新人教版七年级数学上册第一章《有理数》教案1
新人教版七年级数学上册第一章《有理数(第1课时)》教案
新人教版七年级数学上册第一章《有理数(第1课时)》教案一、内容及其解析1.内容有理数的概念,有理数的分类.2.内容解析有理数是初中数学中数的范围的第一次扩充,是在学习了正整数、0、负整数以及正分数、负分数的基础上,通过引入负数的概念而完成的.在此过程中,渗透着数的扩充以及数的运算的基本思想,是让学生感受在已有知识的基础上提出问题、研究问题的载体,也是增强学生的数感的有效载体.本节内容的核心是通过归纳已学过的数的类型,给出有理数的概念.这里没有要求学生理解抽象的定义,而是强调了通过具体实例,在对已有的数的认识基础上完成拓展.在学生有较充分的基础后,再在本章小结中把有理数的概念严格化.本课的教学重点:体会有理数的概念;体会有理数的两种不同分类方法,感受数的扩充的基本思想.二、教材解析本节课是在学习了正数、负数的概念之后,通过添加负数这一类“新数”,使数的范围扩充到有理数.教科书总结了从小学开始,通过逐步增加新的数而将数的范围逐步扩充的过程.这里渗透了数的扩充的基本思想,为以后从有理数扩充到实数的学习奠定了基础.教材在课后练习中用了“集合”这一名词,目的是渗透一些现代数学知识.这里,“集合”可暂不作为一个数学概念,只看作一个普通名词,知道所有的正整数在一起组成正整数集合,所有的负整数在一起组成负整数集合,不必再引申.三、教学目标和目标解析1.教学目标(1)理解有理数的概念;(2)掌握有理数的分类.2.目标解析(1)学生能够判断一个数是否为有理数,掌握判断依据;(2)对于给出的一组数能够按要求进行分类.了解“0”在有理数分类中的作用.四、教学问题诊断分析有理数的概念是通过例举、归纳的方法给出的,因为学生在小学已接触过负数,对有理数已经有了一定的认识,所以接受概念没有太大的困难.在有理数的分类中,因为涉及到不同的分类标准,这是学生在以往学习中很少碰到的,他们对为什么要分类,怎样确定分类标准,如何进行分类等问题,都存在一定的困难,所以需要教师加强引导.另外,0在有理数分类中是一个特例,需要特别处理.基于以上分析,确定本课的教学难点是:有理数分类中,分类标准的确定以及对0的作用的理解.五、教学过程设计问题1请大家回顾一下,从小学到现在,我们学习了哪些数?你能分别举几个例子吗? 师生活动:学生回答,老师把学生举出的数写在黑板上.【设计意图】通过学生自己举例,梳理已经学过的数,为引入有理数的概念做好铺垫. 问题2观察黑板上的这些数,你能将它们填入下面相应的圈内吗?师生活动:由学生代表板书填写.【设计意图】让学生在解决问题的过程中,明确正整数、负整数、正分数、负分数的概念,感受0的作用.为给出有理数的概念做好准备.教师讲解:正整数、0、负整数统称为整数;正分数、负分数统称为分数.整数与分数统称为有理数.按上述定义,我们有:正整数整数 零 有理数 负整数 分数 正分数 负分数 问题3 对有理数进行分类,可以加深我们对有理数的认识.从有理数的定义出发,你 还能给出与上面不同的分类方法吗?⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数师生活动:学生回答问题前,老师可提示分类线索,即在有理数的概念中,涉及到整数还是分数,正数还是负数,这就是不同分类标准的来源.按性质符号分类:正整数 正分数有理数 零负整数负分数【设计意图】让学生寻找不同的标准对有理数进行分类,以加深对有理数结构的感知,培养学生的数感.问题4 试试看,你能解决下面的问题吗?1.把下列各数填入相应的集合圈里:―18,722,3.1 415,0,2 012,―53,―0.124 847,95%教师解释:数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只给出了有限的几个数,所以应加上省略号.【设计意图】初步向学生渗透集合思想,加深对有理数概念的理解,同时体会0的作用.2.定义辨析练习(1)同桌之间,一名同学说出几个有理数,另一名同学指出每个数属于哪一类?【设计意图】增强趣味性和同学之间的合作意识.(2)下列说法正确的有几个?①零是整数;②零是有理数;③零是自然数;④零是正数;⑤零是负数.【设计意图】让同学们加深对0的认识和理解.(3)下列说法错误的有几个?①负整数和负分数统称为负有理数;正有理数 负有理数②正整数,0和负整数统称为整数;③正有理数与负有理数组成全体有理数.【设计意图】加深对有理数概念和分类的理解.3.练习、巩固概念教科书第7页练习2.问题5 请同学们回顾本节课所学知识,回答下列问题:1.有理数是怎样定义的?2.有理数有几种分类方法?具体是怎样分类的?3.有理数的学习过程中,应注意什么?师生活动:教师与学生一起回顾本节课所学主要内容,并请学生回答问题.【设计意图】通过小结,使学生梳理本节课所学内容,掌握本节课的核心:有理数的概念和分类方法.布置作业:教科书习题1.2第1题.六、目标检测设计1.把下列各数填入相应的集合的括号内:27,-5.8,2 002,76,-1,90%,3.14,0,-312,-2,1,-0.01. (1)整数集合:{ …} (2)分数集合:{ …} (3)负有理数集合:{ …} (4)正有理数集合:{ …} 【设计意图】检测学生对有理数分类方法的掌握情况.2.下列语句:(1)所有整数都是正数;(2)所有正数都是整数;(3)分数是有理数;(4)在有理数中除了负数就是正数.其中正确的语句的个数有( ).A .0个B .1个C .3个D .4个【设计意图】此题较全面地考查了有理数的概念,题目的特点是阅读量大,只要一个语句判断错误,则可能导致答错题目,是一道单选形式的多选题.检测学生是否能够认真理解概念,对有理数中的特殊元素(如0)是否能够正确理解.。
第一章 有理数(教案)人教版(2024)数学七年级上册
第一章有理数1.1正数和负数(2课时)第1课时正数和负数的概念1.了解正数和负数的产生,知道什么是正数和负数;2.理解正负数表示的量的意义,知道0既不是正数,也不是负数;3.会用正数、负数表示具有相反意义的量.重点正、负数的意义.难点1.负数的意义;2.具有相反意义的量.一、导入新课教师投影展示教材第2页图片,让学生体验自然数的产生,分数的产生离不开生产和生活的需要,通过设置如下问题引出课题.问题1:天气预报:北京市冬季某天的温度为-5~5℃,它的确切含义是什么?这一天北京市的温差是多少?问题2:有三个队参加的足球比赛中,红队胜黄队(4∶1),黄队胜蓝队(1∶0),蓝队胜红队(1∶0),如何确定三个队的净胜球与排名顺序?问题3:某机器零件的长度设计为100 mm,加工图纸标注的合格尺寸为100±0.5(mm),这里的0.5代表什么意思?合格产品的长度范围是多少?活动1:游戏“说反话”;活动2:写出至少两组生活中具有相反意义的量,并与同学交流,找到更多的具有相反意义的量.二、探究新知(一)正数和负数的概念活动3:自学课本第二页内容归纳:像3,1.8%,3.5这样大于0的数叫作正数.像-3,-2.7,-4.5这样在正数前面加上负号“-”的数叫作负数.0既不是正数,也不是负数.【方法总结】:对于正数和负数不能简单地理解为:带“+”号的数是正数,带“-”号的数是负数,要看其本质是正数还是负数.0既不是正数也不是负数,后面会学到+(-3)不是正数,-(-2)不是负数.(二)用正数和负数表示具有相反意义的量例1一物体沿东西两个相反的方向运动时,可以用正负数表示它们的运动.(1)如果向东运动4 m记作4 m,那么向西运动5 m记作__-5_m__;(2)如果-7 m表示物体向西运动7 m,那么6 m表明物体向__东__运动.例2一个月内,小明体重增加2 kg,小华体重减少1 kg,小强体重无变化,写出他们这个月的体重增长值.答:小明体重增长2 kg,小华体重增长-1 kg,小强体重增长0 kg.三、课堂练习1.数学中采用符号来区分具有相反意义的量.①高于海平面8848米,记作+8848米;低于海平面155米,记作__-155__米;②如果水位升高4 m时水位变化记作+4 m,那么水位下降2 m时水位变化记作__-2__ m,水位不升不降时水位变化记作__0__ m.2.升降机运行时,如果下降13米记作“-13米”,那么当它上升25米时,记作__+25米__.3.孔子出生于公元前551年,如果用-551年表示,那么司马迁出生于公元前145年可表示为__-145__年,欧阳修出生于公元1007年,可表示为__+1007__年.4.某种零件,标明要求是φ:20±0.02 mm(φ表示直径,单位:毫米),经检查,一个零件的直径是19.9 mm,该零件__不合格__(填“合格”或“不合格”).【方法总结】解决此类问题的关键是理解“20±0.02 mm”的含义,20是标准,“+”表示比标准多,“-”表示比标准少.四、课堂小结小结:这堂课我们学习了哪些知识?你能说一说吗?五、课后作业教材P5习题1.1第4,5,6,8题.本课是有理数的第一课时,引入负数是数的范围的一次重要扩充,学生头脑中关于数的结构要做重大调整(其实是一次知识的顺应过程),而负数相对于以前的数,对学生来说显得更抽象,因此,这个概念并不是一下就能建立的.为了接受这个新的数,就必须对原有的数的结构进行整理.负数的产生主要是因为原有的数不够用了(不能正确简洁地表示具有相反意义的量),书本的例子或图片中出现的负数就是让学生去感受和体验这一点.第2课时正数、负数的应用以及0的意义进一步理解正、负数及0的意义,熟练掌握正负数的表示方法,会用正、负数表示具有相反意义的量.重点进一步理解正、负数及0表示的量的意义.难点理解负数及0表示的量的意义.一、导入新课师:我国新疆吐鲁番盆地的艾丁湖,其海拔为-154.31 m,你能用语言表述它与海平面的高度关系吗?思考:“0”为什么既不是正数也不是负数呢?学生思考讨论,借助举例说明.二、探究新知活动1:尝试解释正负数的含义.教师出示问题:1.学生举例说明正、负数在实际中的应用.2.在地形图上表示某地的高度时,需要以海平面为基准(规定海平面的海拔为0).通常用正数表示高于海平面的某地的海拔,负数表示低于海平面的某地的海拔.珠穆朗玛峰的海拔为8848.86米,它表示什么含义?某地的海拔为-750米,它表示什么含义?3.记录账目时,通常用正数表示收入款额,负数表示支出款额.活动2:感受数0的含义(同学之间相互交流).师:0是正数与负数的分界.0℃是一个确定的温度,海拔0 m表示海平面的平均高度.0的意义已不仅是表示“没有”.4.教师讲解教材P4例2.三、课堂练习1.下列语句正确的是( C )A.0℃表示没有温度B.0表示什么也没有C.0是非正数D.0既可以看作是正数又可以看作是负数2.你能举出实际生活中0表示的实际意义吗?请举两例.【答案】答案不唯一,如海平面平均高度为0米;0摄氏度表示冰水混合物的温度四、课堂小结小结:谈谈你对正数、负数和0的认识.1.0既不是正数也不是负数,它是正负数的分界.2.具有相反意义的量应满足的条件:①必须是同类量,而且是成对出现的;②只要求意义相反,不要求数量一定相等.五、课后作业1.帮助家长记录一个月的生活收支帐目(收入计为正数,支出计为负数).2.教材P5习题1.1第1,2,3,7题.“数0既不是正数,也不是负数.在引入负数后,0除了表示一个也没有以外,还是正数和负数的分界.了解0的这一层意义,也有助于对正负数的理解,且对数的顺利扩张和有理数概念的建立都有帮助.教学中要让学生体验数学知识在实际中的合理应用,在体验中感悟和深化知识,通过实际例子的学习激发学生学习数学的兴趣.1.2有理数及其大小比较1.2.1有理数的概念1.理解有理数的意义;2.能把给出的有理数按要求分类;3.了解0在有理数分类中的作用.重点会把所给的各数填入它所属于的集合里.难点掌握有理数的两种分类.一、导入新课(1)上节课我们都学了什么知识?(2)某天毛毛看报纸,见到下面一段内容:冬季的一天,某地的最高气温为6℃,最低气温达到-10℃,平均气温是0℃,而同一天北京的气温为-3℃~7℃.问题1:这里面出现的数是什么数? 师:同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.学生讨论. 二、探究新知师:你能列举出一些你已经学过的各类型的数吗?学生列举:3,5.7,-7,-9,-10,0,13 ,25 ,-356 ,-7.4,5.2,…师:你能说说这些数的特点吗?学生回答,并相互补充.师:目前我们所学的小数有哪几类?你能尝试把它们化为分数吗? 概念归纳:可以写成分数形式的数统称为有理数. 师:思考:有理数可以怎么分类? 按定义分⎩⎪⎨⎪⎧整数⎩⎨⎧正整数0负整数分数⎩⎨⎧正分数负分数按性质符号分有理数⎩⎪⎨⎪⎧正有理数⎩⎨⎧正整数正分数0负有理数⎩⎨⎧负整数负分数三、课堂练习1.把下列各数填入相应的集合内:3.1415926,0,2008,-12 ,-7.88,10%,10.1,0.67,-89.3.1415926,2008,10%,10.10.67,正有理数集合) -12,-7.88, -89 ,负有理数集合) 2.把下列各数填在相应的大括号里:-4,0.001,0,-1.7,15,+1.5.正数集合{0.001,15,+1.5…}负数集合{-4,-1.7…}正整数集合{15…}分数集合{0.001,-1.7,+1.5…}四、课堂小结小结:谈一谈今天你的收获.1.有理数的概念;2.有理数的分类;3.数学方法:分类思想.五、作业教材P16习题1.2第1题.本课在引入了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概念.本节课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,让学生了解分类的思想,避免了直接进行分类所带来的枯燥性.1.2.2数轴1.了解数轴的概念,知道数轴的三要素,会画数轴;2.能将已知数在数轴上表示出来,能说出数轴上的已知点表示的数.重点数轴的概念.难点从直观认识到理性认识,建立数轴的概念,正确地画出数轴.一、导入新课1.画情境图,体会方向与距离.在一条东西向的马路上,有一个汽车站,汽车站东5 m 和25 m处分别有一棵柳树和一棵杨树,汽车站西10 m和15 m处分别有一棵槐树和一根电线杆,试画图表示这一情境.思考:怎样简明地表示这些树、电线杆与汽车站牌的相对位置关系(方向、距离)?提示:我们把正数、0和负数用一条直线上的点表示出来.2.温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出温度计所表示的三个温度.出示温度计,并让同学读出任意的三个数.(小组讨论,交流合作,动手操作)二、探究新知教师:由上述两个问题我们得到什么启发?你能用一条直线上的点表示有理数吗?让学生在讨论的基础上动手操作,在操作的基础上归纳出可以表示有理数的直线必须满足的条件.从而得出数轴的三要素:原点、正方向、单位长度.(小组讨论,交流归纳)类比归纳数轴的画法:画一条水平直线,在直线上取一点表示0,并把这个点叫作原点,选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到下面的数轴.做游戏:教师准备一根绳子,请8个同学走上来,把位置调整为等距离,规定第3个同学为原点,由西向东为正方向,每个同学都有一个整数编号,请大家记住,现在请第一排的同学依次发出口令,口令为数字时,该数对应的同学要回答“到”;口令为该同学的名字时,该同学要报出他对应的“数字”,如果规定第4个同学为原点,游戏还能进行吗?问题:1.你能举出一些在现实生活中用直线表示数的实际例子吗?2.如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?3.哪些数表示的点在原点的左边,哪些数表示的点在原点的右边,由此你会发现什么规律?4.每个数表示的点到原点的距离是多少?由此你会发现什么规律?结论:所有的有理数都可以用数轴上的点表示.三、课堂练习1.在数轴上画出表示下列各数的点.1,-5,-2.5,4.5,0.练习:布置学生阅读教材,重新梳理知识,然后完成教材练习.四、课堂小结小结:谈一谈你对数轴的认识.1.数轴的意义,数轴的三要素.定义:规定了原点、正方向和单位长度的直线叫作数轴.三要素:原点、正方向、单位长度.2.数轴的画法.3.所有的有理数都可以用数轴上的点来表示,原点右边的数是正数,原点左边的数是负数,0是正负数的分界限点.五、课后作业1.下列说法中正确的是( C )A.在数轴上的点表示的数不是正数就是负数B.数轴的长度是有限的C.一个有理数总可以在数轴上找到一个表示它的点D.所有整数都可以用数轴上的点表示,但分数就不一定能找到表示它的点2.数轴上表示正数的点在原点的__右__边,表示负数的点在原点的__左__边,表示0的点在__原点__.3.数轴上,在原点左边且离原点3个单位长度的点表示的数是__-3__;距离原点4个单位长度的点表示的数是__4和-4__;点A表示的数是-1,则距离点A12个单位长度的点表示的数是__11和-13__.4.教材P17习题1.2第2题.数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体现出了从感性认识,到理性认识,到抽象概括的认识规律.1.2.3相反数1.了解相反数的意义;2.借助数轴理解相反数的概念,知道互为相反数的两个数在数轴上的位置关系;3.给出一个数,能说出它的相反数.重点相反数的概念.难点相反数的识别及理解.一、导入新课1.什么是数轴?2.数轴三要素.相反数的概念的引出.演示活动:要一个学生向前走5步,向后走5步.提出问题:如果向前为正、向后为负,向前走5步,向后走5步各记作什么?学生回答.师:这位同学两次行走的距离都是5步,但两次的方向相反,这就决定这两个数的符号不同,像这样的两个数叫做互为相反数.二、探究新知活动:观察下列一组数+1和-1,+2.5和-2.5,+4和-4,并把它们在数轴上表示出来.思考:(1)上述各对数之间有什么特点?(2)请写出一组具有上述特点的数;(3)你能得出相反数的概念吗?(4)表示各对数的点在数轴上有什么位置关系?画一数轴,在数轴上任意标出两点,使这两点表示的数互为相反数.(一个学生板演,其他学生自练)师:这样的两个数即互为相反数,你能叙述具备什么特点的两个数互为相反数吗?学生讨论后回答.师指出:0的相反数是0.提出问题:a前面加“-”表示a的相反数,-(+1.1)表示什么?-(-7)呢?-(-9.8)呢?它们的结果应是多少?学生活动:讨论、分析、回答.三、课堂练习判断题:(1)-5是5的相反数;( √ )(2)-5是相反数;( × )(3)相反数等于它本身的数只有0;( √ )(4)-5和5互为相反数.( √ )填空题1.-(+4)是__4__的相反数,-(+4)=__-4__. 2.-(+15 )是__15 __的相反数,-(+15 )=__-15__.3.-(-7.1)是__-7.1__的相反数,-(-7.1)=__7.1__.4.-(-100)是__-100__的相反数,-(-100)=__100__. 学生活动:思考后口答.学生回答后教师引导:在一个数前面加上“-”表示求这个数的相反数,如果在这些数前面加上“+”呢?学生讨论后回答.1.化简符号时,同号得正,异号得负.2.出现多重符号时,看“-”的个数,当“-”的个数为奇数时,结果为负;当“-”的个数为偶数时,结果为正.四、课堂小结小结:谈谈你对相反数的认识.(1)相反数的概念:只有符号不同的两个数,我们说其中一个是另一个的相反数; (2)数轴上表示相反数的两个对应点,分别位于原点两侧,它们到原点距离相等; (3)-a 表示a 的相反数. 五、课后作业1.-1.6是__1.6__的相反数,__-0.3__的相反数是0.3. 2. 5的相反数是__-5__;a 的相反数是__-a __.3.若a =-13,则-a =__13__;若-a =-6,则a =__6__. 教材P12练习第1,2,3,4题.相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征.这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用.所以本教学设计围绕数量和几何意义展开,渗透数形结合的思想.1.2.4 绝对值1.理解绝对值的意义; 2.会求一个数的绝对值.重点绝对值的意义和求一个数的绝对值的方法. 难点绝对值概念的理解.一、导入新课1.什么叫互为相反数?2.在数轴上表示互为相反数的两点和原点的位置关系怎样? 二、探究新知以O 为原点,取适当的单位长度画数轴,并在数轴上标出A ,B 的位置,则A ,B 两点与原点距离分别是多少?它们的实际意义是什么?绝对值的概念师:我们把一个数在数轴上对应的点到原点的距离叫作这个数的绝对值,用“||”表示. 结合图片指出,数轴上表示数-10的点与原点的距离叫作数-10的绝对值,记作|-10|.然后结合图片让学生回答|10|=__10__,|-10|__10__.归纳:一般地,数轴上表示数a 的点与原点的距离叫作数a 的绝对值,记作|a |.这里的数a 可以是正数,负数或0.练习:根据绝对值的定义说出下列各数的绝对值:-5,3.2,0,100,-2,-23 ,12.学生尝试解决.师:进一步提出:以上各数中,①正数有哪几个,它们的绝对值和这个数有什么关系? ②负数有哪几个,它们的绝对值和这个数有什么关系? ③0的绝对值是多少? 引导学生讨论并归纳出:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.师:要求学生根据归纳的结果,结合教材13页内容,完成如下填空.|a |=⎩⎨⎧ a ;(a >0)0 ;(a =0)-a W.(a <0)思考:相反数、绝对值的联系是什么? 1.互为相反数的两个数的绝对值相等.2.绝对值相等,符号相反的两个数互为相反数.三、课堂练习判断下列说法是否正确.(1)一个数的绝对值是4,则这个数是-4.( × )(2)|3|>0;( √ )(3)|-1.3|>0;( √ )(4)有理数的绝对值一定是正数;( × )(5)若a=-b,则|a|=|b|;( √ )(6)若|a|=|b|,则a=b;( × )(7)若|a|=-a,则a必为负数;( × )(8)互为相反数的两个数的绝对值相等.( √ )四、课堂小结这节课的收获是什么?1.数轴上表示数a的点与原点的距离叫作数a的绝对值.2.|a|≥0.3.(1)如果a>0,那么|a|=a;(2)如果a<0,那么|a|=-a;(3)如果a=0,那么|a|=0.五、课后作业教材P14练习第1,2,3,4题.让学生在熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学习绝对值概念的必要性和激发学习的兴趣.教材中数的绝对值概念是根据几何意义来定义的(其本质是将“数”转化为“形”来解释,是难点),然后通过练习归纳出求有理数的绝对值的规律,如果直接给出绝对值的概念,学生理解较困难,不易接受.1.2.5 有理数的大小比较1.通过探究得出有理数大小的比较方法.重点利用数轴及绝对值,比较两个有理数的大小.难点掌握两个负分数比较大小的方法.一、导入新课小学时学过比较数的大小吗?怎样比较的?二、探究新知 星期温度 一0~8℃ 二1~7℃ 三 -1~6℃ 四-2~5℃ 五-4~3℃ 六-3~4℃ 日 2~9℃①这7天的最低气温中最高的是________,最低的是________.②你能将这七天中每天的最低气温按从低到高排列吗?③你能在数轴上表示出这七天中的最低气温吗?④观察,你所排列的顺序和它们在数轴上的位置有什么联系?生:独立解决①~③小题,然后同学间交流探讨第④小题并归纳出:从低到高的顺序对应于数轴上从左到右的顺序.师:数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即在数轴上,左边的数小于右边的数.出示问题:根据以上规定用“大于”“小于”填空:正数__大于__0,0__大于__负数,正数__大于__负数.生:独立完成然后同学间交流.师:利用数轴用“>”“<”填空:-6__<__-5,-3__<__-2,-12 __>__-23. 观察结果并讨论,两个负数比较大小时,你发现了什么规律?生:讨论并归纳结果,两个负数比较大小,绝对值大的反而小.师:出示教材例题,然后师生共同完成.说明:两个负数比较大小,尤其是两个负分数比较大小时,学生易出错,讲解例题时教师应当关注这一点.观察例题,师生共同归纳:异号两数比较大小时,只需要考虑它们的__符号__,同号两数比较大小时,要考虑它们的__绝对值的大小__. 三、课堂练习 1.比较大小.(1)-(-1)和-(+2);(2)-821 和-37; (3)-(-0.3)和|-13|. 【答案】(1)-(-1)>-(+2) (2)-821 >-37 (3)-(-0.3)<|-13| 2.(1)若a <0,则-a __>__0;若a >0,则-a __<__0;若a =0,则-a __=__0;(2)绝对值最小的有理数是__0__;绝对值最小的自然数是__0__;绝对值最小的负整数是__-1__.四、课堂小结1.说一说你对绝对值的概念的认识;2.谈一谈有理数大小的比较方法.五、课后作业教材P16练习第2,3题,P17习题第5题.比较有理数大小的方法有两种:(1)利用数轴比较大小;(2)利用绝对值比较大小.本节课的教学目标就是让学生掌握这两种方法.在教用数轴比较有理数大小的方法时,引入是采用温度的排序.根据生活常识,学生可以由低到高排列这些温度,再让学生把这些数表示在数轴上.由此可以引出利用数轴比较大小的规定,在讲解利用绝对值比较两个负数大小时,采用把两个负数在数轴上表示,利用在数轴上的数“左边的数小于右边的数”,得出“绝对值大的反而小”的结论.从而得出利用绝对值比较两个负数大小的方法.通过以上的教学,促使本节课的重、难点迎刃而解.。
新人教版七年级上册数学第1章有理数全章教案
第一章有理数§1.1正数和负数(一)教学目标:知识与技能:掌握正数和负数的概念,能区分两种不同意义的量,会用符号表示正数和负数;培养学生观察、比较和概括的思维能力。
过程与方法:教法主要采用启发式教学学法引导学生自主探索去观察、交流、归纳.情感、态度、价值观:在传授知识、培养能力的同时,注意培养学生勇于探索的精神,通过本节课的教学,渗透对立统一的辩证思想。
教学重点:实际需要产生正数与负数.教学难点:正确了解负数,能准确地举出具有相反意义的量的典型例.教学过程:(一)、提出问题在生产和生活中经常会遇见用数来表示问题,例如①天气预报2003年11月某天北京的温度为-3—30C,它的确切含义是什么?②有三个队参加足球比赛,红队胜黄队(4∶1),蓝队胜红队(1∶0),黄队胜蓝队(1∶0),如何按净胜球排名?③某机器零件的长度设计为100mm,加工图纸标注的尺寸为100±0.5(mm),这里的±0.5代表什么意思?(二)、试一试章前图中表示温度、净胜球、加工允许误差时,用到了-3,3,2,-2,0,+0.5,-0.5等等.请同学们那些数是以前没有学过的数,有–3,-2,-0.5.实际意义是零下3度,净输2球,小于尺寸0.5mm.(三)、探索新数–3,-2,-0.5有什么特征?(学生回答)正数:以前学过的大于0的数(像1、2.5、133、48等的数叫正数)七年级(上)数学教案负数:在正数前面加上负号“-”的数.(像-1、-2.5,-13,-48的数叫负数,读作负1、负2.5、负13、负48.)有时正数前面也可以加上正号“+”,正号“+”可以省略,但负号“-”一定不可以省略.一个数前面的“+”“-”叫它的符号(性质符号).强调0既不是正数,也不是负数,它是中性数.师:(以温度计为例)温度计中的0不是表示没有温度,它通常表示水结成冰时的温度,是零上温度与零下温度的分界点,因此得出:零既不是正数也不是负数。
人教版七年级数学上册第一章《有理数》(大单元教学设计)
5.掌握有理数的乘方运算规则,能够求解简单的乘方问题。
(二)过程与方法
1.通过小组讨论、互动问答等方式,培养学生合作学习的能力,提高解决问题的效率。
2.通过实际例题的分析与解答,培养学生运用数学知识解决实际问题的能力,让学生体会数学与生活的紧密联系。
为了巩固学生对有理数知识的掌握,培养他们运用所学解决问题的能力,特布置以下作业:
1.基础知识巩固:
-完成课本第1-2页的练习题,涉及有理数的概念、分类及简单的加减运算。
-结合实际生活,举例说明有理数在生活中的应用。
2.运算能力提升:
-完成课本第3-4页的练习题,涵盖有理数的混合运算,包括加减乘除及括号的运用。
1.回顾本节课所学内容:引导学生回顾有理数的概念、运算规则、相反数和绝对值等知识点。
2.归纳总结:教师总结本节课的重点和难点,强调有理数运算的注意事项。
3.布置作业:布置适量的课后作业,要求学生在课后巩固所学知识。
4.激发兴趣:鼓励学生在课后继续探索有理数的奥秘,提高他们的自主学习能力。
五、作业布置
1.教学方法:
-采用启发式教学,引导学生通过观察、思考、总结,发现有理数的运算规律。
-利用数轴、符号等工具,形象地展示有理数的特点,帮助学生理解和记忆。
-设计丰富的教学活动,如小组讨论、互动问答、实际例题分析等,激发学生的学习兴趣和参与度。
2.教学策略:
-针对学生的认知水平,逐步引导他们从整数运算向有理数运算过渡,降低学习难度。
-对运算过程中容易出错的地方进行重点讲解和示范,帮助学生掌握正确的运算方法。
-注重培养学生的数学思维,引导他们在解决实际问题时,能够灵活运用所学知识。
七年级数学上册《有理数》教案、教学设计
(一)导入新课
1.教学内容:以生活中常见的温度为例,引入正负数的概念,引导学生思考温度中的正负是如何表示的,以及它们在实际生活中的意义。
2.教学过程:
(1)向学生展示一张天气预报的图片,上面显示了不同城市的气温,包括零上和零下的温度。
(2)提问:“同学们,你们在生活中遇到过零下的温度吗?它们是如何表示的?”
2.培养学生的合作精神,使他们学会在团队中分工合作、共同解决问题。
3.培养学生勇于面对困难和挑战,克服挫折,努力提高自己的数学素养。
4.培养学生严谨、细致的学习态度,让他们认识到细节在数学学习中的重要性。
5.引导学生将数学知识与实际生活相结合,体会数学在生活中的广泛应用,增强他们的实践能力。
二、学情分析
(3)让学生分小组讨论,思考正负数在温度表示中的意义。
(4)总结:正数表示零上的温度,负数表示零下的温度。通过这个例子,引出有理数的概念。
(二)讲授新知
1.教学内容:有理数的定义、分类、运算规则及其在实际问题中的应用。
2.教学过程:
(1)讲解有理数的定义,包括整数和分数,以及它们在数轴上的表示。
(2)介绍有理数的分类,包括正整数、负整数、正分数、负分数以及零。
2.重视学生运算能力的培养,特别是有理数的加减乘除运算,帮助他们熟练掌握运算规则。
3.考虑到学生之间存在个体差异,教学中应注意分层教学,使每个学生都能在原有基础上得到提高。
4.注重激发学生的学习兴趣,引导他们主动参与课堂讨论和实践活动,培养他们的数学思维能力。
5.针对学生对数学学习的恐惧和焦虑,教师要给予关爱和鼓励,帮助他们树立信心,克服困难。
(3)利用实际问题,引导学生运用有理数知识解决问题,培养他们的应用能力。
人教版七年级数学上册1.2.1《有理数》教学设计
人教版七年级数学上册1.2.1《有理数》教学设计一. 教材分析《有理数》是人教版七年级数学上册第一章第二节的第一课时,主要介绍了有理数的定义、分类和运算法则。
本节课的内容是学生学习数学的基础,对于培养学生的逻辑思维和抽象思维能力具有重要意义。
教材通过生动的实例和丰富的练习,帮助学生理解和掌握有理数的概念和运算法则,为后续的学习打下基础。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于实数的概念有一定的了解。
但是,对于有理数的定义和分类,以及有理数的运算法则,可能还存在一定的困惑。
因此,在教学过程中,需要注重引导学生从实际问题中抽象出有理数的概念,并通过大量的练习,让学生熟练掌握有理数的运算法则。
三. 教学目标1.了解有理数的定义、分类和运算法则。
2.能够运用有理数的运算法则进行简单的计算。
3.培养学生的逻辑思维和抽象思维能力。
四. 教学重难点1.有理数的定义和分类。
2.有理数的运算法则。
五. 教学方法1.情境教学法:通过实际问题引入有理数的概念,让学生从实际问题中抽象出有理数的概念。
2.讲解法:对于有理数的定义、分类和运算法则,采用讲解法进行详细讲解。
3.练习法:通过大量的练习,让学生熟练掌握有理数的运算法则。
六. 教学准备1.PPT课件:制作与本节课内容相关的PPT课件,用于辅助教学。
2.练习题:准备与本节课内容相关的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用PPT课件展示一些实际问题,如温度、海拔等,引导学生从实际问题中抽象出有理数的概念。
2.呈现(10分钟)通过PPT课件,详细讲解有理数的定义、分类和运算法则。
讲解过程中,注意结合实例进行说明,让学生更好地理解和掌握。
3.操练(10分钟)让学生进行一些有关有理数的运算练习,巩固所学知识。
教师可适时给予提示和指导,确保学生能够熟练掌握有理数的运算法则。
4.巩固(5分钟)通过PPT课件,总结本节课所学的主要内容和知识点,帮助学生巩固记忆。
最新】人教版七年级数学上册第一章《有理数单元备课》教案
最新】人教版七年级数学上册第一章《有理数单元备课》教案新人教版七年级数学上册第一章《有理数单元备课》教案课标要求】1、通过观察、试验、类比、推断等活动,体验数、符号和图形能有效地描述现实世界的数量关系,发展数感和符号感。
2、结合具体情境和生活经验中数学信息,发现并提出问题,积极参与对数学问题的讨论,积累解决问题的方法和经验,体验在解决问题的过程中如何与他人合作交流。
教学内容分析】本章主要包括以下内容:1、理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小。
2、借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值。
3、掌握有理数的加、减、乘、除、乘方及简单的混合运算。
4、理解有理数的运算律,并能运用运算律简化运算。
5、能运用有理数的运算解决简单的问题。
6、能对含有较大数字的信息做出合理的解释和推断。
教学目标】1、理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小。
2、掌握有理数的相反数和绝对值的概念,会求有理数的相反数与绝对值。
3、掌握有理数的加、减、乘、除、乘方及简单的混合运算。
4、理解有理数的运算律,并能运用运算律简化运算。
5、能运用有理数的运算解决简单的问题。
教学重点与难点】教学重点:有理数的加、减、乘、除、乘方及简单的混合运算。
教学难点:有理数的加、减、乘、除、乘方及简单的混合运算。
教学过程与方法】本节课程可以采用让学生自主研究的方式,鼓励学生讨论交流,教师作适当引导。
情感态度价值观】体验数学发展的一个重要原因是生活实际的需要,激发学生研究数学的兴趣。
媒体教具】小黑板课时安排】一课时教学内容分析】本章主要包括以下内容:1、掌握正数和负数的概念;2、能区分两种不同意义的量,会用符号表示正数和负数。
教学目标】1、掌握正数和负数的概念;2、能区分两种不同意义的量,会用符号表示正数和负数。
教学重点与难点】教学重点:区分两种不同意义的量,会用符号表示正数和负数。
教学难点:正确区分两种不同意义的量。
七年级数学上册第一章有理数单元备课教案(新版)新人教版
第一章有理数一、课标要求1.知识与技能(1)了解正数、负数的实际意义,会判断一个数是正数还是负数.(2)掌握数轴的画法,能将已知数在数轴上表示出来,•能说出数轴上已知点所表示的解.(3)理解相反数、绝对值的几何意义和代数意义,•会求一个数的相反数和绝对值.(4)会利用数轴和绝对值比较有理数的大小.2.过程与方法经过探索有理数运算法则和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法.3.情感、态度与价值观使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言.二、本章教材分析1.主要内容:1.本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,•从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系.引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念.2.通过怎样用数简明地表示一条东西走向的马路旁的树、•电线杆与汽车站的相对位置关系引入数轴.数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用:(1)数轴能反映出数形之间的对应关系;(2)数轴能反映数的性质;(3)数轴能解释数的某些概念,如相反数、绝对值、近似数;(4)数轴可使有理数大小的比较形象化.3.对于相反数的概念,•从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分.4.正确理解绝对值的概念是难点.理解绝对值的两种意义,•一种是几何意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离;另一种是代数意义:绝对值的几何意义是以线段长度来表示一个数的绝对值的;而绝对值的代数意义则是给出了求绝对值的法则,由绝对值的两种意义可知,有理数a•的绝对值可表示为:│a│=(0) 0(0)(0)a aaa a>⎧⎪=⎨⎪-<⎩根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:(1)任何有理数都有唯一的绝对值.(2)有理数的绝对值是一个非负数,即最小的绝对值是零.(3)两个互为相反数的绝对值相等,即│a│=│-a│.(4)任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a.(5)若│a│=│b│,则a=b,或a=-b或a=b=0.2.本单元在教材中的地位与作用:本章是数从自然数扩展到有理数,初步形成有理数的概念后,进一步学习有理数的运算,是小学算术的延续和发展。
新人教版七年级数学上册 1.2.1《有理数》教学设计
新人教版七年级数学上册 1.2.1《有理数》教学设计一. 教材分析新人教版七年级数学上册1.2.1《有理数》是学生在学习了整数和分数的基础上,进一步学习有理数的知识。
本节课主要让学生了解有理数的定义,掌握有理数的分类,以及了解有理数的大小比较。
教材通过引入生活中的实例,使学生感受有理数在实际生活中的应用,提高学生的学习兴趣。
二. 学情分析七年级的学生已经掌握了整数和分数的知识,具备了一定的数学基础。
但部分学生对于抽象的概念理解起来可能存在困难,因此需要教师在教学过程中耐心引导,帮助学生建立直观的认识。
此外,学生对于数学在实际生活中的应用有一定的兴趣,教师可以抓住这一点,激发学生的学习积极性。
三. 教学目标1.理解有理数的定义,掌握有理数的分类。
2.学会有理数的大小比较方法。
3.能够运用有理数解决实际生活中的问题。
4.培养学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.有理数的定义和分类。
2.有理数的大小比较方法。
五. 教学方法1.情境教学法:通过生活实例引入有理数的概念,让学生感受数学与生活的紧密联系。
2.小组讨论法:引导学生分组讨论,共同探讨有理数的分类和大小比较方法。
3.实践操作法:让学生通过实际操作,加深对有理数知识的理解。
4.激励评价法:及时给予学生鼓励和评价,提高学生的学习积极性。
六. 教学准备1.教学课件:制作课件,展示有理数的定义、分类和大小比较方法。
2.教学素材:准备一些实际生活中的例子,用于引导学生学习有理数。
3.学具:准备一些卡片,上面写有不同类型的有理数,用于学生分组讨论。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的实例,如温度、海拔等,引导学生思考这些现象可以用哪种数学知识来表示。
通过讨论,让学生感受有理数在实际生活中的应用,激发学生的学习兴趣。
2.呈现(10分钟)介绍有理数的定义,让学生了解有理数的概念。
接着,展示有理数的分类,包括整数、分数和零。
通过课件和实物展示,让学生对有理数有更直观的认识。
七年级上册数学教案《有理数》
七年级上册数学教案《有理数》教学目标1、理解有理数的概念。
2、能够准确地将有理数分类。
3、通过教学培养学生的逻辑思维能力,发展学生的分类思想。
教学重点正确理解有理数的概念,学会有理数的分类。
教学难点正确理解分类的标准,按照一定标准分类。
教学过程一、新课导入1、我们已经认识了哪些数?整数、分数、小数、自然数、百分数、整数、负数。
2、整数与分数有没有正负之分?正整数、0、负数统称为整数。
3、自然数、小数、百分数与整数、分数有什么关系?自然数是0和正整数的集合,所以自然数是整数。
正分数、负分数统称为分数。
注意:0既不是正数,也不是负数。
分数可以化成有限小数或无限循环小数,如 = 0.5, = 0.,= 0.67…有限小数或无限小数也可以化成分数。
百分数也可以化成分数。
二、讲授新知整数和分数统称为有理数。
从小学开始,我们首先认识了正整数,后来又增加了0和正分数,在认识了负整数和负分数后,对数的认识就扩充到了有理数范围。
你能对有理数进行分类吗?按性质分类:有理数:正有理数,0,负有理数。
正有理数:正整数,正分数。
负有理数:负整数,负分数。
按定义分类:有理数:整数和分数整数:正整数,0,负整数。
分数:正分数,负分数注意要点:只有无限不循环小数才不是有理数。
三、巩固练习1、所有正数组成正数集合,所有负数组成负数集合,把下面的有理数归入它属于的集合。
15,-1/9,-5,2/15,-13/8,0.1,-5.32,-80,123,2.333正数集合:15,2/15,0.1,123,2.333负数集合:-1/9,-5,-13/8,-5.32,-802、找出下列各数中的正数、负数、整数、分数。
-15,+6,-2,-0.9, 1,,0, 3, 0.63, -4.95正数:+6,1,0,3,0.63负数:-15,-2,-0.9,-4.95教学总结本节课是有理数分类的教学,要给学生较大的思维空间,促进学生积极主动地参加学习活动,亲自体验知识的形成过程,在教学中要有意识地突出“分类论”,明确分类方法不相同,分类结果页不相同,且分类结果应当是不重复的。
人教版七年级数学上册第一章《有理数》教学设计
人教版七年级数学上册第一章《有理数》教学设计一. 教材分析人教版七年级数学上册第一章《有理数》是整个初中数学的基础,主要介绍了有理数的定义、分类、运算和性质。
本章内容对于学生来说是比较抽象的,需要通过实例和练习来理解和掌握。
教材通过丰富的例题和练习题,帮助学生逐步掌握有理数的概念和运算方法,为后续的学习打下基础。
二. 学情分析七年级的学生已经具备了一定的数学基础,但对于有理数的抽象概念和运算规则可能还比较陌生。
学生在学习过程中需要通过实际的例子和操作来理解和掌握有理数的概念和运算方法。
此外,学生可能对于负数和分数的概念有一定的困惑,需要通过具体的情境和练习来加深理解。
三. 教学目标1.了解有理数的定义和分类,掌握有理数的运算方法。
2.能够运用有理数的概念和运算方法解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.有理数的定义和分类。
2.有理数的运算方法,特别是负数和分数的运算。
3.有理数在实际问题中的应用。
五. 教学方法1.实例教学:通过具体的例子来引导学生理解和掌握有理数的概念和运算方法。
2.练习法:通过大量的练习题来巩固学生的理解和掌握程度。
3.问题解决法:通过解决实际问题来培养学生的应用能力和解决问题的能力。
六. 教学准备1.教材和教辅资料。
2.投影仪和教学课件。
3.练习题和测试题。
七. 教学过程1.导入(5分钟)通过引入日常生活中的实例,如温度、海拔等,引出有理数的概念和作用。
2.呈现(10分钟)讲解有理数的定义、分类和性质,通过具体的例子来说明。
3.操练(10分钟)让学生进行有理数的加减乘除运算,引导学生理解和掌握运算方法。
4.巩固(5分钟)通过一些练习题来巩固学生对有理数的理解和掌握程度。
5.拓展(5分钟)讲解有理数在实际问题中的应用,让学生尝试解决一些实际问题。
6.小结(5分钟)对本节课的内容进行总结,强调重难点和需要注意的问题。
7.家庭作业(5分钟)布置一些练习题,让学生在家里进行巩固和复习。
新人教版七年级数学上册《有理数》教学设计
新人教版七年级数学上册《有理数》教学
设计
教学设计:有理数
一、教学目标:
1.理解整数、分数、有理数和数集等概念。
2.掌握有理数的分类方法。
3.培养学生分析问题和有条理思考的能力。
二、教学重点与难点:
重点:理解整数、分数、有理数和数集等概念,准确分类给定的数。
难点:掌握有理数的分类方法。
三、教学方法:
采用教师讲授和学生自主探究相结合的方法,辅以讲练结合。
四、学法指导:
主要采取课前预独立思考、教师讲解和小组合作相结合的研究方法,选用以观察探索为主、让学生主动研究。
五、教学准备:
多媒体课件。
六、教学过程:
一、温故知新
引导学生对中国体坛名宿的辉煌历史进行分类,根据学生的回答情况,教师适当进行引导,给出相关概念:正整数、负整数、正分数、负分数、整数、分数、有理数,进而总结出有理数的第一种分类情况。
二、合作探究
1.在给定的数中,正整数有:___,负分数有:___,有理数有:___,分数有:___。
2.学生讨论,教师引导,得出如下结论:
正整数、正分数和零统称为正有理数;
负整数和负分数统称为负有理数;
整数和分数统称为有理数。
通过合作探究,学生可以掌握有理数的分类方法,同时培养分析问题和有条理思考的能力。
新人教版七年级上册数学第一章有理数教案
很重要!教学重点有理数乘方的运算. 教学难点有理数乘方运算的符号法则.教学过程:一、复习引入:1.计算: (1) 3439÷⎪⎭⎫ ⎝⎛-; (2) ()()⎪⎭⎫ ⎝⎛-÷-÷-511462. 在小学我们已经学习过a ·a ,记作a 2,读作a 的平方(或a 的二次方);a ·a ·a 作a 3,读作a 的立方(或a 的三次方);那么,a ·a ·a ·a 可以记作什么?读作什么?a ·a ·a ·a ·a 呢?个n a a a a ⋅⋅ (n 是正整数)呢 二、讲授新课:1.概念:一般地,我们有:n 个相同的因数a 相乘,即个n a a a a ⋅⋅,记作na 。
例如,2×2×2=23;(-2)(-2)(-2)(-2)=(-2)4。
这种求几个相同因数的积的运算,叫做乘方(involution), 乘方的结果叫做幂(power)。
在a n 中,a 叫作底数,n 叫做指数, a n 读作a 的n 次方,a n 看作是a 的n 次方的结果时,也可 读作a 的n 次幂。
例如,23中,底数是2,指数是3,23读作2的3次方,或2的3次幂。
一个数可以看作这个数本身的一次方,例如8就是81,通常指数为1时省略不写。
2.例题:例1:计算:(1)()32-; (2)()42-; (3)()52-。
解:(1)原式=(-2)(-2)(-2)=-8,(2)原式= (-2)(-2)(-2)(-2)=16,(3)原式= (-2)(-2)(-2)(-2)(-2)=-32。
3.总结:让学生总结出符号法则。
根据有理数乘法运算法则,我们有: 正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数。
你能把上述的结论用数学符号语言表示吗?当a >0时,a n >0(n 是正整数); 当a <0时,⎪⎩⎪⎨⎧)(0)n (0是正整数是正整数n a a n n ;当a =0时,a n =0(n 是正整数) (以上为有理数乘方运算的符号法则) a 2n =(―a )2n (n 是正整数);12-n a=―(―a )2n-1(n 是正整数);a 2n ≥0(a 是有理数,n 是正整数)。
人教版七年级数学上册第一章《有理数》全章教学设计
第一章有理数镇中教课设计1.1.1 正数和负数( 1)[学习目标 ]1、理解正数和负数的观点,会判断一个数是正数仍是负数2、会用正数和负数来表示拥有相反意义的量3、理解数 0 的意义[学习过程 ]一、板书课题:(一)叙述:同学们,今日我们来学习第一章有理数.1.1.1 正数和负数(教师板书)二、出示目标(一)过渡语:要达到什么教课目的呢?请看投影(二)屏幕显示学习目标1、理解正数和负数的观点,会判断一个数是正数仍是负数2、会用正数和负数来表示拥有相反意义的量3、理解数 0 的意义三、自学指导(一)过渡语:如何才能当堂达到学习目标呢?请同学们依据指导认真自学。
(二)出示自学指导认真看课本( P1-3练习前方)① 理解正数的观点,会模仿正数的观点,解说负数的含义;②理解正数、负数和0 表示的实质含义,注意黄色书签的内容;③回答 P3“思虑”中的问题。
若有疑部问,能够小声讨教同桌或举手问老师。
6分钟后,比谁能正确做出检测题。
四、先学(一)学生看书,教师巡视,师敦促每一位学生认真、紧张的自学,鼓舞学生怀疑问难。
(二)检测1、过渡语:同学们,看完的请举手。
懂了的请举手。
好下边就比一比,看谁能正确做出检测题。
2、检测题 P3:1、2、3、43、学生练习,教师巡视。
(改集错误会进行二次备课)五、后教(一)改正:请同学们认真看一看这四名同学的板演,发现错解的请举手(指名改正)(二)议论:评第 1 题:(教师要重申停题格式)①正数找的对吗?为何对?师指引生回答:比0 大的数是正数(师板书)(如对,教师打√)②你还举一些正数的例子吗?③负数找的对吗?为何?师指引生回答:在正数前加“一”的数是负数④你能模仿正数的定义来谈谈负数的吗?师指引生回答:比0 小的数是负数。
(师板书)(如对,教师打√)评 2、3、4 题答案正确吗?为何?师指引生回答:数0 既不是正数也不是负数,是正、负数的分界限。
(师板书)重申“0”的意义不单是表示“没有”,还能够表示温度读报00C(表示标准),山脚的高度 0 米等(表示起点)。
新人教版七年级数学第1章有理数教案(全章)
第1课时正数和负数(1)第2课时正数和负数(2)第3课时 有理数教 学目 标1、掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;2、了解分类的标准与分类结果的相关性,初步了解“集合”的含义;3、体验分类是数学上的常用处理问题的方法。
教学重点 正确理解分类的标准和按照一定的标准进行分类 教学难点 正确理解有理数的概念教 学 互 动 设 计设计意图一、创设情境 导入新课在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个不同类型数(同时请3个同学在黑板上写出). 分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与二、合作交流 解读探究【问题1】观察黑板上的9个数,并给它们进行分类. 学生思考讨论和交流分类的情况.学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.例如,对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,,.··…(由于小数可化为分数,以后把小数和分数都称为分数)通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数”.正整数:如1,2,3 …; 零:0;负整数:如-1,-2,-3 …正分数:如21,32,715,0.1,5.3… 负分数:如-0.5,25-,32-,-715,-0.1,-150.25…; 所有的正整数组成正整数集合,所有的负整数组成负整数集合。
正整数、0、负整数统称为整数。
把一些数放在一起,就组成了一个集合,简称数集,在表示数集时要注意:⑴数集可以用大括号表示,也可用圆圈表示。
人教版七年级上数学《有理数》教案
《有理数》教案一、教学目标(一)知识与技能1.掌握有理数的概念、分类、运算等基础知识。
2.能够正确进行有理数的加减乘除等基本运算。
3.初步掌握有理数运算的法则和运算律。
(二)过程与方法1.通过观察、比较、分析、归纳等方法,培养学生的逻辑思维能力。
2.让学生通过实际操作和小组合作探究,掌握有理数的概念和运算方法。
3.通过实例分析和练习,培养学生的运算能力和解决问题的能力。
(三)情感态度价值观1.让学生感受到数学与生活的联系,培养学生对数学的兴趣和热爱。
2.通过小组合作和实际操作,培养学生的合作意识和实践能力。
3.通过实例分析和探究,让学生感受到数学的科学性和实用性。
二、教学重点与难点(一)教学重点1.有理数的概念、分类、运算等基础知识。
2.有理数运算的法则和运算律。
3.实际应用中有理数的加减乘除等基本运算。
(二)教学难点1.有理数的概念的理解和运用。
2.有理数运算的法则和运算律的掌握和应用。
3.实际应用中有理数的加减乘除等基本运算的灵活运用。
三、教学方法与手段(一)教学方法1.讲授法:讲授有理数的概念、分类、运算等基础知识,引导学生进入学习状态。
2.探究法:通过实例分析和探究,让学生自主发现和理解有理数的运算方法和运算律。
3.练习法:通过大量的实例分析和练习,让学生掌握有理数的加减乘除等基本运算和解决实际问题的能力。
4.归纳法:让学生通过观察、比较、分析、归纳等方法,掌握有理数的运算方法和运算律。
5.互动式教学法:通过小组合作、探究、讨论、交流等方式,让学生在互动中学习、成长。
6.实例分析法:通过具体的实例分析,让学生理解和掌握有理数的加减乘除等基本运算在实际问题中的应用。
7.问题引导法:通过问题引导,激发学生的学习兴趣和思考能力,让学生在解决问题的过程中掌握知识和技能。
8.多媒体辅助教学法:利用多媒体技术,提高教学效果和学生的学习效率。
通过多媒体展示教学内容和实例,让学生更加直观地理解和掌握知识。
新人教版七年级数学第一章《有理数》全章教案
1.1正数和负数第一课时教学目标:一.知识与技能能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量.二.过程与方法借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性.三.情感态度与价值观培养学生积极思考,合作交流的意识和能力.教学重、难点与关键:1.重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法.2.难点:正确理解负数的概念.3.关键:创设情境,充分利用学生身边熟悉的事物,•加深对负数意义的理解.教学过程:一、课堂引入我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的.人们由记数、排序、产生数1,2,3,…;为了表示“没有物体”、“空位”引进了数“0”,•测量和分配有时不能得到整数的结果,为此产生了分数和小数.在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第1页提到的问题,这里出现的新数:-3, -2.7%在前面的实际问题中它们分别表示:零下3摄氏度,减少2.7%.二、讲授新课1、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数.而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,•它们与负数具有相反的意义,我们把这样的数(即以前学过的0•以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0.5,+13,…就是3,2,0.5,13,…一个数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号.2、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数.3、数0既不是正数,也不是负数,但0是正数与负数的分界数.4、0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度.用正负数表示具有相反意义的量:5、把0以外的数分为正数和负数,起源于表示两种相反意义的量.•正数和负数在许多方面被广泛地应用.在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度.例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为-155m.记录账目时,通常用正数表示收入款额,负数表示支出款额.6、请学生解释课本中图1.1-2,图1.1-3中的正数和负数的含义.7、你能再举一些用正负数表示数量的实际例子吗?8、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量.三、巩固练习课本第3页,练习1、2题.四、课堂小结为了表示现实生活中的具有相反意义的量,我们引进了负数.正数就是我们过去学过的数(除0外),在正数前放上“-”号,就是负数,•但不能说:“带正号的数是正数,带负号的数是负数”,在一个数前面添上负号,它表示的是原数意义相反的数.如果原数是一个负数,那么前面放上“-”号后所表示的数反而是正数了,另外应注意“0”既不是正数,也不是负数.1.1正数和负数第二课时教学目标:一.知识与技能进一步巩固正数、负数的概念;理解在同一个问题中,用正数与负数表示的量具有相同的意义.二.过程与方法经历举一反三用正、负数表示身边具有相反意义的量,进而发现它们的共同特征.三.情感态度与价值观鼓励学生积极思考,激发学生学习的兴趣.教学重、难点与关键:1.重点:正确理解正、负数的概念,能应用正数、•负数表示生活中具有相反意义的量.2.难点:正数、负数概念的综合运用.3.关键:通过对实例的进一步分析,•使学生认识到正负数可以用来表示现实生活中具有相反意义的量.教学过程:一、复习提问,课堂引入1.什么叫正数?什么叫负数?举例说明,•有没有既不是正数也不是负数的数?2.如果用正数表示盈利5万元,那么-8千元表示什么?二、新授例1.一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值.例2.2001年下列国家的商品进出口总额比上年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,•中国增长7.5%.写出这些国家2001年商品进出口总额的增长率.分析:在一个数前面添上负号,它表示的是与原数具有意义相反的数.•“负”与“正”是相对的,增长-1,就是减少1;增长-6.4%就是减少6.4%,那么什么情况下增长率是0?当与上年持平,既不增又不减时增长率是0.解:1.这个月小明体重增长2kg,小华体重增长-1kg,小强体重增长0kg. 2.六个国家2001年商品进出口总额的增长率分别为:美国-6.4%,德国1.3%,法国-2.4%,英国-3.5%,意大利0.2%,中国7.5%.归纳:在同一个问题中,分别用正数与负数表示的量具有相反的意义,如盈利-•2千元,就是亏本2千元;前进-3米,就是后退3米;浪费-14元,就是节约14元;向南走-•7米,就是向北走7米,因此盈利2千元与盈利-2千元具有相反的意义.三、巩固练习1.课本第5页的第8题.点拨:增长-3.4%,就是减少3.4%,所以这一年里这六国中中国、•意大利的服务出口额增长了,美国、德国、英国、日本的服务出口额都减少了,意大利增长最多,日本减少最多.四、课堂小结通过本节课的学习,你对正数、负数的概念是否有了进一步理解?请你用正负数表示身边具有相反数的量.五、作业布置1.课本第5页习题1.1第4、5、6、7题.1.2 有理数第一课时教学目标:一、知识与能力理解有理数的概念,懂得有理数的两种分类方法:会判别一个有理数是整数还是分数,是正数、负数还是零.二、过程与方法经历对有理数进行分类的探索过程,初步感受分类讨论的思想.三、情感态度与价值观通过对有理数的学习,体会到数学与现实世界的紧密联系.教学重难点及突破:在引入了负数后,本课对所学过的数按照一定的标准进行分类,提出了有理数的概念.分类是数学中解决问题的常用手段,通过本节课的学习,使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不宜过多展开.教学过程:一、课堂引入1、我们把小学里学过的数归纳为整数与分数,引进了负数以后,我们学过的数有哪些?将如何归类?2.举例说明现实中具有相反意义的量.3.如果由A地向南走3千米用3千米表示,那么-5千米表示什么意义?4.举两个例子说明+5与-5的区别.5.数0表示的意义是什么?二、自主探究1、在学生讨论的基础上,引导学生自己进行有理数的分类,我们学过的数就可以分为以下几类:正整数,如1,2,3,…;零:0;负整数,如-1,-2,-3,…;正分数,如13,227,4.5(即412);负分数,如-12,-227,-0.3(即-310),-35……正整数、零和负整数统称整数,正分数、负分数统称分数,整数和分数统称有理数.2、回答下列各题:(1)0是不是整数?0是不是有理数?(2)-5是不是整数?-5是不是有理数?(3)-0.3是不是负分数?-0.3是不是有理数?3.你能对以上各种数作出一张分类表吗(要求不重复不遗漏)?让学生把自己作出的分类表进行分类,可以根据不同需要,用不同的分类标准,•但必须对讨论对象不重不漏地分类.把一些数放在一起,就组成一个数的集合,•简称数集.所有的有理数组成的数集叫做有理数集.类似的,•所有整数组成的数集叫做整数集,所有正数组成的数集叫做正数集,所有负数组成的数集叫做负数集,如此等等.三、随堂练习判断1.自然数是整数.() 2.有理数包括正数和负数.() 3.有理数只有正数和负数.() 4.零是自然数.() 5.正整数包括零和自然数.() 6.正整数是自然数.() 7.任何分数都是有理数.() 8.没有最大的有理数.() 9.有最小的有理数.()四、课堂小结:(提问式)1.有理数按正、负数,应怎样分类?2.有理数按整数、分数,应怎样分类?3.分类的原则是什么?五、课后作业:课本第14页习题1.2第1题.1.2.2 数轴教学目标:一.知识与技能(1)掌握数轴三要素,能正确地画出数轴.(2)能准备地将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.二、过程与方法经历从实际问题中抽象出数学问题的过程,初步学会数学的类比方法和数形结合的思想方法.三、情感态度与价值观体会知识源于生活,并应用于生活.教学重、难点与关键:1.重点:理解数形结合的数学方法,•掌握数轴画法和用数轴上的点表示有理数.2.难点:正确理解有理数和数轴上的点的对应关系.3.关键:掌握数形结合的数学方法.教学过程:一、复习提问、新课引入1.有理数包括哪些数?有理数是怎样分类的?2.回顾小学数学是如何利用数轴表示正数和零的?二、新授引入负数后,又如何利用数轴表示有理数呢?让我们先看一个问题.在一条东西走向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.1.画一条直线表示马路,从左到右表示从西到东的方向.2.因为柳树、杨树都在汽车站的东面,即在汽车站的右边.槐树、•电线杆在汽车站的西面,即在汽车站的左边,它们都相对汽车站而言,所以在直线上任取一个点O表示汽车站的位置,规定1个单位规定.(线段OA的长代表1m长)(如下图)3.分别标出柳树、杨树、槐树、电线杆的位置.在点O右边,与O距离3个单位长度的点B表示柳树的位置:点O右边,与O•点距离7.5个单位长度的点C表示杨树的位置;点O左边,与点O距离3个单位长度的点D•表示槐树位置;点O的左边,与点O距离4.8个单位长度的点E表示电线杆的位置.问:怎样用数简明地表示这些树、电线杆与汽车站的相对位置关系?(方向、•距离)为了使表达更清楚、更简洁,我们把点O•左右两边的数分别用正数和正数表示.符号表示方向,点O的左边表示负数,点O的右边表示正数.这样就可以简明地表示这些树、电线杆与汽车站的相对位置关系了.这里,-4.8中的负号“-”表示汽车站(点O)的左边,4.8表示与点O•的距离为4.8个单位长度.说明:以上分析,教师应边讲边画,分步进行.观察后回答:(课本第8页)温度计可以看作表示正数、0和负数的直线吗?•它和课本图1.2-1有什么共同点,有什么不同点?答:可以,课本图1.2-2也是把正数、o和负数用一条直线上的点表示出来,它是向上方向为正(即0的上方表示正数,0的下方表示负数),只要把温度计水平放下就与课本图1.2-1相同了.一般地,在数学中人们用画图的方式把数“直观化”,通常用一条直线上的点表示数,这条直线叫做数轴,它满足以下要求:(1)在直线上任取一个点表示数0,这个点叫做原点,记为0;(2)通常规定直线上从原点向右(或上)为正方向,•从原点向左(或下)为负方向;(3)选取适当的长度为单位长度,直线上从原点向右,•每隔一个单位长度取一个点,依次表示1,2,3,…;从原点向左,用类似方法依次表示-1,-2,-3,….像这样规定了原点、正方向和单位长度的直线叫做数轴.原点、正方向和单位长度称为数轴的三要素,缺一不可.单位长度的大小可以根据不同的需要选择.任何一个有理数都可以用数轴上的点表示,例如3.5,数轴上从原点向右3.5个单位长度的点表示3.5,又如要表示-2,从原点向左2个单位长度的点就表示-2,如下图.归纳:先由学生填空,然后教师加以讲评.三、巩固练习1.请同学们在练习本上画一条数轴.2.下面的各图是不是数轴?为什么?3.在数轴上与表示-1的点的距离为2个单位长度的点有几个?请你在数轴上把它们画出来,它们分别表示什么数?学生独立完成后,老师讲解,给出正确的答案.四、课堂小结数轴是非常重点的数学工具,它的出现对数学的发展起了重要作用,它揭示了数和形之间的内在联系,很多数学问题都可以以它为基础,借助图直观地表示,为研究问题提供了新方法.五、作业布置1.课本第9页练习1、2、3题,第14页习题1.2的第2题.1.2.3 相反数教学目标:一.知识与技能(1)借助数轴了解相反数的概念,知道两个互为相反数的位置关系.(2)给出一个数,能求出它的相反数.二、过程与方法借助数轴,通过观察特例,总结出相反数的概念.从数和形两个侧面理解相反数.三、情感态度与价值观鼓励学生积极进行归纳、比较交流等活动.教学重、难点与关键:1.重点:理解相反数的意义,会求一个数的相反数.2.难点:理解和掌握双重符合的简化.3.关键:通过观察特例,以及互为相反数的两个数在数轴上的位置,•理解相反数.教学过程:一、复习提问,课堂引入在数轴上,画出表示6,-6,2,-2,4,-4各数的点.二、新授请同学们观察后回答:1.上述中6和-6;2和-2,4和-4每对数有什么特点?2.每对数在数轴上所表示的点有什么特点?3.再观察课本第7页的图1.2-1中点D和点B,它们的位置关系如何?•它们各表示的数有什么特点?概括:(1)每一对数,只有符号不同.(2)在数轴上表示每一对数的两个点分别在原点的两边,•并且离开原点的距离相等.(3)点D和点B分别位于原点的两边,且与原点的距离相等,它们分别表示-3•和3.思考:数轴上与原点的距离是2的点有几个?这些点表示的数是什么?•与原点的距离是5的点呢?归纳:一般地,设a是一个正数,数轴上与原点的距离是a的点有两个,它们分别在原点左右,表示-a和a,那么称这两个点关于原点对称,如下图:-a a像这样只有符号不同的两个数叫做互为相反数,例如6和-6,2和-2,都是互为相反数,也就是说6的相反数是-6,-2的相反数是2.一般地,a和-a互为相反数,特别地,0的相反数仍是0.问:数轴上表示相反数的两个点和原点有什么关系?答:数轴上表示相反数的两个点是关于原点对称,是在原点的两旁(除0•外),并且与原点的距离相等.注意相反数与倒数的区别,若两个数只有符号不同,那么这两个数叫做互为相反数;若两个数的乘积等于1,则这两个数叫互为倒数.任何有理数都有相反数,•零的相反数是零,而零没有倒数.例1:分别写出下列各数的相反数.5,-7,-3,+11.2,0.解:5的相反数是-5;-7的相反数是7;-3的相反数是3;+11.2的相反数是-11.2;0的相反数是0.强调书写格式,防止出现如“5=-5”的错误.容易看出,在正数前面添上“-”号,就得到这个正数的相反数.在任意一个数的前面添上“-”号,新的数就表示原数的相反数.例如:-(+5)=-5,-(-7)=7,-(-3)=3,-(+11.2)=-11.2,-0=0.我们知道一个正数,前面的“+”号可以写也可以不写,所以在一个数的前面添上“+”号,表示这个数没有变化,还是它本身.例如:+(-4)=-4,+(+12)=12,+0=0三、课堂练习1.写出下列各数的相反数.+2,-2.5,0,2.化简下列各数.-(-30),-(+3),-(-38.2),+(-5),+(+2 7).3.指出下列各对数,哪些是相等的数?哪些是互为相反数?+(-3)与-3,-(+3)与3,-(-7)与-7.4.如果a=-a,那么表示a的点在数轴上的什么位置?5.你会化简下列各数吗?试试看.(本题可根据学生实际情况选用)-[+(-2)],-[-(-6)].提示:因为任意数a是-a的相反数,所以表示a的点在数轴上与表示-a•的点关系原点对称,这两个点分别在原点左、右两边且与原点距离相等.四、课堂小结本节课我们学习了相反数的概念、相反数的求法和双重符号的简化.理解相反数的意义,相反数总是一正一反成对出现(零除外),从数轴上看,表示互为相反数的两个点,分别在原点的两边,且到原点距离相等.要表示一个数的相反数,只要在这个数前面添“-”号,-a表示a的相反数,当a是正数时,-a表示一个负数;当a是负数时,则-a表示正数.此外我们还应该注意相反数和倒数的区别.五、作业布置1.课本第11页练习1、2、3题,第15页习题1.2第3题.1.2.4 绝对值教学目标:一、知识与技能(1)借助数轴初步理解绝对值的概念,能求一个数的绝对值.(2)通过应用绝对值解决实际问题,体会绝对值的意义和作用.二、过程与方法通过观察实例及绝对值的几何意义,探索一个数的绝对值与这个数之间的关系,培养学生语言描述能力.三、情感态度与价值观培养学生积极参与探索活动,体会数形结合的方法.教学重、难点与关键:1.重点:正确理解绝对值的概念,能求一个数的绝对值.2.难点:正确理解绝对值的几何意义和代数意义.3.关键:借助数轴理解绝对值的几何意义,•根据绝对值定义和相反数的概念,理解绝对值的代数意义.教学过程:一、复习提问,新课引入1.什么叫互为相反数?2.在数轴上表示互为相反数的两个点和原点的位置关系怎样?二、新授在一些量的计算中,有时并不注意其方向,例如,为了计算汽车行驶所耗的油量,起作用的是汽车行驶的路程而不是行驶的方向.1.观察课本第11页图1.2-6,回答:(1)两辆汽车行驶的路线相同吗?(2)它们行驶路程的远近相同吗?• •这两辆车行驶的路线不同(方向相反),•但行驶的路程的远近相同,•都是10km.课本图1.2-6中表示-10的点B和表示10的点A离开原点的距离都是10,•我们就把这个距离10叫做数-10、10的绝对值.一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作│a│.这里的数a可以是正数、负数和0.例如上述的10和-10的绝对值记作│10│=10,│-10│=10,•同样在数轴上表示+6和-6的两个点,离开原点的距离都是6,即6和-6的绝对值都是6,记作│6│=6,•│-6│=6.数轴上表示数0的点与原点的距离是0,所以│0│=0.2.试一试:(1)│+2│=______,│15│=_____,│+10.6│=________.(2)│0│=_______.(3)│-12│=_______,│-20.8│=_______,│-3217│=_______.3.你能从上面解答中发现什么规律吗?学生若有困难,教师可提示:所得的结果与绝对值符号内的数有什么关系?从而得出绝对值的代数意义:(1)一个正数的绝对值是它本身;(2)零的绝对值是零;(3)一个负数的绝对值是它的相反数.我们用a表示任意一个有理数,上述式子可以表示为:①当a是正数时,│a│=_______;②当a是负数时,│a│=_______;③当a=0时,│a│=_______.以上先让学生填空,然后让学生给a•取一些具体数值检验所填写的结果是否正确.教师问:(1)任何一个有理数都有绝对值吗?一个数的绝对值有几个?(2)有没有一个数的绝对值等于-2?任何一个数的绝对值一定是怎样的数?(3)绝对值等于2的数有几个?它们是什么?归纳:①任何有理数都有唯一的绝对值,任意一个数的绝对值总是正数或0,•不可能是负数,即对任意有理数a,总有│a│≥0.②两个互为相反数的绝对值相等,即│a│=│-a│.③因为0的绝对值是0,而0的相反数是它本身0,因此可知绝对值等于它本身的数是正数或者零,绝对值等于它的相反数的数是负数或零.三、巩固练习1.课本第11页练习1、2、3题.第1题强调书写格式,防止出现“-8=8”的错误.第2题(1)错,如3与-2的符号相反,但它们不是互为相反数,•应改为“只有大小相等符号相反的数是互为相反数”.(2)正确.(3)错,因为这个点也可能越靠左,应改为:“一个数的绝对值越大,表示它的点离原点越远.”(4)正确.四、课堂小结理解绝对值的几何意义和代数意义.从几何意义可知,一个数的绝对值是表示该数的点与原点的距离,因为距离总是正数和零,所以有理数的绝对值不可能是负数,从绝对值的代数定义也可进一步理解这一点.引入绝对值概念后,有理数可以理解为由性质符号和绝对值两部分组成的,如-5就是由“-”号和它的绝对值5两部分组成.五、作业布置1.课本第14页习题1.2第4、7、10题.1.2.4 绝对值教学目标:一、知识与技能掌握有理数的大小比较的两种方法──利用数轴和绝对值.二、过程与方法经历利用绝对值以及利用数轴比较有理数的大小,进一步体会“数形结合”的数学方法,培养学生分析、归纳的能力.三、情感态度与价值观会把所学知识运用于解决实际问题,体会数学知识的应用价值.教学重、难点与关键:1.重点:会利用绝对值比较有理数的大小.2.难点:两个负数的大小比较.3.关键:正确理解绝对值的概念.教学过程:一、复习提问,引入新课用“>”、“<”号填空.1.5.7______6.3; 2.27_____38; 3.0.03_______0;4.│-3│_______│2│; 5.│-23│_______│-32│.二、新授引入负数后,如何比较两个有理数的大小呢?让我们从熟悉的温度来比较,大家观察课本第12页中“未来一周天气预报”.1.课本图1.2-7中共有14个温度,其中最低的是多少?最高的是多少?2.请你将这14个温度按从低到高的顺序排列.课本图1.2-6中的14个温度按从低到高排列为:-4℃,-3℃,-2℃,-1℃,0℃,1℃,2℃,3℃,4℃,5℃,6℃,7℃,8℃,9℃.按照这个顺序排列的温度,在温度计上所对应的点是从下到上的,按照这个顺序把这些数表示在数轴上,表示它们的各点的顺序是从左到右的,如课本图1.2-•7,这就是说在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数,因此,我们可以利用数轴比较有理数的大小.例如在数轴上表示-6的点在表示-5的点的左边,所以-6<-5.同样-5<-4,-3<-3,-2<0,-1<1,…从数轴上可知:表示正数的点都在原点的右边;表示负数的点都在原点左边.因此有正数大小0,0大于负数,正数大于负数.两个正数的大小比较小学已学过,不画数轴你会比较两个负数的大小吗?探索:我们知道,在数轴上越靠左边的点所表示的数越小,而这个点与原点的距离越大,即这个点所表示的数的绝对值越大,因此,我们还可以利用绝对值比较两个负数的大小.即两个负数,绝对值大的反而小.例如:│-2│=2,│-5│=5,即│-2│<│-5│,因此-2>-5.同样│-1│<│-3│,所以-1>-3.例1:比较下列各对数的大小:(1)-(-1)和-(+2);(2)-821和-37;(3)-(-0.3)和│-13│.解:(1)先化简,-(-1)=1,-(+2)=-2,正数大于负数,1>-2.即 -(-1)>-(+2).(2)这是两个负数比较大小,要比较它们的绝对值,绝对值大的反而小.│-821│=821,│-37│=37=921.因为821<921,即│-821│<│-37│,所以-821>-37.(3)先化简,-(-0.3)=0.3,│-13│=13=.0.3,0.3<0.3,即-(-0.3)<│-13│.初学时,要求学生按以上步骤进行,能化简的要先化简,•然后按照有理数的大小比较法则:异号两数比较大小,要考虑它们的正负,根据“正数大于负数”,•同号两数比较大小,要考虑它们的绝对值,特别是两个负数大小比较,先各自求出它们的绝对值,然后依法则:两个负数,绝对值大的反而小,比较绝对值大小后,即可得出结论.例2:已知a>0,b<0且│b│>│a│,比较a,-a,b,-b的大小.解:方法一,可通过数轴来比较大小,先在数轴上找出a,-a,b,-b•的大致位置,再比较.由a>0,b<0可知表示a的点在原点的右边,表示b的点在原点的左边;由│b│>•│a│,可知表示b的点离开原点的距离更远,即它应在表示a的点的左边,•然后再根据两个互为相反数在数轴上所表示的点在原点两边,且与原点距离相等即可得到下图.-a ab根据数轴上,较左边的点所表示的数较小,可得:b<-a<a<-b.三、课堂练习1.课本第13页练习.2.补充练习:(1)比较大小,并用“<”连结.①-34,-712,-56;②-(-10),-│-10│,9,-│+18│,0.。
人教版七年级数学上册第一章有理数的概念(教案)
-解决实际问题
-判断有理数的大小关系
-有理数的混合运算
5.练习题与例题
-各类有理数运算的练习题
-涉及实际应用的有理数问题
-提高学生对有理数概念的理解和应用能力例题解析
二、核心素养目标
1.培养学生数学抽象能力:通过有理数的概念学习,使学生能够抽象出数的本质属性,理解数的分类及其意义,形成数学的抽象思维。
-举例:应用有理数解决温度变化、方向位移等问题。
2.教学难点
(1)有理数概念的理解:学生容易混淆有理数与整数、分数的关系,难以把握有理数的本质。
-突破方法:通过具体例子,让学生感受到有理数包含整数和分数,理解有理数的无限性和可表示性。
(2)相反数和绝对值的概念:学生难以理解相反数的意义,以及绝对值表示的实际意义。
其次,在新课讲授环节,我注意到有些学生在理解有理数概念和性质时显得有些吃力。在讲解过程中,我尽量使用简洁明了的语言,并通过举例来阐述。然而,可能由于讲解速度过快,部分学生还没来得及消化吸收就进入了下一个环节。针对这个问题,我计划在今后的教学中适当放慢讲解速度,增加课堂互动,让学生有更多机会提问和思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对有理数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
2.提升逻辑推理素养:引导学生掌握有理数的运算规律,学会运用逻辑推理解决问题,培养严谨的数学逻辑思维。
3.增强数学建模意识:通过实际问题的引入和解决,让学生学会运用有理数知识建立数学模型,提高解决实际问题的能力。
人教版数学七年级上册《 第一章 有理数 》教学设计
人教版数学七年级上册《第一章有理数》教学设计一. 教材分析人教版数学七年级上册《第一章有理数》是学生在初中阶段接触数学的基础知识,主要介绍有理数的概念、分类、运算及应用。
本章内容为学生后续学习实数、代数式、方程等知识打下基础。
教材内容紧凑,逻辑清晰,通过丰富的例题和练习,帮助学生掌握有理数的相关知识。
二. 学情分析七年级的学生已经具备一定的数学基础,但对有理数的概念和运算可能还存在一定的困惑。
因此,在教学过程中,要注重引导学生理解有理数的概念,突破运算难点,提高学生的数学思维能力。
三. 教学目标1.了解有理数的概念,掌握有理数的分类。
2.熟练掌握有理数的加、减、乘、除运算方法。
3.能够运用有理数解决实际问题,提高解决问题的能力。
4.培养学生的逻辑思维能力,提高学生的数学素养。
四. 教学重难点1.有理数的概念和分类。
2.有理数的运算方法。
3.有理数在实际问题中的应用。
五. 教学方法1.采用问题驱动法,引导学生主动探究有理数的概念和运算方法。
2.运用实例分析法,让学生通过实际问题理解有理数的应用。
3.采用合作学习法,培养学生的团队协作能力和沟通能力。
4.运用多媒体辅助教学,提高教学效果。
六. 教学准备1.准备相关课件、教案、例题及练习题。
2.准备教学素材,如黑板、粉笔、投影仪等。
3.提前让学生预习教材,了解基本概念。
七. 教学过程1.导入(5分钟)利用生活实例引入有理数的概念,如温度、海拔等,激发学生的学习兴趣。
2.呈现(10分钟)讲解有理数的概念、分类,并通过PPT展示相关知识点,让学生初步了解有理数。
3.操练(10分钟)讲解有理数的加、减、乘、除运算方法,并通过例题让学生现场练习,巩固所学知识。
4.巩固(10分钟)布置一些练习题,让学生独立完成,检验学习效果。
教师及时解答学生遇到的问题。
5.拓展(10分钟)利用多媒体展示一些实际问题,让学生运用有理数解决,提高学生的应用能力。
6.小结(5分钟)总结本节课所学知识点,强调重点和难点。
人教版七年级数学上册:1.2.1《有理数》教学设计1
人教版七年级数学上册:1.2.1《有理数》教学设计1一. 教材分析《有理数》是初中数学的重要内容,为学生今后学习代数、几何等数学分支打下基础。
人教版七年级数学上册1.2.1《有理数》教学设计,主要让学生了解有理数的定义、分类和性质,会进行有理数的运算。
通过本节课的学习,学生能够理解有理数的概念,掌握有理数的加、减、乘、除运算方法,为后续学习更高级的数学知识奠定基础。
二. 学情分析七年级的学生已初步掌握了实数的概念,对数学运算有一定的了解。
但部分学生对实数的概念仍模糊不清,对有理数的定义、性质和运算方法认识不足。
因此,在教学过程中,要关注学生的个体差异,针对不同学生进行有针对性的引导和讲解,提高他们的数学素养。
三. 教学目标1.理解有理数的定义,掌握有理数的分类和性质。
2.学会有理数的加、减、乘、除运算方法,能熟练进行计算。
3.培养学生的逻辑思维能力和数学运算能力。
4.激发学生学习数学的兴趣,提高他们的数学素养。
四. 教学重难点1.有理数的定义、分类和性质。
2.有理数的加、减、乘、除运算方法。
3.运用有理数解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究有理数的定义和性质。
2.运用实例讲解法,让学生通过具体例子理解有理数的运算方法。
3.采用小组合作学习法,培养学生的团队协作能力和沟通能力。
4.运用练习法,巩固所学知识,提高学生的数学运算能力。
六. 教学准备1.准备相关课件、教案、练习题。
2.准备多媒体教学设备。
3.准备学生分组合作的材料。
七. 教学过程1.导入(5分钟)利用实例引入有理数的概念,如分数、整数等,让学生初步感知有理数。
2.呈现(10分钟)讲解有理数的定义、分类和性质,通过PPT展示相关知识点,引导学生主动探究。
3.操练(10分钟)让学生进行有理数的加、减、乘、除运算练习,教师巡回指导,解答学生疑问。
4.巩固(10分钟)出示一些有关有理数的应用题,让学生运用所学知识解决问题,巩固所学内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
2 5 ] 3 9
1 2
4
② (-1) ×2+ (-2) ÷4
10
3
③
(-5) -3× ( )
4
④
2
11 1 1 3 5 ( ) 5 3 2 11 4
2
⑤(-10) +[ (-4) -(3+3 )×2]
2 (7)已知 a =3, b =4 ,且 a b ,求 a b 的值。
学 生通过 这些练 习 来 整理最题的方法和规 律。并展示学习的心得 与体会。
1 的相反数的倒数是__ 2
(2)若 a 和 b 是互为相反数,则 a+b=( ) A. –2a B .2b C. 0 D. 任意有 理数 (3)如果 a=-13,那么-a =______; 如果-a=-5.4,那么 a=______; 如果-x=-6,那么 x=______; 如果-x=9,那么 x=______. (4)已知 a、b 都是有理数,且|a|=a,|b|=-b,则 ab 是( ) A.负数; B.正数; C.负数或零; D.非负数 四、 【绝对值】一般地,数轴上表示数 a 的点与原点 的 叫做数 a 的绝 对 值, 记作 ∣ a ∣ . 一个 正 数的 绝对 值 是 ;一个负数的绝对值是它的 ;0 的 绝对值是 . [基础练习] ( 1 )— 2 的绝对值表示它 离开原点的距离是 个单位,记 作 . (2)|-8|= ;-|-5|= ;绝对值等 于 4 的数是______。 (3)绝对值等于其相反数的数一定是( ) A.负数 B.正数 C.负数或零 D.正数或零 (4) x 7 ,则 x ______ ; x 7 ,则 x ______ (5)如果 2a 2a ,则 a 的取值范围是( A. a >O B. a ≥ O C. a ≤O D. a <O. )
3
; (
1 2 )= 2
)
;-5 =
2
;2 的平方是
2
;
(3)下列各式正确的是( A. 52 (5)2 C. (1)2003 (1) 0 (4)下列说法正确的 是(
2 2 A.如果 a b ,那么 a b
B. (1)1996 1996 D. (1)99 1 0 )
2 2 B.如果 a b ,那么 a b 2
C.如果 a b ,那么 a b
2
2
D.如果 a b ,那么 a b 种运算.请你们讨论、 、最后算 .
(5)在 2+3 ×(-6)这个算式中,存在着 交流,上面这个式子应该先 算 、再算
(6)有理数的运算 ① 3 [
学生以学习小组为单 位完成知识梳理;并 在 小组内统一认识,形成 一支的答案,并展示疑 惑。
④与原点的 距离为三个单位的点有_ _个,他们分别表示的有 理数是 _和_ _。 (5)在数轴上点 A 表示-4 ,如果把原点 O 向负方向移动 1 个单位,那 么在新数轴上点 A 表示的数是 ( ) A.-5 , B.-4 C.-3 D.-2 三、 【相反数】 像 2 和-2、-5 和 5、2.5 和-2.5 这样,只有 不同 的两个数 叫做互为相反数。 0 的相反数是 。 一般地: 若 a 为任一有理数, 则 a 的相反数为-a 相反数的相关性质: 1、 相反数的几何意义: 表示互为相反数的两个点(除 0 外)分别在原点 O 的两边,并且到 原点的距离相等。 2、互为相反数的两个数,和为 0。 [基础练习] (1)-5 的相反数是 ;-(-8)的相反数是 ; - [+(-6)]= ;0 的相反数是 ; a 的相反数是 ;
(6)如果 a 3 ,则 a 3 ______, 3 a ______. (7)绝对值不大于 11 的整数 有( ) A.11 个 B.12 个 C.22 个 D.23 个 五、 【有理数的运算 】
有理数加减法法则课本 P-18、22 页 · 有理数乘除法法则课本 P-29、34 页· 求几个相同因数的积的运算,叫做有理数的乘方。 n 即:a =aa „a(有 n 个 a) [基础练习] n (1)从运算上看式子 a ,可以读作 ; n 从结果上,看式子 a 可以读作 . (2)3 =
新人教版七年级数学上册第一章《有理数》教案
主备人 分管领导 课时 复习 1 验收结果: 合格/须完善 时间
教学目标: 知识与能力:检查学生对本章的掌握情况,复习整理本章的基本概念和有理数的运算 法则、运算规律以及相 关的知识点。 过程与方法:培养学生综合应用知识解决问题的能力。 情感态度价值观:渗透数形结合的思想。 重点、难点 有理数的概念和有理数的运算;负数和有理数法则的理解。 教 教师活动 一、 【正负数】 学 过 程 学生活动 修改意见
有 理 数
有 理 数
____________统称有理数。 [基础练习] (1)把下列各数填在相应额大括 号内: 1,-0.1,-789,25,0,-20,-3.14,-590,6/7 正整数集{ „} ;正有理数集{ „} ;负有 理数集{ „}负整数集{ „} ;自然数 集{ „} ;正分数集{ „}负分数集 { „} (2 ) 某种食用油的 价格随着市场经济的变化落, 规定上涨记为正, 则-5.8 元的意义是 ;如果这种油的原价是 76 元,那么现在 的卖价是 。 二、 【数轴】规定了 、 的直线,叫数轴 通过练习来来进行针对 [基础练 习] 性练习,同时检查学生 (1)如图所示的图形为四位同学画的数轴,其中正确的是 对本环节的掌握情况; 并济时查漏补缺。 (2)在数轴上画出表示下列各数的点,并按从大到小的顺序排列, 用“>”号连 接起来: 4,-|-2|, -4. 5, 1, 0 (3)下列语句中正确的是( ) A数轴上的点只能表示整数 B数轴上的点只能表示分数 C数轴上的点只能表示有理数 D所有有理数都可以用数轴上的点表示出来 (4)①比-3 大的负整数是_______;②已知m是整数且-4<m<3,则 m为_______________。③有理数中,最大的负整数是 ,最小的 正整数是 。最大的非正数是 。