FEKO引领智能网联汽车天线的创新设计
微波仿真论坛_Feko 在天线罩设计中的应用概要
媒体文章Feko在天线罩设计中的应用安世亚太(ANSYS-CHINA贾云峰天线罩是航空器中广泛采用的天线保护装置,其引入会影响天线的方向图等电磁特性。
由于天线罩仿真计算规模较大,因此通常软件难于解决。
Feko完美结合了矩量法和高频近似方法,在处理这类问题时游刃有余。
本文通过Feko对某型天线罩的分析展示了Feko在处理电大尺寸问题上的卓越能力。
在航空领域作为探测、测量、瞄准、通信的手段,雷达不可或缺,其性能至关重要,雷达天线就是决定雷达性能的关键部件之一。
雷达工作环境恶劣,其天线大多设有天线罩。
从理论上讲,作为雷达天线保护装置的天线罩对电磁波应该是完全透明的,但由于材料、工艺和结构的限制,这种透明是有限的,因此,必须在兼顾结构强度和稳定性要求的同时,考虑天线罩的电性能,使其尽量接近无罩状态的理想值。
采用仿真软件,构造虚拟样机并进行性能分析与优化设计,可以大大降低成本,加快研究进度。
FEKO是针对天线设计、天线布局、RCS分析等而开发的专业电磁场分析软件。
FEKO从严格的积分方程出发,以矩量法(MOM及多层快速多级子(MLFMM算法为基础,不需建立吸收边界条件,没有数值色散误差。
Feko完美结合了高频分析方法(物理光学PO,一致性绕射理论UTD,因此非常适合于分析天线设计、雷达散射截面(RCS、开域辐射、电磁兼容中的各类问题。
Feko还混合了有限元法(FEM:Finite Element Method,能更精确的处理多层复杂电介质、生物体比吸收率等问题。
对于电小结构的天线等电磁场问题,FEKO采用完全的矩量法进行分析,保证了结果的高精度。
对于具有电小与电大尺寸混合的结构,可以将问题分解后选用合适的混合方法(如用矩量法、多层快速多级子分析电小结构部分,而用高频方法分析电大结构部分,从而保证了高精度和高效率的完美结合。
采用以上的技术路线, Feko可以针对不同的具体问题选取不同的方法来进行快速精确的仿真分析,使得应用更加灵活,适用范围更广泛,突破了单一数值计算方法只能局限于某一类电磁问题的限制。
八木天线的FEKO仿真与优化
八木天线的FEKO仿真与优化Simulation And Optimization Of Yagi Antenna赵工(深圳518001)摘要:从折合振子开始,通过一步步增加无源振子,并使之成为发射器或引向器,并不断使用FEKO优化各无源振子长度及相邻振子之间的间距,使组成的八木天线达到最佳方向性和端射的最大增益。
关键字:FEKO折合振子无源发射器无源引向器FEKO优化Abstract:Added a parallel conductor rod to a folded dipole antenna will change the directivity and gain of the antenna.Step by step,more passive rods added in the antenna and constituted a traditional Yagi antenna.Optimized the distance of two rods and the length of every rod to get the best directivity and maximum gain.Key Words:FEKO,Yagi antenna,director elements,reflector,optimization1.概述:八木天线,是一种结构相对简单的方向性天线,常用作室外电视接收天线或测向天线。
因为是由日本东北大学的八木秀次和宇田太郞两人发明,所以被称为“八木宇田天线”,简称“八木天线”。
八木天线一般是由一根连接馈线的有源振子和多个无源振子平行排列组成,其中一根无源振子比有源振子略长,放在天线的一侧,称为反射器,而其他的无源振子则比有源振子略短,放在有源振子的另一侧,称为引向器。
加上反射器与引向器的八木天线,其中心频率点的输入阻抗比单独一根有源振子的阻抗大大降低,所以一般使用阻抗较高的折合振子作为有源振子。
FEKO教案设计模版
FEKO 1一、简介FEKO 是美国EMSS 公司推出的一款针对天线设计、天线布局与电磁兼容性分析的专业电磁场分析软件。
FEKO 是以矩量法〔MOM〕为根底,承受多层快速多极子算法〔MLFMM〕,并与物理光学法〔PO〕、全都性绕射理论〔UTD〕等高频电磁分析方法相结合,在保证计算精度的同时,大大提高了计算速度,可以分析电大尺寸构造的电磁辐射、散射、EMC 等确定性问题。
FEKO 特点:具有多种算法可供选择,比方求解电小构造的天线,FEKO 可以承受完全的矩量法进展分析;对于具有电小与电大尺寸混合构造,既可以承受多层快速多极子,也可以承受混合算法——承受矩量法分析电小构造局部,而用高频方法分析电大构造局部。
菜单工具工具按 钮绘图窗口工程树窗口 细节窗口消息窗口FEKO 软件的界面包括 CADFEKO 、EDITFEKO 、POSTFEKO , 软件模块包括 PREFEKO 、FEKO 、OPTFEK 和 OTIMEFEKO 。
CADFEKO 主要用于创立几何模型,进展网格划分以及进展求解设置。
本课程中,重点对 CADFEKO 建立模型和网格,并在 POSTFEKO 中输出可视化结果的过程进展学习。
更多其他模块的使用方法请参考用户使用手册。
二、操作界面CADFEKO 的用户界面包括工具条、建模窗口、工程树、快捷工具、细节窗口和消息窗口。
cfx boffekcfs outCADFEKORUNFEKOPOSTFEKO建工程和设计结果可视化与输出增加分析和综合根本建模与求解参数设置添加鼓舞与求解项模型构造输出偏好设置建模变量设置GUI接口三、建仿照真过程1、建立工程文件和保存在CADFEKO 中建和保存后生成*.cfx 文件〔原始模型文件,包括几何模型、网格、求解设置、优化设置〕,*.cfm 文件〔保存网格数据〕和*.pre 文件〔PREFEKO 输入文件〕。
运行PREFEKO 又会生成*.fek 文件〔求解模型信息〕。
FEKO在太赫兹天线和成像仿真中的应用
(1)给定成像空间分辨率 ,根据文献[5]计算 2 / 0.83 ; (2)根据成像距离和结构要求给定 r1 和 r2 ,由高斯理论计算 1 、 f1 、 f 2 和 ; (3)根据 1 设计高斯双模喇叭,收发双模喇叭完全相同,模型如图 3 所示。 表 1 给出了设计完成的太赫兹 SAR 天线参数值,图 4 给出了运用 FEKO 软件的 MLFMM 算法仿真计算的 双模喇叭在 0.2THz 时的远场幅度方向图。 根据方向图曲线, 计算可得双模喇叭在 0.2THz 时等效高斯束腰约为 1.66mm。
-1-
Altair 2015 技术大会论文集
2 FEKO 软件简介
FEKO 软件的核心算法是矩量法(MOM),不同于有限元法(FEM)和时域有限差分法(FDTD),MOM 法是基于严格的频域积分方程方法,无需进行模型的三维空间网格剖分,且无需建立吸收边界条件,这使得 FEKO 在建模计算方面相对比较简便。由于计算资源的限制,MOM 适用于非电大尺寸结构的全波求解。而对 于电大尺寸结构的仿真,FEKO 软件通过引入 GO、PO、UTD 等高频算法可以很好的解决。 针对非电大和电大尺寸混合结构求解的电磁仿真问题,FEKO 软件通过引入高低频混合法(MOM/PO、 MOM/GO、MOM/UTD)、多层快速多极子算法(MLFMM)、口面场激励结合高频电磁算法等可进行解决。 (1)高低频混合法:突破了单一数值计算方法难以解决诸如喇叭激励大型反射面等非电大尺寸结构与电 大尺寸结构共存电磁问题的局限。对于非电大尺寸结构,可以采用精确的全波 MOM 算法,而对于电大尺寸结 构可选用 GO、PO 等算法。 (2)MLFMM:MLFMM 算法源自 MOM,其采用分组逐层计算单元间的相互作用,加速迭代过程中的矩 阵和向量相乘,从而实现快速计算。采用 MLFMM 算法可以极大减少对内存的需求,同时计算速度得到明显提 高,使得一些电大尺寸物体的电磁问题能够得以精确求解。 (3)口面场激励结合高频电磁算法:诸如波束波导馈电反射面天线或透镜等复杂结构,可采用 MLFMM 或 PO 计算每一级反射面的辐射口面场分布,并用口面场馈电下一级反射面或透镜从而完成问题的求解。
EDITFEKO在阵列天线中的应用
EDITFEKO在阵列天线中的应用Application Of EDITFEKO In The Antenna ArraySimulation于嘉嵬周成哲(成都中电锦江、成都、610051)摘要: 大型阵列天线的建模和端口激励设置在仿真软件的GUI界面中完成通常困难并且耗时间,EDITFEKO是Altair公司FEKO软件的脚本控制模块。
应用EDITFEKO可快速实现阵列天线的快速建模设置。
本文应用EDITFEKO完成一大型阵列天线的仿真。
关键词:阵列天线FEKO快速建模EDITFEKOAbstract:Usually it's very difficult and time-consuming to model and set excitation port for large-scale antenna array by GUI of EM simulation. EDITFEKO is the FEKO component that is a text editor to edit and modify the model geometry and solution. EDITFEKO can be used to fast geometry modeling and electrical setting for large-scale antenna array. In this paper, one antenna array is fast modeled by EDITFEKO and analyzed by FEKO.Key words: Antenna array,FEKO, Fast modeling,EDITFEKO1 概述在FEKO中,EDITFEKO模块有着很广泛的应用,在处理一些阵列天线问题时可以给我们带来很多便利,解决一些比较复杂的建模问题。
尤其当阵列天线的单元数量较多时,在CADFEKO中处理数量庞大的天线单元往往显得力不从心,而EDITFEKO可以很方便的处理这类问题:通过简单的编程便可以复制任意数量的天线单元,使其按照我们需要的阵列形式进行排布;在天线单元上添加激励端口、对每个激励端口进行加权值和相位值的处理,可以快速的得到阵列天线模型,而在CADFEKO中,这往往需要耗费大量的时间。
《2024年基于人工智能的天线优化设计》范文
《基于人工智能的天线优化设计》篇一一、引言随着科技的快速发展,人工智能()已经成为各个领域的焦点,其在通信、军事、医疗等众多领域均有着广泛的应用。
其中,在天线优化设计中,技术的运用已显示出其强大的潜力。
本篇论文旨在探讨基于人工智能的天线优化设计的方法及其在现实中的应用,分析其与传统天线设计方法的差异与优势。
二、传统天线设计方法的局限性传统天线设计方法主要依赖于工程师的经验和专业知识,通过反复试验和调整来达到设计目标。
然而,这种方法存在效率低下、成本高、设计周期长等局限性。
随着无线通信技术的快速发展,对天线性能的要求越来越高,传统的设计方法已难以满足日益增长的需求。
三、人工智能在天线优化设计中的应用针对传统天线设计方法的局限性,人工智能在天线的优化设计中展现出了独特的优势。
技术能够通过对大量数据的分析学习,找到传统方法无法发现的规律和模式,从而实现对天线性能的优化。
1. 深度学习在天线设计中的应用:深度学习算法可以通过对历史数据的分析学习,预测新天线的性能。
同时,深度学习还可以用于优化天线的结构,提高其辐射效率、增益等性能指标。
2. 遗传算法在天线优化中的应用:遗传算法是一种模拟自然进化过程的搜索算法,可以用于寻找最优的天线结构。
通过设定适应度函数,遗传算法可以在大量的设计方案中寻找到最优的解决方案。
四、基于人工智能的天线优化设计方法基于人工智能的天线优化设计方法主要包括以下步骤:1. 数据准备:收集历史天线的设计数据和性能数据,用于训练模型。
2. 模型训练:利用深度学习等技术,训练模型以找到天线结构与性能之间的关系。
3. 方案生成:利用训练好的模型,生成新的天线设计方案。
4. 方案评估与优化:通过仿真或实际测试,评估新设计方案的性能,利用遗传算法等优化方法对方案进行优化。
5. 迭代优化:将优化后的方案返回模型进行再次训练,以提高设计的准确性和效率。
五、实际应用与效果分析基于人工智能的天线优化设计方法在实际应用中取得了显著的成果。
FEKO_天线仿真应用_微带天线
•
•
删除释放出来的”substrate”模型;
Demo2: 定义介质层
• 进入”Construct” Tab, 点击”Planes/arrays”下拉按钮, 选择”Plane/ground”, 弹出”Plane/ground”对话框:
– Ground medium: planar multiplayer substrate – Layer1:
• Medium: substrate
– 点击”OK”
Demo1:建模-substrate底部面设定为PEC
• 在树型浏览器的” Construct”中, 选中 “substrate”,在”Details”中, 展开”Faces”, 选中右图所示的Faces:”Face6”, 点击鼠标右 键,弹出”Face properties”对话框:
• 计算完成之后, 进入”Solve/Run”, 点 击”PostFEKO”, 弹出”PostFEKO”.
DEMO1: 格林函数MOM+线端口
线端口:Wire Port
Demo2: 创建工程
• 把上述建立的工程” Microstrip_Patch_Antenna_Pin_Feed_Finite_Ground.cfx”另存为” Microstrip_Patch_Antenna_Pin_Feed_Infinite_Ground.cfx”; 进入左侧树型浏览器中的”Construct”, “展开Model->Geometry>antenna”, 选中”substrate”, 按住鼠标左键不放, 拖动鼠标位置 到”Geometry”节点, 释放鼠标左键, 在弹出的浮动窗口中选择”Move out”;
– – – – 选择: Continous (interpolated) range Start frequency: fmin End frequency: fmax 点击 OK
FEKO应用4_相控阵天线资料
FEKO应用4_相控阵天线资料FEKO应用4:天线系列内容:线性偶极子相控阵一、模型描述工作频率:freq=1GHz天线:采用51源偶极子组成的偶极子阵列(垂直极化放置)天线振子长度:0.45*lam,沿X方向平行排列天线阵列单元排布规律参见文本格式文件[图2所示]:../started/arrayLayout.inc天线阵列单元的激励幅度和相位参见文本格式文件[图3所示]:../started/Mag_phase.inc注:上述两个文件中单元的幅度和相位排布要和坐标位置排列对应,如单元位置文件的第二行描述的是端口1,在单元激励幅度与相位文件的第二行对应的就是端口1对应的激励和相位。
注:该例子中天线阵列单元排布规律文件的坐标值是以m单位给定的,所以在CadFEKO中建模的时候,也是采用m的单位,这个要注意对应。
天线单元的复制和激励的添加均在EditFEKO中完成。
图1:阵列的模型示意图图2:天线阵列各单元的位置(X坐标、Y坐标、Z坐标),第一行是注释图3:天线阵列各单元的幅度和相位(幅度、相位组合1、相位组合2…)第一行描述主瓣指向角度与第二行均为注释行二、主要流程:启动CadFEKO,新建一个工程:dipole_array.cfx,在以下的各个操作过程中,可以即时保存做个的任何修正。
2.1 定义变量:在左侧树型浏览器中,双击“Variables”节点,依次定义如下变量: 工作频率:freq=1e9工作波长:lam=c0/freq2.2 模型建立:天线模型建立:在“Construct”菜单中,点击“Line”,弹出“Create line”对话框,定义线段的起始点坐标:Start Point (U:0.0, V: 0, N: -lam*0.225), End point (U:0.0, V:0.0, N:lam*0.225),Label: dipole,点击“Create”。
图4:天线模型建立2.3 天线端口设置:在左侧树型浏览器中,展开“Model->Geometry”节点,选中新建的“dipole”模型,在左下角的“details”树浏览器中展开“Wires”节点,选择“Wire1”(注:该名称在EditFEKO中进行模型复制平移-TG的时候要对应),点击鼠标右键选择“Create port->Wire port”,在弹出的“Create wire port” 对话框中,把“Location on wire”设置为“Middle”,Label:Port1(该端口的编号也和EditFEKO中应用端口复制平移TG命令用到的编号对应),点击“Create”按钮。
FEKO应用7_载体平台多天线布局要点
FEKO应用7:EMC系列内容:锥台上收发振子天线的隔离度一、模型描述1.1模型描述:图1:锥台与天线全模型示意图载体的尺寸:顶部半径: R1=0.25*lam底部半径: R2=0.35*lam高度: L=3*lam遮挡物的尺寸:宽度: 0.2*lam高度: 0.45*lam厚度: 0.01*lam遮挡物的起始位置:-pos_start=0.3*lam1.2计算方法描述:采用矩量法-MoM1.3计算参数:遮挡体在固定位置的时候,收发振子天线之间的隔离度计算,分别采用S参数法和功率法;固定频率下,采用S参数法,通过扫参方法(Grid Search)来分析得到隔离度随遮挡体位置改变的规律曲线。
二、主要流程:启动CadFEKO,新建一个工程:multi_ants_coupling_on_cone_platform_s21.cfx,在以下的各个操作过程中,可以即时保存做过的任何修正。
2.1:定义变量:在CadFEKO中左侧的树型浏览器中双击“Variables”节点,依次定义如下变量:工作频率:freq=100e6工作波长:lam = c0/freq天线高度:ant_H=lam/4天线离锥台顶部的距离:ant_pos0=0.1*lam锥台的长度:L=3*lam遮挡体的位置参数-扫参参数:dis=0遮挡体的起始位置:pos_start=L*0.3锥台的顶部半径:R1=0.25*lam锥台的底部半径:R2=0.35*lam图2:变量定义2.2:模型建立:锥台模型建立:点击菜单“Construct”,选择“Cone ”,弹出“Create Cone ”对话框: 进入“Workplane”标签,修改 V Vector 为:(X: 0.0, Y:0.0; Z: -1) 进入“Geometry”标签: Base Centre: (U: 0.0 ; V: 0.0 ; N: -L/2) Base radius (Rb):R1 Height (H):L Top radius (Rt):R2 Label :Cone点击“Create”。
FEKO微带天线计算实例
FEKO微带天线计算实例微带天线是一种在微波频段常用的天线结构,它具有体积小、重量轻、制造工艺简单等优点,在无线通信系统和雷达应用中得到了广泛的应用。
在本文中,我将通过FEKO软件来进行微带天线的计算实例。
首先,我们需要选择一种适合的微带天线结构。
在FEKO中,可以选择多种类型的微带天线,如矩形微带天线、圆形微带天线、直线微带天线等。
在本次实例中,我们选择一个矩形微带天线作为研究对象。
矩形微带天线具有结构简单、频率稳定等优点,适合用于无线通信系统中。
在定义了微带天线的几何形状后,我们需要定义天线的材料属性。
在FEKO中,可以选择多种材料来定义天线的特性。
在本次实例中,我们选择常用的FR-4介质作为天线的材料。
FR-4具有较好的介电性能和机械强度,适合用于微波频段的天线设计。
接下来,我们需要定义微带天线的激励方式。
在FEKO中,可以选择多种激励方式来对天线进行激励,如电压源激励、面源激励等。
在本次实例中,我们选择面源激励。
面源激励可以模拟天线所接收到的电磁波条件,能够更真实地模拟天线的工作环境。
在定义了微带天线的激励方式后,我们可以进行计算和仿真了。
在FEKO中,可以使用多种计算方法来对天线进行计算,如时域方法、频域方法等。
对于微带天线的计算,一般使用频域方法进行计算。
频域方法可以得到天线的频率响应和辐射特性,对于天线设计和优化具有较好的效果。
在进行计算和仿真时,我们可以选择多种参数进行分析,如频率响应、辐射图案、波束宽度等。
这些参数可以帮助我们了解天线的性能,并进行天线的优化设计。
在得到了天线的计算结果后,我们可以对天线进行优化设计。
在FEKO中,可以使用多种优化算法来进行天线的优化设计,如遗传算法、粒子群算法等。
优化设计可以帮助我们对天线进行参数调整,以获得更好的性能。
综上所述,FEKO软件可以帮助我们进行微带天线的计算和优化设计。
通过选择合适的天线结构、定义几何参数和材料属性、设置激励方式、进行计算和仿真,以及进行优化设计,我们可以得到满足需求的微带天线。
FEKO应用共形天线阵弹载布局
FEKO应用6:天线系列内容:共形天线阵弹载布局一、模型描述1.1模型描述:图1:阵列天线+导弹全模型示意图1.2计算方法描述:采用FEM与MLFMM混合求解设置CFIE方法提高收敛性1.3计算参数:共形天线阵:12个微带贴片工作频率:2.4GHz计算相控阵天线方向图和表面电流二、主要流程:启动CadFEKO,打开工程:missile_Layout_start.cfx ,另存为missile_Layout_start_Phased array2.1:变量说明:在CadFEKO中左侧的树型浏览器中双击“Variables”节点,依次定义如下变量:工作频率:freq=2.4e9工作波长:lam0= c0/freq天线激励幅度:m1、m2、m3、m4、m5、m6、m7、m8、m9、m10、m11、m12 天线激励相位:p1、p2、p3、p4、p5、p6、p7、p8、p9、p10、p11、p12介电常数:patch_relative_permittivity=4.35介质损耗角正切:patch_tan_delta=0图2:变量定义2.2:模型导入:通过几何接口导入missile.x_t文件。
图3:Parasolid几何接口读入文件图4:读入几何模型默认为PEC材料在左侧树型浏览器中,展开“Model->Geometry”节点,同时选中导入的模型“GeomImport1”和“GeomImport2”,点击鼠标右键“Apply->Union”(或直接点击键盘的U键),把新生成的模型更名为“Missle”;2.3:设置模型材料在左下角Details工程树中,选择region465,如右图,为空气材料,点击右键,选择Properties图5:选择Region465空气模型设置为Air材料图6:完成空气材料设置Region466保持默认材料Free space图7:选择Region467微带模型设置为patch_substrate材料图8:定义patch_substrate材料设置微带天线阵的贴片和地板为PEC,Display options,选择Cutplanes,选择Global ZX平面,勾选Active。
应用FEKO特征模分析功能设计一种共形天线
图 4 天线样机照片及测试结果 从图 4 可以看出, 天线的测试结果与仿真结果一致性较好, 且天线在嵌入式共形安装后, 具有较好的水平全向辐射能力,天线 S11 参数小于-10dB 的百分比带宽约为 1.8%(覆盖了 546MHz~556MHz)。
5 结论
本节介绍天线的具体设计和加工的天线原型的测试结果。本文应用 FEKO V7.0 的特征 模分析能力, 详细介绍了从简单环结构到最终天线的特征模分析过程。 在特征模分析提供的 信息指示下,设计出一种新颖的共形全向天线,且测试结果与仿真结果一致性较好,且设计 效率大大提高。故本天线可以作为共形全向天线的备选形式之一,可直接应用于实际工程。
2 特征模理论简介
特征模法为任意形状的电磁问题定义一系列本征模式。这些本征模式对应于电磁物体 本身固有特性,模式之间具有正交性和收敛性。 考虑本征方程 XJ n n RJ n ,其中 R,X 分别为阻抗矩阵的实部和虚部。根据广义特 征值及 R, X 的性质,求出的特征值 n 和特征电流 J n 均为实数(即同相位)。可以证明, 特征电流满足如下的正交性[1]:
Key words: Altair FEKO, CMA, Characteristic mode analysis, Conformal antenna;
Omnidirectional antenna; Inverse L ring antenna
1 引言
共形天线可与飞机、火箭、导弹、舰船、车辆等移动载体共形,即节省空间又具有较小 的雷达散射截面和良好的空气动力学性能,已广泛应用于通信、导航、电子侦察等领域。共 形天线按辐射方向图可以分为共形定向天线和共形全向天线。 共形定向天线有较多的天线形 式供选择,如各种微带天线、平面螺旋天线等;而共形全向天线可供选择的天线形式很少, 是共形天线设计的一个难点,已经受到了越来越多的研究人员的关注。 特征模分析方法是近年来兴起的一种分析方法, 它是应用较为广泛的矩量法结合解析本 征模理论求解电磁问题的一类新方法。 模式方法为任意复杂形状的电磁问题定义了一系列与 解析法类似的本征模式,这些模式可描述电磁问题的本征特性,且模式之间具有正交特性, 本征值的大小直接决定了该模式对电磁问题参量的贡献大小。 虽然特征模法在解决电磁问题
FEKO应用1_方波导圆天线
FEKO应用1:天线系列内容:方波导圆极化天线一、模型描述1.1模型描述:图1:波导圆极化天线-全模型示意图(方波导)1.2计算方法描述:采用矩量法-MoM1.3计算参数:计算该类天线的左旋、右旋辐射方向图。
二、主要流程:启动CadFEKO,新建一个工程:square_waveguide_LHC.cfx,在以下的各个操作过程中,可以即时保存做过的任何修正。
2.1:定义长度单位:默认为m点击菜单“Home”中的图标按钮“Model unit”,在“Model unit”对话框中,选择millimetres(mm);图2:长度单位设置为mm2.2:定义变量:在CadFEKO中左侧的树型浏览器中双击“Variables”节点,依次定义如下变量:工作频率:freq=2.8e9长度缩放系数:sf =0.001工作波长:lam = c0/freq/sf波导宽度:wg_a=70波导长度:wg_h=100图3:变量定义2.3:模型建立:方波导天线模型建立:点击菜单“Construct”,选择“Cuboid”,弹出“Create Cuboid”对话框:在“Geometry”标签:Base corner: (U: -wg_a/2; V: -wg_a/2; N: 0.0)Width(W):wg_aDepth(D):wg_aHeight(H):wg_hLabel:square_wg点击“Create”。
图4:定义方波导天线在3D视图中,选中新建模型square_wg的顶部面元(z=wg_h的面),点击鼠标右键,选择“Del”,删除该面元;图5:删除顶部面元在3D视图区域,进入面选模式,选中新建喇叭天线“square_wg”的最底部面元(z=0面元),点击鼠标右键,选择“Properties”,弹出“Face properties”对话框:进入“Meshing”标签:勾选:Local mesh sizeMesh size: lam/13点击“OK”按钮。
八木天线的FEKO仿真与优化
八木天线的FEKO仿真与优化八木天线是一种常用的宽带天线,特别适用于通信系统中的宽带指向性衍射天线。
为了进一步提高八木天线的性能和优化设计,FEKO仿真和优化工具被广泛应用于八木天线设计中。
FEKO是一种电磁仿真软件,可以用来分析和优化各种天线结构的性能。
使用FEKO进行八木天线的仿真和优化,可以帮助工程师更好地理解和分析八木天线的辐射特性、电压驻波比、增益等参数,并通过优化设计过程来提高性能。
首先,FEKO可以用来模拟八木天线的辐射特性。
通过设置合适的辐射口和接收方向,可以得到八木天线在不同频率下的辐射特性图。
这可以帮助工程师了解八木天线的频率响应、波束宽度、辐射范围等参数,并根据需要进行优化。
其次,FEKO可以用来分析八木天线的电压驻波比(VSWR)。
VSWR表示天线的匹配度,是评估天线效能的一个重要指标。
使用FEKO进行八木天线的VSWR仿真可以帮助工程师了解天线的匹配性能,并在设计过程中进行改进。
此外,FEKO还可以用来计算八木天线的增益。
增益是衡量天线辐射功率增益的指标,是评估天线指向性和性能的重要参数。
通过使用FEKO 进行八木天线的增益仿真,可以帮助工程师更好地分析和优化八木天线的辐射性能。
在进行八木天线的FEKO仿真和优化时,还可以尝试使用优化算法进行设计。
FEKO的优化工具可以根据指定的优化目标函数(如最大增益、最小VSWR等),自动调整八木天线的参数和几何形状,以实现最佳性能。
这可以大大缩短设计周期,提高设计效率。
综上所述,八木天线的FEKO仿真和优化是一种有效的方法,可以帮助工程师更好地分析和优化八木天线的性能。
通过使用FEKO进行仿真和优化,可以提高八木天线的辐射特性、电压驻波比和增益等参数,从而满足具体应用场景的要求。
FEKO应用4_相控阵天线
FEKO应用4:天线系列内容:线性偶极子相控阵一、模型描述工作频率:freq=1GHz天线:采用51源偶极子组成的偶极子阵列(垂直极化放置)天线振子长度:0.45*lam,沿X方向平行排列天线阵列单元排布规律参见文本格式文件[图2所示]:../started/arrayLayout.inc天线阵列单元的激励幅度和相位参见文本格式文件[图3所示]:../started/Mag_phase.inc注:上述两个文件中单元的幅度和相位排布要和坐标位置排列对应,如单元位置文件的第二行描述的是端口1,在单元激励幅度与相位文件的第二行对应的就是端口1对应的激励和相位。
注:该例子中天线阵列单元排布规律文件的坐标值是以m单位给定的,所以在CadFEKO中建模的时候,也是采用m的单位,这个要注意对应。
天线单元的复制和激励的添加均在EditFEKO中完成。
图1:阵列的模型示意图图2:天线阵列各单元的位置(X坐标、Y坐标、Z坐标),第一行是注释图3:天线阵列各单元的幅度和相位(幅度、相位组合1、相位组合2…)第一行描述主瓣指向角度与第二行均为注释行二、主要流程:启动CadFEKO,新建一个工程:dipole_array.cfx,在以下的各个操作过程中,可以即时保存做个的任何修正。
2.1 定义变量:在左侧树型浏览器中,双击“Variables”节点,依次定义如下变量:工作频率:freq=1e9工作波长:lam=c0/freq2.2 模型建立:天线模型建立:在“Construct”菜单中,点击“Line”,弹出“Create line”对话框,定义线段的起始点坐标:Start Point (U:0.0, V: 0, N: -lam*0.225), End point (U:0.0, V:0.0, N: lam*0.225),Label: dipole,点击“Create”。
图4:天线模型建立2.3 天线端口设置:在左侧树型浏览器中,展开“Model->Geometry”节点,选中新建的“dipole”模型,在左下角的“details”树浏览器中展开“Wires”节点,选择“Wire1”(注:该名称在EditFEKO 中进行模型复制平移-TG的时候要对应),点击鼠标右键选择“Create port->Wire port”,在弹出的“Create wire port”对话框中,把“Location on wire”设置为“Middle”,Label:Port1(该端口的编号也和EditFEKO中应用端口复制平移TG命令用到的编号对应),点击“Create”按钮。
基于FEKO和MATLABGUI的天线布局快速分析处理软件设计
基于FEKO和MATLABGUI的天线布局快速分析处理软件设计基于FEKO和MATLAB GUI的天线布局快速分析处理软件设计摘要:随着无线通信技术的发展,天线布局的设计在无线通信系统中起着至关重要的作用。
为了快速、准确地分析和处理天线布局,本文设计了一款基于FEKO和MATLAB GUI的天线布局快速分析处理软件。
该软件通过集成FEKO电磁仿真软件和MATLAB图形用户界面工具,实现了对天线布局性能的快速测试和多种处理功能。
本文首先介绍了该软件的设计思想和流程,然后详细阐述了软件的实现方法和关键技术,最后通过实例分析验证了软件的性能和准确性。
关键词:天线布局;FEKO;MATLABGUI;电磁仿真;图形用户界面引言天线布局的设计是无线通信系统中的关键环节。
合理的天线布局可以提高通信系统的覆盖范围、信号质量和传输效率。
传统的天线布局设计需要通过繁琐的计算和复杂的实验来获得最优的布局方案,耗费大量时间和资源。
因此,为了提高天线布局设计的效率和准确性,设计一款基于FEKO和MATLAB GUI的天线布局快速分析处理软件具有重要的意义。
1. 软件设计思想和流程1.1 设计思想本文的软件设计思想是集成FEKO电磁仿真软件和MATLAB图形用户界面工具,实现天线布局快速分析和处理。
FEKO作为业内领先的电磁仿真软件,可以模拟和计算各种天线布局的电磁性能参数。
MATLAB GUI工具可以提供友好的用户界面和强大的计算分析能力。
通过将两者结合,可以实现对天线布局的快速分析和多种处理功能的扩展。
1.2 软件流程软件的基本流程如下:1) 用户输入天线布局的设计参数,包括天线类型、天线数目、天线位置等;2) 调用FEKO进行天线布局的电磁仿真计算,计算得到天线的辐射图案、增益等性能参数;3) 将仿真结果导入MATLAB GUI界面,显示天线布局的辐射图案和性能参数;4) 提供多种快速分析和处理功能,例如天线布局优化、信号覆盖分析和干扰抑制等;5) 输出分析结果,包括优化后的天线布局方案、信号覆盖范围和干扰抑制效果等。
阵列天线的FEKO仿真分析
阵列天线的FEKO仿真分析作者:刘源焦金龙来源:《计算机辅助工程》2009年第01期摘要:为在有限的硬件资源下,对复杂单元的大规模阵列天线进行有效分析,提出采用FEKO软件分析任意大规模阵列天线的有效方法. 首先应用FEKO进行相控阵分析,然后根据阵列天线的单元激励方向图(Active Element Pattern,AEP)进行阵列天线FEKO仿真分析. 实例表明,在普通硬件资源条件下,FEKO仿真分析可以在考虑单元互耦等实际因素的影响下,分析任意大规模阵列的方向图和端口特性等指标.关键词:阵列天线;单元激励方向图;互耦;FEKO中图分类号:U441.5;U444.18;TB115文献标志码:ASimulation and analysis on array antenna using FEKOLIU Yuan,JIAO Jinlong(PERA Tech. (Beijing) Co.,Ltd.,Beijing 100026,China)Abstract:To implement the effective analysis of large-scale array antenna with complicated elements under the condition of limited hardware resources,an effective method is proposed to analyze arbitrary large-scale array antenna by using FEKO. The phased array is analyzed. By introducing the concept of Active Element Pattern(AEP),an array antenna is simulated by FEKO. The application indicates that the radiation pattern and impedance of arbitrary large-scale array antenna can be simulated and analyzed by FEKO under the normal condition of hardware resources,while considering the influence of the mutual coupling between the elements and so on.Key words:array antenna;active element pattern;mutual coupling;FEKO0 引言阵列天线[1]是由不少于2个天线单元规则或随机排列,并通过适当激励获得预定辐射特性的1类特殊天线. 阵列可由各种类型的天线组成,数目可以是2个甚至几十万个. 通过选择和优化阵单元的结构形态、排列方式和馈电幅相特性,阵列天线能够实现单个天线难以提供的优异特性,如更高的增益、方位分辨率、系统信噪比等指标,因此在雷达和通信等领域被广泛地应用.在仿真分析阵列天线的过程中,由于阵列天线孔径很大,经常会达到数十、上百个波长,计算过程中会划分大量网格,产生大量未知量,给仿真分析带来很大困难.1 FEKO简介FEKO是针对天线分析、天线布局及RCS等分析而开发的专业电磁场分析软件. 它从严格的电磁场积分方程出发,以经典的矩量法(Method of Moment,MOM)为基础,采用多层快速多极子(Multi-Level Fast Multipole Method,MLFMM)算法在保持精度的前提下大大提高计算效率,同时将矩量法与经典的高频分析方法(物理光学(Physical Optics,PO),一致性绕射理论(Uniform Theory of Diffraction,UTD))完美结合起来,非常适合于分析开域辐射和雷达散射截面(Radar Cross Section,RCS)领域的各类电磁场问题.对于电大尺寸类问题,FEKO具备强大的分析能力,因此在阵列天线分析中的性能非常好.2 应用FEKO进行相控阵分析考虑如图1所示的阵列形式. 该阵列由30×4个半波振子构成,各阵元间距均为半波长. 其中,沿x方向的4个单元构成子阵,采用端射阵加权方式,即整个阵列由30个阵元间距为半波长的端射阵构成. 端射阵的方向图可直接通过FEKO计算得到,见图2.首先考虑均匀加权时的情况. 通过在FEKO中对各阵元添加端口,加入激励和负载等,可直接计算得到阵列方向图(见图3),可计算得到方向性系数为19.6 dB.在实际工程中,Chebyshev[2]阵列也是常用的形式之一,可以在FEKO中调整各单元的加权幅度及相位实现不同主瓣指向的Chebyshev阵列. 图4为主瓣指向180°方向,即构成旁射阵时,控制旁瓣为-30 dB时的阵列方向图.图5为主瓣指向210°,同样旁瓣为-30 dB的阵列方向图.上述结果表明,通过FEKO软件能够进行相控阵的分析及设计. 由于采用矩量法进行计算时无须对空气进行网格剖分和设置边界条件等,所以对上述30×4的阵列进行仿真,仅需要14 MB的内存,在20 s内就能完成.3 阵列天线单元激励方向图综上所述,已经看到可以在FEKO中快速进行相控阵的分析和设计. 上例采用的单元形式为线天线,在应用矩量法分析时,未知量很小,耗费内存也很小.若考虑单元为面天线或其他复杂天线形式,仍可能产生大量未知量,对计算机硬件要求非常高.在FEKO多种激励模式中,包含等效源(在CADFEKO中可直接定义,也可在EDITFEKO 中应用AR卡)的激励模式,可读入计算或测量得到的方向图作为激励源.下面利用这一特点进行超大阵列及复杂阵单元构成阵列的仿真分析.4 基于AEP的阵列天线FEKO仿真分析首先考虑如图6所示13×3的阵列. 为说明采用的分析方法,这里仍旧采用线天线构成的阵列. 单元均为半波振子,阵元间距均为1/4波长.仍然将该阵列视为由13个单元(3个偶极子构成的端射阵)构成,且按图中所示排列.并称之为阵元1,阵元2,……,阵元13. 按上述AEP的定义,通过对阵元1加激励,其他各阵元均加负载即可计算得到阵元1的AEP. 由于其他单元对阵元1的AEP影响大小随阵元间距离的增大而减小,因此在计算AEP的过程中,无须所有阵单元全部参与计算.按照图7的方式,分别计算共有3个,4个和5个阵元存在情况下阵元1的AEP,并将计算到的方向图统一作在图8中. 图中,endfire是阵元1单独存在时的方向图;two more endfire 对应图7中模型1的方向图;with 3 endfire对应图7中模型2的方向图;with 4 endfire对应图7中模型3的方向图.由图8可见,模型3和模型4的结果已经较好重合,这表明阵元4对阵元1的影响很小,可以忽略(相应的阵元5到阵元13与阵元1的耦合也很小,可以忽略),所以可以将模型2中单元1的AEP作为整个阵列阵元1的AEP. 因此,可以采用阵元1到阵元7构成的7元阵列(见图9),来等效计算得到实际阵列各个阵元的AEP. 其中,各阵单元记为a1,a2,…,,则图6中阵元1的AEP对应于a1的AEP;阵元2对应于a2;阵元3对应于;阵元4到阵元10的AEP均对应于的AEP;阵元11对应于a5;阵元12对应于;阵元13对应于在FEKO中,各阵元的AEP在计算时可被分别自动存为扩展名为ffe的数据文件,并可在后续计算中以等效源的方式(CADFEKO中radiation pattern point source的激励模式)被读入. 如图10所示,按上述方式读入各阵元的AEP(其中,单元4到单元10位置上读入的均为图9中的AEP),各阵元读入时选择的空间位置已经包含式(3)中的相位信息.按图10所示计算得到的方向图即为根据式(3)得到的阵列方向图,采用均匀加权激励的结果见图11. 在图11中,“full array”是应用FEKO对整体阵列进行仿真分析的结果;“equivalent”是采用上述方法,通过等效源的方式得到的结果. 可以看出两者的结果完全重合. 这种方法充分考虑单元间互耦的影响,并能够对等效源构成的阵列进行相位和幅度加权,实现相控阵. 采用这种基于AEP的方法,实际上只对少量单元(此例为7个)进行网格剖分,从而计算出整体阵列的方向图. 由这种方法能够得到任意多个(此例为13个)同样单元(此例为3元端射阵)按照等间距(这里为1/4波长)组成阵列的方向图,并且实际参与计算的单元数并不随着阵列规模的增大而增加. 因此,对于复杂形式单元构成的大规模阵列,该方法能够在得到有效计算结果的前提下,极为显著地减小计算规模及内存需求.图 11 阵列方向对该方法的具体归纳如下:(1)确定计算AEP所需的最小阵元数;(2)计算由最小阵元数所构成阵列的各阵元的AEP;(3)通过等效源的方式,计算阵列的方向图.下面考虑图12所示的16×4微带阵列. 阵单元采用FEKO 5.4例10的微带天线,工作频率为3 GHz.对该阵列,如果直接采用FEKO中的快速多极子进行计算,内存需求超过12 GB.对于该阵列,将纵向的4个单元作为子阵. 按照上述分析步骤,首先确定所需最小阵元数为9个,并分别计算9个子阵构成阵列的各单元的AEP,用p1,p2,…,表示. 随后,以等效源的方式读入,图12中阵元1对应p1,阵元2对应p2,阵元3对应,阵元4对应,阵元5到阵元12对应p5,阵元13~16分别对应于,,,最后,对等效源构成的阵列进行计算,结果见图13和14.图13和14分别是在xOz面和xOy面上对阵列实际建模分析计算的结果(full array)以及采用基于AEP的等效源方式(equivalent)计算的结果. 从结果可见,等效源的结果已与实际阵列的仿真结果较好地吻合,完全能够满足工程计算的要求,所需内存仅为6.5 GB(直接计算需要内存12 GB),并能够得到任意多个这样的4单元子阵所构成的阵列.同时,在计算过程中并不需要引入子阵的概念. 例如,仍考虑阵单元为FEKO 5.4例10的微带天线组成的25×25的阵列,可以取出5×5的阵列来进行计算,分别计算各阵元的AEP(共25个),随后通过等效源的方式依次读入,得到整个25×25阵列的方向图. 由于EDITFEKO中提供循环操作的文本输入方式,使得多次读取文件非常易于操作.5 总结首先以实例表明FEKO在阵列天线分析方面的良好性能,继而引入AEP的概念,提出在FEKO中对大规模阵列进行分析的有效方法. 通过计算由最小阵元数构成的小阵列的AEP,可有效得到任意大规模规则阵列的方向图,从而在有限的硬件资源下,对复杂单元的大规模阵列进行有效分析. 多个算例表明该算法的有效性.参考文献:[1] 张祖稷,金林,束咸荣. 雷达天线技术[M]. 电子工业出版社,2005:81-97.[2] DOLPH C L. A current distribution for broadside arrays which optimizes the relationship between beam width and side lobe level[J]. Proc IRE,1946,34(6):335-348.[3] KELLEY D F,STUTZMAN W L. Array antenna pattern modeling methods that include mutual coupling effects[J]. IEEE Trans Antennas & Propagation,1993,41(12):1625-1632.[4] 张志军,冯正和. 考虑互耦的圆形天线阵列方向图综合[J]. 电波科学学报,1997,12(4):361-368.[5] 刘源,邓维波,李雷,等. 一种超方向性阵列天线综合方法[J]. 电子学报,2006,34(3):459-463.(编辑廖粤新)“本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文”。
FEKO应用6_共形天线阵弹载布局
FEKO应用6:天线系列内容:共形天线阵弹载布局一、模型描述1.1模型描述:图1:阵列天线+导弹全模型示意图1.2计算方法描述:采用FEM与MLFMM混合求解设置CFIE方法提高收敛性1.3计算参数:共形天线阵:12个微带贴片工作频率:2.4GHz计算相控阵天线方向图和表面电流二、主要流程:启动CadFEKO,打开工程:missile_Layout_start.cfx ,另存为missile_Layout_start_Phased array2.1:变量说明:在CadFEKO中左侧的树型浏览器中双击“Variables”节点,依次定义如下变量:工作频率:freq=2.4e9工作波长:lam0= c0/freq天线激励幅度:m1、m2、m3、m4、m5、m6、m7、m8、m9、m10、m11、m12 天线激励相位:p1、p2、p3、p4、p5、p6、p7、p8、p9、p10、p11、p12介电常数:patch_relative_permittivity=4.35介质损耗角正切:patch_tan_delta=0图2:变量定义2.2:模型导入:通过几何接口导入missile.x_t文件。
图3:Parasolid几何接口读入文件图4:读入几何模型默认为PEC材料在左侧树型浏览器中,展开“Model->Geometry”节点,同时选中导入的模型“GeomImport1”和“GeomImport2”,点击鼠标右键“Apply->Union”(或直接点击键盘的U键),把新生成的模型更名为“Missle”;2.3:设置模型材料在左下角Details工程树中,选择region465,如右图,为空气材料,点击右键,选择Properties图5:选择Region465空气模型设置为Air材料图6:完成空气材料设置Region466保持默认材料Free space图7:选择Region467微带模型设置为patch_substrate材料图8:定义patch_substrate材料设置微带天线阵的贴片和地板为PEC,Display options,选择Cutplanes,选择Global ZX平面,勾选Active。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FEKO引领智能网联汽车天线的创新设计
背景信息智能网联汽车又被称为互联网汽车,代表着汽车行业的未来发展方向,其设计思想是利用智能感知和控制,让乘车旅行更加安全,路线规划更加合理,同时引进新一代的互联网娱乐系统,让旅行更加充满乐趣。
根据中国汽车工程学会(SAE-China)的研究表明,智能网联汽车技术(V2X)的广泛应用可使普通道路的交通效率提高30%以上。
根据美国国家公路交通安全管理局(NHTSA)的官方数据显示,车辆与车辆通信技术(V2V)能预知即将发生的交通事故并对潜在危险发出实时预警,它的广泛应用能帮助避免高达81%轻微碰撞事故。
未来车联网将存在多种通信需求,涉及多种协议或标准,包括:车辆间通讯的DSRC(一种Wifi升级技术)或LTE-V标准、定位用的GPS协议、与互联网通信的WiMax或WLAN 标准。
这些标准或协议所采用的频段、抗干扰方式和传输距离等各不相同。
这就对车联网的接收设备尤其是车载天线提出了非常高的要求。
然而,现有的车载天线系统已经沿用多年,普遍存在频带单一、传输距离短、抗干扰能力弱和布局复杂等问题,将无法满足未来智能网联汽车在主动安全、智能规划和娱乐方面的需求。
因此,开发新型的车载天线已经成为汽车行业的共识。
技术挑战对于工作于不同频段的车联网通信系统,采用多个传统的硬质天线既不利于系统的兼容也不利于车体的空间布局。
在华东交通大学刘海文教授的指导下,刘凡所在团队结合未来车联网通信发展需求,在国内外天线小型化技术、共形天线和多频带天线的研究基础上设计了一款极具创新价值的新型车载天线五角星形状的柔性四频带天线。
该天线如下图所示:
该款天线具备以下重要特点:小型化、抗干扰能力强、支持多频带,同时其形状极为轻薄,被称为与车辆外观可以无缝匹配的共形天线。
该发明具备良好的应用前景。
然而,这一创新仍然需要克服电磁兼容的问题。
天线安装在车体上后,其辐射性能会受到汽车车身影响发生改变,由于天线的工作频段不同、安装位置不同,受车体的影响也不同。