2017-2018学年高一数学上学期期末试题及答案(新人教A版 第41套)

合集下载

2017~2018学年度第一学期期末测试卷高一数学

2017~2018学年度第一学期期末测试卷高一数学

第1页 共6页 第2页 共6页学校:_______________________________ 姓名:_______________ 座位号:_________装订线内不要答题2017~2018学年度第一学期期末测试卷高一数学一、选择题(每小题5分,共60分)1. 若全集U ={0,1,2,3,4,5,6},A ={2,3,4,5},B ={1,2,5,6},则(U A ð)∩B 等于 ( )A .{0,1,6}B .{1,6}C .{2,5}D .{0,1,2,5,6} 2. 不等式|1-2x|<3的解集为( )A .(-1,2)B .(-∞,-1)∪(2,+∞)C .(-2,1)D .(-∞,-2)∪(1,+∞)3. 若集合A ={x |-1<x ≤3},B ={x |x <a },若A ∪B =B ,则正确的是( )A .a >3B .a ≥3C .a <-1D .a ≤-1 4. x >5是|x -1|<2的解的( )A .充分不必要条件B .必要不充分条件C .充要条件D .以上均不对5. 满足条件{1,3}⊆A ⊆{1,2,3,4}的所有集合A 的个数是( )A .4B .5C .6D .8 6. x 2-5x +6≤0的解集是( )A .RB .ΦC .[1,6]D .[2,3]7. 已知集合A ={x ∈R ||x -1|≤2},B ={x ∈R |x 2≤4},则A ∩B =( )A .(-1,2)B .[-1,2]C .(0,2]D .[-1,3]8. a >b 是ac 2>bc 2的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9. 不等式|2x -1|-5≤0的正整数解集是( )A .(-2,3)B .[-2,3]C .{1,2,3}D .{-2,-1,0,1,2,3} 10. “ab >0”是“a >0且b >0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件11. 二次函数y =x 2+2x +6的顶点坐标是( )A .(2,6)B .(-2,3)C .(-1,6)D .(-1,5) 12. 2x 2+x >0的解集为( )A .{x |x <-12}B .{x |x >0}C .{x |-12<x <0}D .{x |x <-12或x >0}二、填空题(每小题5分,共20分)13. {(x ,y )|6=x +y ,x ∈N ,y ∈N },用列率法表示为_______________。

2017-2018学年高一上学期期末质量测试数学试题 共享

2017-2018学年高一上学期期末质量测试数学试题 共享

第一学期期末质量测试高一数学2018.1.12一、填空题(本大题满分36分)本大题共有12题)1.函数的定义域是___________.【答案】【解析】【分析】根据偶次方根被开方数为非负数,列出不等式,解不等式求得函数的定义域.【详解】由于偶次方根被开方数为非负数,故,解得,故函数的定义域为. 【点睛】本小题主要考查函数的定义域的求法.属于基础题.函数的定义域主要由以下方面考虑来求解:一个是分数的分母不能为零,二个是偶次方根的被开方数为非负数,第三是对数的真数要大于零,第四个是零次方的底数不能为零. 对于含有多个以上情况的解析式,要求它们的交集来得到最终的结果.2.不等式的解集为______.【答案】(-2,1)【解析】.点睛:解分式不等式的方法是:移项,通分化不等式为,再转化为整式不等式,然后利用二次不等式或高次不等式的结论求解.3.已知指数函数(且)的图像过点,则实数___________.【答案】【解析】【分析】将点的坐标代入指数函数,解方程求得的值.【详解】将点代入指数函数得,,解得(负根舍去).【点睛】本小题主要考查指数函数的解析式的求法,考查指数的运算,属于基础题.4.设集合、,若,则实数=___________.【答案】【解析】【分析】根据真子集的知识,分别令和,解得的值后利用集合元素的互异性来排除错误的值,由此得出实数的值.【详解】由于集合是集合的子集,令时,或,当时集合中有两个,不符合题意,故舍去.当时,符合题意.令,解得,根据上面的分析,不符合题意.综上所述,故实数.【点睛】本小题主要考查真子集的概念,考查集合元素的互异性,属于基础题.5. 某班共30人,其中有15人喜爱篮球运动,有10人喜爱兵乓球运动,有3人对篮球和兵乓球两种运动都喜爱,则该班对篮球和乒乓球运动都不喜爱的人数有___________.【答案】12【解析】试题分析:设两者都喜欢的人数为x人,则只喜爱篮球的有(15-x)人,只喜爱乒乓球的有(10-x)人,由此可得(15-x)+(10-x)+x+8=30,解得x=3,所以15-x=12,即所求人数为12人,故答案为:12.考点:交、并、补集的混合运算.6.已知,,则___________.【答案】【解析】【分析】分别求得函数和的定义域,取它们的交集,然后将两个函数相乘,化简后求得相应的解析式.【详解】对于函数,由解得;对于函数,同样由解得;故函数的定义域为,且.【点睛】本小题主要考查函数的定义域的求法,考查两个函数相乘后的解析式的求解方法.属于基础题.7.已知二次函数在区间上是增函数,则实数的范围是___________. 【答案】【解析】试题分析:由于二次函数的单调递增区间为,则得. 考点:二次函数的单调性.8.函数的定义域为R,则常数的取值范围是______________。

【优质文档】2017-2018年度高一年级期末综合检测(含参考答案)

【优质文档】2017-2018年度高一年级期末综合检测(含参考答案)

⊥底面 ABC,垂足为 H,则点 H在 ( ).
A.直线 AC上 B .直线 AB上
C.直线 BC上 D .△ ABC内部
12. 已知 ab
0
,

P(a,b)
是圆
2
x
2
y
2
r 内一点 , 直线 m是以
点 P 为中点的弦所在的直线 , 直线 L 的方程是 ax by r 2 , 则下列结论正确的是 ( ).
1 D .m
2
3. 如图,矩形 O′ A′B′ C′是水平放置的一个平面图形的直观图,其中
O′ A′= 6 cm, C′D′= 2 cm,则原图形是 ( ).
A.正方形 B .矩形 C .菱形 D .梯形
4. 已知 A 2, 3 , B 3, 2 ,直线 l 过定点 P 1,1 ,且与线段 AB 相交,
C. 3x 6y 5 0
D
. x 3或3x 4 y 15 0
8. 三视图如图所示的几何体的表面积是 (
).
A.2+ 2 B .1+ 2 C .2+ 3 D .1+ 3
9. 设 x0 是方程 ln x+ x= 4 的解,则 x0 属于区间 ( ).A. (0 ,1)B . (1 ,2)C
. (2 , 3)
C.若 l ∥ β ,则 α∥ β D .若 α ∥ β,则 l ∥ m
6. 一个长方体去掉一个小长方体,所得几何体的
主视图与左视图分别如右图所示,则该几何
体的俯视图为 ( ).
7. 一条直线经过点
M ( 3,
3)
,
被圆
2
x
2
y
25 截得的弦长等于 8, 这条直线的方
2
程为 ( ).

2017-2018学年高一数学上学期期末考试试题(含解析)及答案(新人教A版 第124套)

2017-2018学年高一数学上学期期末考试试题(含解析)及答案(新人教A版 第124套)

黑龙江省大庆铁人中学2017-2018学年高一上学期期末数学试题
满分:150分 考试时间:120分钟
第Ⅰ卷(选择题 满分60分)
一、选择题(每小题5分,共60分)
1. 非空集合{}{}135,116X x a x a Y x x =+≤≤-=≤≤,使得()X X Y ⊆⋂成立的所有
a 的集合是( ) A. {}37a a ≤≤ B. {}07a a ≤≤ C.{}37a a <≤ D.{}7a a ≤
考点:对数函数,含绝对值的函数图像
3. 将函数g()3sin 26x x π⎛⎫=+
⎪⎝⎭图像上所有点向左平移6π个单位,再将各点横坐标缩短为 原来的12
倍,得到函数()f x ,则( ) A .()f x 在0,4π⎛⎫ ⎪⎝⎭单调递减 B .()f x 在3,44
ππ⎛⎫ ⎪⎝⎭单调递减 C .()f x 在0,4π⎛⎫ ⎪⎝⎭单调递增 D .()f x 在3,44ππ⎛⎫ ⎪⎝⎭
单调递增
5.下列函数中最小正周期为2
π的是( ) A. sin4y x = B. sin cos()6
y x x π
=+ C. sin(cos )y x = D. 42sin cos y x x =+
6. 已知P 是边长为2的正ABC ∆的边BC 上的动点,则()
AP AB AC + ( ) A.最大值为8 B.是定值6 C.最小值为6 D.是定值3
7. 在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点F ,若AC a = ,BD b = ,则AF = ( ) A.1142a b + B.1233a b + C.1124a b + D.2133a b +。

2017-2018高一数学上学期期末考试(带答案)

2017-2018高一数学上学期期末考试(带答案)

2017-2018学年上学期期末考试 高中一年级 数学 参考答案一、选择题二、填空题13. 1314. {}6,5,2- 15.55-16. {}1,0,1-三、解答题17.解:{}1A aa=-,,{}2,B b =,.................................2分 (Ⅰ)若2a =,则{}12A =,,A B=∴11b a =-=.若12a -=,则3a =,{}23A =,,∴3b =.综上,b的值为1或3.......................................5分 (Ⅱ)∵{|24}C x x =<<,,A C C A C=∴⊆,.................................7分 ∴24,214a a <<⎧⎨<-<⎩∴34a <<. ∴a的取值范围是(3,4).......................................10分 18.解:(I)直线BC的斜率32141BC k +==+.∴BC边上的高线斜率1-=k,........................... ......3分∴BC边上的高线方程为:()23y x-=-+即:10x y++=,......................... ..............6分(II) )2,1(),3,4(--CB由)2,1(),3,4(--CB得直线BC的方程为:10x y--=........................... ......9分A∴到直线BC的距离d==1152ABC S ∆∴=⨯=........................................12分19.解:根据上表销售单价每增加1元日均销售量就减少40桶,设在进价基础上增加x 元后,日均销售利润为y 元,而在此情况下的日均销售量就为()48040152040x x--=-,.......................3分 由于x >,且520x ->,即0x <<,.......................................6分于是,可得()520y x =-240522,x xx =-+-<<.......................9分 易知,当6.5x =时,y有最大值,所以,只需将销售单价定为11.5元,就可获得最大的利润.......................12分 20.证明(Ⅰ)CDEFABCD 平面平面⊥,CDCDEF ABCD =平面平面 ,在正方形CDEF中,ED DC ⊥∴ABCDED 平面⊥,ED BC∴⊥.................................2分取DC的中点G连接BG,12DG DC =,在四边形ABCD中,//,AB DC 12AB DC =,ABGD四边形∴为平行四边形,所以,点B在以DC为直径的圆上,所以DB BC⊥,............................4分 又ED BD D=,所以BBC 平面⊥,......................................6分 (Ⅱ)如图,取DC的中点G,连接AG,在DC上取点P使13DP DC =,连接NP13D ND P D ED C ==,//PN EC ∴,//PN BCE∴面,................8分连接MP,23DM DP G DC DA DG ∴==为中点,,//MP AG ∴.又//,,AB CG AB CG ABCG=∴为平行四边形,//AG BC∴,//MP BC∴,//MP BCE∴面,.................................10分 又MP NP P=,MNP BCE ∴平面//平面. MNPMN 平面⊂ ,所以MN//平面B........................................12分21.解:(Ⅰ)当3m =时, f(x)为R 上的奇函数。

2017—2018学年度第一学期期末考试

2017—2018学年度第一学期期末考试

2017—2018学年度第一学期期末考试数学试卷考试形式:考 试题号 一 二 三 总分 得分一、选择题:本大题共10个小题,每小题4分,共40分,请将正确答案的选项字母填入答题卡。

题号 12345678910答案1、下列关系式中正确的是( );A 、0={0}B 、0⊆{0}C 、0∈{0}D 、0∈φ 2、{菱形}∩{矩形}应是( );A 、{正方形}B 、{矩形}C 、{平行四边形}D 、{菱形} 3、与点(-2,-3)关于y 轴对称的点的坐标是( ); A 、(-2,3) B 、(2,-3) C 、(2,3) D 、(-2,-3)4、设全集V={0,1,2,3,4,5,6},集合A={2,3,4,5,6}则A C V =( );A 、{0,2,3,4,5,6}B 、{2,3,4,5,6}C 、{0,1}D 、φ 5、集合{x|2<x ≤4}表示的下列区间( ); A 、(2,4) B 、[2,4) C 、[2,4] D 、(2,4] 6、函数f(x)=42-x 的定义域是( ); A 、(-∞,4) B 、(4,+∞) C 、(-∞,4)∪(4,+∞) D 、(-∞,+∞) 7、将log 16x=2化成指数式可表示为( );A 、162=xB 、216=xC 、162=xD 、1624= 8、将52a 化成根式可表示为( ); A 、 52a B 、52a C 、521a D 、5a9、下列函数中是奇函数的是( );A 、2+=x yB 、2x y =C 、32+=x yD 、xy 2= 10、不等式11x -≤的解集为( )A 、[0,2]B 、(0,2)C 、(,0)-∞D 、(2,)+∞二、填空题:本大题共5个小题,每小题4分,共20分。

1、5:,3:>>x q x p ,则p 是q 条件;2、每瓶饮料的单价为3.5元,用解析法表示应付款y 和购买饮料瓶数x 之间的函数关系式可以表示为3、()()22231053(2)(2)10--⨯-⨯-+-⨯ = 4、已知f(x)=3x -2,则f(1)= ; 5、设25x ->1则x 。

2017-2018高一上数学试题

2017-2018高一上数学试题

2017—2018学年度上学期期末调研考试高一数学本试卷共4页,22题,均为必考题。

全卷满分150分。

考试用时120分钟。

★ 祝考试顺利 ★注意事项:1.答题前,先将自己的姓名、考号填写在试卷和答题卡上,并将考号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。

写在试卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请上交答题卡。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合A={x|-2<x<3},B={x|x>0},则A ∪B= A. {x|-2<x<0}B. {x|0<x<3}C. {x|x>-2}D. {x|x>0}2.函数f(x)=ln(4x-1)的零点为 A. (,0)B. (,0) C.D.3.函数f(x)=|sinx|是A.最小正周期为π的奇函数B. 最小正周期为π的偶函数C.最小正周期为2π的奇函数D.最小正周期为2π的偶函数 4.若向量=(x+1,2)和向量=(1,-1)平行,则=+|b a |A.5.已知幂函数f(x)=x a(R a ∈)的图象过点(3,),则函数g(x)=(2x-1)f(x)在区间[,2]上的最小值是 A. -1B. -2C.D. 0lπ2π O d 1lπ2π Od 1lπ 2π Od 1l π 2π O d1A B C D 6.已知||=1,||= ,且(-2)⊥,则向量与的夹角为 A. πB. πC.πD.π7.在∆ABC 中,D 是边BC 的中点,若点P 线段AD 上(不包括端点A,D),则AP = A .λ(AB AC),λ(0,1)+∈ B .1λ(AB+AC),λ(0,)2∈C .λ(AB AC),λ(0,1)-∈D .1λ(AB AC),λ(0,)2-∈8.已知扇形OAB 的圆心角为π,周长为823+π,则扇形OAB 的半径为 A. 8 B.8πC. 4D. 4π9.设f(x)=sin3x-cos3x,把y=f(x)的图象向左平移φ(φ>0)个单位后,恰好得到函数g(x)=sin3x+cos3x 的图象,则φ的值可以为 A. πB. πC. πD.π10.定义在R 上的函数f(x)满足f(x+2)=-f(x),当-2≤x<0时,f(x)=cos πx,当0≤x<2时, f(x)=-cos πx,则f(1)+f(2)+f(3)+…+f(2018)= A. 0 B. 2C. -2D. 111.设点A 是单位圆上的一定点,动点P 从点A 出发在圆上按逆时针方向旋转一周,点P 所旋转过的弧AP 的长为l ,圆心O 到弦AP 的垂线段的长为d ,则函数d=f()l 的图像大致是12.设max{p,q}表示p,q 两者中较大的一个,已知定义在[0,2π]上的函数f(x)=max{2sinx,2cosx}, 满足关于x 的方程f 2(x)+(1-2m)f(x)+m 2-m=0有6个不同的解,则m 的取值范围为 A.( ,2)B.( ,1+ )C.(-1, )D.(1+ ,2 )二、填空题:本题共4小题,每小题5分,共20分。

2017-2018学年高一上学期期末考试数学试题(20201014181259)

2017-2018学年高一上学期期末考试数学试题(20201014181259)

现在沿 AE 、 AF 及 EF 把这个正方形折成一个四面体,使 B 、 C 、 D 三点重合,重合后
的点记为 H ,如图②所示,那么,在四面体 A EFH 中必有 ( )
图①
图②
A . AH ⊥△ EFH 所在平面
B. AG ⊥△ EFH 所在平面
C. HF ⊥△ AEF 所在平面
D. HG ⊥△ AEF 所在平面
22 ( 2 3) 2 1 ,即 | m | 1 解得 m
2
2
0或 1 2
2
20.解: ∵ PA⊥平面 ABCD ,CD? 平面 ABCD ∴ PA⊥ CD
∵ CD ⊥AD , AD ∩PA= A∴CD ⊥平面 PAD .[来源:Z#xx#] ∵ PD ? 平面 PAC,∴ CD⊥ PD [来源:Z*xx*]

A. a 1或 a 2
B. a 2或 a 1
C. a 1
D. a 2
5.设 l 是直线, , 是两个不同的平面,(

A .若 l ∥ , l ∥ ,则 ∥
B.若 l ∥ , l ⊥ ,则 ⊥
C.若 ⊥ , l ⊥ ,则 l ⊥
D.若 ⊥ , l ∥ ,则 l ⊥
6.直线 2 x 3 y 6 0 关于点 (1, 1) 对称的直线方程是 ( )
三、解答题
3x 4y 5 0
17. 解:由
,得 M ( 1, 2)
2x 3y 8 0
22
( 1) x 1 ( 2)设直线方程为 x 2 y C 0 ,则, C 5 ,即 x 2y 5 0
18.解:圆 x2 y2 4 的圆心坐 标为 (0,0) , 半径 r 4
∵ 弦 AB 的长为 2 3 ,
故圆心到直线的距离 d 19.解:

XXX2017-2018学年高一上学期期末数学试卷(有答案)

XXX2017-2018学年高一上学期期末数学试卷(有答案)

XXX2017-2018学年高一上学期期末数学试卷(有答案)1.已知集合$A=\{x|0<x\leq6\}$,集合$B=\{x\in N|2x<33\}$,则集合$A\cap B$的元素个数为()。

A.6 B.5 C.4 D.32.给定性质:①最小正周期是$\pi$,②图像关于直线$x=\pi$对称,那么下列四个函数中,同时具有性质①②的是()。

A。

$y=\sin(\frac{x}{2}+\frac{\pi}{6})$ B。

$y=\sin(2x-\frac{\pi}{6})$ C。

$y=\sin(2x+\frac{\pi}{6})$ D。

$y=\sin|x|$3.平面内已知向量$a=(2,-1)$,若向量$b$与$a$方向相反,且$|b|=25$,则向量$b$=()。

A。

$(2,-4)$ B。

$(-4,2)$ C。

$(4,-2)$ D。

$(-2,4)$4.下列函数中,其定义域和值域分别与函数$y=10\lg x$相同的是()。

A。

$y=x$ B。

$y=\lg x$ C。

$y=2x$ D。

$y=\frac{1}{x}$5.已知角$a$的终边上有一点$P(1,3)$,则$\cos(\frac{3\pi}{2}-a)+2\cos(-\pi+a)$的值为()。

A。

$-\frac{2}{5}$ B。

$-\frac{4}{5}$ C。

$-\frac{4}{7}$ D。

$-4$6.如图,在$\triangle ABC$中,$AD=\frac{2}{3}AC$,$BP=\frac{1}{3}BD$,若$AP=\lambda AB+\mu AC$,则$\lambda$,$\mu$的值为()。

A。

$-3$,$3$ B。

$3$,$-3$ C。

$2$,$-2$ D。

$-2$,$2$7.为了得到函数$y=\sin(2x-\frac{\pi}{3})$的图象,可以将函数$\cos 2x$的图象()。

A.向右平移$\frac{\pi}{6}$个单位 B.向右平移$\frac{\pi}{3}$个单位 C.向左平移$\frac{\pi}{6}$个单位D.向左平移$3$个单位8.向量$a=(x,1)$,$b=(1,-3)$,且$a\perp b$,则向量$a-3b$与$b$的夹角为()。

2017-2018学年哈尔滨高一(上)期末数学试卷((有答案))-(新课标人教版)AlPMMM

 2017-2018学年哈尔滨高一(上)期末数学试卷((有答案))-(新课标人教版)AlPMMM

2017-2018学年黑龙江省哈尔滨高一(上)期末数学试卷一、选择题(本大题共12个小题,每个小题5分)1.(5分)已知集合A={1,2,3,4,5},B={x|x2﹣3x<0},则A∩B为()A.{1,2,3}B.{2,3}C.{1,2}D.(0,3))2.(5分)已知角α在第三象限,且sinα=﹣,则tanα=()A.B.C.D.3.(5分)的值为()A.B.C.1 D.﹣14.(5分)已知△ABC的三边a,b,c满足a2+b2=c2+ab,则△ABC的内角C为()A.150°B.120°C.60°D.30°5.(5分)设函数f(x)=,则f(2)+f(﹣log23)的值为()A.4 B.C.5 D.66.(5分)若sin()=,sin(2)的值为()A.B.C.D.7.(5分)已知f(x)=sin2x+2cosx,则f(x)的最大值为()A.﹣1 B.0 C.1 D.28.(5分)已知函数f(x)=cos2x﹣,则下列说法正确的是()A.f(x)是周期为的奇函数B.f(x)是周期为的偶函数C.f(x)是周期为π的奇函数D.f(x)是周期为π的偶函数9.(5分)已知f(x)是定义在R上的偶函数,且满足f(x+6)=f(x),当x∈(0,3)时,f (x)=x2,则f(64)=()A.﹣4 B.4 C.﹣98 D.9810.(5分)函数的图象如图所示,为了得到g(x)=sin(3x+)的图象,只需将f(x)的图象()A.向右平移π个单位长度B.向左平移π个单位长度C.向右平移个单位长度D.向左平移个单位长度11.(5分)奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式x[f(x)﹣f(﹣x)]>0的解集为()A.(﹣1,0)∪(0,1)B.(﹣∞,﹣1)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞)D.(﹣1,0)∪(1,+∞)12.(5分)将函数f(x)=2sin(x+2φ)(|φ|<)的图象向左平移个单位长度之后,所得图象关于直线x=对称,且f(0)>0,则φ=()A.B. C.D.二、填空题(本大题共4个小题,每个小题5分)13.(5分)已知f(x)=x+log a x的图象过点(2,3),则实数a=.14.(5分)已知sin,且α∈(0,),则tan的值为.15.(5分)已知f(x)=x2﹣ax+2a,且在(1,+∞)内有两个不同的零点,则实数a的取值范围是.16.(5分)已知△ABC中,内角A,B,C的对边分别为a,b,c,且a=2,cosC=﹣,sinB=sinC,则边c=.三、解答题(本大题共6个小题,共70分)17.(10分)已知函数f(x)=2x﹣sin2x﹣.(I)求函数f(x)的最小正周期及对称轴方程;(II)求函数f(x)的单调区间.18.(12分)若0,0,sin()=,cos()=.(I)求sinα的值;(II)求cos()的值.19.(12分)已知△ABC中,内角A,B,C的对边分别为a,b,c,若(2a﹣c)cosB=bcosC.(I)求角B的大小;(II)若b=2,求△ABC周长的最大值.20.(12分)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的最小正周期为π,函数的图象关于点()中心对称,且过点().(I)求函数f(x)的解析式;(II)若方程2f(x)﹣a+1=0在x∈[0,]上有解,求实数a的取值范围.21.(12分)在△ABC中,边a,b,c所对的角分别为A,B,C,且a>c,若△ABC的面积为2,sin(A﹣B)+sinC=sinA,b=3.(Ⅰ)求cosB的值;(Ⅱ)求边a,c的值.22.(12分)设函数f(x)=a2x+ma﹣2x(a>0,a≠1)是定义在R上的奇函数.(Ⅰ)求实数m的值;(Ⅱ)若f(1)=,且g(x)=f(x)﹣2kf()+2a﹣2x在[0,1]上的最小值为2,求实数k 的取值范围.2017-2018学年黑龙江省哈尔滨高一(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每个小题5分)1.(5分)已知集合A={1,2,3,4,5},B={x|x2﹣3x<0},则A∩B为()A.{1,2,3}B.{2,3}C.{1,2}D.(0,3))【解答】解:∵集合A={1,2,3,4,5},B={x|x2﹣3x<0}={x|0<x<3},∴A∩B={1,2}.故选:C.2.(5分)已知角α在第三象限,且sinα=﹣,则ta nα=()A.B.C.D.【解答】解:∵角α在第三象限,且sinα=﹣,∴cosα=﹣.∴.故选:C.3.(5分)的值为()A.B.C.1 D.﹣1【解答】解:==.故选:B.4.(5分)已知△ABC的三边a,b,c满足a2+b2=c2+ab,则△ABC的内角C为()A.150°B.120°C.60°D.30°【解答】解:△ABC中,a2+b2=c2+ab,∴a2+b2﹣c2=ab,∴cosC===,C∈(0°,180°),∴C=60°.故选:C.5.(5分)设函数f(x)=,则f(2)+f(﹣log23)的值为()A.4 B.C.5 D.6【解答】解:∵函数f(x)=,∴f(2)=log22=1,f(﹣log23)==3,∴f(2)+f(﹣log23)=1+3=4.故选:A.6.(5分)若sin()=,sin(2)的值为()A.B.C.D.【解答】解:∵sin()=,∴sin(2)=cos[﹣(2)]=cos()=cos2()=.故选:A.7.(5分)已知f(x)=sin2x+2cosx,则f(x)的最大值为()A.﹣1 B.0 C.1 D.2【解答】解:f(x)=sin2x+2cosx,=1﹣cos2x+2cosx,=﹣(cosx﹣1)2+2,当cosx=1时,f(x)max=2,故选:D8.(5分)已知函数f(x)=cos2x﹣,则下列说法正确的是()A.f(x)是周期为的奇函数B.f(x)是周期为的偶函数C.f(x)是周期为π的奇函数D.f(x)是周期为π的偶函数【解答】解:函数f(x)=cos2x﹣=(2cos2x﹣1)=cos2x,∴f(x)是最小正周期为T==π的偶函数.故选:D.9.(5分)已知f(x)是定义在R上的偶函数,且满足f(x+6)=f(x),当x∈(0,3)时,f (x)=x2,则f(64)=()A.﹣4 B.4 C.﹣98 D.98【解答】解:由(x)是定义在R上的偶函数,且满足f(x+6)=f(x),∴f(x)是以6为周期的周期函数,又∵又当x∈(0,3)时,f(x)=x2,∴f(64)=f(6×11﹣2)=f(﹣2)=f(2)=22=4.故选:B.10.(5分)函数的图象如图所示,为了得到g(x)=sin(3x+)的图象,只需将f(x)的图象()A.向右平移π个单位长度B.向左平移π个单位长度C.向右平移个单位长度D.向左平移个单位长度【解答】解:根据函数的图象,可得A=1,=﹣,∴ω=3,再根据五点法作图可得3×+φ=π,∴φ=,f(x)=sin(3x+).为了得到g(x)=sin(3x+)的图象,只需将f(x)的图象向左平移个单位长度,故选:D.11.(5分)奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式x[f(x)﹣f(﹣x)]>0的解集为()A.(﹣1,0)∪(0,1)B.(﹣∞,﹣1)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞)D.(﹣1,0)∪(1,+∞)【解答】解:若奇函数f(x)在(0,+∞)上为增函数,则函数f(x)在(﹣∞,0)上也为增函数,又∵f(1)=0,∴f(﹣1)=0,则当x∈(﹣∞,﹣1)∪(0,1)上时,f(x)<0,f(x)﹣f(﹣x)<0;当x∈(﹣1,0)∪(1,+∞)上时,f(x)>0,f(x)﹣f(﹣x)>0,则不等式x[(f(x)﹣f(﹣x)]>0的解集为(1,+∞)∪(﹣∞,﹣1),故选:C.12.(5分)将函数f(x)=2sin(x+2φ)(|φ|<)的图象向左平移个单位长度之后,所得图象关于直线x=对称,且f(0)>0,则φ=()A .B .C .D .【解答】解:将函数f (x )=2sin (x +2φ)(|φ|<)的图象向左平移个单位长度之后,可得y=2sin (x ++2φ)的图象,根据所得图象关于直线x=对称,可得++2φ=kπ+,即 φ=﹣,k ∈Z .根据且f (0)=2sin2φ>0,则φ=,故选:B .二、填空题(本大题共4个小题,每个小题5分)13.(5分)已知f (x )=x +log a x 的图象过点(2,3),则实数a= 2 .【解答】解:∵已知f (x )=x +log a x 的图象过点(2,3),故有2+log a 2=3,求得 a=2, 故答案为:2.14.(5分)已知sin ,且α∈(0,),则tan的值为 2 .【解答】解:由sin ,得,∴sin ()=1, ∵α∈(0,),∴∈(),则=,即,∴tanα=tan . ∴tan=1+1=2.故答案为:2.15.(5分)已知f (x )=x 2﹣ax +2a ,且在(1,+∞)内有两个不同的零点,则实数a 的取值范围是 (8,+∞) .【解答】解:∵二次函数f (x )=x 2﹣ax +2a 在(1,+∞)内有两个零点,∴,即,解得8<a.故答案为:(8,+∞).16.(5分)已知△ABC中,内角A,B,C的对边分别为a,b,c,且a=2,cosC=﹣,sinB=sinC,则边c=3.【解答】解:△ABC中,a=2,cosC=﹣,sinB=sinC,∴b=c,∴c2=a2+b2﹣2abcosC=22+c2﹣2×2×c×(﹣),化简得5c2﹣3c﹣36=0,解得c=3或c=﹣(不合题意,舍去),∴c=3.故选:3.三、解答题(本大题共6个小题,共70分)17.(10分)已知函数f(x)=2x﹣sin2x﹣.(I)求函数f(x)的最小正周期及对称轴方程;(II)求函数f(x)的单调区间.【解答】解:(Ⅰ)函数f(x)=2x﹣sin2x﹣=(1+cos2x)﹣sin2x﹣=﹣sin2x+cos2x=﹣2sin(2x﹣);﹣﹣﹣﹣(3分)∴f(x)的最小正周期为π,﹣﹣﹣﹣(4分)对称轴方程为x=+,k∈Z;﹣﹣﹣﹣(6分)(Ⅱ)令+2kπ≤2x﹣≤+2kπ,k∈Z,解得+kπ≤x≤+kπ,k∈Z,∴f(x)的单调递增区间为[+kπ,+kπ](k∈Z);﹣﹣﹣﹣(8分)令﹣+2kπ≤2x﹣≤+2kπ,k∈Z,解得﹣+kπ≤x≤+kπ,k∈Z,∴f(x)的单调递减区间为[﹣+kπ,+kπ](k∈Z).﹣﹣﹣﹣(10分)18.(12分)若0,0,sin()=,cos()=.(I)求sinα的值;(II)求cos()的值.【解答】解:(Ⅰ)∵0,∴,又sin()=,∴cos()=,∴sinα=sin[﹣()]=sin cos()﹣cos sin()=;(Ⅱ)∵0,∴,又cos()=,∴sin()=.∴cos()=cos[()+()]=cos()cos()﹣sin()sin()=.19.(12分)已知△ABC中,内角A,B,C的对边分别为a,b,c,若(2a﹣c)cosB=bcosC.(I)求角B的大小;(II)若b=2,求△ABC周长的最大值.【解答】(本题满分为12分)解:(Ⅰ)∵由(2a﹣c)cosB=bcosC,可得:(2sinA﹣sinC)cosB=sinBcosC,∴2sinAcosB=sinBcosC+cosBsinC,可得:2sinAcosB=sin(B+C)=sinA,∵A∈(0,π),sinA>0,∴可得:cosB=,∴由B=,B∈(0,π),B=.﹣﹣﹣﹣(4分)(Ⅱ)∵2R==,a=sinA,c=sinC,﹣﹣﹣﹣(6分)∴可得三角形周长:a+b+c=sinA+sinC+2=sinA+sin(﹣A)+2=4sin(A+)+2,﹣﹣﹣﹣(9分)∵0<A<,<A+<,可得:sin(A+)∈(,1].﹣﹣﹣﹣(11分)∴周长的最大值为6.﹣﹣﹣﹣(12分)20.(12分)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的最小正周期为π,函数的图象关于点()中心对称,且过点().(I)求函数f(x)的解析式;(II)若方程2f(x)﹣a+1=0在x∈[0,]上有解,求实数a的取值范围.【解答】解:(Ⅰ)函数f(x)=Asin(ωx+φ)的最小正周期为T==π,由ω>0,得ω=2;由函数f(x)的图象关于点()中心对称,∴2×+φ=kπ,φ=﹣+kπ,k∈Z;又|φ|<,∴φ=﹣;又f(x)过点(),∴Asin(2×﹣)=1,解得A=2,∴函数f(x)=2sin(2x﹣);(II)方程2f(x)﹣a+1=0,∴a=4sin(2x﹣)+1;又x∈[0,],∴2x﹣∈[﹣,],∴sin(2x﹣)∈[﹣,1],∴4sin(2x﹣)+1∈[﹣1,5],∴实数a的取值范围是[﹣1,5].21.(12分)在△ABC中,边a,b,c所对的角分别为A,B,C,且a>c,若△ABC的面积为2,sin(A﹣B)+sinC=sinA,b=3.(Ⅰ)求cosB的值;(Ⅱ)求边a,c的值.【解答】解:(Ⅰ)由sin(A﹣B)+sinC=sinA,得sinAcosB﹣cosAsinB+sin(A+B)=sinA即2sinAcosB=sinA,∵sinA≠0,∴cosB=.sinB=(Ⅱ)由余弦定理得:b2=a2+c2﹣2ac•cosB=a2+c2﹣ac⇒a2+c2﹣ac=9…①又∵s=ac•sinB=2,∴ac=6…②△ABC由①②解得,∵a>c,∴a=3,c=2.22.(12分)设函数f(x)=a2x+ma﹣2x(a>0,a≠1)是定义在R上的奇函数.(Ⅰ)求实数m的值;(Ⅱ)若f(1)=,且g(x)=f(x)﹣2kf()+2a﹣2x在[0,1]上的最小值为2,求实数k 的取值范围.【解答】解:(Ⅰ)由题意可得f(0)=0,1+m=0,解得m=﹣1,则f(x)=a2x﹣a﹣2x,f(﹣x)=a﹣2x﹣a2x=﹣f(x),可得f(x)为奇函数,则m=﹣1成立;(Ⅱ)由f(x)=a2x﹣a﹣2x,f(1)=,可得a2﹣a﹣2=,解得a=2,则f(x)=22x﹣2﹣2x,设y=g(x)=22x+2﹣2x﹣2k(2x﹣2﹣x)=(2x﹣2﹣x)2﹣2k(2x﹣2﹣x)+2,设t=2x﹣2﹣x,y=t2﹣2kt+2x∈[0,1],可得t∈[0,],当k<0时,y min=2成立;当0≤k≤时,y min=2﹣k2=2,解得k=0成立;当k≥时,ymin=﹣3k+=2,解得k=不成立,舍去.综上所述,实数k的取值范围是(﹣∞,0].。

2017-2018学年高一数学上学期期末考试试题(2)

2017-2018学年高一数学上学期期末考试试题(2)

内蒙古包头市第四中学2017-2018学年高一数学上学期期末考试试题第Ⅰ卷(选择题,共60分)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中只有一项符合题目.把答案涂在答题纸上.)1、已知全集,则正确表示集合和关系的韦恩(Venn)图是()2、函数的定义域是()3、正方体中,异面直线与所成的角是()A. 30°B. 60°C. 45°D. 90°4、在下列哪个区间内有实数解()A.B.C.D.5、若,则()A. B. C. D.()A. B.C. D.7、如图是水平放置的的直观图,轴,,则是()A.等边三角形B.等腰三角形C .直角三角形D .等腰直角三角形8、已知幂函数y =f(x)的图象经过点(-2,-18),则满足f(x)=27的x 的值是( )A.12B.13C.14D.15 9、正方体中,则二面角的正切值是()A.B.C. D.10、已知,某个几何体的三视图如图所示,根据图中标出的尺寸,可得这个几何体的体积是( )A.πB.C. D.π11、已知函数,其单调递增区间是()。

A .B .C .D .12、某几何体的三视图都是边长为2的正方形,且此几何体的顶点都在同一个球面上,则球的体积为() A. B.C.D.第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在答题纸的横线上.) 13、设是定义在R 上的奇函数,当x ≤0时,=,则.14、将边长为a 的正方形ABCD 沿对角线AC 折起,使BD=a ,则三棱锥D —ABC 的体积为_______ 15、已知经过点A (-2,0)和点B (1,3a )的直线1与经过点P (0,-1)和点Q (a ,-2a )的直线2互相垂直,则实数a 的值为_______.16、一个棱长为4 cm 的正方体木块,有一只蚂蚁经木块表面从顶点A爬行到C ,最短的路三、解答题(本题有6小题,计70分.解答应写出文字说明,证明过程或演算步骤.把答案答在答题纸的对应位置.)17、(本题满分10分)A={x︱-2≤x≤5} ,B={x|m+1≤x≤2m-1},(1)当时,求集合(2)当时,求实数m取值范围。

2017_2018学年高一数学上学期期末质检考试试题

2017_2018学年高一数学上学期期末质检考试试题

2017~2018学年度第一学期高一级期末质检考试数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分,考试时间120分钟。

第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={1,2,3,4,5},m集合A={1,2},B={2,3},则A∩CUB=()A.B. C.D.2.函数的定义域是()A.B.C. D.3.如图,下列几何体为台体的是 ( )A.①②B.①③C.④D.①④4.下列四组函数,表示同一函数的是()A.f(x)=,g(x)=x B.f(x)=x,g(x)=C.D.5.下列函数中,既是奇函数又是增函数的为A. B. C. D.6.直线经过抛物线与y轴的交点,且与直线平行,则直线的方程是()A.B.C.D.7.如右图,正方体ABCD—A1B1C1D1中,E、F分别是CC1、C1D1的中点,则异面直线EF和BD所成的角的大小为()A.75°B.60°C.45°D.30°8.圆心为且与直线相切的圆的方程为( )A.B.C.D.9.某空间几何体的三视图如图所示,则该几何体的体积为()A. 4B. 6C. 16D. 810.设,是两条不同的直线,,是两个不同的平面,下列命题中正确的是()A.若,,,则B.若,,且,则C.若,,,则D.若,,,则11.已知函数的图象向右平移()个单位后关于直线对称,当时,恒成立,设,),,则,,的大小关系为()A. B. C. D.12. 已知偶函数的定义域为且,,则函数的零点个数为().A. B. C. D.第Ⅱ卷(非选择题共90分)二.填空题(共4个小题,5分每题,共20分)13.计算:14.直线与坐标轴所围成的三角形的面积为15.一个几何体的三视图如图所示,则该几何体的表面积为16.已知定义域为的奇函数在上是增函数,且,则不等式的解集是__________.三、解答题:(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)设全集,集合,.(1)(2).18.(本小题满分12分)已知的三个顶点(1)求边上高所在直线的方程;(2)求的面积.19.(本小题满分12分)已知函数(其中,为常数)的图象经过、两点.(1)求,的值,判断并证明函数的奇偶性;(2)证明:函数在区间上单调递增.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

揭阳一中2017-2018学年度第一学期高一级期末考试
数学科试题
一.选择题(每小题5分,共50分,每小题只有一个选项是正确的)
1. 已知集合M ={x|x <3},N ={x |122x >
},则M ∩N 等于( ) A ∅ B {x |0<x <3} C {x |-1<x <3} D {x |1<x <3}
2. 已知三条不重合的直线m 、n 、l 两个不重合的平面βα,,有下列命题
①若αα//,,//m n n m 则⊂; ②若βαβα//,//,则且m l m l ⊥⊥;
③若βαββαα//,//,//,,则n m n m ⊂⊂;④若αββαβα⊥⊥⊂=⊥n m n n m 则,,,, ; 其中正确的命题个数是( )
A .1
B .2
C .3
D .4
3. 如图,一个简单空间几何体的三视图中,其正视图与侧视图都是边长
为2的正三角形,俯视图轮廓为正方形,则其侧面积是( )
A .
4. 函数()23x f x x =+的零点所在的一个区间是( ) A .()2,1-- B .()1,0- C .()0,1 D .()1,2
5. 如图,在正方体ABCD-A 1B 1C 1D 1中,异面直线A 1B 和AD 1所成角的大小是( )
A. 30°
B. 45°
C.90°
D.60°
6. 已知函()()21,1,log ,
1.a a x x f x x x --⎧⎪=⎨
>⎪⎩≤若()f x 在(),-∞+∞上单调递增,则实数a 的取值范围为( )
A . ()1,2
B . ()2,3
C . (]2,3
D . ()2,+∞ 7. 如图在正三棱锥A-BCD 中,
E 、
F 分别是AB 、BC 的中点,EF ⊥DE ,且BC =1,则正三棱锥A-BCD 的体积是
( )24
3D. 123C. 242B. 122.
A 8. 函数y =log 2(1-x )的图象是( )
俯视图
正视图 侧视图
9. 已知)(x f 是定义在R 上的函数,且)2()(+=x f x f 恒成立,当)0,2(-∈x 时,2)(x x f =,则当[]3,2∈x 时,函数)(x f 的解析式为 ( )
A .42-x
B .42
+x C .2)4(+x D . 2)4(-x
10. 已知)91(log 2)(3≤≤+=x x x f ,则函数[])()(22x f x f y +=的最大值为( ) A .6 B .13 C .22 D .33
二.填空题(每小题5分,共20分)
11. 一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为 .
12. 已知函数()()223f x x m x =+++是偶函数,则=m .
13. 已知直二面角βα--l ,点A ∈α,AC ⊥l ,C 为垂足,B ∈β,BD ⊥l ,D 为垂足, 若AB=2,AC=BD=1则C,D 两点间的距离是_______
14. 若函数2()log (2)(0,1)a f x x x a a =+>≠在区间102⎛⎫ ⎪⎝⎭
,恒有()0f x >,则()f x 的单调递增区间是
三.解答题(本大题共6小题,共80分。

解答应写出文字说明、证明过程或演算步骤。


15. 已知集合{|121}A x a x a =-<<+,{|01}B x x =<<,若A B =∅ ,求实数a 的取值范围。

16. 已知定义域为{|0}x R x ∈≠的函数()f x 满足;
①对于f (x )定义域内的任意实数x ,都有()()0f x f x -+=②
当20,()2.
x f x x >=-时 (1)求()f x 定义域上的解析式;
(2)解不等式:().f x x <
17. 在三棱锥S ABC -中,
90SAB SAC ACB ∠=∠=∠= ,1,AC BC SB ===(1) 证明:BC SC ⊥
(2) 求点A 到平面SCB 的距离。

18. 已知函数)(l o g )(b x x f a +=(其中a,b 为常数,且a>0,a ≠1)的图像经过点A(-2,0),B(1,2)
(1)求)(x f 的解析式
(2)若函数[)+∞∈--=,0,1)()()(2x b
a b a x g x x ,求)(x g 的值域
19. 已知函数)(x f 是定义在R 上的偶函数,且0≥x 时,x x f )21()(=.
(1)求)1(-f 的值;
(2)求函数)(x f 的值域A ;
(3)设函数a x a x x g +-+-=
)1()(2的定义域为集合B ,若B A ⊆,求实数a 的取值范围.
20. 已知函数()f x =
(1)求函数()f x 的定义域并判断函数的奇偶性;
(2) 设()()F x f x =,若记)(x f = t , 求函数F(x)的最大值的表达式g(m);
(3) 在(2)的条件下,求满足不等式9()()4m g m ->的实数m 的取值范围.。

相关文档
最新文档