热敏电阻温度传感器的设计与调试实验报告

合集下载

热敏电阻传感器实训报告

热敏电阻传感器实训报告

一、引言热敏电阻传感器是一种广泛应用于温度测量和控制的传感器,它能够将温度变化转化为电信号输出,具有结构简单、响应速度快、灵敏度高等优点。

本实训报告旨在通过对热敏电阻传感器的原理、特性、应用等方面的学习,了解热敏电阻传感器的工作原理,掌握其使用方法,并对其进行实验验证。

二、实验原理热敏电阻传感器是利用半导体材料的电阻值随温度变化而变化的特性制成的。

根据温度系数的不同,热敏电阻可分为正温度系数热敏电阻(PTC)和负温度系数热敏电阻(NTC)。

1. NTC热敏电阻:当温度升高时,NTC热敏电阻的电阻值会减小,具有负温度系数。

其电阻值随温度变化的曲线呈非线性,一般用于温度测量和控制。

2. PTC热敏电阻:当温度升高时,PTC热敏电阻的电阻值会增大,具有正温度系数。

其电阻值随温度变化的曲线呈非线性,一般用于过热保护、温度补偿等。

三、实验目的1. 了解热敏电阻传感器的原理、特性和应用。

2. 掌握热敏电阻传感器的使用方法。

3. 通过实验验证热敏电阻传感器的性能。

四、实验器材1. 热敏电阻传感器(NTC、PTC各一只)2. 温度控制器3. 电压表4. 电流表5. 电阻箱6. 电源7. 连接线五、实验步骤1. 将NTC和PTC热敏电阻分别接入电路,通过调节温度控制器改变温度,观察电压表和电流表的读数。

2. 记录不同温度下NTC和PTC热敏电阻的电阻值,绘制电阻-温度曲线。

3. 分析电阻-温度曲线,了解NTC和PTC热敏电阻的特性。

4. 通过实验验证热敏电阻传感器的性能,如灵敏度、线性度等。

六、实验结果与分析1. 实验结果(1)NTC热敏电阻的电阻-温度曲线呈非线性,随着温度的升高,电阻值逐渐减小。

(2)PTC热敏电阻的电阻-温度曲线呈非线性,随着温度的升高,电阻值逐渐增大。

2. 分析(1)NTC热敏电阻的灵敏度较高,在较小的温度变化下,电阻值变化较大,适用于精确测量温度。

(2)PTC热敏电阻的灵敏度较低,但在高温下具有较高的电阻值,适用于过热保护等应用。

温度传感器实验报告

温度传感器实验报告

温度传感器实验报告温度传感器实验报告引言:温度传感器是一种常见的传感器,广泛应用于工业自动化、环境监测、医疗设备等领域。

本实验旨在通过对温度传感器的实际应用和实验验证,探索其原理和性能。

一、温度传感器的原理温度传感器是一种能够感知周围环境温度并将其转换为电信号的器件。

常见的温度传感器有热电偶、热敏电阻和半导体温度传感器等。

热电偶是利用两种不同金属的导线通过热电效应产生的电势差来测量温度的传感器。

当两种导线的接触点温度不同,就会产生一个电势差,通过测量这个电势差可以得到温度值。

热敏电阻是一种电阻值随温度变化而变化的传感器。

常见的热敏电阻有铂电阻和镍电阻等。

当温度升高时,电阻值会增加;反之,温度降低时,电阻值会减小。

半导体温度传感器是一种基于半导体材料电阻随温度变化的原理进行温度测量的传感器。

半导体材料的电阻值与温度呈线性关系,通过测量电阻值的变化可以得到温度值。

二、实验目的本实验旨在通过实际操作和数据记录,验证温度传感器的性能和准确度,并了解不同类型温度传感器的特点和适用范围。

三、实验材料和方法材料:温度传感器、温度计、数字万用表、电源、导线等。

方法:1. 将温度传感器连接到电源和数字万用表上,确保电路连接正确。

2. 使用温度计测量环境温度,并记录下来作为参考值。

3. 打开电源,观察数字万用表上的温度显示,并记录下来。

4. 在不同温度下重复步骤3,记录不同温度下的温度传感器输出值。

四、实验结果与分析通过实验记录的数据,我们可以得到不同温度下温度传感器的输出值。

将这些数据绘制成图表,可以清晰地观察到温度传感器的响应特性和准确度。

根据实验结果,我们可以发现温度传感器的输出值与实际温度存在一定的误差。

这是由于温度传感器本身的精度和环境条件等因素所导致的。

在实际应用中,我们可以通过校准和修正来提高温度传感器的准确度。

此外,不同类型的温度传感器在不同温度范围内具有不同的优势和适用性。

热电偶适用于高温环境的测量,而半导体温度传感器则更适合于低温环境的测量。

《传感器实验指导》热敏电阻传感器的应用及特性实验

《传感器实验指导》热敏电阻传感器的应用及特性实验

《传感器实验指导》热敏电阻传感器的应用及特性实验1.掌握热敏电阻的工作原理。

2.掌握热敏电阻测温程序的工作原理。

1.分析热敏电阻传感器测量电路的原理;2.连接传感器物理信号到电信号的转换电路;3.软件观测温度变化时输出信号的变化情况;4.记录实验波形数据并进行分析。

1.开放式传感器电路实验主板;2.热敏电阻温度测量模块;3.温度计;4.导线若干。

热敏电阻是开发早、种类多、发展较成熟的敏感元器件(如图4-1所示)。

热敏电阻由半导体陶瓷材料组成,利用的原理是温度引起电阻变化。

若电子和空穴的浓度分别为n、p,迁移率分别为μn、μp,则半导体的电导为:σ=q(n,μn, p,μp)因为n、p、μn、μp 都是依赖温度T 的函数,所以电导是温度的函数,因此可由测量电导而推算出温度的高低,并能做出电阻-温度特性曲线。

图4-1 热敏电阻外观热敏电阻是电阻值随温度变化的半导体传感器。

它的温度系数很大,比温差电偶和线绕电阻测温元件的灵敏度高几十倍,适用于测量微小的温度变化。

热敏电阻体积小、热容量小、响应速度快,能在空隙和狭缝中测量。

它的阻值高,测量结果受引线的影响小,可用于远距离测量。

它的过载能力强,成本低廉。

但热敏电阻的阻值与温度为非线性关系,所以它只能在较窄的范围内用于精确测量。

热敏电阻在一些精度要求不高的测量和控制装置中得到广泛应用。

热敏电阻按电阻温度特性分为三类。

(1)负温度系数热敏电阻(NTC):在工作温度范围内温度系数一般为-(1~6)%/C°。

(2)正温度系数热敏电阻(PTC):又分为开关型和缓变型,开关型在居里点的温度系数大约(10~60)%/C°,缓变型一般为(0.5~8)%/C°。

(3)临界负温度系数热敏电阻(CTR):NTC热敏电阻可用于温度计、温差计、热辐射计、红外探测器和比热计中作为检测元件。

测温范围为-60 至+300℃,在更高的温度时其稳定性开始变差。

NTC热敏电阻的标称阻值一般在1Ω至100MΩ之间。

热敏电阻温度特性研究实验报告

热敏电阻温度特性研究实验报告

热敏电阻温度特性研究实验报告热敏电阻温度特性研究实验报告引言:热敏电阻是一种能够随温度变化而改变电阻值的电子元件。

它在工业、医疗、环保等领域中有着广泛的应用。

本实验旨在研究热敏电阻的温度特性,探索其在不同温度下的电阻变化规律,为其应用提供参考。

实验设计:本实验采用的热敏电阻为NTC热敏电阻,其电阻值随温度的升高而下降。

实验所用的测试仪器有温度计、电压源、电流表和万用表。

实验步骤:1. 将热敏电阻与电路连接,保证电路的正常工作。

2. 将电压源接入电路,调节电压为常数值。

3. 使用温度计测量热敏电阻的温度,记录下每个温度点对应的电阻值。

4. 重复步骤3,直到覆盖整个温度范围。

实验结果:通过实验数据的收集与整理,我们得到了热敏电阻在不同温度下的电阻值变化曲线。

实验结果表明,随着温度的升高,热敏电阻的电阻值呈现出逐渐下降的趋势。

当温度较低时,电阻值变化较小;而当温度升高到一定程度时,电阻值的变化速度加快。

讨论:1. 温度对热敏电阻的影响:根据实验结果,我们可以得出结论:温度对热敏电阻的电阻值有着显著的影响。

随着温度的升高,热敏电阻的电阻值逐渐下降。

这是因为在高温下,热敏电阻内部的电导率增加,电子的运动能力增强,从而导致电阻值的降低。

2. 热敏电阻的应用:热敏电阻的温度特性使其在许多领域中得到了广泛的应用。

例如,在温度控制系统中,热敏电阻可以用来检测环境温度,并通过控制电路来实现温度的自动调节。

此外,热敏电阻还可以用于温度计、温度补偿电路等方面。

结论:通过本次实验,我们对热敏电阻的温度特性有了更深入的了解。

实验结果表明,热敏电阻的电阻值随温度的升高而下降。

这一特性使得热敏电阻在许多领域中有着广泛的应用前景。

对于今后的研究和应用,我们可以进一步探索热敏电阻的温度特性,优化其性能,并将其应用于更多的领域中,为人们的生活和工作带来更多便利。

【精品】温度传感器实验报告

【精品】温度传感器实验报告

【精品】温度传感器实验报告
温度传感器实验报告
本报告旨在对温度传感器进行实验,通过实验来测定其精度和可靠性以及其在范围
内的变化。

实验设备
实验中使用的温度传感器为一种电阻式半导体温度传感器,与RS232接口相连,可连
接到计算机进行精度测试以及数据采集。

实验方法
检查温度传感器连接有无正确,连接无误后使用计算机软件设置温度传感器的测量参数,设置参数完成后即可开始实验。

实验结果
根据实验结果,温度传感器具有一定的精度。

从测量结果来看,读数的最大误差在
±2程度以内,读数的绝对误差不超过±0.5度。

同时,说明在室温范围内,温度传感器
也保持着一定的可靠性,在不同温度下都能够保持良好的准确度。

结论
通过本次温度测量实验,我们可以发现,温度传感器具有较高的精度及较高的可靠性,能够满足实际应用中的需要。

而且,在室温范围内,温度传感器也能够精准记录温度变化。

热敏电阻温度传感器的设计与调试实验报告思考题

热敏电阻温度传感器的设计与调试实验报告思考题

热敏电阻温度传感器的设计与调试实验报告思考题大学热敏电阻实验报告大学热敏电阻实验报告摘要:热敏电阻是阻值对温度变化非常敏感的一种半导体电阻,具有许多独特的优点和用途,在自动控制、无线电子技术、遥控技术及测温技术等方面有着广泛的应用。

本实验通过用电桥法来研究热敏电阻的电阻温度特性,加深对热敏电阻的电阻温度特性的了解。

关键词:热敏电阻、非平衡直流电桥、电阻温度特性1、引言热敏电阻是根据半导体材料的电导率与温度有很强的依赖关系而制成的一种器件,其电阻温度系数一般为(-0.003~+0.6)℃-1。

因此,热敏电阻一般可以分为:Ⅰ、负电阻温度系数(简称NTC)的热敏电阻元件常由一些过渡金属氧化物(主要用铜、镍、钴、镉等氧化物)在一定的烧结条件下形成的半导体金属氧化物作为基本材料制成的,近年还有单晶半导体等材料制成。

国产的主要是指MF91~MF96型半导体热敏电阻。

由于组成这类热敏电阻的上述过渡金属氧化物在室温范围内基本已全部电离,即载流子浓度基本上与温度无关,因此这类热敏电阻的电阻率随温度变化主要考虑迁移率与温度的关系,随着温度的升高,迁移率增加,电阻率下降。

大多应用于测温控温技术,还可以制成流量计、功率计等。

Ⅱ、正电阻温度系数(简称PTC)的热敏电阻元件常用钛酸钡材料添加微量的钛、钡等或稀土元素采用陶瓷工艺,高温烧制而成。

这类热敏电阻的电阻率随温度变化主要依赖于载流子浓度,而迁移率随温度的变化相对可以忽略。

载流子数目随温度的升高呈指数增加,载流子数目越多,电阻率越小。

应用广泛,除测温、控温,在电子线路中作温度补偿外,还制成各类加热器,如电吹风等。

2、实验装置及原理【实验装置】FQJ—Ⅱ型教学用非平衡直流电桥,FQJ非平衡电桥加热实验装置(加热炉内置MF51型半导体热敏电阻(2.7kΩ)以及控温用的温度传感器),连接线若干。

【实验原理】根据半导体理论,一般半导体材料的电阻率和绝对温度之间的关系为(1—1)式中a与b对于同一种半导体材料为常量,其数值与材料的物理性质有关。

热敏电阻温度计的设计与标定

热敏电阻温度计的设计与标定

热敏电阻温度计的设计与标定一、实验内容与实验要求1.电阻温度计包括金属电阻温度计和半导体温度计,本实验要求利用半导体材料制备的热敏电阻设计出能够测量常温的温度计,测温范围“实验室室温-75℃”2.对温度计进行定标,绘制T-I(温度-电流)定标曲线。

3.用标定后的温度计,测量人体手心的温度,并与标准温度计所测量结果进行比较。

二、实验前应考虑并回答的问题1. 金属、半导体电阻随温度变化大致有怎么样的规律?2. 金属或半导体材料制成的热敏电阻随温度变化是线性的吗?3. 传感器为什么要定标?4. 非平衡电桥有什么用途?三、实验室可以提供的主要仪器1. 负温度系数半导体热敏电阻一支[25℃时电阻约5KΩ,B值3950/℃]2. 可调温压电源、微安表、万用表(不能当电压表用)。

3. 电加热水壶、金属水杯。

4. 玻璃温度计一支(0~100℃,准确度1℃)。

5. 电阻箱3个、塑料清洗瓶1个、开关和导线等。

四、实验设计报告和实验报告的要求(1). 实验设计报告的要求:1.实验目的;2.实验仪器[含仪器参数];3.实验原理[热敏电阻、非平衡电桥测温原理,有电流-电阻关系公式,实验设计思路解释];4. 电路中仪器的可调物理量数值预先选定和计算[电桥上三个电阻阻值、电源总电压等],5. 实验步骤[结合预先选择和计算的的数据,准确写出“把电阻箱阻值调到xxΩ,电源电压调到x.xxV”],6. 数据表[结合测量量和自变量,此外,电路中所用仪器的数值量都要记录;7. 实验注意事项。

(2) 实验报告的要求:在实验设计报告的基础上,增加实验中测量到的数据,完成数据处理和分析,实验总结和感受。

五、实验原理:1. 半导体热敏电阻半导体热敏电阻随温度变化典型特性可分为三种类型:负温度系数热敏电阻(NTC );正温度系数热敏电阻(PTC )和特定温度下电阻值发生突变电阻器(CTR )。

具有负温度系数的热敏电阻,电阻值随温度升高而迅速下降,这是因为热敏电阻由一些金属氧化物如Fe 3O 4、MgCr 2O 4等半导体制成,在这些半导体内部,自由电子数目随温度的升高增加得很快,导电能力很快增强;虽然原子振动也会加剧并阻碍电子的运动,但这种作用对导电性能的影响远小于电子被释放而改变导电性能的作用,所以温度上升会使电阻值迅速下降。

热敏电阻实验报告

热敏电阻实验报告

热敏电阻实验报告热敏电阻实验报告引言:热敏电阻是一种能够根据温度变化而改变电阻值的器件。

它在许多领域中都有广泛的应用,如温度控制、温度测量等。

本实验旨在通过实际操作和数据采集,探究热敏电阻的特性和应用。

实验材料:- 热敏电阻- 温度计- 电压表- 电流表- 多用途电路板- 电源- 连接线实验步骤:1. 将热敏电阻连接到多用途电路板上,确保连接稳固。

2. 将电源连接到电路板上,注意电压和电流的设定。

3. 通过电压表和电流表,测量热敏电阻在不同温度下的电压和电流数值。

4. 使用温度计,测量不同温度下的环境温度。

5. 记录实验数据,并进行分析和讨论。

实验结果:通过实验数据的采集和分析,我们得到了以下结果:1. 温度与电阻之间的关系:根据实验数据,我们可以观察到热敏电阻的电阻值随着温度的升高而减小。

这是因为热敏电阻的电阻值与温度呈负相关关系。

随着温度的升高,热敏电阻内部的电阻材料的电阻率会发生变化,从而导致整体电阻值的变化。

2. 热敏电阻的灵敏度:通过实验数据的比较,我们可以计算出热敏电阻的灵敏度。

灵敏度是指单位温度变化引起的电阻变化。

我们可以通过计算电阻的变化率来得到灵敏度的数值。

实验结果表明,热敏电阻的灵敏度较高,能够对温度变化做出较为敏感的响应。

3. 热敏电阻的应用:热敏电阻在许多领域中都有广泛的应用。

其中一个典型的应用是温度控制。

通过将热敏电阻与其他电子元件结合,可以实现温度的自动控制。

例如,我们可以将热敏电阻与风扇控制电路相连,当环境温度升高时,热敏电阻的电阻值减小,从而触发风扇启动,以降低温度。

结论:通过本次实验,我们深入了解了热敏电阻的特性和应用。

热敏电阻在温度测量和控制方面具有重要的作用,能够提供准确的温度信息,并实现温度的自动调节。

热敏电阻的灵敏度较高,对温度变化具有敏感性。

在今后的实际应用中,我们可以根据热敏电阻的特性,设计出更加智能和高效的温度控制系统。

传感器的实验报告

传感器的实验报告

传感器的实验报告传感器的实验报告引言:传感器是一种能够将物理量或化学量转化为电信号的装置,广泛应用于各个领域。

本实验旨在通过对不同类型的传感器进行实验,了解其原理和应用。

实验一:温度传感器温度传感器是一种常见的传感器,用于测量环境或物体的温度。

本实验选择了热敏电阻作为温度传感器,通过测量电阻值的变化来间接测量温度。

实验中使用了一个简单的电路,将热敏电阻与电源和电阻相连接,通过测量电路中的电压来计算温度。

实验结果显示,随着温度的升高,电阻值逐渐下降,电压也相应变化。

这说明热敏电阻的电阻值与温度呈负相关关系。

实验二:压力传感器压力传感器用于测量物体受到的压力大小。

本实验选择了压电传感器作为压力传感器,通过压电效应将压力转化为电信号。

实验中,将压电传感器与一个振荡电路相连,当物体施加压力时,压电传感器会产生电荷,导致振荡电路频率的变化。

通过测量频率的变化,可以间接测量物体受到的压力。

实验结果显示,当施加压力时,频率逐渐增加,说明压电传感器的输出信号与压力呈正相关关系。

实验三:光敏传感器光敏传感器用于测量光线的强度或光照度。

本实验选择了光敏电阻作为光敏传感器,通过测量电阻值的变化来间接测量光照度。

实验中,将光敏电阻与一个电路相连,通过测量电路中的电压来计算光照度。

实验结果显示,随着光照度的增加,电阻值逐渐下降,电压也相应变化。

这说明光敏电阻的电阻值与光照度呈负相关关系。

实验四:湿度传感器湿度传感器用于测量环境中的湿度。

本实验选择了电容式湿度传感器作为湿度传感器,通过测量电容值的变化来间接测量湿度。

实验中,将电容式湿度传感器与一个电路相连,通过测量电路中的电容值来计算湿度。

实验结果显示,随着湿度的增加,电容值逐渐增加,说明电容式湿度传感器的输出信号与湿度呈正相关关系。

结论:通过本次实验,我们对不同类型的传感器进行了实验,了解了它们的原理和应用。

温度传感器、压力传感器、光敏传感器和湿度传感器分别用于测量温度、压力、光照度和湿度。

传感器系列实验实验报告(3篇)

传感器系列实验实验报告(3篇)

第1篇一、实验目的1. 理解传感器的基本原理和分类。

2. 掌握常见传感器的工作原理和特性。

3. 学会传感器信号的采集和处理方法。

4. 提高实验操作能力和数据分析能力。

二、实验设备与器材1. 传感器实验平台2. 数据采集卡3. 信号发生器4. 示波器5. 计算机及相应软件6. 传感器:热敏电阻、霍尔传感器、光电传感器、电容式传感器、差动变压器等三、实验内容及步骤1. 热敏电阻实验(1)目的:了解热敏电阻的工作原理和特性。

(2)步骤:1. 将热敏电阻连接到实验平台上,并设置信号发生器输出一定频率的正弦波信号。

2. 通过数据采集卡采集热敏电阻的输出信号。

3. 使用示波器观察热敏电阻输出信号的波形和幅度。

4. 分析热敏电阻输出信号与温度的关系。

2. 霍尔传感器实验(1)目的:了解霍尔传感器的工作原理和特性。

1. 将霍尔传感器连接到实验平台上,并设置信号发生器输出一定频率的正弦波信号。

2. 通过数据采集卡采集霍尔传感器的输出信号。

3. 使用示波器观察霍尔传感器输出信号的波形和幅度。

4. 分析霍尔传感器输出信号与磁场强度的关系。

3. 光电传感器实验(1)目的:了解光电传感器的工作原理和特性。

(2)步骤:1. 将光电传感器连接到实验平台上,并设置信号发生器输出一定频率的正弦波信号。

2. 通过数据采集卡采集光电传感器的输出信号。

3. 使用示波器观察光电传感器输出信号的波形和幅度。

4. 分析光电传感器输出信号与光照强度的关系。

4. 电容式传感器实验(1)目的:了解电容式传感器的工作原理和特性。

(2)步骤:1. 将电容式传感器连接到实验平台上,并设置信号发生器输出一定频率的正弦波信号。

2. 通过数据采集卡采集电容式传感器的输出信号。

3. 使用示波器观察电容式传感器输出信号的波形和幅度。

4. 分析电容式传感器输出信号与电容变化的关系。

5. 差动变压器实验(1)目的:了解差动变压器的工作原理和特性。

1. 将差动变压器连接到实验平台上,并设置信号发生器输出一定频率的正弦波信号。

热敏电阻的温度特性实验报告

热敏电阻的温度特性实验报告

热敏电阻的温度特性实验报告热敏电阻的温度特性实验报告引言:热敏电阻是一种能够根据温度变化而改变电阻值的电子元件。

它在各种电子设备中广泛应用,如温度控制系统、温度补偿电路等。

本实验旨在通过测量热敏电阻在不同温度下的电阻值,研究其温度特性。

实验装置:本实验采用了以下装置:热敏电阻、恒温水槽、电源、数字万用表、温度计等。

实验步骤:1. 将热敏电阻连接到电路中,确保电路连接正确。

2. 将恒温水槽中的水加热至不同温度,如20℃、30℃、40℃等。

3. 使用温度计测量水槽中的水温,并记录下来。

4. 使用数字万用表测量热敏电阻在不同温度下的电阻值,并记录下来。

5. 重复步骤2-4,直到得到足够的数据。

实验结果:根据实验数据,我们可以绘制出热敏电阻的温度特性曲线。

在实验中,我们发现热敏电阻的电阻值随温度的升高而减小。

这是因为热敏电阻的电阻值与温度呈负相关关系。

随着温度的升高,热敏电阻中的电子活动增加,电阻值减小。

讨论:热敏电阻的温度特性是其应用的基础。

通过实验数据的分析,我们可以得出以下结论:1. 热敏电阻的温度特性曲线呈非线性关系。

在低温区域,电阻值随温度的升高呈指数增长;在高温区域,电阻值随温度的升高呈线性增长。

2. 热敏电阻的温度特性与其材料的选择有关。

不同材料的热敏电阻在不同温度范围内表现出不同的特性曲线。

3. 热敏电阻的温度特性可以通过控制电流来实现温度的测量和控制。

通过测量热敏电阻的电阻值,我们可以推算出环境的温度。

结论:本实验通过测量热敏电阻在不同温度下的电阻值,研究了其温度特性。

实验结果表明,热敏电阻的电阻值随温度的升高而减小,呈现出非线性关系。

热敏电阻的温度特性与其材料的选择有关,可以通过控制电流来实现温度的测量和控制。

这些研究结果对于热敏电阻的应用具有重要的指导意义。

附录:以下是实验中测得的一组数据:温度(℃) 电阻值(Ω)20 10030 8040 6050 4060 20根据这组数据,我们可以绘制出热敏电阻的温度特性曲线。

热敏电阻应用——温度传感实验实验原理

热敏电阻应用——温度传感实验实验原理

热敏电阻应用——温度传感实验实验原理下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!热敏电阻应用——温度传感实验实验原理1. 引言热敏电阻是一种电阻值随温度变化而变化的元件,广泛应用于温度传感器中。

温度传感器特性的研究实验报告

温度传感器特性的研究实验报告

温度传感器特性的研究实验报告温度传感器特性的研究实验报告1. 引言温度传感器是一种广泛应用于工业、农业、医疗等领域的重要传感器。

它能够将温度转化为电信号,实现温度的测量和监控。

本实验旨在研究不同类型的温度传感器的特性,分析其优缺点,为实际应用提供参考。

2. 实验方法本实验选择了三种常见的温度传感器进行研究:热电偶、热敏电阻和红外线温度传感器。

实验中,我们使用了温度控制装置和数据采集仪器,通过改变温度控制装置的设置,记录下不同温度下传感器的输出信号,并进行数据分析。

3. 实验结果与分析3.1 热电偶热电偶是一种基于热电效应的温度传感器。

实验中,我们将热电偶与温度控制装置接触,通过测量热电偶产生的电压信号来确定温度。

实验结果显示,热电偶具有较高的灵敏度和较宽的测量范围,但其响应时间较长,不适合对温度变化较快的场景。

3.2 热敏电阻热敏电阻是一种基于材料电阻随温度变化的原理的温度传感器。

实验中,我们通过测量热敏电阻的电阻值来确定温度。

实验结果显示,热敏电阻具有较好的线性特性和较快的响应时间,但其精度受到环境温度的影响较大。

3.3 红外线温度传感器红外线温度传感器是一种基于物体发射的红外辐射功率与温度之间的关系的温度传感器。

实验中,我们通过测量红外线温度传感器接收到的红外辐射功率来确定温度。

实验结果显示,红外线温度传感器具有非接触式测量、快速响应和较高的精度等优点,但其测量范围受到物体表面特性和环境条件的限制。

4. 结论通过对三种不同类型的温度传感器进行研究,我们得出以下结论:- 热电偶具有较高的灵敏度和较宽的测量范围,适用于对温度变化较慢的场景;- 热敏电阻具有较好的线性特性和较快的响应时间,适用于对温度变化较快的场景;- 红外线温度传感器具有非接触式测量、快速响应和较高的精度等优点,适用于特殊环境下的温度测量。

综上所述,不同类型的温度传感器各有优缺点,应根据实际需求选择合适的传感器进行应用。

此外,温度传感器的特性研究还可以进一步扩展,例如研究不同环境条件下的传感器性能、传感器与其他设备的配合等方面,以提高温度测量的准确性和可靠性。

热敏电阻温度传感器测温实验

热敏电阻温度传感器测温实验

实验二十二热敏电阻温度传感器测温实验一、实验目的:掌握热敏电阻的工作原理及其测温特性。

二、实验原理:用半导体材料制成的热敏电阻具有灵敏度高,可以应用于各领域的优点,热电偶一般测高温时线性较好,热敏电阻则用于200℃以下温度较为方便,本实验中所用热敏电阻为负温度系数。

温度变化时热敏电阻阻值的变化导致运放组成的压/阻变换电路的输出电压发生相应变化。

三、实验所需部件:热敏电阻、温度变换器、电压表、温度计(可用仪器中的P-N结温度传感器或热电偶作测温参考)。

四、实验步骤:1.观察装于悬臂梁上封套内的热敏电阻,将热敏电阻接入温度变换器Rt端口,调节“增益”旋钮,使加热前电压输出Vo端电压值尽可能大但不饱和。

由数字温度计读出环境温度并记录。

将热电偶两端子极性正确地插入数字温度计插孔内。

2. 打开加热器,观察数字温度计的读数变化。

经过足够上的时间后,数字温度计的读数不再升高(或者,电压表示数不再变化),达到一个稳定值,说明此时加热器的加热功率与热量耗散功率达到平衡,从而温度不再变化。

关闭加热器。

3. 观察数字温度计的读数变化,每降温1℃记录一个电压表的输出电压值,并填入以下数据表中。

根据表中数据作出V-T曲线,求出灵敏度S。

S=△V/△T4.再次打开加热器,重复步骤3.5.观察数字温度计的读数变化,每降温1℃,用万用表测出热敏电阻的电阻值,并填入以下数据表中。

6.负温度系数热敏电阻的电阻温度特性可表示为:Rt =Rto exp Bn (1/T –1/To)式中Rt、Rto分别为温度T、To时的阻值,Bn为电阻常数,它与材料激活能有关,一般情况下,Bn=2000~6000K,在高温时使用,Bn值将增大。

由以上实验结果,求出电阻常数Bn的值。

热敏电阻单片机实训报告

热敏电阻单片机实训报告

一、前言随着科技的不断发展,电子技术在各个领域的应用越来越广泛。

单片机作为电子技术中的重要组成部分,具有体积小、功耗低、功能强大等优点,在工业控制、家用电器、医疗设备等领域有着广泛的应用。

热敏电阻作为一种温度传感器,能够将温度变化转换为电信号,广泛应用于温度检测、温度控制等领域。

本次实训旨在通过实际操作,学习单片机与热敏电阻的接口设计,掌握热敏电阻的测温原理,并实现基于单片机的温度检测系统。

二、实训目的1. 掌握热敏电阻的测温原理和特性。

2. 熟悉单片机与热敏电阻的接口设计。

3. 学会使用单片机编程实现温度检测功能。

4. 培养动手实践能力和团队合作精神。

三、实训内容1. 热敏电阻特性测试首先,我们对热敏电阻进行特性测试,了解其电阻随温度变化的规律。

测试过程中,我们采用恒流源供电,利用数字多用表测量热敏电阻在不同温度下的电阻值。

通过测试数据,我们可以绘制出热敏电阻的电阻-温度曲线,分析其特性。

2. 单片机与热敏电阻接口设计根据热敏电阻的特性,我们选择使用某型号的单片机作为控制核心。

为了实现温度检测功能,我们需要设计单片机与热敏电阻的接口电路。

接口电路主要包括以下部分:(1)恒流源电路:为热敏电阻提供恒定的电流,使其在稳定的条件下工作。

(2)电压跟随器电路:将热敏电阻的电压信号转换为单片机可处理的电压信号。

(3)放大电路:对热敏电阻的电压信号进行放大,提高测量精度。

(4)A/D转换电路:将模拟信号转换为数字信号,供单片机处理。

3. 单片机编程实现温度检测在接口电路设计完成后,我们需要编写单片机程序,实现温度检测功能。

程序主要包括以下部分:(1)初始化:设置单片机的I/O口、定时器等。

(2)数据采集:通过A/D转换电路读取热敏电阻的电压信号。

(3)数据处理:根据热敏电阻的电阻-温度曲线,计算出对应的温度值。

(4)显示:将计算出的温度值通过LCD显示屏显示出来。

4. 系统调试与优化在完成程序编写后,我们需要对系统进行调试和优化。

《传感器与检测技术》热敏电阻演示实验报告

《传感器与检测技术》热敏电阻演示实验报告

《传感器与检测技术》热敏电阻演示实验报告课程名称:传感器与检测技术实验类型:实验项目名称:热敏电阻演示实验一、实验目的和要求(必填)了解NTC 热敏电阻现象。

二、实验原理热敏电阻分成两类:PTC 热敏电阻(正温度系数)与NTC 热敏电阻(负温度系数)。

一般NTC 热敏电阻测量范围较宽,主要用于温度测量;而PTC 突变型热敏电阻的温度范围较窄,一般用于恒温加热控制或温度开关,有些功率PTC 也作为发热元件用。

PTC 缓变型热敏电阻可用于温度补偿或作温度测量。

一般的NTC 热敏电阻测温范围为:-50ºC — +300ºC。

热敏电阻具有体积小、重量轻、热惯性小、工作寿命长、价格便宜,并且本身阻值大,不需要考虑引线长度带来的误差,适用于远距离传输等优点。

但热敏电阻也有:非线性大、稳定性差、有老化现象、误差较大、一致性差等缺点。

一般只适于低精度的温度测量。

三、主要实验仪器加热器、热敏电阻、可调直流稳压电源、+15V 不可调直流稳压电源、电压/频率表、主、副电源、液晶温度表。

四、操作方法和实验步骤1、了解热敏电阻在实验仪的所在位置及符号,它是一个蓝色或棕色元件,封装在双平行梁上片梁的表面。

2、将电压/频率表量程切换开关置2V 档,可调直流稳压电源调至±2V 档,根据图8-1 接线,检测无误后开启主、副电源,调整W1电位器,使电压/频率表显示为100mV 左右,记录为室温时的V1。

图8-1 热敏电阻实验原理示意图3、将+15V 电源接入加热器上端,下端接地,打开加热器开关,打开液晶温度表观察温度变化,观察电压表的读数变化,电压表的输入电压:W ILV i V SR T (W IH W IL)4、由此可见,当温度升高时,R t 阻值减小,V1升高。

5、实验完毕,关闭主、副电源,各旋钮置初始位置。

五、实验数据的记录和分析。

实验九温度传感器的温度特性测量和研究

实验九温度传感器的温度特性测量和研究

实验九温度传感器的温度特性测量和研究一、实验目的:1. 掌握分别使用NTC热敏电阻和热电偶传感器测量温度的方法。

二、实验原理:1. NTC热敏电阻测温原理:NTC热敏电阻是一种非常常见的热敏元件,其具有在不同温度下的不同电阻值,可以通过不同的电阻值来读取温度。

NTC热敏电阻的电阻值随着温度的升高而降低,这与其内部的材料本身的性质有关。

NTC热敏电阻的温度特性可以通过将其电阻值与温度之间的关系绘制成曲线来表示。

热电偶传感器是一种通过测量被测物体与参照物体之间的温差来计算温度的传感器。

热电偶传感器由两个不同材料的金属导线构成,通过将它们连接在一起形成一个“热电偶节”并将其置于被测物体和参照物体之间,当两个材料之间存在温差时,将会产生一个电动势,并通过连接的电路来测量这个电动势来推导出温度。

热电偶传感器的温度特性一般可以通过将其测量值与温度之间的关系绘制成曲线来表示。

三、实验步骤:将NTC热敏电阻安装在一个温度可调的热敏电阻实验装置上。

读取不同温度下的电阻值(在采集设备上读取即可),并将数据记录下来。

然后将读出的电阻-温度数据用Excel 制作成电阻-温度曲线。

2. 使用热电偶传感器测量温度:将实验中得到的电阻-温度数据画出曲线,如图所示:经过求导计算,NTC热敏电阻的B值为3475K。

据此可以得到如下公式:NTC R = R0 * exp(B*(1/T - 1/T0))其中,NTC R是NTC热敏电阻的电阻值,T是温度,T0是参考温度,R0是NTC热敏电阻在T0下的电阻值。

采用最小二乘法,对这个曲线进行拟合,得到拟合函数:T = a*E + b其中,T是热电偶传感器的温度,E是电动势值,a和b是拟合系数。

五、结论通过本次实验,我们学习了如何使用NTC热敏电阻和热电偶传感器测量温度。

我们还研究了它们的温度特性,并绘制了它们的特性曲线。

最后我们得出了使用NTC热敏电阻和热电偶传感器来测量温度的关系式,这将有助于我们在实际应用中使用这些传感器来测量温度。

热敏电阻温度计的设计 实验报告

热敏电阻温度计的设计 实验报告

大连理工大学大 学 物 理 实 验 报 告实验名称 热敏电阻温度计的设计教师评语实验目的与要求:(1) 掌握电阻温度计测量温度的基本原理和方法。

(2) 设计和组装一个热敏电阻温度计。

主要仪器设备:稳压电源, 自制电桥盒(如右下图所示), 直流单臂电桥箱和热敏电阻感温原件等。

实验原理和内容: 热敏电阻温度计的工作原理由于热敏电阻的阻值具有随温度变化而变化的性质, 我们可以将热敏电阻作为一个感温原件, 以阻值的变化来体现环境温度的变化。

但是阻值的变化量以直接测量的方式获得可能存在较大的误差, 因此要将其转化为一个对外部条件变化更加敏感的物理量; 本实验中选择的是电流, 通过电桥可以将电阻阻值的变化转化为电流(电压)的变化。

电桥的结构如右图所示, R1、R2、R3为可调节电阻, Rt 为热敏电阻。

当四个电阻值选择适当时, 可以使电桥达到平衡, 即AB 之间(微安表头)没有电流流过, 微安表指零; 当Rt 发生变化时, 电桥不平衡, AB 间有电流流过, 可以通过微安表读出电流大小, 从而进一步表征温度的变化。

成 绩教师签字当电桥不平衡时, 可以描绘成如右侧的电路图。

根据基尔霍夫定律和R1=R2的条件, 能够求得微安表在非平衡状态下的电流表达式:ttg ttcd g R R R R R R R R R U I ++++-=331322)21(式中, Ucd 为加载在电桥两端的电压, Rg 为微安表头的内阻值。

可以见到, 为使Ig 为相关于Rt 的单值函数, R1、R2、R3和Ucd 必须为定值, 而其定制的大小则决定于以下两个因素: 1) 热敏电阻的电阻-温度特性。

2) 所设计的温度计的测温上限t1和测温下限t2。

步骤与操作方法: 1. 温度计的设计(1) 测出所选择的热敏电阻Rt-t 曲线(或由实验室给出)。

(2) 确定R1、R2、R3的阻值。

具体方法如下:该实验中, t1=20℃,t2=70℃, 对应R t -t 曲线可以得到R t1和R t2; Rg 由实验室给出, U cd 取值为1.3V , 由微安表面板上可读出I gm =50μA 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档