高中数学第一轮复习《集合》

合集下载

高中数学一轮复习必备知识点大梳理

高中数学一轮复习必备知识点大梳理

一、集合和命题一、集合:(1)集合的元素的性质:确定性、互异性和无序性;(2)元素与集合的关系:①a A ∈↔a 属于集合A ;②a A ∉↔a 不属于集合A .(3)常用的数集:N↔自然数集;↔*N 正整数集;Z ↔整数集;Q ↔有理数集;R ↔实数集;Φ↔空集;C ↔复数集;⎪⎩⎪⎨⎧↔↔-+负整数集正整数集Z Z ;⎪⎩⎪⎨⎧↔↔-+负有理数集正有理数集Q Q ;⎪⎩⎪⎨⎧↔↔-+负实数集正实数集R R .(4)集合的表示方法:⎩⎨⎧↔↔描述法无限集列举法有限集;例如:①列举法:{,,,,}z h a n g ;②描述法:{1}x x >.(5)集合之间的关系:①B A ⊆↔集合A 是集合B 的子集;特别地,A A ⊆;A B A C B C⊆⎧⇒⊆⎨⊆⎩.②B A =或A B A B⊆⎧⎨⊇⎩↔集合A 与集合B 相等;③A B ⊂≠↔集合A 是集合B 的真子集.例:N Z Q R ⊆⊆⊆C ⊆;N Z Q R C ⊂⊂⊂⊂≠≠≠≠.④空集是任何集合的子集,是任何非空集合的真子集.(6)集合的运算:①交集:}{B x A x x B A ∈∈=且 ↔集合A 与集合B 的交集;②并集:}{B x A x x B A ∈∈=或 ↔集合A 与集合B 的并集;③补集:设U 为全集,集合A 是U 的子集,则由U 中所有不属于A 的元素组成的集合,叫做集合A 在全集U 中的补集,记作A C U .④得摩根定律:()U U U C A B C A C B = ;()U U U C A B C A C B= (7)集合的子集个数:若集合A 有*()n n N ∈个元素,那么该集合有2n 个子集;21n -个真子集;21n -个非空子集;22n -个非空真子集.二、四种命题的形式:(1)命题:能判断真假的语句.(2)四种命题:如果用α和β分别表示原命题的条件和结论,用α和β分别表示α和β的否定,那么四种命题形式就是:命题原命题逆命题否命题逆否命题表示形式若α,则β若β,则α;若α,则β;若β,则α.逆命题关系原命题↔逆命题逆否命题↔否命题否命题关系原命题↔否命题逆否命题↔逆命题逆否命题关系原命题↔逆否命题逆命题↔否命题同真同假关系(3)充分条件,必要条件,充要条件:①若βα⇒,那么α叫做β的充分条件,β叫做α的必要条件;②若βα⇒且αβ⇒,即βα⇔,那么α既是β的充分条件,又是β的必要条件,也就是说,α是β的充分必要条件,简称充要条件.③欲证明条件α是结论β的充分必要条件,可分两步来证:第一步:证明充分性:条件⇒α结论β;第二步:证明必要性:结论⇒β条件α.(4)子集与推出关系:设A 、B 是非空集合,}{α具有性质x x A =,}{β具有性质y y B =,则B A ⊆与βα⇒等价.结论:小范围⇒大范围;例如:小明是上海人⇒小明是中国人.小范围是大范围的充分非必要条件;大范围是小范围的必要非充分条件.二、不等式一、不等式的性质:不等式的性质1、c a c b b a >⇒>>,;2、c b c a b a +>+⇒>;3、bc ac c b a >⇒>>0,;4、d b c a d c b a +>+⇒>>,;5、bd ac d c b a >⇒>>>>0,0;6、bab a 1100<<⇒>>;7、)(0*N n b a b a n n ∈>⇒>>;8、)1,(0*>∈>⇒>>n N n b a b a n n .二、一元一次不等式:一元一次不等式bax >0>a 0<a 0=a 0≥b 0<b 解集ab x >ab x <ΦR三、一元二次不等式:)0(02>=++a c bx ax 的根的判别式42>-=ac b △042=-=ac b △042<-=ac b △四、含有绝对值不等式的性质:(1)b a b a b a -≥±≥+;(2)nn a a a a a a +++≥+++ 2121.五、分式不等式:(1)0))((0>++⇔>++d cx b ax dcx b ax ;(2)0))((0<++⇔<++d cx b ax dcx b ax .六、含绝对值的不等式:a x <a x >a x ≤ax ≥0>a 0≤a 0≥a 0<a 0>a 0=a 0<a 0>a 0=a 0<a ax a <<-Φax a x -<>或Rax a ≤≤-0=x Φax a x -≤≥或R七、指数不等式:(1))()()1()()(x x f a a a x x f ϕϕ>⇔>>;(2))()()10()()(x x f a a a x x f ϕϕ<⇔<<>.八、对数不等式:(1)⎩⎨⎧>>⇔>>)()(0)()1)((log )(log x x f x a x x f a aϕϕϕ;(2)⎩⎨⎧<>⇔<<>)()(0)()10)((log )(log x x f x f a x x f a a ϕϕ.九、不等式的证明:(1)常用的基本不等式:①R b a ab b a ∈≥+、(222,当且仅当b a =时取“=”号);②+∈≥+R b a ab b a 、(2,当且仅当b a =时取“=”号);211a b+.③+∈≥++R c b a abc c b a 、、(3333,当且仅当c b a ==时取“=”号);④+∈≥++R c b a abc c b a 、、(33,当且仅当c b a ==时取“=”号);⑤n a a a na a a n n n 2121 ≥+++为大于1的自然数,+∈R a a a n ,,,21 ,当且仅当n a a a === 21时取“=”号);(2)证明不等式的常用方法:①比较法;②分析法;③综合法.三、函数的基本性质一、函数的概念:(1)若自变量−−−→−fx 对应法则因变量y ,则y 就是x 的函数,记作D x x f y ∈=),(;x 的取值范围D ↔函数的定义域;y 的取值范围↔函数的值域.求定义域一般需要注意:11()y f x =,()0f x ≠;2y =,()0f x ≥;30(())y f x =,()0f x ≠;4log ()a y f x =,()0f x >;⑤()log f x y N =,()0f x >且()1f x ≠.(2)判断是否函数图像的方法:任取平行于y 轴的直线,与图像最多只有一个公共点;(3)判断两个函数是否同一个函数的方法:①定义域是否相同;②对应法则是否相同.二、函数的基本性质:(1)奇偶性:函数Dx x f y ∈=),(前提条件“定义域D 关于0对称”成立①“定义域D 关于0对称”;②“)()(x f x f -=”;③“()()f x f x =--”①不成立或者⎧⎨⎩①成立②、③都不成立)()(x f x f -=成立()()f x f x =--成立奇偶性偶函数奇函数非奇非偶函数奇偶函数图像性质关于y 轴对称关于)0,0(O 对称注意:定义域包括0的奇函数必过原点(0,0)O .(2)单调性和最值:前提条件D x x f y ∈=),(,D I ⊆,任取12,x x I∈区间单调增函数⎩⎨⎧<<)()(2121x f x f x x 或⎩⎨⎧>>)()(2121x f x f x x注意:①复合函数的单调性:函数单调性外函数()y f x =内函数()y g x = 复合函数[()]y f g x =②如果函数)(x f y =在某个区间I 上是增(减)函数,那么函数)(x f y =在区间I上是单调函数,区间I 叫做函数)(x f y =的单调区间.(3)零点:若D x x f y ∈=),(,D c ∈且0)(=c f ,则c x =叫做函数)(x f y =的零点.零点定理:⎩⎨⎧<⋅∈=0)()(],[),(b f a f b a x x f y ⇒00(,)()0x a b f x ∈⎧⎨=⎩存在;特别地,当(),[,]y f x x a b =∈是单调函数,且()()0f a f b ⋅<,则该函数在区间[,]a b 上有且仅有一个零点,即存在唯一0(,)x a b ∈,使得0()0f x =.(4)平移的规律:“左加右减,下加上减”.函数向左平移k向右平移k 向上平移h 向下平移h 备注)(x f y =)(k x f y +=)(k x f y -=)(x f h y =-)(x f h y =+0,>h k(5)对称性:①轴对称的两个函数:函数)(x f y =对称轴x 轴y 轴xy =xy -=mx =ny =函数)(x f y =-)(x f y -=)(y f x =)(y f x -=-)2(x m f y -=)(2x f y n =-②中心对称的两个函数:函数对称中心函数)(x f y =),(n m )2(2x m f y n -=-③轴对称的函数:函数)(x f y =对称轴y 轴mx =条件()()f x f x =-()(2)f x f m x =-注意:()()f a x f b x +=-⇒()f x 关于2a bx +=对称;()()f a x f a x +=-⇒()f x 关于x a =对称;()()f x f x =-⇒()f x 关于0x =对称,即()f x 是偶函数.④中心对称的函数:函数)(x f y =对称中(,)m n注意:()()f a x f b x c ++-=⇒()f x 关于点(,)22对称;()()0f a x f b x ++-=⇒()f x 关于点(,0)2a b+对称;()()2f a x f a x b ++-=⇒()f x 关于点(,)a b 对称;()()0f x f x +-=⇒()f x 关于点(0,0)对称,即()f x 是奇函数.(6)凹凸性:设函数(),y f x x D =∈,如果对任意12,x x D ∈,且12x x ≠,都有1212()()22x x f x f x f ++⎛⎫<⎪⎝⎭,则称函数()y f x =在D 上是凹函数;例如:2y x =.进一步,如果对任意12,,n x x x D ∈ ,都有1212()()()n n x x x f x f x f x f nn+++++⎛⎫<⎪⎝⎭,则称函数()y f x =在D 上是凹函数;该不等式也称琴生不等式或詹森不等式;设函数(),y f x x D =∈,如果对任意12,x x D ∈,且12x x ≠,都有1212()()22x x f x f x f ++⎛⎫> ⎪⎝⎭,则称函数()y f x =在D 上是凸函数.例如:lg y x =.进一步,如果对任意12,,n x x x D ∈ ,都有1212()()()n n x x x f x f x f x f nn+++++⎛⎫>⎪⎝⎭,则称函数()y f x =在D 上是凸函数;该不等式也称琴生不等式或詹森不等式.(7)翻折:函数翻折后翻折过程()y f x =()y f x =将()y f x =在y 轴右边的图像不变,并将其翻折到y 轴左边,并覆盖.()y f x =将()y f x =在x 轴上边的图像不变,并将其翻折到x 轴下边,并覆盖.()y f x =第一步:将()y f x =在y 轴右边的图像不变,并将其翻折(8)周期性:若R x x f y ∈=),(,0≠∃T ,x R ∈任取,恒有)()(x f T x f =+,则称T为这个函数的周期.注意:若T 是)(x f y =的周期,那么)0,(≠∈k Z k kT 也是这个函数的周期;周期函数的周期有无穷多个,但不一定有最小正周期.①()()f x a f x b +=+,a b ≠⇒()f x 是周期函数,且其中一个周期T a b=-;(阴影部分下略)②()()f x f x p =-+,0p ≠⇒2T p =;③()()f x a f x b +=-+,a b ≠⇒2T a b =-;④1()()f x f x p =+或1()()f x f x p =-+,0p ≠⇒2T p =;⑤1()()1()f x p f x f x p -+=++或()1()()1f x p f x f x p ++=+-,0p ≠⇒2T p =;⑥1()()1()f x p f x f x p ++=-+或()1()()1f x p f x f x p +-=++,0p ≠⇒4T p =;⑦()f x 关于直线x a =,x b =,a b ≠都对称⇒2T a b =-;⑧()f x 关于两点(,)a c ,(,)b c ,a b ≠都成中心对称⇒2T a b =-;⑨()f x 关于点(,)a c ,0a ≠成中心对称,且关于直线x b =,a b ≠对称⇒4T a b =-;⑩若()()(2)()f x f x a f x a f x na m +++++++= (m 为常数,*n N ∈),则()f x 是以(1)n a +为周期的周期函数;若()()(2)()f x f x a f x a f x na m -+++-++= (m 为常数,n 为正偶数),则()f x 是以2(1)n a +为周期的周期函数.三、V 函数:定义形如(0)y a x m h a =++≠的函数,称作V 函数.分类,0y a x m h a =++>,0y a x m h a =++<图像定义域R值域[,)h +∞(,]h -∞对称x m=-四、分式函数:定义形如(0)a y x a x=+≠的函数,称作分式函数.分类,0ay x a x=+>(耐克函数),0ay x a x=+<五、曼哈顿距离:在平面上,11(,)M x y ,22(,)N x y ,则称1212d x x y y =-+-为MN 的曼哈顿距离.六、某类带有绝对值的函数:1、对于函数y x m=-,在x m =时取最小值;2、对于函数y x m x n=-+-,m n <,在[,]x m n ∈时取最小值;3、对于函数y x m x n x p=-+-+-,m n p <<,在x n =时取最小值;4、对于函数y x m x n x p x q=-+-+-+-,m n p q <<<,在[,]x n p ∈时取最小值;5、推广到122ny x x x x x x =-+-++- ,122n x x x <<< ,在1[,]n n x x x +∈时取最小值;1221n y x x x x x x +=-+-++- ,1221n x x x +<<< ,在n x x ∈时取最小值.思考:对于函数1232y x x x =-+++,在x _________时取最小值.四、幂函数、指数函数和对数函数(一)幂函数(1)幂函数的定义:形如)(R a x y a ∈=的函数称作幂函数,定义域因a 而异.(2)当1,0≠a 时,幂函数)(R a x y a ∈=在区间),0[+∞上的图像分三类,如图所示.(3)作幂函数)1,0(≠=a x y a 的草图,可分两步:①根据a 的大小,作出该函数在区间),0[+∞上的图像;②根据该函数的定义域及其奇偶性,补全该函数在]0,(-∞上的图像.(4)判断幂函数)(R a x y a ∈=的a 的大小比较:方法一:)(R a x y a ∈=与直线(1)x m m =>的交点越靠上,a 越大;方法二:)(R a x y a ∈=与直线(01)x m m =<<的交点越靠下,a 越大(5)关于形如()ax b y c cx d+=≠+0的变形幂函数的作图:①作渐近线(用虚线):d x c=-、a y c=;②选取特殊点:任取该函数图像上一点,建议取(0,)b d;③画出大致图像:结合渐近线和特殊点,判断图像的方位(右上左下、左上右下).(二)指数&指数函数1、指数运算法则:①yx y xaa a+=⋅;②xyyxa a =)(;③xxxb a b a ⋅=⋅)(;④(xx xa ab b=,其中),0,(R y x b a ∈>、.2、指数函数图像及其性质:/)1(>=a a y x )10(<<=a a y x图像定义域R值域),0(+∞奇偶性非奇非偶函数渐近线x 轴单调性在(,)-∞+∞上单调递增;在(,)-∞+∞上单调递减;性质①指数函数x a y =的函数值恒大于零;②指数函数x a y =的图像经过点)1,0(;3、判断指数函数x y a =中参数a 的大小:方法一:x y a =与直线(0)x m m =>的交点越靠上,a 越大;方法二:x y a =与直线(0)x m m =<的交点越靠下,a 越大.(三)反函数的概念及其性质1、反函数的概念:对于函数()y f x =,设它的定义域为D ,值域为A ,如果对于A 中任意一个值y ,在D 中总有唯一确定的x 值与它对应,且满足()y f x =,这样得到的x 关于y 的函数叫做()y f x =的反函数,记作1()x f y -=.在习惯上,自变量常用x 表示,而函数用y 表示,所以把它改写为1()()y f x x A -=∈.2、求反函数的步骤:(“解”→“换”→“求”)①将()y f x =看作方程,解出()x f y =;②将x 、y 互换,得到1()y f x -=;③标出反函数的定义域(原函数的值域).3、反函数的条件:定义域与值域中的元素一一对应.4、反函数的性质:①原函数)(x f y =过点),(n m ,则反函数)(1x f y -=过点),(m n ;②原函数)(x f y =与反函数)(1x fy -=关于x y =对称,且单调性相同;③奇函数的反函数必为奇函数.5、原函数与反函数的关系:/函数)(x f y =)(1x fy -=定义域D A 值域AD(四)对数&对数函数1、指数与对数的关系:abNN a b =底数指数幂bN a =log 对数真数2、对数的运算法则:①01log =a ,1log =a a ,N a Na=log;②常用对数N N 10log lg =,自然对数N N e log ln =;③N M MN a a a log log )(log +=,NM NM a a a log log log -=,Mn M a na log log =;④bN N a a b log log log =,ab b a log 1log =,b n m b a m a n log log =,b b a c a c log log =,log log N N b a a b =.3、对数函数图像及其性质:/)1(log >=a x y a )10(log <<=a x y a图像定义),0(+∞4、判断对数函数log ,0a y x x =>中参数a 的大小:方法一:log ,0a y x x =>与直线(0)y m m =>的交点越靠右,a 越大;方法二:log ,0a y x x =>与直线(0)y m m =<的交点越靠左,a 越大.五、三角比1、角的定义:(1)终边相同的角:①α与2,k k Z πα+∈表示终边相同的角度;②终边相同的角不一定相等,但相等的角终边一定相同;③α与,k k Z πα+∈表示终边共线的角(同向或反向).(2)特殊位置的角的集合的表示:位置角的集合(3)弧度制与角度制互化:①180rad π=︒;②1801rad π=︒;③1180rad π︒=.(4)扇形有关公式:①rl =α;②弧长公式:r l α=;③扇形面积公式:21122S lr r α==(想象三角形面积公式).(5)集合中常见角的合并:22222222,244542424324424x k x k x k k x x k x k x k k x k Z x k x k x k k x x k x k x k ππππππππππππππππππππππππππ⎫⎫=⎫⎫=⎪⎪⎬⎪=+⎭⎪⎪⎪⎪⎪⎪⎫=⎬⎬⎪=+⎪⎪⎪⎪⎪=+⎬⎪⎪⎪⎪=-⎪⎪⎪⎪⎭⎭⎭⎪⎪⎫⎫⎫=∈⎬=+⎪⎪⎪⎪⎪⎪=+⎪⎬⎪⎪⎪⎪⎪=+⎪⎪⎪⎭⎪⎪⎪=+⎬⎬⎪⎫⎪⎪⎪=+⎪⎪⎪⎪⎪=-⎬⎪⎪⎪⎪⎪⎪=-⎪⎪⎪⎭⎪⎭⎭⎭(6)三角比公式及其在各象限的正负情况:以角α的顶点为坐标原点,始边为x 轴的正半轴建立直角坐标系,在α的终边上任取一个异于原点的点(,)P x y ,点P 到原点的距离记为r,则(7)特殊角的三角比:α角度制︒0︒30︒45︒60︒90︒180︒270︒360弧度制06π4π3π2ππ23ππ2αsin 0212223101-0(8)一些重要的结论:(注意,如果没有特别指明,k 的取值范围是k Z ∈)①角α和角β的终边:角α和角β的终边关于x 轴对称关于y 轴对称关于原点对称sin sin cos cos tan tan αβαβαβ=-⎧⎪=⎨⎪=-⎩sin sin cos cos tan tan αβαβαβ=⎧⎪=-⎨⎪=-⎩sin sin cos cos tan tan αβαβαβ=-⎧⎪=-⎨⎪=⎩②α的终边与2α的终边的关系.α的终边在第一象限⇔(2,22k k παππ∈+⇔(,)24k k απππ∈+;α的终边在第二象限⇔(2,2)2k k παπππ∈++⇔(,)242k k αππππ∈++;α的终边在第三象限⇔3(2,2)2k k παπππ∈++⇔3(,)224k k αππππ∈++;α的终边在第四象限⇔3(2,22)2k k παπππ∈++⇔3(,)24k k αππππ∈++.③sin θ与cos θ的大小关系:sin cos θθ<⇔3(2,2)44k k ππθππ∈-+⇔θ的终边在直线y x =右边(0x y ->);sin cos θθ>⇔5(2,2)44k k ππθππ∈++⇔θ的终边在直线y x =左边(0x y -<);sin cos θθ=⇔5{2244k k ππθππ∈++⇔θ的终边在直线y x =上(0x y -=).④sin θ与cos θ的大小关系:sin cos θθ<⇔(,)44k k ππθππ∈-+⇔θ的终边在00x y x y +>⎧⎨->⎩或00x y x y +<⎧⎨-<⎩;sin cos θθ>⇔3(,)44k k ππθππ∈++⇔θ的终边在00x y x y +>⎧⎨-<⎩或00x y x y +>⎧⎨-<⎩;sin cos θθ=⇔3{44k k ππθππ∈++,,k Z ∈⇔θ的终边在y x =±.2、三角比公式:(1)诱导公式:(诱导公式口诀:奇变偶不变,符号看象限)第一组诱导公式:第二组诱导公式:第三组诱导公式:(周期性)(奇偶性)(中心对称性)⎪⎪⎩⎪⎪⎨⎧=+=+=+=+ααπααπααπααπcot )2cot(tan )2tan(cos )2cos(sin )2sin(k k k k ⎪⎪⎩⎪⎪⎨⎧-=--=-=--=-ααααααααcot )cot(tan )tan(cos )cos(sin )sin(⎪⎪⎩⎪⎪⎨⎧=+=+-=+-=+ααπααπααπααπcot )cot(tan )tan(cos )cos(sin )sin(第四组诱导公式:第五组诱导公式:第六组诱导公式:(轴对称)(互余性)⎪⎪⎩⎪⎪⎨⎧-=--=--=-=-ααπααπααπααπcot )cot(tan )tan(cos )cos(sin )sin(⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-=-=-=-ααπααπααπααπtan )2cot(cot )2tan(sin )2cos(cos )2sin(⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-=+-=+-=+=+ααπααπααπααπtan )2cot(cot )2tan(sin )2cos(cos )2sin((2)同角三角比的关系:倒数关系:商数关系:平方关系:⎪⎩⎪⎨⎧=⋅=⋅=⋅1cot tan 1sec cos 1csc sin αααααα⎪⎪⎩⎪⎪⎨⎧≠=≠=)0(sin sin cos cot )0(cos cos sin tan αααααααα⎪⎩⎪⎨⎧=+=+=+αααααα222222csc cot 1sec tan 11cos sin (3)两角和差的正弦公式:βαβαβαsin cos cos sin )sin(±=±;两角和差的余弦公式:βαβαβαsin sin cos cos )cos( =±;两角和差的正切公式:βαβαβαtan tan 1tan tan )tan( ±=±.(4)二倍角的正弦公式:αααcos sin 22sin =;二倍角的余弦公式:1cos 2sin 21sin cos 2cos 2222-=-=-=ααααα;二倍角的正切公式:ααα2tan 1tan 22tan -=;降次公式:万能置换公式:22222221cos 2sin 21cos 2sin 21cos 2cos 21cos 2cos 21sin sin cos 221cos 2tan 1cos 21sin sin cos22ααααααααααααααααα⎧-=⎪-⎧⎪=⎪⎪+=⎪⎪+⎪⎪=⇒⎨⎨⎛⎫⎪⎪-=- ⎪-⎪⎪⎝⎭=⎪⎪+⎩⎛⎫⎪+=+ ⎪⎪⎝⎭⎩;⎪⎪⎪⎩⎪⎪⎪⎨⎧-=+-=+=ααααααααα2222tan 1tan 22tan tan 1tan 12cos tan 1tan 22sin 半角公式:αααααsin cos 1cos 1sin 2tan -=+=;(5)辅助角公式:①版本一:)sin(cos sin 22ϕααα++=+b a b a ,其中⎪⎪⎩⎪⎪⎨⎧+=+=<≤2222cos sin ,20b a a b a b ϕϕπϕ.②版本二:sin cos )a b θθθϕ±=±,其中,0,0,tan 2b a b aπϕϕ><<=.3、正余弦函数的五点法作图:以sin()y x ωϕ=+为例,令x ωϕ+依次为30,,,,222ππππ,求出对应的x 与y 值,描点(,)x y 作图.4、正弦定理和余弦定理:(1)正弦定理:R R CcB b A a (2sin sin sin ===为外接圆半径);其中常见的结论有:①A R a sin 2=,B R b sin 2=,C R c sin 2=;②Ra A 2sin =,Rb B 2sin =,Rc C 2sin =;③c b a C B A ::sin :sin :sin =;④22sin sin sin ABC S R A B C =△;sin sin sin sin sin sin ABCaR B CS bR A C cR A B⎧⎪=⎨⎪⎩△;4ABC abc S R =△.(2)余弦定理:版本一:⎪⎩⎪⎨⎧-+=-+=-+=C ab b a c B ac c a b A bc c b a cos 2cos 2cos 2222222222;版本二:⎪⎪⎪⎩⎪⎪⎪⎨⎧-+=-+=-+=ab c a b C ac b c a B bc a c b A 2cos 2cos 2cos 222222222;(3)任意三角形射影定理(第一余弦定理):cos cos cos cos cos cos a b C c Bb c A a C c a B b A =+⎧⎪=+⎨⎪=+⎩.5、与三角形有关的三角比:(1)三角形的面积:①12ABC S dh =△;②111sin sin sin 222ABCS ab C A B ===△;③ABC S =△l 为ABC △的周长.(2)在ABC △中,①sin sin cos cos cot cot a b A B A B A B A B >⇔>⇔>⇔<⇔<;②若ABC △是锐角三角形,则sin cos A B >;③sin()sin sin()sin sin()sin A B C B C A A C B +=⎧⎪+=⎨⎪+=⎩;cos()cos cos()cos cos()cos A B C B C A A C B +=-⎧⎪+=-⎨⎪+=-⎩;tan()tan tan()tan tan()tan A B CB C A A C B +=-⎧⎪+=-⎨⎪+=-⎩;④sin cos 22sin cos 22sin cos 22A B C B A C C A B +⎧=⎪⎪+⎪=⎨⎪+⎪=⎪⎩;tan cot 22tan cot22tan cot 22A B C B A CCA B +⎧=⎪⎪+⎪=⎨⎪+⎪=⎪⎩;⑤sin cos 22sin cos 22A BA C ⎧<⎪⎪⎨⎪<⎪⎩;sin cos 22sin cos 22B A B C ⎧<⎪⎪⎨⎪<⎪⎩;sin cos 22sin cos 22CA CB ⎧<⎪⎪⎨⎪<⎪⎩;⇒sin sin cos cos 2222sin sin cos cos 2222sin sin cos cos 2222A B A B A C A C BC B C ⎧<⎪⎪⎪<⎨⎪⎪<⎪⎩⇒sin sin sin cos cos 222222A B C A B C <;⑥sin sin sin 4cos cos 222cos cos cos 14sin sin sin222sin sin sin 4sin cos 222A B C A B C A B CA B C A B C A B C ⎧++=⎪⎪⎪++=+⎨⎪⎪+-=⎪⎩;sin 2sin 2sin 24sin sin sin cos 2cos 2cos 24cos cos cos 1A B C A B CA B C A B C ++=⎧⎨++=--⎩;⑦sin sin sin (0,]23cos cos cos (1,]2A B C A B C ⎧++∈⎪⎪⎨⎪++∈⎪⎩;sin sin sin (0,]8sin sin sin cos cos cos 1cos cos cos (1,]8A B C A B C A B CA B C ⎧∈⎪⎪⎪>⎨⎪⎪∈-⎪⎩.其中,第一组可以利用琴生不等式来证明;第二组可以结合第一组及基本不等式证明.(3)在ABC △中,角A 、B 、C 成等差数列⇔3B π=.(4)ABC △的内切圆半径为2Sr a b c=++.6、仰角、俯角、方位角:略7、和差化积与积化和差公式(理科):(1)积化和差公式:1sin cos [sin()sin()]21cos sin [sin()sin()]21cos cos )cos()]21sin sin )cos()]2αβαβαβαβαβαβαβαβαβαβαβαβ⎧=++-⎪⎪⎪=+--⎪⎨⎪=-++⎪⎪⎪=--+⎩;(2)和差化积公式:sin sin 2sin cos 22sin sin 2cos sin 22cos cos 2cos cos 22cos cos 2sin sin 22αβαβαβαβαβαβαβαβαβαβαβαβ+-⎧+=⎪⎪+-⎪-=⎪⎨-+⎪+=⎪⎪-+⎪-=-⎩.六、三角函数1、正弦函数、余弦函数和正切函数的性质、图像:xy sin =xy cos =xy tan =定义域RR},2{Z k k x x ∈+≠ππ值域]1,1[-]1,1[-R奇偶性奇函数偶函数奇函数周期性最小正周期π2=T 最小正周期π2=T 最小正周期π=T 单调性[2,2]22k k ππππ-+ ;3[2,2]22k k ππππ++ .(Z k ∈)[2,2]k k πππ- ;[2,2]k k πππ+ .(Z k ∈)(,)22k k ππππ-+ (Z k ∈)最值当22ππ-=k x 时,1min-=y ;当22ππ+=k x 时,1max=y ;当ππ+=k x 2时,1min -=y ;当πk x 2=时,1max=y ;无例1:求函数5sin(2)3y x π=+的周期、单调区间和最值.(当x 的系数为负数时,单调性相反)解析:周期22T ππ==,由函数x y sin =的递增区间[2,2]22k k ππππ-+,可得222232k x k πππππ-≤+≤+,即51212k x k ππππ-≤≤+,于是,函数5sin(2)73y x π=++的递增区间为5[,]1212k k ππππ-+.同理可得函数5sin(273y x π=++递减区间为7[,]1212k k ππππ++.当2232x k πππ+=+,即12x k ππ=+时,函数5sin(2)3y x π=+取最大值5;当2232x k πππ+=-,即512x k ππ=-时,函数5sin(2)3y x π=+取最大值5-.例2:求函数5sin(27,[0,]32y x x ππ=++∈的单调区间和最值.解析:由[0,]2x π∈,可得42[,]333x πππ+∈.然后画出23x π+的终边图,然后就可以得出当2[,]332x πππ+∈,即[0,]12x π∈时,函数5sin(2)73y x π=++单调递增;当42[,]323x πππ+∈,即[,]122x ππ∈时,函数5sin(2)73y x π=++单调递减.同时,当232x ππ+=,即12x π=时,函数5sin(273y x π=++取最大值12;当4233x ππ+=,即2x π=时,函数5sin(2)73y x π=++取最小值72-;注意:当x 的系数为负数时,单调性的分析正好相反.2、函数sin()y A x h ωϕ=++&cos()y A x h ωϕ=++&tan()y A x h ωϕ=++,其中0,0A ϕ>≠:(1)复合三角函数的基本性质:三角函数sin()y A x hωϕ=++其中0,0A ϕ>≠cos()y A x hωϕ=++其中0,0A ϕ>≠tan()y A x hωϕ=++其中0,0A ϕ>≠振幅A无基准线y h=定义域(,)-∞+∞{,}2x x k k Z πωϕπ+≠+∈值域[,]A h A h -+(,)-∞+∞最小正周期2T πω=T πω=频率12f T ωπ==1f T ωπ==(2)函数sin()y A x h ωϕ=++与函数sin y x =的图像的关系如下:①相位变换:当0ϕ>时,sin sin()y x y x ϕϕ=−−−−−−→=+向左平移个单位;当0ϕ<时,sin sin()y x y x ϕϕ=−−−−−−→=+向右平移个单位;②周期变换:当1ω>时,1sin()sin()y x y x ωϕωϕ=+−−−−−−−−−−−−−−→=+所有各点的横坐标缩短到原来的;当01ω<<时,1sin()sin()y x y x ωϕωϕ=+−−−−−−−−−−−−−−→=+所有各点的横坐标伸长到原来的倍(纵坐标不变);③振幅变换:当1A >时,sin()sin()A y x y A x ωϕωϕ=+−−−−−−−−−−−−−−→=+所有各点的纵坐标伸长到原来的倍(横坐标不变);当01A <<时,sin()sin()A y x y A x ωϕωϕ=+−−−−−−−−−−−−−−→=+所有各点的纵坐标缩短到原来的倍(横坐标不变);④最值变换:当0h >时,sin()sin()h y A x y A x h ωϕωϕ=+−−−−−−−−−→=++所有各点向上平行移动个单位;当0h <时,sin()sin()h y A x y A x h ωϕωϕ=+−−−−−−−−−→=++所有各点向下平行移动个单位;注意:函数cos()y A x h ωϕ=++和函数tan()y A x h ωϕ=++的变换情况同上.3、三角函数的值域:(1)sin y a x b =+型:设sin t x =,化为一次函数y at b =+在闭区间[1,1]-上求最值.(2)sin cos y a x b x c =±+,,0a b >型:引入辅助角,tan b aϕϕ=,化为)y x c ϕ=±+.(3)2sin sin y a x b x c =++型:设sin [1,1]t x =∈-,化为二次函数2y at bt c =++求解.(4)sin cos (sin cos )y a x x b x x c =+±+型:设sin cos [t x x =±∈,则212sin cos t x x =±,化为二次函数2(1)2a t y bt c -=±++在闭区间[t ∈上求最值.(5)tan cot y a x b x =+型:设tan t x =,化为b y at t=+,用“Nike 函数”或“差函数”求解.(6)sin sin a x b y c x d +=+型:方法一:常数分离、分层求解;方法二:利用有界性,化为1sin 1x -≤≤求解.(7)sin cos a x b y c x d+=+型:化为sin cos a x yc x b dy -=-)x b dyϕ+=-,利用有界性,sin()[1,1]x ϕ+=-求解.(8)22sin cos sin cos a x x b x c x ++,(0,,a b c ≠不全为0)型:利用降次公式,可得22sin cos sin cos sin 22222a cb bc a x x b x c x x x -+++=++,然后利用辅助角公式即可.4、三角函数的对称性:对称中心对称轴方程x y sin =)0,(πk ,Z k ∈2ππ+=k x ,Z k ∈x y cos =)0,2(ππ+k ,Z k ∈πk x =,Zk ∈x y tan =)0,2(πk Z k ∈/xy cot =)0,2(πk Z k ∈/备注:①x y sin =和x y cos =的对称中心在其函数图像上;②x y tan =和x y cot =的对称中心不一定在其函数图像上.(有可能在渐近线上)例3:求函数5sin(2)73y x π=++的对称轴方程和对称中心.解析:由函数sin y x =的对称轴方程2ππ+=k x ,Z k ∈,可得232x k πππ+=+,Z k ∈解得122k x ππ=+,Z k ∈.所以,函数5sin(2)73y x π=++的对称轴方程为122k x ππ=+,Z k ∈.由函数sin y x =的中心对称点)0,(πk ,Z k ∈,可得23x k ππ+=,Zk ∈解得62k x ππ=-+,Z k ∈.所以,函数5sin(2)73y x π=++的对称中心为(,7)62k ππ-+,Z k ∈.5、反正弦、反余弦、反正切函数的性质和图像:xy arcsin =x y arccos =x y arctan =定义域]1,1[-]1,1[-),(+∞-∞重要结论:(1)先反三角函数后三角函数:①[1,1]sin(arcsin )cos(arccos )a a a a ∈-⇒==;②tan(arctan )a R a a ∈⇒=.(2)先三角函数后反三角函数:①[,]22ππθ∈-⇒arcsin(sin )θθ=;②[0,]θπ∈⇒arccos(cos )θθ=;③(,)22ππθ∈-⇒arctan(tan )θθ=.(3)反三角函数对称中心特征方程式:①[1,1]a ∈-⇒arcsin()arcsin a a -=-;②[1,1]a ∈-⇒arccos()arccos a a π-=-;③(,)a ∈-∞+∞⇒arctan()arctan a a -=-.6、解三角方程公式:sin ,1(1)arcsin ,cos ,12arccos ,tan ,arctan ,k x a a x k a k Z x a a x k a k Z x a a R x k a k Z πππ⎧=≤=+-∈⎪=≤=±∈⎨⎪=∈=+∈⎩.七、数列与数学归纳法1、等差数列、等比数列的常用公式:2、等差数列的性质:(1)若数列{}n a 是首项为1a ,公差为d 的等差数列,则①0d >时,{}n a 是递增数列;0d <时,{}n a 是递减数列;0d =时,{}n a 是常数列.②若*(,,,)m n p q m n p q N +=+∈,则m n p q a a a a +=+.③数列{}na m 是首项为1a m ,公比为d m 的等比数列.④下标成等差数列且公差为m 的项*2,,,,(,)k k m k m a a a k m N ++∈ 组成公差为md 的等差数列.⑥n S ,2n n S S -,32n n S S -是等差数列.⑦若,n m S S m n =≠,则0m n S +=.⑧若,,n m a m a n m n ==≠,则0m n a +=;若,,n m S m S n m n ==≠,则()m n S m n +=-+.(2)若等差数列{}n a 的公差为d ,前n 项和为n S ;等差数列{}n b 的公差为d ',前n 项和为n T ,则①*2121()nn nn a S n N b T --=∈;②11nn n mm m a S S b T T ---=-;③limlimnn n n nna S db T d →∞→∞=='.(3)项数为偶数*()n n N ∈的等差数列{}n a 有:①1112222()()(,)22n n n n n n n n S a a a a a a ++=+==+ 为中间的两项;②2n S S d -=奇偶;③212n na S S a =奇偶.(4)项数为奇数*()n n N ∈的等差数列{}n a 有:①1122()n n n S na a ++=为中间项;②12n S S a +-=奇偶;③11S n S n +=-奇偶.注意:S 奇、S 偶分别为数列中所有奇数项的和与所有偶数项的和.3、等比数列的性质:若数列{}n b 是首项为1b ,公比为q 的等比数列,则①若*(,,,)m n p q m n p q N +=+∈,则m n p q b b b b ⋅=⋅.②数列{log }a n b 是首项为1log a b ,公差为log a q 的等差数列.③下标成等差数列且公差为m 的项*2,,,,(,)k k m k m b b b k m N ++∈ 组成公比为m q 的等比数列.④n S ,2n n S S -,32n n S S -是等比数列.4、根据递推公式求通项公式:①)(1n f a a n n +=+(类等差数列),通过n a a a ,,,21 逐式相加(累加法),可求出通项公式;例:数列}{n a 中,21=a ,且n a a n n n -+=+21,求通项n a .解析:由12n n n a a n +-=-,结合累加法,可得2)1(2--=n n a n n.②)(1n f a a n n ⋅=+(类等比数列),通过n a a a ,,,21 逐式相乘(累乘法),可求出通项公式;例:数列}{n a 中,21=a ,且n n na a n =++1)1(,则其通项=n a ______.解析:由11n na na n +=+,结合累乘法,可得2n a n=.③)0()()(1≠=-+d d a f a f n n 或)()()()(112n n n n a f a f a f a f -=-+++(复合等差数列),通过求出)(n a f 的通项公式,从而求出n a 的通项公式.其中,比较典型的就是取倒数法.例:数列{}n a 中,11a =且122nn n a a a +=+,求n a .解析:11112n n a a +-=.④)0()()(1≠=+q q a f a f n n 或)()()()(112n n n n a f a f a f a f +++=(复合等比数列),通过求出)(n a f 的通项公式,从而求出n a 的通项公式.对于)1(1≠+=+s t sa a n n (线性数列),通过设)(1λλ+=++n n a s a ,可逐步求出通项公式.例:已知数列{}n a 中,11a =,123n n a a +=+,求n a .答案:123n n a +=-.对于1r n n a p a -=⋅型:例:数列}{n a 中,)(,3*211N n a a a n n ∈==+,求数列的通项公式.答案:123-=n na⑤1n n a pa rn s -=++型:例:设数列{}n a :14a =,1321n n a a n -=+-,2n ≥,求n a .答案:1631n n a n -=⋅--.⑥1n n n a pa rq -=+型,其中(1)(1)0pq p q --≠.例:已知数列{}n a 中,156a =,1111(32n n n a a ++=+,求n a .答案:3223n nn a =-.⑦21n n n a pa qa ++=+型:例:已知数列{}n a 中,11a =,22a =,212133n n n a a a ++=+,求n a .答案:1311[1()]43n n a -=+--.解析:方法一:令211()n n n n a a a a λμλ++++=+,然后就出λ,μ;方法二:特征根法:对于递推公式21n n n a pa qa ++=+,1a α=,2a β=给出的数列{}n a ,方程20x px q --=,叫做数列{}n a 的特征方程.令1112n n n a Ax Bx --=+,其中1x 、2x 是特征方程的根,然后求出A 、B 即可.⑧34112n n n k a k a k a k ++=+型:解析:于是34112n n n k a k a k a k ++=+⇒121()n n n a a k a k μλλ+++=+.令n n b a λ=+,则121nn n b b kb k μλ+=-+,两边取倒数,可得211111n n k k b b λμμ+-+=⋅-..⑨周期数列:和年份有关,代几项,看周期.例:数列}{n a 满足11,211+-==+n n a a a ,则2008a 等于()A.2B.31-C.23-D.15、n S 与n a 的关系:⎩⎨⎧∈≥=-=-),2(*111N n n a S S a S n n n.例1:已知数列}{n a 的前n 项和为n n S n 22+=,求数列}{n a 的通项公式.解析:由题可知,113a S ==,且21(1)2(1)n S n n -=-+-,于是121n n n a S S n -=-=+,2n ≥.经验证,13a =也符合21n a n =+←该步很重要,不可缺少所以该数列的通项公式为121n n n a S S n -=-=+.6、数列求和的常用方法:(1)倒序相加法:已知数列{}n a 满足121n n a a a a -+=+= ,则121121n n n n n n S a a a a S a a a a --=++++⎧⎪⎨=++++⎪⎩ ①②,由①+②得1()2n n n a a S +=.(2)错位相减法:例2:求和:21123(10)n n S x x nx x x -=++++≠≠ 且.解析:由题可得21211232(1)n n n nn S x x nx xS x x n x nx --⎧=++++⎪⎨=+++-+⎪⎩ ①②然后-①②,可得211(1)11nn n n n x x S x x x nx nx x ---=+++-=-- ,即111nn n x nx xS x---=-.(3)裂项相消法:①1111()()n a n n k k n n k==-++;②1n a k==;③11(1)!!(1)!n n n n =-++;④(1)()n a f n f n =+-.(4)常见数列的前n 项和公式:①(1)1232n n n +++++= ;②2222(1)(21)1236n n n n ++++++= ;③33332(1)123[]2n n n +++++= .7、数列中的最值:①1()n n a a f n +-=,()0,,,()0,,,n n f n n D a n D f n n D a n D ≥∈∈⎧⎪⎨≤∈∈⎪⎩当时单调递增当时单调递减;②()n a g n =的图像,或table 功能;8、常用数列的极限:①11lim 01111n n q q q q q →∞=⎧⎪=-<<⎨⎪≤->⎩不存在或;②01lim =∞→nn .注意:lim n n q →∞存在的充要条件是11q -<≤,且q 不一定代表公比,所有不需要0q ≠.例3:求出以下数列的极限:(1)23251lim 534n n n n n →∞+-++;(2)22291lim 54n n n n →∞++-;(3)3221lim 554n n n n →∞+=+-_________.解析:若分子、分母都是多项式时,该分式数列的极限如下:0=>⎧⎪⎪⎨⎪⎪<⎩分母的多项式次数分子的多项式次数分子的最高次项系数分母的多项式次数分子的多项式次数分母的最高次项系数不存在分母的多项式次数分子的多项式次数.所以该题的答案:(1)0;(2)25;(3)不存在.例4:计算:23134lim43n n n n n +++→∞-+.解析:原式2313444lim4344n n n n n n n nn+++→∞-=+39()644lim 313()4n n n →∞⋅-=+⋅9064130⨯-=+⨯64=-.另外,该题还可以用lim n nn nn ax y c a x b y a bx y c x d y c d by x d →∞⎧>⎪⎪⋅+⋅+⎪==⎨⋅+⋅+⎪⎪>⎪⎩来直接得出答案.9、极限的运算法则:①lim()lim lim n n n n n n n a b a b →∞→∞→∞±=±;注意:该式只用于有限个数列相加的情况;②lim()lim lim n n n n n n n a b a b →∞→∞→∞⋅=⋅;③)0(lim lim lim ≠==∞→∞→∞→B B A b a b a n n n n nn n .特别地,如果C 是常数,那么由②可得A C a C a C n n n n n ⋅=⋅=⋅∞→∞→∞→lim lim )(lim .10、无穷等比数列各项的和:1lim 1n n a S S q→∞==-,其中01q <<.11、数学归纳法:证明与正整数n 有关的数学命题的步骤:①证明当n 取第一个值0n (*0n N ∈,例如01n =或02n =)时命题成立;②假设当*0(,)n k k N k n =∈≥时命题成立,证明当1n k =+时命题也成立.在完成了上面两个步骤后,就可以断定这个命题对于从0n 开始的所有正整数n 都成立,这种证明方法叫做数学归纳法.例5:用数学归纳法证明2222(1)(21)1236n n n n ++++++= .解析:①当1n =时,左边211==,右边12316⨯⨯==,等式成立;②假设当*(,1)n k k N k =∈≥时,等式成立,即2222(1)(21)1236k k k k ++++++=那么当1n k =+时,左边22222123(1)k k =++++++ 2(1)(21)(1)6k k k k ++=++(1)(2)(23)6k k k +++=;右边(1)(2)(23)6k k k +++=;于是证明,1n k =+时等式也成立.根据①和②可以断定,2222(1)(21)1236n n n n ++++++= 对任何*n N ∈都成立.八、平面向量的坐标表示1、平面向量的正交分解及坐标表示:(1)已知11(,)A x y ,22(,)B x y ,则2121(,)AB x x y y =--;(2)(,)AB xi y j x y =+= ,其中i、j 分别是平行于x 轴、y 轴的单位向量;(3)向量AB的模AB =2、定比分点的坐标公式:(1)若)1(21-≠=λλPP P P ,且),(111y x P 、),(222y x P 、),(y x P ,则121P P P λλ+=+,即⎪⎪⎩⎪⎪⎨⎧++=++=λλλλ112121y y y x x x .(2)特别地,当1=λ时,P 为有向线段21P P 的中点,则122P P P +=,即⎪⎪⎩⎪⎪⎨⎧+=+=222121y y y x x x .平行四边形顶点关系式:如图所示,平行四边形ABCD ,11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y ,则A CB D +=+,即13241324x x x x y y y y +=+⎧⎨+=+⎩.(3)已知ABC △,11(,)A x y ,22(,)B x y ,33(,)C x y ,重心(,)G x y ,则3A B C G ++=,即12312333x x x x y y y y ++⎧=⎪⎪⎨++⎪=⎪⎩;1133AG AB AC =+.3、平面向量的的运算及关系:若),(1111y x j y i x a =+=,),(2222y x j y i x b =+=,a 与b的夹角为θ,则(1)平面向量的运算:),(2121y y x x b a ±±=±;),(11y x a λλλ=.(2)向量的数量积及运算性质:数量积:2121y y x x b a +==⋅θ,其中],0[πθ∈;特别地,2a a a ==⋅;对于R ∈λ,有①0≥=⋅a a ,当且仅当0=⋅a a 时,0=a ;②a b b a ⋅=⋅;③)()()(b a b a b a ⋅=⋅=⋅λλλ;④c a b a c b a ⋅+⋅=+⋅)(.(3)向量的数量积与向量的夹角的关系:0[0,)2020(,]2a b a b a b πθπθπθπ⎧⋅>⇔∈⎪⎪⎪⋅=⇔=⎨⎪⎪⋅<⇔∈⎪⎩.。

高考第一轮复习知识点(数学)

高考第一轮复习知识点(数学)
函数的应用.
考试要求:
(1)了解映射的概念,理解函数的概念.
(2)了解函数单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法.
(3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数.
(4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像和性质.
⑶.反函数的求法:先解x,互换x、y,注明反函数的定义域(即原函数的值域).
⑷.函数的定义域的求法:布列使函数有意义的自变量的不等关系式,求解即可求得函数的定义域.常涉及到的依据为①分母不为0;②偶次根式中被开方数不小于0;③对数的真数大于0,底数大于零且不等于1;④零指数幂的底数不等于零;⑤实际问题要考虑实际意义等.
例: 解的集合{(2,1)}.
②点集与数集的交集是 .(例:A ={(x,y)|y=x+1} B={y|y=x2+1}则A∩B= )
4.①n个元素的子集有2n个.②n个元素的真子集有2n-1个.③n个元素的非空真子集有2n-2个.
5.⑴①一个命题的否命题为真,它的逆命题一定为真.否命题 逆命题.
②一个命题为真,则它的逆否命题一定为真.原命题 逆否命题.
④若集合A=集合B,则CBA= ,CAB= CS(CAB)=D(注:CAB= ).
3.①{(x,y)|xy=0,x∈R,y∈R}坐标轴上的点集.
②{(x,y)|xy<0,x∈R,y∈R 二、四象限的点集.
③{(x,y)|xy>0,x∈R,y∈R}一、三象限的点集.
[注]:①对方程组解的集合应是点集.
高考一轮复习知识点
数学
第一章-集合
考试内容:集合、子集、补集、交集、并集.逻辑联结词.四种命题.充分条件和必要条件.

高三数学 第一轮复习 01:集合与命题

高三数学 第一轮复习 01:集合与命题

高中数学第一轮复习01集合与命题·知识梳理·模块01:集合的概念和性质1、集合概念能够确切指定的一些对象组成的整体叫做集合,简称集。

集合中的各个对象叫做这个集合的元素.对于一个给定的集合,集合中的元素具有确定性、互异性、无序性。

集合常用大写字母、、、C B A …来表示,集合中的元素用、、、c b a …表示,如果a 是集合A 的元素,就记作A a ∈,读作“a 属于A ”;如果a 不是集合A 的元素,就记作A a ∉,读作“a 不属于A ”。

全体自然数组成的集合,即自然数集,记作:N ;不包含零的自然数组成的集合,记作*N ;全体整数组成的集合,即整数集,记作Z ;全体有理数组成的集合,即有理数集,记作Q ;全体实数组成的集合,即实数集,记作R ;实数集R (正实数集+R )、有理数集Q (负有理数集-Q )、整数集Z (正整数集+Z )、自然数集N (包含零)、不包含零的自然数集*N ;点的集合简称点集,即以直角坐标平面内的点作为元素构成的集合;含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集;规定空集不含元素,记作:∅。

2、集合的表示法集合的表示方法常用列举法和描述法将集合中的元素一一列举出来(不考虑元素的顺序),并且写在大括号内,这种表示集合的方法叫做列举法在大括号内先写出这个集合的元素的一般形式,再划一条竖线,在竖线后面写上集合中元素所共同具有的特性,即:}{p x x A 满足性质=(集合A 中的元素都具有性质p ,而且凡具有性质p 的元素都在集合A 中),这种表示集合的方法叫做描述法。

模块02:集合之间的关系与运算1、集合之间的关系对于两个集合A 和B ,如果集合A 中任何一个元素都属于集合B ,那么集合A 叫做集合B 的子集,记作:A B ⊆或B A ⊇,读作“A 包含于B 或B 包含A ”。

空集是任何集合的子集,是任何非空集合的真子集,所以B A ⊆不要忘记Φ=A 。

(高三一轮复习)集合之间的关系

(高三一轮复习)集合之间的关系

教学过程一、复习预习(1)集合中元素与集合的关系(2)常见集合的符号表示(3)集合的表示法二、知识讲解(一)子集的概念对于两个集合A和B,如果集合A的任何一个元素都是集合B的元素,称集合A为集合B的子集,记作A⊆B (或B⊇A),读作“A含于B”(或“B包含A”).特殊地,集合A不包含于集合B,或集合B不包含集合A,记作A⊄B 已(或B⊄A)(二)子集的概念⊂≠如果A⊆B ,且A≠B那就说集合A是集合B的真子集,记作A B(三)空集的概念不含任何元素的集合叫做空集,记作φ,并规定: 空集是任何集合的子集.空集是任何非空集合的真子集(三)“相等”关系对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,同时,集合B 的任何一个元素都是集合A 的元素,我们就说集合A 等于集合B ,记作A=B (即如果A ⊆B 同时 B ⊆A 那么A=B ).三、例题精析【例题1】【题干】下面的Venn 图中反映的是四边形、梯形、平行四边形、菱形、正方形这五种几何图形之间的关系,问集合A 、B 、C 、D 、E 分别是哪种图形的集合?图1-1-2-6【解析】结合Venn 图,利用平面几何中梯形、平行四边形、菱形、正方形的定义来确定.【答案】梯形、平行四边形、菱形、正方形都是四边形,故A={四边形};梯形不是平行四边形、菱形、正方形,而菱形、正方形是平行四边形,故B={梯形},C={平行四边形};正方形是菱形,故E={正方形},即A={四边形},B={梯形},C={平行四边形},D={菱形},E={正方形}.【例题2】【题干】集合A={x||x|2-3|x|+2=0},B={x|(a-2)x=2},则满足B A 的a 的值共有( )A.2个B.3个C.4个D.5个【解析】由已知得A={x||x|=1或|x|=2}={-2,-1,1,2},集合B 是关于x 的方程(a-2)x=2的解集, ∵B A,∴B=∅或B≠∅.当B=∅时,关于x 的方程(a-2)x=2无解,∴a-2=0.∴a=2.当B≠∅时,关于x 的方程(a-2)x=2的解x=22-a ∈A, ∴22-a =-2或22-a =-1或22-a =1或22-a =2.解得a=1或0或4或3,综上所得,a 的值共有5个.【答案】D【例题3】【题干】集合A={x|0≤x<3且x ∈N }的真子集的个数是( )A.16B.8C.7D.4【解析】A={x|0≤x<3且x ∈N}={0,1,2},则A 的真子集有23-1=7个.【答案】C四、课堂运用【基础】【题干】集合}1,0,1{-共有 个子集【答案】8【解析】n 元集的子集个数共有2n个,所以是8个。

2025届高中数学一轮复习核心素养测评-拓展拔高练一:集合(含解析)

2025届高中数学一轮复习核心素养测评-拓展拔高练一:集合(含解析)

核心素养测评·拓展拔高练一 集合(时间:45分钟 分值:95分)【基础落实练】1.(5分)(2022·新高考Ⅱ卷)已知集合A={-1,1,2,4},B={x||x-1|≤1},则A∩B=( )A.{-1,2}B.{1,2}C.{1,4}D.{-1,4}2.(5分)(2024·大连模拟)已知集合A={1,a2+4a,a-2},-3∈A,则a=( )A.-1B.-3C.-3或-1D.33.(5分)(2024·成都模拟)定义:若一个n位正整数的所有数位上数字的n次方和等于这个数本身,则称这个数是自恋数.已知集合A={4,26,81,153,370},B={x∈A|x是自恋数},则B的子集个数为( )A.16B.8C.4D.24.(5分)(2024·沈阳模拟)设集合A={x|x(4-x)≥3},B={x|x>a},若A∩B=A,则a的取值范围是( )A.(-∞,1]B.(-∞,1)C.(-∞,3]D.(-∞,3)5.(5分)(多选题)方程组x+y=3x-y=-1的解集可表示为( )A.(x,y)|x+y=3 x-y=-1B.(x,y)|x=1y=2C.{1,2}D.{(1,2)}6.(5分)(多选题)(2024·佛山模拟)已知集合A={x|x2-2x-3<0},集合B={x|2x-4<0},则下列关系式正确的是( )A.A∩B={x|-1<x<2}B.A∪B={x|x≤3}C.A∪(∁R B)={x|x>-1}D.A∩(∁R B)={x|2≤x<3}7.(5分)(2024·运城模拟)若集合A={-1,1},B={x|ax=1},且B⊆A,则实数a取值的集合为__________.8.(5分)设集合A={-1,1,2},B={a+1,a2-2},若A∩B={-1,2},则a的值为________.≥8},B={x|2-a≤x≤2a-1}.9.(10分)(2024·徐州模拟)已知a为实数,A={x|9-x3(1)若a=2,求A∩B, ∁A B;(2)若A∩B=B,求实数a的取值范围.【能力提升练】10.(5分)(多选题)设集合M={x|x=(a+1)2+2,a∈Z},P={y|y=b2-4b+6,b∈N*},则( )A.P⊂MB.1∉PC.M=PD.M∩P=⌀11.(5分)(多选题)(2024·南充模拟)已知全集U=R,集合A={x|-2≤x≤7},B= {x|m+1≤x≤2m-1},则使A⊆∁U B成立的实数m的取值范围可能是( )A.{m|6≤m≤10}B.{m|-2<m<2}C.{m|-2<m<-1}2D.{m|5<m≤8}12.(5分)已知全集U={0,1,2,3,4,5,6},集合A={0,2,4,5},集合B={2,3,4,6},用如图所示的阴影部分表示的集合为__________.13.(5分)已知M,N为R的子集,若M∩(∁R N)=⌀,N={1,2},则满足题意的M的个数为________.14.(10分)(2024·深圳模拟)已知A={x|x2-x-6≤0},B={x|a-2<x<3a},全集U=R.(1)若a=2,求A∩(∁U B);(2)若B⊆A,求实数a的取值范围.15.(10分)已知集合A={x∈N|3x2-13x+4<0},B={x|ax-1≥0}.时,求A∩B;(1)当a=12(2)若__________,求实数a的取值范围.请从①A∪B=B,②A∩B=⌀,③A∩(∁R B)≠⌀,这三个条件中选一个填入(2)中横线处,并完成第(2)问的解答.【素养创新练】16.(5分)(多选题)我们知道,如果集合A⊆S,那么S的子集A的补集为∁S A={x|x∈S且x∉A},类似地,对于集合A,B我们把集合{x|x∈A且x∉B}叫做集合A和B的差集,记作A-B,例如:A={1,2,3,4,5},B={4,5,6,7,8},则有A-B={1,2,3},B-A={6,7,8},下列正确的是( )A.已知A={4,5,6,7,9},B={3,5,6,8,9},则B-A={3,7,8}B.如果A-B=⌀,那么A⊆BC.已知全集、集合A、集合B关系如图中所示,则B-A⊆∁U BD.已知A={x|x<-1或x>3},B={x|-2≤x<4},则A-B={x|x<-2或x≥4}答案1.【解析】选B.B={x|0≤x≤2},故A∩B={1,2}.2.【解析】选B.因为-3∈A,所以-3=a2+4a或-3=a-2,若-3=a2+4a,解得a=-1或a=-3,当a=-1时,a2+4a=a-2=-3,不满足集合中元素的互异性,故舍去;当a=-3时,集合A={1,-3,-5},满足题意,故a=-3成立,若-3=a-2,解得a=-1,由上述讨论可知,不满足题意,故舍去,综上所述,a=-3.3.【解析】选B.因为41=4,所以4是自恋数,因为22+62=40≠26,所以26不是自恋数;因为82+12=65≠81,所以81不是自恋数;因为13+53+33=153,所以153是自恋数;因为33+73+03=370,所以370是自恋数;所以B={4,153,370},则子集个数为23=8.4.【解析】选B.解不等式x(4-x)≥3,即x2-4x+3≤0,解得1≤x≤3,即A={x|1≤x≤3},因为A∩B=A,且B={x|x>a},则A⊆B,所以a<1.5.【解析】选ABD.方程组x+y=3x-y=-1的解为x=1y=2,所以方程组x+y=3x-y=-1的解集中只有一个元素,且此元素是有序数对,所以(x,y)|x=1y=2,(x,y)|x+y=3x-y=-1,{(1,2)}均符合题意.6.【解析】选ACD.由x2-2x-3<0,(x-3)(x+1)<0,解得-1<x<3,所以A={x|-1<x<3};由2x-4<0,解得x<2,所以B={x|x<2}.对于A,A∩B={x|-1<x<2},故A正确;对于B,A∪B={x|x<3},故B错误;对于C,∁R B={x|x≥2},A∪(∁R B)={x|x>-1},故C正确;对于D,由选项C可知∁R B={x|x≥2},A∩(∁R B)={x|2≤x<3},故D正确.7.【解析】由B⊆A,所以集合B可以是{-1},{1},⌀,当B={-1}时,则-a=1,解得a=-1;当B={1}时,可得a=1;当B=⌀时,可得a=0;所以a的取值的集合为{-1,1,0}.答案:{-1,0,1}8.【解析】由题知a+1=-1,a2-2=2,或a+1=2,a2-2=-1,解得a=-2或a=1.经检验,a=-2和a=1均满足题意.答案:-2或19.【解析】(1)因为a=2,由9-x3≥8,得x≤3,所以A={x|x≤3},B={x|0≤x≤3},所以A∩B={x|x≤3}∩{x|0≤x≤3}=[0,3],∁A B=(-∞,0).(2)因为A∩B=B,所以B⊆A,由(1)知,A={x|x≤3},当B=⌀时,2a-1<2-a,解得a<1;当B≠⌀时,2a -1≥2-a2a-1≤3,解得1≤a≤2,综上所述:实数a的取值范围是(-∞,2].10.【解析】选BC.因为a∈Z,所以a+1∈Z,且(a+1)2+2≥2,即M={x∈N*|x≥2},因为b∈N*,b2-4b+6=(b-2)2+2≥2,所以P={y∈N*|y≥2},所以1∉P且M=P.11.【解析】选BC.①当B=⌀时,令m+1>2m-1,得m<2,此时∁U B=R符合题意;②当B≠⌀时,m+1≤2m-1,得m≥2,则∁U B={x|x<m+1或x>2m-1},因为A⊆∁U B,所以m+1>7或2m-1<-2,解得m>6或m<-12,因为m≥2,所以m>6.综上,m的取值范围为{m|m<2或m>6}.12.【解析】因为全集U={0,1,2,3,4,5,6},集合A={0,2,4,5},集合B={2,3,4,6},所以A∩B={2,4},A∪B={0,2,3,4,5,6},所以阴影部分的集合为∁(A∪B)(A∩B)={0,3,5,6}.答案:{0,3,5,6}13.【解析】因为M∩(∁R N)=⌀,所以M⊆N,又N={1,2},所以M={1}或M={2}或M=⌀或M={1,2},故满足题意的M的个数为4.答案:414.【解析】(1)因为A={x|x2-x-6≤0},所以(x-3)(x+2)≤0,解得-2≤x≤3,所以A=[-2,3],当a=2时,B=(0,6),∁U B=(-∞,0]∪[6,+∞),所以A∩(∁U B)=[-2,0];(2)因为B⊆A,所以当B=⌀时,a-2≥3a,解得a≤-1,当B≠⌀时,a-2≥-23a≤3a-2<3a,解得0≤a≤1,所以实数a的取值范围为(-∞,-1]∪[0,1].15.【解析】(1)由题意得,A={x∈N|13<x<4}={1,2,3}.当a=12时,B=x|12x-1≥0={x|x≥2},所以A∩B={2,3}.(2)选择①:因为A∪B=B,所以A⊆B.当a=0时,B=⌀,不满足A⊆B,舍去;当a>0时,B=x|x≥要使A⊆B,则1≤1,解得a≥1;当a<0时,B=x|x≤此时1a<0,A∩B=⌀,舍去,综上,实数a的取值范围为[1,+∞).a选择②:当a=0时,B=⌀,满足A∩B=⌀;当a>0时,B=x|x≥要使A∩B=⌀,则1a>3,解得0<a<13;当a<0时,B=x|x≤此时1a<0,A∩B=⌀,综上,实数a的取值范围为(-∞,1).3选择③:当a=0时,B=⌀,A∩(∁R B)=A≠⌀,满足题意;当a>0时,B=x|x≥∁R B=x|x<要使A∩(∁R B)≠⌀,则1>1,解得0<a<1;a当a<0时,B=x|x≤∁R B=x|x>此时A∩(∁R B)=A≠⌀,满足题意,综上,实数a的取值范围为(-∞,1).16.【解析】选BD.对于A.由B-A={x|x∈B且x∉A},得B-A={3,8},故A错误;对于B.由A-B={x|x∈A且x∉B},A-B=⌀,得A⊆B,故B正确;对于C.由Venn图知:B-A如图阴影部分,所以B-A⊆(∁U A)∩B,故C错误;对于D.∁U B={x|x<-2或x≥4},则A-B=A∩∁U B={x|x<-2或x≥4},故D正确.。

高中数学一轮复习-集合运算的解题技巧

高中数学一轮复习-集合运算的解题技巧

集合运算的解题技巧高考对集合运算的考查是一个热点,经常考查具体的运算,多数情况下会与求函数定义域、值域、解不等式、求范围等问题联系在一起。

解答集合题目,要认清集合元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件。

简言之为三步走:第一步,对谁运算,即看清楚集合的代表元素是谁; 第二步,运算法则,即对集合进行化简; 第三步,运算结果,即进行集合的交并补运算。

例:已知集合A ={x |-x 2+2x +3>0},B ={x |x -2<0},则A ∩B =_______.例题1 设函数f(x)=lg(21x -),集合A={x|y=f(x)},B={y|y=f(x)},则图中阴影部分表示的集合为( )A. [-1,0]B. (-1,0)C.()[),10,1-∞- D.(](),10,1-∞-解析:要求阴影部分表示的集合,首先要知道集合A 、B 分别表示什么样的集合,然后再进行集合的运算。

答案:对集合A第一步——对谁运算:对实数x 运算。

第二步——运算法则:x 需满足21x ->0。

解得-1<x<1,即A={x|-1<x<1}。

对集合B第一步——对谁运算:对实数y 运算。

第二步——运算法则:由0<21x -≤1得,lg(21x -)≤0,即y ≤0。

故B={y| y ≤0}。

第三步——运算结果:阴影部分表示的是除了集合A 与B 交集的所有元素构成的集合。

由数轴可以看到,AB={x|-1<x ≤0}。

所以阴影部分表示的是()R A B ð={x|x ≤-1,或0<x<1}。

故选D 。

点拨:求集合的并、交、补是集合间的基本运算,运算结果仍然是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题是,常常从这两个字眼出发去揭示、挖掘题设条件,并结合Venn 图或数轴进行直观表达,达到解题的目的。

2022届一轮复习高中数学第一章 集合、常用逻辑用语与不等式

2022届一轮复习高中数学第一章 集合、常用逻辑用语与不等式

第一章集合、常用逻辑用语与不等式第1课时集合[复习要求] 1.了解集合的含义,元素与集合的属于关系;能用列举法或描述法表示集合.2.理解集合之间包含与相等的含义,能识别给定集合的子集;了解全集与空集的含义.3.理解并会求并集、交集、补集;能用Venn(韦恩)图表示集合的关系与运算.集合的基本概念(1)集合的概念:把一些元素组成的总体叫做集合(简称为集);(2)集合中元素的三个特性:确定性、无序性、互异性;(3)集合的三种表示方法:列举法、描述法、图示法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号N N+(或N*)Z Q R集合的基本关系(1)子集:若对于任意的x∈A都有x∈B,则A⊆B;(2)真子集:若A⊆B,且A≠B,则A B;(3)相等:若A⊆B,且B⊆A,则A=B;(4)∅是任何集合的子集,是任何非空集合的真子集.集合的基本运算(1)交集:A∩B={x|x∈A且x∈B};(2)并集:A∪B={x|x∈A或x∈B};(3)补集:若U为全集,A⊆U,则∁U A={x|x∈U且x∉A}.集合的常用运算性质(1)A∩∅=∅;A∩A=A;(2)A∪∅=A;A∪A=A;(3)A∩(∁U A)=∅;A∪(∁U A)=U;∁U(∁U A)=A;(4)A⊆B⇔A∩B=A⇔A∪B=B;A⊆B⇔(∁U A)⊇(∁U B)⇔A∩(∁U B)=∅;(5)∁U(A∩B)=(∁U A)∪(∁U B);∁U(A∪B)=(∁U A)∩(∁U B);(6)如图所示,用集合A ,B 表示图中Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分所表示的集合分别是A ∩B ;A ∩(∁U B);B ∩(∁U A);∁U (A ∪B)或(∁U B)∩(∁U A);(7)card(A ∪B)=card(A)+card(B)-card(A ∩B).1.判断下列说法是否正确(打“√”或“×”).(1)集合{x ∈N |x 3=x},用列举法表示为{-1,0,1}.(2){x|y =x 2}={y|y =x 2}={(x ,y)|y =x 2}.(3)若5∈{1,m +2,m 2+4},则m 的取值集合为{1,-1,3}.(4)若P ∩M =P ∩N =A ,则A ⊆M ∩N.(5)设U =R ,A ={x|lgx<1},则∁U A ={x|lgx ≥1}={x|x ≥10}.答案 (1)× (2)× (3)× (4)√ (5)×解析 (1)由于-1∉N ,故(1)错.(2)中{x|y =x 2}=R ,{y|y =x 2}={y|y ≥0}=[0,+∞),以上两集合为数集,{(x ,y)|y =x 2}表示抛物线y =x 2上所有点的集合,故(2)错.(3)当m =-1时,m +2=1,与集合中元素的互异性矛盾,故(3)错.(4)正确.(5)中A ={x|0<x<10},∁U A ={x|x ≤0或x ≥10}.故(5)错.2.(课本习题改编)若x ∈R ,则x 2+1=0的解集A =________;不等式x 2≤0的解集B =________;0与A 的关系为________;A 与B 的关系为________.答案 ∅ {0} 0∉A A ⊆B(或填A B)3.(2020·课标全国Ⅱ)已知集合U ={-2,-1,0,1,2,3},A ={-1,0,1},B ={1,2},则∁U (A ∪B)=( )A .{-2,3}B .{-2,2,3}C .{-2,-1,0,3}D .{-2,-1,0,2,3}答案 A解析 由题意,得A ∪B ={-1,0,1,2},则∁U (A ∪B)={-2,3}.故选A.4.(1)(2021·衡水中学调研卷)已知集合A ={x ∈Z |x 2-2x -3≤0},B ={y|y =2x },则A ∩B 的子集的个数为________.(2)已知集合M ={x|x -a =0},N ={x|ax -1=0},若M ∩N =N ,则实数a 的值是________. 答案 (1)8 (2)0或1或-15.(2020·《高考调研》原创题)已知全集U =A ∪B ={x ∈N |0≤x ≤9},若集合B ={1,3,5,7},则A ∩(∁U B)=________.答案 {0,2,4,6,8,9}解析 由题意知集合A 中至少包含0,2,4,6,8,9几个元素,而∁U B ={0,2,4,6,8,9},∴A ∩(∁U B)={0,2,4,6,8,9}.题型一 集合的基本概念例1 (1)已知集合A =⎩⎨⎧⎭⎬⎫x |x =k +12,k ∈Z ,B =⎩⎨⎧⎭⎬⎫x |x =k 2,k ∈Z ,则A 与B 之间的关系是( )A .A =BB .A BC .B AD .无法比较【解析】 方法一(列举法):A =⎩⎨⎧⎭⎬⎫…,-12,12,32,52,72,…, B =⎩⎨⎧⎭⎬⎫…,-12,0,12,1,32,2,52,3,72,…. 显然A B.方法二(描述法):集合A =⎩⎨⎧⎭⎬⎫x |x =k +12,k ∈Z =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x =2k +12,k ∈Z ,B =⎩⎨⎧⎭⎬⎫x |x =k 2,k ∈Z ,2k +1可以表示任意奇数,k 可以表示任意整数,故A B. 【答案】 B(2)(2021·重庆八中摸底考试)设集合M ={y|y =2cosx ,x ∈[0,5]},N ={x|y =log 2(x -1)},则M ∩N =( )A .{x|1<x ≤5}B .{x|-1<x ≤0}C .{x|-2≤x ≤0}D .{x|1<x ≤2}【解析】 ∵M ={y|y =2cosx ,x ∈[0,5]}={y|-2≤y ≤2},N ={x|y =log 2(x -1)}={x|x>1},∴M ∩N ={y|-2≤y ≤2}∩{x|x>1}={x|1<x ≤2}.【答案】 D(3)集合A ={1,0,x},B ={|x|,y ,lg(xy)},且A =B ,则x ,y 的值分别为________.【解析】 ∵x ,y 均不能为0,∴lg(xy)=0,故xy =1.又∵x ≠1,∴y ≠1,从而y =1x,且|x|=1,故x =y =-1. 【答案】 -1,-1状元笔记由本例讲透集合的基础知识(1)由本例(1)讲清:列举法与描述法及它们之间的相互转换,并通过此题使学生深刻理解元素与集合,集合与集合之间的关系,并共同总结此类题的解法.(2)本例(2)的难点是对集合M ,N 的识别:M 是函数y =2cosx 的值域,N 是函数y =log 2(x -1)的定义域.(3)由本例(3)深刻理解集合中元素的互异性的应用.思考题1 (1)给出以下四个命题:①{(x ,y)|x =1或y =2}={1,2};②{x|x =3k +1,k ∈Z }={x|x =3k -2,k ∈Z };③由英文单词“apple ”中的所有字母组成的集合有15个真子集;④设2 021∈{x ,x 2,x 2},则满足条件的所有x 组成的集合的真子集的个数为3. 其中正确的命题是________.【解析】 ①中左边集合表示横坐标为1或纵坐标为2的所有点组成的集合,即x =1或y =2两直线上所有点的集合,右边集合表示有两个元素1和2,左、右两集合的元素属性不同.②中3k +1,3k -2(k ∈Z )都表示被3除余1的数,正确.易错点在于认为3k +1与3k-2中的k 为同一个值,对集合的属性理解错误.③中真子集的个数为24-1=15.④中x =-2 021或x =- 2 021,∴集合为{-2 021,- 2 021},∴真子集有22-1=3(个).正确.【答案】 ②③④(2)(2020·课标全国Ⅲ)已知集合A ={(x ,y)|x ,y ∈N *,y ≥x},B ={(x ,y)|x +y =8},则A ∩B 中元素的个数为( )A .2B .3C .4D .6【解析】 由题意,A ∩B 中的元素满足⎩⎪⎨⎪⎧y ≥x ,x +y =8,且x ,y ∈N *,由x +y =8≥2x ,得x ≤4,所以满足x +y =8的有(1,7),(2,6),(3,5),(4,4),故A ∩B 中元素的个数为4.故选C.【答案】 C(3)(2020·杭州学军中学月考)集合A ={-4,2a -1,a 2},B ={9,a -5,1-a},若A ∩B ={9},则a =( )A .-3B .3或-3C .3D .3或-3或5【解析】 由A ∩B ={9}可知9为集合A 与B 的公共元素,也是唯一公共元素.当2a -1=9时,解得a =5,此时A ={-4,9,25},B ={9,0,-4},不合题意(舍去); 当a 2=9时,解得a =3或-3.若a =3,则A ={-4,5,9},a -5=1-a =-2,集合B 不满足互异性,不合题意(舍去).若a =-3,则A ={-4,-7,9},B ={9,-8,4},符合题意.综上所述,a =-3.【答案】 A题型二 集合的基本关系例2 (1)已知集合A ={x|(x +1)(x -6)≤0},B ={x|m -1≤x ≤2m +1}.若A ∩B =B ,则实数m 的取值范围为________.【解析】 A ={x|-1≤x ≤6}.∵A ∩B =B ,∴B =∅或B ≠∅.当B =∅时,m -1>2m +1,即m<-2,符合题意.当B ≠∅时,⎩⎪⎨⎪⎧m -1≤2m +1,m -1≥-1,2m +1≤6.解得0≤m ≤52.得m<-2或0≤m ≤52. 【答案】 (-∞,-2)∪⎣⎡⎦⎤0,52 (2)设A ={0,-4},B ={x|x 2+2(a +1)x +a 2-1=0},①若B ⊆A ,则实数a 的取值范围为________;②若A ⊆B ,则实数a 的取值范围为________.【解析】 ①A ={0,-4},当B =∅时,Δ=4(a +1)2-4(a 2-1)=8(a +1)<0,解得a<-1;当B 为单元素集合时,a =-1,此时B ={0}符合题意;当B =A 时,由根与系数的关系,得⎩⎪⎨⎪⎧-2(a +1)=-4,a 2-1=0,解得a =1. 综上可知,a ≤-1或a =1.②若A ⊆B ,必有A =B ,由①知a =1.【答案】 ①(-∞,-1]∪{1} ②{1}状元笔记判断两集合关系的常用方法(1)化简集合法:用描述法表示的集合,若代表元素的表达式比较复杂,往往需化简表达式,再寻求两个集合的关系,如本例(2).(2)数形结合法:利用数轴或Venn 图直观判断,如本例(1).易错提醒:当B 为A 的子集时,易漏掉B =∅的情况而致误.思考题2 (1)已知集合A ={1,3,m},B ={1,m},A ∪B =A ,则m =________.【解析】 ∵A ={1,3,m},B ={1,m},A ∪B =A ,∴m =3或m =m.∴m =3或m =0或m =1.当m =1时,与集合中元素的互异性不符.【答案】 0或3(2)设A ={x|x 2-8x +15=0},B ={x|ax -1=0}.①若a =15,试判定集合A 与B 的关系; ②若B A ,求实数a 组成的集合C.【解析】 ①由x 2-8x +15=0,得x =3或x =5,∴A ={3,5}.若a =15,由ax -1=0,得15x -1=0,即x =5. ∴B ={5}.∴B A.②∵A ={3,5},又BA , 故若B =∅,则方程ax -1=0无解,有a =0;若B ≠∅,则a ≠0,由ax -1=0,得x =1a . ∴1a =3或1a =5,即a =13或a =15. 故C =⎩⎨⎧⎭⎬⎫0,13,15. 【答案】 ①B A ②⎩⎨⎧⎭⎬⎫0,13,15题型三 集合的基本运算(微专题)微专题1:集合的交、并、补运算例3 (1)(2021·兰州市高三诊断)设集合M ={x|x 2-3x -4<0},N ={x|0≤x ≤5},则M ∩(∁R N)=( )A .(0,4]B .[0,4)C .[-1,0)D .(-1,0)【解析】 ∵M ={x|x 2-3x -4<0}={x|-1<x<4},N ={x|0≤x ≤5},∴∁R N ={x|x<0或x>5}.M ∩(∁R N)={x|-1<x<0}.【答案】 D(2)(2021·湖北黄冈重点中学联考)全集U ={x|x<10,x ∈N *},A ⊆U ,B ⊆U ,(∁U B)∩A ={1,9},A ∩B ={3},(∁U A)∩(∁U B)={4,6,7},则A ∪B =________.【解析】 由已知条件可得U ={1,2,3,4,5,6,7,8,9},画出Venn 图如图所示.从而A ∪B ={1,2,3,5,8,9}.【答案】 {1,2,3,5,8,9} (3)(2021·八省联考)已知M ,N 均为R 的子集,且∁R M ⊆N ,则M ∪(∁R N)=( )A .∅B .MC .ND .R【解析】 方法一:如图所示易知答案为B.方法二:特值法. 不妨设∁R M =(1,2),N =(0,3),则M ∪(∁R N)=M.【答案】 B状元笔记集合运算的基本类型(1)具体集合的运算:高考对集合的考查,多是考查具体集合(给出或可以求出集合的具体元素)的交、并、补运算,如本例(1),(2),其解法依然是化简集合、列举法或借助于数轴、韦恩图等.预测明年对于集合的考查仍以此类题为主.(2)抽象集合的运算:本例(3)是考查抽象集合(没有给出具体元素的集合)间的关系判断和运算的问题.解决此类问题的途径有二:一是利用特例法将抽象集合具体化;二是利用韦恩图化抽象为直观.思考题3(1)(2021·湖北八校联考)已知集合A={x||x|≤2,x∈R},B={x|x ≤4,x∈Z},则A∩B=()A.(0,2) B.[0,2]C.{0,2} D.{0,1,2}【解析】由已知得A={x|-2≤x≤2},B={0,1,…,16},所以A∩B={0,1,2}.【答案】D(2)(2020·《高考调研》原创题)已知复数集U,f(n)=i n,(n∈N*),集合A={z|z=f(n)},集合B=N*,则A∩(∁U B)中有________个元素.【解析】A={1,-1,i,-i},∁U B是由复数集中不属于N*的所有数组成的集合,∴A∩(∁U B)={-1,i,-i}.【答案】3(3)如图,图形中的阴影部分表示集合()A.(A∪B)∩(B∪C) B.(A∪B)∩(A∪C)C.(A∩B)∪C D.(A∪B)∩C【答案】C微专题2:利用集合的运算求参数例4(1)已知集合A={x|x2-3x<0},B={1,a},且A∩B有4个子集,则实数a的取值范围是()A.(0,3) B.(0,1)∪(1,3)C.(0,1) D.(-∞,1)∪(3,+∞)【解析】因为A∩B有4个子集,所以A∩B中有2个不同的元素,所以a∈A,所以a2-3a<0,解得0<a<3.又a≠1,所以实数a的取值范围是(0,1)∪(1,3).故选B.【答案】B(2)设集合A={x|-1≤x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是()A.(-1,2] B.(2,+∞)C.[-1,+∞) D.(-1,+∞)【答案】D状元笔记(1)一般来讲,集合中的元素若是离散的,则用Venn图表示;集合中的元素若是连续的,则用数轴表示,此时要注意端点的情况.(2)运算过程中要注意集合间的特殊关系的使用,灵活使用这些关系,会使运算简化.思考题4(1)(2020·启东中学模拟)已知集合A={x∈Z|x2-4x-5<0},B={x|4x >2m },若A ∩B 有三个元素,则实数m 的取值范围是( )A .[3,6)B .[1,2)C .[2,4)D .(2,4]【解析】 ∵A ={x ∈Z |-1<x<5}={0,1,2,3,4},B ={x |x>m 2},A ∩B 有三个元素,∴1≤m 2<2,即2≤m<4. 【答案】 C(2)(2020·课标全国Ⅰ,理)设集合A ={x|x 2-4≤0},B ={x|2x +a ≤0},且A ∩B ={x|-2≤x ≤1},则a =( )A .-4B .-2C .2D .4【解析】 求解二次不等x 2-4≤0可得A ={x|-2≤x ≤2},求解一次不等式2x +a ≤0可得B =⎩⎨⎧⎭⎬⎫x |x ≤-a 2.因为A ∩B ={x|-2≤x ≤1},所以-a 2=1,解得a =-2.故选B. 【答案】 B1.通过例1~例3的讲解使学生对集合的表示及子、交、并、补运算等基础知识再一次巩固并系统化,体现本书:以“基础知识”为根本、以“通性通法”为重点的宗旨.2.解决集合问题的关键是正确地将集合进行化简求解,一般规律为:(1)若给定的集合是点集(离散型),用列举法(或结合Venn 图)求解.(2)若给定的集合是不等式的解集(连续型),用数轴求解.(3)若给定的集合是抽象集合,用Venn 图求解.集合中的创新型问题在知识交汇点处命题的信息迁移题是今后几年高考中的热点题型,解决此类问题,既要有扎实的基本功,又要有创新意识,要迅速阅读理解题意,准确把握新的信息,敢于下笔计算.例1 定义集合的商集运算为A B ={x |x =m n,m ∈A ,n ∈B},已知集合A ={2,4,6},B =⎩⎨⎧⎭⎬⎫x |x =k 2-1,k ∈A ,则集合B A ∪B 中的元素个数为( ) A .6 B .7C .8D .9【解析】 由题意知,B ={0,1,2},B A ={0,12,14,16,1,13 },则B A∪B =⎩⎨⎧⎭⎬⎫0,12,14,16,1,13,2,共有7个元素. 【答案】 B例2 当两个集合有公共元素,且互不为对方的子集时,我们称这两个集合“相交”.对于集合M ={x|ax 2-1=0,a>0},N ={-12,12,1},若M 与N “相交”,则a =________. 【解析】 M =⎩⎨⎧⎭⎬⎫-1a ,1a ,若1a =12,则a =4,若1a=1,则a =1. 当a =4时,M =⎩⎨⎧⎭⎬⎫-12,12,此时M ⊆N ,不合题意; 当a =1时,M ={-1,1},满足题意.【答案】 1例3 设全集U ={1,2,3,4,5,6},且U 的子集可表示由0,1组成的6位字符串,如:{2,4}表示的是自左向右的第2个字符为1,第4个字符为1,其余字符均为0的6位字符串010100,并规定空集表示的字符串为000000.(1)若M ={2,3,6},则∁U M 表示的6位字符串为________;(2)已知A ={1,3},B ⊆U ,若集合A ∪B 表示的字符串为101001,则满足条件的集合B 的个数是________.【解析】 (1)由已知,得∁U M ={1,4,5},则∁U M 表示的6位字符串为100110.(2)由题意可知A ∪B ={1,3,6},而A ={1,3},B ⊆U ,则B 可能为{6},{1,6},{3,6},{1,3,6},故满足条件的集合B 的个数是4.【答案】 (1)100110 (2)4题组层级快练(一)一、单项选择题1.下列各组集合中表示同一集合的是( )A .M ={(3,2)},N ={(2,3)}B .M ={2,3},N ={3,2}C .M ={(x ,y)|x +y =1},N ={y|x +y =1}D .M ={2,3},N ={(2,3)}答案 B2.集合M ={x ∈N |x(x +2)≤0}的子集个数为( )A .1B .2C .3D .4答案 B解析 ∵M ={x ∈N |x(x +2)≤0}={x ∈N |-2≤x ≤0}={0},∴M 的子集个数为21=2.选B.3.已知集合A =⎩⎨⎧⎭⎬⎫x ∈Z |32-x ∈Z ,则集合A 中的元素个数为( ) A .2B .3C .4D .5答案 C 4.(2021·长沙市高三统一考试)若集合M ={x ∈R |-3<x<1},N ={x ∈Z |-1≤x ≤2},则M ∩N =( )A .{0}B .{-1,0}C .{-1,0,1}D .{-2,-1,0,1,2}答案 B解析 由题意,得N ={x ∈Z |-1≤x ≤2}={-1,0,1,2},M ={x ∈R |-3<x<1},则M ∩N ={-1,0}.故选B.5.(2021·山东新高考模拟)设集合A ={(x ,y)|x +y =2},B ={(x ,y)|y =x 2},则A ∩B =( )A .{(1,1)}B .{(-2,4)}C .{(1,1),(-2,4)}D .∅答案 C6.(2021·清华附中诊断性测试)已知集合A ={x|log 2(x -2)>0},B ={y|y =x 2-4x +5,x ∈A},则A ∪B =( )A .[3,+∞)B .[2,+∞)C .(2,+∞)D .(3,+∞)答案 C解析 ∵log 2(x -2)>0,∴x -2>1,即x>3,∴A =(3,+∞),∴y =x 2-4x +5=(x -2)2+1>2,∴B =(2,+∞),∴A ∪B =(2,+∞).故选C.7.已知集合A ={x ∈N |1<x<log 2k},集合A 中至少有3个元素,则( )A .k>8B .k ≥8C .k>16D .k ≥16答案 C解析 因为集合A 中至少有3个元素,所以log 2k>4,所以k>24=16.故选C.8.(2020·重庆一中月考)已知实数集R ,集合A ={x|log 2x<1},B ={x ∈Z |x 2+4≤5x},则(∁R A)∩B =( )A .[2,4]B .{2,3,4}C .{1,2,3,4}D .[1,4]答案 B解析 由log 2x<1,解得0<x<2,故A =(0,2),故∁R A =(-∞,0]∪[2,+∞),由x 2+4≤5x ,即x 2-5x +4≤0,解得1≤x ≤4,又x ∈Z ,所以B ={1,2,3,4}.故(∁R A)∩B ={2,3,4}.故选B.9.(2021·郑州质检)已知集合A ={x|x>2},B ={x|x<2m ,m ∈R }且A ⊆∁R B ,那么m 的值可以是( )A .1B .2C .3D .4答案 A解析 由B ={x|x<2m ,m ∈R },得∁R B ={x|x ≥2m ,m ∈R }.因为A ⊆∁R B ,所以2m ≤2,m ≤1.故选A.10.(2021·江淮十校联考)已知集合A ={y |y =x +1x,x ≠0},集合B ={x|x 2-4≤0},若A ∩B =P ,则集合P 的子集个数为( )A .2B .4C .8D .16答案 B二、多项选择题11.(2021·沧州七校联考)设集合A =⎩⎨⎧⎭⎬⎫x |12<2x <7,下列集合中,是A 的子集的是( ) A .{x|-1<x<1} B .{x|1<x<3}C .{x|1<x<2}D .∅答案 ACD解析 依题意得,A ={x|-1<x<log 27},∵2=log 24<log 27<log 28=3,∴选ACD.12.设集合M ={x|(x -3)(x +2)<0},N ={x|x<3},则( )A .M ∩N =MB .M ∪N =NC .M ∩(∁R N)=∅D .M ∪N =R答案 ABC解析 由题意知,M ={x|-2<x<3},N ={x|x<3},所以M ∩N ={x|-2<x<3}=M ,M ∪N =N ,因为∁R N ={x|x ≥3},所以M ∩(∁R N)=∅.故选ABC.三、填空题与解答题13.(2021·浙江温州二模)集合A ={0,|x|},B ={1,0,-1},若A ⊆B ,则A ∩B =________,A ∪B =________,∁B A =________.答案 {0,1} {1,0,-1} {-1}解析 因为A ⊆B ,所以|x|∈B ,又|x|≥0,结合集合中元素的互异性,知|x|=1,因此A ={0,1},则A ∩B ={0,1},A ∪B ={1,0,-1},∁B A ={-1}.14.(1)设全集U =A ∪B ={x ∈N *|lgx<1},若A ∩(∁U B)={m|m =2n +1,n =0,1,2,3,4},则集合B =________.答案 {2,4,6,8}解析 U ={1,2,3,4,5,6,7,8,9},A ∩(∁U B)={1,3,5,7,9},∴B ={2,4,6,8}.(2)已知集合A ={x|log 2x<1},B ={x|0<x<c},c>0.若A ∪B =B ,则c 的取值范围是________.答案 [2,+∞)解析 A ={x|0<x<2},由数轴分析可得c ≥2.15.已知集合A ={x|1<x<3},集合B ={x|2m<x<1-m}.(1)若A ⊆B ,求实数m 的取值范围;(2)若A ∩B =(1,2),求实数m 的取值范围;(3)若A ∩B =∅,求实数m 的取值范围.答案 (1)(-∞,-2] (2)-1 (3)[0,+∞)解析 (1)由A ⊆B ,得⎩⎪⎨⎪⎧1-m>2m ,2m ≤1,1-m ≥3,得m ≤-2,即实数m 的取值范围为(-∞,-2].(2)由已知,得⎩⎪⎨⎪⎧2m ≤1,1-m =2⇒⎩⎪⎨⎪⎧m ≤12,m =-1,∴m =-1. (3)由A ∩B =∅,得①若2m ≥1-m ,即m ≥13时,B =∅,符合题意; ②若2m<1-m ,即m<13时,需⎩⎪⎨⎪⎧m<13,1-m ≤1或⎩⎪⎨⎪⎧m<13,2m ≥3,得0≤m<13或∅,即0≤m<13. 综上知m ≥0,即实数m 的取值范围为[0,+∞).16.已知集合A ={x|1<x<k},集合B ={y|y =2x -5,x ∈A},若A ∩B ={x|1<x<2},则实数k 的值为( )A .5B .4.5C .2D .3.5答案 D解析 B =(-3,2k -5),由A ∩B ={x|1<x<2},知k =2或2k -5=2,因为k =2时,2k -5=-1,A ∩B =∅,不合题意,所以k =3.5.故选D.17.设f(n)=2n +1(n ∈N ),P ={1,2,3,4,5},Q ={3,4,5,6,7},记P ^={n ∈N |f(n)∈P},Q ^={n ∈N |f(n)∈Q},则P ^∩(∁N Q ^)=( )A .{0,3}B .{0}C .{1,2}D .{1,2,6,7}答案 B解析 设P 中元素为t ,由方程2n +1=t ,n ∈N ,解得P ^={0,1,2},Q ^={1,2,3},∴P ^∩(∁N Q ^)={0}.18.(2018·课标全国Ⅱ,理)已知集合A ={(x ,y)|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( )A .9B .8C .5D .4答案 A解析 方法一:由x 2+y 2≤3知,-3≤x ≤3,-3≤y ≤ 3.又x ∈Z ,y ∈Z ,所以x ∈{-1,0,1},y ∈{-1,0,1},所以A 中元素的个数为C 31C 31=9.故选A.方法二:根据集合A 的元素特征及圆的方程在坐标系中作出图象,如图,易知在圆x 2+y 2=3中有9个整点,即为集合A 的元素个数.故选A.第2课时充分条件与必要条件、全称量词与存在量词[复习要求] 1.理解充分条件、必要条件与充要条件的意义.2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定.命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.充分条件与必要条件(1)若p⇒q且q p,则p是q的充分不必要条件.(2)若q⇒p且p q,则p是q的必要不充分条件.(3)若p⇒q且q⇒p,则p是q的充要条件.(4)若p q且q p,则p是q的既不充分也不必要条件.全称量词和存在量词(1)全称量词有:一切,每一个,任给,用符号“∀”表示.存在量词有:有些,有一个,对某个,用符号“∃”表示.(2)含有全称量词的命题,叫做全称命题;“对M中任意一个x,有p(x)成立”可用符号简记为:∀x∈M,p(x),读作:“对任意x属于M,有p(x)成立”.(3)含有存在量词的命题,叫做特称命题(存在性命题);“存在M中的元素x0,使p(x0)成立”可用符号简记为:∃x0∈M,p(x0),读作:“存在M中的元素x0,使p(x0)成立”.含有一个量词的命题的否定命题命题的否定∀x∈M,p(x)∃x0∈M,綈p(x0)∃x0∈M,p(x0)∀x∈M,綈p(x)1.(课本习题改编)(1)x>0是x(x+1)>0的________条件.(2)|a|>0是a>0的________条件.(3)α>β是sinα>sinβ的________条件.答案(1)充分不必要(2)必要不充分(3)既不充分也不必要2.(2021·八省联考)关于x的方程x2+ax+b=0,有下列四个命题:甲:x=1是该方程的根;乙:x=3是该方程的根;丙:该方程两根之和为2;丁:该方程两根异号.如果只有一个假命题,则该命题是()A.甲B.乙C.丙D.丁答案A解析(1)若甲是假命题,则乙、丙、丁是真命题,则x1=3.x2=-1,符合题意.(2)若乙是假命题,则甲、丙、丁是真命题,则x1=1.x2=1,两根不异号,不符合题意.(3)若丙是假命题,则甲、乙、丁是真命题,则两根不异号,不符合题意.(4)若丁是假命题,则甲、乙、丙是真命题,则两根和不为2,不符合题意.故选A.3.(2020·上海春季高考题)“α=β”是“sin2α+cos2β=1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析若α=β,则sin2α+cos2β=sin2α+cos2α=1,∴“α=β”是“sin2α+cos2β=1”的充分条件;若sin2α+cos2β=1,则sin2α=sin2β,得不出α=β,∴“α=β”不是“sin2α+cos2β=1”的必要条件,∴“α=β”是“sin2α+cos2β=1”的充分不必要条件.故选A.4.特称命题“存在实数x0,y0,使得x0+y0>1”,用符号表示为________;此命题的否定是________(用符号表示),是________(填“真”或“假”)命题.答案∃x0,y0∈R,x0+y0>1∀x,y∈R,x+y≤1假5.【多选题】下列命题的否定是真命题的是()A.有些实数的绝对值是正数B.所有平行四边形都不是菱形C.∃x∈R,sinx+cosx=3D.∀x∈R,|x|+x2≥0答案BC解析此类题的解法有二:①判断原命题的真假,则其否定与其结论相反.②先写出命题的否定,再判断真假,本题宜用方法①.题型一充分、必要条件的判定例1(1)判断下列各题中,p是q的什么条件?①p:a>b,q:a>b-1;②p:a>b,q:lga>lgb;③p :a>b ,q :2a >2b; ④p :a>b ,q :a 2>b 2.【解析】 ①p ⇒q ,q ⇒/p ,∴p 是q 的充分不必要条件.②q ⇒p ,p q ,∴p 是q 的必要不充分条件.③p ⇒q ,且q ⇒p ,∴p 是q 的充要条件.④p q ,q p ,∴p 是q 的既不充分也不必要条件.【答案】 ①充分不必要条件 ②必要不充分条件③充要条件 ④既不充分也不必要条件(2)判断下列各题中,p 是q 的什么条件?①在△ABC 中,p :A>B ,q :BC>AC ;②p :x>1,q :x 2>1;③p :(a -2)(a -3)=0,q :a =3;④p :a<b ,q :a b <1. 【解析】 ①定义法:由三角形中大角对大边可知,若A>B ,则BC>AC ;反之,若BC>AC ,则A>B.因此,p 是q 的充要条件.②方法一(定义法):由x>1可以推出x 2>1;由x 2>1得x<-1或x>1,不一定有x>1.因此p 是q 的充分不必要条件.方法二(集合法):p =(1,+∞),q =(-∞,-1)∪(1,+∞),∴p ⊆q ,故p 是q 的充分不必要条件.③由(a -2)(a -3)=0可以推出a =2或a =3,不一定有a =3;由a =3可以得出(a -2)(a -3)=0.因此p 是q 的必要不充分条件.④由于a<b ,当b<0时,a b >1;当b>0时,a b <1,故若a<b ,不一定有a b <1.当b>0,a b<1时,可以推出a<b ;当b<0,a b<1时,可以推出a>b.因此p 是q 的既不充分也不必要条件. 【答案】 ①p 是q 的充要条件 ②p 是q 的充分不必要条件 ③p 是q 的必要不充分条件 ④p 是q 的既不充分也不必要条件(3)设a ,b ∈R ,则“a >b ”是“a|a|>b|b|”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】 方法一:当a>b>0时,a>b ⇔a|a|>b|b|;当a>0>b 时,a>b ⇔a|a|>b|b|;当b<a<0时,a>b ⇔a|a|>b|b|,∴选C.方法二:构造函数f(x)=x|x|,则f(x)在定义域R 上为奇函数.因为f(x)=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,所以函数f(x)在R 上单调递增,所以a >b ⇔f(a)>f(b)⇔a|a|>b|b|.选C.【答案】 C状元笔记判断充分必要条件的步骤(1)弄清条件p 和结论q 分别是什么.(2)尝试p ⇒q ,q ⇒p.(3)可简记为:充分条件是小推大,必要条件是大推小.(4)充要条件可以融入到数学各个分支,题型灵活多变,但万变不离其宗,只要紧扣定义,结合其他知识,便可迎刃而解.思考题1 (1)(2020·天津)设a ∈R ,则“a>1”是“a 2>a ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】 定义法:由a 2>a 得a>1或a<0,反之,由a>1得a 2>a ,则“a>1”是“a 2>a ”的充分不必要条件.故选A.【答案】 A(2)“1x>1”是“e x -1<1”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】 ∵1x >1,∴x ∈(0,1).∵e x -1<1,∴x<1,即x ∈(-∞,1).∴“1x>1”是“e x -1<1”的充分不必要条件.或用集合法:∵(0,1)(-∞,1),∴“1x>1”是“e x -1<1”的充分不必要条件. 【答案】 A(3)(2021·衡水中学调研卷)如果x ,y 是实数,那么“x ≠y ”是“cosx ≠cosy ”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【解析】 “x ≠y ”不能推出“cosx ≠cosy ”,但“cosx ≠cosy ”一定有“x ≠y ”.【答案】 C(4)(2021·合肥一模)已知偶函数f(x)在[0,+∞)上单调递增,则对实数a ,b ,“a>|b|”是“f(a)>f(b)”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】 因为f(x)为偶函数,所以f(x)=f(-x)=f(|x|),由于f(x)在[0,+∞)上单调递增,因此若a>|b|≥0,则f(a)>f(|b|),即f(a)>f(b),所以“a>|b|”是“f(a)>f(b)”的充分条件;若f(a)>f(b),则f(|a|)>f(|b|),可得|a|>|b|≥0,由于a ,b 的正负不能判断,因此无法得到a>|b|,则“a>|b|”不是“f(a)>f(b)”的必要条件,所以“a>|b|”是“f(a)>f(b)”的充分不必要条件.故选A.【答案】 A题型二 充分、必要条件的应用例2 (1)已知P ={x|x 2-8x -20≤0},非空集合S ={x|1-m ≤x ≤1+m}.若x ∈P 是x ∈S 的必要条件,则m 的取值范围是________.【解析】 由x 2-8x -20≤0,得-2≤x ≤10,所以P ={x|-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P ,则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2,1+m ≤10,所以0≤m ≤3,所以当0≤m ≤3时,x ∈P 是x ∈S 的必要条件,即所求m 的取值范围是[0,3].【答案】 [0,3](2)在(1)中若把条件“若x ∈P 是x ∈S 的必要条件”改为“若x ∈P 是x ∈S 的必要不充分条件”,则m 的取值范围是________.【解析】 方法一:由(1)若x ∈P 是x ∈S 的必要条件,则0≤m ≤3,当m =0时,S ={1},满足题意;当m =3时,S ={x|-2≤x ≤4}满足题意,故m 的取值范围为[0,3].方法二:若x ∈P 是x ∈S 的必要且充分条件,则P =S ,即⎩⎪⎨⎪⎧1-m =-2,1+m =10⇒m 无解, ∴m 的取值范围是[0,3].【答案】 [0,3]状元笔记本例涉及参数问题,直接解决较为困难,先用等价转化思想,将复杂、生疏的问题化归为简单、熟悉的问题来解决.一般地,在涉及字母参数的取值范围的充要关系问题中,常常要利用集合的包含、相等关系来考虑,这是破解此类问题的关键.思考题2 (1)已知p :1≤x ≤2,q :(x -a)(x -a -1)≤0,若p 是q 的充要条件,则实数a 的值为________.【答案】 1(2)已知p :4x +m<0,q :x 2-x -2>0,若p 是q 的一个充分不必要条件,求m 的取值范围.【解析】 ∵4x +m<0,∴x<-m 4,∴p :x<-m 4. ∵x 2-x -2>0,∴x<-1或x>2,∴q :x<-1或x>2.∵p ⇒q ,∴-m 4≤-1,∴m ≥4. 即m 的取值范围是[4,+∞).【答案】 [4,+∞)(3)(2021·北京西城区期末)已知函数f(x)=sin2x ,x ∈[a ,b],则“b -a ≥π2”是“f(x)的值域为[-1,1]”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解析】 由图可知,若a =0,π2<b<3π4,则b -a>π2,但f(x)=sin2x 的值域不是[-1,1].反之,因为值域是[-1,1],说明b -a ≥12T ,而T =π.所以b -a ≥π2.【答案】B题型三全(特)称命题及其真假的判断例3指出下列命题中,哪些是全称命题,哪些是特称命题,并判断真假.(1)若a>0,且a≠1,则对任意实数x,a x>0;(2)对任意实数x1,x2,若x1<x2,则tanx1<tanx2;(3)∃T∈R,使|sin(x+T)|=|sinx|;(4)∃x0∈R,使x02+1<0.【解析】(1)(2)是全称命题,(3)(4)是特称命题.(1)∵a x>0(a>0,a≠1)恒成立,∴命题(1)是真命题.(2)存在x1=0,x2=π,x1<x2,但tan0=tanπ,∴命题(2)是假命题.(3)y=|sinx|是周期函数,π就是它的一个周期,∴命题(3)是真命题.(4)对任意x∈R,x2+1>0,∴命题(4)是假命题.【答案】(1)(2)是全称命题,(3)(4)是特称命题;(1)(3)是真命题,(2)(4)是假命题状元笔记全(特)称命题真假的判断方法(1)要判定一个全称命题是真命题,必须对限定集合M中的每个元素x验证p(x)成立;但要判定全称命题是假命题,只要能举出集合M中的一个x=x0,使得p(x0)不成立即可(这就是通常所说的“举出一个反例”).(2)要判定一个特称命题是真命题,只要在限定集合M中,至少能找到一个x=x0,使p(x0)成立即可;否则,这一特称命题就是假命题.(3)不管是全称命题还是特称命题,当其真假不易判定时,可先判断其否定的真假.思考题3(2021·湖北宜昌一中月考)下列命题中是假命题的是() A.∃x0∈R,log2x0=0B.∃x0∈R,cosx0=1C.∀x∈R,x2>0 D.∀x∈R,2x>0【解析】因为log21=0,cos0=1,所以A,B项均为真命题,因为02=0,所以C项为假命题,因为2x>0,所以选项D为真命题.【答案】C题型四含量词命题的否定例4写出下列命题的否定,并判断真假.(1)p1:所有的正方形都是矩形;(2)p2:至少有一个整数,它既能被2整除,又能被5整除;(3)p3:∀x∈{x|x是无理数},x2是无理数;(4)p4:∃x0∈{x|x∈Z},log2x0>0.【解析】(1)綈p1:至少存在一个正方形不是矩形,是假命题.(2)綈p2:所有的整数,都不能被2或5整除,是假命题.(3)綈p3:∃x0∈{x|x是无理数},x02不是无理数,是真命题.(4)綈p4:∀x∈{x|x∈Z},log2x≤0,是假命题.【答案】命题的否定见解析,(1)(2)(4)的否定为假命题,(3)的否定为真命题状元笔记(1)全(特)称命题的否定与命题的否定有着一定的区别,全(特)称命题的否定是将其全称量词改为存在量词(或存在量词改为全称量词),并把结论否定;而命题的否定则是直接否定结论即可.(2)常见词语的否定形式有:原语句是都是>至少有一个至多有一个对任意x∈A使p(x)真否定形式不是不都是≤一个也没有至少有两个存在x0∈A使p(x0)假思考题4(1)写出下列命题的否定并判断真假.①p:所有末位数字是0或5的整数都能被5整除;②p:每一个非负数的平方都是正数;③p:存在一个三角形,它的内角和大于180°;④p:有的四边形没有外接圆.【解析】①綈p:存在末位数字是0和5的整数不能被5整除,是假命题.②綈p:存在一个非负数的平方不是正数,是真命题.③綈p:任何一个三角形,它的内角和不大于180°,是真命题.④綈p:所有的四边形都有外接圆,是假命题.【答案】命题的否定见解析,①④的否定为假命题,②③的否定为真命题(2)(高考真题·浙江卷)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定是()A.∀n∈N*,f(n)∉N*且f(n)>nB.∀n∈N*,f(n)∉N*或f(n)>nC.∃n∈N*,f(n)∉N*且f(n)>nD.∃n∈N*,f(n)∉N*或f(n)>n【解析】全称量词命题的否定为存在量词命题,因此命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定是“∃n∈N*,f(n)∉N*或f(n)>n”.【答案】D1.充分、必要条件的判定方法.(1)定义法.(2)集合法:若p以集合A的形式出现,q以集合B的形式出现,即A={x|p(x)},B={x|q(x)},则①若A⊆B,则p是q的充分条件;②若B⊆A,则p是q的必要条件;③若A=B,则p是q的充要条件.2.含一个量词的命题的否定,既要否定量词,又要否定结论.题组层级快练(二)一、单项选择题1.(2021·开封市一模)若a ,b 是非零向量,则“a ·b >0”是“a 与b 的夹角为锐角”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 答案 B解析 因为a ,b 为非零向量,a ·b >0,所以由向量数量积的定义知,a 与b 的夹角为锐角或a 与b 方向相同;反之,若a 与b 的夹角为锐角,由向量数量积的定义知,a ·b >0成立.故“a ·b >0”是“a 与b 的夹角为锐角”的必要不充分条件.故选B.2.(2021·湖南长郡中学模拟)“log 2(2x -3)<1”是“4x >8”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 答案 A 3.“(m -1)(a -1)>0”是“log a m>0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 答案 B解析 (m -1)(a -1)>0等价于⎩⎨⎧m>1,a>1或⎩⎪⎨⎪⎧m<1,a<1,而log a m>0等价于⎩⎨⎧m>1,a>1或⎩⎪⎨⎪⎧0<m<1,0<a<1,所以条件具有必要性,但不具有充分性,比如m =0,a =0时,不能得出log a m>0.故选B.4.王昌龄是盛唐著名的边塞诗人,被誉为“七绝圣手”,其《从军行》传诵至今,“青海长云暗雪山,孤城遥望玉门关,黄沙百战穿金甲,不破楼兰终不还”,由此推断,其中最后一句“攻破楼兰”是“返回家乡”的( )A .必要条件B .充分条件C .充要条件D .既不充分也不必要条件 答案 A解析 设p :攻破楼兰,q :返回家乡,由已知綈p ⇒綈q ,得q ⇒p ,故p 是q 的必要条件.5.(2019·北京)设A ,B ,C 不共线,则“AB →与AC →的夹角为锐角”是“|AB →+AC →|>|BC →|”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 答案 C解析 若|AB →+AC →|>|BC →|,则|AB →+AC →|2>|BC →|2,AB →2+AC →2+2AB →·AC →>|BC →|2,∵点A ,B ,C 不共线,∴线段AB ,BC ,AC 构成一个三角形ABC ,设内角A ,B ,C 对应的边分别为a ,b ,c ,则由平面向量的数量积公式及余弦定理可知,c 2+b 2+2bc·cosA>c 2+b 2-2bc·cosA ,∴cosA>0,又A ,B ,C 三点不共线,故AB →与AC →的夹角为锐角.反之,易得当AB →与AC →的夹角为锐角时,|AB →+AC →|>|BC →|,∴“AB →与AC →的夹角为锐角”是“|AB →+AC →|>|BC →|”的充分必要条件.故选C.6.(2019·浙江)设a>0,b>0,则“a +b ≤4”是“ab ≤4”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 A解析 因为a>0,b>0,所以a +b ≥2ab ,由a +b ≤4可得2ab ≤4,解得ab ≤4,所以充分性成立;当ab ≤4时,取a =8,b =13,满足ab ≤4,但a +b>4,所以必要性不成立.所以“a +b ≤4”是“ab ≤4”的充分不必要条件.故选A.7.(2018·北京)设a ,b ,c ,d 是非零实数,则“ad =bc ”是“a ,b ,c ,d 成等比数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 答案 B解析 (定义法)a ,b ,c ,d 是非零实数,若ad =bc ,则b a =dc,此时a ,b ,c ,d 不一定成等比数列;反之,若a ,b ,c ,d 成等比数列,则a b =cd ,所以ad =bc ,所以“ad =bc ”是“a ,b ,c ,d 成等比数列”的必要而不充分条件.故选B.8.命题“∀x ∈R ,⎝⎛⎭⎫13x >0”的否定是( ) A .∃x 0∈R ,⎝⎛⎭⎫13x 0<0 B .∀x ∈R ,⎝⎛⎭⎫13x ≤0 C .∀x ∈R ,⎝⎛⎭⎫13x <0 D .∃x 0∈R ,⎝⎛⎭⎫13x 0≤0答案 D解析 全称命题“∀x ∈R ,⎝⎛⎭⎫13x >0”的否定是把量词“∀”改为“∃”,并把结论进行否定,即把“>”改为“≤”.故选D.9.命题“∃x 0∈∁R Q ,x 03∈Q ”的否定是( ) A .∃x 0∉∁R Q ,x 03∈Q B .∃x 0∈∁R Q ,x 03∈Q C .∀x ∉∁R Q ,x 3∈Q D .∀x ∈∁R Q ,x 3∉Q 答案 D解析 该特称命题的否定为“∀x ∈∁R Q ,x 3∉Q ”.10.(2021·湖南邵阳高三大联考)若命题“∃x 0∈R ,x 02+2mx 0+m +2<0”为假命题,则m 的取值范围是( )A .(-∞,-1)∪[2,+∞)B .(-∞,-1)∪(2,+∞)C .[-1,2]D .(-1,2) 答案 C解析 命题的否定是“∀x ∈R ,x 2+2mx +m +2≥0”,该命题为真命题,所以Δ=4m 2-4(m +2)≤0,解得-1≤m ≤2.故选C.11.“m>2”是“关于x 的方程x 2-mx +m +3=0的两根都大于1”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 答案 B解析 设方程x 2-mx +m +3=0有两根,两根分别为x 1,x 2,则Δ≥0,且x 1+x 2=m ,x 1·x 2=m +3.。

高三数学一轮复习 第1章 集合与常用逻辑用语第1课时 集合的概念与运算精品课件

高三数学一轮复习 第1章 集合与常用逻辑用语第1课时 集合的概念与运算精品课件
• (3)五个关系式A⊆B、A∩B=A,A∪B=B,∁UB⊆∁UA以及A∩(∁UB) =∅是两两等价的.
• 集合是高中数学的基础内容,也是高考数学的必考内容,难度 不大,一般是一道选择题或填空题.通过对近两年高考试题的统 计分析可以看出,对集合内容的考查一般以两种方式出现:一是 考查集合的概念、集合间的关系及集合的运算.
• (3){x|x2-ax-1=0}和{a|方程x2-ax-1=0有实根}的意义不 同.{x|x2-ax-1=0}表示由二次方程x2-ax-1=0的解构成的集 合,而集合{a|方程x2-ax-1=0有实根}表示方程x2-ax-1=0有 实数解时参数a的范围构成的集合.
【变式训练】 1.现有三个实数的集合,既可以表示为a,ba,1, 也可表示为{a2,a+b,0},则 a2 011+b2 011=________.
命题与量 词、 基本 逻辑 联结 词
1.了解命题的概念. 2.了解逻辑联结词“或”、“且”、“非”的含义. 3.理解全称量词与存在量词的含义. 4.能正确地对含有一个量词的命题进行否定.
充分条件、
必要
条件 1.了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四
与命
种命题的相互关系.
题的 2.理解必要条件、充分条件与充要条件的意义.
①集合 S={a+b 3|a,b 为整数}为封闭集; ②若 S 为封闭集,则一定有 0∈S; ③封闭集一定是无限集; ④若 S 为封闭集,则满足 S⊆T⊆R 的任意集合 T 也是封闭集. 其中的真命题是________.(写出所有真命题的序号)
序号 结论
理由
• 【全解全析】对于任意整数 a1,b1,a2,b2,有 a1+b1 3+a2+b2 3
B.{a|a≤2或a≥4}

2022届高考数学统考一轮复习第一章集合学案文含解析新人教版

2022届高考数学统考一轮复习第一章集合学案文含解析新人教版

高考数学统考一轮复习新人教版:第一节集合【知识重温】一、必记3个知识点1.元素与集合(1)集合中元素的特性:________、________、无序性.(2)元素与集合的关系:若a属于A,记作________,若b不属于A,记作________.(3)集合的表示方法:________、________、图示法.(4)常见数集及其符号表示数集自然数集正整数集整数集有理数集实数集符号____________________2.集合间的基本关系(1)集合相等:若集合A与集合B中的所有元素________,则称A与B相等.(2)子集:若集合A中________________________均为集合B中的元素,则称A是B的子集,记作A⊆B或B⊇A,________是任何集合的子集.(3)真子集:若集合A中任意一个元素均为集合B中的元素,且集合B中⑮________________不是集合A中的元素,则称A是B的真子集,记作A B或B A.(4)空集是任何集合的子集,是任何________集合的真子集.(5)含有n个元素的集合的子集个数为________,真子集个数为________,非空真子集个数为________.3.集合的基本运算集合的并集集合的交集集合的补集符号表示A∪B A∩B若全集为U,则集合A的补集为∁U A图形表示意义{x|______}{x|______}{x|________}1.认清集合元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.2.要注意区分元素与集合的从属关系,以及集合与集合的包含关系.3.易忘空集的特殊性,在写集合的子集时不要忘了空集和它本身.4.运用数轴图示法易忽视端点是实心还是空心.5.在解决含参数的集合问题时,要注意检验集合元素的互异性,否则很可能会因为不满足互异性而导致解题错误.【小题热身】一、判断正误1.判断下列说法是否正确(请在括号中打“√”或“×”).(1)集合{x ∈N |x 3=x },用列举法表示为{-1,0,1}.( )(2){x |y =x 2}={y |y =x 2}={(x ,y )|y =x 2}.( )(3)方程x -2 018+(y +2 019)2=0的解集为{2 018,-2 019}.( )二、教材改编2.集合A ={x |2≤x <4},B ={x |3x -7≥8-2x },则A ∩B =( )A .{x |2≤x <4}B .{x |3≤x <4}C .{x |2<x <4}D .{x |3<x <4}3.已知集合A ={x |3≤x <7},B ={x |2<x <10},则∁R (A ∪B )=________.三、易错易混4.已知集合A ={-1,1},B ={x |ax +1=0},若B ⊆A ,则实数a 的所有可能取值的集合为( )A .{-1}B .{1}C .{-1,1}D .{-1,0,1}5.已知集合A ={y |y =x 2-2x -3,x ∈R },B ={y |y =-x 2+2x +13,x ∈R },则A ∩B =________.四、走进高考6.[2020·山东卷]设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( )A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}考点一 集合[自主练透型]1.设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =( ) A .1 B .-1 C .2 D .-22.若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a =( )A.92B.98 C .0 D .0或983.[2021·河南省豫北名校高三质量考评]已知集合A ={(x ,y )|x 2+y 2=4},B ={(x ,y )|y =-x 2+2},则集合A ∩B 的真子集的个数为( )A .3B .4C .7D .8悟·技法解决集合含义问题的关键有三点:一是确定构成集合的元素;二是确定元素的限制条件;三是根据元素的特性(满足的条件)构造关系式解决相应问题.[提醒] 含字母的集合问题,在求出字母的值后,需要验证集合的元素是否满足互异性.考点二 集合间的基本关系[互动讲练型][例1] (1)[2021·黄冈中学,华师附中等八校联考]已知集合M ={x |x 2-5x -6≤0},N =⎩⎨⎧⎭⎬⎫y |y =⎝⎛⎭⎫16x ,x ≥-1,则( ) A .M ⊆N B .N ⊆MC .M =ND .M ⊆(∁R N )(2)[2021·大同市高三学情调研测试试题]已知集合A 满足{0,1}⊆A {0,1,2,3},则集合A 的个数为( )A .1B .2C .3D .4(1)判断两集合关系的3种常用方法(2)根据两集合的关系求参数的方法[提醒]题目中若有条件B⊆A,则应分B=∅和B≠∅两种情况进行讨论.[变式练]——(着眼于举一反三)1.[2021·广州市高三学情调研]已知集合{x|x2+ax=0}={0,1},则实数a的值为() A.-1 B.0 C.1 D.22.已知集合A={x|x2-2x≤0},B={x|x≤a},若A⊆B,则实数a的取值范围是() A.a≥2 B.a>2 C.a<0 D.a≤0考点三集合间的基本运算[分层深化型][例2](1)[2020·全国卷Ⅱ]已知集合U={-2,-1,0,1,2,3},A={-1,0,1},B={1,2},则∁U(A∪B)=()A. {-2,3}B. {-2,2,3}C. {-2,-1,0,3}D. {-2,-1,0,2,3}(2)[2021·合肥市高三调研性检测]若集合A={x|x(x-2)>0},B={x|x-1>0},则A∩B=()A.{x|x>1或x<0} B.{x|1<x<2}C.{x|x>2} D.{x|x>1}悟·技法[同类练]——(着眼于触类旁通)3.[2021·广东省七校联合体高三联考试题]已知集合A={x|x2-x-2<0},B={x|x<1},则有()B .A ∩B ={x |-1<x <1}C .A ∪B ={x |-1<x <1}D .A ∪B ={x |-1<x <2}4.[2021·唐山市高三年级摸底考试]已知集合A ={0,1,2,3},B ={x |x 2-2x <0},则A ∩B =( )A .{0,1,2}B .{0,1}C .{3}D .{1}[变式练]——(着眼于举一反三)5.[2021·武汉部分学校质量检测]已知集合A ={x |x 2-x -2<0},则∁R A =( )A .{x |-1<x <2}B .{x |-1≤x ≤2}C .{x |x <-1或x >2}D .{x |x ≤-1或x ≥2}6.[2021·南昌市高三年级摸底测试卷]已知集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x -3x -1≥0,N ={}x | y =2-x ,则(∁R M )∩N =( )A .(1,2]B .[1,2]C .(2,3]D .[2,3][拓展练]——(着眼于迁移应用)7.[2021·山西省六校高三阶段性测试]已知全集U =R ,集合A ={x |x 2-4<0,x ∈Z },集合B ={x |x 2-2x -3=0},则图中阴影部分表示的集合是( )A .{0,1,3}B .{-2,0,1,2,3}C .{0,-1,-3}D .{-1,0,1,3}8.[2021·石家庄市重点高中高三毕业班摸底考试]已知集合A ={x |y =log 2(x -2)},B ={x |x 2≥9},则A ∩(∁R B )=( )A .[2,3)B .(2,3)C .(3,+∞)D .(2,+∞)第一节 集合 【知识重温】①确定性 ②互异性 ③a ∈A ④b ∉A ⑤列举法 ⑥描述法 ⑦N ⑧N *(或N +) ⑨Z ⑩Q ⑪R ⑫都相同 ⑬每一个元素 ⑭空集 ⑮至少有一个元素 ⑯非空 ⑰2n ⑱2n -1 ⑲2n -2 ⑳x ∈A 或x ∈B ○21x ∈A 且x ∈B ○22x ∈U 且x ∉A 【小题热身】1.答案:(1)× (2)× (3)×2.解析:∵A ={x |2≤x <4},B ={x |x ≥3},答案:B3.解析:A ∪B ={x |2<x <10},∴∁R (A ∪B )={x |x ≤2或x ≥10}.答案:{x |x ≤2或x ≥10}4.解析:∵B ⊆A ,当B ≠∅,即a ≠0时,B ={x |x =-1a}, ∴-1a∈A ,即a =±1; 当B =∅,即a =0时,满足条件,综上可知实数a 所有可能取值的集合是{-1,0,1}.故选D.答案:D5.解析:A ={y |y =(x -1)2-4,x ∈R }={y |y ≥-4}.B ={y |y =-(x -1)2+14,x ∈R }={y |y ≤14}.∴A ∩B ={y |-4≤y ≤14}.答案:{y |-4≤y ≤14}6.解析:A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B ={x |1≤x <4},选C.答案:C课堂考点突破考点一1.解析:因为{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,a ≠0,所以a +b =0,则b a =-1,所以a =-1,b =1.所以b -a =2.答案:C2.解析:若集合A 中只有一个元素,则方程ax 2-3x +2=0只有一个实根或有两个相等实根.当a =0时,x =23,符合题意;当a ≠0时,由Δ=(-3)2-8a =0,得a =98.所以a 的值为0或98.故选D 项. 答案:D3.解析:解法一 由⎩⎪⎨⎪⎧ x 2+y 2=4y =-x 2+2,解得⎩⎪⎨⎪⎧ x =0y =2或⎩⎨⎧ x =3y =-1或⎩⎨⎧x =-3y =-1,则集合A ∩B ={(0,2),(3,-1),(-3,-1)},有3个元素,其真子集的个数为23-1=7,故选C.解法二 分别作出圆x 2+y 2=4与抛物线y =-x 2+2,如图.由图可知集合A ∩B 中有3个元素,则其真子集的个数为23-1=7,故选C.答案:C考点二 例1 解析:(1)由x 2-5x -6≤0得-1≤x ≤6,即M =[-1,6];由y =⎝⎛⎭⎫16x ,x ≥-1得0<y ≤6,即N =(0,6],所以N ⊆M ,故选B.(2)由题意可知A 可能为{0,1},{0,1,2},{0,1,3},则满足条件的集合A 的个数为3,故选C. 答案:(1)B (2)C变式练1.解析:由x 2+ax =0,得x (x +a )=0,所以x =0或x =-a .所以由已知条件可得-a =1,所以a =-1.答案:A2.解析:∵A ={x |0≤x ≤2},B ={x |x ≤a },∴为使A ⊆B ,a 须满足a ≥2.答案:A考点三例2 解析:(1)∵A ={-1,0,1},B ={1,2},∴A ∪B ={-1,0,1,2},又∵集合U ={-2,-1,0,1,2,3},∴∁U (A ∪B )={-2,3},故选A.(2)通解 因为A ={x |x (x -2)>0}={x |x >2或x <0},B ={x |x -1>0}={x |x >1},所以A ∩B ={x |x >2},故选C.优解 因为32∉A ,所以32∉(A ∩B ),故排除A ,B ,D ,选C. 答案:(1)A (2)C同类练3.解析:由题意可得A ={x |-1<x <2},故A ∩B ={x |-1<x <1},选B.答案:B4.解析:B ={x |0<x <2},A ={0,1,2,3},则A ∩B ={1},故选D.答案:D变式练5.解析:通解 因为A ={x |x 2-x -2<0}={x |(x +1)(x -2)<0}={x |-1<x <2},所以∁R A ={x |x ≤-1或x ≥2},选D.优解 显然0∈A ,所以0∉∁R A ,排除A ,B ;又2∉A ,所以2∈∁R A ,排除C.选D. 答案:D6.解析:因为M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -3x -1≥0={x |x <1或x ≥3},所以∁R M ={x |1≤x <3}.又N ={x |y =2-x }={x |x ≤2},所以(∁R M )∩N =[1,2],故选B.答案:B拓展练7.解析:由题意知A ={-1,0,1},B ={-1,3},则A ∩B ={-1},A ∪B ={-1,0,1,3},于是阴影部分表示的集合为{0,1,3},故选A.答案:A8.解析:A ={x |y =log 2(x -2)}=(2,+∞),∵B ={x |x 2≥9}=(-∞,-3]∪[3,+∞),∴∁R B =(-3,3),则A ∩(∁R B )=(2,3),故选B.答案:B。

高中数学一轮复习(全)

高中数学一轮复习(全)
解: 的值域是 的定义域 , 的值域 ,故 ,而A ,故 .
11.常用变换:
① .
②满足 ,或 ,若 时, .
8.对称变换:①y=f(x)
②y=f(x)
③y=f(x)
9.判断函数单调性(定义)作差法:对带根号的一定要分子有理化,例如:
在进行讨论.
10.外层函数的定义域是内层函数的值域.
例如:已知函数f(x)=1+ 的定义域为A,函数f[f(x)]的定义域是B,则集合A与集合B之间的关系是.
§01.集合与简易逻辑知识要点
一、知识结构:
本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:
二、知识回顾:
(一)集合
1.基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.
2.集合的表示法:列举法、描述法、图形表示法.
集合元素的特征:确定性、互异性、无序性.
集合的性质:
4、四种命题的形式:
原命题:若P则q;逆命题:若q则p;
否命题:若┑P则┑q;逆否命题:若┑q则┑p。
(1)交换原命题的条件和结论,所得的命题是逆命题;
(2)同时否定原命题的条件和结论,所得的命题是否命题;
(3)交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题.
5、四种命题之间的相互关系:
例:①若 应是真命题.
解:逆否:a=2且b=3,则a+b=5,成立,所以此命题为真.
② .
解:逆否:x+y=3 x=1或y=2.
,故 是 的既不是充分,又不是必要条件.
⑵小范围推出大范围;大范围推不出小范围.
3.例:若 .
4.集合运算:交、并、补.
5.主要性质和运算律

高考数学一轮复习集合知识点

高考数学一轮复习集合知识点

高考数学一轮复习集合知识点大家都知道,数学是高考一切学科中尤为重要的一门科目,这个分值也很容易发生差距,为了不把分值拉得太大了,小编在这里整理了2021年高考数学一轮温习集合知识点,供大家参考。

集合是近代数学中的一个重要概念,它不只与高中数学的许多内容有着严密的联络,而且曾经浸透到自然迷信的众多范围,运用十分普遍。

掌握好集合的知识既是数学学习自身的需求,也是片面提高数学素养的一个必不可少的内容。

进入高中,学习数学的第一课,就是集合。

由于集合单元的概念笼统,符号术语多,研讨方法跟学习初中数学时有着清楚的差异,致使局部同窗初学集合时,感到难以顺应,经常由于这样那样的缘由形成解题失误,构成思想阻碍,甚至影响整个高中数学的学习。

为了协助同窗们处置这一效果,本文谈谈在集合学习中值得留意的几个事项,供大家参考。

一、准确地掌握集合的概念,熟练地运用集合与集合的关系处置详细效果概念笼统、符号术语多是集合单元的一个显着特点,例如交集、并集、补集的概念及其表示方法,集合与元素的关系及其表示方法,集合与集合的关系及其表示方法,子集、真子集和集合相等的定义等等。

这些概念、关系和表示方法,都可以作为求解集分解绩的依据、动身点甚至是打破口。

因此,要想学好集合的内容,就必需在准确地掌握集合的概念,熟练地运用集合与集合的关系处置详细效果上下功夫。

二、留意弄清集合元素的性质,学会运用元素剖析法审视集合的有关效果众所周知,集合可以看成是一些对象的全体,其中的每一个对象叫做这个集合的元素。

集合中的元素具有〝三性〞:(1)、确定性:集合中的元素应该是确定的,不能模棱两可。

(2)、互异性:集合中的元素应该是互不相反的,相反的元素在集合中只能算作一个。

高考第一轮复习集合与常用逻辑用语

高考第一轮复习集合与常用逻辑用语

年级高三学科数学版本通用版课程标题高考第一轮复习——集合与常用逻辑用语编稿老师孙丕训一校林卉二校黄楠审核王百玲一、考点突破考纲解读:1. 集合的概念、集合间的关系及运算是高考重点考查的内容,正确理解概念是解决此类问题的关键。

2.对命题及充要条件这部分内容,重点关注两个方面内容:一是命题的四种形式及原命题与逆否命题的等价;二是充要条件的判定。

这些内容大多是以其他数学知识为载体,具有较强的综合性。

3. 常用逻辑用语高考以考查四种命题、逻辑联结词和全称命题、特称命题的否定为主。

命题预测:1. 根据考试大纲的要求,结合近几年高考的命题情况,可以预测集合这部分内容在选择、填空和解答题中都有可能涉及.高考命题热点有以下两个方面:一是对集合的运算、集合的有关陈述语和符号、集合的简单应用等作基础性的考查,题型常以选择、填空题的形式出现;二是以函数、方程、三角、不等式等知识为载体,以集合的语言和符号为表现形式,结合简易逻辑知识考查学生的数学思想、数学方法和数学能力,题型常以解答题的形式出现. 2. 作为高中数学的基础知识,命题、量词与逻辑联结词、四种命题及充要条件是每年高考的必考内容,题量一般为1~2道,多以选择题或填空题的形式出现,难度不大,重点考查命题真假的判断,全称命题与特称命题的否定, 与函数、直线与平面、圆锥曲线等知识联系很紧密,要求考生理解命题的四种形式、充分条件、必要条件、充要条件的意义,能够判断给定的两个命题的逻辑关系.题目内容和思想方法涉及或渗透到高中数学的各个章节,有一定的综合性.二、重难点提示重点:理解集合的表示,能准确进行集合间的交、并、补的运算;正确地对含有一个量词的命题进行否定。

难点:集合的表示及充分必要条件的判定。

一、知识脉络图二、知识点拨1. 集合与元素(1)集合元素具有三个特征:、、。

(2)元素与集合的关系是属于或不属于的关系,用符号∈或∉表示。

(3)集合的表示法:、、、。

(4)常用数集:自然数集N;正整数集N*(或N+);整数集Z;有理数集Q;实数集R;复数集C。

人教版高中数学高考一轮复习--集合

人教版高中数学高考一轮复习--集合
A.M∩N=⌀B.M=N
C.M⊆N
D.N⊆M
由题意,对于集合M,当n为偶数时,设n=2k(k∈Z),则x=k+1(k∈Z),当n为奇
1
数时,设n=2k+1(k∈Z),则x=k+1+ 2 (k∈Z),即N⊆M,故选D.
(2)已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若B⊆A,则实数m的取
(2)看这些元素满足什么限制条件;
(3)根据限制条件列式求参数的值或确定集合中元素的个数;
(4)要注意检验集合的元素是否满足互异性.
对点训练1
(1)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则集合A中元素的个数为
( A )
A.9
B.8
C.5
D.4
(方法一)将满足x2+y2≤3的整数x,y全部列举出来,即(-1,-1),(-1,0),(-1,1),
已知两个集合之间的关系求参数时,要明确集合中的元素,对子集是否为空
集进行分类讨论,做到不漏解.
(1)若集合中元素是一一列举的,则依据集合间的关系,转化为方程(组)求解,
此时注意集合中元素的互异性;
(2)若集合表示的是不等式的解集,则常依据数轴转化为不等式(组)求解,此
时需注意端点值能否取到.
对点训练2
5.理解两个集合的并集与交集的含义,能求两个集合的并集与交集.
6.理解在给定集合中一个子集的补集的含义,能求给定子集的补集.
7.能使用Venn图表达集合的基本关系与基本运算,体会图形对理解抽象概
念的作用.
备考指导
集合知识高考必考,一般为选择题第1题或第2题,偶尔也可能作为填空题第
1题,难度较小.常与不等式、函数、方程结合,主要考查集合的交、并、补

高中数学必修一 第一章集合

高中数学必修一 第一章集合

数学一轮复习——集合考纲导读(一)集合的含义与表示1.了解集合的含义、元素与集合的“属于”关系.2.能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题。

(二)集合间的基本关系1.理解集合之间包含与相等的含义,能识别给定集合的子集.2.在具体情境中,了解全集与空集的含义.(三)集合的基本运算1.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。

2.理解在给定集合中一个子集的补集的含义,会求给定子集的补集. 3.能使用韦恩图(Venn)表达集合的关系及运算。

第1课时 集合的概念【重点、难点】集合的含义与表示方法,用集合语言表达数学对象或数学内容;区别元素与集合等概念及其符号表示;用集合语言(描述法)表达数学对象或数学内容;子集、真子集的概念;元素与子集,属于与包含的关系;空集的概念及其理解. 【考点概述】1、了解集合的含义、元素与集合的“属于”关系;2、能用自然语言、图形语言、集合语言描述不同的具体问题;3、理解集合之间包含与相等的含义,能写出给定集合的子集. 【知识梳理】 1、元素与集合(1)集合中元素的三个特征: 、 、 . (2)集合中元素与集合的关系: 、 . (3)常见集合的符号表示:(集合常见的三种表示法: 、、 . 2、集合间的基本关系3(1) ∅ A ; 若A ≠∅,则∅ A .(2) 若集合A 有()n n N ∈个元素,则它的子集个数为 . (3) A B A A =⇔ B ; A B A A =⇔ B .(4) ()S A B =ð ;()S A B =ð . 【基础训练】1、已知集合2{2,2}A a a a =++,若3A ∈,则实数a = .2、设,a b R ∈,集合{1,,}{0,,}ba b a b a+=,则b a -= .3、已知集合{1,0}A =-,集合{0,1,2}B x =+,若A B ⊆,则实数x = .4、设集合1{|,},{|,}22n A x x n Z B x x n n Z ==∈==-∈,则A 与B 的关系是 .5、已知集合2{,,1},{,,0}b A a B a a b a==+,若A B =,则20092009ab += .6、设1{(,)|,},{(,)|1},{(,)|1}2y I x y x R y R M x y N x y y x x -=∈∈====--则 ()M N =I ð .【例题选讲】例题1、 (1) 若2{|}A x y x ==,{|}B x y x ==,则A B = . (2) 若2{|,}A y y x x R ==∈,{|,}B x y x x R ==∈,则A B = . (3) 若2{(,)|,}A x y y x x R ==∈,{(,)|,}B x y y x x R ==∈,则A B = .例题2、函数()f x=A,()lg[(1)(2)](1)g x x a a x a=---<的定义域为B.(1)求集合A;(2)若B A⊆,求实数a的取值范围.例题3、已知集合2=++=∈∈.A x ax x a R x R{|210,,}(1)若集合A中只有一个元素,求a的值;(2)若集合A中至多只有一个元素,求实数a的取值范围.例题4、 已知集合{|25},{|121},A x x B x m x m B A =-=+-⊆≤≤≤≤,求实数m 的取值范围.例题5、 已知关于x 的不等式250ax x a-<-的解集为M . (1)当4a =时,求集合M ; (2)若3M ∈且5M ∉,求实数a 的取值范围.【巩固练习】1、已知集合{1,3,},{3,4}A m B =-=,若B A ⊆,则实数m = .2、已知集合22{|20},{|320}A x x x a B x x x =-+=-+≤≤,若B A ⊆,则实数a 的取值范围是 .3、已知集合2{|210,}A x ax x x R =--=∈中至多只有一个元素,则实数a 的取值范围是 .4、已知集合2{|20,}A x x x x Z =+-∈≤,则集合A 中所有元素之和为 .5、集合**{|2,},{|3,}P x x n n N Q x x n n N ==∈==∈,则P Q 中的最小元素为 .6、记关于x 的不等式01x ax -<+的解集为P ,不等式11x -≤的解集为Q . (1)若3a =,求P ; (2)若Q P ⊆,求正实数a 的取值范围.【归纳小结】1.本节的重点是集合的基本概念和表示方法,对集合的认识,关键在于化简给定的集合,确定集合的元素,并真正认识集合中元素的属性,特别要注意代表元素的形式,不要将点集和数集混淆.2.利用相等集合的定义解题时,特别要注意集合中元素的互异性,对计算的结果要加以检验.3.注意空集φ的特殊性,在解题时,若未指明集合非空,则要考虑到集合为空集的可能性.4.要注意数学思想方法在解题中的运用,如化归与转化、分类讨论、数形结合的思想方法在解题中的应用.第2课时 集合的基本运算【重点、难点】补集的概念及其有关运算;并集、交集的概念及其符号之间的区别与联系. 【考点概述】1、在具体的情境中,了解全集与空集的含义;2、理解在给定集合中一个子集的补集的含义,会求给定子集的补集;3、理解两个集合的并集、交集的含义,会求两个简单集合的并集与交集;4、能使用文恩图(V enn)表达集合的关系及运算. 【知识梳理】集合间的基本运算和关系B ) 并集 B )【基础训练】1、已知集合{|1},{|1}A x x B x x =≠=≠-,A B = .2、已知全集{1,2,3,4,5,6},{1,3,5},{1,2}U A B ===,则()U A B =ð .3、设集合{|13,},{|0,}3xA x x x RB x x R x =-∈=∈+≥≥,则A B = . 4、若集合2{|3,},{|1,}x S y y x R T y y x x R ==∈==-∈,则S T = . 5、若集合2{|(1)37,}A x x x x R =-<+∈,则A Z 中有 个元素. 【例题选讲】例题1、 设集合22{|2320},{|20}A x x px B x x x q =++==++=,其中,,p q x R ∈,当1{}2A B =时,求p 的值和A B .例题2、 已知集合2{|2},{|540}A x x a B x x x =-=-+≤≥,若A B =∅,求实数a 的取值范围.变式训练:设集合A={}2|320,x x x -+=B {}22|2(1)(5)0.x x a x a =+++-= (1)若A B {}2,=求实数a 的值;(2)若A B=A ,求实数a 的取值范围; (3)若U=R ,A (U C B )=A.求实数a 的取值范围.例题3、 记()ln(31)f x x =--的定义域为A ,集合2{|(5)50}B x x a x a =-++<. (1)当1a =时,求A B ; (2)若A B A =,求实数a 的取值范围.变式训练.设集合A 为函数2ln(28)y x x =--+的定义域,集合B 为函数11y x x =++的值域,集合C 为不等式1()(4)0ax x a-+≤的解集.(1)求A B ;(2)若R C C A ⊆,求a 的取值范围.例题4、 已知集合222{|2310},{|(2)10}A x x x B x m x m x =++==+++=,若A B A =,求实数m 的取值范围.【巩固练习】1、已知全集U R =,集合{|23},{|1A x x B x x =-=<-≤≤或4}x >,那么()U A B ð等于 .2、已知集合2{|2},{|560}A x x B x x x =<=--<,则A B = .3、已知全集{1,2,3,4},{1,2},{2,3}U P Q ===则()U P Q =ð .4、已知全集1,{|1},{|0}2x U R M x x N x x +===-≥≥,则()U M N =ð .5、设全集1,{|1}U R A x x==<,则U A =ð . 6、已知集合26{|1,},{|20}1A x x RB x x x m x =∈=--<+≥. (1)当3m =时,求()R A B ð;(2)若{|14}A B x x =-<<,求实数m 的值.【归纳小结】1.在解决有关集合运算题目时,关键是准确理解题目中符号语言的含义,善于转化为文字语言.2.集合的运算可以用韦恩图帮助思考,实数集合的交、并运算可在数轴上表示,注意在运算中运用数形结合思想.3.对于给出集合是否为空集,集合中的元素个数是否确定,都是常见的讨论点,解题时要有分类讨论的意识.。

高考数学一轮复习 第一章 集合与常用逻辑用语 1.1 集合的概念及运算练习 文-人教版高三全册数学试

高考数学一轮复习 第一章 集合与常用逻辑用语 1.1 集合的概念及运算练习 文-人教版高三全册数学试

§1.1 集合的概念及运算考纲解读考点内容解读要求高考示例常考题型预测热度1.集合的含义与表示了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题Ⅰ2017课标全国Ⅰ,1;2017课标全国Ⅲ,1;2016某某,1选择题★★☆2.集合间的基本关系理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义Ⅱ2013某某,3 选择题★★☆3.集合间的基本运算理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算Ⅱ2017课标全国Ⅱ,1;2017,1;2016课标全国Ⅰ,1;2016课标全国Ⅱ,1;2016课标全国Ⅲ,1选择题★★★分析解读1.掌握集合的表示方法,能判断元素与集合的“属于”关系、集合与集合之间的包含关系.2.深刻理解、掌握集合的元素,子、交、并、补集的概念.熟练掌握集合的交、并、补的运算和性质.能用韦恩(Venn)图表示集合的关系及运算.3.本部分内容在高考试题中多以选择题或填空题的形式出现,以函数、不等式等知识为载体,以集合语言和符号语言表示为表现形式,考查数学思想方法.4.本节内容在高考中分值约为5分,属中低档题.命题探究五年高考考点一集合的含义与表示1.(2017课标全国Ⅲ,1,5分)已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为()A.1 B.2 C.3 D.4答案B2.(2016某某,1,5分)已知集合A={1,2,3},B={y|y=2x-1,x∈A},则A∩B=()A.{1,3} B.{1,2} C.{2,3} D.{1,2,3}答案A3.(2015课标Ⅰ,1,5分)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5 B.4 C.3 D.2答案DA.⌀B.{2} C.{0} D.{-2}答案B5.(2013某某,2,5分)若集合A={x∈R|ax2+ax+1=0}中只有一个元素,则a=()A.4 B.2C.0 D.0或4答案A教师用书专用(6—8)6.(2015某某,10,5分)已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A ⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A⊕B中元素的个数为()A.77 B.49 C.45 D.30答案C7.(2014某某,1,5分)已知集合A={x|(x+1)(x-2)≤0},集合B为整数集,则A∩B=()A.{-1,0} B.{0,1}C.{-2,-1,0,1} D.{-1,0,1,2}答案D8.(2013课标全国Ⅰ,1,5分)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,4} B.{2,3} C.{9,16} D.{1,2}答案A考点二集合间的基本关系(2013某某,3,5分)若集合A={1,2,3},B={1,3,4},则A∩B的子集个数为()A.2 B.3 C.4 D.16答案C考点三集合间的基本运算1.(2017课标全国Ⅱ,1,5分)设集合A={1,2,3},B={2,3,4},则A∪B=()A.{1,2,3,4} B.{1,2,3} C.{2,3,4} D.{1,3,4}答案A2.(2017,1,5分)已知全集U=R,集合A={x|x<-2或x>2},则∁U A=()A.(-2,2) B.(-∞,-2)∪(2,+∞)C.[-2,2] D.(-∞,-2]∪[2,+∞)答案CA.{2} B.{1,2,4}C.{1,2,4,6} D.{1,2,3,4,6}答案B4.(2017某某,1,5分)设集合M={x||x-1|<1},N={x|x<2},则M∩N=()A.(-1,1) B.(-1,2) C.(0,2) D.(1,2)答案C5.(2016课标全国Ⅰ,1,5分)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3} B.{3,5} C.{5,7} D.{1,7}答案B6.(2016课标全国Ⅱ,1,5分)已知集合A={1,2,3},B={x|x2<9},则A∩B=()A.{-2,-1,0,1,2,3} B.{-2,-1,0,1,2}C.{1,2,3} D.{1,2}答案D7.(2016课标全国Ⅲ,1,5分)设集合A={0,2,4,6,8,10},B={4,8},则∁A B=()A.{4,8} B.{0,2,6}C.{0,2,6,10} D.{0,2,4,6,8,10}答案C8.(2016,1,5分)已知集合A={x|2<x<4},B={x|x<3或x>5},则A∩B=()A.{x|2<x<5} B.{x|x<4或x>5}C.{x|2<x<3} D.{x|x<2或x>5}答案C9.(2016某某,1,5分)设集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则∁U(A∪B)=()A.{2,6} B.{3,6}C.{1,3,4,5} D.{1,2,4,6}答案A10.(2016某某,2,5分)设集合A={x|1≤x≤5},Z为整数集,则集合A∩Z中元素的个数是()A.6 B.5 C.4 D.3答案B11.(2015课标Ⅱ,1,5分)已知集合A={x|-1<x<2},B={x|0<x<3},则A∪B=()A.(-1,3) B.(-1,0) C.(0,2) D.(2,3)答案A12.(2015某某,1,5分)已知全集U={1,2,3,4,5,6},集合A={2,3,5},集合B={1,3,4,6},则集合A∩∁U B=()13.(2015某某,1,5分)已知集合A={x|2<x<4},B={x|(x-1)·(x-3)<0},则A∩B=()A.(1,3) B.(1,4) C.(2,3) D.(2,4)答案C14.(2014某某,1,5分)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}答案D15.(2013课标全国Ⅱ,1,5分)已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N=()A.{-2,-1,0,1} B.{-3,-2,-1,0}C.{-2,-1,0} D.{-3,-2,-1}答案C16.(2017某某,1,5分)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为____.答案1教师用书专用(17—40)17.(2016某某,1,5分)已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(∁U P)∪Q=()A.{1} B.{3,5}C.{1,2,4,6} D.{1,2,3,4,5}答案C18.(2015,1,5分)若集合A={x|-5<x<2},B={x|-3<x<3},则A∩B=()A.{x|-3<x<2} B.{x|-5<x<2}C.{x|-3<x<3} D.{x|-5<x<3}答案A19.(2015某某,1,5分)设集合M={x|x2=x},N={x|lg x≤0},则M∪N=()A.[0,1] B.(0,1] C.[0,1) D.(-∞,1]答案A20.(2015某某,1,5分)已知集合P={x|x2-2x≥3},Q={x|2<x<4},则P∩Q=()A.[3,4) B.(2,3] C.(-1,2) D.(-1,3]答案A21.(2015某某,2,5分)若集合M={x|-2≤x<2},N={0,1,2},则M∩N等于()22.(2014某某,1,5分)已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则∁U A=()A.{1,3,5,6} B.{2,3,7}C.{2,4,7} D.{2,5,7}答案C23.(2014某某,1,5分)若集合P={x|2≤x<4},Q={x|x≥3},则P∩Q等于()A.{x|3≤x<4}B.{x|3<x<4}C.{x|2≤x<3}D.{x|2≤x≤3}答案A24.(2014课标Ⅰ,1,5分)已知集合M={x|-1<x<3},N={x|-2<x<1},则M∩N=()A.(-2,1) B.(-1,1) C.(1,3) D.(-2,3)答案B25.(2014某某,2,5分)设集合A={x|x2-2x<0},B={x|1≤x≤4},则A∩B=()A.(0,2] B.(1,2) C.[1,2) D.(1,4)答案C26.(2014某某,1,5分)设集合S={x|x≥2},T={x|x≤5},则S∩T=()A.(-∞,5]B.[2,+∞)C.(2,5) D.[2,5]答案D27.(2014大纲全国,1,5分)设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N中元素的个数为()A.2 B.3 C.5 D.7答案B28.(2014某某,1,5分)设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1] B.(0,1)C.(0,1] D.[0,1)答案D29.(2013,1,5分)已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B=()A.{0} B.{-1,0} C.{0,1} D.{-1,0,1}答案B30.(2013某某,1,5分)设集合S={x|x>-2},T={x|-4≤x≤1},则S∩T=()A.[-4,+∞)B.(-2,+∞)31.(2013某某,2,5分)已知A={x|x+1>0},B={-2,-1,0,1},则(∁R A)∩B=()A.{-2,-1} B.{-2} C.{-1,0,1} D.{0,1}答案A32.(2013某某,1,5分)设集合S={x|x2+2x=0,x∈R},T={x|x2-2x=0,x∈R},则S∩T=()A.{0} B.{0,2} C.{-2,0} D.{-2,0,2}答案A33.(2013某某,1,5分)设集合A={1,2,3},集合B={-2,2},则A∩B=()A.⌀B.{2}C.{-2,2} D.{-2,1,2,3}答案B34.(2013某某,1,5分)已知集合A={0,1,2,3,4},B={x||x|<2},则A∩B=()A.{0} B.{0,1} C.{0,2} D.{0,1,2}答案B35.(2013某某,1,5分)已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(-∞,2]B.[1,2] C.[-2,2] D.[-2,1]答案D36.(2013某某,1,5分)设全集为R,函数f(x)=的定义域为M,则∁R M为()A.(-∞,1)B.(1,+∞)C.(-∞,1]D.[1,+∞)答案B37.(2013某某,1,5分)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4} B.{3,4} C.{3} D.{4}答案D38.(2015某某,11,5分)已知集合U={1,2,3,4},A={1,3},B={1,3,4},则A∪(∁U B)=______.答案{1,2,3}39.(2014某某,11,5分)已知集合A={3,4,5,12,13},B={2,3,5,8,13},则A∩B=_______.答案{3,5,13}40.(2013某某,10,5分)已知集合U={2,3,6,8},A={2,3},B={2,6,8},则(∁U A)∩B=__________.答案{6,8}三年模拟A组2016—2018年模拟·基础题组1.(2018某某师大附中11月模拟,1)已知集合A={(x,y)|x,y为实数,且y=x2},B={(x,y)|x,y为实数,且x+y=1},则A∩B的元素个数为()A.无数个B.3 C.2 D.1答案C2.(2017某某某某高中毕业班4月调研,2)已知集合A={1,3},B=,则A ∪B=()A.{1,3} B.{1,2,3} C.{1,3,4} D.{1,2,3,4}答案B3.(2016某某某某一模,1)集合U=R,A={x|x2-x-2<0},B={x|y=ln(1-x)},则图中阴影部分所表示的集合是()A.{x|x≥1}B.{x|1≤x<2}C.{x|0<x≤1}D.{x|x≤1}答案B考点二集合间的基本关系4.(2017某某某某一模,2)已知集合M={-1,0,1},N={x|x=ab,a,b∈M,且a≠b},则集合M与集合N的关系是()A.M=N B.M∩N=N C.M∪N=N D.M∩N=⌀答案B5.(2016某某某某二模,1)设集合M={-1,1},N={x|x2-x<6},则下列结论正确的是()A.N⊆M B.N∩M=⌀C.M⊆N D.M∩N=R答案C6.(2018某某某某调研,13)设集合A={1,},B={a},若B⊆A,则实数a的值为______.答案07.(2017某某八市联考,13)已知A={x|x2-3x+2<0},B={x|1<x<a},若A⊆B,则实数a的取值X围是_____.答案[2,+∞)考点三集合间的基本运算8.(2018某某重点中学11月质检,1)已知集合A={x|3x>3},B={x|3x2-2x-5<0},则A∩B=()A.B.(-1,1) C.(-1,+∞)D.9.(2018某某重点中学期中联考,1)已知集合A=,B={x|(x+2)(x-1)>0},则A∩B等于()A.(0,2) B.(1,2)C.(-2,2) D.(-∞,-2)∪(0,+∞)答案B10.(2018某某某某一模,1)若集合A={x|1≤x≤5},B={x|log2x<2},则A∪B等于()A.(-1,5] B.(0,5] C.[1,4) D.[-1,4)答案B11.(2017某某百校联盟4月质检,1)已知集合A={x|2x2-7x+3<0},B={x∈Z|lg x<1},则阴影部分所表示的集合的元素个数为()A.1 B.2 C.3 D.4答案B12.(2017某某某某三模,1)已知全集U=R,集合M={x||x|<1},N={y|y=2x,x∈R},则集合∁U(M∪N)等于()A.(-∞,-1] B.(-1,2)C.(-∞,-1]∪[2,+∞)D.[2,+∞)答案A13.(2017某某襄阳五中模拟,1)设集合U={1,2,3,4},集合A={x∈N|x2-5x+4<0},则∁U A等于()A.{1,2} B.{1,4} C.{2,4} D.{1,3,4}答案B14.(2016中原名校四月联考,1)设全集U=R,集合A={x|0≤x≤2},B={y|1≤y≤3},则(∁U A)∪B=()A.(2,3] B.(-∞,1]∪(2,+∞)C.[1,2) D.(-∞,0)∪[1,+∞)答案DB组2016—2018年模拟·提升题组(满分:55分时间:40分钟)一、选择题(每小题5分,共35分)1.(2018某某南开中学月考,1)已知全集U={0,1,2,3,4,5},集合A={1,2,3,5},B={2,4},则(∁U A)∪B=()A.{1,2,4} B.{4} C.{0,2,4} D.{0,2,3,4}2.(2018某某浏阳三校联考,1)设A={x|y=},B={y|y=ln(1+x)},则A∩B=()A.{x|x>-1} B.{x|x≤1}C.{x|-1<x≤1}D.⌀答案B3.(2018某某某某重点高中联考,2)已知集合M=,N=,则M∩N=()A.⌀B.{(3,0),(0,2)}C.[-2,2] D.[-3,3]答案D4.(2018某某五校协作体9月联考,2)已知集合P={x|x2-2x-8>0},Q={x|x≥a},P∪Q=R,则a的取值X围是()A.(-2,+∞)B.(4,+∞)C.(-∞,-2] D.(-∞,4]答案C5.(2017某某某某、某某等六市一模,1)已知集合A={(x,y)|y-=0},B={(x,y)|x2+y2=1},C=A∩B,则C的子集的个数是()A.0 B.1 C.2 D.4答案C6.(2017某某某某第二次模拟,2)已知全集U=R,集合M={x|x+2a≥0},N={x|log2(x-1)<1},若集合M∩(∁U N)={x|x=1或x≥3},那么a的取值为()A.a=B.a≤C.a=-D.a≥答案C7.(2016某某某某瑞安八校联考,1)已知集合A={x|ax=1},B={0,1},若A⊆B,则由a的取值构成的集合为()A.{1} B.{0} C.{0,1} D.⌀答案C二、解答题(每小题10分,共20分)8.(2018某某某某四校联考,17)已知三个集合:A={x∈R|log2(x2-5x+8)=1},B={x∈R|=1},C={x∈R|x2-ax+a2-19>0}.(2)已知A∩C≠⌀,B∩C=⌀,某某数a的取值X围.解析(1)∵A={x∈R|log2(x2-5x+8)=1}={x∈R|x2-5x+8=2}={2,3},(2分)B={x∈R|=1}={x∈R|x2+2x-8=0}={2,-4},(4分)∴A∪B={2,3,-4}.(5分)(2)∵A∩C≠⌀,B∩C=⌀,∴2∉C,-4∉C,3∈C.(6分)∵C={x∈R|x2-ax+a2-19>0},∴(7分)即,解得-3≤a<-2.(9分)所以实数a的取值X围是[-3,-2).(10分)9.(2017某某某某、某某联考,18)已知函数f(x)=的定义域为A,函数g(x)=(-1≤x≤0)的值域为B.(1)求A∩B;(2)若C=[a,2a-1],且C∪B=B,某某数a的取值X围.解析(1)要使函数f(x)=有意义,需log2(x-1)≥0,解得x≥2,∴A=[2,+∞).对于函数g(x)=,∵-1≤x≤0,∴1≤g(x)≤2,∴B=[1,2],∴A∩B={2}.(2)∵C∪B=B,∴C⊆B.当2a-1<a,即a<1时,C=⌀,满足条件.当2a-1≥a,即a≥1时,要使C⊆B,则解得1≤a≤.综上可得,a∈.C组2016—2018年模拟·方法题组方法1利用数轴和韦恩(Venn)图解决集合问题的方法1.(2018某某某某一中11月模拟,2)已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1},且B≠⌀,若A∪B=A,则()A.-3≤m≤4B.-3<m<4 C.2<m<4 D.2<m≤4答案D2.(2017豫北名校联考,1)已知全集U={1,2,3,4,5,6,7},M={3,4,5},N={1,3,6},则集合{2,7}=()A.M∩N B.(∁U M)∩(∁U N)C.(∁U M)∪(∁U N) D.M∪N答案B3.(2016某某蓟县期中,1)函数y=的定义域为集合A,函数y=ln(2x+1)的定义域为集合B,则A∩B=()A.B.C.D.答案A方法2解决与集合有关的新定义问题的方法4.(2018某某某某三校联考,4)已知集合M={1,2,3,4},集合A,B为集合M的非空子集,若∀x∈A,y∈B,x<y恒成立,则称(A,B)为集合M的一个“子集对”,则集合M的“子集对”共有个__________.答案175.(2016某某中原名校3月联考,14)当两个集合中一个集合为另一集合的子集时,称这两个集合构成“全食”,当两个集合有公共元素,但互不为对方子集时,称这两个集合构成“偏食”.对于集合A=,B={x|ax2=1,a≥0},若A与B构成“全食”或构成“偏食”,则a的取值集合为___________.答案{0,1,4}。

备考2024年新高考数学一轮复习专题1-1 集合含详解

备考2024年新高考数学一轮复习专题1-1 集合含详解

专题1.1集合题型一利用集合元素的特征解决元素与集合的问题题型二集合与集合之间的关系题型三集合间的基本运算题型四集合间的交并补混合运算题型五Venn 图题型六集合的含参运算题型一利用集合元素的特征解决元素与集合的问题例1.(2022秋·湖南永州·高三校考阶段练习)若{}2122a a a ∈-+,,则实数a 的值为______.例2.(2022·上海·高一统考学业考试)“notebooks”中的字母构成一个集合,该集合中的元素个数是______________练习1.(2022秋·贵州·高三统考期中)若{}{},,101a a a =,则=a __________.练习2.(2022秋·天津南开·高三南开中学校考期中)已知集合{}1,2,3,4,5,6A =,(){},,,B x y x A y A xy A =∈∈∈,则集合B 中的元素个数为________.练习3.(2022秋·北京海淀·高三校考期中)设集合{},A x y =,{}20,B x=,若A B =,则2x y +=______.练习4.(2021秋·湖北·高三校联考阶段练习)已知集合2{,1,}A a b =,2{,,0}B a b =,若{1}A B ⋂=,则=a __________.练习5.(2023·全国·高三专题练习)含有3个实数的集合既可表示成,,1ba a⎧⎫⎨⎬⎩⎭,又可表示成{}2,,0a a b +,则20222022a b +=_____.题型二集合与集合之间的关系例3.(2023·河南开封·统考三模)已知集合{}1,0,1A =-,{},,B x x ab a b A ==∈,则集合B 的真子集个数是()A .3B .4C .7D .8例4.(2021秋·高三课时练习)下列各式:①{}10,1,2⊆,②{}{}10,1,2∈,③{}{}0,1,20,1,2⊆,④{}0,1,2∅⊆,⑤{}{}2,1,00,1,2=,其中错误的个数是()A .1B .2C .3D .4练习6.(2023春·吉林长春·高二长春市第十七中学校考阶段练习)已知集合{}|15A x x =-<<,{}Z 18B x x =∈<<.(1)求R Að(2)求A B ⋂的子集个数练习7.(2023春·江西南昌·高三校考阶段练习)已知集合{A =第一象限的角},{B =锐角},{C =小于90°的角},给出下列四个命题;①A B C ==;②A C ⊆;③C A ⊆;④A C B ⊆=.其中正确的命题有()A .0个B .1个C .2个D .3个练习8.(2023·全国·高三专题练习)已知集合(){}22,|4A x y x y =+=,(){}|,0B x y x y =+=,则A ∩B 的子集个数()A .1B .2C .3D .4练习9.(2022秋·高三课时练习)设集合{|M x x A =∈,且}x B ∉,若{1,3,5,6,7}A =,{2,3,5}B =,则集合M 的非空真子集的个数为()A .4B .6C .7D .15练习10.(2021秋·高一课时练习)(多选)下列说法正确的是()A .空集没有子集B .{}{}21,2|320x x x ⊆-+=C .{}{}2|,R |,Ry y x x y y x x =∈⊆=∈D .非空集合都有真子集题型三集合间的基本运算例5.(2023·四川·四川省金堂中学校校联考三模)若集合{}10,lg 01x A x B x x x +⎧⎫=≤=≤⎨⎬-⎩⎭∣∣,则A B = ()A .[)1,1-B .(]0,1C .[)0,1D .()0,1例6.(2023·山东菏泽·统考二模)已知全集{}|0U x x =≥,集合(){}|20A x x x =-≤,则U A =ð()A .(2,)+∞B .[2,)+∞C .()(),02,-∞⋃+∞D .(,0][2,)-∞⋃+∞练习11.(2023·全国·模拟预测)已知集合{}215A x x =∈-<N ,{}320B x x =-≥,则A B = ()A .{}0,1,2,3B .{}1,2,3C .{}1,2D .{}2,3练习12.(江西省赣抚吉十一校联盟体2023届高三下学期4月联考数学(理)试卷)已知集合{2},{73}M x N x x =<=-<<∣∣,则M N ⋂=()A .{3}xx <∣B .{03}xx ≤<∣C .{73}xx -<<∣D .{74}xx -<<∣练习13.(2023·黑龙江齐齐哈尔·统考二模)设集合{}12A x x =-<,[]{}2,0,2xB y y x ==∈,则()A .()1,3AB ⋂=B .[)1,4A B =C .(]1,4A B =-D .(]1,3A B ⋃=-练习14.(2023·内蒙古呼和浩特·统考二模)已知全集{|33}U x x =-<<,集合{}2|20A x x x =+-<,则U A =ð()A .(2,1]-B .(3,2][1,3)--⋃C .[2,1)-D .(3,1)(1,3)-- 练习15.(2023·北京·人大附中校考模拟预测)已知集合(){}lg 2M x y x ==-,{}e 1x N y y ==+,则M N ⋃=()A .(),-∞+∞B .()1,+∞C .[)1,2D .()2,+∞题型四集合间的交并补混合运算例7.(四川省遂宁市2023届高三三诊考试数学(理)试卷)已知集合{}|12M x x =-≥,{}1,0,1,2,3N -=,则()RM N ⋂=ð()A .{}0,1,2B .{}1,2C .{}1,0,1,2-D .{}2,3例8.(山东省淄博市部分学校2023届高一下学期4月阶段性诊断考试数学试卷)已知集合{}21,{ln 1}x A x B x x =>=>∣∣,则下列集合为空集的是()A .()R A B ðB .()A BR ðC .A B⋂D .()()A B R RI痧练习16.(天津市部分区2023届高三二模数学试卷)设全集{}1,2,3,4,5,6U =,集合{}{}1,3,5,2,3,4A B ==,则()UB A ⋂=ð()A .{}3B .{}2,4C .{}2,3,4D .{}0,1,3练习17.(2023·江苏连云港·统考模拟预测)已知全集{}N |07U A B x x =⋃=∈≤≤,(){}1,3,5,7U A B = ð,则集合B =()A .{}0,2,4,6B .{}2,4,6C .{}0,2,4D .{}2,4练习18.(2023·河南·校联考模拟预测)已知全集{1,2,3,4,5}U =,集合{}2320M xx x =-+=∣,{}2Z 650N x x x =∈-+<∣,则集合()U M N ð中的子集个数为()A .1B .2C .16D .无数个练习19.(2023·福建·统考模拟预测)已知全集*2{N ,80}I x x x =∈|<,{1,3,4,7}A =,{4,5,6,7}B =,则()I A B ⋃=ð()A .{2,5,6}B .{1,2,3,8}C .{2,8}D .{1,3,4,5,6,7}练习20.(2023·广东·统考模拟预测)集合{}2xA y y ==,(){}2log 32B x y x ==-,则()R B A ⋂=ð()A .2,3⎛⎫+∞ ⎪⎝⎭B .20,3⎡⎤⎢⎥⎣⎦C .20,3⎛⎤ ⎥⎝⎦D .2,3⎛⎤-∞ ⎥⎝⎦题型五Venn 图例9.(2023·山东潍坊·统考二模)已知集合{}|10M x x =+≥,{}|21xN x =<,则下列Venn 图中阴影部分可以表示集合{}|10x x -≤<的是()A .B .C .D .例10.(2022秋·广东·高三统考阶段练习)已知全集U ,集合A 和集合B 都是U 的非空子集,且满足A B B ⋃=,则下列集合中表示空集的是()A .()U A B⋂ðB .A B⋂C .()()U UA B ⋂痧D .()U A B ∩ð练习21.(2023春·广东惠州·高三校考阶段练习)集合{}{}0,1,2,4,8,0,1,2,3A B ==,将集合,A B 分别用如下图中的两个圆表示,则圆中阴影部分表示的集合中元素个数恰好为2的是()A .B .C .D .练习22.(2023春·湖南·高二临澧县第一中学校联考期中)已知全集U =R ,集合{}02A x x =∈<≤Z ,{}1,0,1,2,3B =-,则图中阴影部分表示的集合为()A .{}2,0-B .{}2,3-C .{}2,0,2-D .{}2,0,3-练习23.(2022秋·高三单元测试)(多选)如图,U 为全集,M P S 、、是U 的三个子集,则阴影部分所表示的集合是()A .()U P S M ⎡⎤⋂⋂⎣⎦ðB .()M P SC .()U M P S⋂⋂ðD .()U M P S⋂⋃ð练习24.(2023·云南昆明·高三昆明一中校考阶段练习)某班一个课外调查小组调查了该班同学对物理和历史两门学科的兴趣爱好情况,其中该班同学对物理或历史感兴趣的同学占90%,对物理感兴趣的占56%,对历史感兴趣的占74%,则既对物理感兴趣又对历史感兴趣的同学占该班学生总数的比练习是()A .70%B .56%C .40%D .30%练习25.(2023春·湖南·高三校联考期中)设集合1Z 32A x x ⎧⎫=∈-<<⎨⎬⎩⎭,{}1,0,1,2B =-,能正确表示图中阴影部分的集合是()A .{}1,0,1-B .{}1,2C .{}0,1,2D .{}2题型六集合的含参运算例11.(广东省汕头市2023届高三二模数学试卷)已知集合{}21,3,A a =,{1,2}B a =+,且A B A ⋃=,则a 的取值集合为()A .{}1-B .{2}C .{1,2}-D .{1,1,2}-例12.(2020秋·安徽芜湖·高三校考阶段练习)若集合{}2|60A x x x =+-=,{|10}B x mx =+=,且BA ,求实数m 的值.练习26.(2022秋·山东菏泽·高三校联考期中)已知集合{}23A x a x a =≤≤+,{|1B x x =<-或5}x >.(1)若1a =-,求A B ⋃R ð;(2)若A B ⋂=∅,求a 的取值范围.练习27.(2023·河南开封·开封高中校考模拟预测)设集合{2A x x =<∣或{}4},1x B x a x a ≥=≤≤+∣,若()A B =∅R ð,则a 的取值范围是()A .1a ≤或4a >B .1a <或4a ≥C .1a <D .4a >练习28.(2023·全国·模拟预测)设集合{(1)(3)0}A xx x =+-≤∣,{}5B x a x a =-<<,若A B ⊆,则实数a 的取值范围是()A .[]3,4B .(3,4)C .(,4]-∞D .[3,)+∞练习29.(2023·全国·高三专题练习)设全集U =R ,{}|325M x a x a =<<+,{}|21P x x =-≤≤.(1)若0a =,求()UM P ⋂ð.(2)若U M P ⊆ð,求实数a 的取值范围.练习30.(2023·全国·高三专题练习)已知{}23A x x =-≤≤,{}23B x a x a =-<<,全集U =R (1)若2a =,求()U A B ∩ð;(2)若A B ⊇,求实数a 的取值范围.专题1.1集合题型一利用集合元素的特征解决元素与集合的问题题型二集合与集合之间的关系题型三集合间的基本运算题型四集合间的交并补混合运算题型五Venn 图题型六集合的含参运算题型一利用集合元素的特征解决元素与集合的问题例1.(2022秋·湖南永州·高三校考阶段练习)若{}2122a a a ∈-+,,则实数a 的值为______.【答案】2【分析】分1a =,222a a a =-+分别求解,再根据元素的互异性即可得答案.【详解】解:当1a =时,则2221a a -+=不满足元素的互异性,故1a ≠;所以222a a a -+=,解得:1a =(舍)或2a =,故实数a 的值为2.故答案为:2.例2.(2022·上海·高一统考学业考试)“notebooks”中的字母构成一个集合,该集合中的元素个数是______________【答案】7【分析】根据集合中元素的互异性知集合中不能出现相同的元素.【详解】根据集合中元素的互异性,“notebooks”中的不同字母为“n ,o ,t ,e ,b ,k ,s”,共7个,故该集合中的元素个数是7;故答案为:7.练习1.(2022秋·贵州·高三统考期中)若{}{},,101a a a =,则=a __________.【答案】101-.【分析】由集合相等和元素互异性,进行求解.【详解】由题意得101,101,a a ≠⎧⎨=⎩所以101a =-.故答案为:-101.练习2.(2022秋·天津南开·高三南开中学校考期中)已知集合{}1,2,3,4,5,6A =,(){},,,B x y x A y A xy A =∈∈∈,则集合B 中的元素个数为________.【答案】14【分析】根据元素特征,采用列举法表示出集合B ,由此可得元素个数.【详解】由题意得:()()()()()()()()()(){()1,1,1,2,1,3,1,4,1,5,1,6,2,1,2,2,2,3,3,1,3,2,B =()()()}4,1,5,1,6,1,B ∴中元素个数为14.故答案为:14.练习3.(2022秋·北京海淀·高三校考期中)设集合{},A x y =,{}20,B x =,若A B =,则2x y +=______.【答案】2【分析】根据集合相等可得出关于x 、y 的方程组,解出这两个未知数的值,即可得解.【详解】由集合元素的互异性可知20x ≠,则0x ≠,因为A B =,则200x x y x ⎧=⎪=⎨⎪≠⎩,解得10x y =⎧⎨=⎩,因此,22x y +=.故答案为:2.练习4.(2021秋·湖北·高三校联考阶段练习)已知集合2{,1,}A a b =,2{,,0}B a b =,若{1}A B ⋂=,则=a __________.【答案】1-【分析】根据集合相等及集合中元素的互异性求解即可.【详解】由集合2{,1,}A a b =,2{,,0}B a b =,若{1}A B ⋂=,则集合B 中21a =或1b =,若21a =,则1a =-或1(a =舍去),此时1b ≠±且0b ≠;若1b =,则集合A 中21b =,不符合集合中元素的互异性,不成立,综上, 1.a =-故答案为:1-练习5.(2023·全国·高三专题练习)含有3个实数的集合既可表示成,,1ba a⎧⎫⎨⎬⎩⎭,又可表示成{}2,,0a a b +,则20222022a b +=_____.【答案】1【分析】根据集合相等,则元素完全相同,分析参数,列出等式,即可求得结果.【详解】因为{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,显然0a ≠,故0ba=,则0b =;此时两集合分别是{}{}2,1,0,,,0a a a ,则21a =,解得1a =或1-.当1a =时,不满足互异性,故舍去;当1a =-时,满足题意.所以2022202220222022(1)01a b +=-+=故答案为:1.题型二集合与集合之间的关系例3.(2023·河南开封·统考三模)已知集合{}1,0,1A =-,{},,B x x ab a b A ==∈,则集合B 的真子集个数是()A .3B .4C .7D .8【答案】C【分析】根据题意得到集合B ,然后根据集合B 中元素的个数求集合B 的真子集个数即可.【详解】由题意得{}1,0,1B =-,所以集合B 的真子集个数为3217-=.故选:C.例4.(2021秋·高三课时练习)下列各式:①{}10,1,2⊆,②{}{}10,1,2∈,③{}{}0,1,20,1,2⊆,④{}0,1,2∅⊆,⑤{}{}2,1,00,1,2=,其中错误的个数是()A .1B .2C .3D .4【答案】B【分析】由元素与集合的关系,集合与集合的关系考查所给式子是否正确即可.【详解】由元素与集合的关系可知{}10,1,2∈,故①错误;由集合与集合的关系可知{}{}10,1,2⊆,故②错误;任何集合都是自身的子集,故③正确;空集是任何非空集合的子集,故④正确;集合中的元素具有互异性和无序性,故⑤正确;综上可得,只有①②错误.故选B .练习6.(2023春·吉林长春·高二长春市第十七中学校考阶段练习)已知集合{}|15A x x =-<<,{}Z 18B x x =∈<<.(1)求R Að(2)求A B ⋂的子集个数【答案】(1){R 5A x x =≥ð或}1x ≤-(2)8【分析】(1)根据补集的定义即可得解;(2)根据交集的定义求出A B ⋂,再根据子集的定义即可得解.【详解】(1)因为{}|15A x x =-<<,所以{R 5A x x =≥ð或}1x ≤-;(2){}{}Z 182,3,4,5,6,7B x x =∈<<=,所以{}2,3,4A B = ,所以A B ⋂的子集个数有328=个.练习7.(2023春·江西南昌·高三校考阶段练习)已知集合{A =第一象限的角},{B =锐角},{C =小于90°的角},给出下列四个命题;①A B C ==;②A C ⊆;③C A ⊆;④A C B ⊆=.其中正确的命题有()A .0个B .1个C .2个D .3个【答案】A【分析】根据任意角的定义和集合的基本关系求解.【详解】A ={第一象限角},只需要终边落在第一象限的都是属于第一象限角.B ={锐角},是指大于0 而小于90 的角.C ={小于90 的角},小于90 的角包括锐角,零角和负角.根据集合的含义和基本运算判断:①A B C ==,①错误;②A C ⊆,比如,361A ∈ ,但361C ∉ ,②错误;③C A ⊆,比如0C ∈ ,但0A ∉ ,③错误;④A C B ⊆=,④错误;∴正确命题个数为0个.故选:A .练习8.(2023·全国·高三专题练习)已知集合(){}22,|4A x y x y =+=,(){}|,0B x y x y =+=,则A ∩B 的子集个数()A .1B .2C .3D .4【答案】D【分析】根据集合A 与集合B 中方程的几何意义,利用直线过圆心判断直线与圆的位置关系,确定交集中元素的个数,进而求解.【详解】集合(){}22,|4A x y x y =+=表示以(0,0)为圆心,2为半径的圆上的所有点,集合(){}|,0B x y x y =+=表示直线0x y +=上的所有点,因为直线0x y +=经过圆心(0,0),所以直线与圆相交,所以A B ⋂的元素个数有2个,则A B ⋂的子集个数为4个,故选:D .练习9.(2022秋·高三课时练习)设集合{|M x x A =∈,且}x B ∉,若{1,3,5,6,7}A =,{2,3,5}B =,则集合M 的非空真子集的个数为()A .4B .6C .7D .15【答案】B【分析】求得集合M ,即可求得结果.【详解】根据题意知,集合{M xx A =∈∣且}{1,6,7}x B ∉=,其非空真子集的个数为3226-=.故选:B练习10.(2021秋·高一课时练习)(多选)下列说法正确的是()A .空集没有子集B .{}{}21,2|320x x x ⊆-+=C .{}{}2|,R |,Ry y x x y y x x =∈⊆=∈D .非空集合都有真子集【答案】BD【分析】根据空集是任何集合的子集,是任何非空集合的真子集,可判断出选项AD 的正误;选项B ,通过解方程,可求出集合{}2|320x x x -+=中的元素,从而判断出选项B 正确;选项C ,通过求出两集合的元素满足的条件,从而判断出集合{}|,R y y x x =∈与{}2|,R y y x x =∈间的关系,从而判断出选项C 错误.【详解】对于选项A ,因为空集是任何集合的子集,所以空集也是它自身的子集,所以选项A 错误;对于选项B ,由2320x x -+=,得到1x =或2x =,所以{}{}2|3201,2x x x -+==,所以选项B 正确;对于选项C ,因为{}|,R R y y x x =∈=,{}{}2|,R |0y y x x y y =∈=≥,所以{}{}2|,R |,R y y x x y y x x =∈⊆=∈,所以选项C 错误;对于选项D ,因为空集是任何非空集合的真子集,所以选项D 正确.故选:BD题型三集合间的基本运算例5.(2023·四川·四川省金堂中学校校联考三模)若集合{}10,lg 01x A xB x x x +⎧⎫=≤=≤⎨⎬-⎩⎭∣∣,则A B = ()A .[)1,1-B .(]0,1C .[)0,1D .()0,1【答案】D【分析】先化简集合A ,B ,再利用交集运算求解.【详解】解:由题意得{11},{01}A xx B x x =-≤<=<≤∣∣,()0,1A B ∴= ,故选:D.例6.(2023·山东菏泽·统考二模)已知全集{}|0U x x =≥,集合(){}|20A x x x =-≤,则U A =ð()A .(2,)+∞B .[2,)+∞C .()(),02,-∞⋃+∞D .(,0][2,)-∞⋃+∞【答案】A【分析】解一元二次不等式化简集合A ,再利用补集的定义求解作答.【详解】集合(){}|20[0,2]A x x x =-≤=,而全集[0,)U =+∞,所以(2,)U A =+∞ð.故选:A练习11.(2023·全国·模拟预测)已知集合{}215A x x =∈-<N ,{}320B x x =-≥,则A B = ()A .{}0,1,2,3B .{}1,2,3C .{}1,2D .{}2,3【答案】C【分析】根据交集的定义求解即可.【详解】由条件可知,{}{}30,1,2A x x =∈<=N ,{}23203B x x x x ⎧⎫=-≥=≥⎨⎬⎩⎭,所以{1,2}A B = .故选:C.练习12.(江西省赣抚吉十一校联盟体2023届高三下学期4月联考数学(理)试卷)已知集合{2},{73}M x x N x x =<=-<<∣∣,则M N ⋂=()A .{3}xx <∣B .{03}xx ≤<∣C .{73}xx -<<∣D .{74}xx -<<∣【答案】B【分析】根据集合交集运算可得.【详解】因为{2}{04},{73}M x x x x N x x =<=≤<=-<<∣∣∣所以{|03}M N x x ⋂=≤<.故选:B练习13.(2023·黑龙江齐齐哈尔·统考二模)设集合{}12A x x =-<,[]{}2,0,2xB y y x ==∈,则()A .()1,3AB ⋂=B .[)1,4A B =C .(]1,4A B =-D .(]1,3A B ⋃=-【答案】C【分析】先解绝对值不等式得出集合,再根据交集并集概念计算求解即可.【详解】因为{}{}1213A x x x x =-<=-<<,[]{}{}2,0,214xB y y x y y ==∈=≤≤,所以[)1,3A B ⋂=,(]1,4A B =- .故选:C.练习14.(2023·内蒙古呼和浩特·统考二模)已知全集{|33}U x x =-<<,集合{}2|20A x x x =+-<,则U A =ð()A .(2,1]-B .(3,2][1,3)--⋃C .[2,1)-D .(3,1)(1,3)-- 【答案】B【分析】计算{}21A x x =-<<,再计算补集得到答案.【详解】{}{}2|2021A x x x x x =+-<=-<<,则(3,2][1,3)U A =--⋃ð.故选:B练习15.(2023·北京·人大附中校考模拟预测)已知集合(){}lg 2M x y x ==-,{}e 1x N y y ==+,则M N ⋃=()A .(),-∞+∞B .()1,+∞C .[)1,2D .()2,+∞【答案】B【分析】根据给定条件,求出函数的定义域、值域,再利用并集的定义求解作答.【详解】集合(){}{}{}lg 2202M x y x x x x x ==-=-=,即(2,)M =+∞,e 11x +>,则(1,)N =+∞,所以()1,M N =+∞U .故选:B题型四集合间的交并补混合运算例7.(四川省遂宁市2023届高三三诊考试数学(理)试卷)已知集合{}|12M x x =-≥,{}1,0,1,2,3N -=,则()RM N ⋂=ð()A .{}0,1,2B .{}1,2C .{}1,0,1,2-D .{}2,3【答案】A【分析】解出集合{|1M x x =≤-或}3x ≥,再根据补集和交集的含义即可得到答案.【详解】12x -≥,解得3x ≥或1x ≤-,则{|1M x x =≤-或}3x ≥,则()R 1,3M =-ð,故(){}R 0,1,2M N ⋂=ð,故选:A.例8.(山东省淄博市部分学校2023届高一下学期4月阶段性诊断考试数学试卷)已知集合{}21,{ln 1}x A x B x x =>=>∣∣,则下列集合为空集的是()A .()R AB ðB .()A BR ðC .A B⋂D .()()A B R RI痧【答案】B【分析】根据指数函数和对数函数的单调性分别求出集合,A B ,然后利用集合的运算逐项进行判断即可求解.【详解】集合{|21}{|0}x A x x x ==>>,集合{|ln 1}{|e}B x x x x =>=>,所以R {|0}A x x =≤ð,R {|e}B x x =≤ð,对于A ,()R {|0e}A B x x =<≤ ð,故选项A 不满足题意;对于B ,()A B =∅R I ð,故选项B 满足题意;对于C ,={|e}A B x x > ,故选项C 不满足题意;对于D ,()(){|0}A B x x =≤R R 痧,故选项D 不满足题意,故选:B .练习16.(天津市部分区2023届高三二模数学试卷)设全集{}1,2,3,4,5,6U =,集合{}{}1,3,5,2,3,4A B ==,则()UB A ⋂=ð()A .{}3B .{}2,4C .{}2,3,4D .{}0,1,3【答案】B【分析】由集合的运算求解.【详解】(){}{}{}2,4,62,42,3,4U A B ⋂==⋂ð.故选:B练习17.(2023·江苏连云港·统考模拟预测)已知全集{}N |07U A B x x =⋃=∈≤≤,(){}1,3,5,7U A B = ð,则集合B =()A .{}0,2,4,6B .{}2,4,6C .{}0,2,4D .{}2,4【答案】A【分析】由{}N |07U A B x x =⋃=∈≤≤可知集合U 中的元素,再由(){}1,3,5,7U A B = ð即可求得集合B .【详解】由(){}1,3,5,7U A B = ð知,{}{}1,3,5,71,3,5,,7U B A ⊆⊆ð又因为{}{}7017N 2356|04U A B x x =⋃=∈≤≤=,,,,,,,,所以B ={}0,2,4,6.故选:A.练习18.(2023·河南·校联考模拟预测)已知全集{1,2,3,4,5}U =,集合{}2320M xx x =-+=∣,{}2Z 650N x x x =∈-+<∣,则集合()U M N ð中的子集个数为()A .1B .2C .16D .无数个【答案】B【分析】首先求集合,M N ,再求集合的运算.【详解】先求{}1,2M =,{Z 1}5}2,4|,{3N x x =∈<<=,所以{}1,2,3,4M N =U ,则(){}5U M N = ð,所以子集的个数为122=.故选:B练习19.(2023·福建·统考模拟预测)已知全集*2{N ,80}I x x x =∈|<,{1,3,4,7}A =,{4,5,6,7}B =,则()I A B ⋃=ð()A .{2,5,6}B .{1,2,3,8}C .{2,8}D .{1,3,4,5,6,7}【答案】C【分析】利用集合的交并补运算即可求解.【详解】{1,2,3,4,5,6,7,8}I =,{1,3,4,5,6,7}A B = ,故(){}2,8I A B ⋃=ð.故选:C .练习20.(2023·广东·统考模拟预测)集合{}2x A y y ==,(){}2log 32B x y x ==-,则()R B A ⋂=ð()A .2,3⎛⎫+∞ ⎪⎝⎭B .20,3⎡⎤⎢⎥⎣⎦C .20,3⎛⎤ ⎥⎝⎦D .2,3⎛⎤-∞ ⎥⎝⎦【答案】C【分析】求出集合A 、B ,利用补集和交集的定义可求得集合()B A R ð.【详解】因为{}{}20xA y y y y ===>,(){}{}22log 323203B x y x x x x x ⎧⎫==-=->=>⎨⎬⎩⎭,则23B x x ⎧⎫=≤⎨⎬⎩⎭R ð,因此,()R 20,3B A ⎛⎤= ⎥⎝⎦ð.故选:C.题型五Venn 图例9.(2023·山东潍坊·统考二模)已知集合{}|10M x x =+≥,{}|21xN x =<,则下列Venn 图中阴影部分可以表示集合{}|10x x -≤<的是()A .B .C .D .【答案】A【分析】化简集合M ,N ,根据集合的运算判断{}|10x x -≤<为两集合交集即可得解.【详解】{}|10[1,)M x x =+≥=-+∞ ,{}|21(,0)xN x =<=-∞,{}|10M N x x ∴-=≤< ,由Venn 图知,A 符合要求.故选:A例10.(2022秋·广东·高三统考阶段练习)已知全集U ,集合A 和集合B 都是U 的非空子集,且满足A B B ⋃=,则下列集合中表示空集的是()A .()U AB ⋂ðB .A B⋂C .()()U UA B ⋂痧D .()U A B ∩ð【答案】D【分析】利用Venn 图表示集合,,U A B ,结合图像即可找出表示空集的选项.【详解】由Venn 图表示集合,,U A B 如下:,由图可得()U BA B A = 痧,A B A = ,()()U U UA B B ⋂=痧,()U A B =∅ ð,故选:D练习21.(2023春·广东惠州·高三校考阶段练习)集合{}{}0,1,2,4,8,0,1,2,3A B ==,将集合,A B 分别用如下图中的两个圆表示,则圆中阴影部分表示的集合中元素个数恰好为2的是()A .B .C .D .【答案】B【分析】利用图象求得正确答案.【详解】{}0,1,2A B = ,所以:A 选项,阴影部分表示{}0,1,2,不符合题意.B 选项,阴影部分表示{}4,8,符合题意.C 选项,阴影部分表示{}3,不符合题意.D 选项,阴影部分表示{}3,4,8,不符合题意.故选:B练习22.(2023春·湖南·高二临澧县第一中学校联考期中)已知全集U =R ,集合{}02A x x =∈<≤Z ,{}1,0,1,2,3B =-,则图中阴影部分表示的集合为()A .{}2,0-B .{}2,3-C .{}2,0,2-D .{}2,0,3-【答案】D【分析】根据集合的交并补运算即可求解.【详解】全集为U ,集合{}2,1,1,2A =--,{}1,0,1,2,3B =-,{}{}1,1,2,2,1,0,1,2,3A B A B ⋂=-⋃=--,图中阴影部分表示是A B ⋃去掉A B ⋂的部分,故表示的集合是{}2,0,3-.故选:D .练习23.(2022秋·高三单元测试)(多选)如图,U 为全集,M P S 、、是U 的三个子集,则阴影部分所表示的集合是()A .()U P S M⎡⎤⋂⋂⎣⎦ðB .()M P SC .()U M P S⋂⋂ðD .()U M P S⋂⋃ð【答案】AC 【分析】分析出阴影部分为M P 和U S ð的子集,从而选出正确答案.【详解】图中阴影部分是M P 的子集,不属于集合S ,属于集合S 的补集,即U S ð的子集,满足要求的为()()U U P S M M P S ⎡⎤=⎣⎦ 痧,均表示阴影部分,BD 不合要求.故选:AC练习24.(2023·云南昆明·高三昆明一中校考阶段练习)某班一个课外调查小组调查了该班同学对物理和历史两门学科的兴趣爱好情况,其中该班同学对物理或历史感兴趣的同学占90%,对物理感兴趣的占56%,对历史感兴趣的占74%,则既对物理感兴趣又对历史感兴趣的同学占该班学生总数的比练习是()A .70%B .56%C .40%D .30%【答案】C【分析】根据公式()()()()card A B card A card B card A B ⋃=+-⋂列方程求解即可.【详解】对物理感兴趣的同学占56%,对历史感兴趣的同学占74%,这两组的比练习数据都包含了既对物理感兴趣又对历史感兴趣的同学的比练习,设既对物理感兴趣又对历史感兴趣的同学占该班学生总数的比练习为x ,则对物理或历史感兴趣的同学的比练习是56%+74%-x ,所以56%+74%-x =90%,解得40x =%,故选:C.练习25.(2023春·湖南·高三校联考期中)设集合1Z 32A x x ⎧⎫=∈-<<⎨⎬⎩⎭,{}1,0,1,2B =-,能正确表示图中阴影部分的集合是()A .{}1,0,1-B .{}1,2C .{}0,1,2D .{}2【答案】B 【分析】先求得集合{}2,1,0A =--,结合题意及集合的运算,即可求解.【详解】由题意,集合{}1Z 32,1,02A x x ⎧⎫=∈-<<=--⎨⎬⎩⎭,根据图中阴影部分表示集合B 中元素除去集合A 中的元素,即为{}1,2.故选:B.题型六集合的含参运算例11.(广东省汕头市2023届高三二模数学试卷)已知集合{}21,3,A a =,{1,2}B a =+,且A B A ⋃=,则a 的取值集合为()A .{}1-B .{2}C .{1,2}-D .{1,1,2}-【答案】B 【分析】由集合和元素的关系及并集的定义讨论即可.【详解】由题意可得:23a +=或22a a +=若23a +=,此时211a a =⇒=,集合A 的元素有重复,不符合题意;若22a a +=,解得2a =或1a =-,显然2a =时符合题意,而211a a =-⇒=同上,集合A 的元素有重复,不符合题意;故2a =.故选:B例12.(2020秋·安徽芜湖·高三校考阶段练习)若集合{}2|60A x x x =+-=,{|10}B x mx =+=,且B A ,求实数m 的值.【答案】13m =或12m =-或0m =【分析】分0m =和0m ≠两种情况讨论,结合已知即可得解.【详解】{}{}2|603,2A x x x =+-==-,当0m =时,B =∅A ,当0m ≠时,1{|10}B x mx m ⎧⎫=+==-⎨⎬⎩⎭,因为B A ,所以13m -=-或12m-=,所以13m =或12-,综上所述,13m =或12m =-或0m =.练习26.(2022秋·山东菏泽·高三校联考期中)已知集合{}23A x a x a =≤≤+,{|1B x x =<-或5}x >.(1)若1a =-,求A B ⋃R ð;(2)若A B ⋂=∅,求a 的取值范围.【答案】(1){}25A C B x x ⋃=-≤≤R (2)1232x a a ⎧⎫-≤≤>⎨⎬⎩⎭或【分析】(1)根据题意,先求出集合A 的补集,再利用集合的并集运算求解即可;(2)根据集合的包含关系分A =∅和A ≠∅两种情况进行讨论即可求解.【详解】(1)若1a =-,则集合{}22A x x =-≤≤,所以{}15B x x =-≤≤R ð,所以{}25A C B x x ⋃=-≤≤R ;(2)因为集合{}23A x a x a =≤≤+,{|1B x x =<-或5}x >,因为A B ⋂=∅,所以分以下两种情况:若A =∅,即23a a >+,解得3a >,满足题意,若A ≠∅,则213523a a a a ≥-⎧⎪+≤⎨⎪≤+⎩解得122a -≤≤,综上所述a 的取值范围为1232x a a ⎧⎫-≤≤>⎨⎬⎩⎭或练习27.(2023·河南开封·开封高中校考模拟预测)设集合{2A x x =<∣或{}4},1x B x a x a ≥=≤≤+∣,若()A B =∅R ð,则a 的取值范围是()A .1a ≤或4a >B .1a <或4a ≥C .1a <D .4a >【答案】B【分析】先求出A R ð,根据()A B =∅R ð,可求得结果.【详解】由集合{2A x x =<∣或4}x ≥,得{24}A x x =≤<R ∣ð,又集合{}1B x a x a =≤≤+∣且()A B =∅R ð,则1a +<2或4a ≥,即1a <或4a ≥.故选:B.练习28.(2023·全国·模拟预测)设集合{(1)(3)0}A xx x =+-≤∣,{}5B x a x a =-<<,若A B ⊆,则实数a 的取值范围是()A .[]3,4B .(3,4)C .(,4]-∞D .[3,)+∞【答案】B 【分析】根据集合的包含关系列出关于a 的不等式组即可.【详解】由已知可得,集合{}13A xx =-≤≤∣,{}5B x a x a =-<<,因为A B ⊆,所以351a a >⎧⎨-<-⎩,(注意端点值是否能取到),解得34a <<,故选:B .练习29.(2023·全国·高三专题练习)设全集U =R ,{}|325M x a x a =<<+,{}|21P x x =-≤≤.(1)若0a =,求()UM P ⋂ð.(2)若U M P ⊆ð,求实数a 的取值范围.【答案】(1)(){}|20U M P x x =-≤≤ ð;(2)71,,23∞⎛⎤⎡⎫--+∞ ⎪⎥⎢⎝⎦⎣⎭.【分析】(1)利用集合的补集和交集的运算知识即可求解.(2)求出U P ð,U M P ⊆ð,分=∅≠∅,M M ,两种情况讨论,根据集合的运算求解即可.【详解】(1)当0a =时,{}|05=<<M x x ,{}|21P x x =-≤≤,所以{0U M x x =≤ð或5}x ³,(){}|20U M P x x ⋂=-≤≤ð;(2) 全集U =R ,{}|21P x x =-≤≤,{2U P x x ∴=<-ð或1}x >,⊆ U M P ð,∴分=∅≠∅,M M ,两种情况讨论.(1)当M 蛊时,如图可得,325252a a a <+⎧⎨+≤-⎩或32531a a a <+⎧⎨≥⎩,72a ∴≤-或153a ≤<;(2)当M =∅时,应有:325a a ≥+,解得5a ≥;综上可知,72a ∴≤-或13a ≥,故得实数a 的取值范围71,23∞⎛⎤⎡⎫--+∞ ⎪⎥⎢⎝⎦⎣⎭.练习30.(2023·全国·高三专题练习)已知{}23A x x =-≤≤,{}23B x a x a =-<<,全集U =R(1)若2a =,求()U A B ∩ð;(2)若A B ⊇,求实数a 的取值范围.【答案】(1)(){}20U A B x x ⋂=-≤≤ð(2)(][],10,1-∞-⋃【分析】(1)根据交集与补集的运算求解即可;(2)分B =∅与B ≠∅由条件列不等式求范围即可.【详解】(1)当2a =时,{}06B x x =<<,所以{0U B x x =≤ð或}6x ≥,又{}23A x x =-≤≤,所以(){}20U A B x x ⋂=-≤≤ð.(2)由题可得:当B =∅时,有23a a -≥,解得a 的取值范围为(],1-∞-;当B ≠∅时有232233a a a a -<⎧⎪-≥-⎨⎪≤⎩,解得a 的取值范围为[]0,1,综上所述a 的取值范围为(][],10,1-∞-⋃.。

高中数学第一轮复习资料(教师版)

高中数学第一轮复习资料(教师版)

第一章集合第一节集合的含义、表示及基本关系A组1.已知A={1,2},B={x|x∈A},则集合A与B的关系为________.解析:由集合B={x|x∈A}知,B={1,2}.答案:A=B2.若∅{x|x2≤a,a∈R},则实数a的取值范围是________.解析:由题意知,x2≤a有解,故a≥0.答案:a≥03.已知集合A={y|y=x2-2x-1,x∈R},集合B={x|-2≤x<8},则集合A与B的关系是________.解析:y=x2-2x-1=(x-1)2-2≥-2,∴A={y|y≥-2},∴B A.答案:B A4.(2009年高考广东卷改编)已知全集U=R,则正确表示集合M={-1,0,1}和N ={x|x2+x=0}关系的韦恩(Venn)图是________.解析:由N={x|x2+x=0},得N={-1,0},则N M.答案:②5.(2010年苏、锡、常、镇四市调查)已知集合A={x|x>5},集合B={x|x>a},若命题“x∈A”是命题“x∈B”的充分不必要条件,则实数a的取值范围是________.解析:命题“x∈A”是命题“x∈B”的充分不必要条件,∴A B,∴a<5.答案:a<56.(原创题)已知m∈A,n∈B,且集合A={x|x=2a,a∈Z},B={x|x=2a+1,a∈Z},又C={x|x=4a+1,a∈Z},判断m+n属于哪一个集合?解:∵m∈A,∴设m=2a1,a1∈Z,又∵n∈B,∴设n=2a2+1,a2∈Z,∴m +n=2(a1+a2)+1,而a1+a2∈Z,∴m+n∈B.B组1.设a,b都是非零实数,y=a|a|+b|b|+ab|ab|可能取的值组成的集合是________.解析:分四种情况:(1)a>0且b>0;(2)a>0且b<0;(3)a<0且b>0;(4)a<0且b<0,讨论得y=3或y=-1.答案:{3,-1}2.已知集合A={-1,3,2m-1},集合B={3,m2}.若B⊆A,则实数m=________.解析:∵B⊆A,显然m2≠-1且m2≠3,故m2=2m-1,即(m-1)2=0,∴m=1.答案:13.设P,Q为两个非空实数集合,定义集合P+Q={a+b|a∈P,b∈Q},若P={0,2,5},Q={1,2,6},则P+Q中元素的个数是________个.解析:依次分别取a=0,2,5;b=1,2,6,并分别求和,注意到集合元素的互异性,∴P+Q={1,2,6,3,4,8,7,11}.答案:84.已知集合M ={x |x 2=1},集合N ={x |ax =1},若N M ,那么a 的值是________.解析:M ={x |x =1或x =-1},N M ,所以N =∅时,a =0;当a ≠0时,x =1a=1或-1,∴a =1或-1.答案:0,1,-1 5.满足{1}A ⊆{1,2,3}的集合A 的个数是________个.解析:A 中一定有元素1,所以A 有{1,2},{1,3},{1,2,3}.答案:36.已知集合A ={x |x =a +16,a ∈Z },B ={x |x =b 2-13,b ∈Z },C ={x |x =c 2+16,c ∈Z },则A 、B 、C 之间的关系是________.解析:用列举法寻找规律.答案:A B =C7.集合A ={x ||x |≤4,x ∈R },B ={x |x <a },则“A ⊆B ”是“a >5”的________.解析:结合数轴若A ⊆B ⇔a ≥4,故“A ⊆B ”是“a >5”的必要但不充分条件.答案:必要不充分条件8.(2010年江苏启东模拟)设集合M ={m |m =2n ,n ∈N ,且m <500},则M 中所有元素的和为________.解析:∵2n <500,∴n =0,1,2,3,4,5,6,7,8.∴M 中所有元素的和S =1+2+22+…+28=511.答案:5119.(2009年高考北京卷)设A 是整数集的一个非空子集,对于k ∈A ,如果k -1∉A ,且k +1∉A ,那么称k 是A 的一个“孤立元”.给定S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有________个.解析:依题可知,由S 的3个元素构成的所有集合中,不含“孤立元”,这三个元素一定是相连的三个数.故这样的集合共有6个.答案:610.已知A ={x ,xy ,lg(xy )},B ={0,|x |,y },且A =B ,试求x ,y 的值.解:由lg(xy )知,xy >0,故x ≠0,xy ≠0,于是由A =B 得lg(xy )=0,xy =1.∴A ={x,1,0},B ={0,|x |,1x}. 于是必有|x |=1,1x=x ≠1,故x =-1,从而y =-1. 11.已知集合A ={x |x 2-3x -10≤0},(1)若B ⊆A ,B ={x |m +1≤x ≤2m -1},求实数m 的取值范围;(2)若A ⊆B ,B ={x |m -6≤x ≤2m -1},求实数m 的取值范围;(3)若A =B ,B ={x |m -6≤x ≤2m -1},求实数m 的取值范围.解:由A ={x |x 2-3x -10≤0},得A ={x |-2≤x ≤5},(1)∵B ⊆A ,∴①若B =∅,则m +1>2m -1,即m <2,此时满足B ⊆A . ②若B ≠∅,则⎩⎪⎨⎪⎧ m +1≤2m -1,-2≤m +1,2m -1≤5.解得2≤m ≤3.由①②得,m 的取值范围是(-∞,3].(2)若A ⊆B ,则依题意应有⎩⎪⎨⎪⎧ 2m -1>m -6,m -6≤-2,2m -1≥5.解得⎩⎪⎨⎪⎧ m >-5,m ≤4,m ≥3.故3≤m ≤4,∴m 的取值范围是[3,4].(3)若A =B ,则必有⎩⎪⎨⎪⎧ m -6=-2,2m -1=5,解得m ∈∅.,即不存在m 值使得A =B . 12.已知集合A ={x |x 2-3x +2≤0},B ={x |x 2-(a +1)x +a ≤0}.(1)若A 是B 的真子集,求a 的取值范围;(2)若B 是A 的子集,求a 的取值范围;(3)若A =B ,求a 的取值范围.解:由x 2-3x +2≤0,即(x -1)(x -2)≤0,得1≤x ≤2,故A ={x |1≤x ≤2}, 而集合B ={x |(x -1)(x -a )≤0},(1)若A 是B 的真子集,即A B ,则此时B ={x |1≤x ≤ a },故a >2.(2)若B 是A 的子集,即B ⊆A ,由数轴可知1≤a ≤2.(3)若A =B ,则必有a =2第二节 集合的基本运算A 组1.(2009年高考浙江卷改编)设U =R ,A ={x |x >0},B ={x |x >1},则A ∩∁U B =____.解析:∁U B ={x |x ≤1},∴A ∩∁U B ={x |0<x ≤1}.答案:{x |0<x ≤1}2.(2009年高考全国卷Ⅰ改编)设集合A ={4,5,7,9},B ={3,4,7,8,9},全集U =A ∪B ,则集合∁U (A ∩B )中的元素共有________个.解析:A ∩B ={4,7,9},A ∪B ={3,4,5,7,8,9},∁U (A ∩B )={3,5,8}.答案:33.已知集合M ={0,1,2},N ={x |x =2a ,a ∈M },则集合M ∩N =________.解析:由题意知,N ={0,2,4},故M ∩N ={0,2}.答案:{0,2}4.(原创题)设A ,B 是非空集合,定义A ⓐB ={x |x ∈A ∪B 且x ∉A ∩B },已知A ={x |0≤x ≤2},B ={y |y ≥0},则A ⓐB =________.解析:A ∪B =[0,+∞),A ∩B =[0,2],所以A ⓐB =(2,+∞).答案:(2,+∞)5.(2009年高考湖南卷)某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.解析:设两项运动都喜欢的人数为x ,画出韦恩图得到方程15-x +x +10-x +8=30x =3,∴喜爱篮球运动但不喜爱乒乓球运动的人数为15-3=12(人).答案:126.(2010年浙江嘉兴质检)已知集合A ={x |x >1},集合B ={x |m ≤x ≤m +3}.(1)当m =-1时,求A ∩B ,A ∪B ;(2)若B ⊆A ,求m 的取值范围.解:(1)当m =-1时,B ={x |-1≤x ≤2},∴A ∩B ={x |1<x ≤2},A ∪B ={x |x ≥-1}.(2)若B ⊆A ,则m >1,即m 的取值范围为(1,+∞)B 组1.若集合M ={x ∈R |-3<x <1},N ={x ∈Z |-1≤x ≤2},则M ∩N =________.解析:因为集合N ={-1,0,1,2},所以M ∩N ={-1,0}.答案:{-1,0}2.已知全集U ={-1,0,1,2},集合A ={-1,2},B ={0,2},则(∁U A )∩B =________.解析:∁U A ={0,1},故(∁U A )∩B ={0}.答案:{0}3.(2010年济南市高三模拟)若全集U =R ,集合M ={x |-2≤x ≤2},N ={x |x2-3x ≤0},则M ∩(∁U N )=________.解析:根据已知得M ∩(∁U N )={x |-2≤x ≤2}∩{x |x <0或x >3}={x |-2≤x <0}.答案:{x |-2≤x <0}4.集合A ={3,log 2a },B ={a ,b },若A ∩B ={2},则A ∪B =________.解析:由A ∩B ={2}得log 2a =2,∴a =4,从而b =2,∴A ∪B ={2,3,4}. 答案:{2,3,4}5.(2009年高考江西卷改编)已知全集U =A ∪B 中有m 个元素,(∁U A )∪(∁U B )中有n 个元素.若A ∩B 非空,则A ∩B 的元素个数为________.解析:U =A ∪B 中有m 个元素,∵(∁U A )∪(∁U B )=∁U (A ∩B )中有n 个元素,∴A ∩B 中有m -n 个元素.答案:m -n6.(2009年高考重庆卷)设U ={n |n 是小于9的正整数},A={n ∈U |n 是奇数},B ={n ∈U |n 是3的倍数},则∁U (A ∪B )=________.解析:U ={1,2,3,4,5,6,7,8},A ={1,3,5,7},B ={3,6},∴A ∪B ={1,3,5,6,7},得∁U (A ∪B )={2,4,8}.答案:{2,4,8}7.定义A ⊗B ={z |z =xy +x y ,x ∈A ,y ∈B }.设集合A ={0,2},B ={1,2},C ={1},则集合(A ⊗B )⊗C 的所有元素之和为________.解析:由题意可求(A ⊗B )中所含的元素有0,4,5,则(A ⊗B )⊗C 中所含的元素有0,8,10,故所有元素之和为18.答案:188.若集合{(x ,y )|x +y -2=0且x -2y +4=0}{(x ,y )|y =3x +b },则b =________.解析:由⎩⎪⎨⎪⎧ x +y -2=0,x -2y +4=0.⇒⎩⎪⎨⎪⎧ x =0,y =2.点(0,2)在y =3x +b 上,∴b =2. 9.设全集I ={2,3,a 2+2a -3},A ={2,|a +1|},∁I A ={5},M ={x |x =log 2|a |},则集合M 的所有子集是________.解析:∵A ∪(∁I A )=I ,∴{2,3,a 2+2a -3}={2,5,|a +1|},∴|a +1|=3,且a 2+2a -3=5,解得a =-4或a =2,∴M ={log 22,log 2|-4|}={1,2}. 答案:∅,{1},{2},{1,2}10.设集合A ={x |x 2-3x +2=0},B ={x |x 2+2(a +1)x +(a 2-5)=0}.(1)若A ∩B ={2},求实数a 的值;(2)若A ∪B =A ,求实数a 的取值范围.解:由x 2-3x +2=0得x =1或x =2,故集合A ={1,2}.(1)∵A ∩B ={2},∴2∈B ,代入B 中的方程,得a 2+4a +3=0⇒a =-1或a=-3;当a =-1时,B ={x |x 2-4=0}={-2,2},满足条件;当a =-3时,B={x |x 2-4x +4=0}={2},满足条件;综上,a 的值为-1或-3.(2)对于集合B ,Δ=4(a +1)2-4(a 2-5)=8(a +3).∵A ∪B =A ,∴B ⊆A ,①当Δ<0,即a <-3时,B =∅满足条件;②当Δ=0,即a =-3时,B ={2}满足条件;③当Δ>0,即a >-3时,B =A ={1,2}才能满足条件,则由根与系数的关系得⎩⎪⎨⎪⎧ 1+2=-2(a +1)1×2=a 2-5⇒⎩⎪⎨⎪⎧ a =-52,a 2=7,矛盾.综上,a 的取值范围是a ≤-3.11.已知函数f (x )= 6x +1-1的定义域为集合A ,函数g (x )=lg(-x 2+2x +m )的定义域为集合B .(1)当m =3时,求A ∩(∁R B );(2)若A ∩B ={x |-1<x <4},求实数m 的值.解:A ={x |-1<x ≤5}.(1)当m =3时,B ={x |-1<x <3},则∁R B ={x |x ≤-1或x ≥3},∴A ∩(∁R B )={x |3≤x ≤5}.(2)∵A ={x |-1<x ≤5},A ∩B ={x |-1<x <4},∴有-42+2×4+m =0,解得m =8,此时B ={x |-2<x <4},符合题意.12.已知集合A ={x ∈R |ax 2-3x +2=0}.(1)若A =∅,求实数a 的取值范围;(2)若A 是单元素集,求a 的值及集合A ;(3)求集合M ={a ∈R |A ≠∅}.解:(1)A 是空集,即方程ax 2-3x +2=0无解.若a =0,方程有一解x =23,不合题意. 若a ≠0,要方程ax 2-3x +2=0无解,则Δ=9-8a <0,则a >98. 综上可知,若A =∅,则a 的取值范围应为a >98. (2)当a =0时,方程ax 2-3x +2=0只有一根x =23,A ={23}符合题意. 当a ≠0时,则Δ=9-8a =0,即a =98时, 方程有两个相等的实数根x =43,则A ={43}. 综上可知,当a =0时,A ={23};当a =98时,A ={43}.(3)当a =0时,A ={23}≠∅.当a ≠0时,要使方程有实数根, 则Δ=9-8a ≥0,即a ≤98. 综上可知,a 的取值范围是a ≤98,即M ={a ∈R |A ≠∅}={a |a ≤98}第二章 函数第一节 对函数的进一步认识A 组1.(2009年高考江西卷改编)函数y =-x 2-3x +4x的定义域为________. 解析:⎩⎪⎨⎪⎧ -x 2-3x +4≥0,x ≠0,⇒x ∈[-4,0)∪(0,1]答案:[-4,0)∪(0,1]2.(2010年绍兴第一次质检)如图,函数f (x )的图象是曲线段OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f (1f (3))的值等于________. 解析:由图象知f (3)=1,f (1f (3))=f (1)=2.答案:23.(2009年高考北京卷)已知函数f (x )=⎩⎪⎨⎪⎧ 3x ,x ≤1,-x ,x >1.若f (x )=2,则x =________.解析:依题意得x ≤1时,3x =2,∴x =log 32;当x >1时,-x =2,x =-2(舍去).故x =log 32.答案:log 324.(2010年黄冈市高三质检)函数f :{1,2}→{1,2}满足f [f (x )]>1的这样的函数个数有________个.解析:如图.答案:15.(原创题)由等式x 3+a 1x 2+a 2x +a 3=(x +1)3+b 1(x +1)2+b 2(x +1)+b 3定义一个映射f (a 1,a 2,a 3)=(b 1,b 2,b 3),则f (2,1,-1)=________.解析:由题意知x 3+2x 2+x -1=(x +1)3+b 1(x +1)2+b 2(x +1)+b 3,令x =-1得:-1=b 3;再令x =0与x =1得⎩⎪⎨⎪⎧ -1=1+b 1+b 2+b 33=8+4b 1+2b 2+b 3,解得b 1=-1,b 2=0.答案:(-1,0,-1)6.已知函数f (x )=⎩⎪⎨⎪⎧1+1x (x >1),x 2+1 (-1≤x ≤1),2x +3 (x <-1).(1)求f (1-12-1),f {f [f (-2)]}的值;(2)求f (3x -1);(3)若f (a )=32, 求a .解:f (x )为分段函数,应分段求解.(1)∵1-12-1=1-(2+1)=-2<-1,∴f (-2)=-22+3, 又∵f (-2)=-1,f [f (-2)]=f (-1)=2,∴f {f [f (-2)]}=1+12=32. (2)若3x -1>1,即x >23,f (3x -1)=1+13x -1=3x 3x -1; 若-1≤3x -1≤1,即0≤x ≤32,f (3x -1)=(3x -1)2+1=9x 2-6x +2; 若3x -1<-1,即x <0,f (3x -1)=2(3x -1)+3=6x +1.∴f (3x -1)=⎩⎪⎨⎪⎧ 3x 3x -1 (x >23),9x 2-6x +2 (0≤x ≤23),6x +1 (x <0).(3)∵f (a )=32,∴a >1或-1≤a ≤1. 当a >1时,有1+1a =32,∴a =2; 当-1≤a ≤1时,a 2+1=32,∴a =±22. ∴a =2或±22. B 组1.(2010年广东江门质检)函数y =13x -2+lg(2x -1)的定义域是________.解析:由3x -2>0,2x -1>0,得x >23.答案:{x |x >23} 2.(2010年山东枣庄模拟)函数f (x )=⎩⎪⎨⎪⎧ -2x +1,(x <-1),-3,(-1≤x ≤2),2x -1,(x >2),则f (f (f (32)+5))=_.解析:∵-1≤32≤2,∴f (32)+5=-3+5=2,∵-1≤2≤2,∴f (2)=-3, ∴f (-3)=(-2)×(-3)+1=7.答案:73.定义在区间(-1,1)上的函数f (x )满足2f (x )-f (-x )=lg(x +1),则f (x )的解析式为________.解析:∵对任意的x ∈(-1,1),有-x ∈(-1,1),由2f (x )-f (-x )=lg(x +1),①由2f (-x )-f (x )=lg(-x +1),②①×2+②消去f (-x ),得3f (x )=2lg(x +1)+lg(-x +1),∴f (x )=23lg(x +1)+13lg(1-x ),(-1<x <1). 答案:f (x )=23lg(x +1)+13lg(1-x ),(-1<x <1) 4.设函数y =f (x )满足f (x +1)=f (x )+1,则函数y =f (x )与y =x 图象交点的个数可能是________个.解析:由f (x +1)=f (x )+1可得f (1)=f (0)+1,f (2)=f (0)+2,f (3)=f (0)+3,…本题中如果f (0)=0,那么y =f (x )和y =x 有无数个交点;若f (0)≠0,则y =f (x )和y =x 有零个交点.答案:0或无数5.设函数f (x )=⎩⎪⎨⎪⎧ 2 (x >0)x 2+bx +c (x ≤0),若f (-4)=f (0),f (-2)=-2,则f (x )的解析式为f (x )=________,关于x 的方程f (x )=x 的解的个数为________个.解析:由题意得⎩⎪⎨⎪⎧ 16-4b +c =c 4-2b +c =-2 ⎩⎪⎨⎪⎧ b =4c =2,∴f (x )=⎩⎪⎨⎪⎧ 2 (x >0)x 2+4x +2 (x ≤0).由数形结合得f (x )=x 的解的个数有3个.答案:⎩⎪⎨⎪⎧ 2 (x >0)x 2+4x +2 (x ≤0) 36.设函数f (x )=log a x (a >0,a ≠1),函数g (x )=-x 2+bx +c ,若f (2+2)-f (2+1)=12,g (x )的图象过点A (4,-5)及B (-2,-5),则a =__________,函数f [g (x )]的定义域为__________.答案:2 (-1,3)7.(2009年高考天津卷改编)设函数f (x )=⎩⎪⎨⎪⎧ x 2-4x +6,x ≥0x +6,x <0,则不等式f (x )>f (1)的解集是________.解析:由已知,函数先增后减再增,当x ≥0,f (x )>f (1)=3时,令f (x )=3,解得x =1,x =3.故f (x )>f (1)的解集为0≤x <1或x >3.当x <0,x +6=3时,x =-3,故f (x )>f (1)=3,解得-3<x <0或x >3.综上,f (x )>f (1)的解集为{x |-3<x <1或x >3}.答案:{x |-3<x <1或x >3}8.(2009年高考山东卷)定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧ log 2(4-x ), x ≤0,f (x -1)-f (x -2), x >0,则f (3)的值为________.解析:∵f (3)=f (2)-f (1),又f (2)=f (1)-f (0),∴f (3)=-f (0),∵f (0)=log 24=2,∴f (3)=-2.答案:-29.有一个有进水管和出水管的容器,每单位时间进水量是一定的,设从某时刻开始,5分钟内只进水,不出水,在随后的15分钟内既进水,又出水,得到时间x 与容器中的水量y 之间关系如图.再随后,只放水不进水,水放完为止,则这段时间内(即x ≥20),y 与x 之间函数的函数关系是________.解析:设进水速度为a 1升/分钟,出水速度为a 2升/分钟,则由题意得⎩⎪⎨⎪⎧ 5a 1=205a 1+15(a 1-a 2)=35,得⎩⎪⎨⎪⎧ a 1=4a 2=3,则y =35-3(x -20),得y =-3x +95,又因为水放完为止,所以时间为x ≤953,又知x ≥20,故解析式为y =-3x +95(20≤x ≤953).答案:y =-3x +95(20≤x ≤953)10.函数f (x )=(1-a 2)x 2+3(1-a )x +6.(1)若f (x )的定义域为R ,求实数a 的取值范围;(2)若f (x )的定义域为[-2,1],求实数a 的值.解:(1)①若1-a 2=0,即a =±1,(ⅰ)若a =1时,f (x )=6,定义域为R ,符合题意;(ⅱ)当a =-1时,f (x )=6x +6,定义域为[-1,+∞),不合题意.②若1-a 2≠0,则g (x )=(1-a 2)x 2+3(1-a )x +6为二次函数.由题意知g (x )≥0对x ∈R 恒成立, ∴⎩⎪⎨⎪⎧ 1-a 2>0,Δ≤0,∴⎩⎪⎨⎪⎧ -1<a <1,(a -1)(11a +5)≤0,∴-511≤a <1.由①②可得-511≤a ≤1. (2)由题意知,不等式(1-a 2)x 2+3(1-a )x +6≥0的解集为[-2,1],显然1-a 2≠0且-2,1是方程(1-a 2)x 2+3(1-a )x +6=0的两个根.∴⎩⎪⎨⎪⎧ 1-a 2<0,-2+1=3(1-a )a 2-1,-2=61-a 2,Δ=[3(1-a )]2-24(1-a 2)>0∴⎩⎪⎨⎪⎧ a <-1或a >1,a =2,a =±2.a <-511或a >1∴a =2.11.已知f (x +2)=f (x )(x ∈R ),并且当x ∈[-1,1]时,f (x )=-x 2+1,求当x ∈[2k -1,2k +1](k ∈Z )时、f (x )的解析式.解:由f (x +2)=f (x ),可推知f (x )是以2为周期的周期函数.当x ∈[2k-1,2k +1]时,2k -1≤x ≤2k +1,-1≤x -2k ≤1.∴f (x -2k )=-(x -2k )2+1.又f (x )=f (x -2)=f (x -4)=…=f (x -2k ),∴f (x )=-(x -2k )2+1,x ∈[2k -1,2k +1],k ∈Z .12.在2008年11月4日珠海航展上,中国自主研制的ARJ 21支线客机备受关注,接到了包括美国在内的多国订单.某工厂有216名工人接受了生产1000件该支线客机某零部件的总任务,已知每件零件由4个C 型装置和3个H 型装置配套组成,每个工人每小时能加工6个C 型装置或3个H 型装置.现将工人分成两组同时开始加工,每组分别加工一种装置,设加工C 型装置的工人有x 位,他们加工完C 型装置所需时间为g (x ),其余工人加工完H 型装置所需时间为h (x ).(单位:h ,时间可不为整数)(1)写出g (x ),h (x )的解析式;(2)写出这216名工人完成总任务的时间f (x )的解析式;(3)应怎样分组,才能使完成总任务的时间最少?解:(1)g (x )=20003x (0<x <216,x ∈N *),h (x )=1000216-x(0<x <216,x ∈N *). (2)f (x )=⎩⎪⎨⎪⎧ 20003x (0<x ≤86,x ∈N *).1000216-x (87≤x <216,x ∈N *).(3)分别为86、130或87、129.第二节 函数的单调性A 组1.(2009年高考福建卷改编)下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是________.①f (x )=1x②f (x )=(x -1)2 ③f (x )=e x ④f (x )=ln(x +1) 解析:∵对任意的x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2),∴f (x )在(0,+∞)上为减函数.答案:①2.函数f (x )(x ∈R )的图象如右图所示,则函数g (x )=f (log a x )(0<a <1)的单调减区间是________.解析:∵0<a <1,y =log a x 为减函数,∴log a x ∈[0,12]时,g (x )为减函数. 由0≤log a x ≤12a ≤x ≤1.答案:[a ,1](或(a ,1))3.函数y =x -4+15-3x 的值域是________.解析:令x =4+sin 2α,α∈[0,π2],y =sin α+3cos α=2sin(α+π3),∴1≤y ≤2.答案:[1,2]4.已知函数f (x )=|e x +a ex |(a ∈R )在区间[0,1]上单调递增,则实数a 的取值范围__.解析:当a <0,且e x +a e x ≥0时,只需满足e 0+ae 0≥0即可,则-1≤a <0;当a =0时,f (x )=|e x |=e x 符合题意;当a >0时,f (x )=e x +a ex ,则满足f ′(x )=e x -a ex ≥0在x ∈[0,1]上恒成立.只需满足a ≤(e 2x )min 成立即可,故a ≤1,综上-1≤a ≤1.答案:-1≤a ≤15.(原创题)如果对于函数f (x )定义域内任意的x ,都有f (x )≥M (M 为常数),称M 为f (x )的下界,下界M 中的最大值叫做f (x )的下确界,下列函数中,有下确界的所有函数是________.①f (x )=sin x ;②f (x )=lg x ;③f (x )=e x ;④f (x )=⎩⎪⎨⎪⎧ 1 (x >0)0 (x =0)-1 (x <-1)解析:∵sin x ≥-1,∴f (x )=sin x 的下确界为-1,即f (x )=sin x 是有下确界的函数;∵f (x )=lg x 的值域为(-∞,+∞),∴f (x )=lg x 没有下确界;∴f (x )=e x 的值域为(0,+∞),∴f (x )=e x 的下确界为0,即f (x )=e x 是有下确界的函数;∵f (x )=⎩⎪⎨⎪⎧ 1 (x >0)0 (x =0)-1 (x <-1)的下确界为-1.∴f (x )=⎩⎪⎨⎪⎧ 1 (x >0)0 (x =0)-1 (x <-1)是有下确界的函数.答案:①③④6.已知函数f (x )=x 2,g (x )=x -1.(1)若存在x ∈R 使f (x )<b ·g (x ),求实数b 的取值范围;(2)设F (x )=f (x )-mg (x )+1-m -m 2,且|F (x )|在[0,1]上单调递增,求实数m 的取值范围.解:(1)x ∈R ,f (x )<b ·g (x )x ∈R ,x 2-bx +b <0Δ=(-b )2-4b >0b <0或b >4.(2)F (x )=x 2-mx +1-m 2,Δ=m 2-4(1-m 2)=5m 2-4,①当Δ≤0即-255≤m ≤255时,则必需 ⎩⎪⎨⎪⎧ m 2≤0-255≤m ≤255-255≤m ≤0. ②当Δ>0即m <-255或m >255时,设方程F (x )=0的根为x 1,x 2(x 1<x 2),若m 2≥1,则x 1≤0.⎩⎪⎨⎪⎧m 2≥1F (0)=1-m 2≤0m ≥2. 若m 2≤0,则x 2≤0, ⎩⎪⎨⎪⎧ m 2≤0F (0)=1-m 2≥0-1≤m <-255.综上所述:-1≤m ≤0或m ≥2. B 组1.(2010年山东东营模拟)下列函数中,单调增区间是(-∞,0]的是________.①y =-1x②y =-(x -1) ③y =x 2-2 ④y =-|x | 解析:由函数y =-|x |的图象可知其增区间为(-∞,0].答案:④2.若函数f (x )=log 2(x 2-ax +3a )在区间[2,+∞)上是增函数,则实数a 的取值范围是________.解析:令g (x )=x 2-ax +3a ,由题知g (x )在[2,+∞)上是增函数,且g (2)>0. ∴⎩⎪⎨⎪⎧ a 2≤2,4-2a +3a >0,∴-4<a ≤4.答案:-4<a ≤43.若函数f (x )=x +a x (a >0)在(34,+∞)上是单调增函数,则实数a 的取值范围__.解析:∵f (x )=x +a x (a >0)在(a ,+∞)上为增函数,∴a ≤34,0<a ≤916. 答案:(0,916] 4.(2009年高考陕西卷改编)定义在R 上的偶函数f (x ),对任意x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,则下列结论正确的是________. ①f (3)<f (-2)<f (1) ②f (1)<f (-2)<f (3)③f (-2)<f (1)<f (3) ④f (3)<f (1)<f (-2)解析:由已知f (x 2)-f (x 1)x 2-x 1<0,得f (x )在x ∈[0,+∞)上单调递减,由偶函数性质得f (2)=f (-2),即f (3)<f (-2)<f (1).答案:①5.(2010年陕西西安模拟)已知函数f (x )=⎩⎪⎨⎪⎧ a x (x <0),(a -3)x +4a (x ≥0)满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,则a 的取值范围是________. 解析:由题意知,f (x )为减函数,所以⎩⎪⎨⎪⎧ 0<a <1,a -3<0,a 0≥(a -3)×0+4a ,解得0<a ≤14. 6.(2010年宁夏石嘴山模拟)函数f (x )的图象是如下图所示的折线段OAB ,点A 的坐标为(1,2),点B 的坐标为(3,0),定义函数g (x )=f (x )·(x -1),则函数g (x )的最大值为________.解析:g (x )=⎩⎪⎨⎪⎧ 2x (x -1) (0≤x <1),(-x +3)(x -1) (1≤x ≤3),当0≤x <1时,最大值为0;当1≤x ≤3时,在x =2取得最大值1.答案:17.(2010年安徽合肥模拟)已知定义域在[-1,1]上的函数y =f (x )的值域为[-2,0],则函数y =f (cos x )的值域是________.解析:∵cos x ∈[-1,1],函数y =f (x )的值域为[-2,0],∴y =f (cos x )的值域为[-2,0].答案:[-2,0]8.已知f (x )=log 3x +2,x ∈[1,9],则函数y =[f (x )]2+f (x 2)的最大值是________.解析:∵函数y =[f (x )]2+f (x 2)的定义域为⎩⎪⎨⎪⎧1≤x ≤9,1≤x 2≤9,∴x ∈[1,3],令log 3x =t ,t ∈[0,1], ∴y =(t +2)2+2t +2=(t +3)2-3,∴当t =1时,y max =13.答案:139.若函数f (x )=log a (2x 2+x )(a >0,a ≠1)在区间(0,12)内恒有f (x )>0,则f (x )的单调递增区间为__________.解析:令μ=2x 2+x ,当x ∈(0,12)时,μ∈(0,1),而此时f (x )>0恒成立,∴0<a <1.μ=2(x +14)2-18,则减区间为(-∞,-14).而必然有2x 2+x >0,即x >0或x <-12.∴f (x )的单调递增区间为(-∞,-12).答案:(-∞,-12)10.试讨论函数y =2(log 12x )2-2log 12x +1的单调性. 解:易知函数的定义域为(0,+∞).如果令u =g (x )=log 12x ,y =f (u )=2u 2-2u +1,那么原函数y =f [g (x )]是由g (x )与f (u )复合而成的复合函数,而u =log 12x 在x ∈(0,+∞)内是减函数,y =2u 2-2u +1=2(u -12)2+12在u ∈(-∞,12)上是减函数,在u ∈(12,+∞)上是增函数.又u ≤12,即log 12x ≤12,得x ≥22;u >12,得0<x <22.由此,从下表讨论复合函数y =f [g (x )]的单调性:∞)上单调递增.11.(2010年广西河池模拟)已知定义在区间(0,+∞)上的函数f (x )满足f (x 1x 2)=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值;(2)判断f (x )的单调性;(3)若f (3)=-1,解不等式f (|x |)<-2.解:(1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0.(2)任取x 1,x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1,由于当x >1时,f (x )<0, 所以f (x 1x 2)<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数. (3)由f (x 1x 2)=f (x 1)-f (x 2)得f (93)=f (9)-f (3),而f (3)=-1,所以f (9)=-2.由于函数f (x )在区间(0,+∞)上是单调递减函数,由f (|x |)<f (9),得|x |>9,∴x >9或x <-9.因此不等式的解集为{x |x >9或x <-9}.12.已知:f (x )=log 3x 2+ax +b x,x ∈(0,+∞),是否存在实数a ,b ,使f (x )同时满足下列三个条件:(1)在(0,1]上是减函数,(2)在[1,+∞)上是增函数,(3)f (x )的最小值是1.若存在,求出a 、b ;若不存在,说明理由.解:∵f (x )在(0,1]上是减函数,[1,+∞)上是增函数,∴x =1时,f (x )最小,log 31+a +b 1=1.即a +b =2. 设0<x 1<x 2≤1,则f (x 1)>f (x 2).即x 12+ax 1+b x 1>x 22+ax 2+b x 2恒成立. 由此得(x 1-x 2)(x 1x 2-b )x 1x 2>0恒成立. 又∵x 1-x 2<0,x 1x 2>0,∴x 1x 2-b <0恒成立,∴b ≥1.设1≤x 3<x 4,则f (x 3)<f (x 4)恒成立.∴(x 3-x 4)(x 3x 4-b )x 3x 4<0恒成立. ∵x 3-x 4<0,x 3x 4>0,∴x 3x 4>b 恒成立.∴b ≤1.由b ≥1且b ≤1可知b =1,∴a =1.∴存在a 、b ,使f (x )同时满足三个条件.第三节 函数的性质A 组1.设偶函数f (x )=log a |x -b |在(-∞,0)上单调递增,则f (a +1)与f (b +2)的大小关系为________.解析:由f (x )为偶函数,知b =0,∴f (x )=log a |x |,又f (x )在(-∞,0)上单调递增,所以0<a <1,1<a +1<2,则f (x )在(0,+∞)上单调递减,所以f (a +1)>f (b +2).答案:f (a +1)>f (b +2)2.(2010年广东三校模拟)定义在R 上的函数f (x )既是奇函数又是以2为周期的周期函数,则f (1)+f (4)+f (7)等于________.解析:f (x )为奇函数,且x ∈R ,所以f (0)=0,由周期为2可知,f (4)=0,f (7)=f (1),又由f (x +2)=f (x ),令x =-1得f (1)=f (-1)=-f (1)⇒f (1)=0,所以f (1)+f (4)+f (7)=0.答案:03.(2009年高考山东卷改编)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则f (-25)、f (11)、f (80)的大小关系为________.解析:因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数是以8为周期的周期函数,则f (-25)=f (-1),f (80)=f (0),f (11)=f (3),又因为f (x )在R 上是奇函数,f (0)=0,得f (80)=f (0)=0,f (-25)=f (-1)=-f (1),而由f (x -4)=-f (x )得f (11)=f (3)=-f (-3)=-f (1-4)=f (1),又因为f (x )在区间[0,2]上是增函数,所以f (1)>f (0)=0,所以-f (1)<0,即f (-25)<f (80)<f (11).答案:f (-25)<f (80)<f (11)4.(2009年高考辽宁卷改编)已知偶函数f (x )在区间[0,+∞)上单调增加,则满足f (2x -1)<f (13)的x 取值范围是________. 解析:由于f (x )是偶函数,故f (x )=f (|x |),由f (|2x -1|)<f (13),再根据f (x )的单调性得|2x -1|<13,解得13<x <23.答案:(13,23) 5.(原创题)已知定义在R 上的函数f (x )是偶函数,对x ∈R ,f (2+x )=f (2-x ),当f (-3)=-2时,f (2011)的值为________.解析:因为定义在R 上的函数f (x )是偶函数,所以f (2+x )=f (2-x )=f (x -2),故函数f (x )是以4为周期的函数,所以f (2011)=f (3+502×4)=f (3)=f (-3)=-2.答案:-26.已知函数y =f (x )是定义在R 上的周期函数,周期T =5,函数y =f (x )(-1≤x ≤1)是奇函数,又知y =f (x )在[0,1]上是一次函数,在[1,4]上是二次函数,且在x =2时函数取得最小值-5.(1)证明:f (1)+f (4)=0;(2)求y =f (x ),x ∈[1,4]的解析式;(3)求y =f (x )在[4,9]上的解析式.解:(1)证明:∵f (x )是以5为周期的周期函数,∴f (4)=f (4-5)=f (-1), 又∵y =f (x )(-1≤x ≤1)是奇函数,∴f (1)=-f (-1)=-f (4),∴f (1)+f (4)=0.(2)当x ∈[1,4]时,由题意可设f (x )=a (x -2)2-5(a >0),由f (1)+f (4)=0,得a (1-2)2-5+a (4-2)2-5=0,∴a =2,∴f (x )=2(x -2)2-5(1≤x ≤4).(3)∵y =f (x )(-1≤x ≤1)是奇函数,∴f (0)=0,又知y =f (x )在[0,1]上是一次函数,∴可设f (x )=kx (0≤x ≤1),而f (1)=2(1-2)2-5=-3,∴k =-3,∴当0≤x ≤1时,f (x )=-3x ,从而当-1≤x <0时,f (x )=-f (-x )=-3x ,故-1≤x ≤1时,f (x )=-3x .∴当4≤x ≤6时,有-1≤x -5≤1,∴f (x )=f (x -5)=-3(x -5)=-3x +15.当6<x ≤9时,1<x -5≤4,∴f (x )=f (x -5)=2[(x -5)-2]2-5=2(x -7)2-5.∴f (x )=⎩⎪⎨⎪⎧ -3x +15, 4≤x ≤62(x -7)2-5, 6<x ≤9.B 组1.(2009年高考全国卷Ⅰ改编)函数f (x )的定义域为R ,若f (x +1)与f (x -1)都是奇函数,则下列结论正确的是________.①f (x )是偶函数 ②f (x )是奇函数 ③f (x )=f (x +2)④f (x +3)是奇函数解析:∵f (x +1)与f (x -1)都是奇函数,∴f (-x +1)=-f (x +1),f (-x -1)=-f (x -1),∴函数f (x )关于点(1,0),及点(-1,0)对称,函数f (x )是周期T =2[1-(-1)]=4的周期函数.∴f (-x -1+4)=-f (x -1+4),f (-x +3)=-f (x +3),即f (x +3)是奇函数.答案:④2.已知定义在R 上的函数f (x )满足f (x )=-f (x +32),且f (-2)=f (-1)=-1,f (0)=2,f (1)+f (2)+…+f (2009)+f (2010)=________.解析:f (x )=-f (x +32)⇒f (x +3)=f (x ),即周期为3,由f (-2)=f (-1)=-1,f (0)=2,所以f (1)=-1,f (2)=-1,f (3)=2,所以f (1)+f (2)+…+f (2009)+f (2010)=f (2008)+f (2009)+f (2010)=f (1)+f (2)+f (3)=0.答案:03.(2010年浙江台州模拟)已知f (x )是定义在R 上的奇函数,且f (1)=1,若将f (x )的图象向右平移一个单位后,得到一个偶函数的图象,则f (1)+f (2)+f (3)+…+f (2010)=________.解析:f (x )是定义在R 上的奇函数,所以f (-x )=-f (x ),将f (x )的图象向右平移一个单位后,得到一个偶函数的图象,则满足f (-2+x )=-f (x ),即f (x +2)=-f (x ),所以周期为4,f (1)=1,f (2)=f (0)=0,f (3)=-f (1)=-1,f (4)=0,所以f (1)+f (2)+f (3)+f (4)=0,则f (1)+f (2)+f (3)+…+f (2010)=f (4)×502+f (2)=0.答案:04.(2010年湖南郴州质检)已知函数f (x )是R 上的偶函数,且在(0,+∞)上有f ′(x )>0,若f (-1)=0,那么关于x 的不等式xf (x )<0的解集是________.解析:在(0,+∞)上有f ′(x )>0,则在(0,+∞)上f (x )是增函数,在(-∞,0)上是减函数,又f (x )在R 上是偶函数,且f (-1)=0,∴f (1)=0.从而可知x ∈(-∞,-1)时,f (x )>0;x ∈(-1,0)时,f (x )<0;x ∈(0,1)时,f (x )<0;x ∈(1,+∞)时,f (x )>0.∴不等式的解集为(-∞,-1)∪(0,1)答案:(-∞,-1)∪(0,1).5.(2009年高考江西卷改编)已知函数f (x )是(-∞,+∞)上的偶函数,若对于x ≥0,都有f (x +2)=f (x ),且当x ∈[0,2)时,f (x )=log 2(x +1),则f (-2009)+f (2010)的值为________.解析:∵f (x )是偶函数,∴f (-2009)=f (2009).∵f (x )在x ≥0时f (x +2)=f (x ),∴f (x )周期为2.∴f (-2009)+f (2010)=f (2009)+f (2010)=f (1)+f (0)=log 22+log 21=0+1=1.答案:16.(2010年江苏苏州模拟)已知函数f (x )是偶函数,并且对于定义域内任意的x ,满足f (x +2)=-1f (x ),若当2<x <3时,f (x )=x ,则f (2009.5)=________. 解析:由f (x +2)=-1f (x ),可得f (x +4)=f (x ),f (2009.5)=f (502×4+1.5)=f (1.5)=f (-2.5)∵f (x )是偶函数,∴f (2009.5)=f (2.5)=52.答案:527.(2010年安徽黄山质检)定义在R 上的函数f (x )在(-∞,a ]上是增函数,函数y =f (x +a )是偶函数,当x 1<a ,x 2>a ,且|x 1-a |<|x 2-a |时,则f (2a -x 1)与f (x 2)的大小关系为________.解析:∵y =f (x +a )为偶函数,∴y =f (x +a )的图象关于y 轴对称,∴y =f (x )的图象关于x =a 对称.又∵f (x )在(-∞,a ]上是增函数,∴f (x )在[a ,+∞)上是减函数.当x 1<a ,x 2>a ,且|x 1-a |<|x 2-a |时,有a -x 1<x 2-a ,即a <2a -x 1<x 2,∴f (2a -x 1)>f (x 2).答案:f (2a -x 1)>f (x 2)8.已知函数f (x )为R 上的奇函数,当x ≥0时,f (x )=x (x +1).若f (a )=-2,则实数a =________.解析:当x ≥0时,f (x )=x (x +1)>0,由f (x )为奇函数知x <0时,f (x )<0,∴a <0,f (-a )=2,∴-a (-a +1)=2,∴a =2(舍)或a =-1.答案:-19.(2009年高考山东卷)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数.若方程f (x )=m (m >0)在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4=________.解析:因为定义在R 上的奇函数,满足f (x -4)=-f (x ),所以f (4-x )=f (x ),因此,函数图象关于直线x =2对称且f (0)=0.由f (x -4)=-f (x )知f (x -8)=f (x ),所以函数是以8为周期的周期函数.又因为f (x )在区间[0,2]上是增函数,所以f (x )在区间[-2,0]上也是增函数,如图所示,那么方程f (x )=m (m >0)在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,不妨设x 1<x 2<x 3<x 4.由对称性知x 1+x 2=-12,x 3+x 4=4,所以x 1+x 2+x 3+x 4=-12+4=-8. 答案:-810.已知f (x )是R 上的奇函数,且当x ∈(-∞,0)时,f (x )=-x lg(2-x ),求f (x )的解析式.解:∵f (x )是奇函数,可得f (0)=-f (0),∴f (0)=0.当x >0时,-x <0,由已知f (-x )=x lg(2+x ),∴-f (x )=x lg(2+x ),即f (x )=-x lg(2+x ) (x >0).∴f (x )=⎩⎪⎨⎪⎧ -x lg(2-x ) (x <0),-x lg(2+x ) (x ≥0).即f (x )=-x lg(2+|x |)(x ∈R ).11.已知函数f (x ),当x ,y ∈R 时,恒有f (x +y )=f (x )+f (y ).(1)求证:f (x )是奇函数;(2)如果x ∈R +,f (x )<0,并且f (1)=-12,试求f (x )在区间[-2,6]上的最值.解:(1)证明:∴函数定义域为R ,其定义域关于原点对称.∵f (x +y )=f (x )+f (y ),令y =-x ,∴f (0)=f (x )+f (-x ).令x =y =0,∴f (0)=f (0)+f (0),得f (0)=0.∴f (x )+f (-x )=0,得f (-x )=-f (x ),∴f (x )为奇函数.(2)法一:设x ,y ∈R +,∵f (x +y )=f (x )+f (y ),∴f (x +y )-f (x )=f (y ).∵x ∈R +,f (x )<0,∴f (x +y )-f (x )<0,∴f (x +y )<f (x ).∵x +y >x ,∴f (x )在(0,+∞)上是减函数.又∵f (x )为奇函数,f (0)=0,∴f (x )在(-∞,+∞)上是减函数.∴f (-2)为最大值,f (6)为最小值.∵f (1)=-12,∴f (-2)=-f (2)=-2f (1)=1,f (6)=2f (3)=2[f (1)+f (2)]=-3.∴所求f (x )在区间[-2,6]上的最大值为1,最小值为-3.法二:设x 1<x 2,且x 1,x 2∈R .则f (x 2-x 1)=f [x 2+(-x 1)]=f (x 2)+f (-x 1)=f (x 2)-f (x 1).∵x 2-x 1>0,∴f (x 2-x 1)<0.∴f (x 2)-f (x 1)<0.即f (x )在R 上单调递减.∴f (-2)为最大值,f (6)为最小值.∵f (1)=-12,∴f (-2)=-f (2)=-2f (1)=1,f (6)=2f (3)=2[f (1)+f (2)]=-3.∴所求f (x )在区间[-2,6]上的最大值为1,最小值为-3.12.已知函数f (x )的定义域为R ,且满足f (x +2)=-f (x ).(1)求证:f (x )是周期函数;(2)若f (x )为奇函数,且当0≤x ≤1时,f (x )=12x ,求使f (x )=-12在[0,2010]上的所有x 的个数.解:(1)证明:∵f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=-[-f (x )]=f (x ), ∴f (x )是以4为周期的周期函数.(2)当0≤x ≤1时,f (x )=12x , 设-1≤x ≤0,则0≤-x ≤1,∴f (-x )=12(-x )=-12x .∵f (x )是奇函数,∴f (-x )=-f (x ),∴-f (x )=-12x ,即f (x )=12x .故f (x )=12x (-1≤x ≤1) 又设1<x <3,则-1<x -2<1,∴f (x -2)=12(x -2), 又∵f (x -2)=-f (2-x )=-f [(-x )+2]=-[-f (-x )]=-f (x ),∴-f (x )=12(x -2),∴f (x )=-12(x -2)(1<x <3).∴f (x )=⎩⎪⎨⎪⎧ 12x (-1≤x ≤1)-12(x -2) (1<x <3)由f (x )=-12,解得x =-1.∵f (x )是以4为周期的周期函数.故f (x )=-12的所有x =4n -1(n ∈Z ).令0≤4n -1≤2010,则14≤n ≤50234,又∵n ∈Z ,∴1≤n ≤502(n ∈Z ),∴在[0,2010]上共有502个x 使f (x )=-12. 第三章 指数函数和对数函数第一节 指数函数 A 组1.(2010年黑龙江哈尔滨模拟)若a >1,b <0,且a b +a -b =22,则a b -a -b 的值等于________.解析:∵a >1,b <0,∴0<a b <1,a -b >1.又∵(a b +a -b )2=a 2b +a -2b +2=8,∴a2b +a -2b =6,∴(a b -a -b )2=a 2b +a -2b -2=4,∴a b -a -b =-2.答案:-22.已知f (x )=a x +b 的图象如图所示,则f (3)=________.解析:由图象知f (0)=1+b =-2,∴b =-3.又f (2)=a 2-3=0,∴a =3,则f (3)=(3)3-3=33-3.答案:33-33.函数y =(12)2x -x 2的值域是________.解析:∵2x -x 2=-(x -1)2+1≤1, ∴(12)2x -x 2≥12.答案:[12,+∞) 4.(2009年高考山东卷)若函数f (x )=a x-x -a (a >0,且a ≠1)有两个零点,则实数a 的取值范围是________.解析:函数f (x )的零点的个数就是函数y =a x与函数y =x +a 交点的个数,由函数的图象可知a >1时两函数图象有两个交点,0<a <1时两函数图象有惟一交点,故a >1. 答案:(1,+∞)5.(原创题)若函数f (x )=a x-1(a >0,a ≠1)的定义域和值域都是[0,2],则实数a 等于________.解析:由题意知⎩⎪⎨⎪⎧0<a <1a 2-1=0a 0-1=2无解或⎩⎪⎨⎪⎧a >1a 0-1=0a 2-1=2⇒a = 3.答案: 36.已知定义域为R 的函数f (x )=-2x+b2x +1+a 是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.解:(1)因为f (x )是R 上的奇函数,所以f (0)=0,即-1+b2+a=0,解得b =1.从而有f (x )=-2x+12x +1+a .又由f (1)=-f (-1)知-2+14+a =--12+11+a,解得a=2.(2)法一:由(1)知f (x )=-2x+12x +1+2=-12+12x +1,由上式易知f (x )在R 上为减函数,又因f (x )是奇函数,从而不等式f (t 2-2t )+f (2t 2-k )<0⇔f (t 2-2t )<-f (2t 2-k )=f (-2t 2+k ).因f (x )是R 上的减函数,由上式推得t 2-2t >-2t 2+k .即对一切t ∈R 有3t 2-2t -k >0,从而Δ=4+12k <0,解得k <-13.法二:由(1)知f (x )=-2x+12x +1+2,又由题设条件得-2t 2-2t+12t 2-2t +1+2+-22t 2-k+122t 2-k +1+2<0即(22t 2-k +1+2)(-2t 2-2t+1)+(2t 2-2t +1+2)(-22t 2-k+1)<0整理得23t 2-2t -k>1,因底数2>1,故3t 2-2t -k >0上式对一切t ∈R 均成立,从而判别式Δ=4+12k <0,解得k <-13.B 组1.如果函数f (x )=a x+b -1(a >0且a ≠1)的图象经过第一、二、四象限,不经过第三象限,那么一定有________.①0<a <1且b >0 ②0<a <1且0<b <1 ③a >1且b <0 ④a >1且b >0解析:当0<a <1时,把指数函数f (x )=a x的图象向下平移,观察可知-1<b -1<0,即0<b <1.答案:②2.(2010年保定模拟)若f (x )=-x 2+2ax 与g (x )=(a +1)1-x在区间[1,2]上都是减函数,则a 的取值范围是________.解析:f (x )=-x 2+2ax =-(x -a )2+a 2,所以f (x )在[a ,+∞)上为减函数,又f (x ),g (x )都在[1,2]上为减函数,所以需⎩⎪⎨⎪⎧a ≤1a +1>1⇒0<a ≤1.答案:(0,1]3.已知f (x ),g (x )都是定义在R 上的函数,且满足以下条件①f (x )=a x ·g (x )(a >0,a ≠1);②g (x )≠0;若f (1)g (1)+f (-1)g (-1)=52,则a 等于________.解析:由f (x )=a x·g (x )得f (x )g (x )=a x ,所以f (1)g (1)+f (-1)g (-1)=52⇒a +a -1=52,解得a =2或12.答案:2或124.(2010年北京朝阳模拟)已知函数f (x )=a x (a >0且a ≠1),其反函数为f -1(x ).若f (2)=9,则f -1(13)+f (1)的值是________.解析:因为f (2)=a 2=9,且a >0,∴a =3,则f (x )=3x=13,∴x =-1,故f -1(13)=-1.又f (1)=3,所以f -1(13)+f (1)=2.答案:25.(2010年山东青岛质检)已知f (x )=(13)x,若f (x )的图象关于直线x =1对称的图象对应的函数为g (x ),则g (x )的表达式为________.解析:设y =g (x )上任意一点P (x ,y ),P (x ,y )关于x =1的对称点P ′(2-x ,y )在f (x )=(13)x 上,∴y =(13)2-x =3x -2.答案:y =3x -2(x ∈R )6.(2009年高考山东卷改编)函数y =e x +e-x e x -e-x 的图象大致为________.。

高中数学一轮复习(含答案)1.1 集合

高中数学一轮复习(含答案)1.1 集合

第一章 集合与常用逻辑用语 第一节 集合一、基础知识1.集合的有关概念(1)集合元素的三个特性:确定性、无序性、互异性.元素互异性,即集合中不能出现相同的元素,此性质常用于求解含参数的集合问题中.(2)集合的三种表示方法:列举法、描述法、图示法.(3)元素与集合的两种关系:属于,记为∈;不属于,记为∉.(4)五个特定的集合及其关系图:N *或N +表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.2.集合间的基本关系(1)子集:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,则称A 是B 的子集,记作A ⊆B (或B ⊇A ).(2)真子集:如果集合A 是集合B 的子集,但集合B 中至少有一个元素不属于A ,则称A 是B 的真子集,记作A B 或B A . A B ⇔⎩⎪⎨⎪⎧ A ⊆B ,A ≠B .既要说明A 中任何一个元素都属于B ,也要说明B 中存在一个元素不属于A . (3)集合相等:如果A ⊆B ,并且B ⊆A ,则A =B . 两集合相等:A =B ⇔⎩⎪⎨⎪⎧A ⊆B ,A ⊇B .A 中任意一个元素都符合B 中元素的特性,B 中任意一个元素也符合A 中元素的特性.(4)空集:不含任何元素的集合.空集是任何集合A 的子集,是任何非空集合B 的真子集.记作∅.∅∈{∅},∅⊆{∅},0∉∅,0∉{∅},0∈{0},∅⊆{0}.3.集合间的基本运算(1)交集:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集,记作A ∩B ,即A ∩B ={x |x ∈A ,且x ∈B }.(2)并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为A 与B 的并集,记作A ∪B ,即A ∪B ={x |x ∈A ,或x ∈B }.(3)补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作∁U A ,即∁U A ={x |x ∈U ,且x ∉A }.求集合A 的补集的前提是“A 是全集U 的子集”,集合A 其实是给定的条件.从全集U 中取出集合A 的全部元素,剩下的元素构成的集合即为∁U A .二、常用结论(1)子集的性质:A ⊆A ,∅⊆A ,A ∩B ⊆A ,A ∩B ⊆B .(2)交集的性质:A ∩A =A ,A ∩∅=∅,A ∩B =B ∩A .(3)并集的性质:A ∪B =B ∪A ,A ∪B ⊇A ,A ∪B ⊇B ,A ∪A =A ,A ∪∅=∅∪A =A .(4)补集的性质:A ∪∁U A =U ,A ∩∁U A =∅,∁U (∁U A )=A ,∁A A =∅,∁A ∅=A .(5)含有n 个元素的集合共有2n 个子集,其中有2n -1个真子集,2n -1个非空子集.(6)等价关系:A ∩B =A ⇔A ⊆B ;A ∪B =A ⇔A ⊇B .考点一 集合的基本概念[典例] (1)(2017·全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( )A .3B .2C .1D .0 (2)已知a ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a ,1={a 2,a +b,0},则a 2 019+b 2 019的值为( )A .1B .0C .-1D .±1[解析] (1)因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2.(2)由已知得a ≠0,则b a=0,所以b =0,于是a 2=1,即a =1或a =-1.又根据集合中元素的互异性可知a =1应舍去,因此a =-1,故a 2 019+b 2 019=(-1)2 019+02 019=-1.[答案] (1)B (2)C [提醒] 集合中元素的互异性常常容易忽略,求解问题时要特别注意.[题组训练]1.设集合A ={0,1,2,3},B ={x |-x ∈A,1-x ∉A },则集合B 中元素的个数为( )A .1B .2C .3D .4解析:选A 若x ∈B ,则-x ∈A ,故x 只可能是0,-1,-2,-3,当0∈B 时,1-0=1∈A ;当-1∈B 时,1-(-1)=2∈A ;当-2∈B 时,1-(-2)=3∈A ;当-3∈B 时,1-(-3)=4∉A ,所以B ={-3},故集合B 中元素的个数为1.2.若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a 等于( )A.92B.98 C .0 D .0或98解析:选D 若集合A 中只有一个元素,则方程ax 2-3x +2=0只有一个实根或有两个相等实根.当a =0时,x =23,符合题意.当a ≠0时,由Δ=(-3)2-8a =0,得a =98,所以a 的值为0或98. 3.(2018·厦门模拟)已知P ={x |2<x <k ,x ∈N},若集合P 中恰有3个元素,则k 的取值范围为_____________ 解析:因为P 中恰有3个元素,所以P ={3,4,5},故k 的取值范围为5<k ≤6.答案:(5,6] 考点二 集合间的基本关系[典例] (1)已知集合A ={x |x 2-3x +2=0,x ∈R},B ={x |0<x <5,x ∈N},则( )A .B ⊆AB .A =BC .A BD .B A(2)(2019·湖北八校联考)已知集合A ={x ∈N *|x 2-3x <0},则满足条件B ⊆A 的集合B 的个数为( )A .2B .3C .4D .8(3)已知集合A ={x |-1<x <3},B ={x |-m <x <m },若B ⊆A ,则m 的取值范围为________.[解析] (1)由x 2-3x +2=0得x =1或x =2,∴A ={1,2}.由题意知B ={1,2,3,4},比较A ,B 中的元素可知A B ,故选C. (2)∵A ={x ∈N *|x 2-3x <0}={x ∈N *|0<x <3}={1,2},又B ⊆A ,∴满足条件B ⊆A 的集合B 的个数为22=4,故选C.(3)当m ≤0时,B =∅,显然B ⊆A . 当m >0时,因为A ={x |-1<x <3}.若B ⊆A ,在数轴上标出两集合,如图,所以⎩⎪⎨⎪⎧ -m ≥-1,m ≤3,-m <m .所以0<m ≤1.综上所述,m 的取值范围为(-∞,1]. [答案] (1)C (2)C (3)(-∞,1][变透练清]1.(变条件)若本例(2)中A 不变,C ={x |0<x <5,x ∈N},则满足条件A ⊆B ⊆C 的集合B 的个数为( )A .1B .2C .3D .4解析:选D 因为A ={1,2},由题意知C ={1,2,3,4},所以满足条件的B 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}.2.(变条件)若本例(3)中,把条件“B ⊆A ”变为“A ⊆B ”,其他条件不变,则m 的取值范围为________.解析:若A ⊆B ,由⎩⎪⎨⎪⎧-m ≤-1,m ≥3得m ≥3,∴m 的取值范围为[3,+∞).答案:[3,+∞) 3.已知集合A ={1,2},B ={x |x 2+mx +1=0,x ∈R},若B ⊆A ,则实数m 的取值范围为________. 解析:①若B =∅,则Δ=m 2-4<0,解得-2<m <2;②若1∈B ,则12+m +1=0,解得m =-2,此时B ={1},符合题意;③若2∈B ,则22+2m +1=0,解得m =-52,此时B =⎩⎨⎧⎭⎬⎫2,12,不合题意. 综上所述,实数m 的取值范围为[-2,2).答案:[-2,2)考点三 集合的基本运算考法(一) 集合的运算[典例] (1)(2018·天津高考)设集合A ={1,2,3,4},B ={-1,0,2,3},C ={x ∈R|-1≤x <2},则(A ∪B )∩C =( )A .{-1,1}B .{0,1}C .{-1,0,1}D .{2,3,4}(2)已知全集U =R ,集合A ={x |x 2-3x -4>0},B ={x |-2≤x ≤2},则如图所示阴影部分所表示的集合为( )A .{x |-2≤x <4}B .{x |x ≤2或x ≥4}C .{x |-2≤x ≤-1}D .{x |-1≤x ≤2}[解析] (1)∵A ={1,2,3,4},B ={-1,0,2,3},∴A ∪B ={-1,0,1,2,3,4}.又C ={x ∈R|-1≤x <2}, ∴(A ∪B )∩C ={-1,0,1}.(2)依题意得A ={x |x <-1或x >4},因此∁R A ={x |-1≤x ≤4},题中的阴影部分所表示的集合为(∁R A )∩B ={x |-1≤x ≤2}. [答案] (1)C (2)D考法(二) 根据集合运算结果求参数[典例] (1)已知集合A ={x |x 2-x -12>0},B ={x |x ≥m }.若A ∩B ={x |x >4},则实数m 的取值范围是( )A .(-4,3)B .[-3,4]C .(-3,4)D .(-∞,4](2)(2019·河南名校联盟联考)已知A ={1,2,3,4},B ={a +1,2a },若A ∩B ={4},则a =( )A .3B .2C .2或3D .3或1[解析] (1)集合A ={x |x <-3或x >4},∵A ∩B ={x |x >4},∴-3≤m ≤4,故选B.(2)∵A ∩B ={4},∴a +1=4或2a =4.若a +1=4,则a =3,此时B ={4,6},符合题意;若2a =4,则a =2,此时B ={3,4},不符合题意.综上,a =3,故选A. [答案] (1)B (2)A[题组训练]1.已知集合A ={1,2,3},B ={x |(x +1)(x -2)<0,x ∈Z},则A ∪B =( )A .{1}B .{1,2}C .{0,1,2,3}D .{-1,0,1,2,3}解析:选C 因为集合B ={x |-1<x <2,x ∈Z}={0,1},而A ={1,2,3},所以A ∪B ={0,1,2,3}.2.(2019·重庆六校联考)已知集合A ={x |2x 2+x -1≤0},B ={x |lg x <2},则(∁R A )∩B =( )A.⎝⎛⎭⎫12,100B.⎝⎛⎭⎫12,2C.⎣⎡⎭⎫12,100 D .∅解析:选A 由题意得A =⎣⎡⎦⎤-1,12,B =(0,100),则∁R A =(-∞,-1)∪⎝⎛⎭⎫12,+∞,所以(∁R A )∩B =⎝⎛⎭⎫12,100. 3.(2019·合肥质量检测)已知集合A =[1,+∞),B =⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪12a ≤x ≤2a -1,若A ∩B ≠∅,则实数a 的取值范围是( )A .[1,+∞)B.⎣⎡⎦⎤12,1C.⎣⎡⎭⎫23,+∞ D .(1,+∞)解析:选A 因为A ∩B ≠∅,所以⎩⎨⎧2a -1≥1,2a -1≥12a ,解得a ≥1. [课时跟踪检测]1.(2019·福州质检)已知集合A ={x |x =2k +1,k ∈Z},B ={x |-1<x ≤4},则集合A ∩B 中元素的个数为( )A .1B .2C .3D .4解析:选B 依题意,集合A 是由所有的奇数组成的集合,故A ∩B ={1,3},所以A ∩B 中元素的个数为2.2.设集合U ={1,2,3,4,5,6},A ={1,3,5},B ={3,4,5},则∁U (A ∪B )=( )A .{2,6}B .{3,6}C .{1,3,4,5}D .{1,2,4,6}解析:选A 因为A ={1,3,5},B ={3,4,5},所以A ∪B ={1,3,4,5}.又U ={1,2,3,4,5,6},所以∁U (A ∪B )={2,6}.3.(2018·天津高考)设全集为R ,集合A ={x |0<x <2},B ={x |x ≥1},则A ∩(∁R B )=( )A .{x |0<x ≤1}B .{x |0<x <1}C .{x |1≤x <2}D .{x |0<x <2}解析:选B ∵全集为R ,B ={x |x ≥1},∴∁R B ={x |x <1}.∵集合A ={x |0<x <2},∴A ∩(∁R B )={x |0<x <1}.4.(2018·南宁毕业班摸底)设集合M ={x |x <4},集合N ={x |x 2-2x <0},则下列关系中正确的是( )A .M ∩N =MB .M ∪(∁R N )=MC .N ∪(∁R M )=RD .M ∪N =M解析:选D 由题意可得,N =(0,2),M =(-∞,4),所以M ∪N =M .5.设集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪12≤2x <2,B ={x |ln x ≤0},则A ∩B 为( ) A.⎝⎛⎭⎫0,12 B .[-1,0) C.⎣⎡⎭⎫12,1 D .[-1,1]解析:选A ∵12≤2x <2,即2-1≤2x <212,∴-1≤x <12,∴A =⎩⎨⎧⎭⎬⎫x ⎪⎪-1≤x <12.∵ln x ≤0,即ln x ≤ln 1,∴0<x ≤1,∴B ={x |0<x ≤1},∴A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <12. 6.(2019·郑州质量测试)设集合A ={x |1<x <2},B ={x |x <a },若A ∩B =A ,则a 的取值范围是( )A .(-∞,2]B .(-∞,1]C .[1,+∞)D .[2,+∞)解析:选D 由A ∩B =A ,可得A ⊆B ,又因为A ={x |1<x <2},B ={x |x <a },所以a ≥2.7.已知全集U =A ∪B 中有m 个元素,()∁U A ∪()∁U B 中有n 个元素.若A ∩B 非空,则A ∩B 的元素个数为( )A .mnB .m +nC .n -mD .m -n解析:选D 因为()∁U A ∪()∁U B 中有n 个元素,如图中阴影部分所示,又U =A ∪B 中有m 个元素,故A ∩B 中有m -n 个元素.8.定义集合的商集运算为A B =⎩⎨⎧⎭⎬⎫x ⎪⎪ x =m n ,m ∈A ,n ∈B ,已知集合A ={2,4,6},B =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k 2-1,k ∈A ,则集合B A∪B 中的元素个数为( ) A .6B .7C .8D .9解析:选B 由题意知,B ={0,1,2},B A =⎩⎨⎧⎭⎬⎫0,12,14,16,1,13,则B A ∪B =⎩⎨⎧⎭⎬⎫0,12,14,16,1,13,2,共有7个元素.9.设集合A ={x |x 2-x -2≤0},B ={x |x <1,且x ∈Z},则A ∩B =________. 答案:{-1,0}解析:依题意得A ={x |(x +1)(x -2)≤0}={x |-1≤x ≤2},因此A ∩B ={x |-1≤x <1,x ∈Z}={-1,0}.10.已知集合U =R ,集合A =[-5,2],B =(1,4),则下图中阴影部分所表示的集合为________.解析:∵A =[-5,2],B =(1,4),∴∁U B ={x |x ≤1或x ≥4},则题图中阴影部分所表示的集合为(∁U B )∩A ={x |-5≤x ≤1}.答案:{x |-5≤x ≤1}11.若集合A ={(x ,y )|y =3x 2-3x +1},B ={(x ,y )|y =x },则集合A ∩B 中的元素个数为________. 解析:法一:由集合的意义可知,A ∩B 表示曲线y =3x 2-3x +1与直线y =x 的交点构成的集合.联立得方程组⎩⎪⎨⎪⎧ y =3x 2-3x +1,y =x ,解得⎩⎨⎧ x =13,y =13或⎩⎪⎨⎪⎧x =1,y =1, 故A ∩B =⎩⎨⎧⎭⎬⎫⎝⎛⎭⎫13,13,(1,1),所以A ∩B 中含有2个元素. 法二:由集合的意义可知,A ∩B 表示曲线y =3x 2-3x +1与直线y =x 的交点构成的集合.因为3x 2-3x +1=x 即3x 2-4x +1=0的判别式Δ>0,所以该方程有两个不相等的实根,所以A ∩B 中含有2个元素.答案:212.已知集合A ={x |log 2x ≤2},B ={x |x <a },若A ⊆B ,则实数a 的取值范围是__________.解析:由log 2x ≤2,得0<x ≤4,即A ={x |0<x ≤4},而B ={x |x <a },由于A ⊆B ,在数轴上标出集合A ,B ,如图所示,则a >4.答案:(4,+∞)13.设全集U =R ,A ={x |1≤x ≤3},B ={x |2<x <4},C ={x |a ≤x ≤a +1}.(1)分别求A ∩B ,A ∪(∁U B );(2)若B ∪C =B ,求实数a 的取值范围.解:(1)由题意知,A ∩B ={x |1≤x ≤3}∩{x |2<x <4}={x |2<x ≤3}.易知∁U B ={x |x ≤2或x ≥4},所以A ∪(∁U B )={x |1≤x ≤3}∪{x |x ≤2或x ≥4}={x |x ≤3或x ≥4}.(2)由B ∪C =B ,可知C ⊆B ,画出数轴(图略),易知2<a <a +1<4,解得2<a <3. 故实数a 的取值范围是(2,3).。

【赢在课堂】高考数学一轮复习 1

【赢在课堂】高考数学一轮复习 1

要加强用集合语言做数学题目的练习.如函数
的定义域、值域等问题的集合表示便是填空题
中的易错点.
集的补集的含义,会求给定子
6.学习过程中一定要注意韦恩(Venn)图的运用,
集的补集.
(3)能使用韦恩(Venn)图表达简
单集合的关系及运算.
尤其是集合之间的关系问题,画出满足题意的
韦恩(Venn)图,数形结合往往是解题的最好思
C. 3∈A
D.2∈A
)
【答案】B
【解析】由于 A 中的元素为自然数,故满足- 3≤x≤ 3的 A 中的元素只有
两个,即 A={0,1},于是 0∈A.
2.由 a2,2-a,4 组成一个三元素集合 A,则实数 a 的值可以是(
A.1
B.-2
C.6
)
D.2
【答案】C
【解析】代入各选项验证,知 A,B,D 三项不满足集合元素的互异性.
路.
1.元素与集合
①确定性,
(1)集合中元素的三个特性 ②互异性,
③无序性.
(2)集合中元素与集合的关系
元素与集合的关系有属于和不属于两种,分别用符号∈、∉ 表示.
(3)常见集合的符号表示:
数集
自然数集
正整数集
整数集
有理数集
实数集
记法
N
N*或 N+
Z
Q
R
列举法,
(4)集合的表示法
描述法,
韦恩(Venn)图法.
(2)由 x2-3x<0,得 0<x<3.又 x∈Z,故 N={1,2}.
由 M={a,0}且 M∩N={1},可得 a=1.
从而 M={1,0},P={1,2}∪{1,0}={0,1,2}.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例1 判定以下关系是否正确
(2){1,2,3}={3,2,1}
(4)0∈{0}
分析 空集是任何集合的子集,是任何非空集合的真子集.
解 根据子集、真子集以及集合相等的概念知①②③④是正确的,后两个都是错误的.
说明:含元素0的集合非空.
例2 列举集合{1,2,3}的所有子集.
分析 子集中分别含1,2,3三个元素中的0个,1个,2个或者3个.
含有1个元素的子集有{1},{2},{3};
含有2个元素的子集有{1,2},{1,3},{2,3}; 含有3个元素的子集有{1,2,3}.共有子集8个.
________.
分析 A 中必含有元素a ,b ,又A 是{a ,b ,c ,d}真子集,所以满足条件的A 有:{a ,b},{a ,b ,c}{a ,b ,d}.
答 共3个.
说明:必须考虑A 中元素受到的所有约束.
[ ]
分析 作出4图形. 答 选C .
说明:考虑集合之间的关系,用图形解决比较方便.
(1){a}{a}⊆(3){0}∅⊂≠
(5){0}(6){0}
∅∅∈=解含有个元素的子集有:; 0∅说明:对于集合,我们把和叫做它的平凡子集.A A ∅例已知,,,,,则满足条件集合的个数为≠3 {a b}A {a b c d}A ⊆⊂例设为全集,集合、,且,则≠
4 U M N U N M ⊂

点击思维
例5 设集合A ={x|x =5-4a +a 2,a ∈R},B ={y|y =4b 2+4b +2,b ∈R},则下列关系式中正确的是
[ ]
分析 问题转化为求两个二次函数的值域问题,事实上 x =5-4a +a 2=(2-a)2+1≥1,
y =4b 2+4b +2=(2b +1)2+1≥1,所以它们的值域是相同的,因此A =B . 答 选A .
说明:要注意集合中谁是元素.
M 与P 的关系是
[ ]
A .M =
U P
B .M =P
分析 可以有多种方法来思考,一是利用逐个验证(排除)的方法;二是利
用补集的性质:M =
U N =
U (
U P)=P ;三是利用画图的方法.
A A
B B A B
C A B
D A B .=...≠≠
⊇⊂
⊃C M P
D M P ..≠⊃

答 选B .
说明:一题多解可以锻炼发散思维. 例7 下列命题中正确的是
[ ]
A .
U (
U A)={A}
分析 D 选择项中A ∈B 似乎不合常规,而这恰恰是惟一正确的选择支.
是由这所有子集组成的集合,集合A 是其中的一个元素. ∴A ∈B . 答 选D .
说明:选择题中的选项有时具有某种误导性,做题时应加以注意.
例8 已知集合A ={2,4,6,8,9},B ={1,2,3,5,8},又知非空集合C 是这样一个集合:其各元素都加2后,就变为A 的一个子集;若各元素都减2后,则变为B 的一个子集,求集合C .
分析 逆向操作:A 中元素减2得0,2,4,6,7,则C 中元素必在其中;B 中元素加2得3,4,5,7,10,则C 中元素必在其中;所以C 中元素只能是4或7.
答 C ={4}或{7}或{4,7}.
说明:逆向思维能力在解题中起重要作用.
例9 设S ={1,2,3,4},且M ={x ∈S|x 2-5x +p =0},若S M ={1,
4},则p =________.
分析 本题渗透了方程的根与系数关系理论,由于
S M ={1,4},
∴M ={2,3}则由韦达定理可解. 答 p =2×3=6.
说明:集合问题常常与方程问题相结合.
例10 已知集合S ={2,3,a 2+2a -3},A ={|a +1|,2},S A ={a +3},
求a 的值.
B A B B A B
C A {1{2}}{2}A
.若∩=,则.若=,,,则≠⊆⊂ϕD A {123}B {x|x A}A B .若=,,,=,则∈⊆∵选择支中,中的元素,,即是集合的子集,而的子D B x A x A A ⊆集有,,,,,,,,,,,,,而∅{1}{2}{3}{12}{13}{23}{123}B 且,≠
M S ⊂
S 这个集合是集合A 与集合
S A
的元素合在一起“补成”的,此外,对
这类字母的集合问题,需要注意元素的互异性及分类讨论思想方法的应用.
解 由补集概念及集合中元素互异性知a 应满足
在(1)中,由①得a =0依次代入②③④检验,不合②,故舍去.
在(2)中,由①得a =-3,a =2,分别代入②③④检验,a =-3不合②,故舍去,a =2能满足②③④.故a =2符合题意.
说明:分类要做到不重不漏.
[ ]
A .M =N
D .M 与N 没有相同元素
分析 分别令k =…,-1,0,1,2,3,…得
()1a 3 3 |a 1|a 2a 3 a 2a 3 2 a 2a 3 3 2
2
2+=①+=+-②+-≠③+-≠④⎧⎨⎪⎪⎩⎪⎪或+=+-①+=②+-≠③+-≠④
(2)a 3a 2a 3 |a 1| 3 a 2a 3 2 a 2a 3 3 22
2⎧⎨⎪
⎪⎩
⎪⎪例年北京高考题集合==π+π
,∈,=11 (1993)M {x|x k Z}N {k 24
x|x k Z}=π+π,∈则k 42
B M N
C M N
..≠≠⊃⊂M {}N {}
M N =…,-π,π,π,π,π
,…,
=…,π,π,π,π,π
,…易见,.

44345474423454

答选C.
说明:判断两个集合的包含或者相等关系要注意集合元素的无序性。

相关文档
最新文档