2019年高中数学第三章柯西不等式与排序不等式3
高中数学 第三讲 柯西不等式与排序不等式 三 排序不等
1234
ab2+ba2≥ab+ba. 证明 由题意不妨设a≥b>0. 则 a2≥b2,1b≥1a,所以ab2≥ba2. 根据排序不等式知,ab2·1b+ba2·1a≥ab2·1a+ba2·1b, 即ab2+ba2≥ab+ba.
跟踪训练 1 c2
c+a.
已知 0<a≤b≤c,求证:a+c2 b+a+b2 c+b+a2 c≥a+a2b+b+b2 c+
证明
命题角度2 字母大小顺序不定问题 例 2 已知 a,b,c 均为正数,求证:b+a2 c+c+b2a+a+c2 b≥12(a+b+c).
证明
反思与感悟 对于排序不等式,其核心是必须有两组完全确定的数据, 所以解题的关键是构造出这样的两组数据.
跟踪训练2 设a,b,c∈R+,利用排序不等式证明:
a3+b3+c3≤b52+a2c5+c52+b2a5+a52+c2b5.
证明 不妨设0<a≤b≤c,
则 a5≤b5≤c5,c12≤b12≤a12, 所以由排序不等式可得 a3+b3+c3=aa52+bb52+cc52≤ac25+ba52+bc52, a3+b3+c3=aa52+bb52+cc52≤ab52+bc25+ac52,
=…=bn时,反序和等于顺序和.
题型探究
类型一 利用排序不等式证明不等式 命题角度1 字母已定序问题 例 1 已知 a,b,c 为正数,且 a≥b≥c, 求证:ba3c53+cb3a53+ac3b5 3≥1a+1b+1c.
证明
反思与感悟 利用排序不等式证明不等式的技巧在于仔细观察、分析所 要证明的式子的结构,从而正确地构造出不等式中所需要的带有大小顺 序的两个数组.
1234
证明
规律与方法
1.对排序不等式的理解 排序原理是对不同的两个数组来研究不同的乘积和的问题,能构造的和按 数组中的某种“搭配”的顺序被分为三种形式:顺序和、反序和、乱序和, 对这三种不同的搭配形式只需注意是怎样的“次序”,两种较为简单的是 “顺与反”,而乱序和也就是不按“常理”的顺序了. 2.排序不等式的本质 两实数序列同方向单调(同时增或同时减)时所得两两乘积之和最大,反方 向单调(一增一减)时所得两两乘积之和最小.
3.1 柯西不等式与排序不等式
3.1 柯西不等式与排序不等式重点:柯西不等式与排序不等式的简单应用一.柯西不等式1.柯西不等式的向量形式设有向量α,β ,根据向量数量积的定义,我们有:|||cos |||||||||βαθβαβα⋅=⋅⋅≥⋅.即有: ||||||βαβα⋅≥⋅,等号当且仅当βα ,同向或反向时成立(βα,共线时成立).因此我们有如下的定理:(柯西不等式的向量形式)定理1.设βα,为平面上的两个向量,则:||||||βαβα ⋅≥⋅,等号当且仅当βα,共线时成立.2.柯西不等式的代数形式(柯西不等式)设有向量),(b a =α ,),(d c =β ,将坐标代入:||||||βαβα⋅≥⋅, 即有:||2222bd ac dc b a +≥+⋅+.即有:22222)()()(bd ac d c b a +≥++. 等号当且仅当(βα,共线时)db c a =时成立.因此,我们有下面的定理:(二维柯西不等式) 定理2. 设d c b a ,,,均为实数,则: 22222)()()(bd ac d c b a +≥++,等号当且仅当时dbc a =成立.如果向量),,(111c b a =α,),,(222c b a =β,代入:||||||βαβα⋅≥⋅, 即有:||212121222222212121c c b b a a c b a c b a ++≥++⋅++.即有:2222222)()()(c c b b a a c b a c b a ++≥++++.等号当且仅当(βα,共线时)212121c cb b a a ==时成立.因此,我们又有下面的定理:(三维柯西不等式)定理3. 设222111,,,,,c b a c b a 均为实数,则:2212121222222212121)()()(c c b b a a c b a c b a ++≥++++ 等号当且仅当212121c cb b a a ==时成立.这里定理1称为柯西不等式的向量形式,定理2、定理3则称为二维、三维柯西不等式的代数形式。
高中数学第三讲柯西不等式与排序不等式第3节排序不等式创新应用教学案新人教A版选修4_5
——教学资料参考参考范本——高中数学第三讲柯西不等式与排序不等式第3节排序不等式创新应用教学案新人教A版选修4_5______年______月______日____________________部门[核心必知]1.三维形式的柯西不等式设a1,a2,a3,b1,b2,b3是实数,则(a+a+a)(b+b+b)≥(a1b1+a2b2+a3b3)2,当且仅当bi=0(i=1,2,3)或存在一个数k,使得ai=kbi(i=1,2,3)时,等号成立.2.一般形式的柯西不等式设a1,a2,a3,…,an,b1,b2,b3,…,bn是实数,则(a+a+…+a)(b+b+…+b)≥(a1b1+…+anbn)2,当且仅当bi =0(i=1,2,…,n)或存在一个数k,使得ai=kbi(i=1,2,…,n)时,等号成立.[问题思考]1.在一般形式的柯西不等式的右端中,表达式写成ai·bi(i=1,2,3,…,n),可以吗?提示:不可以,ai·bi的顺序要与左侧ai,bi的顺序一致.2.在一般形式的柯西不等式中,等号成立的条件记为ai=kbi(i=1,2,3,…,n),可以吗?提示:不可以.若bi=0而ai≠0,则k不存在.设a,b,c为正数,且不全相等.求证:++>.[精讲详析] 本题考查三维形式的柯西不等式的应用.解答本题需要构造两组数据,,;,,,然后利用柯西不等式解决.构造两组数,,c+a;,,,则由柯西不等式得(a+b+b+c+c+a)≥(1+1+1)2,①即2(a+b+c)≥9,于是++≥.由柯西不等式知,①中有等号成立⇔==⇔a+b=b+c=c+a⇔a=b=c.因题设,a,b,c不全相等,故①中等号不成立,于是++>.——————————————————柯西不等式的结构特征可以记为(a1+a2+…+an)·(b1+b2+…+bn)≥(++…+)2,其中ai,bi∈R+(i=1,2,…,n),在使用柯西不等式时(要注意从整体上把握柯西不等式的结构特征),准确地构造公式左侧的两个数组是解决问题的关键.1.设a,b,c为正数,求证:++≥a+b+c.证明:∵⎝ ⎛⎭⎪⎫a2b +b2c +c2a ()a+b+c=·[()2+()2+()2]≥⎝ ⎛⎭⎪⎫a b ·b +b c ·c +c a ·a 2=(a +b +c)2,即(a +b +c)≥(a+b +c)2, 又a ,b ,c∈R+, ∴a +b +c>0,∴++≥a +b +c ,当且仅当a =b =c 时等号成立。
2018_2019版高中数学第三章柯西不等式与排序不等式3.3排序不等式试题新人教A版选修4
三排序不等式课后篇巩固探究A组1.顺序和S、反序和S'、乱序和S″的大小关系是()A.S≤S'≤S″B.S≥S'≥S″C.S≥S″≥S'D.S≤S″≤S'.2.设x,y,z均为正数,P=x3+y3+z3,Q=x2y+y2z+z2x,则P与Q的大小关系是()A.P≥QB.P>QC.P≤QD.P<Qx≥y≥z>0,则x2≥y2≥z2,则由排序不等式可得顺序和为P,乱序和为Q,则P≥Q.3.若a<b<c,x<y<z,则下列各式中值最大的一个是()A.ax+cy+bzB.bx+ay+czC.bx+cy+azD.ax+by+cza<b<c,x<y<z,由排序不等式得反序和≤乱序和≤顺序和,得顺序和ax+by+cz最大.故选D.4.若0<a1<a2,0<b1<b2,且a1+a2=b1+b2=1,则下列代数式中最大的是()A.a1b1+a2b2B.a1a2+b1b2C.a1b2+a2b1D.a1b1+a2b2+a1b2+a2b1=(a1+a2)(b1+b2)=1,a1b1+a2b2-a1b2-a2b1=(a1-a2)(b1-b2)>0, ∴a1b1+a2b2>a1b2+a2b1.且a1b1+a2b2>>a1b2+a2b1.又1=a1+a2≥2,∴a1a2≤.∵0<a1<a2,∴a1a2<.同理b1b2<,∴a1a2+b1b2<.∴a1b1+a2b2>>a1a2+b1b2,∴a1b1+a2b2最大.5.已知a,b,c∈R+,则a2(a2-bc)+b2(b2-ac)+c2(c2-ab)()A.大于零B.大于或等于零C.小于零D.小于或等于零a≥b≥c>0,则a3≥b3≥c3,根据排序原理,得a3×a+b3×b+c3×c≥a3b+b3c+c3a.因为ab≥ac≥bc,a2≥b2≥c2,所以a3b+b3c+c3a≥a2bc+b2ca+c2ab.所以a4+b4+c4≥a2bc+b2ca+c2ab,即a2(a2-bc)+b2(b2-ac)+c2(c2-ab)≥0.6.设a1,a2,a3,a4是1,2,3,4的一个排序,则a1+2a2+3a3+4a4的取值范围是.2+22+32+42=30,最小值为反序和1×4+2×3+3×2+4×1=20.1+2a2+3a3+4a4的最大值为顺序和17.如图所示,在矩形OPAQ中,a1≤a2,b1≤b2,若阴影部分的面积为S1,空白部分的面积之和为S2,则S1与S2的大小关系是.,S1=a1b1+a2b2,而S2=a1b2+a2b1,根据顺序和≥反序和,得S1≥S2.S21≥8.若a,b,c为正数,求证a3+b3+c3≥3abc.a≥b≥c>0,则a2≥b2≥c2>0,由排序不等式,得a3+b3≥a2b+ab2,c3+b3≥c2b+cb2,a3+c3≥a2c+ac2,三式相加,得2(a3+b3+c3)≥a(b2+c2)+b(a2+c2)+c(a2+b2).因为a2+b2≥2ab,c2+b2≥2cb,a2+c2≥2ac,所以2(a3+b3+c3)≥6abc,即a3+b3+c3≥3abc(当且仅当a=b=c时,等号成立).9.设a,b均为正数,求证.a≥b>0,则a2≥b2>0,>0,由不等式性质,得>0.则由排序不等式,可得,即.10.设a,b,c都是正数,求证a+b+c≤.a≥b≥c>0.由不等式的性质,知a2≥b2≥c2,ab≥ac≥bc.根据排序原理,得a2bc+ab2c+abc2≤a3c+b3a+c3b.①又由不等式的性质,知a3≥b3≥c3,且a≥b≥c.再根据排序原理,得a3c+b3a+c3b≤a4+b4+c4.②由①②及不等式的传递性,得a2bc+ab2c+abc2≤a4+b4+c4.两边同除以abc,得a+b+c≤(当且仅当a=b=c时,等号成立).B组1.设a,b,c>0,则式子M=a5+b5+c5-a3bc-b3ac-c3ab与0的大小关系是()A.M≥0B.M≤0C.M与0的大小关系与a,b,c的大小有关D.不能确定a≥b≥c>0,则a3≥b3≥c3,且a4≥b4≥c4,则a5+b5+c5=a·a4+b·b4+c·c4≥a·c4+b·a4+c·b4.又a3≥b3≥c3,且ab≥ac≥bc,∴a4b+b4c+c4a=a3·ab+b3·bc+c3·ca≥a3bc+b3ac+c3ab.∴a5+b5+c5≥a3bc+b3ac+c3ab.∴M≥0.2.若0<α<β<γ<,F=sin αcos β+sin βcos γ+sin γcos α-(sin 2α+sin 2β+sin 2γ),则()A.F>0B.F≥0C.F≤0D.F<00<α<β<γ<,所以0<sin α<sin β<sin γ,0<cos γ<cos β<cos α,由排序不等式可知,sin αcos β+sin βcos γ+sin γcos α>sin αcos α+sin βcos β+sin γcos γ, 而F=sin αcos β+sin βcos γ+sin γcos α-(sin 2α+sin 2β+sin 2γ)=sin αcos β+sin βcos γ+sin γcos α-(sin αcos α+sin βcos β+sin γcos γ)>0.3.导学号26394057车间里有5台机床同时出了故障,从第1台到第5台的修复时间依次为4 min、8 min、6 min、10 min、5 min,每台机床停产1 min损失5元,经合理安排损失最少为()A.420元B.400元C.450元D.570元1台到第5台的修复时间依次为t1,t2,t3,t4,t5,若按照从第1台到第5台的顺序修复,则修复第一台需要t1分钟,则停产总时间为5t1,修复第2台需要t2分钟,则停产总时间为4t2,…,修复第5台需要t5分钟,则停产总时间为t5,因此修复5台机床一共需要停产的时间为5t1+4t2+3t3+2t4+t5,要使损失最小,应使停产时间最少,亦即使5t1+4t2+3t3+2t4+t5取最小值.由排序不等式可知,当t1<t2<t3<t4<t5时,5t1+4t2+3t3+2t4+t5取最小值,最小值为5×4+4×5+3×6+2×8+10=84分钟,故损失最小为84×5=420元.4.导学号26394058在△ABC中,∠A,∠B,∠C所对的边依次为a,b,c,试比较的大小关系.a≥b≥c,则有A≥B≥C.由排序不等式,可得aA+bB+cC≥aA+bC+cB,aA+bB+cC≥aB+bA+cC,aA+bB+cC≥aC+bB+cA.将以上三个式子两边分别相加,得3(aA+bB+cC)≥(a+b+c)(A+B+C)=(a+b+c)π.所以.5.导学号26394059设x>0,求证1+x+x2+…+x2n≥(2n+1)x n.x≥1时,因为1≤x≤x2≤…≤x n,所以由排序原理得1·1+x·x+x2·x2+…+x n·x n≥1·x n+x·x n-1+…+·x+x n·1,即1+x2+x4+…+≥(n+1)x n.①又x,x2,…,x n,1为序列1,x,x2,…,x n的一个排列,所以1·x+x·x2+…+x n-1x n+x n·1≥1·x n+x·x n-1+…+x n-1·x+x n·1,因此x+x3+…++x n≥(n+1)x n, ②①+②,得1+x+x2+…+≥(2n+1)x n.③当0<x<1时,1>x≥x2≥…≥x n,①②仍成立,故③也成立.综上,原不等式成立.。
2019-2020学年人教版高中数学选修4-5教材用书:第三讲 柯西不等式与排序不等式 三 排序不等式 Word版含答案
三排序不等式1.顺序和、乱序和、反序和设a1≤a2≤…≤a n,b1≤b2≤…≤b n为两组实数,c1,c2,…,c n是b1,b2,…,b n的任一排列,称a1b1+a2b2+…+a n b n为这两个实数组的顺序积之和(简称顺序和),称a1b n+a2b n-1+…+a n b1为这两个实数组的反序积之和(简称反序和),称a1c1+a2c2+…+a n c n为这两个实数组的乱序积之和(简称乱序和).2.排序不等式(排序原理)定理:(排序不等式,又称为排序原理) 设a1≤a2≤…≤a n,b1≤b2≤…≤b n为两组实数,c1,c2,…,c n是b1,b2,…,b n的任一排列,则a1b n+a2b n-1+…+a n b1≤a1c1+a2c2+…+a n c n≤a1b1+a2b2+…+a n b n,等号成立(反序和等于顺序和)⇔a1=a2=…=a n或b1=b2=…=b n.排序原理可简记作:反序和≤乱序和≤顺序和.已知a,b,c为正数,且a≥b≥c,求证:b3c3+c3a3+a3b3≥a+b+c.分析题目中已明确a≥b≥c,所以解答本题时可直接构造两个数组,再用排序不等式证明即可.∵a≥b>0,∴1a ≤1b.又c>0,从而1bc ≥1 ca.同理1ca≥1ab,从而1bc≥1ca≥1ab.又由于顺序和不小于乱序和,故可得a5 b3c3+b5c3a3+c5a3b3≥b5b3c3+c5c3a3+a5a3b3=b2c3+c2a3+a2b3⎝⎛⎭⎪⎫∵a2≥b2≥c2,1c3≥1b3≥1a3≥c2c3+a2a3+b2b3=1c+1a+1b=1a+1b+1c.∴原不等式成立.利用排序不等式证明不等式的技巧在于仔细观察、分析所要证明的式子的结构,从而正确地构造出不等式中所需要的带有大小顺序的两个数组.1.已知0<α<β<γ<π2,求证:sin αcos β+sin βcos γ+sin γcos α>12(sin 2α+sin 2β+sin 2γ).证明:∵0<α<β<γ<π2,且y =sin x 在⎝ ⎛⎭⎪⎫0,π2为增函数,y =cos x 在⎝ ⎛⎭⎪⎫0,π2为减函数,∴0<sin α<sin β<sin γ,cos α>cos β>cos γ>0.∴sin αcos β+sin βcos γ+sin γcos α>sin αcos α+sin β·cos β+sin γcos γ=12(sin2α+sin 2β+sin 2γ).2.设x ≥1,求证:1+x +x 2+…+x 2n≥(2n +1)x n. 证明:∵x ≥1,∴1≤x ≤x 2≤…≤x n.由排序原理,得12+x 2+x 4+…+x 2n≥1·x n +x ·x n -1+…+xn -1·x +x n·1,即1+x 2+x 4+…+x 2n ≥(n +1)x n.①又因为x ,x 2,…,x n,1为1,x ,x 2,…,x n的一个排列, 由排序原理,得1·x +x ·x 2+…+x n -1·x n +x n·1≥1·x n +x ·xn -1+…+xn -1·x +x n·1,得x +x 3+…+x2n -1+x n≥(n +1)x n.②将①②相加,得1+x +x 2+…+x 2n≥(2n +1)x n.在△ABC 中,试证:3≤a +b +c.可构造△ABC 的边和角的有序数列,应用排序不等式来证明. 不妨设a ≤b ≤c ,于是A ≤B ≤C . 由排序不等式,得aA +bB +cC ≥aA +bB +cC , aA +bB +cC ≥bA +cB +aC , aA +bB +cC ≥cA +aB +bC .相加,得3(aA +bB +cC )≥(a +b +c )(A +B +C )=π(a +b +c ),得aA +bB +cC a +b +c ≥π3.在排序不等式的条件中需要限定各数值的大小关系,对于没有给出大小关系的情况,要根据各字母在不等式中地位的对称性,限定一种大小关系.3.设c 1,c 2,…,c n 为正数组a 1,a 2,…,a n 的某一排列,求证:a1c1+a2c2+…+ancn ≥n .证明:不妨设0<a 1≤a 2≤…≤a n ,则1a1≥1a2≥…≥1an. 因为1c1,1c2,…,1cn 是1a1,1a2,…,1an 的一个排列,由排序原理,得a 1·1a1+a 2·1a2+…+a n ·1an ≤a 1·1c1+a 2·1c2+…+a n ·1cn ,即a1c1+a2c2+…+an cn≥n .4.设a 1,a 2,…,a n 是1,2,…,n 的一个排列, 求证:12+23+…+n -1n ≤a1a2+a2a3+…+an -1an.证明:设b 1,b 2,…,b n -1是a 1,a 2,…,a n -1的一个排列,且b 1<b 2<…<b n -1;c 1,c 2,…,c n -1是a 2,a 3,…,a n 的一个排列,且c 1<c 2<…<c n -1,则1c1>1c2>…>1cn -1且b 1≥1,b 2≥2,…,b n -1≥n -1,c 1≤2,c 2≤3,…,c n -1≤n . 利用排序不等式,有a1a2+a2a3+…+an -1an ≥b1c1+b2c2+…+bn -1cn -1≥12+23+…+n -1n . ∴原不等式成立.课时跟踪检测(十一)1.有一有序数组,其顺序和为A ,反序和为B ,乱序和为C ,则它们的大小关系为( ) A .A ≥B ≥C B .A ≥C ≥B C .A ≤B ≤CD .A ≤C ≤B解析:选B 由排序不等式,顺序和≥乱序和≥反序和知:A ≥C ≥B .2.若A =x 21+x 2+…+x 2n ,B =x 1x 2+x 2x 3+…+x n -1x n +x n x 1,其中x 1,x 2,…,x n 都是正数,则A 与B 的大小关系为( )A .A >BB .A <BC .A ≥BD .A ≤B解析:选C 序列{x n }的各项都是正数,不妨设0<x 1≤x 2≤…≤x n ,则x 2,x 3,…,x n ,x 1为序列{x n } 的一个排列.由排序原理,得x 1x 1+x 2x 2+…+x n x n ≥x 1x 2+x 2x 3+…+x n x 1,即x 21+x 2+…+x 2n ≥x 1x 2+x 2x 3+…+x n x 1.3.锐角三角形中,设P =a +b +c 2,Q =a cos C +b cos B +c cos A ,则P ,Q 的关系为( )A .P ≥QB .P =QC .P ≤QD .不能确定解析:选C 不妨设A ≥B ≥C ,则a ≥b ≥c ,cos A ≤cos B ≤cos C , 则由排序不等式有Q =a cos C +b cos B +c cos A ≥a cos B +b cos C +c cos A=R (2sin A cos B +2sin B cos C +2sin C cos A ) =R=R (sin C +sin A +sin B )=P =a +b +c2. 4.儿子过生日要老爸买价格不同的礼品1件、2件及3件,现在选择商店中单价为13元、20元和10元的礼品,至少要花________元.( )A .76B .20C .84D .96解析:选A 设a 1=1(件),a 2=2(件),a 3=3(件),b 1=10(元),b 2=13(元),b 3=20(元),则由排序原理反序和最小知至少要花a 1b 3+a 2b 2+a 3b 1=1×20+2×13+3×10=76(元).5.已知两组数1,2,3和4,5,6,若c 1,c 2,c 3是4,5,6的一个排列,则1c 1+2c 2+3c 3的最大值是________,最小值是________.解析:由反序和≤乱序和≤顺序和知,顺序和最大,反序和最小,故最大值为32,最小值为28. 答案:32 286.有4人各拿一只水桶去接水,设水龙头注满每个人的水桶分别需要5 s 、4 s 、3 s 、7 s ,每个人接完水后就离开,则他们总的等候时间最短为________s.解析:由题意知,等候的时间最短为3×4+4×3+5×2+7=41. 答案:417.在Rt △ABC 中,∠C 为直角,A ,B 所对的边分别为a ,b ,则aA +bB 与π4(a +b )的大小关系为________.解析:不妨设a ≥b >0,则A ≥B >0,由排序不等式⎭⎪⎬⎪⎫aA +bB≥aB+bA aA +bB =aA +bB ⇒2(aA +bB )≥a (A +B )+b (A +B )=π2(a +b ), ∴aA +bB ≥π4(a +b ). 答案:aA +bB ≥π4(a +b ) 8.设a ,b ,c 都是正数,求证:a +b +c ≤a4+b4+c4abc .证明:由题意不妨设a ≥b ≥c >0.由不等式的性质,知a 2≥b 2≥c 2,ab ≥ac ≥bc . 根据排序原理,得a 2bc +ab 2c +abc 2≤a 3c +b 3a +c 3b .① 又由不等式的性质,知a 3≥b 3≥c 3,且a ≥b ≥c .再根据排序不等式,得a 3c +b 3a +c 3b ≤a 4+b 4+c 4.②由①②及不等式的传递性,得a 2bc +ab 2c +abc 2≤a 4+b 4+c 4.两边同除以abc 得证原不等式成立.9.设a ,b ,c 为任意正数,求a b +c +b c +a +ca +b 的最小值.解:不妨设a ≥b ≥c ,则a +b ≥a +c ≥b +c ,1b +c ≥1c +a ≥1a +b .由排序不等式,得a b +c +b c +a +c a +b ≥b b +c +c c +a +a a +b , a b +c +b c +a +c a +b ≥c b +c +a c +a +b a +b, 以上两式相加,得2⎝ ⎛⎭⎪⎫a b +c +b c +a +c a +b ≥3,∴a b +c +b c +a +c a +b ≥32, 即当且仅当a =b =c 时, a b +c +b c +a +c a +b 的最小值为32.10.设x ,y ,z 为正数,求证:x +y +z ≤x2+y22z +y2+z22x +z2+x22y. 证明:由于不等式关于x ,y ,z 对称, 不妨设0<x ≤y ≤z ,于是x 2≤y 2≤z 2,1z ≤1y ≤1x ,由排序原理:反序和≤乱序和,得x 2·1x +y 2·1y +z 2·1z ≤x 2·1z +y 2·1x +z 2·1y, x 2·1x+y 2·1y+z 2·1z≤x 2·1y+y 2·1z+z 2·1x,将上面两式相加,得2(x +y +z )≤x2+y2z +y2+z2x +z2+x2y ,于是x +y +z ≤x2+y22z +y2+z22x +z2+x22y.本讲高考热点解读与高频考点例析考情分析从近两年高考来看,对本部分内容还未单独考查,可也不能忽视,利用柯西不等式构造“平方和的积”与“积的和的平方”,利用排序不等式证明成“对称”形式,或两端是“齐次式”形式的不等式问题.真题体验(陕西高考)已知关于x 的不等式|x +a |<b 的解集为{x |2<x <4}. (1)求实数a ,b 的值;(2)求at +12+bt 的最大值.解:(1)由|x +a |<b ,得-b -a <x <b -a ,则⎩⎪⎨⎪⎧-b -a =2,b -a =4,解得⎩⎪⎨⎪⎧a =-3,b =1.(2)-3t +12+t =3·4-t +t ≤3+4-t+t=24-t +t =4, 当且仅当4-t 3=t1,即t =1时等号成立, 故(-3t +12+t)max =4.1122n n )2(a i ,b i ∈R ,i =1,2,…,n ),形式简洁、美观,对称性强,灵活地运用柯西不等式,可以使一些较为困难的不等式证明问题迎刃而解.已知a ,b ,c ,d 为不全相等的正数,求证:1a2+1b2+1c2+1d2>1ab +1bc +1cd +1da.由柯西不等式⎝ ⎛⎭⎪⎫1a2+1b2+1c2+1d2⎝ ⎛ 1b2+1c2+⎭⎪⎫1d2+1a2≥⎝ ⎛⎭⎪⎫1ab +1bc +1cd +1da 2, 于是1a2+1b2+1c2+1d2≥1ab +1bc +1cd +1da.①等号成立⇔1a 1b =1b 1c =1c 1d =1d 1a⇔b a =c b =d c =ad ⇔a =b =c =d .又已知a ,b ,c ,d 不全相等,则①中等号不成立. 即1a2+1b2+1c2+1d2>1ab +1bc +1cd +1da.关的不等式问题,利用排序不等式解决往往很简便.设a ,b ,c 为实数,求证:a12bc +b12ca +c12ab ≥a 10+b 10+c 10.由对称性,不妨设a ≥b ≥c , 于是a 12≥b 12≥c 12,1bc ≥1ca ≥1ab .由排序不等式:顺序和≥乱序和,得a12bc +b12ca +c12ab ≥a12ab +b12bc +c12ca =a11b +b11c +c11a .① 又因为a 11≥b 11≥c 11,1a ≤1b ≤1c,再次由排序不等式:反序和≤乱序和,得 a11a +b11b +c11c ≤a11b +b11c +c11a .② 由①②得a12bc +b12ca +c12ab≥a 10+b 10+c 10.理.在这类题目中,利用柯西不等式或排序不等式处理往往比较容易.已知5a 2+3b 2=158,求a 2+2ab +b 2的最大值.解:∵⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫552+⎝ ⎛⎭⎪⎫332 ≥⎝⎛⎭⎪⎫55×5a +33×3b 2=(a +b )2=a 2+2ab +b 2,当且仅当5a =3b ,即a =38,b =58时,等号成立.∴815×(5a 2+3b 2)≥a 2+2ab +b 2. ∴a 2+2ab +b 2≤815×(5a 2+3b 2)=815×158=1. ∴a 2+2ab +b 2的最大值为1.已知正实数x 1,x 2,…,x n 满足x 1+x 2+…+x n =P ,P 为定值,求F =x21x2+x22x3+…+x2n -1xn +x2nx1的最小值.不妨设0<x 1≤x 2≤…≤x n , 则1x1≥1x2≥…≥1xn>0,且0<x 21≤x 2≤…≤x 2n . ∵1x2,1x3,…,1xn ,1x1为序列⎩⎨⎧⎭⎬⎫1xn 的一个排列, 根据排序不等式,得F =x21x2+x22x3+…+x2n -1xn +x2nx1≥x 21·1x1+x 2·1x2+…+x 2n ·1xn=x 1+x 2+…+x n =P (定值),当且仅当x 1=x 2=…=x n =Pn 时,等号成立.即F =x21x2+x22x3+…+x2n -1xn +x2n x1的最小值为P .。
2019年最新-人教版高中数学选修《柯西不等式、排序不等式及应用》ppt课件
解析:(1)f(x)=|x-2|+|x-4|≥|(x-2)-(x-4)|=2, 当且仅当 2≤x≤4 时,等号成立,故 m=2. (2)证明:[(na2)2+(pb2)2+(qc2)2]·(a2+b2+c2)
≥(na2·a+pb2·b+qc2·c)2, 即(na42+pb42+qc24)×2≥(n2+p2+q2)2=4, 故na42+pb42+qc24≥2.
【拓展演练 2】 (2012·江苏省南京市、盐城市第一次模拟)已知 x,y,z 均为正数.求证:
33(1x +1y +1z )≤
x12+y12+z12.
证明:由柯西不等式得,
(12+12+12)(x12+y12+z12)≥(1x +1y +1z )2,
则 3× x12+y12+z12≥1x+1y+1z,
=(x·1+ 2y· 2+ 3z· 3)2
≤[x2+( 2y)2+( 3z)2]·[12+( 2)2+( 3)2] =(x2+2y2+3z2)(1+2+3)
=18.
当且仅当1x=
2y= 2
3z,即 3
x=y=z
时,等号成立.
所以-3 2≤x+2y+3z≤3 2,
即 u 的最小值为-3 2,最大值为 3 2.
即 33(1x+1y+1z)≤
x12+y12+z12.
三 排序不等式的应用
【例 3】设 a,b,c∈R*,利用排序不等式证明: a3+b3+c3≤b52+a2c5+c52+b2a5+a52+c2b5.
证明:不妨设 0<a≤b≤c, 则 a5≤b5≤c5,c12≤b12≤a12, a3+b3+c3=aa52+bb52+cc52(逆序和)≤ac25+ba52+bc52, a3+b3+c3=aa52+bb52+cc52(逆序和)≤ab52+bc25+ac52, 所以 a3+b3+c3≤b52+a2c5+c52+b2a5+a52+c2b5.
(部编本人教版)最新版高中数学 第三章 柯西不等式与排序不等式 3.3 排序不等式试题 新人教A版选修4-5【必
三排序不等式课后篇巩固探究A组1.顺序和S、反序和S'、乱序和S″的大小关系是()A.S≤S'≤S″B.S≥S'≥S″C.S≥S″≥S'D.S≤S″≤S'.2.设x,y,z均为正数,P=x3+y3+z3,Q=x2y+y2z+z2x,则P与Q的大小关系是()A.P≥QB.P>QC.P≤QD.P<Qx≥y≥z>0,则x2≥y2≥z2,则由排序不等式可得顺序和为P,乱序和为Q,则P≥Q.3.若a<b<c,x<y<z,则下列各式中值最大的一个是()A.ax+cy+bzB.bx+ay+czC.bx+cy+azD.ax+by+cza<b<c,x<y<z,由排序不等式得反序和≤乱序和≤顺序和,得顺序和ax+by+cz最大.故选D.4.若0<a1<a2,0<b1<b2,且a1+a2=b1+b2=1,则下列代数式中最大的是()A.a1b1+a2b2B.a1a2+b1b2C.a1b2+a2b1D.a1b1+a2b2+a1b2+a2b1=(a1+a2)(b1+b2)=1,a1b1+a2b2-a1b2-a2b1=(a1-a2)(b1-b2)>0,∴a1b1+a2b2>a1b2+a2b1.且a1b1+a2b2>>a1b2+a2b1.又1=a1+a2≥2,∴a1a2≤.∵0<a1<a2,∴a1a2<.同理b1b2<,∴a1a2+b1b2<.∴a1b1+a2b2>>a1a2+b1b2,∴a1b1+a2b2最大.5.已知a,b,c∈R+,则a2(a2-bc)+b2(b2-ac)+c2(c2-ab)()A.大于零B.大于或等于零C.小于零D.小于或等于零a≥b≥c>0,则a3≥b3≥c3,根据排序原理,得a3×a+b3×b+c3×c≥a3b+b3c+c3a.因为ab≥ac≥bc,a2≥b2≥c2,所以a3b+b3c+c3a≥a2bc+b2ca+c2ab.所以a4+b4+c4≥a2bc+b2ca+c2ab,即a2(a2-bc)+b2(b2-ac)+c2(c2-ab)≥0.6.设a1,a2,a3,a4是1,2,3,4的一个排序,则a1+2a2+3a3+4a4的取值范围是.2+22+32+42=30,最小值为反序和1×4+2×3+3×2+4×1=20.1+2a2+3a3+4a4的最大值为顺序和17.如图所示,在矩形OPAQ中,a1≤a2,b1≤b2,若阴影部分的面积为S1,空白部分的面积之和为S2,则S1与S2的大小关系是.,S1=a1b1+a2b2,而S2=a1b2+a2b1,根据顺序和≥反序和,得S1≥S2.S21≥8.若a,b,c为正数,求证a3+b3+c3≥3abc.a≥b≥c>0,则a2≥b2≥c2>0,由排序不等式,得a3+b3≥a2b+ab2,c3+b3≥c2b+cb2,a3+c3≥a2c+ac2,三式相加,得2(a3+b3+c3)≥a(b2+c2)+b(a2+c2)+c(a2+b2).因为a2+b2≥2ab,c2+b2≥2cb,a2+c2≥2ac,所以2(a3+b3+c3)≥6abc,即a3+b3+c3≥3abc(当且仅当a=b=c时,等号成立).9.设a,b均为正数,求证.a≥b>0,则a2≥b2>0,>0,由不等式性质,得>0.则由排序不等式,可得,即.10.设a,b,c都是正数,求证a+b+c≤.a≥b≥c>0.由不等式的性质,知a2≥b2≥c2,ab≥ac≥bc.根据排序原理,得a2bc+ab2c+abc2≤a3c+b3a+c3b.①又由不等式的性质,知a3≥b3≥c3,且a≥b≥c.再根据排序原理,得a3c+b3a+c3b≤a4+b4+c4.②由①②及不等式的传递性,得a2bc+ab2c+abc2≤a4+b4+c4.两边同除以abc,得a+b+c≤(当且仅当a=b=c时,等号成立).B组1.设a,b,c>0,则式子M=a5+b5+c5-a3bc-b3ac-c3ab与0的大小关系是()A.M≥0B.M≤0C.M与0的大小关系与a,b,c的大小有关D.不能确定a≥b≥c>0,则a3≥b3≥c3,且a4≥b4≥c4,则a5+b5+c5=a·a4+b·b4+c·c4≥a·c4+b·a4+c·b4.又a3≥b3≥c3,且ab≥ac≥bc,∴a4b+b4c+c4a=a3·ab+b3·bc+c3·ca≥a3bc+b3ac+c3ab.∴a5+b5+c5≥a3bc+b3ac+c3ab.∴M≥0.2.若0<α<β<γ<,F=sin αcos β+sin βcos γ+sin γcos α-(sin 2α+sin 2β+sin 2γ),则()A.F>0B.F≥0C.F≤0D.F<00<α<β<γ<,所以0<sin α<sin β<sin γ,0<cos γ<cos β<cos α,由排序不等式可知,sin αcos β+sin βcos γ+sin γcos α>sin αcos α+sin βcos β+sin γcos γ, 而F=sin αcos β+sin βcos γ+sin γcos α-(sin 2α+sin 2β+sin 2γ)=sin αcos β+sin βcos γ+sin γcos α-(sin αcos α+sin βcos β+sin γcos γ)>0.3.导学号26394057车间里有5台机床同时出了故障,从第1台到第5台的修复时间依次为4 min、8 min、6 min、10 min、5 min,每台机床停产1 min损失5元,经合理安排损失最少为()A.420元B.400元C.450元D.570元1台到第5台的修复时间依次为t1,t2,t3,t4,t5,若按照从第1台到第5台的顺序修复,则修复第一台需要t1分钟,则停产总时间为5t1,修复第2台需要t2分钟,则停产总时间为4t2,…,修复第5台需要t5分钟,则停产总时间为t5,因此修复5台机床一共需要停产的时间为5t1+4t2+3t3+2t4+t5,要使损失最小,应使停产时间最少,亦即使5t1+4t2+3t3+2t4+t5取最小值.由排序不等式可知,当t1<t2<t3<t4<t5时,5t1+4t2+3t3+2t4+t5取最小值,最小值为5×4+4×5+3×6+2×8+10=84分钟,故损失最小为84×5=420元.4.导学号26394058在△ABC中,∠A,∠B,∠C所对的边依次为a,b,c,试比较的大小关系.a≥b≥c,则有A≥B≥C.由排序不等式,可得aA+bB+cC≥aA+bC+cB,aA+bB+cC≥aB+bA+cC,aA+bB+cC≥aC+bB+cA.将以上三个式子两边分别相加,得3(aA+bB+cC)≥(a+b+c)(A+B+C)=(a+b+c)π.所以.5.导学号26394059设x>0,求证1+x+x2+…+x2n≥(2n+1)x n.x≥1时,因为1≤x≤x2≤…≤x n,所以由排序原理得1·1+x·x+x2·x2+…+x n·x n≥1·x n+x·x n-1+…+·x+x n·1,即1+x2+x4+…+≥(n+1)x n.①又x,x2,…,x n,1为序列1,x,x2,…,x n的一个排列,所以1·x+x·x2+…+x n-1x n+x n·1≥1·x n+x·x n-1+…+x n-1·x+x n·1,因此x+x3+…++x n≥(n+1)x n, ②①+②,得1+x+x2+…+≥(2n+1)x n.③当0<x<1时,1>x≥x2≥…≥x n,①②仍成立,故③也成立.综上,原不等式成立.。
高中数学 第三讲 柯西不等式与排序不等式 3.1 二维形式的柯西不等式 3.2 一般形式的柯西不等式素材1 新人教
二 一般形式的柯西不等式庖丁巧解牛知识·巧学一、二维形式的柯西不等式定理1 (二维形式的柯西不等式)已知a 1,a 2,b 1,b 2∈R ,则(a 1b 1+a 2b 2)2≤(a 12+a 22)2(b 12+b 22)2,当且仅当a 1b 2-a 2b 1=0时取等号.由二维形式的柯西不等式推导出两个非常有用的不等式: 对于任何实数a 1,a 2,b 1,b 2,以下不等式成立:22212221b b a a +•+≥|a 1b 1+a 2b 2|; 22212221b b a a +•+≥|a 1b 1|+|a 2b 2|.联想发散不等式中等号成立⇔a 1b 2-a 2b 1=0.这时我们称(a 1,a 2),(b 1,b 2)成比例,如果b 1≠0,b 2≠0,那么a 1b 2-a 2b 1=0⇔2211b a b a =.若b 1·b 2=0,我们分情况说明:①b 1=b 2=0,则原不等式两边都是0,自然成立;②b 1=0,b 2≠0,原不等式化为(a 12+a 22)b 22≥a 22b 22,也是自然成立的;③b 1≠0,b 2=0,原不等式和②的道理一样,自然成立.正是因为b 1·b 2=0时,不等式恒成立,因此我们研究柯西不等式时,总是假定b 1b 2≠0,等号成立的条件可以写成2211b a b a =,这种写法在表示一般形式(n 维)的柯西不等式等号成立的条件时更是方便、简洁的.定理2 (柯西不等式的向量形式)设α,β是两个向量,则|α·β|≤|α||β|,当且仅当β是零向量,或存在实数k ,使α=k β时,等号成立. 学法一得定理2 中等号成立的充分必要条件是向量α和β平行(如α,β为非零向量,则定理2中等号成立的充分必要条件为向量α与β的夹角为0或π,即α与β对应的坐标分量成比例),从而可以推知定理1中等号成立的充分必要条件为2211b a b a =(b i 为零时,a i 为零,i=1,2).定理 3 (二维形式的三角不等式)设x 1,x 2,y 1,y 2∈R ,那么22122122222121)()(y y x x y x y x -+-≥+++.二维形式的三角不等式的变式:用x 1-x 3代替x 1,用y 1-y 3代替y 1,用x 2-x 3代替x 2,用y 2-y 3代替y 2,代入定理3,得232231231231)()()()(y y x x y y x x -+-+-+-221221)()(y y x x -+-≥二、一般形式的柯西不等式 定理 设a i ,b i ∈R (i=1,2, …,n),则(∑∑∑===≤ni ini ini ii ba b a 121212)(.当数组a 1,a 2,…,a n ,b 1,b 2,…,b n 不全为0时,等号成立当且仅当b i =λa i (1≤i≤n).即(a 1b 1+a 2b 2+…+a n b n )2≤(a 12+a 22+…+a n 2)2(b 12+b 22+…+b n 2)2(a i ,b i ∈R ,i=1,2,…,n )中等号成立的条件是2211b a b a ==…=nn b a. 记忆要诀这个式子在竞赛中极为常用,只需简记为“积和方小于和方积”.等号成立的条件比较特殊,要牢记.此外应注意在这个式子里不要求各项均是正数,因此应用范围较广. 一般形式的柯西不等式有两个很好的变式:变式 1 设a i ∈R ,bc>0(i=1,2, …,n),则∑∑∑≥=ii ni i ib a b a 212)(,等号成立当且仅当b i =λa i (1≤i≤n).变式2 设a i ,b i 同号且不为0(i=1,2,…,n ),则∑∑∑≥=i i i ni iib a a b a 212)(,等号成立当且仅当b 1=b 2=…=b n .深化升华要求a i ,b i 均为正数.当然,这两个式子虽常用,但是记不记住并不太重要,只要将柯西不等式原始的式子记得很熟,这两个式子其实是一眼就能看出来的,这就要求我们对柯西不等式要做到活学活用.柯西不等式经常用到的几个特例(下面出现的a 1, …,a n ;b 1, …,b n 都表示实数)是:(1)a 12+a 22+…+a n 2=1,b 12+b 22+…+b n 2=1,则|a 1b 1+a 2b 2+…+a n b n |≤1;(2)a 1a 2+a 2a 3+a 3a 1≤a 12+a 22+a 32;(3)(a 1+a 2+…+a n )2≤n(a 12+a 22+…+a n 2);(4)(a+b)(a 1+b1)≥4=(1+1)2,其中a 、b∈R +; (5)(a+b+c)(a 1+b 1+c1)≥9=(1+1+1)2,其中a 、b 、c∈R +.柯西不等式是一个重要的不等式,有许多应用和推广,与柯西不等式有关的竞赛题也频频出现,这充分显示了它的独特地位. 典题·热题知识点一: 用柯西不等式证明不等式 例1 设a 1>a 2>…>a n >a n+1,求证:11132211111a a a a a a a a n n n -+-++-=-++Λ>0.思路分析:这道题初看起来似乎无法使用柯西不等式,但改变其结构就可以使用了,我们不妨改为证: (a 1-a n+1)·[13221111+-++-+-n n a a a a a a Λ]>1.证明:为了运用柯西不等式,我们将a 1-a n+1写成a 1-a n+1=(a 1-a 2)+(a 2-a 3)+ …+(a n -a n+1),于是[(a 1-a 2)+(a 2-a 3)+…+(a n -a n+1)]·(13221111+-++-+-n n a a a a a a Λ)≥n 2>1.即(a 1-a n+1)·(13221111+-++-+-n n a a a a a a Λ)>1,∴11132211111++->-++-+-n n n a a a a a a a a Λ,故11132211111a a a a a a a a n n n -+-++-+-++Λ>0.方法归纳我们进一步观察柯西不等式,可以发现其特点是:不等式左边是两个因式之和,其中每一个因式都是项平方和,右边是左边中对立的两两乘积之和的平方,证题时,只要能将原题凑成此种形式,就可以引用柯西不等式来证明. 知识点二: 用柯西不等式证明条件不等式 例2 (经典回放)设x 1,x 2, …,x n ∈R +,求证:123221x x x x x x x x nn ++++Λ≥x 1+x 2+…+x n . 思路分析:在不等式的左端嵌乘以因式(x 2+x 3+…+x n +x 1),也即嵌以因式(x 1+x 2+…+x n ),由柯西不等式即可得证.证明:(123221x x x x x x x x nn ++++Λ)·(x 2+x 3+…+x n +x 1) =[(21x x )2+(22x x )2+…+(nn x x 1-)2+(1x x n )2] [(2x )2+(3x )2+…+(n x )2+(1x )2]≥(21x x ·2x +22x x ·3x +…+nn x x 1-·n x +1x x n ·1x ) =(x 1+x 2+…+x n )2,于是123221x x x x x x x x nn ++++Λ≥x 1+x 2+…+x n . 巧解提示柯西不等式中有三个因式∑∑∑===ni ii ni ini iba b a 11212,,,而一般题目中只有一个或两个因式,为了运用柯西不等式,我们需要设法嵌入一个因式(嵌入的因式之和往往是定值),这也是利用柯西不等式的技巧之一.知识点三: 用柯西不等式求函数的极值例3 已知实数a,b,c,d 满足a+b+c+d=3,a 2+2b 2+3c 2+6d 2=5,试求a 的最值. 思路分析:本题求极值问题从表面上看不能利用柯西不等式,但只要适当添加上常数项或和为常数的各项,就可以应用柯西不等式来解. 解:由柯西不等式得,有 (2b 2+3c 2+6d 2)(613121++)≥(b+c+d)2, 即2b 2+3c 2+6d 2≥(b+c+d)2.由条件可得,5-a 2≥(3-a)2. 解得,1≤a≤2,当且仅当6/163/132/12dc b ==时等号成立. 代入b=1,c=31,d=61时,a max =2; b=1,c=32,d=31时,a min =1.巧妙变式为了给运用柯西不等式创造条件,经常引进一些待定的参数,其值的确定由题设或者由等号成立的充要条件共同确定,也有一些三角极值问题我们可以反复运用柯西不等式进行解决.而有些极值问题的解决需要反复利用柯西不等式才能达到目的,但在运用过程中,每运用一次前后等号成立的条件必须一致,不能自相矛盾,否则就会出现错误.这多次反复运用柯西不等式的方法也是常用技巧之一. 如:已知a,b 为正常数,且0<x<2π,求y=x b x a cos sin +的最小值. 解:利用柯西不等式,得)(32323232b a b a +=+(sin 2x+cos 2x)≥(3a sinx+3b cosx)2.当且仅当33cos sin bxax=时等号成立.于是33232a b a ≥+sinx+3b cosx.再由柯西不等式,得3232b a +(xb x a cos sin +) ≥(3a sinx+3b cosx)(xb x a cos sin +) ≥(x b x b x a x a cos cos sin sin 66+)2=(a 32+b 32)2. 当且仅当33cos sin bxax=时等号成立.从而y=x bx a cos sin +≥(a 32+b 32)32. 于是y=xbx a cos sin +的最小值是(a 32+b 32)32. 问题·探究 思想方法探究问题 试探究用柯西不等式导出重要公式.如n 个实数平方平均数不小于这n 个数的算术平均数,即若a 1,a 2,…,a n ∈R ,则na a a n a a a nn2222121+++≤+++ΛΛ.探究过程:由柯西不等式可知(a 1+a 2+…+a n )2≤(a 1·1+a 2·1+…+a n ·1)2≤(a 12+a 22+…+a n 2)·(12+12+…+12)=(a 12+a 22+…+a n 2)·n,所以na a a n 221)(+++Λ≤a 12+a 22+…+a n 2,故na a a n a a a nn2222121+++≤+++ΛΛ.不等式na a a na a a nn2222121+++≤+++ΛΛ,把中学教材中仅有关于两个正数的“算术平均”,“几何平均”问题拓广到了“二次幂平均”问题,即nn a a a Λ21≤na a a n a a a nn2222121+++≤+++ΛΛ,这不仅拓宽了中学生的眼界,而且为解决许多不等式的问题开辟了一条新路.探究结论:柯西不等式不仅在高等数学中是一个十分重要的不等式,而且它对初等数学也有很好的指导作用,利用它能方便地解决一些中学数学中的有关问题. 交流讨论探究问题 柯西不等式在求某些函数最值中和证明某些不等式时是经常使用的理论根据,试交流讨论使用柯西不等式的技巧,试举例归纳.探究过程:人物甲:构造符合柯西不等式的形式及条件可以巧拆常数,如:设a 、b 、c 为正数且各不相等.求证cb a ac c b b a ++>+++++9222.我们可以如此分析:∵a、b 、c 均为正,∴为证结论正确只需证2(a+b+c)[ac c b b a +++++111]>9.而2(a+b+d)=(a+b)+(b+c)+(c+a),又9=(1+1+1)2.人物乙:构造符合柯西不等式的形式及条件可以重新安排某些项的次序,如:a 、b 为非负数,a+b=1,x 1,x 2∈R +,求证(ax 1+bx 2)(bx 1+ax 2)≥x 1x 2.我们可以如此分析:不等号左边为两个二项式积,a,b∈R -,x 1,x 2∈R +,直接用柯西不等式做得不到预想结论,当把第二个小括号的两项前后调换一下位置,就能证明结论了.人物丙:构造符合柯西不等式的形式及条件可以改变结构,从而能够使用柯西不等式,如:若a>b>c ,求证c b b a -+-11≥ca -4.我们可以如此分析:初式并不能使用柯西不等式,改造结构后便可使用柯西不等式了.∵a -c=(a-b)+(b-c),a>c,∴a -c>0,∴结论改为(a-c)(cb b a -+-11)≥4. 人物丁:构造符合柯西不等式的形式及条件可以添项,如:若a,b,c∈R +,求证b ac a c b c b a +++++≥23.我们可以如此分析:左端变形c b a ++1+ac b++1+b a c ++1=(a+b+c)(b a a c c b +++++111),∴只需证此式≥29即可. 探究结论:使用柯西不等式的技巧主要就是使用一些方法(巧拆常数、重新安排某些项的次序、添项等)构造符合柯西不等式的形式及条件.。
人教版高中数学选修4-5《第三讲柯西不等式与排序不等式一般形式的柯西不等式》
3 3 =3 ( x 0)
6
复习引入
设<m, n , 则m n | m | | n | cos | m n || m | | n | | cos || m | | n | | m n || m | | n | 当且仅当m // n时,等号成立. m (a, b, c), n (d , e, f ) m n ad be cf
2 2
1 1 2 (1 x 2 y ) 5 5
1 2 (当 x , y ) 5 5
4
复习引入 下面我们来做几个巩固练习: 1 2 3.设 x, y R ,且 x+2y=36,求 的最小值. x y
1 2 1 1 2 ( )( x 2 y) x y 36 x y 1 2 y 2x (1 4 ) 36 x y 1 2 y 2x (5 2 ) 36 x y
(a b c d ) (a b c d )(b c d a )
2 2 2 2 2 2 2 2 2 2 2 2
(ab bc cd da )
2 2 2 2
2
(ab bc cd da )
即 a b c d ab bc cd da
同样这个不等式也有着向量(n维向量)及几何背景, 其应用广泛。
9
一般形式的柯西不等式示例源自例 1 已知 a1 , a2 , , an 都是实数,求证: 1 2 2 2 2 (a1 a2 an ) ≤ a1 a2 an n 1 1 2 2 ( a a a ) (1 a 1 a 1 a ) 证明: 1 2 n 1 2 n n n 1 2 2 2 2 2 (1 1 12 )(a1 a2 an ) n
柯西不等式与排序不等式及其应用-柯西不等式-柯西不等式的一般形式及其参数配方法的证
2.1.2 柯西不等式的一般式及其配方证明本小节的主要内容是柯西不等式的一般形式(定理)及其简单应用. 1.教科书首先用参数配方法证明了112222222212121122nnn naaabbba b a b a b等号成立当且仅当1212nna a ab b b 这里某一个i b 为零时,规定相应的i a 为零.教学中要求学生掌握其等号成立的充分必要条件,为学习2.4节解决某些特定函数的极值问题打好基础.2.当2n 时,本节的定理即为2.1.1的定理1.3.本小节通过例1,例2给出了柯西不等式一般形式的应用,这些例子证明的关键是构造两个适当的数组.4.n R 中柯西不等式的向量形式,记122,,:R 1,2,,nn jR a a a a a jn,称的n R 中的向量,j a ,1,2,,,j n 称为的分量. 特别当的n 个分量都是零时,称其为零向量,记为0.设,为n R 中的向量,R ,1212,,,,,,n na a ab b b令1122,,n na b a b a b12,,,na a a它们分别称为向量与的加法及实数和向量的数乘,令1122n n a b a b a b ,称其为向量与的内积,则特别有:222120na a a1200na a a记22212na a a 称其为向量的长度,在这种规定的内积下,通过直接计算可得: (1)0,0 (正性)(2)(对称性)(3),,nR(4),nR R当n R 中的向量如上定义其长度时,n R 称为欧氏空间,由本小节的定理,立即得定理(柯西不等式的一般(向量)形式),设,n R ,则且等号成立1212n na a ab bb 存在常数及,使得.(如,为非零向量时,等号成立).于是根据上述定理,对于n R 中的非零向量,,以<,>表示,的夹角,规定0,令cos ,b(1)由上述柯西不等式的向量形式,知cos ,1αβ≤于是(1)的规定是合理的,特别当2n =时cos ,αβ=}(线性)n=时3cos,β=。
高中数学 第三讲 柯西不等式与排序不等式 3.2 一般形式的柯西不等式知识导学案 新人教A版选修45
二 一般形式的柯西不等式知识梳理1.三维形式的柯西不等式设a 1,a 2,a 3,b 1,b 2,b 3是实数,则(a 12+a 22+a 32)(b 12+b 22+b 32)≥__________,当且仅当_______或存在一个数k ,使得a i =kb i (i=1,2,3)时等号成立. 2.一般形式的柯西不等式设a 1,a 2,a 3,…,a n ,b 1,b 2,b 3, …,b n 是实数,则 (a 12+a 22+…+a n 2)(b 12+b 22+…+b n 2)≥_______,当且仅当_______或存在一个数k ,使得a i =kb i (i=1,2, …,n)时,等号成立. 知识导学由二维形式的柯西不等式到一般形式的柯西不等式,是从特殊到一般的认识过程,其中三维形式的柯西不等式是过渡的桥梁,三维形式的柯西不等式可以对比二维形式的柯西不等式来理解和记忆,一般形式的柯西不等式又可以参照三维形式的柯西不等式来理解和推广.这样易于记忆不等式的结构与特征.对不等式成立的条件及等号取到的条件更要对比来研究.一般形式的柯西不等式注意整体的结构特征,因此,要从整体结构上认识这个不等式,形成一定的思维理解模式,在应用其解决问题时才能灵活应用. 疑难突破1.一般形式的柯西不等式的应用我们主要利用柯西不等式来证明一些不等式或求值等一些问题,但往往不能直接应用,需要对数学式子的形式进行变化,拼凑出与一般形式的柯西不等式相似的结构,才能应用,因而适当变形是我们应用一般形式的柯西不等式的关键,也是难点.我们要注意在数学式子中,数或字母的顺序要对比柯西不等式中的数或字母的顺序,以便能使其形式一致起来,然后应用解题. 2.“1”的利用数字“1”的利用非常重要,为了利用柯西不等式,除了拼凑应该有的结构形式外,对数字、系数的处理往往起到某些用字母所代表的数或式子所不能起的作用.这要求在理论上认识柯西不等式与实际应用时二者达到一种默契,即不因为“形式”与“面貌”的影响而不会用柯西不等式,教材例1中数字“1”的利用说明了处理问题与变形中的灵活性,因此,不应对“1”视而不见. 典题精讲【例1】 已知a,b,c∈R +,求证:(b a +c b +a c )(a b +b c +ca)≥9. 思路分析:对应三维形式的柯西不等式,a 1=b a ,a 2=c b ,a 3=a c ,b 1=a b ,b 2=b c ,b 3=ca ,而a 1b 1=a 2b 2=a 3b 3=1,因而得证. 证明:由柯西不等式,知左边=[(b a )2+(c b )2+(a c )2]×[(a b )2+(b c )2+(ca )2] ≥(a b ×b a +c b ×b c )+a c ×ca )2=(1+1+1)2=9.∴原不等式成立.绿色通道:由a,b,c 构成新的数字,而形成三维形式的柯西不等式,需要有较高的观察能力,从所给的数学式的结构中看出来.【变式训练】 已知a,b,c∈R +,且a+b+c=1,求证:cb a 111++≥9. 思路分析:利用“1”的代换来构造柯西不等式. 证法一:c b a 111++=(a+b+c)(cb a 111++) =[(a )2+(b )2+(c )2]×[(a 1)2+(b 1)2+(c1)2] ≥(a ×a 1+b ×b 1+c ×c1)2=(1+1+1)2=9. 证法二:a 1+b 1+c 1=(a+b+c)(a 1+b 1+c 1) =1+b a +c a +a b +1+c b +a c +bc +1=3+(b a +c a +c b +a c +b c +ab)≥3+66a b b c a c c b c a b a ⨯⨯⨯⨯⨯=3+6=9.【例2】 已知a 1,a 2, …,a n 都是正实数,且a 1+a 2+…+a n =1.求证:1212132222121a a a a a a a a a a a a n n n n n ++++++++-- ≥21. 思路分析:已知条件中a 1+a 2+…+a n =1,可以看作“1”的代换,而要证的不等式的左侧,“数式”已经可以看出来,为,,322211a a a a a a ++, …,所以a 1+a 2+…+a n =1.应扩大2倍后再利用,本题还可以利用其他的方法证明.证法一:根据柯西不等式,得左边=1212132222121a a a a a a a a a a a a n n n n n ++++++++-- =[(a 1+a 2)+(a 2+a 3)+(a 3+a 4)+ …+(a n-1+a n )+(a n +a 1)]× [(211a a a +)2+(322a a a +)2+(433a a a +)2+…+(n n n a a a +--11)2+(1a a a n n +)2]×21=[(21a a +)2+(32a a +)2+…+(n n a a +-1)2+(1a a n +)2]×[(211a a a +)2+(322a a a +)2+…+(n n n a a a +--11)2+(1a a a n n +)2]×21≥[(21a a +×211a a a +)+(32a a +×322a a a +)+…+(n n a a +-1×n n n a a a +--11)+(1a a n +×1a a a n n +)]2×21=(a 1+a 2+…+a n )2×21=21=右边.∴原不等式成立.证法二:∵a∈R +,则a+a1≥2, a≥2-a1. 利用上面的结论,知4)22(22221121121112121a a a a a a a a a a a a a +-=+-≥+⨯=+ 同理,有43223222a a a a a a +-≥+,…411121n n n n n n a a a a a a +-≥+----,4121a a a a a a n n n n n +-≥+-. 以上式子相加整理,得1212132222121a a a a a a a a a a a a n n n n n ++++++++-- ≥21(a 1+a 2+…+a n )=21. 证法三:对于不等式左边的第一个分式2121a a a +,配制辅助式k(a 1+a 2),k 为待定的正数,这里取k=41,则412121++a a a (a 1+a 2)≥)(412212121a a a a a +⨯+=a 1. 同理,413222++a a a (a 2+a 3)≥a 2.……41121++--n n n a a a (a n-1+a n )≥a n-1,4112++a a a n n (a n +a 1)≥a n .以上式子相加整理,得1212132222121a a a a a a a a a a a a n n n n n ++++++++-- ≥21(a 1+a 2+…+a n ). ∵a 1+a 2+…+a n =1,∴1212132222121a a a a a a a a a a a a n n n n n ++++++++-- ≥21. 绿色通道:通过以上不同的证明方法可以看出,无论用柯西不等式或其他重要不等式来证明,构造出所需要的某种结构是证题的难点,因此,对柯西不等式或其他重要不等式,要熟记公式的特点,能灵活变形,才能灵活应用.【变式训练】 设x 1,x 2,x 3, …,x n 都是正实数,且x 1+x 2+x 3+…+x n =S.求证:12222121-≥-++-+-n Sx S x x S x x S x n n . 思路分析:对比例2及本题要证明的不等式,知需要构造出S-x 1+S-x 2+…+S-x n .证法一:根据柯西不等式,得左边=nn x S x x S x x S x -++-+-2222121=[(S-x 1)+(S-x 2)+ …+(S-x n )]×S n x S x x S x x S x S n n n )1(1][)1(12222121-=-++-+-- nn n x S x x S x x S x x S x S x S -++-+-⨯-++-+- 221122221][])()()[(≥2222111)]()()[()1(1nn n x S x x S x S x x S x S x x S S n -⨯-++-⨯-+-⨯--=S n )1(1-(x 1+x 2+…+x n )2=S n )1(1-×S 2=1-n S =右边.∴原不等式成立. 证法二:∵a∈R +,则a+a1≥2. ∴a≥2-a1. ∴22)1(12])1(2[1)1(1----=---⨯-≥--⨯-=-n x S n x x n x S n x x S x n n x x S x i i i i i i i i i . n 个式子相加,有])1()1()1([12121222221212222121--++--+----++-+-≥-++-+-n x S n x S n x S n x n x n x x S x x S x x S x n n n n =1)1(122-=----n Sn S nS n S .∴原不等式成立. 证法三:22)1(1-+-n x S x i i (S-x i )≥ 12)()1(1222-=--∙-n x x S n x S x i ii i . ∴22)1()1(2----≥-n x S n x x S x i i i i , ∴1)1()1(12)1(12212112-=----=----≥-∑∑∑===n S n S n n S n x S n x x S x ni i n i i ni i i . ∴原不等式成立.问题探究问题:全班同学的体重与年龄有某种关系,如果让每人的体重都去乘所有人的年龄,再求其和,就可以比较得出各班之间体重间的一些问题,问这种值最小是多少? 导思:设其人数及年龄,利用柯西不等式解答.探究:设全班为60人,年龄设为x 1,x 2, …,x 60,对应的体重为y 1,y 2,…,y 60.则 (x 1+x 2+…+x 60)(y 1+y 2+…+y 60) ≥(60602211y x y x y x +++)2.∴最小值是(60602211y x y x y x +++ )2.。
高中数学第三讲柯西不等式与排序不等式排序不等式素材2
3。
3 排序不等式庖丁巧解牛知识·巧学排序不等式Sequence Inequality(又称排序原理) (1)排序原理的内容:设有数组A:a 1≤a 2≤…≤a n ,及数组B:b 1≤b 2≤…≤b n .称a 1b 1+a 2b 2+…+a n b n 为顺序和,a 1b n +a 2b n-1+a 3b n —2+…+a n b 1为倒序和,a 1c 1+a 2c 2+…+a n c n 为乱序和(其中c 1,c 2,…,c n 是b 1≤b 2≤…≤b n 的一个排列)。
则有: 顺序和≥乱序和≥倒序和,其中等号当且仅当a 1=a 2=…=a n 或b 1=b 2=…=b n 时成立。
记忆要诀以S=∑=ni i i b a 1表示顺序和,以∑=+-=ni i n i ba S 11表示倒序和,以S 1=∑=ni i i c a 1表示乱序和(其中,c 1,c 2,…,c n 是b 1≤b 2≤…≤b n 的任一排列),则有S ≤S 1≤S 。
(2)排序原理的本质含义:两实数序列同方向单调(同时增或同时减)时所得两两乘积之和最大,反方向单调(一增一减)时所得两两乘积之和最小,注意等号成立条件是其中一序列为常数序列。
学法一得由排序原理,我们可以得到这样一个推论:对于实数,a 1,a 2,…,a n ,设a i1,a i2,…,a in 为其任一个排列,则有 a 1a i1+a 2a i2+…+a n a in ≤a 12+a 22+…+a n 2。
证明:不妨设满足a 1≤a 2≤…≤a n ,取b k =a k (k=1,2,…,n ),因此b 1≤b 2≤…≤b n ,且a 1,a 2,…,a n 是b 1,b 2,…,b n 的一个排列,由排序原理知, a 11i a +a 22i a +…+a n ni a ≤a 1b 1+a 2b 2+…+a n b n =a 12+a 22+…+a n 2.(3)排序原理的意义:在解各种涉及到若干个可以比较大小的对象(如实数、线段、角度等)a 1,a 2,…,a n 的数学问题时,如果根据对称性,假定它们按一定的顺序排列起来,往往能使问题迎刃而解。
高中数学 第三讲 柯西不等式与排序不等式 3.1 二维形
3.1 二维形式的柯西不等式预习导航1.认识柯西不等式的几种不同形式,理解其几何意义.2.通过运用柯西不等式分析解决一些简单问题.1.二维形式的柯西不等式(1)若a ,b ,c ,d 都是实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时,等号成立.(2)二维形式的柯西不等式的推论:(a +b )(c +d a ,b ,c ,d 为非负实数); a 2+b 2·c 2+d 2≥|ac +bd |(a ,b ,c ,d ∈R );a 2+b 2·c 2+d 2≥|ac |+|bd |(a ,b ,c ,d ∈R ).【做一做1】已知a ,b >0,且a +b =1,则(4a +1+4b +1)2的最大值是( )A .2 6B . 6C .6D .12解析:(4a +1+4b +1)2=(1×4a +1+1×4b +1)2≤(12+12)(4a +1+4b +1)=2[4(a +b )+2] =2×(4×1+2)=12,当且仅当4b +1=4a +1,即a =b =12时等号成立. 答案:D2.柯西不等式的向量形式设α,β是两个向量,则|α·β|≤|α||β|,当且仅当β是零向量,或存在实数k ,使α=k β时,等号成立.【做一做2】设a =(-2,1,2),|b |=6,则a ·b 的最小值为__________,此时b =__________.解析:根据柯西不等式的向量形式,有|a ·b |≤|a |·|b |,∴|a ·b |≤(-2)2+12+22×6=18,当且仅当存在实数k ,使a =k b 时,等号成立.∴-18≤a ·b ≤18.∴a·b的最小值为-18,此时b=-2a=(4,-2,-4).答案:-18 (4,-2,-4)3.二维形式的三角不等式(1)设x1,y1,x2,y2∈R,那么x21+y21+x22+y22≥(x1-x2)2+(y1-y2)2.(2)推论:(x1-x3)2+(y1-y3)2+(x2-x3)2+(y2-y3)2≥(x1-x2)2+(y1-y2)2(x1,x2,x3,y1,y2,y3∈R).归纳总结解决柯西不等式的应用问题,关键是把原有式子巧妙地转化为柯西不等式的形式.。
2018_2019高中数学第三讲柯西不等式与排序不等式3.2一般形式的柯西不等式导学案
3.2 一般形式的柯西不等式学习目标1.掌握三维形式和多维形式的柯西不等式.2.会利用一般形式的柯西不等式解决简单问题. 一、自学释疑根据线上提交的自学检测,生生、师生交流讨论,纠正共性问题。
二、合作探究探究1.如何理解柯西不等式的结构特征?探究2.在一般形式的柯西不等式中,等号成立的条件记为a i =kb i (i =1,2,3…,n ),可以吗?名师点拨:1.三维形式的柯西不等式三维形式的柯西不等式可以对比二维形式的柯西不等式来理解和记忆,一般形式的柯西不等式又可以参照三维形式的柯西不等式来理解和推广,这样易于记忆不等式的结构特征,对不等式等号成立的条件加深理解.2.一般形式的柯西不等式定理称为柯西不等式的一般形式,它主要用来证明不等式和解决一些实际应用的最值问题.在使用柯西不等式时需要掌握一些方法技巧,如:巧拆常数,重新安排某些项的次序,适当的拼凑项、添项等,以构造出符合柯西不等式的形式及条件,达到使用柯西不等式证明的目的.对于许多不等式问题,应用柯西不等式来解往往简单快捷,要正确理解柯西不等式,只有掌握了它的结构特征,才能灵活应用.【例1】 已知a ,b ,c ∈R +,求证:⎝ ⎛⎭⎪⎫a b +b c +c a ⎝ ⎛⎭⎪⎫b a +c b +ac ≥9.【变式训练1】 已知x ,y ,z ∈R +,且x +y +z =1. 求证:1x +4y +9z≥36.【例2】 设a ,b ,c 为正实数,且a +b +c =3,求证:2a +1+2b +1+2c +1≤3 3.【变式训练2】 已知a ,b ,c ∈R +,且a +b +c =1,求4a +1+4b +1+4c +1的最大值.【例3】 已知x 1,x 2,x 3,x 4为实数,且x 1+x 2+x 3+x 4=6,x 21+x 22+x 23+x 24=12. 求证:0≤x i ≤3,i =1,2,3,4.【变式训练3】 设实数a ,b ,c ,d ,e 满足a +b +c +d +e =8,a 2+b 2+c 2+d 2+e 2=16,求e 的最大值.【例4】 已知a 1,a 2,…,a n 都是正实数,且a 1+a 2+…+a n =1,求证:a 21a 1+a 2+a 22a 2+a 3+…+a 2n -1a n -1+a n+a 2na n +a 1≥12.【变式训练4】 设a 1>a 2>…>a n >a n +1,求证:1a 1-a 2+1a 2-a 3+…+1a n -a n +1+1a n +1-a 1>0.参考答案探究1.【提示】归纳类比二维形式、三维形式和一般形式的柯西不等式的结构特征,可知柯西不等式的结构特点为:左边为平方和的积,右边是积的和的平方.探究2.【提示】不可以.若b i=0而a i≠0,则k不存在.【例1】【分析】利用柯西不等式证明其他不等式时,关键是构造两组数,向着柯西不等式的形式转化.本例中对应三维柯西不等式,记a1=ab,a2=bc,a3=ca,b1=ba,b2=cb,b3=ac,而a1b1=a2b2=a3b3=1,因而得证.【证明】由柯西不等式知左边=⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫ab2+⎝⎛⎭⎪⎫bc2+⎝⎛⎭⎪⎫ca2×⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫ba2+⎝⎛⎭⎪⎫cb2+⎝⎛⎭⎪⎫ac2≥⎝⎛⎭⎪⎫ba·ab+bc·cb+ca·ac2=(1+1+1)2=9.∴原不等式成立.【变式训练1】证明证法一:(利用基本不等式)1x+4y+9z=1x(x+y+z)+4y(x+y+z)+9z(x+y+z)=14+⎝⎛⎭⎪⎫yx+4xy+⎝⎛⎭⎪⎫zx+9xz+⎝⎛⎭⎪⎫4zy+9yz≥14+4+6+12=36.当且仅当y=2x,z=3x,且x+y+z=1,∴x=16,y=13,z=12时等号成立.证法二:(利用柯西不等式)(x+y+z)⎝⎛⎭⎪⎫1x+4y+9z≥⎝⎛⎭⎪⎫x·1x+y·4y+z·9z2=(1+2+3)2=36,当且仅当x2=14y2=19z2,即x=16,y=13,z=12时等号成立.【例2】【分析】利用柯西不等式的向量形式,目标式的左边应是两个向量的数量积.由于变量a,b,c的系数都相等,由整体性可构造向量m=(2a+1,2b+1,2c+1),n=(1,1,1).利用|m ·n |<|m ||n |可得证.【证明】 令m =(2a +1,2b +1,2c +1),n =(1,1,1),则m ·n =2a +1+2b +1+2c +1.而|m |=2a +1+2b +1+2c +1=2a +b +c +3=3.又|n |=3,由|m ·n |≤|m ||n |,得∴2a +1+2b +1+2c +1≤3 3. 当且仅当a =b =c =1时,等号成立.【变式训练2】解 方法一:由柯西不等式,得(4a +1+4b +1+4c +1)2=(1×4a +1+1×4b +1+1×4c +1)2≤(12+12+12)(4a +1+4b +1+4c +1) =3[4(a +b +c )+3]=21. 当且仅当a =b =c =13时,取等号.故4a +1+4b +1+4c +1的最大值为21. 方法二:令m =(4a +1,4b +1,4c +1).n =(1,1,1),则|m |=4a +1+4b +1+4c +1 =4a +b +c +3=7,|n |=12+12+12= 3.m ·n =4a +1+4b +1+4c +1,由|m ·n |≤|m ||n |,得4a +1+4b +1+4c +1≤21.故4a +1+4b +1+4c +1的最大值为21,当且仅当a =b =c =13时,取等号.【例3】【分析】 由于x 1,x 2,x 3,x 4的对称性,只需证明一个x ,其他可以同理得到.充分利用已知的等式,将x 2,x 3,x 4用x 1表示,从而得到只含x 1的式子,进一步求解.【证明】 由柯西不等式,得(x 2+x 3+x 4)2≤(1+1+1)·(x 22+x 23+x 24). 由题设条件,得x 2+x 3+x 4=6-x 1,x 22+x 23+x 24=12-x 21.∴(6-x 1)2≤3(12-x 21). ∴4x 21-12x 1≤0.∴0≤x 1≤3.同理可证0≤x i ≤3.i =2,3,4. 【变式训练3】解 将条件改写为 8-e =a +b +c +d , 16-e 2=a 2+b 2+c 2+d 2, 由柯西不等式,得(a +b +c +d )2≤(1+1+1+1)(a 2+b 2+c 2+d 2), 将条件代入上式,得 (8-e )2≤4(16-e 2). 即64-16e +e 2≤64-4e 2. 即5e 2-16e ≤0,∴0≤e ≤165.当且仅当a =b =c =d =65时,e 取最大值165.【例4】 【证明】 左边=a 21a 1+a 2+a 22a 2+a 3+…+a 2n -1a n -1+a n +a 2na n +a 1=[(a 1+a 2)+(a 2+a 3)+…+(a n -1+a n )+(a n +a 1)]×⎣⎢⎡⎝ ⎛⎭⎪⎫a 1a 1+a 22+⎝ ⎛⎭⎪⎫a 2a 2+a 32+…+⎝ ⎛⎭⎪⎫a n -1a n -1+a n 2+⎦⎥⎤⎝ ⎛⎭⎪⎫a n a n +a 12×12=[(a 1+a 2)2+(a 2+a 3)2+…+(a n -1+a n )2+(a n +a 1)2]×⎣⎢⎡⎝ ⎛⎭⎪⎫a 1a 1+a 22+⎝ ⎛⎭⎪⎫a 2a 2+a 32+…+⎝⎛⎭⎪⎫a n -1a n -1+a n 2+⎦⎥⎤⎝ ⎛⎭⎪⎫a n a n +a 12×12≥ ⎝⎛a 1+a 2·a 1a 1+a 2+a 2+a 3·a 2a 2+a 3+…+a n -1+a n ·⎭⎪⎫a n -1a n -1+a n +a n +a 1·a n a n +a 12×12=(a 1+a 2+…+a n )2×12=12=右边,所以原不等式成立.【变式训练4】证明 为了运用柯西不等式,我们将a 1-a n +1写成a 1-a n +1=(a 1-a 2)+(a 2-a 3)+…+(a n -a n +1),于是[(a 1-a 2)+(a 2-a 3)+…+(a n -a n+1)]·⎝⎛⎭⎪⎫1a 1-a 2+1a 2-a 3+…+1a n -a n +1≥n 2>1.即(a 1-a n +1)·⎝⎛⎭⎪⎫1a 1-a 2+1a 2-a 3+…+1a n -a n +1>1,所以1a1-a2+1a2-a3+…+1a n-a n+1>1a1-a n+1,故1a1-a2+1a2-a3+…+1a n-a n+1+1a n+1-a1>0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年高中数学第三章柯西不等式与排序不等式3
课后篇巩固探究
A组
1.顺序和S、反序和S'、乱序和S″的大小关系是( )
A.S≤S'≤S″
B.S≥S'≥S″
C.S≥S″≥S'
D.S≤S″≤S'
2.设x,y,z均为正数,P=x3+y3+z3,Q=x2y+y2z+z2x,则P与Q的大小关系是( )
A.P≥Q
B.P>Q
C.P≤Q
D.P<Q
3.若a<b<c,x<y<z,则下列各式中值最大的一个是( )
A.ax+cy+bz
B.bx+ay+cz
C.bx+cy+az
D.ax+by+cz
由排序不等式得反序和≤乱序和≤顺序和,
得顺序和ax+by+cz最大.故选D.
4.若0<a1<a2,0<b1<b2,且a1+a2=b1+b2=1,则下列代数式中最大的是( )
A.a1b1+a2b2
B.a1a2+b1b2
C.a1b2+a2b1
D.
∴a1b1+a2b2>a1b2+a2b1.
且a1b1+a2b2>>a1b2+a2b1.
又1=a1+a2≥2,∴a1a2≤.
∵0<a1<a2,∴a1a2<.同理b1b2<,
∴a1a2+b1b2<.
∴a1b1+a2b2>>a1a2+b1b2,
∴a1b1+a2b2最大.
5.已知a,b,c∈R+,则a2(a2-bc)+b2(b2-ac)+c2(c2-ab)( )
A.大于零
B.大于或等于零
C.小于零
D.小于或等于零
得a3×a+b3×b+c3×c≥a3b+b3c+c3a.
因为ab≥ac≥bc,a2≥b2≥c2,
所以a3b+b3c+c3a≥a2bc+b2ca+c2ab.
所以a4+b4+c4≥a2bc+b2ca+c2ab,
即a2(a2-bc)+b2(b2-ac)+c2(c2-ab)≥0.
6.设a1,a2,a3,a4是1,2,3,4的一个排序,则a1+2a2+3a3+4a4的取值范围是.
7.如图所示,在矩形OPAQ中,a1≤a2,b1≤b2,若阴影部分的面积为S1,空白部分的面积之和为S2,则S1与S2的大小关系
是.
8.若a,b,c为正数,求证a3+b3+c3≥3abc.
由排序不等式,得
a3+b3≥a2b+ab2,c3+b3≥c2b+cb2,a3+c3≥a2c+ac2,
三式相加,得2(a3+b3+c3)≥a(b2+c2)+b(a2+c2)+c(a2+b2).
因为a2+b2≥2ab,c2+b2≥2cb,a2+c2≥2ac,
所以2(a3+b3+c3)≥6abc,
即a3+b3+c3≥3abc(当且仅当a=b=c时,等号成立).
9.设a,b均为正数,求证.
由不等式性质,得>0.
则由排序不等式,可得,即.
10.设a,b,c都是正数,求证a+b+c≤.
由不等式的性质,知a2≥b2≥c2,ab≥ac≥bc.
根据排序原理,得a2bc+ab2c+abc2≤a3c+b3a+c3b.①
又由不等式的性质,知a3≥b3≥c3,且a≥b≥c.
再根据排序原理,得a3c+b3a+c3b≤a4+b4+c4.②
由①②及不等式的传递性,得a2bc+ab2c+abc2≤a4+b4+c4.
两边同除以abc,得a+b+c≤(当且仅当a=b=c时,等号成
立).
B组
1.设a,b,c>0,则式子M=a5+b5+c5-a3bc-b3ac-c3ab与0的大小关系是( )
A.M≥0
B.M≤0
C.M与0的大小关系与a,b,c的大小有关
D.不能确定
又a3≥b3≥c3,且ab≥ac≥bc,
∴a4b+b4c+c4a=a3·ab+b3·bc+c3·ca
≥a3bc+b3ac+c3ab.
∴a5+b5+c5≥a3bc+b3ac+c3ab.∴M≥0.
2.若0<α<β<γ<,F=sin αcos β+sin βcos γ+sin γcos α-
(sin 2α+sin 2β+sin 2γ),则( )
A.F>0
B.F≥0
C.F≤0
D.F<0
所以0<sin α<sin β<sin γ,0<cos γ<cos β<cos α,
由排序不等式可知,
sin αcos β+sin βcos γ+sin γcos α>sin αcos α+sin βcos β+sin γcos γ,
而F=sin αcos β+sin βcos γ+sin γcos α-(sin 2α+sin 2β+sin 2γ)
=sin αcos β+sin βcos γ+sin γcos α-(sin αcos α+sin βcos β+sin γcos γ)>0.
3.导学号26394057车间里有5台机床同时出了故障,从第1台到第5台的修复时间依次为4 min、8 min、6 min、10 min、5 min,每台机床停产1 min损失5元,经合理安排损失最少为( )
A.420元
B.400元
C.450元
D.570元
4.导学号26394058在△ABC中,∠A,∠B,∠C所对的边依次为a,b,c,
试比较的大小关系.
由排序不等式,可得aA+bB+cC≥aA+bC+cB,
aA+bB+cC≥aB+bA+cC,
aA+bB+cC≥aC+bB+cA.
将以上三个式子两边分别相加,得
3(aA+bB+cC)≥(a+b+c)(A+B+C)=(a+b+c)π.
所以.
5.导学号26394059设x>0,求证
1+x+x2+…+x2n≥(2n+1)xn.
所以由排序原理得1·1+x·x+x2·x2+…+xn·xn≥1·xn+x·xn-1+…+·x+xn·1,
即1+x2+x4+…+≥(n+1)xn.①
又x,x2,…,xn,1为序列1,x,x2,…,xn的一个排列,
所以1·x+x·x2+…+xn-1xn+xn·1≥1·xn+x·xn-1+…+xn-1·x+xn·1,
因此x+x3+…++xn≥(n+1)xn,②
①+②,得1+x+x2+…+≥(2n+1)xn. ③
当0<x<1时,1>x≥x2≥…≥xn,①②仍成立,
故③也成立.综上,原不等式成立.。