必修4第二章平面向量期末复习之一
高一数学必修4知识点梳理:平面向量
2、零向量:长度为0第二章平面向量1、向量定义:既有大小又有方向的量叫做向量,向量都可用同一平面内的有向线段表示.的向量叫零向量,记作0;零向量的方向是任意的.3、单位向量:长度等于1个单位长度的向量叫单位向量;与向量a 平行的单位向量:e =±a a ||4、平行向量(共线向量):方向相同或相反的非零向量叫平行向量也叫共线向量,记作//ab ;规定0与任何向量平行.5、相等向量:长度相同且方向相同的向量叫相等向量,零向量与零向量相等.注意:任意两个相等的非零向量,都可以用同一条有向线段来表示,并且与有向线段的起点无关。
6、向量加法运算:⑴三角形法则的特点:首尾相接⑵平行四边形法则的特点:起点相同baCBA -=A -AB =B a bC Cc高一数学必修4知识点梳理:平面向量⑶运算性质:①交换律:+=+a b b a ;②结合律:++=++a b c a b c ()();③+=+=a a a 00.⑷坐标运算:设=a x y ,11(),=b x y ,22(),则+=++a b x x y y ,1212)(. 7、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设=a x y ,11(),=b x y ,22(),则-=--a b x x y y ,1212)(.设A 、B 两点的坐标分别为x y ,11(),x y ,22(),则AB =--x x y y ,2121)(.8、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作λa . ①=λλa a ;②当>λ0时,λa 的方向与a 的方向相同;当<λ0时,λa 的方向与a 的方向相反; 当=λ0时,=λa 0.⑵运算律:①=λμλμa a ()();②+=+λμλμa a a ();③+=+λλλa b a b (). ⑶坐标运算:设=a x y ,(),则==λλλλa x y x y ,,()().9、向量共线定理:向量≠a a 0()与b 共线,当且仅当有唯一一个实数λ,使=λb a . 设=a x y ,11(),=b x y ,22(),其中≠b 0,则当且仅当-=x y x y 01221时,向量a 、≠b b 0()共线.10、平面向量基本定理:如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使=+λλa e e 1122.(不共线的向量e 1、e 2作为这一平面内所有向量的一组基底)11、分点坐标公式:设点P 是线段P P 12上的一点,P 1、P 2的坐标分别是x y ,11(),x y ,22(),当P P =PP λ12时,点P 的坐标是⎝⎭++ ⎪⎛⎫++λλλλx x y y 11,1212. 12、平面向量的数量积:⑴定义:≠≠≤≤⋅=θθa b a b a b cos 0,0,0180)(.零向量与任一向量的数量积为0. ⑵性质:设a 和b 都是非零向量,则①⊥⇔⋅=a b a b 0.②当a 与b 同向时,⋅=a b a b ;当a 与b 反向时,⋅=-a b a b ;⋅==a a a a 22或=⋅a a a .③⋅≤a b a b .⑶运算律:①⋅=⋅a b b a ;②⋅=⋅=⋅λλλa b a b a b ()()();③+⋅=⋅+⋅a b c a c b c ().⑷坐标运算:设两个非零向量=a x y ,11(),=b x y ,22(),则⋅=+a b x x y y 1212. 若=a x y ,(),则=+a x y 222,或=+a x y 22.设=a x y ,11(),=b x y ,22(),则⊥⇔+=a b x x y y 01212.设a 、b 都是非零向量,=a x y ,11(),=b x y ,22(),θ是a 与b 的夹角,则++==⋅+θx yx ya ba b x x y y cos 112222221212.第三章 三角恒等变形1、同角三角函数基本关系式(1)平方关系:αα=+221cos sin (2)商数关系:=tan sin cos ααα(3)倒数关系:αα=1cot tan=+sin tan tan 1222ααα ; =+co s 1t an 122αα注意: tan ,cos ,sin ααα 按照以上公式可以“知一求二”2、两角和与差的正弦、余弦、正切S +βα)(:=++sin cos cos sin )sin(βαβαβα S -βα)(:=--sin cos cos sin )sin(βαβαβα C +βα)(:a =+-sin sin cos cos )cos(βαβαβ C -βα)(:a =-+sin sin cos cos )cos(βαβαβ T +βα)(: =++-)tan(tan tan tan tan 1βαβαβαT -βα)(: =--+)tan(tan tan tan tan 1βαβαβα正切和公式:-⋅+=+βαβαβα)tan tan 1()tan(tan tan3、辅助角公式:222222cos sin sin cos b a x b x a a b a x b b a x +=++++⎛⎝⎫⎭⎪⎪ x b a x x b a +⋅+=⋅+⋅+=ϕϕϕ2222)sin cos cos (sin )sin((其中ϕ称为辅助角,ϕ的终边过点b a ),(,tan ϕ=b a)4、二倍角的正弦、余弦和正切公式: S 2α: =cos sin 22sin αααC 2α: -=sin cos 2cos 22ααααα-=-=221cos 2sin 21 T 2α: =-2tan tan 2tan 12ααα*二倍角公式的常用变形:①、=-αα|sin |22cos 1,=+αα|cos |22cos 1;②、=-αα1212|sin |2cos , =+αα1212|cos |2cos③-=+-=ααααα442221cos sin 21cos sin 2sin 2;=-442cos sin cos ααα;*降次公式:=cos sin 122sin ααα ααα=-+-=2sin 2cos 12122cos 12 ααα=++=2cos 2cos 12122cos 125、*半角的正弦、余弦和正切公式:±=-ααsin2cos 12 ; ±=+ααcos 2cos 12, ±=-+tan2cos 1cos 1ααα=-=+cos 1sin sin cos 1αααα6、同角三角函数的常见变形:(活用“1”)① -=cos 1sin 22αα; -±=cos 1sin 2αα;-=sin 1cos 22αα; -±=sin 1cos 2αα; ②=++=22cot tan sin cos cos sin 22sin θθθθθθθ,αααααααθθ2cot 22sin 2cos 2cos sin sin cos tan cot 22==-=-③ααααα2sin 1cos sin 21)cos (sin 2±=±=±; |cos sin |2sin 1ααα±=± 7、补充公式:*①万能公式2tan12tan2sin 2ααα+=; 2t a n12t a n1c o s 22ααα+-=; 2t a n12t a n2t a n 2ααα-=*②积化和差公式)]sin()[sin(21cos sin βαβαβα-++=)]sin()[sin(21sin cos βαβαβα--+=)]cos()[cos(21cos cos βαβαβα-++=)]cos()[cos(21sin sin βαβαβα--+-=*③和差化积公式2cos 2sin 2sin sin βαβαβα-+=+; 2sin2cos 2sin sin βαβαβα-+=- 2co s 2co s 2co s co s βαβαβα-+=+;2sin2sin 2cos cos βαβαβα-+-=- 注:带*号的公式表示了解,没带*公式为必记公式。
必修4平面向量知识要点
必修4平面向量知识要点1、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量.2、向量加法运算:⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+. ⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++;③00a a a +=+=.⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++. 3、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =--. 4、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=.⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==.5、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=.设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向量a 、()0b b ≠共线.6、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作baCBAa b C C -=A -AB =B为这一平面内所有向量的一组基底)7、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫⎪++⎝⎭.(当时,就为中点公式。
必修4 第二章 平面向量 期末复习
必修4 第二章《平面向量》期末复习制卷:王小凤 学生姓名【知识结构】【考点一:向量的相关概念】1.设O 是正方形ABCD 的中心,则向量AO uuu r 、OB uu u r 、CO uu u r 、OD uuu r是( )A .平行向量B .有相同终点的向量C .相等的向量D .模都相同的向量 2.下列命题正确的序号是① 两个相等向量的模相等; ② 若a 和b 都是单位向量,则b a =; ③ 相等的两个向量一定是共线向量; ④ b a //,b c //,则c a //;⑤ 若||||a b a b +=-r u r r r,则0a b ⋅=r r ; ⑥若c a c b b a =⋅=⋅,则;⑦若0a u u r 与0b u r 是单位向量,则001a b ⋅=rr .3.下列向量组中能作为表示它们所在平面内所有向量的基底的是( )A .(0,0)a =r (1,2)b =-rB .(1,2)a =-r(2,4)b =-r C .(3,5)a =r (6,10)b =r D .(2,3)a =-r(6,9)b =r 【考点二:向量的线性运算】4.下列命题中正确的是( )A .OA OB AB -=u u r u u u r u u u r B .0AB BA +=uu u r uu rC .00AB ⋅=r uu u r rD .AB BC CD AD ++=uu u r uu u r uu u r uuu r5.简AC -uuu r BD +uu u r CD -uu u r AB uu u r得( )A .AB uu u r B .DA uu u rC .BC uu u rD .0r6.若ABCD 是正方形,E 是CD 的中点,且AB a =u u u r r ,AD b =u u u r r,则BE uur = ( )A .12b a +r rB .12b a -r rC .12a b +r rD .12a b -r r7.任给两个向量a 和b ,则下列式子恒成立的有________. ① ||||||b a b a +≥+ ② ||||||b a b a -≥-③||||||b a b a +≤- ④ ||||||b a b a -≤-8.已知点C 在线段AB 的延长线上,且2BC AB =uu u r uu u r ,BC CA λ=uu u r uu r,则 λ=()A .3B .31C .3-D .31-9.在水流速度为4h km /的河流中,有一艘船沿与水流垂直的方向以8h km /的速度航行,则船自身航行速度大小为____________h km /。
数学4(必修)第二章 平面向量练习题A
(数学4必修)第二章 平面向量练习题A[基础训练A 组] 一、选择题1.化简AC - BD + CD - AB得( )A .AB B .C .D .0 2.设00,a b 分别是与,a b向的单位向量,则下列结论中正确的是( )A .00a b =B .001a b ⋅=C .00||||2a b +=D .00||2a b +=3.已知下列命题中:(1)若k R ∈,且0kb = ,则0k =或0b =,(2)若0a b ⋅= ,则0a = 或0b =(3)若不平行的两个非零向量b a ,,满足||||b a =,则0)()(=-⋅+b a b a(4)若a 与b 平行,则||||a b a b =⋅其中真命题的个数是( )A .0B .1C .2D .34.下列命题中正确的是( )A .若a ⋅b =0,则a =0或b =0B .若a ⋅b =0,则a ∥bC .若a ∥b ,则a 在b 上的投影为|a|D .若a ⊥b ,则a ⋅b =(a ⋅b)25.已知平面向量(3,1)a = ,(,3)b x =- ,且a b ⊥,则x =( )A .3-B .1-C .1D .36.已知向量)sin ,(cos θθ=a ,向量)1,3(-=b 则|2|b a -的最大值,最小值分别是( )A .0,24B .24,4C .16,0D .4,0二、填空题1.若=)8,2(,=)2,7(-,则31=_________2.平面向量,a b 中,若(4,3)a =-=1,且5a b ⋅= ,则向量=____。
3.若3a = ,2b = ,且与的夹角为060,则a b -= 。
4.把平面上一切单位向量归结到共同的始点,那么这些向量的终点 所构成的图形是___________。
5.已知)1,2(=a与)2,1(=b ,要使b t a +最小,则实数t 的值为___________。
三、解答题1.如图,ABCD 中,,E F 分别是,BC DC 的中点,G 为交点,若AB =a,=b ,试以a ,b 为基底表示DE 、BF 、CG .2.已知向量 a 与b 的夹角为60,||4,(2).(3)72b a b a b =+-=- ,求向量a 的模。
[一键打印]2014年最新整理2014-2015年数学必修4平面向量(期末复习)
2014-2015年数学必修4平面向量(期末复习)一.基本概念1.向量: .2.平行向量: .3.相等向量:b a =⇔ ;相反向量:b a-=⇔4.两个非零向量a 、的夹角:作 =a ; =b ; 叫做a 与b的夹角。
5.坐标表示:i 、j分别是 ,若=a则 叫做a的坐标。
6.向量a 在方向上的投影:设θ为a 、的夹角,则一. 基本运算:三、基本定理、公式:1. 平面向量基本定理:若1e 与2e,则对平面内的任意一个向量a,一对实数1λ、2λ;使得=a____________________ 2. 向量的模:a= = ;a 与b夹角:=θcos _________ = _____________3. 向量平行:a ∥b⇔_________________ ⇔__________________ ;向量垂直:a ⊥b⇔_________________ ⇔_________________4. 中点坐标公式:_________________ 四、复习题1、在下列命题中,正确命题的个数为 .①a ·0=0;②0·a=0;③(→a ·→b )→c =→a (→b ·→c )+=-,则0=b ;⑤→a ·→b -→b ·→a =→0;⑥1===→→→c b a ,且→a ∥→b ,→b ∥→c ,则→a 与→c 是模相等且同向或反向的两个向量⑦ a ·b =0,则a 与b中至少有一个为0; 2、化简下列各式:(1))(CD AB --)(BD AC -= ;(2)MP MN --QM QN += ; (3)BA CO BO OC OA -+++= . (4))(++)(++=__________3.已知平面内三点A (-1,0),B (x ,6),P (3,4),且−→−AP =λ−→−PB ,x 和λ的值分别为( ) A .-7,2 B .5,2 C .-7,52 D .5,524、向量a ,6=10=-的取值范围是 .56=8=10=-=+ . 6、已知=1e +2e ,=21e -2e ,则向量+2与2-( )A 、一定共线B 、一定不共线C 、仅当1e 与2e 共线时共线D 、仅当1e =2e 时共线A BDM C7、已知OA=1e ,=2e1==.∠AOB =︒1205=, 且OC 平分∠AOB ,用1e ,2e 表示OC = . 8、已知∆ABC 顶点A (―1,12-),B (2,3)及重心坐标G (1,12),则顶点C 的坐标为__________9.已知O (0,0)和A (6,3)两点,若点P 在直线OA 上,且2PA OP =,又P 是线段OB 的中点,则点B 的坐标是1032==,且4=⋅b a ,则向量b 在向量a 上的投影为 .11、已知|a |=3,|b |=4,且|a -b ,则a 与b的夹角为 .12.已知|→a |=|→b |,→a⊥→b ,且(→a +→b )⊥(k →a -→b ),则k 的值是( )A .1B .-1C .0D .-213.已知(1,2),(1,1)a b ==,且a 与a b λ+的夹角为锐角,则实数λ的取值范围为_____________________14、ABC ∆的三个内角C B A ,,的对边分别为c b a ,,,已知sin 1B =,向量p ()a b =,,(12)=,.若q p //,则C ∠角的大小为( ) A6πB3π C2π D32π 15、已知点O (0,0),A (1,2),B (4,5),P 为一动点,及t +=, (1)t 为何值时,P 在x 轴上?P 在y 轴上?P 在第二象限?(2)四边形OABP 能否成为平行四边形?若能,求出相应的t 值;若不能,请说明理由。
(压轴题)高中数学必修四第二章《平面向量》测试题(包含答案解析)(1)
一、选择题1.如图,在ABC 中,AD AB ⊥,2AD =,3DC BD =,则AC AD ⋅的值为( )A .3B .8C .12D .162.如图,在ABC 中,13AN NC =,P 是BN 上的一点,若2299AP m AB BC ⎛⎫=++ ⎪⎝⎭,则实数m 的值为( )A .19B .13C .1D .33.在矩形ABCD 中,|AB |=6,|AD |=3.若点M 是CD 的中点,点N 是BC 的三等分点,且BN =13BC ,则AM ·MN =( ) A .6 B .4 C .3 D .24.已知M 、N 为单位圆22:1O x y +=上的两个动点,且满足1MN =,()3,4P ,则PM PN +的取值范围为( )A .53,53+⎡⎣B .103,103⎡-⎣C .523,523-+⎡⎣D .1023,1023-+⎡⎤⎣⎦5.已知(),0A a ,()0,C c ,2AC =,1BC =,0AC BC ⋅=,O 为坐标原点,则OB 的取值范围是( )A .(0,21⎤-⎦B .(0,21⎤+⎦C .21,21⎡⎤-+⎣⎦D .)21,⎡-+∞⎣ 6.在平行四边形ABCD 中,3DE CE =,若AE 交BD 于点M .且AM AB AD λμ=+,则λμ=( ) A .23 B .32 C .34 D .437.设θ为两个非零向量,a b 的夹角,且6πθ=,已知对任意实数t ,b ta +的最小值为1,则b =( )A .14B .12C .2D .48.在边长为2的正方形ABCD 中,E ,F 分别为BC 和DC 的中点,则AE AF ⋅=( )A .52B .52-C .4D .4-9.已知向量(cos ,sin )a θθ=,向量(3,1)b =-,则2a b -的最大值,最小值分别是( )A .42,0B .4,42C .16,0D .4,010.如图,一条河的两岸平行,河的宽度d =0.6 km ,一艘客船从码头A 出发匀速驶往河对岸的码头B .已知AB =1 km ,水的流速为2 km/h ,若客船从码头A 驶到码头B 所用的时间为6 min ,则客船在静水中的速度为( )A .2B .8 km/hC .34D .10 km/h11.已知向量a 、b 、c 满足0a b c ++=,且a b c <<,则a b ⋅、b c ⋅、a c ⋅中最小的值是( )A .a b ⋅B .a c ⋅C .b c ⋅D .不能确定12.已知2a b ==,0a b ⋅=,()()0c a c b -⋅-=,若2d c -=,则d 最大值为( )A .22B .122+C .222+D .42 二、填空题13.在日常生活中,我们会看到如图所示的情境,两个人共提一个行李包.假设行李包所受重力为G ,作用在行李包上的两个拉力分别为1F ,2F ,且12F F =,1F 与2F 的夹角为θ.给出以下结论:①θ越大越费力,θ越小越省力;②θ的范围为[]0,π;③当2πθ=时,1F G =; ④当23πθ=时,1F G =. 其中正确结论的序号是______.14.在△ABC 中,D 为BC 中点,直线AB 上的点M 满足:32(33)()AM AD AC R λλλ=+-∈,则AMMB =__________.15.把单位向量OA 绕起点O 逆时针旋转120︒,再把模扩大为原来的3倍,得到向量OB ,点C 在线段AB 上,若12AC CB =,则OC BA ⋅的值为__________. 16.如图,在△ABC 中,13AN NC =,P 是BN 上的一点,若AP =m 211AB AC +,则实数m 的值为_____.17.如图,在矩形ABCD 中,3AB =,4=AD ,圆M 为BCD △的内切圆,点P 为圆上任意一点, 且AP AB AD λμ=+,则λμ+的最大值为________.18.在ABC ∆中,1AC BC ==,3AB =,且CE xCA =,CF yCB =,其中(),0,1x y ∈,且41x y +=,若M ,N 分别为线段EF ,AB 中点,当线段MN 取最小值时x y +=__________.19.如图所示,已知OAB ,由射线OA 和射线OB 及线段AB 构成如图所示的阴影区(不含边界).已知下列四个向量:①12=+OM OA OB ; ②23143OM OA OB =+;③33145=+OM OA OB ;④44899=+OM OA OB .对于点1M ,2M ,3M ,4M 落在阴影区域内(不含边界)的点有________(把所有符合条件点都填上)20.设λ是正实数,三角形ABC 所在平面上的另三点1A 、1B 、1C 满足:()1AA AB AC λ=+,()1BB BC BA λ=+,()1CC CA CB λ=+,若三角形ABC 与三角形111A B C 的面积相等,则λ的值为_____. 三、解答题21.已知ABC 中C ∠是直角,CA CB =,点D 是CB 的中点,E 为AB 上一点.(1)设CA a =,CD b =,当12AE AB =,请用a ,b 来表示AB ,CE . (2)当2AE EB =时,求证:AD CE ⊥.22.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,向量()()sin sin ,sin sin ,sin sin ,sin m B C A B n B C A =++=-,且m n ⊥.(1)求角C 的大小;(2)若3c =2a b +的取值范围.23.已知向量()1,2a =,(),1b x =.(1)若|2|||a b a b -=+,求实数x 的值;(2)若2x =,求2a b -与a b +的夹角.24.如图,在正方形ABCD 中,点E 是BC 边上中点,点F 在边CD 上.(1)若点F 是CD 上靠近C 的三等分点,设EF AB AD λμ=+,求λ+μ的值. (2)若AB =2,当AE BF ⋅=1时,求DF 的长.25.已知,,a b c 是同一平面内的三个向量,其中(1,2)a =(1)若||25c =,且//c a ,求c 的坐标;(2)若5||b =,且2 a b +与2a b -垂直,求a 与b 的夹角θ. 26.在平面直角坐标系xOy 中,已知向量(1,2)a =-,(1,)b k =.(1)若()a a b ⊥+,求实数k 的值; (2)若对于平面xOy 内任意向量c ,都存在实数λ、μ,使得c a b λμ=+,求实数k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】利用AB 、AD 表示向量AC ,再利用平面向量数量积的运算性质可求得AC AD ⋅的值.【详解】()3343AC AD DC AD BD AD AD AB AD AB =+=+=+-=-, AD AB ⊥,则0⋅=AD AB ,所以,()224344216AC AD AD AB AD AD ⋅=-⋅==⨯=.故选:D.【点睛】方法点睛:求两个向量的数量积有三种方法:(1)利用定义:(2)利用向量的坐标运算;(3)利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用. 2.A解析:A【解析】 因为2299AP m AB BC ⎛⎫=++ ⎪⎝⎭29mAB AC =+,设BP tBN =,而31()()(1)44AP AB BP AB t BC CN AB t BC AC t AB t AC =+=++=+-=-+,所以1m t =-且249t =,故811199m t =-=-=,应选答案A . 3.C解析:C【分析】 根据向量的运算法则,求得12AM AD AB =+,2132MN AD AB =-+,再结合向量的数量积的运算公式,即可求解.【详解】由题意,作出图形,如图所示: 由图及题意,根据向量的运算法则,可得12AM AD DM AD AB =+=+, 2132MN CN CM CB CD =-=-21213232BC DC AD AB =-+=-+, 所以2212121||||23234AM MN AD AB AD AB AD AB ⎛⎫⎛⎫⋅=+⋅-+=-⋅+⋅ ⎪ ⎪⎝⎭⎝⎭21936334=-⨯+⨯=. 故选C .【点睛】本题主要考查了向量的运算法则,以及平面向量的数量积的运算,其中解答中熟练应用向量的运算法则和向量的数量积的运算公式是解答的关键,着重考查推理与运算能力. 4.B解析:B【分析】作出图形,可求得线段MN 的中点Q 的轨迹方程为2234x y +=,由平面向量加法的平行四边形法则可得出2PM PN PQ +=,求得PQ 的取值范围,进而可求得PM PN +的取值范围. 【详解】 由1MN =,可知OMN 为等边三角形,设Q 为MN 的中点,且3sin 602OQ OM ==Q 的轨迹为圆2234x y +=, 又()3,4P ,所以,33PO PQ PO -≤≤+,即3355PQ ≤≤+. 由平面向量加法的平行四边形法则可得2PM PN PQ +=,因此2103,103PM PN PQ ⎡+=∈+⎣.故选:B.【点睛】本题考查平面向量模长的取值范围的计算,考查了圆外一点到圆上一点距离的取值范围的计算,考查数形结合思想的应用,属于中等题.5.C解析:C【分析】法一:将A ,C 视为定点,根据A 、C 分别在 x 轴、y 轴上,得到垂直关系, O 是AC 为直径的圆上的动点,AC 的中点为圆心M ,根据圆心M 和BO 的位置关系即可得取值范围. 法二:设B 的坐标,根据2AC =,1BC =得到224a c +=,()221x y c +-=,整理式子至()222251x a y x y ax cy -+=⇒+=++,利用均值不等式得出22OB x y d =+=,则212d d -≤即可算出距离的取值范围.【详解】解:法一:将A ,C 视为定点,OA OC ⊥,O 视为以AC 为直径的圆上的动点,AC 的中点为M ,当BO 过圆心M ,且O 在B ,M 之间时,OB 取得最小值21-,O 在BM 的延长线上时,OB 取得最大值21+.故选:C法二:设(),B x y ,则224a c +=,()221x y c +-=,()222251x a y x y ax cy -+=⇒+=++,即221ax cy x y +=+-,()()2222222ax cy a c x y x y +≤++=+,取等号条件:ay cx =,令22OB x y d =+=,则22112{210d d d d d ≥-≤⇔--≤或201{210d d d <<⇔+-≥,解得2121d -≤≤+.故选:C【点睛】本题考查向量的坐标运算和圆的基本性质,综合性强,属于中档题.6.B解析:B【分析】根据已知找到相似三角形,用向量AB 、AD 线性 表示向量AM .【详解】如图,平行四边形ABCD 中,3DE CE =,ABM EDM ,3322DE DC AB ∴==,()22223323555255AM ME AE AD DE AD AB AB AD ⎛⎫===+=+=+ ⎪⎝⎭. 32λμ= 故选:B【点睛】此题考查平面向量的线性运算,属于中档题.7.C解析:C【分析】由题意可知,2222()2b ta a t a bt b +=+⋅+,令222()2g t a t a bt b =+⋅+,由二次函数的性质可知,当22cos 62b a b t a a π⋅=-=-时,()g t 取得最小值1,变形可得22sin 16b π=,从而可求出b【详解】解:由题意可知,2222()2b ta a t a bt b +=+⋅+,令222()2g t a t a bt b =+⋅+, 因为2222224()44(cos1)06a b a b a b π∆=⋅-=-<, 所以()g t 恒大于零, 所以当232cos 622b b a b t a a a π⋅=-=-=-时,()g t 取得最小值1, 所以2223332122b b b g a a b b a a a ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-+⋅-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 化简得2114b =, 所以2b =,故选:C【点睛】此题考查平面向量数量积的运算,涉及二次函数的最值,考查转化思想和计算能力,属于中档题8.C解析:C【分析】建立直角坐标系,利用向量的坐标运算求解即可.【详解】以点A 为坐标原点,建立如下图所示的直角坐标系(0,0),(2,1),(1,2)A E F(2,1),(1,2)AE AF ∴==21124AE AF ∴⋅=⨯+⨯=故选:C【点睛】本题主要考查了求平面向量的数量积,属于中档题.9.D解析:D【分析】利用向量的坐标运算得到|2|a b -用θ的三角函数表示化简求最值.【详解】解:向量()a cos sin θθ=,,向量()31b =-,,则2a b -=(2cosθ32sinθ+1), 所以|2|a b -2=(2cosθ3-2+(2sinθ+1)2=8﹣3cosθ+4sinθ=8﹣8sin(3πθ-), 所以|2|a b -2的最大值,最小值分别是:16,0; 所以|2|a b -的最大值,最小值分别是4,0;故选:D .【点睛】本题考查了向量的坐标运算以及三角函数解析式的化简;利用了两角差的正弦公式以及正弦函数的有界性.10.A解析:A【解析】设客船在静水中的速度大小为 /v km h 静,水流速度为 v 水,则2/v km h =水,则船实际航行的速度v v v =+静水,60.160t h =,由题意得100.1AB v ≤=. 把船在静水中的速度正交分解为x y v v v 静=+, ∴0.660.1y v ==,在Rt ABC 中,221060.8BC =-=.. ∵80.1x x BCv v v v +=+==水水,∴826x v =-= ∴2262x yv v v 静=+=设v v 静水<,>=θ,则tan 1yxv v θ==,∴2cos 2θ=.此时222272242410102v v v v v v v +=+⋅+=+⨯+=≤静水静静水水= ,满足条件,故选A.11.C解析:C 【分析】由0a b c ++=,可得2222222().2()a b c a b b c a b c =-+=-+、2222()a c b a c =-+,利用||||||a b c <<,即可比较. 【详解】解:由0a b c ++=,可得()c a b =-+,平方可得2222()a b c a b =-+. 同理可得2222()bc a b c =-+、2222()a c b a c =-+,||||||a b c <<,∴222a b c <<则a b 、b c 、a c 中最小的值是b c . 故选:C . 【点睛】本题考查了向量的数量积运算,属于中档题.12.C解析:C【分析】不妨设(2,0),(0,2)a b ==,设(,),(,)c m n d x y ==,则由()()0c a c b -⋅-=求出点(,)a b 满足的关系(点(,)C a b 在一个圆上),而2d c -=表示点(,)D x y 在以(,)C a b 为圆心,2为半径的圆上,d 表示该圆上的点到原点的距离,由几何意义可得解. 【详解】∵2a b ==,0a b ⋅=,∴不妨设(2,0),(0,2)a OA b OB ====,如图,设(,)c OC m n ==,(,)d OD x y ==,则()()(2,)(,2)(2)(2)0c a c b m n m n m m n n -⋅-=-⋅-=-+-=,即22(1)(1)2m n -+-=,∴点(,)C m n 在以(1,1)M 为圆心,2为半径的圆M 上, 又2d c -=,∴(,)D x y 在以(,)C a b 为圆心,2为半径的圆C 上, 则2d OC ≤+,当且仅当D 在OC 延长线上时等号成立, 又OC 的最大值是圆M 的直径22, ∴d 最大值为222+. 故选:C .【点睛】本题考查平面向量的数量积与向量的模,解题关键是引入坐标表示向量,用几何意义表示向量,求解结论.二、填空题13.①④【分析】根据为定值求出再对题目中的命题分析判断正误即可【详解】解:对于①由为定值所以解得;由题意知时单调递减所以单调递增即越大越费力越小越省力;①正确对于②由题意知的取值范围是所以②错误对于③当解析:①④. 【分析】根据12G F F =+为定值,求出()22121cos GF θ=+,再对题目中的命题分析、判断正误即可. 【详解】解:对于①,由12G F F =+为定值, 所以()2222121212cos 21cos G F F F F F θθ=++⨯⨯=+,解得(22121cos GF θ=+;由题意知()0,θπ∈时,cos y θ=单调递减,所以21F 单调递增, 即θ越大越费力,θ越小越省力;①正确.对于②,由题意知,θ的取值范围是()0,π,所以②错误. 对于③,当2πθ=时,2212GF =,所以12F G =,③错误. 对于④,当23πθ=时,221F G =,所以1F G =,④正确.综上知,正确结论的序号是①④. 故答案为:①④. 【点睛】此题考查平面向量数量积的应用,考查分析问题的能力,属于中档题14.1【解析】设∵D 为BC 中点所以可以化为3x=λ()+(3-3λ)化简为(3x-λ)=(3-2λ)只有3x-λ=3-2λ=0时(3x-λ)=(3-2λ)才成立所以λ=x=所以则M 为AB 的中点故答案为1解析:1 【解析】设 AM AB λ=,∵D 为BC 中点,所以12AD AB AC ()=+,() 3233AM AD AC λλ=+- 可以化为3x AB =λ(AB AC +)+(3-3λ)AC ,化简为(3x-λ)AB =(3-2λ)AC ,只有3x-λ=3-2λ=0时,(3x-λ)AB =(3-2λ)AC 才成立,所以λ=32,x=12所以12AM AB =,则M 为AB 的中点 故答案为1点睛:本题考查向量的基本定理基本定理及其意义,考查向量加法的三角形法则,考查数形结合思想,直线AB 上的点M 可设成 AM AB λ=,D 为BC 中点可得出12AD AB AC ()=+,代入已知条件整理可得.15.【分析】由题意可得与夹角为先求得则再利用平面向量数量积的运算法则求解即可【详解】单位向量绕起点逆时针旋转再把模扩大为原来的3倍得到向量所以与夹角为因为所以所以故答案为【点睛】本题主要考查平面向量几何 解析:116-【分析】由题意可得3OB =,OA 与OB 夹角为120︒,先求得1(2)3OC OA AC OA OB =+=+,则1(2)()3OC BA OA OB OA OB ⋅=+⋅-,再利用平面向量数量积的运算法则求解即可. 【详解】单位向量OA 绕起点O 逆时针旋转120︒,再把模扩大为原来的3倍,得到向量OB , 所以3OB =,OA 与OB 夹角为120︒, 因为12AC CB =,所以111()(2)333OC OA AC OA AB OA OB OA OA OB =+=+=+-=+,所以()2211(2)()233OC BA OA OB OA OB OA OB OA OB ⋅=+⋅-=--⋅ 11291332⎡⎤⎛⎫=--⨯⨯- ⎪⎢⎥⎝⎭⎣⎦116=-,故答案为116-. 【点睛】 本题主要考查平面向量几何运算法则以及平面向量数量积的运算,属于中档题. 向量的运算有两种方法:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差;(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和).16.【解析】由得设=n 所以+n=+n()=(1-n)=m 由n=得m=1-n= 解析:311【解析】由13AN NC =,得14AN AC =. 设BP =n BN ,所以AP AB BP AB =+=+n BN =AB +n (AN AB -)=(1-n )14AB nAC +=m 211AB AC +. 由14n=211,得m=1-n=311. 17.【分析】以点B 为坐标原点建立平面直角坐标系如下图所示由已知条件得出点坐标圆M 的方程设由得出再设(为参数)代入中根据三角函数的值域可求得最大值【详解】以点B 为坐标原点建立平面直角坐标系如下图所示因为在 解析:116【分析】以点B 为坐标原点,建立平面直角坐标系如下图所示,由已知条件得出点坐标,圆M 的方程,设(),P x y ,由AP AB AD λμ=+,得出134y x λμ⎧=-⎪⎪⎨⎪=⎪⎩,再设3cos 1sin x y θθ=+⎧⎨=+⎩(θ为参数),代入λμ+中,根据三角函数的值域,可求得最大值. 【详解】以点B 为坐标原点,建立平面直角坐标系如下图所示,因为在矩形ABCD 中,3AB =,4=AD ,所以圆M 的半径为3+4512r -==, 所以()0,0B ,()0,3A ,()4,0C ,()4,3D,()3,1M ,圆M 的方程为()()22311x y -+-=,设(),P x y ,又AP AB AD λμ=+,所以()()(),30,34,0x y λμ-=-+,解得134y x λμ⎧=-⎪⎪⎨⎪=⎪⎩, 又点P 是圆M 上的点,所以3cos 1sin x y θθ=+⎧⎨=+⎩(θ为参数),所以()1sin 3cos 517sin 1+1+34312124+y x θθβθλμ+=+--+=-=,其中3tan 4β=,所以,当()sin 1βθ-=时,λμ+取得最大值116, 故答案为:116.【点睛】本题考查向量的线性表示,动点的轨迹中的最值问题,属于中档题.18.【分析】根据平面向量的数量积运算求得的值再利用中线的性质表示出由此求得计算当的最小时的值即可【详解】解:连接如图所示:由等腰三角形中知所以∵是的中线∴同理可得∴又∴故当时有最小值此时故答案为:【点睛 解析:47【分析】根据平面向量的数量积运算求得CA CB 的值,再利用中线的性质表示出CM 、CN ,由此求得MN ,计算当||MN 的最小时x y +的值即可. 【详解】解:连接CM ,CN ,如图所示:由等腰三角形中,1AC BC ==,3AB =120ACB ∠=︒,所以1=2CA CB ⋅-.∵CM 是CEF ∆的中线,∴()()1122CM CE CF xCA yCB =+=+. 同理可得()1=2CN CA CB +. ∴()()111122MN CN CM x CA y CB =-=-+-, ()()()()222111111114224MN x x y y ⎛⎫=-+--⨯-+- ⎪⎝⎭, 又41x y +=,∴222131424MN y y =-+,(),0,1x y ∈. 故当17y =时,2MN 有最小值,此时3147x y =-=. 故答案为:47. 【点睛】本题考查了平面向量数量积公式及其运算性质问题,也考查了二次函数求最值的应用问题,属于中档题.19.①②④【分析】射线与线段的公共点记为根据平面向量基本定理可得到由在阴影区域内可得实从而且得出结论【详解】解:设在阴影区域内则射线与线段有公共点记为则存在实数使得且存在实数使得从而且又由于故对于①中解解析:①②④ 【分析】射线OM 与线段AB 的公共点记为N ,根据平面向量基本定理,可得到(1)ON tOA t OB =+-,由M 在阴影区域内可得实1r ≥,从而(1)OM rtOA r t OB =+-,且(1)1rt r t r +-=≥得出结论【详解】解:设M 在阴影区域内,则射线OM 与线段AB 有公共点,记为N , 则存在实数(0,1]t ∈,使得(1)ON tOA t OB =+-,且存在实数1r ≥,使得OM rON =,从而(1)OM rtOA r t OB =+-,且(1)1rt r t r +-=≥.又由于01t ≤≤,故(1)0r t -≥. 对于①中1,(1)2rt r t =-=,解得313,r t ==,满足1r ≥也满足(1)0r t -≥,故①满足条件. 对于②中31,(1)43rt r t =-=,解得139,1213r t ==,满足1r ≥也满足(1)0r t -≥,故②满足条件, 对于③31,(15)4rt r t =-=,解得19,152019r t ==,不满足1r ≥,故③不满足条件, 对于④,(189)49rt r t =-=,解得,4133r t ==,满足1r ≥也满足(1)0r t -≥,故④满足条件.故答案为:①②④. 【点睛】本题主要考查平面向量基本定理,向量数乘的运算及其几何意义,属于中档题.20.【分析】设的重心为点可知与关于点对称利用重心的向量性质可求得实数的值【详解】设的重心为点则由于和的面积相等则与关于点对称则解得故答案为:【点睛】本题考查了平面向量的数乘运算和线性运算涉及三角形重心向解析:23【分析】设ABC ∆的重心为点G ,可知ABC ∆与111A B C ∆关于点G 对称,利用重心的向量性质可求得实数λ的值. 【详解】设ABC ∆的重心为点G ,则3AB AC AG +=,()13AA AB AC AG λλ∴=+=, 由于ABC ∆和111A B C ∆的面积相等,则ABC ∆与111A B C ∆关于点G 对称, 则12AA AG =,32λ∴=,解得23λ=. 故答案为:23. 【点睛】本题考查了平面向量的数乘运算和线性运算,涉及三角形重心向量性质的应用,考查计算能力,属于中等题.三、解答题21.(1)2AB b a =-,12CE a b =+;(2)证明见解析. 【分析】(1)求出2CB b =,利用AB CB CA =-与12CE CA AB =+化简可得答案; (2)以C 点为坐标原点,以CB ,CA 为x ,y 轴,建立如图所示平面直角坐标系,设()0,A a , 求出,2a AD a ⎛⎫=- ⎪⎝⎭,2,33a a CE ⎛⎫= ⎪⎝⎭, 可得0AD CE ⋅=,进而可得答案.【详解】(1)∵CA a =,CD b =,点D 是CB 的中点, ∴2CB b =,∴2AB CB CA b a =-=-,∵()1112222CE CA AE a AB a b a a b =+=+=+-=+. (2)以C 点为坐标原点,以CB ,CA 为x ,y 轴,建立如图所示平面直角坐标系,设()0,A a ,∴B 点坐标为(),0a ,另设点E 坐标为(),x y ,∵点D 是CB 的中点,∴点D 坐标为,02a ⎛⎫⎪⎝⎭, 又∵2AE EB =,∴()(),2,x y a a x y -=--,∴23a x =,3ay =, 所以,2a AD a ⎛⎫=- ⎪⎝⎭,2,33a a CE ⎛⎫= ⎪⎝⎭,所以()20233a a aAD CE a ⋅=⨯+-⨯=, ∴AD CE ⊥.【点睛】方法点睛:平面向量数量积的计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用. 22.(1)2C 3π=;(2)(323,.【分析】(1)根据向量m n ⊥得到22sin sin (sin sin )sin 0B C A B B -++=,再由正弦定理将边化为角的表达式,结合余弦定理求得角C 的值.(2)利用正弦定理求的△ABC 的外接圆半径,将2a b +表示成A 与B 的三角函数式,利用辅助角公式化为角A 的函数表达式;再由角A 的取值范围求得2a b +的范围. 【详解】 (1)∵m n ⊥ ∴0m n ⋅=∴22sin sin (sin sin )sin 0B C A B B -++= ∴222c a b ab =++ ∴1cos 2C =- 又()0,C π∈ . ∴23C π=.(2)∵23C π=,c = ∴△ABC 外接圆直径2R=2∴24sin 2sin a b A B +=+4sin 2sin 3A A π⎛⎫=+- ⎪⎝⎭4sin sin A A A =+-3sin A A =6A π⎛⎫=+ ⎪⎝⎭∵0,3A π⎛⎫∈ ⎪⎝⎭∴,662A πππ⎛⎫+∈ ⎪⎝⎭∴1sin ,162A π⎛⎫⎛⎫+∈ ⎪ ⎪⎝⎭⎝⎭∴2a b + 的取值范围是 .【点睛】本题考查了向量垂直的坐标表示,正弦定理、余弦定理的综合应用,辅助角公式化简三角函数表达式,知识点多,较为综合,属于中档题. 23.(1)12;(2)4π. 【分析】(1)求出向量2a b -与a b +的坐标,然后由模的坐标运算列出方程可求得x ; (2)求出向量2a b -与a b +的坐标,由向量夹角的坐标运算计算. 【详解】(1)因为()1,2a =,(),1b x =, 所以()22,3a b x -=-,()1,3a b x +=+. 因为|2|||a b a b -=+,=解得12x =. (2)当2x =时,()20,3a b -=,()3,3a b +=, 所以()()203339a b a b -⋅+=⨯+⨯=,23a b -=,32a b +=.设2a b -与a b +的夹角为θ.则(2)()cos |2|||332a b a b a b a b θ-⋅+===-⋅+⋅. 又[]0,θπ∈,所以4πθ=,即2a b -与a b +的夹角为4π. 【点睛】 本题考查向量模的坐标运算,考查向量夹角的坐标运算,掌握向量的坐标运算是解题基础.24.(1)16;(2)32. 【分析】(1)先转化得到13CF AB =-,12EC AD =,再表示出1132EF AB AD =-+,求出λ13=-,μ12=,最后求λ+μ的值; (2)先得到12AE AB AD =+和0AB AD ⋅=,再建立方程421λ-+=求解λ14=,最后求DF 的长.【详解】 (1)∵点E 是BC 边上中点,点F 是CD 上靠近C 的三等分点,∴1133CF DC AB =-=-,1122EC BC AD ==, ∴1132EF EC CF AB AD =+=-+, ∴λ13=-,μ12=, 故λ+μ111326=-+=. (2)设CF =λCD ,则BF BC CF AD =+=-λAB ,又12=+=+AE AB BE AB AD ,AB AD ⋅=0, ∴AE BF ⋅=(12AB AD +)•(AD -λAB )=﹣λAB 2212AD +=-4λ+2=1, 故λ14=, ∴DF =(1﹣λ)×232=. 【点睛】 本题考查利用向量的运算求参数,是基础题25.(1)(2,4)或(2,4)--;(2)π.【分析】(1)根据共线向量的坐标关系运算即可求解;(2)由向量垂直及数量积的运算性质可得52a b ⋅=-,再利用夹角公式计算即可. 【详解】(1)设(,)c x y =,||25c =且//c a , 222020x y x y ⎧+=∴⎨-=⎩,解得24x y =⎧⎨=⎩或24x y =-⎧⎨=-⎩, (2,4)c ∴=或(2,4)c =--;(2)由 已知得(2)(2),(2)(2)0a b a b a b a b +⊥-∴+⋅-= ,即2252320,253204a ab b a b +⋅-=∴⨯+⋅-⨯=, 整理得52a b ⋅=-,cos 1||||a b a b θ⋅∴==-, 又[0,π]θ∈,πθ∴=.【点睛】本题主要考查了共线向量的坐标运算,数量积的运算,夹角公式,属于中档题. 26.(1)2k =-;(2)2k ≠-.【分析】(1)根据向量垂直,其数量积等于0,利用向量数量积公式得到对应的等量关系式,求得结果;(2)平面xOy 内任意向量c ,都存在实数λ、μ,使得c a b λμ=+,其等价结果为向量(1,2)a =-和向量(1,)b k =是两个不共线向量,根据坐标关系得到结果.【详解】(1)若()a a b ⊥+,则有()0a a b ⋅+=,即20a a b +⋅=,又因为(1,2)a =-,(1,)b k =,所以222[(1)2](1)120a a b k +⋅=-++-⋅+=,即5120k -+=,解得2k =-;(2)对于平面xOy 内任意向量c ,都存在实数λ、μ,使得c a b λμ=+,所以向量(1,2)a =-和向量(1,)b k =是两个不共线向量,所以121k -⋅≠⋅,即2k ≠-,所以实数k 的取值范围是2k ≠-.【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量垂直的坐标表示,平面向量基本定理,一组向量可以作为基底的条件,属于基础题目.。
人教版高二必修四数学第二章平面向量试题
以下是为⼤家整理的关于《⼈教版⾼⼆必修四数学第⼆章平⾯向量试题》的⽂章,供⼤家学习参考!第四部分练习与试卷2.1 平⾯向量的概念及其线性运算(练习)【练习⽬标】1、理解平⾯向量和向量相等的含义,理解向量的⼏何表⽰;2、掌握向量加、减法的运算,并理解其⼏何意义;3、掌握向量数乘的运算,并理解其⼏何意义,以及两个向量共线的含义;4、了解向量线性运算的性质及其⼏何意义。
【⾃我测试】1、下列命题中(1)与⽅向相同(2)与⽅向相反(3)与有相等的模(4)若与垂直其中真命题的个数是 ( )A、0B、1C、2D、32、已知AD、BE是 ABC的边BC、AC上的中线,且,,则为 ( )A、 B、 C、 D、3、O是平⾯上⼀定点,A、B、C是平⾯上不共线的三个点,动点P满⾜,则P的轨迹⼀定经过 ABC的( )A、外⼼B、内⼼C、垂⼼D、重⼼4、若⾮零向量、满⾜| + |=| — |,则与所成⾓的⼤⼩为_________________。
5、已知点M是 ABC的重⼼,若,求的值。
6、 ABC的外接圆的圆⼼为O,两条边上的⾼的交点为H,,求实数的值。
2.2 平⾯向量的坐标运算【练习⽬标】1、知识与技能:了解平⾯向量的基本定理及其意义、掌握平⾯向量的正交分解及其坐标表⽰;理解⽤坐标表⽰的平⾯向量共线的条件。
2、能⼒⽬标:会⽤坐标表⽰平⾯向量的加、减与数乘运算;3、情感⽬标:通过对平⾯向量的基本定理来理解坐标,实现从图形到坐标的转换过程,锻炼学⽣的转化能⼒。
【⾃我测试】1、下列命题正确的是()A、 B、C、 D、2、已知正⽅形ABCD的边长为1,,则 = ()A、0B、3C、D、3、已知,则共线的条件是()A、 B、 C、 D、或4、如图,在中D、E、F分别是AB、BC、CA的中点,则()A、 B、 C、 D、5、若,则实数p、q的值为()A、 B、 C、 D、6、已知A、B、C是坐标平⾯上的三点,其坐标分别为A(1,2),B(4,1),C(0,-1),则是()A、等腰三⾓形B、等腰直⾓三⾓形C、直⾓三⾓形D、以上都不对2.3 平⾯向量的数量积及其运算【学习⽬标】1.知识与技能:(1)理解向量数量积的定义与性质;(2)理解⼀个向量在另⼀个向量上的投影的定义;(3)掌握向量数量积的运算律;(4)理解两个向量的夹⾓定义;【⾃我测试】1、已知,,和的夹⾓为,则为()A. B. C. D.2、已知向量,,若,则()A. B. C. D.3、在△ABC中,a,b,c分别为三个内⾓A,B,C所对的边,设向量,若 ,则⾓A的⼤⼩为()A. B. C. D.4、设是任意的⾮零平⾯向量,且它们相互不共线,下列命题:①②③不与垂直④其中正确的是()A.①②B.②③C.③④D.②④5、若向量与的夹⾓为,,则向量的模为()A. B. C. D.6、为锐⾓三⾓形的充要条件是()A. B.C. D.7、设是两个⾮零向量,是在的⽅向上的投影,⽽是在的⽅向上的投影,若与的夹⾓为钝⾓,则()A. B. C. D.8、在中,若且,则的形状是()A.等边三⾓形 B.直⾓三⾓形 C.等腰⾮等边三⾓形 D.三边均不相等的三⾓形9、若,则与的夹⾓为; = .10、已知, ,如果与的夹⾓为锐⾓,则的取值范围是11、 = 时,与垂直12、设向量其中,则的值是.13、已知向量与的夹⾓为,,则 = .14、已知,⑴求与的夹⾓;⑵求;⑶若,,求的⾯积.15、已知向量且.⑴求及;⑵若的最⼩值是,求的值.2.4平⾯向量的应⽤【学习⽬标】1.经历⽤向量⽅法解决某些简单的平⾯⼏何问题、⼒学问题与其他⼀些实际问题的过程,体会向量是⼀种处理⼏何问题、物理问题等的⼯具,发展运算能⼒2.运⽤向量的有关知识对物理中的问题进⾏相关分析和计算,并在这个过程中培养学⽣探究问题和解决问题的能⼒1.在△ABC中,AB=a,AC=b,当a•b <0时,△ABC为()A.直⾓三⾓形B.锐⾓三⾓形C.钝⾓三⾓形D.等腰三⾓形2.若向量a、b、c满⾜a +b+c=0,|a|=3,|b|=1,|c|=4,则a b+b c+c a等于()A. 11 B. 12 C. 13 D. 143.已知点,则∠BAC 的余弦值为.4.已知,且a 与b的夹⾓为钝⾓,则x的取值范围是.5.的顶点为,重⼼.求:(1)边上的中线长;(2)边上的⾼的长.6.已知O为△ABC所在平⾯内的⼀点,且满⾜,试判断△ABC的形状.7.已知,设C是直线OP上的⼀点,其中O为坐标原点.(1)求使取得最⼩值时向量的坐标;(2)当点C满⾜(1)时,求cos∠ACB.8、已知O为△ABC所在平⾯内的⼀点,且满⾜,试判断△ABC的形状.9、已知,设C是直线OP上的⼀点,其中O为坐标原点.(1)求使取得最⼩值时向量的坐标;(2)当点C满⾜(1)时,求cos∠ACB.平⾯向量测试卷命题⼈:蓝承⼀、选择题:本⼤题共8⼩题,每⼩题4分,共32分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.1、设向量,,则下列结论中正确的是()A、 B、C、与垂直D、∥2、在平⾏四边形ABCD中,AC为⼀条对⾓线,若, ,则()A.(3,5) B.(2,4) C、(-2,-4) D.(-3,-5)3、义平⾯向量之间的⼀种运算“ ”如下,对任意的,,令,下⾯说法错误的是()A.若与共线,则B.C.对任意的,有D.4、已知向量a,b满⾜a•b=0,|a|=1,|b|=2,则|2a-b|=()A、8B、4C、2D、05、在中,,.若点满⾜,则()A. B. C. D.6、设点M是线段BC的中点,点A在直线BC外,则()A、8B、4C、 2D、17、中,点在上,平⽅.若,,,,则()A、 B、 C、 D 、8、已知和点满⾜ .若存在实数使得成⽴,则 =()A. 2 B. 3 C. 4 D. 5⼆、填空题:本⼤题共4⼩题,每⼩题4分,共16分.把答案填在答题卡的相应位置.9、如图,在中,,,则 = 。
(常考题)北师大版高中数学必修四第二章《平面向量》测试(包含答案解析)(1)
【分析】
设 , ,设 ,则 ,由 ,得到 , ,再利用 ,得到 ,再设 ,得到 ,根据 ,可解得结果.
【详解】
因为 ,所以可设 , ,
设 ,则 ,
由 ,得 ,所以 ,
由 ,得 ,化简得 ,所以 ,
所以由 ,得 ,
所以 ,
设 ,则 ,所以 ,
所以 ,
由 ,得 ,解得 ,
所以 ,
所以 ,
所以 ,
故答案为: .
15.已知正方形 的边长为4,若 ,则 的值为_________________.
16.已知圆 , 点为圆上第一象限内的一个动点,将 逆时针旋转90°得 ,又 ,则 的取值范围为________.
17.已知平面非零向量 ,满足 且 ,已知 ,则 的取值范围是________
18. 中, , ,且 ,则 ______.
6.C
解析:C
【详解】
由题意可得 ,所以 ,又因为 ,所以 ,选C.
7.B
解析:B
【分析】
根据方程有实根得到 ,利用向量模长关系可求得 ,根据向量夹角所处的范围可求得结果.
【详解】
关于 的方程 有实根
设 与 的夹角为 ,则
又
又
本题正确选项:
【点睛】
本题考查向量夹角的求解问题,关键是能够利用方程有实根得到关于夹角余弦值的取值范围,从而根据向量夹角范围得到结果.
此时,符合条件的点 有 个.
综上所述,满足题中条件的点 的个数为 .
故选:D.
【点睛】
本题考查符合条件的点的个数的求解,考查了平面向量加法法则的应用,属于中等题.
9.B
解析:B
【分析】
由 知, ,根据平面向量的线性运算可推出
高中数学复习课件-高中数学必修4课件 第二章总结平面向量
向量的运算有:加法、减法、数乘及两个向量的数量积,常见的有两种方法: 定义法和坐标法.特别是利用坐标进行向量的运算时,由于转化为实数的运算, 因此比利用定义运算方便、简捷.
应用 1 若向量 AB =(3,-1),n=(2,1),n· AC =7,则 n· BC 的值为( ).
A.-2
相等向量 : 长度相等且方向相同的两个向量
相反向量 : 长度相等而方向相反的两个向量
表示
几何表示 : 用有向线段表示向量
字母表示
:
用一个小写英文字母或两个大写英文字母表示向量
坐标表示 : 用有序实数对表示向量,等于终点坐标减去起点坐标
线性运算
加法
法则
: 三角形法则和平行四边形法则,结果是向量 运算律 : 交换律、结合律
应用 1 已知向量 a,b 满足|a|=3,|b|=2,a 与 b 的夹角为 60°,则 a·b= ; 若(a-mb)⊥a,则实数 m= .
解析:a·b=|a||b|cos 60°=3×2×1 =3. 2
∵(a-mb)⊥a,∴(a-mb)·a=0. ∴a2-mb·a=0.∴9-3m=0.∴m θ.因此求向量的夹角应先转化为求向量夹角的余弦值,再
结合夹角的范围确定夹角的大小.
应用 1 已知向量 a=(1,2),b=(-2,-4),|c|= 5 ,若(c- b)·a= 15 ,则 a 与 c 的夹 2
角为( ).
A.30°
B.60°
C.120°
D.150°
解析:a·b=-10,则(c- b)·a=c·a- b·a=c·a+10= 15 ,所以 c·a=- 5 .
B.BE D.CF
解析:在正六边形 ABCDEF 中,由于 CD∥AF,且|CD|=|AF|,故 CD = AF .同理
必修4 第二章 平面向量 测验题1
绵阳市开元中学高2013级高一(下) 数学1 必修4 第二章 平面向量 测试题(1)制卷:王小凤 学生姓名一.选择题(本题共10个小题,每小题5分,共50分)1.若a r 是任一非零向量,b r 是单位向量,下列各式①a b >r r ;②//a b r r ; ③0a >r ;④1b =±r ;⑤a b a=r rr ,其中正确的有( ) A .①④⑤ B .③ C .①②③⑤ D .②③⑤ 2.在菱形ABCD 中,下列各式中不成立的是( )A .AC AB BC -=uuu r uu u r uu u r B .AD BD AB -=uuu r uu u r uu u r C .BD AC BC -=uu u r uuu r uu u r D .BD CD BC -=uu u r uu u r uu u r3.下列各式中结果为0r的有( )①AB BC CA ++uu u r uu u r uu r ②OA OC BO CO +++uu r uuu r uu u r uu u r ③AB AC BD CD -+-uu u r uuu r uu u r uu u r ④MN NQ MP QP +-+uuu r uuu r uuu r uu u rA .①②B .①③C .①③④D .①②③4.在△ABC 中,向量BC uu u r可表示为( )①AB AC -uu u r uuu r ②AC AB -uuu r uu u r ③BA AC +uu r uuu r④BA CA -uu r uu rA .①②③B .①③④C .②③④D .①②④5.已知ABCDEF 是一个正六边形,O 是其中心,其中,,OA a OB b OC c ===uu r r uu u r r uuu r r 则EF =uu u r( )A .a b +r rB .b a -r rC .c b -r rD .b c -r r6.在矩形ABCD ,4,2AB BC ==uu u r uu u r,则向量AB AD AC ++uu u r uuu r uuu r 的长度等于( )A. B. C .12 D .67.若(2,4)AB =uu u r ,(1,3)AC =uuu r, 则BC =uu u r ( )A . (1,1)B .(-1,-1)C .(3,7)D .()3,7--8.已知向量()1,2a =r ,()2,3b =-r .若向量c r 满足()//c a b +r r r ,()c a b ⊥+rr r ,则c r =( )A .77(,)93B .77(,)39--C .77(,)39D .77(,)93--9.平面向量a r 与b r 的夹角为060,()2,0a =r ,1b =r ,则2a b +=r r ( )AB .C .4D .1210.已知向量()2,1a =r ,10a b ⋅=r r,a b +=r r b =r( )ABC .5D .25二.填空题:(本题共10小题,每小题5分,共50分)11.化简:(1)AB BC CD ++=uu u r uu u r uu u r ; (2)()AB MB BO BC OM ++++=uu u r uuu r uu u r uu u r uuu r;12.下列命题正确的有①单位向量都相等 ②长度相等且方向相反的两个向量不一定是共线向量 ③若a r ,b r满足a b >r r 且a r 与b r 同向,则a b >r r ④对于任意向量a r 、b r,必有a b a b +≤+r r r r13.一架飞机向北飞行200 km 后,改变航向向东飞行200 km ,则两次位移的和的方向为 ,大小为14.3AB =,2AC =,BC =AB AC ⋅=uu u r uu u r15.在平面直角坐标系xoy 中,四边形ABCD 的边//AB CD ,//AD BC ,已知点()2,0A -,()6,8B ,()8,6C ,则D 点的坐标为___________.16.若向量a r =(3,2),b r=(0,-1),则向量2b a -r r 的坐标是________.17.已知()1,2A -,()2,4B ,()4,3C -,(),1D x ,若AB uu u r 与CD uu u r 共线,则BD uu u r的值等于________.18.已知向量a r ,b r 的夹角为120︒,且2a =r ,5b =r ,则()2a b a -⋅=r r r =______19.向量a r 、b r 满足1a =r,b =r ()()2a b a b +⊥-r r r r ,则向量a r 与b r 的夹角为________20.平面上有三个点()1,3A ,()2,2B ,()7,C x ,若90ABC ︒∠=,则x 的值为________.。
高中数学必修四第二章平面向量课后习题Word版(2021年整理)
(完整)高中数学必修四第二章平面向量课后习题Word版(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)高中数学必修四第二章平面向量课后习题Word版(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)高中数学必修四第二章平面向量课后习题Word版(word版可编辑修改)的全部内容。
【必修4】 第二章平面向量2.1 练习1、画有向线段,分别表示一个竖直向上,大小为18N 的力和一个水平向左、大小为28N 的力(1cm 长表示10N ).2、非零向量AB 的长度怎样表示?非零向量BA 的长度怎样表示?这两个向量的长度相等吗?这两个向量相等吗?3、指出图中各向量的长度.4、(1)用有向线段表示两个相等的向量,如果有相同的起点,那么它们的终点是否相同?(2)用有向线段表示两个方向相同但长度不同的向量,如果有相同的起点,那么它们的终点是否相同?2.2.1 练习1、如图,已知b a ,,用向量加法的三角形法则作出b a 。
2、如图,已知b a ,,用向量加法的平行四边形法则作出b a +.3、根据图示填空:(1)________;=+d a(2).________=+b c4、根据图示填空:(1)________;=+b a(2)________;=+d c(3)________;=++d b a(4).________=++e d c2.2.2 练习1、如图,已知b a ,,求作.b a -2、填空:________;=- ________;=- ________;=-BA BC ________;=-OA OD .________=-3、作图验证:b a b)(a --=+-2.2。
(完整版)数学必修4-第二章-平面向量知识点,推荐文档
形法则”
① 三量角b 的形终法点则指:向当被a,减b 有向共量同a起的点终时点,的向a 量b 表。示为从减向
② 平行四边形法则:两个已知向量是要共始点的,差向量是如图
所示的对角线。设
AB
a,
AC
b
则
a
-
b
=
AB
AC
CB
.
3.实数与向量的积
(1)
定义:实数
λ
与向量
a
的积是一个向量,记作
4.平面向量的坐标运算:
①若
a
( x1 ,
y1
),
b
( x2
,
y2
)
,则
a
b
x1
x2
,
y1
y2
;
②若
Ax1 ,
y1
,
Bx2
,
y2
,则
AB
x2
x1,
y2
y1
;
③若
a
=(x,y),则
a
=(
x,
y);
④若
a
( x1 ,
y1 ), b
(x2 ,
y2
)
,则
a
//
b
x1 y2
x2
y1
1.平面向量基本定理:如果 e1 , e2 是同一平面内的两个不共线向量,
那么对于这一平面内的任一向量
a
,有且只有一对实数
λ1,λ2
使
a
=λ1
e1
+λ2
e2
.
注意:(1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量 的一组基底;
(2) 基底不惟一,关键是不共线;
数学必修四第二章平面向量知识点
数学必修四第二章平面向量知识点第二章平面向量1. 平面向量的概念:平面上具有大小和方向的箭头。
2. 向量的表示:向量通常用小写字母加上一个箭头表示,如a→。
3. 平行向量:具有相同或相反的方向的向量。
4. 向量的加法:向量a→与向量b→相加得到向量c→,其坐标分别相加,即c→ = a→ + b→。
5. 向量的减法:向量a→与向量b→相减得到向量c→,其坐标分别相减,即c→ = a→ - b→。
6. 向量的数量积:向量a→与向量b→的数量积,用a·b表示,满足a·b = |a||b|cosθ,其中|a|和|b|分别表示向量a→和向量b→的模,θ为两个向量夹角的大小。
7. 向量的数量积的性质:具有交换律、结合律和分配律。
8. 向量的夹角:向量a→与向量b→的夹角可以通过向量的数量积来计算夹角的余弦值。
9. 向量的夹角的性质:两个向量夹角为0°,当且仅当它们是同一向量或其中一个向量是另一个向量的相反向量。
10. 向量的共线与垂直:两个向量共线,当且仅当它们的夹角为0°或180°;两个向量垂直,当且仅当它们的数量积为0。
11. 平面向量的坐标表示:平面上的向量可以用坐标表示,即向量a→可以表示为(a,b)。
12. 平面向量的数量积的坐标表示:向量a→(a1, a2)与向量b→(b1, b2)的数量积为a1b1 + a2b2。
13. 向量的数量积与坐标表示的关系:向量a→(a1, a2)与向量b→(b1, b2)的数量积等于它们的坐标相乘的和。
14. 平移向量:平面上的一点A沿着一条向量a→移动到另一点B,其位置关系可以用带箭头的线段→AB表示,这条线段就是向量a→。
15. 平面向量的模运算:给定向量a→(a1, a2),有|a→| = √(a1^2 + a2^2)。
这些是数学必修四第二章平面向量的核心知识点。
平面向量(必修4第二章)过关测试题
平面向量(必修4第二章)过关测试题时间:90分钟 满分:150分一、选择题(每小题5分,共50分)1 若三点(2,3),(3,),(4,)A B a C b 共线,则有( )A 3,5a b ==-B 10a b -+=C 23a b -=D 20a b -=2 设00,a b 分别是与,a b方向相同的单位向量,则下列结论中正确的是( )A 00a b =B 001a b ⋅=C 00||||2a b +=D 00||2a b +=3 设πθ20<≤,已知两个向量()θθsin ,cos 1=OP ,()θθcos 2,sin 22-+=OP ,则向量21P P 长度的最大值是( ) A2 B3 C 23 D 324 若平面向量与向量)2,1(-=a 的夹角是o 180,且53||=b ,则=( )A )6,3(-B )6,3(-C )3,6(-D )3,6(-5 已知平面向量(3,1)a = ,(,3)b x =- ,且a b ⊥,则x =( )A 3-B 1-C 1D 36 向量(2,3)a = ,(1,2)b =-,若ma b + 与2a b - 平行,则m 等于A 2-B 2 C21D 12- 7 若,a b 是非零向量且满足(2)a b a -⊥,(2)b a b -⊥ ,则a 与b 的夹角是( )A6π B 3π C 32π D 65π 8 已知,a b 均为单位向量,它们的夹角为060,那么3a b += ( ) A7 B 10 C 13 D 49 已知向量)sin ,(cos θθ=,向量)1,3(-=则|2|-的最大值,最小值分别是( )A 0,24B 24,4C 16,0D 4,010 若平面向量与向量)1,2(=a 平行,且52||=b ,则=( )A )2,4(B )2,4(--C )3,6(-D )2,4(或)2,4(--二、填空题(每小题4分,共28分)11 若(2,2)a =-,则与a 垂直的单位向量的坐标为__________12 若3a = ,2b = ,且与的夹角为060,则a b -=13 若||1,||2,a b c a b ===+,且c a ⊥ ,则向量a 与b14 若1a = ,2b = ,a 与b 的夹角为060,若(35)a b +⊥ ()ma b - ,则m 的值为 .15 若菱形ABCD 的边长为2,则AB CB CD -+=__________16 若→a =)3,2(,→b =)7,4(-,则→a 在→b 上的投影为________________17 已知)1,2(=a与)2,1(=b ,要使b t a +最小,则实数t 的值为___________三、解答题(5小题,共72分)18 (14分)如图,ABCD 中,,E F 分别是,BC DC 的中点,G 为交点,若AB =a,=b ,试以a ,b 为基底表示、BF 、CG19 (14分)已知(1,2)a =,)2,3(-=,当k 为何值时,(1)ka b + 与3a b -垂直?(2)ka + b 与3a -b 平行?平行时它们是同向还是反向?20 (14分)试证明:平行四边形对角线的平方和等于它各边的平方和21 (15分)平面向量11),(2a b =-=,若存在不同时为0的实数k 和t ,使2(3),,x a t b y ka tb =+-=-+ 且x y ⊥ ,试求函数关系式()k f t =22 (14分)如图,在直角△ABC 中,已知BC a =,若长为2a 的线段PQ 以点A 为中点,问BC PQ 与的夹角θ取何值时⋅的值最大?并求出这个最大值参考答案1 C (1,3),(2,3),//326,23AB a AC b AB AC b a a b =-=-⇒-=--=2 C 因为是单位向量,00||1,||1a b ==3 C 12(2sin cos ,2cos sin ),PP θθθθ=+---12PP ==≤= 4 A 设(,2),0b ka k k k ==-< ,而53||=b3,(3,6)k b ==-=-5 C 31(3)0,1x x +⨯-==6 D (2,3)(1,2)(21,32)ma b m m m m +=+-=-+2(2,3)(2,4)(4,1)a b -=--=- ,则121128,2m m m -+=+=-7 B 22222211220,20,,,cos 2a a b a a b b a b a b a b a b aθ-=-======8 C3a b +=== 9 D2(2cos 2sin 1),|2|a b a b θθ-=+-===4,最小值为010 D 设(2,),b ka k k ==,而||b =,(4,2),(4,2)k b ==±=-- 或二、填空题 11(,),(,)2222--或设所求的向量为22(,),220,1,2x y x y x y x y -=+===±127a b -=13 0120 221()0,0,c o s 2a b a a b a a a b a ba bθ-+=+====-,或画图来做 14 238(35)a b + 22()3(53)50ma b ma m a b b -=+--=3(53)2cos60540,823m m m +-⨯⨯-⨯==15 2 2A B C BC D A B B C C D A C C D A D-+=++=+==16cos a b a bθ==17 45- a tb +=== 45t =-时即可三、解答题18 解:1122DE AE AD AB BE AD a b b a b =-=+-=+-=-1122BF AF AB AD DF AB b a a b a =-=+-=+-=-G 是△CBD 的重心,111()333CG CA AC a b ==-=-+19 解:(1,2)(3,2)(3,22)ka b k k k +=+-=-+3(1,2)3(3,2)(10,4)a b -=--=-(1)()ka b +⊥ (3)a b -,得()ka b + (3)10(3)4(22)2380,19a b k k k k -=--+=-==(2)()//ka b + (3)a b - ,得14(3)10(22),3k k k --=+=-此时1041(,)(10,4)333ka b +=-=-- ,所以方向相反20 证明:记,,AB a AD b == 则,AC a b =+ ,DB a b =-222222()()22AC DB a b a b a b +=++-=+ 222222AC DB a b ∴+=+21 解:由11),(,)22a b =-=得0,2,1a b a b === 22222[(3)]()0,(3)(3)0a t b ka tb ka ta b k t a b t t b +--+=-+--+-=33311430,(3),()(3)44k t t k t t f t t t -+-==-=-22 解:,0.AB AC AB AC ⊥∴⋅=,,,()()AP AQ BP AP AB CQ AQ AC BP CQ AP AB AQ AC =-=-=-∴⋅=-⋅-.cos 2121)(222222θa a a a AC AB AP a AP AB AC AP a +-=⋅+-=⋅+-=-⋅--=⋅+⋅--=⋅+⋅-⋅-⋅=.0.,)(0,1cos 其最大值为最大时方向相同与即故当CQ BP BC PQ ⋅==θθ。
人教A版高中数学必修四第二章平面向量小结复习课
二.基本运算
1.向量减法的三角形法则 共起点
a b AB AD DB
注: AB a, AD b
(1) a b ,则四边形是什么图形?
(2) a b a b ,则四边形是什么图形?
二.基本运算
2.数乘运算:实数与向量的积 a 仍是向量
a是一个与a共线的向量
二.基本运算
夹角为等于__3_0__
3)非零向量a, b a , c (cos , sin ),则b与c
a
C 一定满足( )
A、b c, B、b • c 0, C、(b+c)(b c),D、b c 0
五.典例讲解 考查向量共线、垂直
例1.已知AB=a=(1,2),BC=b=(-3,2),CD=(6,4) (1)证明:A、B、D三点共线. (2)k为何值时,①向量ka+b与a-3b平行
4 17 17
五.典例讲解 向量与三角函数综合题
例3:已知向量a (sin ,1),b (1, cos ), ( , )
22
1)若a b,求的值
2)求 a b 的最小值
要注意的范围
3)求函数y f ( ) a • b的单调增区间
The End
作业:完成巩固练习
►Suffering is the most powerful teacher of life. 苦难是人生最伟大的老师。 ►For man is man and master of his fate. 人就是人,是自己命运的主人。 ►A man can't ride your back unless it is bent. 你的腰不弯,别人就不能骑在你的背上。
►1Our destiny offers not the cup of despair, but the chalice of opportunity. ►So let us seize it, not in fear, but in gladness. · 命运给予我们的不是失望之酒,而是机会之杯。 因此,让我们毫无畏惧,满心愉悦地把握命运
高一数学必修4课件:章末归纳总结2
第二章
章末归纳总结
成才之路 ·数学 ·人教A版 · 必修4
→ (1)|a+b|=|AC|=1. (2)a与(b-a)的夹角为150° . 法二:(数量积运算法) 1 ∵a =b =1,a· b=-2,
2 2
∴|a|=|b|=1. (1)|a+b|= a+b2= a2+2a· 2=1. b+b
第二章
第二章
章末归纳总结
成才之路 ·数学 ·人教A版 · 必修4
[例1]
已知△OAB中,延长BA到C,使AB=AC,D是将
→ → → |OB |分成2 1 的一个分点,DC和OA交于E,设OA =a,OB = b(如图).
第二章
章末归纳总结
成才之路 ·数学 ·人教A版 · 必修4
→ → (1)用a、b表示向量OC、DC; → → (2)若OE=λOA,求实数λ的值. [分析] (1)利用向量的三角形法则和数乘运算来表示
第二章
章末归纳总结
成才之路 ·数学 ·人教A版 · 必修4
→ → (2)设OE=λOA,则 → → → → → CE=OE-OC=λOA-OC=λa-2a+b =(λ-2)a+b. → → ∵CE与CD共线, ∴存在实数m, → → 使得CE=mCD, 5 即(λ-2)a+b=m(-2a+3b).
规律总结:向量有两种表示方法:代数法和几何 法.求解向量问题时可以分别从代数和几何这两个不同的角 度来思考,也可同时思考,这就是数形结合思想.例如证明 两条直线垂直可以转化为证明两个向量的数量积为零;证明 → → 三点A,B,C共线,只需要证明存在实数λ,使AB=λBC.
第二章
章末归纳总结
→ → → 表示出OM的坐标,再计算出MA· ,然后求最小值. MB
高中数学必修四第二章第二章平面向量复习优质
3.加法减法运算率
1)交换律: 2)结合律:
a+b=b+a
(a+b)+c=a+(b+c)
平面向量 复习
例题解析
例1 化简(1)(AB + MB)+ BO + OM 分析
(2) AB + DA + BD -BC-CA 利用加法减法运算法则,借助结论 AB=AP+PB;AB=OB-OA;AB+BC+CA=0
第一单元:向量的概念及表示
• • • • 向量:既有大小又有方向的量 向量的大小称为向量的长度(或模) 零向量:长度为0的向量 单位向量:长度等于1个单位长度的向量
相等向量:长度相等且方向相同的向量 相反向量:长度相等方向相反的向量
• 平行向量(共线向量):方向相同或相反的向量
C
OA+OB= OC
B O A
重要结论:AB+BC+CA= 0
坐标运算: 设 a = (x1, y1), b = (x2, y2)
则a + b = ( x1 + x2 , y1 + y2 )
平面向量复习
知识要点
2.向量的减法运算
B
1)减法法则: OA-OB = BA
2)坐标运算:
O A
若 a=( x1, y1 ), b=( x2, y2 )
向量相等的充要条件 λ1 e1 +μ1 e2 =λ2 e1 +μ2 e2 λ1= λ2 μ 1=μ2
平面向量小 复习
知识结构 知识要点 例题解析 巩固练习 课外作业
练习4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修4第二章 平面向量
一、向量基础知识回顾
1.向量是既有______又有_______量。
2.零向量: 的向量叫做零向量,其方向是 的。
单位向量: 的向量。
共线(平行)向量:方向 的非零向量叫平行向量。
与任一向量平行。
相反向量 。
与(1,3)共线的单位向量为 。
3.加法运算法则:① ② 减法运算法则: 。
4.平面向量的基本定理: 。
5.向量的夹角:已知两个向量和,作b OB a OA ==, 则∠AOB 就是向量与的夹角,向量夹角的取值范围 ,若与垂直,则∠AOB= 。
与共线,则∠AOB= 。
6.平面向量的坐标运算:a =(x 1,y 1),b =(x 2,y 2),则a +b =( ),a -b =( ),
λ=( )若//,则 ,若与垂直,则 。
若A(x 1,y 1),B(x 2,y 2),则AB = ,|AB |= , 7.平面向量的数量积定义,·= =
8.b a ,夹角为锐角,则 ,b a ,夹角为钝角,则 。
9.向量a 在向量b 方向上的投影 。
10.向量,的夹角θ的计算:cos θ= = 。
11、向量=(x ,y )的模的计算公式 。
二、典型例题精析:
例1.已知为不共线的向量,(-=+-=+=3825,则 A.A 、B 、D 三点共线 B.A 、B 、C 三点共线 C.B 、C 、D 三点共线 D.A 、C 、D 三点共线
例2.如图,在长方形ABCD 中, AB a = , AD b = ,N 是CD
的中点,M 是线段AB 上的点,2a = ,1b =
.
①若M 是线段AB 的中点,求证AN 与CM
共线;
②若动点P 在长方体ABCD 的边上运动,试求AP AB ⋅
的最大值及取得最大值时点P 的位置。
例3.设、是两个不共线的非零向量(R t ∈) (1)记),(3
1
,,t +=
==那么当实数t 为何值时,A 、B 、C 三点共线? (2)若 1201||||夹角为与且==,那么实数x 为何值时||x -的值最小?
例4.已知|OA |=1,|OB |=3,OA ·OB =0,点C 在∠AOB 内,且∠AOC =30°,设OC =m OA
+n OB (m ,n ∈R),则m
n
等于 ( )
A.13 B .3 C.3
3
D. 3 例5.设两个向量1e 、2e 满足|1e |=2,|2e |=1,1e 、2e 的夹角为60°,若向量2t 1e +72e 与向量1e +t 2e 的夹角为钝角,求实数t 的取值范围.
三、课堂反馈练习
1.命题①若b ≠0 ,且a ·b =c ·b ,则a =c ;②若a =b ,则3a <4b ;③(a ·b ) ·c =a ·(b ·c
),
对任意向量a ,b ,c 都成立;④a 2·b 2=(a ·b )2
;正确命题的个数为___ _
2. 设a →表示“向东走3 km ”,b →表示“向北走3 km ”,则a →+b →
表示_____________ 3.若)1,0(),0,1(==j i ,则与j i 43+垂直的单位单位向量是__________________.
4.已知向量i =(1,0),j
=(0,1),与2i +j 垂直的向量是( ),与之平行的是( )
A 2i j -
B 2i j -
C 2i j +
D 2i j +
E →→--j i 2
5.梯形ABCD ,AB ∥CD ,AB =2CD ,M 、N 分别是CD 和AB 的中点,若=a →,=b →,试用a →
、b 表
示和,则=_____________,
=_____________.
A
B
C
D N
M
6.平行四边形ABCD 中,M 、N 分别为DC 、BC 的中点,已知AM =c →,=d →,试用c →,d →
表示AB 和,即=_____________,=_____________.
7. j i AC j i AB 47,24+=-=,j i AD 63+=,试用−→
−−→
−−→
−AD AC AB 表示与 = 8. 已知OA =a →,OB =b →,OC =c →,OD =d →
,且四边形ABCD 为平行四边形,则( )
A.a →+b →+c →+d →=0→
B.a →-b →+c →-d →=0→
C.a →+b →-c →-d →=0→
D. a →-b →-c →+d →=0→
9.设3(,sin )2a α= ,1(cos ,)3
b α= ,且//a b
,则锐角α= .
四、课后作业
1.化简:(1)(-)-(-)= . (2)→
→
→
→
→
++++AF FE DC ED CB = 2.已知正方形的边长为1,AB =a →,=b →,=c →,则|a → +b → +c →
|等于
3.已知向量a 和向量b 的夹角为30o
,||2,||a b = a 和向量b 的数量积a b ⋅ = 。
4.在菱形ABCD 中,(AB +AD )·(AB -AD )= 。
( )5.已知D ,E ,F 分别是∆ABC 的边AB ,BC ,CA 的中点,则
A .0AD BE CF ++=
B .0BD CF DF -+=
C .0A
D C
E C
F +-= D .0BD BE FC --=
( )6.设非零向量a 、b 、c 满足=+==|,|||||,则向量a 、b 的夹角为 (A )150° B )120°(C )60°(D )30°
( )7.在ABC ∆中,M 是BC 的中点,AM=1,点P 在AM 上且满足学2=,则()
PA PB PC ⋅+
等于(A )
49 (B )43 (C )43- (D) 49
- 8.
平面向量
11),(2a b =-=
,若存在不同时为0的实数k 和t ,使 2
(3),,x a t b y ka tb =+-=-+ 且x y ⊥ ,试求函数关系式()k f t == .
9.
=1
=1,与的夹角为60°,=2-,=3-,则与的夹角是 10.已知平面上三点A 、B 、C
3, =
4, =5,则AB CA CA BC BC AB ⋅+⋅+⋅的值等于__________。
11.在△ABC 中,已知|AB |=|AC |=4,且8=∙−→
−−→−AC AB 则这个三角形的形状是__________________. 12.已知点A (1,2)和B (4,-1),在x 轴上找到一点C ,使∠ACB=90°,则C 点坐标是___________. 13.已知=(5,4),=(3,2),则与2-3平行的单位向量为________。
14.,为平面内两向量,若 b a OC b OB a OA 23,,-=== ,求证A 、B 、C 在同一直线
15.
=2
=2,a →和b →的夹角为45°,求使向量a →+λb →与λa →+b →
的夹角是锐角时λ的取值范围。
16、非零向量(a +b )与(2a -b )互相垂直,(a -2b )与(2a +b )互相垂直,求向量a 与b 的夹角的余弦值 。
五、选做习题
1..给定△ABC ,求证:G 是△ABC 重心的充要条件是.=++
2. 已知向量a 与b 不共线,则关于x 的方程02
=++c x b x a 的解
A .最多有一解 B.当042
>⋅-时有两个不同的解 C.必有一解 D.必有无穷多组解
3.在△ABC 中,M 是AC 中点,N 是AB 的三等分点,且2=,BM 与CN 交于D ,若λ=,则λ=__________.
4.设向量a ,b 满足:|a |=3,|b |=4,a ·b =0,以a ,b ,a -b 的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为 ( )
A .3
B .4
C .5
D .6
5.若非零向量 ,
a b 满足+=
a b b ,则( ) A.2>2+
a a b
B.22<+ a a b C.2>+2 b a b D. 22<+
b a b
6. ABC ∆的外接圆的圆心为O ,两条边上的高的交点为H ,)(m ++=,则实数m =
7.△ABC 外心为O ,垂心为H ,重心为G 。
求证:O ,G ,H 为共线,且OG :GH=1:2。