解和应用。

教学评估1. 练题- 学生将完成一些练题,以评估他们对线面垂直判定定理的理解和应用能力。

高中数学_线面面面垂直的判定与性质教学设计学情分析教材分析课后反思

高中数学_线面面面垂直的判定与性质教学设计学情分析教材分析课后反思

图形语言教学过程C.垂直于平面β的平面一定平行于直线lD.垂直于直线l的平面一定与平面α、β都垂直2.如图,O为正方体 ABCD-A1B1C1D1的底面ABCD的中心,则下列直线中与B1O垂直的是( )A.A1D B.AA1C.A1D1 D.A1C1※考点梳理在证明线面垂直、面面垂直时,一定要注意判定定理成立的条件.同时抓住线线、线面、面面垂直的转化关系,即:※由题悟法例:如图,已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥BC.求证:BC⊥平面PAB变式1:求证:BC⊥PB .变式2:求证:平面PBC⊥平面PAB变式3:已知三棱锥P-ABC中,PA⊥平面ABC, AB⊥BC,AE⊥PB.求证:AE⊥PCPABCPABCE教学过程变式4:已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥BC,AE⊥PB,AF⊥PC.求证:平面AEF⊥平面PBC变式5:求证:EF⊥PC.变式6:求证:平面AEF⊥平面APC总结归纳:※以题试法1.如图,在在四棱锥P-ABCD中,PA⊥底面ABCD,且底面ABCD为菱形。

证明:BD⊥面PAC ;2.如图,在三棱锥P-ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上.证明:AP⊥BC;PABCEF学情分析:在本节课之前学生已学习了空间点、直线、平面之间的位置关系和直线、平面垂直的判定及其性质,具备了学习本节课所需的知识。

同时已经有了“通过观察、操作等数学活动抽象概括出数学结论”的体会,参与意识、自主探究能力有所提高,对空间概念建立有一定基础。

但对于高二的学生而言,他们的生活经验不多。

虽然在生活中他们见到直线与平面的例子很多,但还不能总结应用。

他们的抽象概括能力、空间想象力还有待提高。

线面垂直的定义比较抽象,平面内看不到直线,要让学生去体会“与平面内所有直线垂直”就有一定困难;同时,线面垂直判定定理的发现具有一定的隐蔽性,学生不易想到。

效果分析:知识的掌握。

高三数学总复习 直线和平面垂直的判定与性质(二)教案

高三数学总复习 直线和平面垂直的判定与性质(二)教案

芯衣州星海市涌泉学校师范大学附属中学高三数学总复习教案:直线和平面垂直的断定与性质〔二〕一、素质教育目的〔一〕知识教学点1.直线和平面垂直的性质定理.2.点到平面的间隔.3.直线和平面的间隔.〔二〕才能训练点1.掌握直线和平面垂直的性质定理,并能应用它们灵敏解题.2.掌握用反证法证明命题.〔三〕德育浸透点通过例题2的学习向学生浸透转化的思想和化归的解题意识.二、教学重点、难点、疑点及解决方法1.教学重点:〔1〕掌握直线和平面垂直的性质定理:假设a⊥α,b⊥α,那么a∥b.〔2〕掌握点到平面的间隔及一条直线和一个平面平行时这条直线和平面的间隔的定义.2.教学难点:性质定理证明中反证法的学习和掌握,应让学生明确,对于一些条件简单而结论复杂的命题,可考虑使用反证法.3.教学疑点:设计一个综合题,引导学生考虑点到平面的间隔和直线到平面的间隔问题的互化.三、课时安排本课题一一共安排2课时,本节课为第二课时.四、学生活动设计〔常规活动,略〕五、教学步骤〔一〕温故知新,引入课题师:上节课,我们学习了直线和平面垂直的定义和断定定理,请两个同学来表达一下定义和断定定理的内容.生〔甲〕:一条直线和平面内的任何一条直线都垂直,我们说这两条直线和这个平面互相垂直.生〔乙〕:直线和平面垂直的断定定理是:假设一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.〔板书如右〕师:利用断定定理我们还证明了线线平行的性质定理〔即例题1〕,也请一个同学表达一下.生〔丙〕:假设两条平行直线中的一条垂直于一个平面,那么另一条也垂直于同一个平面.〔板书〕假设a∥b,a⊥α那么b⊥α.师:这个用黑体字写成的例题可以当作直线和平面垂直的又一个断定定理,如今请同学们改变这个定理的题设和结论,写出它的逆命题.生:假设a⊥α,b⊥α,那么a∥b.师:下面就让我们看看这个命题是否正确?〔二〕猜想推测,激发兴趣教师写出条件并画出图形,作讨论性证明:a⊥α,b⊥α〔如图1-73〕求证:a∥b.分析:a、b是空间中的两条直线,要证明它们互相平行,一般先证明它们一一共面,然后转化为平面几何中的平行断定问题,但这个命题的条件比较简单,想说明a、b一一共面就很困难了,更何况还要证明平行.我们能否从另一个角度来证明,比方,a、b不平行会有什么矛盾?这就是我们提到过的反证法.师:您知道用反证法证明命题的一般步骤吗?生:否认结论→推出矛盾→肯定结论师:第一步,我们做一个反面的假设,假定b与a不平行,如今应该要推出矛盾,从条件中的垂直关系,让我们想起例题1〔线线平行定理〕,在这个定理的条件中,平面有一条垂线,垂线有一条平行线,因此需要添加一条辅助线.〔三〕层层推进,证明定理证明:假定b与a不平行设b∩α=O,b′是经过点O与直线a平行的直线,∵a∥b′,a⊥α,∴b′⊥α.经过同一点O的两条直线b,b′都垂直于平面α是不可能的.因此,a∥b.由此,我们得到:假设两条直线同垂直于一个平面,那么这两条直线平行.师:这就是直线和平面垂直的性质定理;师:学习了直线与平面垂直的断定定理和性质定理,我们再来看看点到平面的间隔的定义:从平面外一点引一个平面的垂线,这个点和垂足间的间隔叫做这个点到这个平面的间隔.〔四〕初步运用,进步才能1.例题2:一条直线l和一个平面α平行.求证:直线l上各点到平面α的间隔相等.分析:首先,我们应该明确,点到平面的间隔定义,在直线l上任意取两点A、B,并过这两点作平面α的垂线段,如今只要证明这两条垂线段长相等即可.证明:过直线l上任意两点A、B分别引平面α的垂线AA1、BB1,垂足分别为A1、B1∵AA1⊥α,BB1⊥α,∴AA1∥BB1〔直线与平面垂直的性质定理〕.设经过直线AA1和BB1的平面为β,β∩α=A1B1.∵l∥α,∴l∥A1B1.∴AA1=BB1〔直线与平面平行的性质定理〕即直线上各点到平面的间隔相等.师:我们再来学习直线和平面的间隔的定义:一条直线和一个平面平行,这条直线上任意一点到平面的间隔,叫做这条直线和平面的间隔.师:本例题的证明,实际上是把立体几何中直线上的点到平面的间隔问题转化成平面几何中两条平行直线的间隔问题.这种把立体几何的问题转化成平面几何的问题的方法,是解决立体几何问题时常常用到的方法.2.考虑〔课后练习4〕安装日光灯时,怎样才能使灯管和天棚、地板平行?生:只要两条吊线等长.师:转化为数学模型是,如图1-76:直线l上A、B两点到平面α的间隔相等,求证:l∥α.师:此题仿照例题2方法很容易证明,但以下的阐述却是假命题,你知道是为什么吗?直线l上A、B两点到平面α的间隔相等,那么l∥α.3.如图1-77,E,F分别是正方形ABCD边AD,AB的中点,EF交AC于M,GC垂直于ABCD所在平面.〔1〕求证:EF⊥平面GMC.〔2〕假设AB=4,GC=2,求点B到平面EFG的间隔.分析:第1小题,证明直线与平面垂直,常用的方法是断定定理;第2小题,假设用定义来求点到平面的间隔,因为表达间隔的垂线段无法直观地画出,因此,常常将这样的问题转化为直线到平面的间隔问题.解:〔1〕连结BD交AC于O,∵E,F是正方形ABCD边AD,AB的中点,AC⊥BD,∴EF⊥AC.∵AC∩GC=C,∴EF⊥平面GMC.〔2〕可证BD∥平面EFG,由例题2,正方形中心O到平面EFG〔五〕归纳小结,强化思想本节课,我们学习了直线和平面垂直的性质定理,以及两个间隔的定义.定理的证明用到反证法,证明几何问题常规的方法有两种:直接证法和间接证法,直接证法常根据定义、定理、公理,并适当引用平面几何的知识;用直接法证明比较困难时,我们可以考虑间接证法,反证法就是一种间接证法.六、布置作业作为一般要求,完成习题四5、6、7、8;进步要求,完成以下两个补充练习.1.矩形ABCD的边长AB=6cm,BC=4cm,在CD上截取CE=4cm,以BE为棱将矩形折起,使△BC′E 的高C′F⊥平面ABED,求:〔1〕点C′到平面ABED的间隔;〔2〕C′到边AB的间隔;〔3〕C′到AD的间隔.参考答案:〔1〕作FH⊥AB于H,作FG⊥AD于G,那么C′H⊥AB,2.如图1-79,:ABCD是矩形,SA⊥平面ABCD,E是SC上一点.求证:BE不可能垂直于平面SCD.参考答案:用到反证法,假设BE⊥平面SCD,∵AB∥CD;∴AB⊥BE.∴AB⊥SB,这与Rt△SAB中∠SBA为锐角矛盾.∴BE不可能垂直于平面SCD.。

高三数学一轮复习精品教案2:线面、面面平行的判定与性质教学设计

高三数学一轮复习精品教案2:线面、面面平行的判定与性质教学设计

第四节 直线、平面平行的判定及其性质考纲传真1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质和判定定理.2.能运用公理、定理和已获得的结论证明一些空间图形的平行关系的简单命题.1.直线与平面平行的判定(1)定义:直线与平面没有公共点,则称直线平行于平面. (2)判定定理:若a ⊂α,b ⊄α,a ∥b ,则b ∥α. 2.直线与平面平行的性质定理 若a ∥α,a ⊂β,α∩β=b ,则a ∥b . 3.面面平行的判定与性质 判定性质图形条件 α∩β=∅a ⊂β,b ⊂β,a ∩b =P ,a ∥α,b ∥α α∥β,α∩γ=a , β∩γ=b α∥β,a ⊂β 结论α∥βα∥βa ∥ba ∥α4.与垂直相关的平行的判定(1)a ⊥α,b ⊥α⇒a ∥b ;(2)a ⊥α,a ⊥β⇒α∥β.1.(人教A版教材习题改编)若直线a不平行于平面α,则下列结论成立的是() A.α内的所有直线都与直线a异面B.α内可能存在与a平行的直线C.α内的直线都与a相交D.直线a与平面α没有公共点『解析』直线a与α不平行,则直线a在α内或与α相交,当直线a在平面α内时,在α内存在与a平行的直线,B正确.『答案』B2.若直线m⊂平面α,则条件甲:直线l∥α,是条件乙:l∥m的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件『解析』∵l∥α时,l与m并不一定平行,而l∥m时,l与α也不一定平行,有可能l⊂α,∴条件甲是条件乙的既不充分也不必要条件.『答案』D3.空间中,下列命题正确的是()A.若a∥α,b∥a,则b∥αB.若a∥α,b∥α,a⊂β,b⊂β,则β∥αC.若α∥β,b∥α,则b∥βD.若α∥β,a⊂α,则a∥β『解析』根据面面平行和线面平行的定义知,选D.『答案』D4.在正方体ABCD—A1B1C1D1中,E是DD1的中点,则BD1与平面ACE的位置关系是________.『解析』如图所示,连接BD交AC于F,连接EF则EF是△BDD1的中位线,∴EF ∥BD1,又EF⊂平面ACE,BD1⊄平面ACE,∴BD 1∥平面ACE . 『答案』 平行图7-4-15.(2013·福州模拟)如图7-4-1,正方体ABCD —A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上.若EF ∥平面AB 1C ,则线段EF 的长度等于________.『解析』 由于在正方体ABCD —A 1B 1C 1D 1中,AB =2,∴AC =2 2.又E 为AD 中点,EF ∥平面AB 1C ,EF ⊂平面ADC ,平面ADC ∩平面AB 1C =AC , ∴EF ∥AC ,∴F 为DC 中点,∴EF =12AC = 2.『答案』2直线与平面平行的判定与性质图7-4-2(2012·辽宁高考)如图7-4-2,直三棱柱ABC -A ′B ′C ′,∠BAC =90°,AB =AC=2,AA ′=1,点M ,N 分别为A ′B 和B ′C ′的中点.(1)证明:MN ∥平面A ′ACC ′;(2)求三棱锥A ′-MNC 的体积.(锥体体积公式V =13Sh ,其中S 为底面面积,h 为高)『思路点拨』 (1)法一:证明MN ∥AC ′;法二:取A ′B ′的中点P ,证平面MPN ∥平面A ′ACC ′.(2)转化法:根据S △A ′MC =S △BMC 得V N —A ′MC =12V N —A ′BC ,从而V A ′—MNC =12V A ′—NBC .『尝试解答』(1)法一连接AB′,AC′,如图,由已知∠BAC=90°,AB=AC,三棱柱ABC—A′B′C′为直三棱柱,所以M为AB′的中点.又因为N为B′C′的中点,所以MN∥AC′.又MN⊄平面A′ACC′,AC′⊂平面A′ACC′,所以MN∥平面A′ACC′.法二取A′B′的中点P,连接MP,NP,AB′,如图,因为M,N分别为AB′与B′C′的中点,所以MP∥AA′,PN∥A′C′.所以MP∥平面A′ACC′,PN∥平面A′ACC′.又MP∩NP=P,所以平面MPN∥平面A′ACC′.而MN⊂平面MPN,所以MN∥平面A′ACC′.(2)连接BN,由题意知,A′N⊥B′C′,平面A′B′C′∩平面B′BCC′=B′C′,所以A′N⊥平面B′BCC′,即A′N⊥平面NBC,故V A′—MNC=V N—A′MC=13S△A′MC×h,又S△A′MC=12S△A′BC,所以V A′—MNC=V N—A′MC=12V N—A′BC=12V A′—NBC=12×13×S△NBC×A′N,因为∠BAC=90°,BA=AC=2,所以BC=B′C′=2,S△NBC=12BC×BB′=12×2×1=1,A′N=12B′C′=1,所以V A′—MNC=V N—A′MC=12×13×S△NBC×A′N=16.,1.判断或证明线面平行的常用方法有:(1)利用常用反证法定义;(2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α);(3)利用面面平行的性质定理(α∥β,a⊂α⇒a∥β);(4)利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β).2.利用判定定理判定直线与平面平行,关键是找平面内与已知直线平行的直线.可先直观判断平面内是否已有,若没有,则需作出该直线,常考虑三角形的中位线、平行四边形的对边或过已知直线作一平面找其交线.图7-4-3如图7-4-3,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:AP∥GH.『证明』如图,连接AC交BD于O,连接MO,∵四边形ABCD是平行四边形,∴O是AC中点,又M是PC的中点,∴AP∥OM,则有AP∥平面BMD.∵平面P AHG∩平面BMD=GH,∴AP∥GH.平面与平面平行的判定与性质图7-4-4如图7-4-4,已知α∥β,异面直线AB 、CD 和平面α、β分别交于A 、B 、C 、D 四点,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.求证:(1)E 、F 、G 、H 共面; (2)平面EFGH ∥平面α.『思路点拨』 (1)证明四边形EFGH 为平行四边形即可;(2)利用面面平行的判定定理,转化为线面平行来证明.『尝试解答』 (1)∵E 、H 分别是AB 、DA 的中点, ∴EH 綊12BD .同理,FG 綊12BD ,∴FG 綊EH .∴四边形EFGH 是平行四边形, ∴E 、F 、G 、H 共面.(2)平面ABD 和平面α有一个公共点A , 设两平面交于过点A 的直线AD ′. ∵α∥β,∴AD ′∥BD .又∵BD ∥EH ,∴EH ∥BD ∥AD ′. ∴EH ∥平面α,同理,EF ∥平面α, 又EH ∩EF =E ,EH ⊂平面EFGH , EF ⊂平面EFGH ,∴平面EFGH ∥平面α.,1.解答本题(2)的关键是设出平面ABD 与平面α的交线,然后使用面面平行的性质证明.2.判定面面平行的方法 (1)利用定义:(常用反证法) (2)利用面面平行的判定定理;(3)利用垂直于同一条直线的两平面平行;(4)利用平面平行的传递性,即两个平面同时平行于第三个平面,则这两个平面平行.图7-4-5如图7-4-5所示,三棱柱ABC—A1B1C1,D是BC上一点,且A1B∥平面AC1D,D1是B1C1的中点.求证:平面A1BD1∥平面AC1D.『证明』如图所示,连接A1C交AC1于点E,因为四边形A1ACC1是平行四边形,所以E是A1C的中点,连接ED,因为A1B∥平面AC1D,平面A1BC∩平面AC1D=ED,所以A1B∥ED.因为E是A1C的中点,所以D是BC的中点.又因为D1是B1C1的中点,所以BD1∥C1D,A1D1∥AD.又A1D1∩BD1=D1,C1D∩AD=D,所以平面A1BD1∥平面AC1D.线面、面面平行的综合应用图7-4-6如图7-4-6所示,四边形ABCD 为矩形,AD ⊥平面ABE ,AE =EB =BC ,F为CE 上的点,且BF ⊥平面ACE .(1)求证:AE ⊥BE ;(2)设M 在线段AB 上,且满足AM =2MB ,试在线段CE 上确定一点N ,使得MN ∥平面DAE .『思路点拨』 (1)通过线面垂直证明线线垂直;(2)先确定点N 的位置,再进行证明,点N 的位置的确定要根据线面平行的条件进行探索.『尝试解答』 (1)∵AD ⊥平面ABE ,AD ∥BC ,∴BC ⊥平面ABE , 则AE ⊥BC .又∵BF ⊥平面ACE ,∴AE ⊥BF , ∴AE ⊥平面BCE ,又BE ⊂平面BCE ,∴AE ⊥BE .(2)在△ABE 中,过M 点作MG ∥AE 交BE 于G 点,在△BEC 中过G 点作GN ∥BC 交EC 于N 点,连接MN ,则由比例关系易得CN =13CE .∵MG ∥AE ,MG ⊄平面ADE ,AE ⊂平面ADE , ∴MG ∥平面ADE .同理,GN ∥平面ADE .又∵GN ∩MG =G , ∴平面MGN ∥平面ADE .又MN ⊂平面MGN ,∴MN ∥平面ADE .∴N 点为线段CE 上靠近C 点的一个三等分点.,1.解决本题的关键是过M 作出与平面DAE 平行的辅助平面MNG ,通过面面平行证明线面平行.2.通过线面、面面平行的判定与性质,可实现线线、线面、面面平行的转化. 3.解答探索性问题的基本策略是先假设,再严格证明,先猜想再证明是学习和研究的重要思想方法.图7-4-7如图7-4-7所示,四棱锥P—ABCD的底面是边长为a的正方形,侧棱P A⊥底面ABCD,在侧面PBC内,有BE⊥PC于E,且BE=63a,试在AB上找一点F,使EF∥平面P AD.『解』在平面PCD内,过E作EG∥CD交PD于G,连接AG,在AB上取点F,使AF=EG,∵EG∥CD∥AF,EG=AF,∴四边形FEGA为平行四边形,∴FE∥AG.又AG⊂平面P AD,FE⊄平面P AD,∴EF∥平面P AD.∴F即为所求的点.又P A⊥面ABCD,∴P A⊥BC,又BC⊥AB,∴BC⊥面P AB.∴PB⊥BC.∴PC2=BC2+PB2=BC2+AB2+P A2.设P A=x则PC=2a2+x2,由PB·BC=BE·PC得:a2+x2·a=2a2+x2·63a,∴x=a,即P A=a,∴PC=3a.又CE=a2-(63a)2=33a,∴PE PC =23,∴GE CD =PE PC =23, 即GE =23CD =23a ,∴AF =23a .一种关系平行问题的转化关系:两个防范1.在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.2.线面平行的性质定理的符号语言为:a ∥α,a ⊂β,α∩β=b ⇒a ∥b ,三个条件缺一不可.从近两年高考看,直线与平面,平面与平面平行是高考考查的热点.题型全面,试题难度中等,考查线线、线面、面面平行的相互转化,并且考查空间想象能力以及逻辑思维能力.预测2014年高考仍将以线面平行的判定为主要考查点,解题时不但要熟练运用平行的判定和性质,而且要注意解题的规范化.规范解答之十 线面平行问题的证明方法)图7-4-8(12分)(2012·山东高考)如图7-4-8,几何体E -ABCD 是四棱锥,△ABD 为正三角形,CB =CD ,EC ⊥BD .(1)求证:BE =DE ;(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.『规范解答』(1)如图(1),取BD的中点O,连接CO,EO.(1)由于CB=CD,所以CO⊥BD.又EC⊥BD,EC∩CO=C,CO,EC⊂平面EOC,所以BD⊥平面EOC,4分因此BD⊥EO.又O为BD的中点,所以BE=DE.6分(2)如图(2),取AB的中点N,连接DM,DN,MN.(2)因为M是AE的中点,所以MN∥BE.又MN⊄平面BEC,BE⊂平面BEC,所以MN∥平面BEC.8分又因为△ABD为正三角形,所以∠BDN=30°.又CB=CD,∠BCD=120°,因此∠CBD=30°.所以DN∥BC.又DN⊄平面BEC,BC⊂平面BEC,所以DN∥平面BEC.10分又MN∩DN=N,所以平面DMN∥平面BEC.又DM⊂平面DMN,所以DM∥平面BEC.12分『解题程序』第一步:取BD的中点O,连接CO,EO,证明BD⊥平面EOC;第二步:根据线面垂直的性质证明BD⊥EO,从而证明BE=DE;第三步:取AB的中点N,作出辅助平面DMN;第四步:证明MN∥平面BEC;第五步:证明DN∥平面BEC;第六步:根据面面平行的判定定理下结论.易错提示:(1)第(1)小题作不出辅助线EO,CO,无法求解.(2)第(2)小题不能作出辅助平面DMN,无法求解.防范措施:(1)所求与已知中,均有线段相等,即出现等腰三角形共底边问题,此种情况下,一般取底边的中点作辅助线.(2)证明线面平行,通常有两种方法,要么用线线平行,要么用面面平行,条件中出现中点,一般考虑作出三角形的中位线.1.(2013·潍坊模拟)已知三条直线a,b,c和平面β,则下列推论中正确的是() A.若a∥b,b⊂β,则a∥βB.a∥β,b∥β,则a∥bC.若a⊂β,b∥β,a,b共面,则a∥bD.a⊥c,b⊥c,则a∥b『解析』对于A,可能有a⊂β,故A错;对于B,a与b可能平行、相交或异面,故B错;对于D,a与b可能平行,相交或异面;对于C,根据线面平行的性质定理知,C正确.『答案』C图7-4-92.(2013·杭州模拟)在如图7-4-9所示的几何体中,四边形ABCD为平行四边形,EF ∥AB,FG∥BC,EG∥AC,AB=2EF,若M是线段AD的中点,求证:GM∥平面ABFE.『证明』因为EF∥AB,FG∥BC,EG∥AC,所以△ABC ∽△EFG ,由于AB =2EF ,因此,BC =2FG ,连接AF ,由于FG ∥BC ,FG =12BC ,在▱ABCD 中,M 是线段AD 的中点,则AM ∥BC ,且AM =12BC , 因此FG ∥AM 且FG =AM ,所以四边形AFGM 为平行四边形,因此GM ∥F A .又F A ⊂平面ABFE ,GM ⊄平面ABFE , 所以GM ∥平面ABFE .。

线面垂直教学设计

线面垂直教学设计

线面垂直教学设计第一篇:线面垂直教学设计教案课题:直线与平面垂直的判定(一)【教学目标】知识与技能目标:通过本节课的学习,使学生理解直线与平面垂直的定义和判定定理,并能对它们进行简单的应用;过程与方法目标:通过对定义的总结和对判定定理的探究,不断提高学生的抽象概括和逻辑思维能力;情感态度与价值观目标:通过学习,使学生在认识到数学源于生活的同时,体会到数学中的严谨细致之美,简洁朴实之美,和谐自然之美,从而使学生更加热爱数学,热爱生活.【教学重点及难点】教学重点:直线与平面垂直的定义、判定定理以及它们的初步应用.教学难点:对直线与平面垂直的定义的理解和对判定定理的探究.【教学方法】教法:启发诱导式学法:合作交流、动手试验【教具准备】计算机、多媒体课件、三角形卡纸【教学过程】一、直线与平面垂直定义的构建1、联系生活——提出问题在复习了直线与平面的三种位置关系后,给出几幅现实生活中常见的图片,让学生思考其中旗杆与地面、竖直的墙角线与地面、大桥的桥柱与水面之间的位置关系属于这三种情况中的那一种,它们还给我们留下了什么印象?从而提出问题:什么是直线与平面垂直?设计意图:使学生意识到直线与平面垂直是直线与平面相交中的一种特殊情况并引出本节课的课题.另外这样设计也吸引了学生的注意力,激发了学生的好奇心,使其主动参与到本节课的学习中来.2、创设情境——分析感知播放动画,引导学生观察旗杆和它在地面上影子的位置关系,使其发现:旗杆所在直线l与地面所在平面α内经过点B的直线都是垂直的.进而提出问题:那么直线l与平面α内不经过点B的直线垂直吗?设计意图:在具体的情境中,让学生去体会和感知直线与平面垂直的定义.3、总结定义——形成概念由学生总结出直线与平面垂直的定义,即如果直线l与平面α内的任意一条直线都垂直,我们就说直线l与平面α互相垂直.引导学生用符号语言将它表示出来.然后提出问题:如果将定义中的“任意一条直线”改成“无数条直线”,结论还成立吗?设计意图:让学生通过思考和操作(用三角板和笔在桌面上比试),加深对定义的认识.二、直线与平面垂直判定定理的构建1、类比猜想——提出问题根据线面平行的判定定理进行类比,通过不断的猜想和分析,最终提出问题:如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直吗?设计意图:不少老师都在本环节中进行了一些有益的尝试,但考虑到学生的认知水平,我仍然决定采用类比猜想的方法,从学生已有的知识出发,进行分析.2、动手试验——分析探究演示试验过程:过△ABC的顶点A翻折纸片,得到折痕AD,再将翻折后的纸片竖起放置在桌面上(BD、DC 与桌面接触).ABDCB问题一:同学们看,此时的折痕AD与桌面垂直吗?又问:为什么说此时的折痕AD与桌面不垂直?设计意图:让学生从另一个角度来理解直线与平面垂直的定义——只要直线l与平面α内有一条直线不垂直,那么直线l就与平面α不垂直.问题二:如何翻折才能让折痕AD与桌面所在平面α垂直呢?﹙学生分组试验﹚设计意图:通过分组讨论增强数学学习氛围,让学生在交流中互相学习,共同进步.问题三:通过试验,你能得到什么结论?在回答此问题时大部分学生都会直接给出结论:如果一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.此时注意引导学生观察,直线AD还经过BD、CD的交点.请他们思考在增加了这个条件后,试验的结论更准确的说应该是什么?ABD C又问:如果直线l与平面α内的两条相交直线m、n都垂直,但不经过它们的交点,那么直线l还与平面α垂直吗?设计意图:提高学生抽象概括的能力,同时也培养他们严谨细致的作风.3、提炼定理——形成概念给出线面垂直的判定定理,请学生用符号语言把这个定理表示出来,并由此向学生指明,判定定理的实质就是通过线线垂直来证明线面垂直,它体现了降维这种重要的数学思想.判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.符号语言: l⊥m,l⊥n,m⊂α,n⊂α,m I n=A ⇒l⊥α.三、初步应用——深化认识1、例题剖析:例1已知:a//b,a⊥α.求证:b⊥α.分析过程:b⎧a⊥ma//b⎧ba⊥α⇒⎨⇒⎨b⊥na⊥n⎩⎩②③①证明:在平面α内作两条相交直线m,n.因为直线a⊥α,根据直线与平面垂直的定义知a⊥m,a⊥n.又因为b∥a 所以b⊥m,b⊥n.又因为m⊂α,n⊂α,m,n是两条相交直线,所以b⊥α.(①②③表示分析的顺序)设计意图:不仅让学生学会使用判定定理,而且要让他们掌握分析此类问题的方法和步骤.本题也可以使用直线与平面垂直的定义来证明,这可以让学生在课下完成.另外,例1向我们透露了一个非常重要的信息,这里可以请学生用文字语言将例1表示出来——如果两条平行线中的一条直线与一个平面垂直,那么另外一条直线也与此平面垂直.2、随堂练习练习1如图,在三棱锥V-ABC中,VA=VC,AB=BC.求证:VB⊥AC.证明:取AC中点为K,连接VK、BK,∵ 在△VAC中,VA=VC,且K是AC中点,∴ VK⊥AC.同理BK⊥AC.VAKC又 VK⊂平面VKB,BK⊂平面VKB,VK∩BK=K,∴ AC⊥平面VKB.∵ VB⊂平面VKB,∴ VB ⊥ AC.设计意图:用展台展示部分学生的答案,督促学生规范化做题.变式引申如图,在三棱锥V-ABC中,VA=VC,AB=BC,K是AC的中点.若E、F分别是AB、BC 的中点,试判断直线EF与平面VKB 的位置关系.解:直线EF与平面VKB互相垂直.∵ 在△VAC中,VA=VC,且K是AC中点,∴ VK⊥AC.同理BK⊥AC.又 VK⊂平面VKB,BK⊂平面VKB,VK∩BK=K,∴ AC ⊥平面VKB.又 E、F分别是AB、BC的中点,∴ EF∥AC∴ EF⊥平面VKB.BEFA C设计意图:在定义和判定定理之外,例1又给出了第三种证明直线与平面垂直的方法,构造这道变式引申题的目的就是让学生在用中将其内化.练习2如图,PA垂直圆O所在平面,AC是圆O的直径,B是圆周上一点,问三棱锥P-ABC中有几个直角三角形?解:在三棱锥P-ABC中有四个直角三角形,分别是:△ABC、△PAB、△PAC和△PBC.设计意图:通过练习1和练习2培养学生熟练地进行线线垂直和线面垂直之间的转化,从而使他们能够对定义和判定定理进行灵活应用.四、总结回顾——提升认识BC五、布置作业——巩固认识⌝必做题:习题2.3 B组2,4.⌝选做题:如图SA⊥平面ABC,AB⊥BC,过A作SB的垂线,垂足为E,过E作SC的垂线,垂足为F.求证:AF⊥SC.⌝探究题:课本66页的探究题.SEBC第二篇:专题线面垂直专题九:线面垂直的证明题型一:共面垂直(实际上是平面内的两条直线的垂直)例1:如图在正方体ABCD-A1BC11D1中,O为底面ABCD的中心,E为CC1中点,求证:AO⊥OE1题型二:线面垂直证明(利用线面垂直的判断定理)例2:在正方体ABCD-AO为底面ABCD的中心,E为CC1,1BC11D1中,⊥平面BDE 求证:AO1题型三:异面垂直(利用线面垂直的性质来证明,高考中的意图)例3.在正四面体ABCD中,求证AC⊥BDP N D C A M B 练:如图,PA⊥平面ABCD,ABCD是矩形,M、N分别是AB、PC的中点,求证:MN⊥AB题型四:面面垂直的证明(本质上是证明线面垂直)例4.已知PA垂直于正方形ABCD所在平面,连接PB、PC、PD、AC、BD,则下列垂直关系中正确的序号是.①平面PAB⊥平面PBC ②平面PAB⊥平面PAD ③平面PAB⊥平面PCD例5.如图,AB是圆O的直径,C是圆周上一点,PA⊥平面ABC.若AE⊥PC,E为垂足,F是PB上任意一点,求证:平面AEF⊥平面PBC.第三篇:线面垂直§1.2.3空间中的垂直关系---线面垂直(课前预习案)班级:___ 姓名:________ 编写:刘爱娟审核:胡文刚时间:2013.12.11一、新知导学1.如果两条直线则称这两条直线互相垂直2.定义:直线和一个平面相交,并且和这个平面内的_______________________直线都垂直, 记作:a⊥α.直线叫做平面的垂线,平面叫做直线的垂面, 提问:若直线与平面内的无数条直线垂直,则直线垂直与平面吗?判定定理:如果一条直线和一个平面内的两条___________直线都垂直,那么这条直线垂直若l⊥m,l⊥n,m∩n=B,m⊂α,n⊂α,则l⊥α推论1.如果两条平行线中,有一条垂直于平面,那么另一条推论2.如果两条直线那么这两条直线平行二、课前自测1、过直线外一点作直线的垂线有个;平行线有个.2、过平面外一点作该平面的垂线有条;垂面有条;平行平面有个.3、已知:空间四边形ABCD,AB=AC,DB=DC,E为BC的中点求证:BC⊥平面AEDBEC§1.2.3空间中的垂直关系---线面垂直(课堂探究案)第四篇:线面垂直4教学设计方案XueDa PPTS Learning Center第1页 / 共4页第2页 / 共4页第3页 / 共4页第五篇:线面垂直教案课题:直线与平面垂直授课教师:伍良云【教学目标】知识与技能1、掌握直线与平面垂直的定义及判定定理.2、使学生掌握判定直线与平面垂直的方法.过程与方法培养学生的几何直观能力,使他们在直观感知,操作确认的基础上学会归纳、概括结论.情感、态度与价值观在体验数学美的过程中激发学生学习兴趣,从而培养学生勤于思考、勤于动手的良好品质.培养学生学会从“感性认识”到“理性认识”过程中获取新知.教学重点直线与平面垂直的定义及判定定理.教学难点直线与平面垂直的定义及判定定理教学方法:启发式与试验探究式相结合。

2.3.2《线面垂直、面面垂直的性质定理》教学设计(人教A版必修2)

2.3.2《线面垂直、面面垂直的性质定理》教学设计(人教A版必修2)

2.3.2 《线面垂直、面面垂直的性质定理》教学设计【教学目标】(1)使学生掌握直线与平面垂直,平面与平面垂直的性质定理;(2)能运用性质定理解决一些简单问题;(3)了解直线与平面、平面与平面垂直的判定定理和性质定理间的相互联系。

【导入新课】问题:若一条直线与一个平面垂直,则可得到什么结论?若两条直线与同一个平面垂直呢? 新授课阶段1. 线面垂直的性质定理观察长方体模型中四条侧棱与同一个底面的位置关系。

如图,在长方体ABCD —A 1B 1C 1D 1中,棱AA 1、BB 1、CC 1、DD 1所在直线都垂直于平面ABCD ,它们之间是有什么位置关系?(显然互相平行)然后进一步迁移活动:已知直线a ⊥α 、b ⊥α、那么直线a 、b 一定平行吗?(一定)我们能否证明这一事实的正确性呢?观察得到:线面垂直的性质定理:垂直于同一个平面的两条直线平行。

例1如图1,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知BC =8,PO =4,AO =3,OD =2。

(1)证明:AP ⊥BC ;(2)在线段AP 上是否存在点M ,使得二面角A -MC -B 为直二面角?若存在,求出AM 的长;若不存在,请说明理由。

图1(1)证明:由AB =AC ,D 是BC 的中点,得AD ⊥BC 。

又PO ⊥平面ABC ,得PO ⊥BC 。

因为PO ∩AD =O ,所以BC ⊥平面PAD 。

故BC ⊥PA 。

(2)如图,在平面PAB 内作BM ⊥PA 于M ,连接CM ,由(1)中知AP ⊥BC ,得AP ⊥平面BMC 。

又AP ⊂平面APC ,所以平面BMC ⊥平面APC 。

在Rt △ADB 中,AB 2=AD 2+BD 2=41,得AB =41.在Rt △POD 中,PD 2=PO 2+OD 2,在Rt △PDB 中,PB 2=PD 2+BD 2,所以PB 2=PO 2+OD 2+DB 2=36,得PB =6,在Rt △POA 中,PA 2=AO 2+OP 2=25,得PA =5,又cos ∠BPA =PA 2+PB 2-AB 22PA·PB =13, 从而PM =PBcos ∠BPA =2,所以AM =PA -PM =3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第5课时 直线、平面垂直的判定与性质考纲传真1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质和判定定理.2.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题.1.直线与平面垂直(1)定义:如果直线l 与平面α内的任意一条直线都垂直,则直线l 与平面α垂直. (2)判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直. (3)性质定理:垂直于同一个平面的两条直线平行. 2.二面角的有关概念(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.(2)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.3.平面与平面垂直(1)定义:如果两个平面所成的二面角是直二面角,就说这两个平面互相垂直. (2)判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.(3)性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.4.直线和平面所成的角(1)平面的一条斜线和它在平面上的射影所成的锐角叫做这条直线和这个平面所成的角. (2)当直线与平面垂直和平行(或直线在平面内)时,规定直线和平面所成的角分别为90°和0°.1.(人教A 版教材习题改编)给出下列四个命题:①垂直于同一平面的两条直线相互平行;②垂直于同一平面的两个平面相互平行;③若一个平面内有无数条直线与另一个平面都平行,那么这两个平面相互平行;④若一条直线垂直于一个平面内的任一直线,那么这条直线垂直于这个平面.其中真命题的个数是()A.1B.2C.3D.4『解析』由线面垂直的性质定理知①正确;由线面垂直的定义知④正确,故选B.『答案』B2.已知直线a,b和平面α,且a⊥b,a⊥α,则b与α的位置关系为()A.b⊂αB.b∥αC.b⊂α或b∥αD.b与α相交『解析』由a⊥b,a⊥α知b⊂α或b∥α,但直线b不与α相交.『答案』C3.边长为a的正方形ABCD沿对角线BD折成直二面角,则AC的长为()A.2aB.22a C.32a D.a『解析』如图所示:取BD的中点O连接A′O,CO,则∠A′OC是二面角A′—BD—C的平面角.即∠A′OC=90°,又A′O=CO=22a,∴A′C=a22+a22=a,即折叠后AC的长(A′C)为a.『答案』D4.下列命题中错误..的是()A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β『解析』A显然正确,根据面面垂直的判定,B正确.对于命题C,设α∩γ=m,β∩γ=n,在平面γ内取一点P不在l上,过P作直线a,b,使a⊥m,b⊥n.∵γ⊥α,a⊥m,则a⊥α,∴a⊥l,同理有b⊥l.又a∩b=P,a⊂γ,b⊂γ,∴l ⊥γ.故命题C正确.对于命题D,设α∩β=l,则l⊂α,且l⊂β.故在α内存在直线不垂直于平面β,即命题D 错误. 『答案』 D5.(2012·浙江高考)设l 是直线,α,β是两个不同的平面( ) A .若l ∥α,l ∥β,则α∥β B .若l ∥α,l ⊥β,则α⊥β C .若α⊥β,l ⊥α,则l ⊥β D .若α⊥β,l ∥α,则l ⊥β『解析』 设α∩β=a ,若直线l ∥a ,且l ⊄α,l ⊄β,则l ∥α,l ∥β,因此α不一定平行于β,故A 错误;由于l ∥α,故在α内存在直线l ′∥l ,又因为l ⊥β,所以l ′⊥β,故α⊥β,所以B 正确;若α⊥β,在β内作交线的垂线l ,则l ⊥α,此时l 在平面β内,因此C 错误;已知α⊥β,若α∩β=a ,l ∥a ,且l 不在平面α,β内,则l ∥α且l ∥β,因此D 错误.『答案』 B直线与平面垂直的判定与性质图7-5-1(2012·广东高考)如图7-5-1所示,在四棱锥P -ABCD 中,AB ⊥平面P AD ,AB ∥CD ,PD =AD ,E 是PB 的中点,F 是DC 上的点且DF =12AB ,PH 为△P AD 中AD 边上的高.(1)证明:PH ⊥平面ABCD ;(2)若PH =1,AD =2,FC =1,求三棱锥E -BCF 的体积; (3)证明:EF ⊥平面P AB .『思路点拨』 (1)证PH ⊥AB ,PH ⊥AD .(2)连接BH ,取BH 的中点G ,证明EG ⊥平面ABCD ,且EG =12PH .(3)取P A 的中点M ,连接MD ,ME ,证明MD ⊥平面P AB ,MD ∥EF . 『尝试解答』 (1)因为AB ⊥平面P AD ,PH ⊂平面P AD , 所以PH ⊥AB .因为PH 为△P AD 中AD 边上的高,所以PH ⊥AD .因为PH ⊄平面ABCD ,AB ∩AD =A ,AB ,AD ⊂平面ABCD ,所以PH ⊥平面ABCD .(2)如图,连接BH ,取BH 的中点G ,连接EG . 因为E 是PB 的中点, 所以EG ∥PH , 且EG =12PH =12.因为PH ⊥平面ABCD , 所以EG ⊥平面ABCD .因为AB ⊥平面P AD ,AD ⊂平面P AD ,所以AB ⊥AD ,所以底面ABCD 为直角梯形, 所以V E -BCF =13S △BCF ·EG =13·12·FC ·AD ·EG =212.(3)取P A 中点M ,连接MD ,ME .因为E 是PB 的中点,所以ME 綊12AB .又因为DF 綊12AB ,所以ME 綊DF ,所以四边形MEFD 是平行四边形,所以EF ∥MD .因为PD =AD ,所以MD ⊥P A . 因为AB ⊥平面P AD ,所以MD ⊥AB .因为P A ∩AB =A ,所以MD ⊥平面P AB ,所以EF ⊥平面P AB .,1.证明直线和平面垂直的常用方法有:(1)判定定理;(2)垂直于平面的传递性(a ∥b ,a ⊥α⇒b ⊥α);(3)面面平行的性质(a ⊥α,α∥β⇒a ⊥β).(4)面面垂直的性质. 2.证明线面垂直的核心是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.3.线面垂直的性质,常用来证明线线垂直.图7-5-2(2013·大连模拟)如图7-5-2,四边形ABCD 为正方形,QA ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .(1)证明:PQ ⊥平面DCQ ;(2)求棱锥Q —ABCD 的体积与棱锥P —DCQ 的体积的比值. 『解』 (1)证明 由条件知四边形PDAQ 为直角梯形. 因为QA ⊥平面ABCD ,所以QA ⊥DC ,又四边形ABCD 为正方形,DC ⊥AD ,又QA ∩AD =A , 所以DC ⊥平面PDAQ ,可得PQ ⊥DC . 在直角梯形PDAQ 中可得DQ =PQ =22PD ,则PQ ⊥QD . 又DQ ∩DC =D ,所以PQ ⊥平面DCQ . (2)设AB =a .由题设知AQ 为棱锥Q —ABCD 的高, 所以棱锥Q —ABCD 的体积V 1=13a 3.由(1)知PQ 为棱锥P —DCQ 的高, 而PQ =2a ,△DCQ 的面积为22a 2, 所以棱锥P —DCQ 的体积V 2=13a 3.故棱锥Q —ABCD 的体积与棱锥P —DCQ 的体积的比值为1.面面垂直的判定与性质图7-5-3(2012·课标全国卷)如图7-5-3,在三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB =90°,AC =BC =12AA 1,D 是棱AA 1的中点.(1)证明:平面BDC 1⊥平面BDC ;(2)平面BDC 1分此棱柱为两部分,求这两部分体积的比. 『思路点拨』 (1)证明DC 1⊥平面BDC .(2)先求四棱锥B —DACC 1的体积,再求三棱柱ABC —A 1B 1C 1的体积.『尝试解答』 (1)由题设知BC ⊥CC 1,BC ⊥AC ,CC 1∩AC =C ,所以BC ⊥平面ACC 1A 1. 又DC 1⊂平面ACC 1A 1,所以DC 1⊥BC .由题设知∠A 1DC 1=∠ADC =45°,所以∠CDC 1=90°,即DC 1⊥DC . 又DC ∩BC =C ,所以DC 1⊥平面BDC . 又DC 1⊂平面BDC 1,故平面BDC 1⊥平面BDC . (2)设棱锥B -DACC 1的体积为V 1,AC =1.由题意得 V 1=13×1+22×1×1=12.又三棱柱ABC -A 1B 1C 1的体积V =1,所以(V -V 1)∶V 1=1∶1. 故平面BDC 1分此棱柱所得两部分体积的比为1∶1.,1.解答本题(1)的关键是通过证明BC ⊥平面ACC 1A 1来证明DC 1⊥BC .2.证明面面垂直常用面面垂直的判定定理或定义法.(1)利用判定定理证明面面垂直实质是证明线面垂直,与其中一个平面垂直的直线的选取至关重要,要根据条件的直观图准确选取.(2)利用定义证明面面垂直实质是证明线线垂直,即证明两平面形成的二面角是直角.图7-5-4(2013·无锡模拟)如图7-5-4所示,在四棱锥P —ABCD 中,平面P AD ⊥平面ABCD ,AB =AD ,∠BAD =60°,E ,F 分别是AP ,AD 的中点.求证:(1)直线EF ∥平面PCD ; (2)平面BEF ⊥平面P AD .『证明』 (1)如图,在△P AD 中,因为E ,F 分别为AP ,AD 的中点,所以EF ∥PD . 又因为EF ⊄平面PCD ,PD ⊂平面PCD ,所以直线EF∥平面PCD.(2)连接BD.因为AB=AD,∠BAD=60°,所以△ABD为正三角形.因为F是AD的中点,所以BF⊥AD.因为平面P AD⊥平面ABCD,BF⊂平面ABCD,平面P AD∩平面ABCD=AD,所以BF⊥平面P AD.又因为BF⊂平面BEF.所以平面BEF⊥平面P AD.直线、平面垂直的综合应用图7-5-5(2013·哈尔滨模拟)如图7-5-5所示,四棱锥P—ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(1)证明:P A⊥BD;(2)设PD=AD=1,求棱锥D—PBC的高.『思路点拨』(1)证明BD⊥平面P AD.(2)作DE⊥PB,证明DE⊥平面PBC,在△PDB中计算DE的长.『尝试解答』(1)因为∠DAB=60°,AB=2AD,由余弦定理,BD=3AD,从而AB2=AD2+BD2,故AD⊥BD,又PD⊥底面ABCD,可得BD⊥PD,所以BD⊥平面P AD,故P A⊥BD.(2)如图,作DE⊥PB,垂足为E.已知PD⊥底面ABCD,则PD⊥BC.由(1)知BD⊥AD,又BC∥AD,∴BC⊥BD.故BC⊥平面PBD,BC⊥DE.则DE⊥平面PBC.∵AD=1,AB=2,∠DAB=60°,∴BD= 3.又PD=1,∴PB=2.根据DE·PB=PD·BD,得DE=3 2,即棱锥D—PBC的高为3 2.,1.解答本题的关键是通过计算证明AD⊥BD,这也是解题中容易忽视的方法.2.面面垂直的性质是用来推证线面垂直的重要依据,其核心是其中一个面内的直线与交线垂直.在其中一个面内作交线的垂线,这是常作的辅助线.3.空间的直线与直线、直线与平面、平面与平面的垂直或平行问题常常互相转化,将空间问题化归为平面问题是处理立体几何问题的重要思想.图7-5-6如图7-5-6所示,平行四边形ABCD中,∠DAB=60°,AB=2,AD=4,将△CBD沿BD折起到△EBD的位置,使平面EDB⊥平面ABD.(1)求证:AB⊥DE;(2)求三棱锥E—ABD的侧面积.『解』(1)证明在△ABD中,∵AB=2,AD=4,∠DAB=60°,∴BD=AB2+AD2-2AB·AD cos∠DAB=23,∴AB⊥BD.又∵平面EBD⊥平面ABD,平面EBD∩平面ABD=BD,AB⊂平面ABD,∴AB⊥平面EBD,∵DE⊂平面EBD,∴AB⊥DE.(2)由(1)知AB⊥BD,CD∥AB,∴CD⊥BD,从而DE⊥BD.在Rt△DBE中,∵DB=23,DE=DC=AB=2,∴S△DBE=12DB·DE=2 3.又∵AB⊥平面EBD,BE⊂平面EBD,∴AB⊥BE.∵BE=BC=AD=4,∴S△ABE=12AB·BE=4.∵DE⊥BD,平面EBD⊥平面ABD,∴ED⊥平面ABD,又AD⊂平面ABD,∴ED⊥AD,∴S△ADE=12AD·DE=4.综上,三棱锥E—ABD的侧面积S=8+2 3.线面角、二面角(2013·广州模拟)如图7-5-7,在锥体P—ABCD中,ABCD是边长为1的菱形,且∠DAB=60°,P A=PD=2,PB=2,E,F分别是BC,PC的中点.图7-5-7(1)证明:AD⊥平面DEF;(2)求二面角P—AD—B的余弦值.『思路点拨』(1)取AD的中点G,则平面PGB∥平面DEF,只需证AD⊥平面PGB 即可.(2)作出二面角的平面角∠PGB,在△PGB中求解.『尝试解答』(1)取AD中点G,连接PG,BG.∵四边形ABCD为菱形,且E,G分别为BC,AD中点,则BG綊DE.又F为PC中点,则EF∥PB,则平面DEF∥平面GBP.∵G是AD中点且P A=PD,∴PG ⊥AD .在△ABG 中,AG =12,AB =1,且∠DAB =60°,由余弦定理得BG =32,AB 2=AG 2+BG 2,则AG ⊥BG . ∵PG ∩BG =G ,∴AD ⊥平面PGB ,即AD ⊥平面DEF . (2)由(1)知二面角P —AD —B 的平面角为∠PGB . 在Rt △PGA 中,PG =P A 2-AG 2=72. 在△PGB 中,BG =32,PB =2,由余弦定理知,cos ∠PGB =PG 2+BG 2-PB 22PG ·BG =74+34-42×72×32=-217.,1.第(1)问关键是利用平面PGB ∥平面DEF ,若AD ⊥平面PGB ,则一定有AD ⊥平面DEF .2.求线面角、二面角的常用方法.(1)线面角的求法:找出斜线在平面上的射影,关键是作垂线,找垂足,要把线面角转化到一个三角形中求解.(2)二面角的大小求法:二面角的大小用它的平面角来度量.平面角的作法常见的有:①定义法;②垂面法.注意利用等腰、等边三角形的性质.图7-5-8(2012·湖南高考)如图7-5-8所示,在四棱锥P -ABCD 中,PA⊥平面ABCD ,底面ABCD 是等腰梯形,AD ∥BC ,AC ⊥BD .(1)证明:BD ⊥PC ;(2)若AD =4,BC =2,直线PD 与平面P AC 所成的角为30°,求四棱锥P -ABCD 的体积.『解』 (1)证明 因为P A ⊥平面ABCD ,BD ⊂平面ABCD ,所以P A ⊥BD .又AC ⊥BD ,P A ∩AC =A , 所以BD ⊥平面P AC .而PC ⊂平面P AC ,所以BD ⊥PC .(2)如图所示,设AC 和BD 相交于点O ,连接PO ,由(1)知,BD ⊥平面P AC ,所以∠DPO 是直线PD 和平面P AC 所成的角.从而∠DPO =30°.由BD ⊥平面P AC ,PO ⊂平面P AC 知,BD ⊥PO .在Rt △POD 中,由∠DPO =30°得PD =2OD .因为四边形ABCD 为等腰梯形,AC ⊥BD ,所以△AOD ,△BOC 均为等腰直角三角形.从而梯形ABCD 的高为12AD +12BC =12×(4+2)=3,于是梯形ABCD 的面积S =12×(4+2)×3=9.在等腰直角三角形AOD 中,OD =22AD =22, 所以PD =2OD =42,P A =PD 2-AD 2=4.故四棱锥P -ABCD 的体积为V =13×S ×P A =13×9×4=12.一种关系垂直问题的转化关系三类证法1.证明线线垂直的方法(1)定义:两条直线所成的角为90°; (2)平面几何中证明线线垂直的方法; (3)线面垂直的性质:a ⊥α,b ⊂α⇒a ⊥b ;(4)线面垂直的性质:a ⊥α,b ∥α⇒a ⊥b . 2.证明线面垂直的方法(1)线面垂直的定义:a 与α内任何直线都垂直⇒a ⊥α; (2)判定定理1:⎭⎪⎬⎪⎫m 、n ⊂α,m ∩n =A l ⊥m ,l ⊥n ⇒l ⊥α; (3)判定定理2:a ∥b ,a ⊥α⇒b ⊥α; (4)面面平行的性质:α∥β,a ⊥α⇒a ⊥β;(5)面面垂直的性质:α⊥β,α∩β=l ,a ⊂α,a ⊥l ⇒a ⊥β. 3.证明面面垂直的方法(1)利用定义:两个平面相交,所成的二面角是直二面角; (2)判定定理:a ⊂α,a ⊥β⇒α⊥β.通过近两年的高考试题看,线线、线面、面面垂直的判定与性质的应用是考查的重点和热点,主要考查空间想象能力和推理论证能力,以及转化思想的应用.题型全面,但主要以解答题的形式考查,规范解答至关重要.规范解答之十一 立体几何中探索性问题的求解策略(14分)(2012·北京高考)如图7-5-9(1),在Rt △ABC 中,∠C =90°,D ,E 分别为AC ,AB 的中点,点F 为线段CD 上的一点,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1F ⊥CD ,如图7-5-9(2).图7-5-9(1)求证:DE ∥平面A 1CB . (2)求证:A 1F ⊥BE .(3)线段A 1B 上是否存在点Q ,使A 1C ⊥平面DEQ ?说明理由. 『规范解答』 (1)因为D ,E 分别为AC ,AB的中点,所以DE∥BC.2分又因为DE⊄平面A1CB,所以DE∥平面A1CB.4分(2)由已知得AC⊥BC且DE∥BC,所以DE⊥AC.所以DE⊥A1D,DE⊥CD.所以DE⊥平面A1DC.而A1F⊂平面A1DC,6分所以DE⊥A1F.又因为A1F⊥CD,CD∩DE=D,所以A1F⊥平面BCDE,又BE⊂平面BCDE,所以A1F⊥BE.9分(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,则PQ∥BC.又因为DE∥BC,所以DE∥PQ.所以平面DEQ即为平面DEP.由(2)知,DE⊥平面A1DC,所以DE⊥A1C.又因为P是等腰三角形DA1C底边A1C的中点,所以A1C⊥DP.又DP∩DE=D,所以A1C⊥平面DEP.12分从而A1C⊥平面DEQ.故线段A1B上存在点Q,使得A1C⊥平面DEQ.14分『解题程序』第一步:根据三角形中位线证明DE∥BC.从而证明DE∥平面A1CB;第二步:利用线面垂直的判定定理证明DE⊥平面A1DC;第三步:通过证明A1F⊥平面BCDE来证明A1F⊥BE;第四步:分别取A1C,A1B的中点P,Q,证明P、Q、D、E四点共面;第五步:通过证明PD⊥A1C来证明A1C⊥平面DEQ.易错提示:(1)想不到或不会利用DE⊥A1D,导致无法求解.(2)对于是否存在型问题没有解题思路,从而无法作出辅助线,导致思路受阻.防范措施:(1)对于平面图形的折叠问题,一定要注意折叠前后的不变量与可变量,要有意识地注意折叠前后不变的垂直性与平行性.(2)对于是否存在型问题,首先要分析条件,看结论需要的条件已有哪些,分析欲使结论成立,还需要什么条件,结合所求,不难作出辅助线.1.(2013·青岛质检)设α、β为两个不同的平面,m、n为两条不同的直线,且m⊂α,n⊂β,有两个命题,p:若m∥n,则α∥β;q:若m⊥β,则α⊥β.那么()A.“p或q”是假命题B.“p且q”是真命题C.“非p或q”是假命题D.“非p且q”是真命题『解析』依题意得,命题p是假命题,命题q为真命题,所以“非p且q”是真命题.『答案』D图7-5-102.(2012·福建高考)如图7-5-10,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M为棱DD1上的一点.(1)求三棱锥A-MCC1的体积;(2)当A1M+MC取得最小值时,求证:B1M⊥平面MAC.『解』 (1)由长方体ABCD -A 1B 1C 1D 1知, AD ⊥平面CDD 1C 1,∴点A 到平面CDD 1C 1的距离等于AD =1. 又S △MCC 1=12CC 1·CD =12×2×1=1,∴VA -MCC 1=13AD ·S △MCC 1=13.(2)证明 将侧面CDD 1C 1绕DD 1逆时针转90°展开,与侧面ADD 1A 1共面(如图), 当A 1,M ,C ′共线时,A 1M +MC 取得最小值. 由AD =CD =1,AA 1=2, 得M 为DD 1的中点.连接A 1M 、B 1M ,在△C 1MC 中,MC 1=2,MC =2,CC 1=2,∴CC 21=MC 21+MC 2,得∠CMC 1=90°, 即CM ⊥MC 1.又由长方体ABCD -A 1B 1C 1D 1知, B 1C 1⊥平面CDD 1C 1. ∴B 1C 1⊥CM . 又B 1C 1∩C 1M =C 1, ∴CM ⊥平面B 1C 1M , 得CM ⊥B 1M . 同理可证,B 1M ⊥AM . 又AM ∩MC =M , ∴B 1M ⊥平面MAC .。

相关文档
最新文档