2013年常熟市高中数学青年教师解题比赛试题

合集下载

全国高中数学联赛江苏赛区2013年初赛试题答案

全国高中数学联赛江苏赛区2013年初赛试题答案

全国高中数学联赛江苏赛区2013年初赛试题答案班级____________ 姓名____________一、填空题:本大题共10小题,每小题7分,共70分.1.设方程22210x mx m -+-=的根大于2-,且小于4,则实数m 的范围是____________. 解:方程22210x mx m -+-=的两根为:11x m =-,21x m =+;由题设可得:1214m m ->-⎧⎨+<⎩,解之可得:13m -<<.(点评:本题易让人首先想到“根的分布”,而事实上求出根来,其法也不错!) 2.从6双不同号码的鞋中取出4只,至少配成一双的概率为____________.解:若成两双,则有26C 种取法;若成一双,则先在6双中取1双,再在剩下5双中取两双,每双各取其中1只;故概率为:21211665224121733C C C C C P C +⨯⨯⨯==. (点评:本题是极其经典的排列组合题,仅有一双的取法,必须牢记,还要会举一反三!) 3.设实数x y 、满足2430x x y -++=,则22x y +的最大值与最小值之差是____________. 解:由题意可知:点(, )x y 在圆22:(2)1C x y -+=上,22x y +表示圆C 上的点到原点距离的平方,其最大值为9,最小值为1;所以22x y +的最大值与最小值的差为8. (点评:凡与圆有关的问题,毫不外地要考虑好圆心,还有几何意义!)4.若存在正实数a b 、满足()()n n a bi a bi +=-(i 是虚数单位,*n ∈N ),则n 的最小值是_______. 解:当1, 2n =时,经过计算,不存在正实数, a b 满足()()n n a bi a bi +=-,当3n =时,取1, 2a b =()()1n n a bi a bi +=-=-,故n 的最小值是3.(点评:本题易让人首先想到“二项式展开”,从一开始,验证!整数问题的“回马枪”.) 5.若ABC ∆的三边AB BC AC 、、成等差数列,则A ∠的取值范围是____________. 解:令ABC ∆的A B C ∠∠∠、、所对的边分别为a b c 、、;则由题意可知:2a b c =+;由余弦定理可得:2222223323()4288b c a b c bc b c bcbc bc bc+-+--+==; 因为b c 、是正实数,所以1cos 2A ≥,当且仅当b c =时,等号成立; 由0A π<<,可知:03A π<≤.(点评:绝对的常规题!应该放在第1小题.)6.若数列{}n a 满足49a =,11(1)(3)0n n n n a a a a ++---=(*n ∈N ),则满足条件的1a 的所有可能值之积是____________.解:由11(1)(3)0n n n n a a a a ++---=可知:110n n a a +--=或130n n a a +-=;因为49a =,所以3a 可能是3,同理2a 可能为1,从而推知1a 可能为0;因此,符合条件的一个数列的前四项可以是0,1,3,9;故所有可能值之积为0. (点评:小题应小做,小题若大做,则上了命题人的当!) 7.已知2()942013f x x x =-+,则6030(()())n f n f n =+=∑___________.解:取值代入可知:(30)93f =,(31)60f =,(32)29f =,(33)0f =;当34, 35, , 60n = 时,()0f n <,从而有()()0f n f n +=; 所以,6030(()())2(936029)364n f n f n =+=⨯++=∑.(点评:数据大的问题,常常是“纸老虎”,分清类别第一重要,各个击破重要手段!)8.设[0, 2]x y π∈、,且满足12sin cos sin cos 2x y x y ⋅++=-,则x y +的最大值为___________.解:由12sin cos sin cos 2x y x y ⋅++=-,可得:(2sin 1)(2cos 1)0x y ++=;所以1sin 2x =-,或1cos 2y =-;所以有76x π=或116π,此时y 可以取[0, 2]π内的任意值; 或23y π=或43π,此时x 可以取[0, 2]π内的任意值; 所以x y +的最大值为:1123266πππ+=. (点评:平时难得见这类题!思维若呆板,定是要楞一会儿,别人一点拔,啊!我也会嘛!) 9.已知正四面体ABCD 的棱长为9,点P 是平面ABC 上的一个动点,满足P 到平面DAB 、DBC 、DCA 的距离成等差数列,则点P 到平面DCA 距离的最大值是____________.解:记点P 到平面D AB D BC D CA 、、的距离分别为123d d d 、、;则123d d d ++为正四面体ABCD 的高123d d d 、、成等差数列,故点P 到平面DCA 的距离的最大值为(注:此时是极端情形10d =)(点评:绝对的常规题!应该放在第2题,因为想到极端情况,还是有一点意外的!)10.将小王和小孙现在的年龄按从左到右的顺序排列得到一个四位数,这个四位数为完全平方数,再过31年,将他们俩的年龄以同样方式排列又得到一个四位数,这个数仍为完全平方数,小王 现在的年龄是____________.解:设小王现在的年龄是a ,小孙现在的年龄是b ;设a 有m 个数字,b 有n 个数字,由已知得:4m n +=;如果2m <,那么3n ≥,但在31年后,a 是2位数,合起来是5位数,这与题意不符; 由对称性,可知n 也不小于2,从而有2m n ==; 设按题中要求顺序的平方数依次为2x 和2y ,且0x y <<; 则设223131y x =+,即有()()313131101y x y x -+==⨯,所以必有:31y x -=且101y x +=,从而35x =,66y =;由21225x =知,小王现在12岁. (点评:有两个平方数,出现了“差”,x y -与x y +分解且奇偶性相同,就该现脑海中!)二、解答题:本大题共4小题,每小题20分,共80分.11.设k 为实数,06k <<,椭圆221():19x k E y -+=与椭圆222:19x E y +=交于点A 和C ,1E 的左顶点为B ,2E 的右顶点为D (如图),若四边形ABCD 是正方形,求实数k .解:由22()19x k y -+=与2219x y +=,解得22()0x k x --=,解得:2kx =;将其代入2219x y +=中,得A 点的纵坐标为y =10分因为四边形ABCD 为正方形,根据对称性知:BD AC =,又(3, 0)B k -+,(3, 0)D ,则6BD k =-,AC =;…………………15分所以6k -=,即29(6)(6)(6)k k k -=+-,解得6k =(舍),或245k =; 所以245k =.………………………………………………………………………20分 (点评:虽然中心不在原点的椭圆不是高考内容,但是按抛物线平移规则,不算超纲!)12.如图,梯形ABCD 中,B D 、关于对角线AC 对称的点分别是''B D 、,A C 、关于对角线BD 对称的点分别是''A C 、;证明:四边形''''A B C D 是梯形.证明:如图,B D 、关于对角线AC 对称的点分别是''B D 、,由于AC 是对称轴,轴上的点自身对称,则BD 与''B D 的交点是BD 与AC 的交点O ;………………5分 从而由对称可知:'//'BB DD , 所以''OB OB OD OD =,同理:''OC OC OA OA =;………………10分 再由梯形可知://AD BC , 所以1OB OC BCOD OA AD==≠;………………………15分 从而''1''OB OC OD OA =≠,所以''//''B C A D ,且''''B C A D ≠, 所以四边形''''A B C D 是梯形.………………20分(点评:几何变换是第一次考!!!通常有四大变换:平移、旋转、对称、位似.)13.设实数a b 、满足1012a b ≤≤≤≤;证明:2()cos cos b a a b ππ-≤-. 证明:将所求不等式改写:2cos 2cos b b a a ππ+≤+;于是可设:()2cos f x x x π=+,问题转化为:“证明:()()f b f a ≤”. 求导得:()2sin f x x ππ'=-,2()cos f x x ππ''=-;当1(0, )2x ∈时,2()cos 0f x x ππ''=-<,当1(, 1)2x ∈时,2()cos 0f x x ππ''=->;所以()f x '在区间1(0, )2上是单调递减函数,在区间1(, 1)2上是单调递增函数;又因为(0)(1)2f f ''==和1()202f π'=-<,所以存在α和β,使得1012αβ<<<<,且()()0f f αβ''==; 当且仅当()x αβ∈、时,()0f x '<;……………………10分 所以函数()f x 在区间[0, ]α和[, 1]β上是单调递增函数,在区间[, ]αβ是单调递减函数;(图像见右)又因为1(0)()(1)12f f f ===,所以对于1[0, ]2x ∈,()1f x ≥;对于1[, 1]2x ∈,()1f x ≤;故当1012a b ≤≤≤≤时,()()f b f a ≤,从而原题得证.………………20分 (点评:相对于高考的内容,这道题是难题,因为平时训练题的思维没有这么深;但是,研究函数值的问题,一定要把握好函数的图像的变化情况,而要想这清楚这个, 二次求导则是自然想到的事.其实,函数就必须从“数与形”方面去思考!)14.正100边形的每个顶点染红、黄、蓝三色之一;证明:必存在四个同色点,恰为某等腰梯形的顶点.证明:记正100边形123100A A A A 的外接圆半径为r ;把顶点分为25个点集:4342414{, , , }k k k k A A A A ---,1, 2, 3, , 25k = ; 第个点集之中,4个点染成3色,至少有两点同色, 此两点为端点的劣弧长分别为23505050rr rπππ、、之一;………………………………10分 弧长为23505050rr rπππ、、,且两端同色的弧共有9种; 前10个点集之中至少存在10段此类弧, 因而总有两段弧“同种”,且均在某直径一侧,故此两段弧四个端点构成的四边形为等腰梯形.…………………………………20分 (点评:抽屉原理的关键是“造抽屉”,想到用抽屉原理还不一定能做得出不来.这道题实在太完美了,组合三大原理即抽屉原理、容斥原理、极端原理, 考到一个;组合图论思想考到了,组合染色沾到边儿.)。

青年教师基本功竞赛试题

青年教师基本功竞赛试题

青年教师基本功竞赛试题青年老师基本功比赛试题一.解题(50分)(一)单选题(每个小题惟独一个相宜的答案,将答案填入下表的相应题号下。

共20小题,每小题1.5分,共计30分)1、全世界每年有成百上千人因为误吃毒蘑菇而死亡,鹅膏草碱就是—种毒菇的毒素,它是—种环状八肽。

若20种氨基酸的平均分子量为128,则鹅膏草碱的分子量大约是 A .1024 B .898 C .880 D .8622、下图是铁硫杆菌体内发生的生化反应,据此推断其代谢类型是A .自养厌氧型B .异养厌氧型C .自养需氧型D .异养需氧型3、细胞周期的各阶段,一个细胞中的染色体和DNA 分子数量比不行能是下列中的4、某科学家用15N 标记胸腺嘧啶脱氧核苷酸,32P 标记尿嘧啶核糖核苷酸讨论细胞的分裂,已知相应的细胞周期为20h ,两种核苷酸被利用的状况为右图。

下列相关讲述中不正确的是A .15N 和32P 的利用量,可分离表示细胞中的DNA 复制和转录的强度B .15N 主要用于蛋白质的合成,32P 则主要作为DNA 复制和转录的原料C .间期细胞中的细胞核、核糖体、线粒体代谢活跃,7—12小时可能发生突变D .DNA 复制速率最快的时光在10h 左右,分裂期时光不足8小时5、如右图所示,大肠杆菌质粒中有a 、b 、c 等基因,下列有关讲述中不正确...的是 A .组成a 、b 、c 的基本单位相同 B .a 、b 、c 中都有非编码区和编码区C .若利用某药物阻挡a 基因的表达,则b 、c 也不能表达D .a 、b 、c 基因的遗传不遵循孟德尔遗传逻辑6、脂肪储存较少的健康人,禁食一段时光后,会浮现尿频的现象,对此合理的解释是 A .脂肪氧化供能时,产生了大量的水需要排出 B .蛋白质氧化供能时,产生了大量的水需要排出 C .脂肪改变成糖类时,产生了大量的水需要排出D .蛋白质改变成糖类时,通过脱氨基作用产生了大量尿素需要排出7、因为基因突变,细胞中有一种蛋白质在赖氨酸残基(位置)上发生了变化。

新编高中数学青年教师基本功考核笔试试题(含答案)

新编高中数学青年教师基本功考核笔试试题(含答案)

高中数学青年教师基本功考核笔试试题(含答案)考试时间:60分钟 满分:100分一、选择题:(每题6分,共30分)1. 已知符号函数1,0s g n ()0,01,0x x x x >⎧⎪==⎨⎪-<⎩,则函数2()s g n (ln )ln f x x x =-的零点个数为( )(A ).4(B ).3(C ).2 (D ).12. 已知单位向量α,β,满足(α+2β)⋅(2α-β)=1,则α与β夹角的余弦值为 ( )(A )13- (B )13(C )12(D )153. 在△ABC 中,三个内角A ,B ,C 所对的边为a ,b ,c ,且222b a ac c =-+,90C A -=︒,则cos cos A C = ( )(A )41 (B4(C )41-(D)4-4. 函数⎩⎨⎧≤≤+-<≤-+=)20(2)02(2)(2x x x x x f 的图象与x 轴所围成的封闭图形的面积为( ) (A). 326+ (B).234+ (C).3246+ (D ).2234+5.某单位安排7位员工在2012年1月22日至1月28日(即今年除夕到正月初六)值班,每天安排1人,每人值班1天.若7位员工中的甲、乙排在相邻两天,丙不排在除夕,丁不排在初一,则不同的安排方案共有 ( )(A )504种 (B )960种(C )1008种(D )1056种二、填空题:(每题6分,共30分)6.抛物线28y x =的准线为l ,点Q 在圆22:68210C x y x y ++++=上,设抛物线上任意一点P 到直线l 的距离为m ,则||m P Q +的最小值为 .7. 已知322322=+,833833=+,15441544=+, ,ta ta 66=+,(a,t均为正实数),类比以上等式,可推测a ,t 的值,则=+t a .8.函数()f x =+的定义域为 ,值域为_________。

高中青年教师教学基本功竞赛数学试卷及参考答案

高中青年教师教学基本功竞赛数学试卷及参考答案

高中青年教师教学基本功竞赛数学试卷及参考答案江苏省兴化市周庄高级中学教育教学研究室江苏省兴化市教育局教研室数学试卷(考试时间为150分钟,满分150分.)本卷由三部分组成;解题研究;试题命制;教学设计.1.解题研究本题满分40分(问题1为必答题,问题2、问题3两题任选一题做答,每题满分20分).1.1.错因分析学生在学习中,总会产生错误,错误往往是正确认知的前兆,这正是失败乃成功之母,所以教师要珍视学生学习中的错误,并以此为契机,培养学生的批判性思维,发展思维能力.写出学生解决下面问题有可能出现的典型错误,并分析产生错误的根本原因(至少分析两个典型错误),最后请您给出本题的正确解答.问题1:求函数y=sin(-3x+π/4)(x∈的单调递减区间.1.2.总结策略教学目的之一是为了让学生掌握思考问题和解决问题的方法,当学生面临一个新的情境下的问题时总要联想,把以往获得的方法再加工迁移到新的问题上,因此有教育家提出了为“迁移而教”的口号,为了实现“迁移”就必须对学习加以总结概括,总结概括得越精当,越有利于“迁移”的产生,从而能够迅速地解决新问题.解下列问题,完成后请您总结解决该类“恒成立”问题的解题策略.问题2:已知c>0,设P:函数y=Cx在R上单调递减;Q:不等式x+∣x-2c∣>1的解集为R.如果P和Q有且仅有一个正确,求C的取值范围。

1.3 探究拓展著名数学家、教育家波利亚说过,解题就像采蘑菇一样,当我们发现一个蘑菇时,它的周围可能有一个蘑菇圈.在解题中,当您解完了一道题,可以借助如,类比,(1)类比推理:根据两种事物在某些方面属性的相似,推想此两种事物在其他一些方面的属性也相似;(2)方法类比:将处理某种事物卓有成效的经验或方法移植到处理与其相似的另一事物上,以及其他一些科学思维策略和数学思想方法,对问题进行探索与拓展,从而解决一类问题,发展思维能力。

完成下面一道题后,根据探索的要求进行探索与拓展。

2013年全国高中数学联赛试题及其解答

2013年全国高中数学联赛试题及其解答
文 武 光 华
2013 年全国高中数学联题:本大题共 8 小题,每小题 8 分,共 64 分。
1、设集合A = 2,0,1,3 ,集合B = x| − x ∈ A,2 − x ∉ A ,则集合B中所有元素 的和为 。 解答:易知集合B = −2, − 3 ,所有集合B中所有元素的和为−5。 ⃑ · OB ⃑ = −4,F是抛 2、在平面直角坐标系xOy中,点 A、B 在抛物线y = 4x上,满足OA 物线的焦点,则S△ · S△ = 。 ⃑ · OB ⃑= 解答:根据抛物线解析式知OF = 1。设点A m ,2m ,点B n ,2n ,则OA m n + 4mn = −4 ⇒ mn = −2。于是知S△ · S△ =
| |·| |
·
|
|·|
|
= |mn| = 2。
3、在△ABC 中,已知sin A = 10 sin B sin C,cos A = 10 cos B cos C,则tan A的值 为 。 解答:根据条件知:sin A − cos A = 10(sin B sin C − cos B cos C) = −10 cos(B + C) = 10 cos A ⇒ sin A = 11 cos A ⇒ tan A = 11。 4、已知正三棱锥P − ABC底面边长为1,高为√2,则其内切球半径为 。 解答:设△ABC 外心为 O,O 在 BC、CA、AB 上的垂足分别为 D、E、F,则OD = OE = OF =
10、(本题满分 20 分) 在平面直角坐标系xOy中,椭圆的方程为 + = 1(a>b>0),A 、A 分别为椭圆 的左、右顶点,F 、F 分别为椭圆的左、右焦点,P 为椭圆上不同于A 和A 的任意一点。
交流知识

2013年全国高中数学联合竞赛一试试题参考答案及评分标准

2013年全国高中数学联合竞赛一试试题参考答案及评分标准

2013年全国高中数学联合竞赛一试试题参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不要增加其他中间档次.一、填空题:本大题共8小题,每小题8分,共64分.1. 设集合{2,0,1,3}A ,集合2{|,2}B x x A x A .则集合B 中所有元素的和为 .答案 5−.解 易知{2,0,1,3}B .当2,3x 时,222,7x ,有22x A ;而当0,1x 时,222,1x ,有22x A .因此,根据B 的定义可知{2,3}B . 所以,集合B 中所有元素的和为5−.2. 在平面直角坐标系xOy 中,点A 、B 在抛物线24y x 上,满足4OA OB ,F 是抛物线的焦点. 则OFA OFB S S .答案 2.解 点F 坐标为(1,0).设1122(,),(,)A x y B x y ,则221212,44y y x x ,故21212121214()16OA OB x x y y y y y y ,即2121(8)016y y ,故128y y . 21212111()2224OFA OFB S S OF y OF y OF y y =(). 3. 在ABC 中,已知sin 10sin sin ,A B C cos 10cos cos ,A B C 则tan A 的值为 .答案 11.解 由于sin cos 10(sin sin cos cos )10cos()10cos A A B C B C B C A ,所以sin 11cos A A ,故tan 11A .4. 已知正三棱锥P ABC 底面边长为1,高为,则其内切球半径为 .答案解 如图,设球心O 在面ABC 与面ABP 内的射影分别为H 和K ,AB 中点为M ,内切球半径为r ,则P 、K 、M 共线,P 、O 、H 共线,2PHM PKO ,且,OH OK r PO PH OH r ,MH ABPM , 于是有1sin5OK MH KPO POPM ,解得r. 5. 设,a b 为实数,函数()f x ax b 满足:对任意[0,1]x ,有()1f x . 则ab 的最大值为 .答案14. 解 易知(1)(0),(0)a f f b f ,则2221111(0)((1)(0))(0)(1)(1)(1)2444ab f f f f f f f . 当2(0)(1)1f f ,即12a b 时,14ab .故ab 的最大值为14. 6. 从1,2,,20 中任取5个不同的数,其中至少有两个是相邻数的概率为 .答案 232323.解 设12345a a a a a <<<<取自1,2,…,20,若12345,,,,a a a a a 互不相邻,则123451123416a a a a a ≤<−<−<−<−≤,由此知从1,2,,20 中取5个互不相邻的数的选法与从1,2,,16 中取5个不同的数的选法相同,即516C 种.所以,从1,2,,20 中任取5个不同的数,其中至少有两个是相邻数的概率为5552016165520202321323C C C C C −=−=. 7. 若实数,x y满足x ,则x 的取值范围是 . 答案 {0}[4,20] . 解,(,0)a b a b ,此时22()x y x y a b ,且条件中等式化为2242a b a b ,从而,a b 满足方程22(2)(1)5a b (,0)a b .如图所示,在aOb 平面内,点(,)a b 的轨迹是以(1,2)为,0a b 的部分,即点O 与弧 ACB 的02, ,从而 2204,20x a b . 8. 已知数列{}n a 共有9项,其中191a a ,且对每个{1,2,,8}i ,均有112,1,2i i a a,则这样的数列的个数为 . 答案 491. 解 令1(18)i i ia b i a,则对每个符合条件的数列{}n a ,有 88191111i i i i ia ab a a,且12,1,(18)2i b i . ① 反之,由符合条件①的8项数列{}n b 可唯一确定一个符合题设条件的9项数列{}n a .记符合条件①的数列{}n b 的个数为N .显然(18)i b i 中有偶数个12,即2k 个12;继而有2k 个2,84k 个1.当给定k 时,{}n b 的取法有22882C C k kk 种,易见k 的可能值只有0,1,2,所以224486841C C C C 12815701491N .因此,根据对应原理,符合条件的数列{}n a 的个数为491.二、解答题:本大题共3小题,共56分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)给定正数数列{}n x 满足12,2,3,n n S S n −≥= ,这里1n n S x x =++ .证明:存在常数0C >,使得2,1,2,n n x C n ≥⋅=. 解 当2n ≥时,12n n S S −≥等价于11n n x x x −≥++ . ① …………………4分对常数114C x =,用数学归纳法证明: 2,1,2,n n x C n ≥⋅= . ②……………………8分1n =时结论显然成立.又2212x x C ≥=⋅.对3n ≥,假设2,1,2,,1kk x C k n ≥⋅=− ,则由①式知()121n n x x x x −≥+++()21122n x C C −≥+⋅++⋅()223122222n n C C −=++++=⋅ ,所以,由数学归纳法知,②式成立.…………………16分10.(本题满分20分)在平面直角坐标系xOy 中,椭圆的方程为22221(0)x y a b a b ,1A 、2A 分别为椭圆的左、右顶点,1F 、2F 分别为椭圆的左、右焦点,P 为椭圆上不同于1A 和2A 的任意一点.若平面中两个点Q 、R 满足11QA PA ,22QA PA ,11RF PF ,22RF PF ,试确定线段QR 的长度与b 的大小关系,并给出证明.解 令c ,则1212(,0),(,0),(,0),(,0)A a A a F c F c .设001122(,),(,),(,)P x y Q x y R x y ,其中22000221,0x y y a b.由1122,QA PA QA PA 可知111010()()0A Q A P x a x a y y,① 221010()()0A Q A P x a x a y y. ②…………………5分将①、②相减,得102()0a x x ,即10x x ,将其代入①,得220100x a y y ,故22010x a y y ,于是22000,x a Q x y . …………………10分 根据1122,RF PF RF PF ,同理可得22000,x c R x y. …………………15分 因此2222200000x a x c b QR y y y ,由于0(0,]y b ,故QR b (其中等号成立的充分必要条件是0y b ,即点(0,)P b 为 ). …………………20分 11. (本题满分20分)求所有的正实数对(,)a b ,使得函数2()f x ax b 满足:对任意实数,x y ,有()()()()f xy f x y f x f y .解 已知条件可转化为:对任意实数,x y ,有22222()(())()()ax y b a x y b ax b ay b . ①先寻找,a b 所满足的必要条件.在①式中令0y ,得22()()b ax b ax b b ,即对任意实数x ,有2(1)(2)0b ax b b .由于0a ,故2ax 可取到任意大的正值,因此必有10b ,即01b . …………………5分在①式中再令y x ,得422()()ax b b ax b ,即对任意实数x ,有2422()2(2)0a a x abx b b . ②将②的左边记为()g x .显然20a a (否则,由0a 可知1a ,此时22()2(2)g x bx b b ,其中0b ,故()g x 可取到负值,矛盾),于是 2222222()()()(2)ab ab g x a a x b b a a a a 222()(22)11b b a a x a b a a0 对一切实数x 成立,从而必有20a a ,即01a . …………………10分进一步,考虑到此时01b a ,再根据(22)01b g a b a,可得22a b .至此,求得,a b 满足的必要条件如下:01b ,01a ,22a b . ③…………………15分下面证明,对满足③的任意实数对(,)a b 以及任意实数,x y ,总有①成立,即222222(,)()(1)()2(2)h x y a a x y a b x y axy b b对任意,x y 取非负值.事实上,在③成立时,有2(1)0,0a b a a ,(22)01ba b a,再结合222x y xy ,可得2222(,)()(1)(2)2(2)h x y a a x y a b xy axy b b2222()2(2)a a x y abxy b b22()(22)11b b a a xy a b a a0 . 综上所述,所求的正实数对(,)a b 全体为{(,)|01,01,22}a b b a a b . …………………20分。

2013年高中数学竞赛培训试题及答案解析(三套题)

2013年高中数学竞赛培训试题及答案解析(三套题)

) .
4, .
答案: B . 解:欲使 f x 的值域为 R ,当使真数 ax2 4 x a 3 可取到一切正数,故或者
a 0 ;或者 a 0 且 42 4a a 3 0 ,解得 0 a 4
2 、设 a 2 b2 1 , b 0 ,若直线 ax by 2 和椭圆
) .
4, .
2 、设 a 2 b2 1 , b 0 ,若直线 ax by 2 和椭圆
x2 y 2 a 1 有公共点,则 的 b 6 2
取值范围是(
).
1 1 A 、 , ; B 、 1, 1 ; 2 2
C 、 , 1
7 2 u 1 ,所以 因 0 7 2 a b 7 2 7 2
7 2
2 n 1



2 n 1
2 n 1
v 2 n1 S2 n1 2k ,

7 2

2 n 1
2k

7 2

2 n 1

2 n 1
10 、 sin 200 sin 400 sin800
.
11 、数列 an 满足: a1 1 ,且对每个 n N * , an , an1 是方程 x2 3nx bn 0 的
两根,则 bk
k 1
20
.
, 2008 中取出一个 k 元子集 A ,使
2013 年高中数学竞赛培训试题及答案 卷一
一、选择题(每小题 6 分,共 36 分) 若函数 f x lg ax 2 4 x a 3 的值域为 R , 则实数 a 的取值范围是 ( 1、

常熟市2013届高三数学阶段抽测试卷

常熟市2013届高三数学阶段抽测试卷
13.(本小题满分14分)
已知集合 , .
(1)当 Leabharlann ,求 ;(2)若 : , : ,且 是 的必要不充分条件,求实数 的取值范围.
14.(本小题满分15分)
已知函数 在 轴右侧的第一个最高点的横坐标为 .
(1)求 的值;
(2)若将函数 的图象向右平移 个单位后,再将得到的图象上各点横坐标伸长到原来的 倍,纵坐标不变,得到函数 的图象,求函数 的最大值及单调递减区间.
4.设函数 则 =___▲___.
5.已知 , , ,则 从小到大排列是__▲__.(用“ ”连接)
6.已知 为第四象限的角,且 =___▲___.
7.已知函数 ,则函数 的定义域为___▲___.
8.已知 可以表示为一个奇函数 与一个偶函数 之和,则 =___▲___.
9.设 ,且 ,则 的取值范围是___▲___.
常熟市2013届高三数学阶段抽测试卷
数学2012.10
一、填空题:本大题共12小题,每小题6分,共72分.请把答案填写在答题卷相应位置上.
1.命题“ ”的否定是___▲___. R,
2.若 则 的元素个数为___▲___.0
3.若命题 “ ”,命题 “ ”,则 是 的___▲___条件.(填“充要”、“充分不必要”、“必要不充分”或“既不充分也不必要”)充分不必要
10.已知角 的终边经过点 ,函数 图象的相邻两条对称轴之间的距离等于 ,则 =___▲___.
11.若 是定义在 上周期为2的周期函数,且 是偶函数,当 时, ,则函数 的零点个数为___▲___.8
12.设 是定义在 上的可导函数,且满足 ,则不等式 的解集为___▲___.
二、解答题:本大题共5小题,共78分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.

高中数学青年教师解题比赛试卷(附答案)

高中数学青年教师解题比赛试卷(附答案)

高中数学青年教师解题比赛试卷本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.全卷共5页, 满分为150分.考试时间120分钟. 第I 卷(选择题共60分)参考公式:三角函数和差化积公式 正棱台、圆台的侧面积公式 2c o s2s i n2s i n s i n φθφθφθ-+=+ ()l c c S +'=21台侧 其中c '、c 分别表示 2sin2cos2sin sin φθφθφθ-+=- 上、下底面周长,l 表示斜高或母线长2c o s2c o s2c o s c o s φθφθφθ-+=+ 台体的体积公式:()h S S S S V +'+'=31台体 2sin2sin2cos cos φθφθφθ-+-=- 其中S '、S 分别表示上、下底面积,h 表示高一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.每小题选出答案后,请填下表中.区(县级市) 学校 考生号 姓名密 封 线 内 不 要 答 题(1)常数T 满足()x x T cos sin -=+ 和()x x T g ctg t =-,则T 的一个值是( ).(A )π- (B )π (C )2π-(D )2π(2)在等差数列{}n a 中,12031581=++a a a ,则1092a a - 的值为( ).(A )24 (B )22 (C )20 (D )8-(3)设点P 对应复数是i 33+,以原点为极点,实轴的正半轴为极轴,建立极坐标系,则点P 的极坐标为( ).(A)34π⎛⎫ ⎪⎝⎭ (B)54π⎛⎫- ⎪⎝⎭ (C )53,4π⎛⎫ ⎪⎝⎭ (D )33,4π⎛⎫-⎪⎝⎭(4)设A 、B 是两个非空集合,若规定:{}B x A x x B A ∉∈=-且,则()B A A --等于( ).(A )B (B )B A (C )B A (D )A (5)函数()x f y =的图象与直线1=x 的交点个数为( ).(A )0 (B )1 (C )2 (D )0或1(6)设函数()()ϕω+=x A x f sin (其中R x A ∈>>,0,0ω),则()00=f 是()x f 为奇函数的( ).(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件(7)如图,在斜三棱柱111C B A ABC -中,∠BAC =90°,AC BC ⊥1,过1C 作⊥H C 1底面ABC ,垂足为H ,则( ).(A )H 在直线AC 上 (B )H 在直线AB 上(C )H 在直线BC 上 (D )H 在△ABC 内(8)电讯资费调整后,市话费标准为:通话时间不超过3分钟收费0.2元;超1C 1B 1A AB C过3分钟,以后每增加1分钟收费0.1元,不足1分钟以1分钟收费.则通话收S (元)与通话时间t (分钟)的函数图象可表示为( ).(A ) (B )(C ) (D )(9)以椭圆114416922=+y x 的右焦点为圆心,且与双曲线116922=-y x 的渐近线相 切的圆的方程为( ).(A )091022=+-+x y x (B )091022=--+x y x (C )091022=-++x y x (D )091022=+++x y x(10)已知()nx 21+的展开式中所有项系数之和为729,则这个展开式中含3x 项的系数是( ).(A )56 (B )80 (C )160 (D )180(11)AB 是过圆锥曲线焦点F 的弦,l 是与点F 对应的准线,则以弦AB 为直径的圆与直线l 的位置关系( ).(A )相切 (B )相交 (C )相离 (D )由离心率e 决定 (12)定义在R 上的函数()x f y -=的反函数为()x fy 1-=,则()x f y =是( ).(A )奇函数 (B )偶函数(C )非奇非偶函数 (D )满足题设的函数()x f 不存在第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中的横线上.(13)函数)23(sin ππ≤≤=x x y 的反函数是 . (14)已知抛物线的焦点坐标为()12,,准线方程为02=+y x ,则其顶点坐标为 .(15)如图,在棱长都相等的四面体A —BCD 中,E 、F 分别为棱AD 、BC 的中点,则直线 AF 、CE 所成角的余弦值为 .(16)甲、乙、丙、丁、戊共5人参加某项技术比赛,决出了第1名到第5名的名次. 甲、乙两名参赛者去询问成绩,回答者对甲说:“很遗憾,你 和乙都没拿冠军”,对乙说:“你当然不是最差的.”请从这个回答分析, 5人的名次排列共可能有 种不同情况(用数字作答).三、解答题:本大题共6小题,满分74分.解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分10分)已知复数2cos 2cos 2Ci A u +=,其中A 、C 为△ABC 的内角,且三个内角 满足2B =A ﹢C .试求i u -的取值范围.封 线 内 不 要 答 题ABCDEF(18)(本小题满分12分)已知曲线C上的任一点M()y x,(其中0≥x),到点()02,A的距离减去它到y轴的距离的差是2,过点A的一条直线与曲线C交于P、Q两点,通过点P和坐标原点的直线交直线02=x于N.+(I)求曲线C的方程;(II)求证:N Q平行于x轴.(19)(本小题满分12分) 是否存在一个等差数列{}n a ,使对任意的自然数n ,都有212a a n ⋅…n n n P a 2=.(20)(本小题满分12分)南北方向的两定点,正西方向射出的太阳(用点O表示)光线OCD与地面成锐角θ.(I)遮阳棚与地面成多少度的二面角时,才能使遮影△ABD面积最大?(II)当AC=3,BC=4,AB=5,θ=30°时,试求出遮影△ABD的最大面积.(21)(本小题满分14分)名姓甲、乙、丙三种食物维生素A 、B 含量及成本如下表:千克丙种食物 配成100千克混合物,并使混合物至少含有56000单位维生素A 和63000 单位维生素B .试用x 、y 表示混合物的成本M (元);并确定x 、y 、z 的值, 使成本最低.(22)(本小题满分14分)定义在()1,1-上的函数()x f 满足:①对任意x 、()1,1-∈y ,都有()+x f ()⎪⎪⎭⎫ ⎝⎛-+=xy y x f y f 1;②当()0,1-∈x 时,有()0>x f .证明:(I )函数()x f 在()1,1-上的图象关于原点对称;(II )函数()x f 在()0,1-上是单调减函数;(III )⎪⎭⎫ ⎝⎛>⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛21331131712f n n f f f .()z n ∈高中数学青年教师解题比赛试卷参考答案一、选择题:二、填空题:(13)[]0,1,arcsin -∈-=x x y π (14)⎪⎭⎫⎝⎛2,1 (15)3 (16)54三、解答题:(17)(本小题满分10分) 解:由△ABC 的内角关系2602C A B C B A CA B +=︒=⇒⎭⎬⎫=+++=π, 又()C i A Ci A u cos 1cos 2cos 2cos 2++=+=则22cos 122cos 1cos cos 22CA C A i u +++=+=- ()C A 2cos 2cos 211++= ()C A --=cos 211由()︒<-<︒-⇒⎭⎬⎫︒︒∈-︒=-⇒︒=+12012012002120120C A ,C ,A C C A C A()1cos 21≤-<-⇒C A 从而2522<-≤i u 为所求. (18)(本小题满分12分)(I )解:由题设知:曲线C 上任意一点M ()y x ,到定点()0,2A 距离等于它到直线2-=x 的距离.由抛物线定义知: 曲线C 的方程为x y 82=…(注:若不限制0≥x ,抛物线C 还可为()00<=x y ,即x 轴负半轴) (II )证明:①当过点A 的直线P Q 不与x 轴垂直时,斜率PQ K 存在, 设P Q 方程为()2-=x k y由()01682822=--⇒⎩⎨⎧-==y k y x k y x y16-=⇒Q P y y又直线OP 方程为x x y y PP⋅=而点N 在直线OP 上,也在直线2-=x 上()P PP y y y 16282-=-⋅=⎭⎬⎫-=⋅-=⋅1616Q P N P y y y yQ N y y =⇒故NO// x 轴②当过点A 的直线P Q 与x 轴垂直时,结论显然成立 (19)(本小题满分12分)解:若存在一个等差数列{}n a 满足题设,则 1=n 时,有121121=⇒=a P a ;2=n 时,有32224212=⇒=a P a a ; 3=n 时,有523363213=⇒=a P a a a .()2-=⇒PPN x y y(证Q 、N 点纵坐标相等)∴猜想存在这样的一个数列{}n a 的通项为()N n n a n ∈-=12以下用数学归纳法证明:(1)当1=n 时, 11=a 满足12-=n a n (2)假设()N k k n ∈=满足题设, 即k k k k P a a a 22112=+ 成立当1+=k n 时 , 12121122+++⋅=⋅k k k n k k a P a a a a()k k P k 2122⋅+=即()()()()()12125321221212532121+-⋅⋅⋅⋅=+-⋅⋅⋅⋅+k k k k k k ()()()()12212+⋅+++=k k k k k()()()()()21132++++⋅+++=k k k k k k k()112++=k k P则1+=k n 也成立.综上(1)、(2)知12-=n a n 对N n ∈都有n n k n P a a a 2212= 成立.(20)(本小题满分12分)(I )解:设H 为点O 在地面的射影,连结HD 交AB 于E . 则θ=∠CDE ,且OH ⊥平面ABDAB ⊂平面ABD又AB 是南北方向,CD 是西东方向,则CD ⊥AB⎩⎨⎧⊥⇒⊥⇒CE AB DE AB 在△ABD 中,要使面积最大,只须DE 最大 而△CDE 中,由正弦定理DCE CEDE ∠⋅=sin sin θ.(目标函数中CE ,sin θ均为定值) 所以,当∠DCE =90°时DCE ∠sin 最大,则DE 最大,从而θ-︒=∠90CED 时,遮影△ABD 面积最大.(II )解:当AC =3,BC =4,AB =5,θ=30°时,AB OH ⊥⇒OHD AB 平面⊥⇒DE 是△ABD 中AB 边上的高且∠CED 是C —AB —D 的平面角.()1252452121max =⋅⋅=⋅⋅=∆DE AB S ABD 为所求. (21)(本小题满分14分) (I )依题设知:z y x M 4911++= 又y x z z y x --=⇒=++100100代入上式则y x M 57400++=为所求.(II )由题设得⎩⎨⎧≥++≥++6300050040080056000400700600z y x z y x将y x z --=100分别代入①、②得:⎩⎨⎧≥-≥+130316032y x y x 此时y x M 57400++= ()()y x y x -+++=33224001301602400+⋅+≥850=当且仅当⎩⎨⎧=-=+130316032y x y x 即⎩⎨⎧==2050y x 时取等号答:当50=x 千克,20=y 千克,30=z 千克成本最低为850元.(22)(本小题满分14分)证明:(I )由条件①可取(),1,1-∈-=x y 则()()()0f x f x f =-+再取(),1,10-∈=y 则()()()x f f x f =+0 ()()0=-+⇒x f x f()x f ⇒在()1,1-上图象关于原点对称(II )令0121<<<-x x由于()()()()⎪⎪⎭⎫⎝⎛+-=-+=-212121211x x x x f x f x f x f x f .1121<-<-x x 且()10102121<-<-⇒<-x x x x 及()2211102121<+<⇒<<x x x x则由(1)(2)得0112121<--<-x x x x①② ⇒⇒<<<-01又21x x由条件②知012121>⎪⎪⎭⎫⎝⎛+-x x x x f ,从而()()21x f x f >,故()x f 在()0,1-上单调递减函数.(III )由奇函数的对称性知:()x f 在()1,0上仍是减函数,且()0<x f ※对()()()()()()⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++=⎥⎦⎤⎢⎣⎡+++=⎪⎭⎫⎝⎛++211121112113312n n n n f n n f n n f⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛+=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-⋅+-+-+=21112111211112111n f n f n f n f n n n n f 则有⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛331131712n n f f f⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+++⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=211141313121n f n f f f f f⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛=2121n f f . 由※式知:1210<+<n 时有⎪⎭⎫ ⎝⎛>⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛⇒<⎪⎭⎫ ⎝⎛+212121021f n f f n f 故⎪⎭⎫⎝⎛>⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛21331131712f n n f f f .条件①。

2013年全国高中数学联赛江苏赛区复赛试卷及解析

2013年全国高中数学联赛江苏赛区复赛试卷及解析

2013年全国高中数学联赛江苏赛区复赛试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)一、选择题1.若,x y为两个不同的实数,且满足2221{21x xy y=+=+,求66x y+的值。

第II卷(非选择题)二、填空题2.若对实数x,函数f(x)=√3x2+7,g(x)=x2+16x2+1−1,则函数g(f(x))的最小值为________.3.在区域{0≤x≤2π,0≤y≤3中随机取一点P(a,b),满足b>(sina2+cos a2)2的概率为_______.4.设[x]表示不超过实数x的最大整数.若[x−12][x+12]为素数,则实数x的取值范围为_______.5.已知F1、F2分别为椭圆C:x 219+y23=1的左、右焦点,点P在椭圆C上.若SΔPF1F2=√3,则∠F1PF2=_____.6.已知半径为3的球面上有A、B、C、D四点.若AB=3,CD=4,则四面体ABCD体积的最大值为______.7.已知a1,a2,⋯,a10与b1,b2,⋯,b10为互不相等的20个实数.若方程|x−a1|+|x−a2|+⋯+|x−a10|=|x−b1|+|x−b2|+⋯+|x−b10|有有限多个解,则此方程最多有______个解.8.若11⋯1⏟n+1个除以3102的余数为1,则最小的正整数n为________.9.设实数a,b,c满足a2+b2≤c≤1,则a+b+c的最小值为.三、解答题10.已知数列{n}满足1=F2=1,F n+2=F n+1+F n(n∈Z+).若F a、F b、F c、F d(a<b<c<d)分别为一个凸四边形的边长,求d-b的值.11.设动点P在直线l1:y=x−4上运动,过P作⊙C:x2+y2=1的两条切线PA、PB,其中,A、B为切点.求线段AB中点M的轨迹方程.12.如图,PA、PB分别与⊙O切于点A、B,过点P的割线与⊙O交于点C、D,M为PA的中点,CM与AB交于点E.证明:DE∥PA.13.设正实数a、b、c满足a+b=√ab+9,b+c=√bc+16,c+a=√ca+25.求a+b+c.14.圆周上依次排列着A1,A2,⋯,A2013共2013个不同的点,每个点染红、蓝、绿三色之一.在以任意两个同色点为端点的圆弧上,与此两端点异色的点的个数为偶数的染色方法称为“好染色”问:所有好染色方法有多少种?15.设p为奇素数,整数a1,a2,⋯,a p−1均与p互素.若对k=1,2,⋯,p−2均有a1k+k≡0(modp),证明:a1,a2,⋯,a p−1除以p的余数互不相同.a2k+⋯+a p−1参考答案1.198【解析】1.试题分析:将方程组中的两式分别作差和做和得到2x y +=和226x y +=,进而得到1xy =-,将()()()()336622224422x y x y xy xy x y +=+=++-代入运算即可.试题解析:由2221{ 21x x y y =+=+,两式相减可得: ()222x y x y -=-,即()()()2x y x y x y -+=-.,x y 为两个不同的实数,所以0x y -≠,所以2x y +=两式相加可得()22226x y x y +=++=.由()2222426x y x y xy xy +=+-==-=,解得1xy =-()()()()336622224422x y x y x y x y x y +=+=++-()()222226363631198x y x y ⎡⎤=+-=⨯-⨯=⎢⎥⎣⎦.2.8【解析】2. 由题意知g(f (x ))=3x 2+7+163x 2+8−1=3x 2+8+163x 2+8−2令t=3x 2+8(t ≥8).则ℎ(t )=g(f (x ))=t +16−2易知,ℎ(t )是区间[8,+∞)上的单调增函数. 所以,ℎ(t )≥ℎ(8)=8.故答案为:8 3.23【解析】3. 考虑函数y=(sin x2+cos x 2)2=1+sinx ,由题得区域{0≤x ≤2π,0≤y ≤3中的面积为3⋅2π=6π.由对称性割补知满足b >(sin a2+cos a 2)2的点P (a,b )的面积为4π,故其概率为4π6π=23. 故答案为:234.−32≤x<−12或32≤x<52【解析】4.因为[x−12]、[x+12]均为整数,要使[x−12][x+12]为素数,所以[x−12]、[x+12]中一个为1或-1. 当[x−12]=1时,1≤x−12<2,32≤x<52,此时,[x+12]=2,满足题意;当[x+12]=−1时,−1≤x+12<2,−32≤x<−12,此时,[x−12]=−2,满足题意;当[x+12]=1或[x−12]=−1时,易知[x−12][x+12]不是素数.故答案为:−32≤x<−12或32≤x<525.60∘【解析】5.设∠F1PF2=θ.则{PF1+PF2=2√19,PF12+PF22−2PF1⋅PF2cosθ=64.故PF1⋅PF2=61+cosθ.而SΔPF1F2=12PF1⋅PF2sinθ=3tanθ2=√3,则θ=60°. 故答案为:60∘6.2√5+3√3【解析】6.取异面直线AB、CD的公垂线段MN,记异面直线AB与CD所成的角为θ∈(0,π2 ).则V四面体ABCD =16AB⋅CD⋅MNsinθ≤2MN.设四面体ABCD外接球的球心为O,AB,CD的中点分别为E、F.则OE=3√32,OF=√5.异面直线AB与CD的距离为MN≤EF≤OE+OF=3√32+√5.≤2MN≤2√5+3√3.故V四面体ABCD当AB丄CD时,以AB为直径的小圆所在平面与以CD为直径的小圆所在平面平行(球心在两小圆面之间),上式等号成立.故答案为:2√5+3√37.9【解析】7.令f(x)=|x−a1|+|x−a2|+⋯+|x−a10|−|x−b1|−|x−b2|−⋯−|x−b10|于是,由题意知f(x)=0.设c1<c2<⋯<c20为集合|a1,a2,⋯,a10,b1,b2,⋯,b10|中的所有元素按递增顺序的排列,且在(−∞,c1],[c1,c2],⋯,[c19,c20],[c20,+∞)这21个区间的每一个中,函数f(x)均为线性的.注意到,在区间(−∞,c1]中,f(x)=a1+a2+⋯+a10−b1−b2−⋯−b10= m,而在区间[c20,+∞)中,f(x)=−m.因为方程根的个数有限,所以,m≠0.沿着数轴自左向右移动.开始时,f(x)中的x的系数为0.每当越过一个c i(1≤i≤20,i∈Z+)时,f(x)中均有一个绝对值的去掉方式发生变化,使得x的系数变化±2(增大2或减小2).这表明,x的系数恒为偶数,并且不会在变为0以前改变符号.由此,知该系数在任何两个相邻的区间中均要么同为非负,要么同为非正.从而,f(x)在这样的区间并集上要么同为非升,要么同为非降.如此一来,若f(x)=0只有有限个根,则其在区间[c1,c3],⋯,[c17,c19],[c19,c20]中均分别有不多于1个根.此外,由于f(c1)与f(c20)的符号不同,而f(x)在每个根处均发生变号,于是,f(x)=0有奇数个根.从而,最多有九个根.另一方面,不难验证,若a1=1,a2=4,a3=5,a5=9,a6=12,a7=13,a8=16,a9=17,a10=19.5,b1=2,b2=3,b3=6,b4=7,b5=10,b6=11,b7=14,b8=15,b9=18,b10=19,则方程f(x)=0恰有九个根.故答案为:9 8.138【解析】8. 注意到,3102=2×3×11×47.由11⋯1⏟ n+1个=3102k +(k ∈Z ),知11⋯10⏟ n 个=3102k . 于是,11⋯10⏟ n 个被2、3、11、47整除.(1)对任意正整数n ,显然,11⋯10⏟ n 个被2整除(2)11⋯10⏟ n 个被3整除的充分必要条件是3|n ;(3)11⋯10⏟ n 个被11整除的充分必要条件是2|n ;(4)又11⋯10⏟ n 个=19(10n+1−10),(9,47)=1,(10,47)=1,则47|11⋯10⏟ n 个⇔47|(10n −1) .由费马小定理知1046≡1(mod47).设t 为使10t≡1(mod47)的最小正整数.则t |46 .而10≡10(mod47),102≡6(mod47),1023≡46(mod47),故t=46.因此,46|n⇔47|11⋯10⏟ n 个.综上,n min =[2,3,46]=138.故答案为:1389.12-【解析】9.试题由题中所给221a b c +≤≤,易知01c ≤≤,由22a b c +≤,不难联想到圆的标准方程,故可令a b z +=,根据直线与圆的位置关系可得:d ==≤,得z ≥,那么所求的:a b c c ++≥,可令2()f c c ==,其中01≤≤,结合二次函数的图象可知当2=时,min 122f =-. 10.2【解析】10.由题设知F a +F b +F c >F d若c≤d −2,则F a +(F b +F c )≤F a +F d−1≤F d ,矛盾.于是,c=d −1.从而,四边形的边长为F a 、F b 、F d−1、F d . 若b≤d −3,则(F a +F b )+F d−1≤F d−2+F d−1=F d ,矛盾.于是,b=d −2,此时,F a +(F d−2+F d−1)=F a +F d >F d .从而,四边形的边长为F a 、F d−2、F d−1、F d . 故d−b =2.11.x 2+y 2−x4+y4=0【解析】11.设点P (x 0,y 0),切点A (x A ,y A ),B (x B ,y B ).则切线PA 、P B 的方程分别为l PA :x A x +y A y =1,l BP :x B x +y B y =1.因为P 为两条切线的交点,所以,x A x 0+y A y 0=1,x B x 0+y B y 0=1.于是,点A 、B 的坐标满足方程x 0x +y 0y =1,即l AB :x 0x +y o y =1.另一方面,l OP :y o x =x o y . 设点M (x,y ).则{x 0x +y o y =1,y 0x =x 0y ⇒{x 0=xx 2+y 2y 0=y x 2+y2.又点P 在直线y =x −4上,则y x 2+y 2=x x 2+y 2−4⇒x 2+y 2−x 4+y 4=0. 12.见解析【解析】12. 如图,作DE ′∥PA 与AB 交于点E ′,联结CE ′并延长与PA 交于点M ′.只需证明PM ′=M ′A ,即得点M 与M ′重合.联结AC ,延长DE ′与AC 交于点F ′,只需证明DE ′=E ′F ′.作OH⊥PC 于点H.则为DC 的中点.故只需证明E ′H =CF ′. 因为∠ACP=∠ABD ,所以,只需证明D 、E ′、H 、B 四点共圆.由P 、O 、H 、B 四点共圆.∠E ′DC =∠APC =∠APO +∠OPH =∠ABO +∠OBH =∠E ′BH .故D ,E ′、H 、B 四点共圆. 从而,∠E ′HD=∠E ′BD =∠ACD .于是,点E ′与E 重合.因此,DE ∥PA .13.√25+12√3【解析】13. 由已知条件得a 2+b 2−2abcos120∘=9, b 2+c 2−2bcos120∘=16, c 2+a 2−2cacos120∘=25.由余弦定理可构造如下几何模型.平面上共端点P 的线段PA 、PB 、PC 两两夹角为120°,且PA=a ,PB=b ,PC=c. 于是,AB 2=9,BC 2=16,CA 2=25.从而,ΔABC 为直角三角形,其面积为6. 则12absin120∘+12bcsin120∘+12casin120∘=6⇒ab +bc +ca =8√3. 故(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ca=a2+b2+ab2+b2+c2+bc2+c2+a2+ca2+3(ab+bc+ca)2=92+162+252+24√32=25+12√3因此,a+b+c=√25+12√314.22013+1【解析】14.考虑一般的情形:圆周上有n(奇数,n≥3)个不同的点时的好染色种数.显然,三种单色染色方法是好染色.接下来求非单色好染色.设Y表示圆周上n个不同点时非单色好染色的集合,X表示圆周上n个不同点时任意相邻两点异色的染色方法的集合.可建立集合X与Y之间的一一对应.考虑圆周上2n(n为奇数)边形.设奇顶点的染色属于集合定义每个偶顶点的颜色与其相邻奇顶点不同.则得偶顶点的染色方法是好染色.若以两个同色点为端点的某一段圆弧之间没有与端点同色的点,则称这两点为“最近同色点显然,一个染色方法为好染色点的充分必要条件为任意两个最近同色点之间的异色点个数为偶数.先证明偶顶点的染色方法为一个好染色,即证明任意两个最近同色点的偶顶点之间包含的偶顶点的个数为偶数.设M、N为任意两个最近同色点的偶顶点(不妨设为红色),且包含在M、N之间的偶顶点为k个.当k=0时,则结论成立;当k≠0时,记k个偶顶点为B1,B2,⋯,B k,则在M、N之间还包含k+1个奇顶点,记为A1,A2,⋯,A k+1,排列如下:M,A1,B1,A2,B2,⋯,B k,A k+1,N.因为点B1,B2,⋯,B k均不为红色,所以,点A与A i+1=(i=1,2,⋯,k)的颜色不能为蓝、绿(或绿、蓝)(若出现上述两种情形,则B i+1为红色,与假设矛盾).又点A i与A i+1不同色,则点A1,A2,⋯,A k+1中一个隔一个的为红色.由点M、N为红色,知点A、A k+1不为红色.于是,点A2,A4,⋯,A k为红色.从而,k为偶数,即M、N中包含的异色顶点为偶数个.因此,偶顶点染色方法为好染色.故得到一个从集合X到Y的映射f.再证明:f为一一对应.(1)f为单射.记圆周上2n边形A1B1A2B2⋯A n B n(A i为奇顶点,B i为偶顶点,其中i=1,2,…,n).设a、b∈X,且a≠b.若f(a)=f(b),因为f(a)=f(b)为非单色好染色,所以,存在两个相邻异色偶顶点(不妨设为B n、B1).从而,得到a、b的对应这两偶顶点之间的奇顶点A1的颜色相同. 由a、b及f的定义,知A i、B i、A i+1(i=1,2,⋯,n,规定A n+1=A1)三个顶点所染的颜色不同,换言之,为A n+1所染的颜色由A i、B i唯一确定,这样由点A1、B1在a、b 及f下所染颜色分别相同得A2所染颜色也相同,再由A2、B2所染颜色分别相同得A3所染的颜色也相同,依此类推,在a、b下,点A1,A2,⋯,A n所染的颜色分别相同,即a=b,这与假设a≠b矛盾.因此,f为单射.(2)f为满射.对c∈Y,设M、N是c中的相邻异色偶顶点,则定义f−1(c)位于M、N之间的奇顶点不同于M、N的颜色.若B1,B2,⋯,B k为c中一串连续同色(不妨设为红色)偶顶点,它们位于偶顶点M、N间.若M、N同色(不妨设为蓝色),则k为偶数(若为奇数,则两同色点之间的异色点个数为奇数,与好染色矛盾),此时,定义M、N之间所有奇顶点的f−1(c)的颜色依次为绿、蓝、绿、……蓝、绿.若M、N异色(不妨设M为蓝色,N为绿色),则k为奇数(若不然,k为偶数,则每一段连续同色点的偶顶点为偶数个.否则,不妨设沿A1M方向存在点B1,B2,⋯,B i,若点B i 与N重合,则n为偶数,与n为奇数矛盾.若点B i与N不重合,则B i与相邻的点C与M、N 或B i(i=1,2,⋯,k)之一同色,其之间所包含的异色点为奇数.矛盾).此时,定义M、N之间所有奇顶点的f−1(c)的颜色依次为绿、蓝、绿、……蓝.如此定义的奇顶点染色方法,相邻两个奇顶点颜色相异.最后计算集合X中元素的个数.记x n表示对圆周上n个点的好的染色法的个数.由x2=x3=6,x n+x n−1=3×2n−1,则x n=3×2n−1−x n−1=3×2n−1−3×2n−2+x n−2=3×2n−1−3×2n−2+⋯+3×(−1)n−3×22+(1)n−1x2=3[2n−1−2n−2+⋯+(−1)n−3×22+(−1)n−2×2]=2n+2×(1)n故好染色方法总数为22013+2×(−1)2013+3=22013+115.见解析【解析】15. 设a i 除以p 的余数为r i ,其中,1≤i ≤p −1(i ∈Z +).则1≤r i ≤p −1.因此,对于k =1,2,⋯,p −2,均有r 1k +r 2k +⋯r p−1k ≡0(modp ).① 欲证r 1,r 2,⋯,r p−1互不相同,只需证对任意的b∈{1,2,⋯,p −1},存在i ∈{1,2,⋯,p −1},使得b =r i .否则,存在正整数b (1≤b ≤p −1),对任意的i ∈{1,2,⋯,p −1},b ≠r i ,存在整数c (1≤c ≤p −1),使得bc ≡1(modp ). 由b ≡r i (modp ),知1≡r i c (modp ).从而,(1−r i c,p )=1. 利用费马小定理,知(r i c )p ≡r i c (modp ).故∑r i k ck =r i c−(r i c )p 1−r i c p−1k=1≡o (modp ). 所以,∑(∑r i k c k p−1k=1)≡0(modp )p−1i=1②另一方面,由式①和费马小定理知∑(∑r i k c k p−1k=1)≡p−1i=1∑(∑r i k p−1i=1)p−1k=1c k ≡∑r k p−1cp−1≡−1(modp )p−1k=1.③ 由式②、③有0≡−1(modp ),矛盾.从而,结论成立.。

江苏省2013年全国高中数学联赛初赛题与答

江苏省2013年全国高中数学联赛初赛题与答

设 a 有 m 个数字,b 有 n 个数字,由已知得 m+n=4.
如果 m<2,那么 n≥3,但在 31 年后,a 是 2 位数,这与题意不符.
由对称性,知 n 也不小于 2,从而 m=n=2. 设按照题中要求顺序排列的平方数依次为 x2 和 y2,0<x<y, 则 y2=x2+3l3l,即(y-x)(y+x)=31×101.
由于 f ′(x)=2-πsinπx ,f ′′(x)=-π2cosπx.
当 x∈(0,12)时,f ′′(x)=-π2cosπx<0,当 x∈(12,1)时,f ′′(x)=-π2cosπx>0, 所以 f ′(x)在区间[0,12]上单调减,在区间[12,1]上单调增. 因为 f ′(0)=f ′(1)=2 和 f ′(12)=2-π<0, 所以存在 α 和 β, 0<α<12<β<1, 使得 f ′(α)=f ′(β)=0,f ′(x)<0 当且仅当 x∈(α,β). …………………… 10 分
2013 年全国高中数学联赛初赛参考答案 第 1 页 共 5 页
2013 年江苏省高中数学竞赛初赛试题与解答
冯惠愚 2013.05.
又解:由已知,2a=b+c2sinA=sinB+sinC4sinA2cosA2=2sinB+2 CcosB-2 C2cosB+2 C=cosB-2 C.
所以,tanB2tanC2=13tanB+2 C=1t-anBt2a+nB2ttaannC2C2≥21-ttaannB2B2ttaannC2C2= 3B+C≥230<A≤3.
y
椭圆 E2:x92+y2=1 交于点 A 和 C,E1 的左顶点为 B,
A
B
D
O
x
E2 的右顶点为 D (如图).若四边形 ABCD 是正方形,

2013年高中数学高考联赛山东、湖北、全国试题及江苏模拟试题

2013年高中数学高考联赛山东、湖北、全国试题及江苏模拟试题

2013年4月江苏省高中数学组卷模拟试题经典例题一.选择题(共2小题)1.一同学为研究函数f(x)=+(0≤x≤1)的性质,构造了如图所示的两个边长为1的正方形ABCD和BEFC点P是边BC上的一动点,设CP=x,则AP+PF=f(x),则推知函数g(x)=5f(x)﹣11的零点的个数是()2.设等差数列{a n}的前n项和为S n,且S15>0,S16<0,则中最大的是().C D.3.已知△ABC中,AB边上的高与AB边的长相等,则的最大值为_________.4.函数f(x)的定义域为D,若满足①f(x)在D内是单调函数,②存在[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b],那么y=f(x)叫做闭函数,现有f(x)=+k是闭函数,那么k的取值范围是_________.5.如图,F1,F2是双曲线C:的左右焦点,过F1的直线l与C的左、右两支分别交于A,B两点.若△ABF2为等边三角形,则双曲线的离心率为_________.三.解答题(共4小题)6.已知椭圆的左顶点为A,左、右焦点为F1,F2,点P是椭圆上一点,,且△PF1F2的三边构成公差为1的等差数列.(Ⅰ)求椭圆的离心率;(Ⅱ)若,求椭圆方程;(Ⅲ)若c=1,点P在第一象限,且△PF1F2的外接圆与以椭圆长轴为直径的圆只有一个公共点,求点P的坐标﹒7.设f k(n)为关于n的k(k∈N)次多项式.数列{a n}的首项a1=1,前n项和为S n.对于任意的正整数n,a n+S n=f k (n)都成立.(I)若k=0,求证:数列{a n}是等比数列;(II)试确定所有的自然数k,使得数列{a n}能成等差数列.8.已知函数,.(1)若a=2,求f(x)=f1(x)+f2(x)在x∈[2,3]上的最小值;(2)若x∈[a,+∞)时,f2(x)≥f1(x),求a的取值范围;(3)求函数在x∈[1,6]上的最小值.9.已知向量=(sinx,),=(cosx,﹣1).(1)当时,求cos2x﹣sin2x的值;(2)设函数f(x)=2()﹣,已知在△ABC中,内角A、B、C的对边分别为a、b、c,若a=,b=2,sinB=,求f(x)+4cos(2A+)(x∈[0,])的取值范围.参考答案与试题解析一.选择题(共2小题)1.一同学为研究函数f(x)=+(0≤x≤1)的性质,构造了如图所示的两个边长为1的正方形ABCD和BEFC点P是边BC上的一动点,设CP=x,则AP+PF=f(x),则推知函数g(x)=5f(x)﹣11的零点的个数是())的最小值为>的解的个数,从而得出结论.+取得最小值为>取得最大值为>.=)的最小值为>2.设等差数列{a n}的前n项和为S n,且S15>0,S16<0,则中最大的是()D==83.已知△ABC中,AB边上的高与AB边的长相等,则的最大值为2.==,C+)4.函数f(x)的定义域为D,若满足①f(x)在D内是单调函数,②存在[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b],那么y=f(x)叫做闭函数,现有f(x)=+k是闭函数,那么k的取值范围是(﹣,a].)上的两个根.故有+k+k=b,故,那么的取值范围是(﹣,5.如图,F1,F2是双曲线C:的左右焦点,过F1的直线l与C的左、右两支分别交于A,B两点.若△ABF2为等边三角形,则双曲线的离心率为.•故答案为:6.已知椭圆的左顶点为A,左、右焦点为F1,F2,点P是椭圆上一点,,且△PF1F2的三边构成公差为1的等差数列.(Ⅰ)求椭圆的离心率;(Ⅱ)若,求椭圆方程;(Ⅲ)若c=1,点P在第一象限,且△PF1F2的外接圆与以椭圆长轴为直径的圆只有一个公共点,求点P的坐标﹒利用向量的坐标及,可得得:,∴∴椭圆的离心率是,所以,∴椭圆方程是,,则,,以椭圆长轴为直径的圆的圆心为()在圆上得:,半径为或(此方程无解),得:得:,坐标,从而解得,坐标为7.设f k(n)为关于n的k(k∈N)次多项式.数列{a n}的首项a1=1,前n项和为S n.对于任意的正整数n,a n+S n=f k (n)都成立.(I)若k=0,求证:数列{a n}是等比数列;关系,公比为的等比数列.8.已知函数,.(1)若a=2,求f(x)=f1(x)+f2(x)在x∈[2,3]上的最小值;(2)若x∈[a,+∞)时,f2(x)≥f1(x),求a的取值范围;(3)求函数在x∈[1,6]上的最小值.=2e时,∴时,因为(ⅰ)当上的最小值为9.已知向量=(sinx,),=(cosx,﹣1).(1)当时,求cos2x﹣sin2x的值;(2)设函数f(x)=2()﹣,已知在△ABC中,内角A、B、C的对边分别为a、b、c,若a=,b=2,sinB=,求f(x)+4cos(2A+)(x∈[0,])的取值范围.)由,从而可求)由正弦定理得,A=x)∵A=((2013年全国高中数学联合竞赛一试试题一、填空题:本大题共8小题,每小题8分,共64分1.设集合A ={2,0,1,3},集合B =A x x ∈-|{,}22A x ∉-.则集合B 中所有元素的和为 ___________2.在平面直角坐标系xOy 中,点A 、B 在抛物线x y 42=上,满足4-=∙OB OA ,F 是抛物线的焦点.则OFB OFA S S ∆∆∙=___________3.在△ABC 中,已知C B A sin sin 10sin =,C B A cos cos 10cos =,则A tan 的值为____________4.已知正三棱锥P —ABC 底面边长为1,高为2,则其内切球半径为___________5.设a ,b 为实数,函数b ax x f +=)(满足:对任意∈x [0,1],有1|)(|≤x f .则ab 的最大值为___________6.从1,2,…,20中任取5个不同的数,其中至少有两个是相邻数的概率为___________7.若实数x y ,满足y x y x -=-24,则x 的取值范围是___________8.已知数列}{n a 共有9项,其中191==a a ,且对每个∈i {1,2,…,8},均有}21,1,2{1-∈+i i a a ,则这样的数列的个数为__________二、解答题:本大题共3小题,共56分.解答应写出文字说明、证明过程或演算步骤9. (本题满分16分)给定正数数列}{n x 满足12-≥n n S S ,n =2,3,…,这里+=1x S n …n x +.证明:存在常数0>C ,使得nn C x 2∙≥,n =1,2,…10. (本题满分20分)在平面直角坐标系xOy 中,椭圆的方程为)0(12222>>=+b a by a x ,1A 、2A 分别为椭圆的左、右焦点,1F 、2F 分别为椭圆的左、右焦点,P 为椭圆上不同于1A 和2A 的任意一点.若平面中两个点Q 、R 满足11PA QA ⊥,22PA QA ⊥,11PF RF ⊥,22PF RF ⊥,试确定线段QR 的长度与b 的大小关系,并给出证明. 11.(本题满分20分)设函数b ax x f +=2)(,求所有的正实数对),(b a ,使得对任意实数x ,y ,有)()()()(y f x f y x f xy f ≥++.2013年全国高中数学联合竞赛加试试题一、(本题满分40分)如图,AB 是圆ω的一条弦,P 为弧AB 内一点,E 、F 为线段AB 上两点,满足AE =EF =FB .连接PE 、PF 并延长,与圆ω分别相交于点C 、D .求证:EF ·CD =AC ·BD . (解题时请将图画在答卷纸上)B二、(本题满分40分)给定正整数u ,v .数列}{n a 定义如下:v u a +=1,对整数1≥m ,⎩⎨⎧+=+=+v a a u a a m m m m 122记++=21a a S m …,2,1(=+m a m …).证明:数列}{n S 中有无穷多项是完全平方数.三、(本题满分50分)一次考试共有m 道试题,n 个学生参加,其中m ,2≥n 为给定的整数.每道题的得分规则是:若该题恰有x 个学生没有答对,则每个答对该题的学生得x 分,未答对的学生得零分.每个学生的总分为其m 道题的得分总和.将所有学生总分从高到低排列为≥≥21p p …n p ≥,求n p p +1的最大可能值.四、(本题满分50分)设n ,k 为大于1的整数,kn 2<.证明:存在k 2个不被n 整除的整数,若将它们任意分成两组,则总有若干个数的和被n 整除.2013年全国高中数学联赛辽宁省初赛试题及参考答案及评分标准说明:1.评阅试卷时,请依据本评分标准,选择题和填空题只设5分和0分两档,其它各 题的评阅,请严格按照本评分标准规定的评分档次给分。

【推荐下载】2013届常熟市高三数学试卷

【推荐下载】2013届常熟市高三数学试卷
4
[键入文字]
16.两县城 A 和 B 相距 20km,现计划在两县城外以 AB 为直径的半圆弧上选择一点 C 建造垃圾处理厂,其对城市的影响度与所选地点到城市的距离有关,对城 A 和城 B 的总影响度为城 A 与城 B 的影响度之和,记 C 点到城 A 的距离为 x km,建在 C 处的 垃圾处理厂对城 A 和城 B 的总影响度为 y,统计调查表明:垃圾处理厂对城 A 的影响 度与所选地点到城 A 的距离的平方成反比,比例系数为 4;对城 B 的影响度与所选地点 到城 B 的距离的平方成反比,比例系数为 k,当垃圾处理厂建在的中点时,对城 A 和 城 B 的总影响度为 0.065. (1)将 y 表示成 x 的函数; (11)讨论(1)中函数的单调性,并判断弧上是否存在一点,使建在此处的垃圾处理厂 对城 A 和城 B 的总影响度最小?若存在,求出该点到城 A 的距离;若不存在,说明理 由.VIP 显示解析 17.已知二次函数 f(x)=ax2+bx+c. (1)若 f(-1)=0,试判断函数 f(x)零点个数; (2)若对&forall;x1,x2&isin;R,且 x1 2 [f(x1)+f(x2)]成立. (3)是否存在 a,b,c&isin;R,使 f(x)同时满足以下条件①对&forall;x&isin;R,f(x5
[键入文字]
4)=f(2-x),且 f(x)&ge;0;②对&forall;x&isin;R,都有 0&le;f(x)-x&le;1 2 (x-1)2.若存在,求出 a,b,c 的值,若不存在,请说明理由. 更多文章进入: 高中频道 高三数学频道
6
+&infin;),且 xy-(x+y)=1,则 x+y 的取值范围是. 显示解析 10.已知角&phi;的终边经过 点 P(1,-2),函数 f(x)=sin(&omega;x+&phi;)(&omega;0)图象的相邻两条对称轴之间的 距离等于&pi; 3

2013年全国高中数学联合竞赛一试真题及答案

2013年全国高中数学联合竞赛一试真题及答案

2013年全国高中数学联合竞赛一试一.填空题:本大题共8小题,每小题8分,共64分.1. 设集合{}2,0,1,3A =,集合{}2|,2B x x A x A =-∈-∉.则集合B 中所有元素的和为 .2. 在平面直角坐标系xOy 中,点A B 、在抛物线24y x =上,满足4OA OB ⋅=-,F 是抛物线的焦点.则OFA OFB S s ∆∆⋅= .3. 在ABC ∆中,已知sin 10sin sin A B C =,cos 10cos cos A B C =,则tan A 的值为 .4. 已知正三棱锥P ABC -底面边长为1,则其内切球半径为 .5. 设,a b 为实数,函数()f x ax b =+满足:对任意[]0,1x ∈,有()1f x ≤.则ab 的最大值为 .6. 从1,2,…,20中任取5个不同的数,其中至少有两个是相邻数的概率为 .7. 若实数,x y满足x -,则x 的取值范围是 .8. 已知数列{}n a 共有9项,其中191a a ==,且对每个{}1,2,,8i ∈,均有112,1,2i i a a +⎧⎫∈-⎨⎬⎩⎭,则这样的数列的个数为 .二.解答题:本大题共3个小题,共56分.解答应写出文字说明、证明过程或演算步骤.9. (本题满分16分)给定正数数列{}n x 满足12n n S S -≥,2,3,n =,这里1n n S x x =++.证明:存在常数0C >,使得2n n x C ≥⋅,1,2,n =.10. (本题满分20分)在平面直角坐标系xOy 中,椭圆的方程为()222210x y a b a b+=>>,12A A 、分别为椭圆的左、右顶点,12F F 、分别为椭圆的左、右焦点,P 为椭圆上不同于1A 和2A 的任意一点.若平面中两个点Q R 、满足11QA PA ⊥,22QA PA ⊥,11RF PF ⊥,22RF PF ⊥,试确定线段QR 的长度与b 的大小关系,并给出证明.11. (本题满分20分)求所有的正实数对(),a b ,使得函数()2f x ax b =+满足:对任意实 数,x y ,有()()()()f xy f x y f x f y ++≥.。

2013年全国高中数学联赛试题及答案详解(A卷)

2013年全国高中数学联赛试题及答案详解(A卷)

2013年全国高中数学联赛一试试题一.填空题:本大题共8小题,每小题8分,共64分。

1.设集合{}3,1,0,2=A ,集合{}A x A x xB ∉-∈-=22,,则集合B 中所有元素的和为 2.在平面直角坐标系xOy 中,点A 、B 在抛物线x y 42=上,满足4-=⋅,F 是抛物线的焦点,则OFB OFA S S ∆∆⋅=3.在ABC ∆中,已知C B A C B A cos cos 10cos ,sin sin 10sin ⋅=⋅=,则A tan 的值为4.已知正三棱锥ABC P -的底面边长为1,高为2,则其内切球半径为5.设a 、b 为实数,函数b ax x f +=)(满足:对任意]1,0[∈x ,有1)(≤x f ,则ab 的最大值为6.从20,,2,1⋅⋅⋅中任取5个不同的数,其中至少有2个是相邻数的概率为7.若实数x ,y 满足y x y x -=-24,则x 的取值范围是8.已知数列{}n a 共有9项,其中191==a a ,且对每个{}8,,2,1⋅⋅⋅∈i 均有⎭⎬⎫⎩⎨⎧-∈+21,1,21i i a a ,则这样的数列的个数为二.解答题:本大题共3小题,共56分。

解答应写出文字说明、证明过程或演算步骤。

9.(本题满分16分)给定正数数列{}n x 满足,,3,2,21⋅⋅⋅=≥-n S S n n 这里n n x x S +⋅⋅⋅+=1. 证明:存在常数0>C ,使得⋅⋅⋅=⋅≥,2,1,2n C x n n10.(本题满分20分)在平面直角坐标系xOy 中,椭圆的方程为)0(12222>>=+b a by a x ,21,A A 分别为椭圆的左、右顶点,21,F F 分别为椭圆的左右焦点,P 为椭圆上不同于1A 和2A 的任意一点.若平面中有两个点R Q ,满足22112211,,,PF RF PF RF PA QA PA QA ⊥⊥⊥⊥, 试确定线段QR 的长度与b 的大小关系,并给出证明。

江苏省青年教师基本功比赛数学试题

江苏省青年教师基本功比赛数学试题

当 x a 时, f (x) (x a )2 a2 a ,二次函数图象对称轴 x a a ,
24
2

f
(x)
a 在(
, a)
上单调递减,在 (,
a)
上单调递增.
2
2
……………10 分
1 当 f ( a ) 0 ,即 0 a 4 时,函数 f (x) 图象与 x 轴只有唯一交点,即有唯一零点. 2
②当 a
0 时,
f
(x)
x
xa
a
x2 ax a, x a, x2 ax a, x a.
……………6 分
当 x a 时, f (x) (x a )2 a2 a ,二次函数图象对称轴 x a a ,
24
2
∴ f (x) 在 (a, ) 上单调递增, f (a) 0 ;
……………8 分
当 n 3 时, bn1
bn
0 ;当 n 3 时, bn1 bn
0 ; b3
b4
1, 8
所以 b1
b2
b3
b4
b5
bn
所以,对任意
n
N*,有 bn
1 8
.
…………14 分
如果存在 n N*,使得 t 2
1 4
t
bn
成立,则有 t 2
1 4
t
1 8
,解得
1 4
t
1 2

所以,实数 t 的取值范围是[ 1 , 1 ]. 42
参考答案及评分标准
一、填空题:
1.{1, 2, 2}
2. 2
1
3.48
4.
5.
6.
7. 3 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年常熟市高中数学青年教师解题比赛试卷
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页,共150分.考试时间120分钟.
第Ⅰ卷(选择题 共60分)
参考公式:
三角函数的积化和差公式 正棱台、圆台的侧面积公式
)]sin()[sin(21
cos sin β-α+β+α=βα l c c S )'(21+=台侧其中'c 、c 分别表示
)]sin()[sin(2
1
sin cos β-α-β+α=βα 上、下底面周长,l 表示斜高或母线长
)]cos()[cos(21
cos cos β-α+β+α=βα 球体的体积公式 334R V π=球
)]cos()[cos(
1
sin sin β-α-β+α-=βα 其中R 表示球的半径
一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,
1.若3)sin(=+πα,则)2
cos(
α-的值等于 (A )31 (B )31- (C )322 (D )-322
2.若函数y=f (x )的反函数的图象经过点)1,2(-,则此函数可能是
x y D y C y B x y A x x 2log )(2)()21
()(21)(-===-=
3.双曲线
116
92
2=-y x 的一个焦点到一条渐近线的距离等于 (A)3 (B)3 (C) 4 (D) 2
4.圆台母线与底面成450
角,侧面积为π23,则它的轴截面面积是
(A )2 (B )3 (C )2 (D )23
5.若{a n }是无穷等比数列,且a 1+a 2+a 3=
43, a 2+a 3+a 4=-8
3
,则此数列所有项的和为 (A )31
(B )32 (C )1 (D )3
4
6.设函数|log |)(x x f a =(10<<a ),则下列各式中成立的是
)
2()3
1
(41()()
41()2()31()()
31
()2()41()(41()31()2()(f f f D f f f C f f f B f f f A >>>>>>>>
7.如图,点P 是正方形ABCD 所在的平面外一点,AD PD ABCD PD =⊥,平面,则PA 与BD 所成角的度数为 (A )30° (B )45° (C )60° (D )90°
8.过圆)(4
cos

θρ-=的圆心,且与极轴所在直线垂直的直线
方程为
2
2sin 22cos -=-
=θρθρ)()(B A 2
2sin 2
2
cos =
=
θρθρ)()(D C 9. 有5个身高均不相同的学生排成一排合影留念,高个子站在中间,从中间到左边一个比一个矮,从中间到右边也是一个比一个矮,则这样的派法有 (A) 6种 (B )8种 (C )12种 (D )16种
10. 设点P 在直线1=x 上变化,O 为坐标原点.以OP 为直角边、点O 为直角顶点作等腰OPQ Rt ∆,则动点Q 的轨迹是
(A)两条平行直线 (B )一条直线 (C )抛物线 (D )圆
11.由(3x+32)100
展开所得的x 的多项式中,系数为有理数的共有 (A)50项 (B)17项 (C)16项 (D)15项
12. 某大学的信息中心A 与大学各部门、各院系B ,C ,D ,E ,F ,G
,H ,I 之间拟建立信息联网工程,实际测算的费用如图所示(单位:万元).请观察图形,可以不建立部分网线,而使得中心与各部门、各院系都能连通(直接或中转),则最小的建网费用是 (A)16万元 (B )14万元 (C )13万元 (D )12
第Ⅱ卷(非选择题,共90分)
注意事项:
1.第Ⅱ卷共6页,用钢笔或圆珠笔直接答在试题卷中.
2.答卷前将密封线内的项目填写清楚.
二、填空题:(本大题共4小题,每小题4分,共16分.把答案填在题中横线上.)
13.如果直线b y x =+与圆222=+y x 相切,则实数b 的值为___________;
14.已知,52,4321i z i z --=+=则2
11arg
z z i
z +-= ;
15.已知αγβα(1sin sin sin 222=++、β、γ均为锐角),那么γβαcos cos cos 的最大值等于____________________;
16.定义在R 上的偶函数f (x )满足:)()1(x f x f -=+,且在[-1,0]上是增函数,下面是关于f (x )的判断:(1)f (x )是周期函数;(2)f (x )的图象关于直线x=1对称;(3)f (x )在[0,1]上是增函数;(4)f (x )在[1,2]上是减函数;(5)f (2)=f (0),其中正确的判断是 (把你认为正确的判断都填上)
三、解答题(本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.)
17.(本小题满分12分)
已知函数3)2
(cos 32)2sin()(2
-+++=θ
θx x x f
⑴ 求函数)(x f 的周期;
⑵ 若πθ≤≤0,求θ,使函数)(x f 为偶函数.
已知函数)(3
)(2a x a x x x f ≠-+=, a 为非零常数,
⑴ 解不等式x x f <)(;
⑵ 设a x >时,)(x f 的最小值为6,求a 的值.
如图,三棱锥P-ABC中,∠APB=∠APC=600,PA=3,PB=2,ΔPBC为正三角形(1)求证:平面PBC⊥平面ABC;
(2)求棱PA与侧面PBC所成的角;
P
(3)求点B到侧面PAC的距离.
C
A
B
,0)和B(3,0),动点P到A、B两点的距离差的绝对值为2, 已知点A(3
(1)求动点P的轨迹方程;
(2)过点C(1,1)能否作直线l,使它与动点P的轨迹交于两点M,N,且点C是线段MN的中点,问这样的直线l是否存在,若存在,求出它的方程,若不存在,说明理由.
21.(本小题满分12分)
国内某大报纸有如下报道:学数学,其实是要使人聪明,使人的思维更加缜密. 在美国广为流传的一道数学题目是:老板给你两个加工资的方案. 一是每年年末加一千;二是每半年结束时加300元. 例如,在第二年的年末,依第一种方案可以加得1000+2000=3000(元);而第二种方案在第一年加得300+600=900(元),第二年加得900+1200=2100(元),总数也是3000元.
⑴ 如果在该公司干十年,问选择第一种还是第二种的方案所加的工资高?高多少?
⑵ 如果第二种方案中的每半年加300元改为每半年加a元,问a为何值时,总是选择第二方案比选择第一方案多加薪?
22.(本小题满分14分)
已知ax x x f +-=3)(在(0,1)是增函数, (1) 求实数a 的取值范围
(2) 当3=a 时,定义数列}{n a 满足)1,0(1∈a ,且)(21n n a f a =+,求证:对一切正整数n 均有)1,0(∈n a .。

相关文档
最新文档