椭圆小题狂练
椭圆习题(30道题)
椭圆习题一、 选择题:(在每小题给出的四个选项中有只有一项是符合题目要求的.) 1.椭圆63222=+y x 的焦距是( )A .2B .)23(2-C .52D .)23(2+2.F 1、F 2是定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则点M 的轨迹是 ( ) A .椭圆 B .直线 C .线段 D .圆3.若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点)23,25(-,则椭圆方程是 ( )A .14822=+x yB .161022=+x yC .18422=+x yD .161022=+y x4.方程222=+ky x 表示焦点在y 轴上的椭圆,则k 的取值范围是 ( )A .),0(+∞B .(0,2)C .(1,+∞)D .(0,1)5. 过椭圆12422=+y x 的一个焦点1F 的直线与椭圆交于A 、B 两点,则A 、B 与椭圆的另一焦点2F 构成2ABF ∆,那么2ABF ∆的周长是( )A. 22B. 2C. 2D. 16.若椭圆两准线间的距离等于焦距的4倍,则这个椭圆的离心率为( )A .41 B .22 C .42 D .21 7. 已知k <4,则曲线14922=+y x 和14922=-+-k y k x 有( ) A. 相同的准线 B. 相同的焦点 C. 相同的离心率 D. 相同的长轴8.已知P 是椭圆13610022=+y x 上的一点,若P 到椭圆右准线的距离是217,则点P 到左焦点的距离是( )A .516B .566C .875D .8779.若点P 在椭圆1222=+y x 上,1F 、2F 分别是椭圆的两焦点,且 9021=∠PF F ,则21PF F ∆的面积是( )A. 2 B. 1 C. 23D. 2110.椭圆1449422=+y x 内有一点P (3,2)过点P 的弦恰好以P 为中点,那么这弦所在直线的方程为 A .01223=-+y x B .01232=-+y xC .014494=-+y xD . 014449=-+y x11.椭圆141622=+y x 上的点到直线022=-+y x 的最大距离是( )A .3B .11C .22D .1012.在椭圆13422=+y x 内有一点P (1,-1),F 为椭圆右焦点,在椭圆上有一点M ,使|MP|+2|MF|的值最小,则这一最小值是( ) A .25 B .27 C .3 D .4二、 填空题:(把答案填在题中横线上.)13.椭圆2214x y m+=的离心率为12,则m = 。
椭圆练习题(含答案)
椭圆练习题之马矢奏春创作一、创作时间:二零二一年六月三十日二、选择题:(本年夜题共12小题, 每小题5分, 共60分, 在每小题给出的四个选项中有只有一项是符合题目要求的.)1.椭圆的焦距是()A.2 B.C.D.2.F1、F2是定点, |F1F2|=6, 动点M 满足|MF1|+|MF2|=6, 则点M的轨迹是()A .椭圆B .直线C.线段D.圆3.若椭圆的两焦点为(-2, 0)和(2, 0), 且椭圆过点, 则椭圆方程是()A.B.C.D .4.方程暗示焦点在y轴上的椭圆, 则k 的取值范围是()A.B.(0, 2)C .(1, +∞)D.(0, 1)5.过椭圆的一个焦点的直线与椭圆交于、两点, 则、与椭圆的另一焦点构成, 那么的周长是()A . B. 2 C. D. 16.已知椭圆的对称轴是坐标轴, 离心率为, 长轴长为12, 则椭圆方程为()A.或 B.C.或????????????????????????????????D.或??.??已知<??, 则曲线和有()A.相同的短轴 B.相同的焦点 C.相同的离心率 D.相同的长轴8.椭圆的焦点、, P为椭圆上的一点, 已知, 则△的面积为()A.9 B.12 C.10 D.89.椭圆的焦点为和, 点P 在椭圆上, 若线段的中点在y轴上, 那么是的()A.4倍 B.5倍 C .7倍D.3倍10.椭圆内有一点P(3, 2)过点P的弦恰好以P为中点, 那么这弦所在直线的方程为()A.B.C.D.11.椭圆上的点到直线的最年夜距离是()A.3 B .C .D .12.过点M(-2, 0)的直线M 与椭圆交于P1, P2, 线段P1P2的中点为P, 设直线M的斜率为k1(), 直线OP 的斜率为k2, 则k1k2的值为()A.2 B.-2 C .D .-三、填空题:(本年夜题共4小题, 每小题4分, 共16分, 把谜底填在题中横线上.)13.椭圆的离心率为, 则.14.设是椭圆上的一点, 是椭圆的两个焦点, 则的最年夜值为;最小值为.15.直线y=x -被椭圆x2+4y2=4截得的弦长为.16.已知圆为圆上一点, AQ的垂直平分线交CQ于M, 则点M的轨迹方程为.三、解答题:(本年夜题共6小题, 共74分, 解承诺写出文字说明.证明过程或演算步伐.)17.已知三角形的两极点为, 它的周长为,求极点轨迹方程.18.椭圆的一个极点为A(2, 0), 其长轴长是短轴长的2倍, 求椭圆的标准方程.19.点P到定点F(2, 0)的距离和它到定直线x=8的距离的比为1:2, 求点P的轨迹方程, 并指出轨迹是什么图形.20.中心在原点, 一焦点为F1(0, 5)的椭圆被直线y=3x-2截得的弦的中点横坐标是, 求此椭圆的方程.21.已知椭圆的中心在坐标原点O, 焦点在坐标轴上, 直线y=x+1与椭圆交于P和Q, 且OP⊥OQ, |PQ|=, 求椭圆方程22.椭圆>>与直线交于、两点, 且, 其中为坐标原点.(1)求的值;(2)若椭圆的离心率满足≤≤, 求椭圆长轴的取值范围.椭圆练习题参考谜底题号 1 2 3 4 5 6 7 8 9 10 11 12 谜底 A C D D A B D13、3或 14、 4 , 1 15、16、17、18、解:(1)当A(2,0)为长轴端点时, a=2 , b=1,椭圆的标准方程为:;(2)当为短轴端点时,,,椭圆的标准方程为:;19.解:设P (x, y ), 根据题意, |PF|=(x2)2y2 ,d=|x8|,因为|PF|d =12 ,所以 (x2)2y2 |x8| = 12 .化简, 得3x2+4y2=48,整理,得x216 +y212=1,所以, 点P 的轨迹是椭圆. 20. 解:解法一:根据题意, 设椭圆的方程为y2a2+x2a250 =1,设交点坐标分别为A(x1,y1),B(x2,y2)将椭圆方程与直线y=3x2联立, 消去y, 得:(3x2)2a2 +x2a250 =1,化简, 整理, 得:(10a2450)x2+(60012a2)x+(a4+54a2200)=0,所以, x1,x2为这个方程的两根, 因为相交线段中点横坐标为12 ,所以x1+x2=— 10a245060012a2 = 1,解得, a2=75.于是, 因为c=5 2 ,所以, b2=25, 所以椭圆的方程为y275+x225=1.解法二:设椭圆:(a >b >0), 则a2b2=50…①又设A (x1, y1), B (x2, y2), 弦AB 中点(x0, y0)∵x0=, ∴y0=-2=-由…②解①, ②得:a2=75, b2=25, 椭圆为:=1设椭圆方程为mx2+ny2=1(m >0,n >0), P(x1,y1),Q(x2,y2)由得(m+n)x2+2nx+n -1=0,Δ=4n2-4(m+n)(n -1)>0,即m+n -mn >0,由OP⊥OQ,所以x1x2+y1y2=0,即2x1x2+(x1+x2)+1=0, ∴+1=0,∴m+n=2 ①又22,将m+n=2,代入得m·n=②由①、②式得m=,n=或m=,n=故椭圆方程为+y2=1或x2+y2=122、(1)设, 由OP ⊥ OQ x 1 x 2 + y 1 y 2 = 0又将,代入①化简得.(2) 又由(1)知, ∴长轴2a∈ [].创作时间:二零二一年六月三十日。
椭圆练习题及答案
椭圆练习题及答案椭圆练习题及答案椭圆是数学中一种重要的几何形状,它在实际生活中有着广泛的应用。
本文将为大家提供一些椭圆的练习题,并给出相应的答案。
通过这些练习题,希望读者能够更好地理解和掌握椭圆的性质和运用。
1. 练习题一:给定椭圆的长轴长度为8,短轴长度为6,求椭圆的离心率。
解答:椭圆的离心率定义为离心距与长轴长度之比,其中离心距为焦点到椭圆上任意一点的距离。
由于椭圆的离心距等于长轴长度的一半,所以离心率为1/2。
2. 练习题二:已知椭圆的焦点F1和F2的坐标分别为(-3,0)和(3,0),离心率为2/3,求椭圆的方程。
解答:设椭圆的焦点为F1(-c,0)和F2(c,0),离心率为e,则椭圆的方程为(x+c)^2+y^2=(x-c)^2+y^2=e^2(x^2+y^2)。
代入已知条件,可得到方程为(x+3)^2+y^2=(x-3)^2+y^2=(4/9)(x^2+y^2)。
3. 练习题三:已知椭圆的焦点F1和F2的坐标分别为(0,-4)和(0,4),离心率为1/2,求椭圆的方程。
解答:设椭圆的焦点为F1(0,-c)和F2(0,c),离心率为e,则椭圆的方程为x^2+(y+c)^2=x^2+(y-c)^2=e^2(x^2+y^2)。
代入已知条件,可得到方程为x^2+(y+4)^2=x^2+(y-4)^2=(1/4)(x^2+y^2)。
4. 练习题四:已知椭圆的焦点F1和F2的坐标分别为(-2,0)和(2,0),离心率为3/5,求椭圆的方程。
解答:设椭圆的焦点为F1(-c,0)和F2(c,0),离心率为e,则椭圆的方程为(x+c)^2+y^2=(x-c)^2+y^2=e^2(x^2+y^2)。
代入已知条件,可得到方程为(x+2)^2+y^2=(x-2)^2+y^2=(9/25)(x^2+y^2)。
通过以上练习题,我们可以看到椭圆的方程与其焦点和离心率之间的关系。
椭圆的方程可以通过焦点和离心率来确定,同时也可以通过方程来求解椭圆的性质和参数。
高中数学专题05椭圆小题狂刷新人教A版选修1-1(new)
05 椭圆1.椭圆2212516x y +=的焦距是A .3B .6C .8D .10【答案】B2.椭圆2214x y k+=的离心率为12,则k 的值为A .3B .163 C .3或163D .1925或21【答案】C【解析】当焦点在x 轴上时,222414,,4,,3;44k a b k c k k -==∴=-∴=∴=y 轴上时,2224116,4,4,,.43k a k b c k k k -==∴=-∴=∴=故选C. 3.椭圆221x my +=的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为A .14B .12C .2D .4【答案】A【解析】椭圆221x my +=的焦点在y 轴上,长轴长是短轴长的两倍,∴112,4m m =∴=。
4.方程221410x y k k+=--表示焦点在x 轴上的椭圆,则实数k 的取值范围是 A .(4,)+∞B .(4,7)C .(4,10) D .(7,10)【答案】D【解析】由题意可知40,100,410,k k k k ->⎧⎪->⎨⎪->-⎩解得710k <<.5.椭圆2214x y +=的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,P 为一个交点,则2||PF 等于 A .32B .3C .72D .4【答案】C6.已知ABC △的周长为20,且顶点(0,4)B -,(0,4)C ,则顶点A 的轨迹方程是A .221(0)3620x y x +=≠B .221(0)2036x y x +=≠C .221(0)620x y x +=≠D .221(0)206x y x +=≠【答案】B【解析】由△ABC 的周长为20,且顶点(0,4)B -,(0,4)C ,可得||||12||AB AC BC +=>,所以顶点A 的轨迹为椭圆,其中212,28,6,4,a c a c ==∴==2361620,b ∴=-=方程为2212036x y +=,,A B C 构成三角形,三点不能共线,所以0x ≠,故轨迹方程为221(0)2036x y x +=≠.7.若直线30kx y -+=与椭圆221164x y +=有两个公共点,则实数k 的取值范围是A.5544k -<<B .54k =或54k =- C .54k >或54k <- D .54k <且54k ≠【答案】C【解析】由2231164y kx x y =+⎧⎪⎨+=⎪⎩可得22(41)24200k x kx +++=,当216(165)0k ∆=->,即54k >或5k <-时,直线与椭圆有两个公共点. 8.经过点M (1,2),且与椭圆221126x y +=有相同离心率的椭圆的标准方程为A .221992x y +=或22163y x +=B .22163x y +=或221992y x +=C .221189x y +=或22163y x +=D .22163x y +=或221189y x +=【答案】A221992x y +=或22163y x +=. 9.已知点(3,0)M ,椭圆2214x y +=与直线(3)y k x =+交于点A B 、,则ABM △的周长为A .8B .10C .12D .16【答案】A10.已知直线1y x =-+与椭圆22221(0)x y a b a b +=>>相交于,A B 两点,若椭圆的离心率为22,焦距为2,则线段AB 的长是 A .223B .423C .2D .2【答案】B11.已知点P 是以21,F F 为焦点的椭圆)0(12222>>=+b a by a x 上一点,若120PF PF ⋅=,21tan 21=∠F PF ,则椭圆的离心率为 A .31B .21 C .32D .35 【答案】D【解析】由题得12PF F △为直角三角形,设1||PF m =,则21tan 21=∠F PF .∴2125,22m PF F F m ==,∴121235252||||,2||,2223c a PF PF m c F F m e a =+===∴==。
椭圆的五种基本题型
椭圆专题训练(一)题型1、给出曲线方程,求相应量的值1、求椭圆400251622=+y x 的长轴长为 、短半轴长为 、离心率为 、焦点坐标为 、顶点坐标为 。
2、(练习)求下列各椭圆的长轴和短轴的长,离心率、焦点坐标、顶点坐标、准线方程: ①=+3610022y x 1 ②8222=+y x方法提练:①转化为相应的标准方程;②直接求出a 、b 、c 。
③判断焦点在哪一坐标轴上④将a 、b 、c 的值代入相应量公式(接第2题)③16422=+y x ④81922=+y x3、椭圆)0(022<<=++n m mn ny mx 的焦点为 。
4、曲线=+92522y x 1与=+--ky kx 925221(k<0)有相同的( )A 、长轴长;B 、离心率;C 、准线;D 、焦点题型2、给出相应量的值,求曲线方程1、焦点在x 轴上,焦距等于4,并且经过点P (3,-62)的椭圆方程为: 。
解:依题设椭圆的方程为)0(12222>>=+b a b y a x2、准线方程为x=±4,离心率为1/2的椭圆方程为: 3、两焦点为(±3,0),椭圆上一点P 到两焦点距离的和为10,椭圆方程为:3、两焦点为(±2,0)且过点(2325,-)的椭圆方程为: 方法提练:①判断焦点在哪一坐标轴上;②设出相应的椭圆方程③联立方程组求出a 、b 、c 。
(注意别忘记隐藏的公式)④将a 、b 、c 的值代入相应量公式4、写出适合下列条件的椭圆的标准方程: ①a=4,b=1,焦点在x 轴上。
②a=4,c=15,焦点在y 轴上③a+b=10 c=25.④a=6,c=1/3, 焦点在x 轴上。
⑤过点(-22,0)(0,5)⑥长轴是短轴的3倍,且过点(3,0)⑦离心率e=0.8,焦距为8的椭圆⑧若椭圆的焦点在x 轴上,焦点到短轴顶点的距离为2,到相应准线的距离为3,则椭圆的方程为:椭圆专题训练(二)题型3、给出某曲线方程,表达的是椭圆求所给方程中含的字母的范围。
(完整版)椭圆不错的习题(练习+详细答案)
提能拔高限时训练35一、选择题 1.已知A(0,b),点B 为椭圆12222=+by a x (a>b>0)的左准线与x 轴的交点.若线段AB 的中点C 在椭圆上,则该椭圆的离心率为( )A.3B.23C.33D.43 解析:由已知,得B(0,2ca -),又A(0,b), ∴AB 的中点C 为)2,2(2b c a -. ∵点C 在椭圆上,∴,3.14142222=∴=+ca c a 即33=e . 答案:C2.椭圆1422=+y x 的左、右两个焦点分别为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,已知一个交点为P,则|PF 2|等于( )A.23B.3C.27 D.4 解析:方法一:设F 1(3-,0),F 2(3,0),则点P 的横坐标为3-.由点P 在椭圆上,得,14)3(22=+-y ∴,21±=y 即|PF 1|=21. 又∵|PF 2|+|PF 1|=2a=4,∴|PF 2|=27. 方法二:由已知得a=2,c=3,e=23, 椭圆的右准线方程为3342==c a x .∵.27||,23)3(334||22=∴=+--PF e PF 答案:C3.设F 1、F 2分别是椭圆12222=+b y a x (a>b>0)的左、右两个焦点,若在其右准线上存在点P,使线段PF 1的中垂线过点F 2,则该椭圆的离心率的取值范围是( ) A.]22,0( B.]33,0( C.)1,22[ D.)1,33[解析:如图,设右准线与x 轴的交点为H,则|PF 2|≥|HF 2|.又∵|F 1F 2|=|PF 2|,∴|F 1F 2|≥|HF 2|,即2c≥c ca -2. ∴3c 2≥a 2.∴e 2≥31,即e≥33. 又∵e<1,∴e ∈[1,33). 答案:D4.设点P(-3,1)在椭圆12222=+by a x (a>b>0)的左准线上,过点P 且方向为a=(2,-5)的光线,经直线y=-2反射后通过椭圆的左焦点,则这个椭圆的离心率为( )A.33B.31C.22D.21 解析:入射光线所在直线的方程为y-1=25-(x+3),它与直线y=-2的交点为)2,59(--. 又反射光线过点(-c,0),。
椭圆练习题
椭圆练习题一.选择题1.一圆形纸片的圆心为O ,点Q 是圆内异于O 的定点,点A 为圆上的一点,把纸片折叠使点A 与点Q 重合,然后抹平纸片,折痕CD 与OA 交于P 点,当点A 运动时,点P 的轨迹是() A.椭圆 B.双曲线 C.抛物线 D.圆2.已知椭圆162x +92y =1的左右焦点分别为F ₁,F ₂,点P 在椭圆上。
若P ,F ₁,F ₂是一个直角三角形的三个顶点,则点P 到x 轴的距离为() A.59B.3C.779 D.493.方程2cos 2sin 2+x —2sin 2cos 2-y 所表示的曲线是()A.焦点在x 轴上的椭圆B.焦点在y 轴上的椭圆C.焦点在x 轴上的双曲线D.焦点在y 轴上的双曲线4.已知M,N 是椭圆22a x +22by =1(a >b >0)上关于原点对称的两点,P 是椭圆上的任意一点,且直线PM,PN 的斜率分别为k ₁,k ₂(k ₁,k ₂≠0),若|k ₁|+|k ₂|的最小值为1,则椭圆的离心率为() A22 B 42 C 23 D 435.若F ₁,F ₂是椭圆22a x +22by =1(a >2b >0)两个焦点,分别过F ₁,F ₂作倾斜角为45°的两条直线与椭圆相交于四点,以该四点为顶点的四边形和以椭圆的四个顶点为顶点的四边形的面积比等于322,则该椭圆的离心率为() A22 B 552 C 55 D 10103 6.椭圆22a x +22by =1(a >b >0)上一点A 关于原点的对称点为B ,F 为其右焦点,若AF ⊥BF,设∠ABF=α,且α∈[12π,4π],则该椭圆离心率的取值范围为() A.[22,1) B[22,36] C.[36,1) D.[22,23] 二.填空题1.设F ₁,F ₂分别为椭圆32x +y ²=1的左右焦点,点A,B 在椭圆上。
若A F 1=5F2,则点的坐标是_2.已知椭圆C:22a x +22by =1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A,B 两点,连结AF,BF ,若|AB|=10,|AF|=6,cos ∠ABF=54,则C 的离心率为e=_3.在平面直角坐标系xOy 中,椭圆C 的标准方程为22a x +22by =1(a >b >0),右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为d 1,F 到l 的距离为d 2,若d 2=6d 1,则椭圆的离心率为_4.椭圆42x +32y =1的左焦点为F ,直线x=m,与椭圆相交于点A,B ,当三角形FAB 的周长最大时,三角形FAB 的面积是_5.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为22。
专题12 椭圆小题专项练习(文)(解析版)
专题12 椭圆小题专项练习一、巩固基础知识1.若方程222=+ky x 表示焦点在y 轴上的椭圆,则实数k 的取值范围是( )。
A 、)10(,B 、)1()10(∞+,,C 、)0(∞+,D 、)1(∞+,【答案】A【解析】222=+ky x 化为方程12222=+k y x ,焦点在y 轴上则22>k,解得10<<k ,故选A 。
2.已知P 是椭圆上一定点,1F 、2F 是椭圆的两个焦点,若 6021=∠F PF ,||3||12PF PF =,则椭圆的离心率为( )。
A 、231-B 、213- C 、32-D 、13-【答案】D【解析】由题意得21F PF ∆为∆Rt ,令1=c ,则2||21=F F ,1||1=PF ,3||2=PF , 则a PF PF 231||||21=+=+,13312-=+==a c e ,故选D 。
3.已知椭圆C :12222=+by a x (0>>b a )的右焦点为)03(,F ,过点F 的直线交C 于A 、B 两点,若AB 的中点坐标为)11(-,,则C 的方程为( )。
A 、191822=+y x B 、1182722=+y x C 、1273622=+y x D 、1364522=+y x【答案】A 【解析】21310122=---==a b k AB ,又9222==-c b a ,则222b a =,解得92=b ,182=a ,故选A 。
4.焦点在x 轴上的椭圆的方程为114222=++a y a x (0>a ),则它的离心率e 的取值范围为( )。
A 、]410(,B 、]210(, C 、]220(, D 、]2141[, 【答案】C【解析】142+>a a ,解得3232+<<-a ,]210()1(41141122,∈+-=+-=a a a a e ,则]220(,∈e ,故选C 。
(完整版)椭圆经典练习题两套(带答案)
椭圆练习题1A 组 基础过关一、选择题(每小题5分,共25分)1.(2012·厦门模拟)已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于 ( ).A.12B.22C. 2D.32解析 由题意得2a =22b ⇒a =2b ,又a 2=b 2+c 2⇒b =c ⇒a =2c ⇒e =22. 答案 B2.(2012·长沙调研)中心在原点,焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是( ). A.x 281+y 272=1B.x 281+y 29=1C.x 281+y 245=1D.x 281+y 236=1解析 依题意知:2a =18,∴a =9,2c =13×2a ,∴c =3, ∴b 2=a 2-c 2=81-9=72,∴椭圆方程为x 281+y 272=1.答案 A3.(2012·长春模拟)椭圆x 2+4y 2=1的离心率为( ). A.32 B.34 C.22 D.23解析 先将x 2+4y 2=1化为标准方程x 21+y 214=1,则a =1,b =12,c =a 2-b 2=32.离心率e =c a =32. 答案 A4.(2012·佛山月考)设F 1、F 2分别是椭圆x 24+y 2=1的左、右焦点,P 是第一象限内该椭圆上的一点,且PF 1⊥PF 2,则点P 的横坐标为( ). A .1 B.83 C .2 2 D.263解析 由题意知,点P 即为圆x 2+y 2=3与椭圆x 24+y 2=1在第一象限的交点,解方程组⎩⎪⎨⎪⎧x 2+y 2=3,x 24+y 2=1,得点P 的横坐标为263.答案 D5.(2011·惠州模拟)已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为32,且椭圆G 上一点到其两个焦点的距离之和为12,则椭圆G 的方程为( ). A.x 24+y 29=1 B.x 29+y 24=1 C.x 236+y 29=1 D.x 29+y 236=1解析 依题意设椭圆G 的方程为x 2a 2+y 2b 2=1(a >b >0),∵椭圆上一点到其两个焦点的距离之和为12, ∴2a =12,∴a =6, ∵椭圆的离心率为32. ∴a 2-b 2a =32, ∴36-b 26=32.解得b 2=9,∴椭圆G 的方程为:x 236+y 29=1. 答案 C二、填空题(每小题4分,共12分)6.若椭圆x 225+y 216=1上一点P 到焦点F 1的距离为6,则点P 到另一个焦点F 2的距离是________.解析 由椭圆的定义可知,|PF 1|+|PF 2|=2a ,所以点P 到其另一个焦点F 2的距离为|PF 2|=2a -|PF 1|=10-6=4. 答案 47.(2011·皖南八校联考)已知F 1、F 2是椭圆C 的左、右焦点,点P 在椭圆上,且满足|PF 1|=2|PF 2|,∠PF 1F 2=30°,则椭圆的离心率为________. 解析 在三角形PF 1F 2中,由正弦定理得 sin ∠PF 2F 1=1,即∠PF 2F 1=π2,设|PF 2|=1,则|PF 1|=2,|F 2F 1|=3, ∴离心率e =2c 2a =33. 答案 338.(2011·江西)若椭圆x 2a 2+y 2b 2=1的焦点在x 轴上,过点⎝ ⎛⎭⎪⎫1,12作圆x 2+y 2=1的切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是________.解析 由题可设斜率存在的切线的方程为y -12=k (x -1)(k 为切线的斜率), 即2k x -2y -2k +1=0, 由|-2k +1|4k 2+4=1,解得k =-34, 所以圆x 2+y 2=1的一条切线方程为3x +4y -5=0, 求得切点A ⎝ ⎛⎭⎪⎫35,45,易知另一切点B (1,0),则直线AB 的方程为y =-2x +2. 令y =0得右焦点为(1,0),令x =0得上顶点为(0,2).∴a 2=b 2+c 2=5, 故得所求椭圆方程为x 25+y 24=1. 答案 x 25+y 24=1 三、解答题(共23分)9.(11分)已知点P (3,4)是椭圆x 2a 2+y 2b 2=1(a >b >0)上的一点,F 1,F 2是椭圆的两焦点,若PF 1⊥PF 2.试求:(1)椭圆的方程;(2)△PF 1F 2的面积. 解 (1)∵P 点在椭圆上, ∴9a 2+16b 2=1.① 又PF 1⊥PF 2,∴43+c ·43-c =-1,得:c 2=25,②又a 2=b 2+c 2,③由①②③得a 2=45,b 2=20. 椭圆方程为x 245+y 220=1.(2)S △PF 1F 2=12|F 1F 2|×4=5×4=20.10.(12分)(2011·陕西)如图,设P 是圆x 2+y 2=25上的动点,点D 是P 在x 轴上的投影,M 为PD 上一点,且|MD |=45|PD |.(1)当P 在圆上运动时,求点M 的轨迹C 的方程; (2)求过点(3,0)且斜率为45的直线被C 所截线段的长度. 解 (1)设M 的坐标为(x ,y ),P 的坐标为(x P ,y P ), 由已知得⎩⎪⎨⎪⎧x P=x ,y P =54y ,∵P 在圆上,∴x 2+⎝ ⎛⎭⎪⎫54y 2=25,即C 的方程为x 225+y 216=1.(2)过点(3,0)且斜率为45的直线方程为y =45(x -3), 设直线与C 的交点为A (x 1,y 1),B (x 2,y 2), 将直线方程y =45(x -3)代入C 的方程,得 x 225+(x -3)225=1,即x 2-3x -8=0. ∴x 1=3-412,x 2=3+412.∴线段AB 的长度为|AB |=(x 1-x 2)2+(y 1-y 2)2=⎝ ⎛⎭⎪⎫1+1625(x 1-x 2)2= 4125×41=415.B 级 提高题一、选择题(每小题5分,共10分)1.(2012·丽水模拟)若P 是以F 1,F 2为焦点的椭圆x 2a 2+y 2b 2=1(a >b >0)上的一点,且PF 1→·PF 2→=0,tan ∠PF 1F 2=12,则此椭圆的离心率为( ). A.53 B.23 C.13 D.12解析 在Rt △PF 1F 2中,设|PF 2|=1,则|PF 2|=2.|F 1F 2|=5,∴e =2c 2a =53. 答案 A2.(2011·汕头一模)已知椭圆x 24+y 22=1上有一点P ,F 1,F 2是椭圆的左、右焦点,若△F 1PF 2为直角三角形,则这样的点P 有( ). A .3个 B .4个 C .6个 D .8个解析 当∠PF 1F 2为直角时,根据椭圆的对称性知,这样的点P 有2个;同理当∠PF 2F 1为直角时,这样的点P 有2个;当P 点为椭圆的短轴端点时,∠F 1PF 2最大,且为直角,此时这样的点P 有2个.故符合要求的点P 有6个. 答案 C二、填空题(每小题4分,共8分)3.(2011·镇江调研)已知F 1(-c,0),F 2(c,0)为椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为椭圆上一点且PF 1→·PF 2→=c 2,则此椭圆离心率的取值范围是________. 解析 设P (x ,y ),则PF 1→·PF 2→=(-c -x ,-y )· (c -x ,-y )=x 2-c 2+y 2=c 2①将y 2=b 2-b 2a 2x 2代入①式解得x 2=(3c 2-a 2)a 2c 2,又x 2∈[0,a 2],∴2c 2≤a 2≤3c 2,∴e =c a ∈⎣⎢⎡⎦⎥⎤33,22.答案 ⎣⎢⎡⎦⎥⎤33,224.(2011·浙江)设F 1,F 2分别为椭圆x 23+y 2=1的左,右焦点,点A ,B 在椭圆上,若F 1A →=5F 2B →,则点A 的坐标是________.解析 根据题意设A 点坐标为(m ,n ),B 点坐标为(c ,d ).F 1、F 2分别为椭圆的左、右焦点,其坐标分别为(-2,0)、(2,0),可得F 1A →=(m +2,n ),F 2B →=(c -2,d ),∵F 1A →=5F 2B →,∴c =m +625,d =n 5.∵点A 、B 都在椭圆上,∴m 23+n 2=1,⎝ ⎛⎭⎪⎫m +62523+⎝ ⎛⎭⎪⎫n 52=1.解得m =0,n =±1,故点A 坐标为(0,±1).答案 (0,±1) 三、解答题(共22分)5.(10分)(2011·大连模拟)设A ,B 分别为椭圆x 2a 2+y 2b 2=1(a >b >0)的左,右顶点,⎝ ⎛⎭⎪⎫1,32为椭圆上一点,椭圆长半轴的长等于焦距. (1)求椭圆的方程;(2)设P (4,x )(x ≠0),若直线AP ,BP 分别与椭圆相交异于A ,B 的点M ,N ,求证:∠MBN 为钝角.(1)解 (1)依题意,得a =2c ,b 2=a 2-c 2=3c 2,设椭圆方程为x 24c 2+y 23c 2=1,将⎝ ⎛⎭⎪⎫1,32代入,得c 2=1,故椭圆方程为x 24+y 23=1.(2)证明 由(1),知A (-2,0),B (2,0),设M (x 0,y 0),则-2<x 0<2,y 20=34(4-x 20),由P ,A ,M 三点共线,得x =6y 0x 0+2, BM →=(x 0-2,y 0),BP →=⎝ ⎛⎭⎪⎫2,6y 0x 0+2, BM →·BP →=2x 0-4+6y 20x 0+2=52(2-x 0)>0,即∠MBP 为锐角,则∠MBN 为钝角.6.(★)(12分)(2011·西安五校一模)已知中心在原点,焦点在x 轴上的椭圆C 的离心率为12,且经过点M ⎝ ⎛⎭⎪⎫1,32.(1)求椭圆C 的方程;(2)是否存在过点P (2,1)的直线l 1与椭圆C 相交于不同的两点A ,B ,满足P A →·PB →=PM →2若存在,求出直线l 1的方程;若不存在,请说明理由. 解 (1)设椭圆C 的方程为x 2a 2+y2b 2=1(a >b >0),由题意得⎩⎪⎨⎪⎧1a 2+94b 2=1,c a =12,a 2=b 2+c 2,解得a 2=4,b 2=3.故椭圆C 的方程为x 24+y 23=1.(2)假设存在直线l 1且由题意得斜率存在,设满足条件的方程为y =k 1(x -2)+1,代入椭圆C 的方程得,(3+4k 21)x 2-8k 1(2k 1-1)x +16k 21-16k 1-8=0.因为直线l 1与椭圆C 相交于不同的两点A ,B ,设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),所以Δ=[-8k 1(2k 1-1)]2-4(3+4k 21)(16k 21-16k 1-8)=32(6k 1+3)>0,所以k 1>-12.又x 1+x 2=8k 1(2k 1-1)3+4k 21,x 1x 2=16k 21-16k 1-83+4k 21, 因为P A →·PB→=PM →2,即(x 1-2)(x 2-2)+(y 1-1)(y 2-1)=54, 所以(x 1-2)·(x 2-2)(1+k 21)=|PM |2=54. 即[x 1x 2-2(x 1+x 2)+4](1+k 21)=54.所以⎣⎢⎡⎦⎥⎤16k 21-16k 1-83+4k 21-2·8k 1(2k 1-1)3+4k 21+4(1+k 21)=4+4k 213+4k 21=54,解得k 1=±12. 因为k 1>-12,所以k 1=12.于是存在直线l 1满足条件,其方程为y =12x .【点评】 解决解析几何中的探索性问题的一般步骤为:,第一步:假设结论成立.,第二步:以存在为条件,进行推理求解.,第三步:明确规范结论,若能推出合理结果,经验证成立即可肯定正确.若推出矛盾,即否定假设.,第四步:回顾检验本题若忽略Δ>0这一隐含条件,结果会造成两解.椭圆练习题2一、填空题1.椭圆63222=+y x 的焦距为______________。
(精品)椭圆练习题
椭圆练习题一、选择题 1、若△ABC 的两个顶点坐标(4,0) B(4,0)A -,,△ABC 的周长为18,则顶点C 的轨迹方程是( )22. 1259y x A += 22. 1259x y B += 22. 1 (0)259y x C y +=≠ 22. 1 (y 0)259x y D +=≠ 2、已知椭圆的长轴长是8,离心率是34,则此椭圆的标准方程是 ( ) A .221169x y += B .221169x y +=或221169y x += C .221167x y += D .221167x y +=或221167y x += 3、椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则2||PF =( )A .23B .3C .27 D .4 4、椭圆的短轴长,焦距长,长轴长组成等差数列,则此椭圆的离心率为 ( )3433. . . . 3552A B C D 5、椭圆221123y x +=的焦点为1F 和2F ,点P 在椭圆上,如果线段1PF 的中点在x 轴上,那么2||PF 是 1||PF 的( )A 、17倍 B 、15倍 C 、14倍 D 、7倍 6、如果椭圆193622=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是( ) A 、02=-y x B 、042=-+y x C 、01232=-+y x D 、082=-+y x 二、填空题7、直线032=-+ay x 过椭圆112822=+y x 的焦点, 则=a . 8.如左图,F 1,F 2分别为椭圆12222=+by a x 的左、右焦点,点P 在椭圆上,△POF 2是面积为3的正三角形,则b 2的值是 .三、解答题9、求以椭圆224348x y +=的焦点为焦点,且过点5(,2)3--的椭圆标准方程。
10、设P 为椭圆22110064x y +=上的点,设12,F F 为椭圆的焦点,若01260F PF ∠=,求 △12F PF 的面积。
椭圆练习及参考答案
椭圆练习及参考答案一、单选题(共 50 分)1.椭圆x 29+y28=1的左右焦点为F1,F2,P为椭圆上第一象限内任意一点,F1关于P的对称点为M,关于F2的对称点为N,则ΔMF1N的周长为()A.8B.10C.16D.22【详解】因为F1关于P的对称点为M,关于F2的对称点为N,所以PF2为△F1MN的中位线,所以MF1+MN=2PF1+2PF2=2(PF1+PF2)=2×2a=12,F1N=2F1F2=4c=4√9−8=4,所以ΔMF1N的周长为12+4=16.【点睛】本题考查了点与点的对称性,椭圆的定义,属于基础题.2.已知定圆C1:(x+5)2+y2=1,C2:(x−5)2+y2=225,动圆C满足与C1外切且与C2内切,则动圆圆心C的轨迹方程为()A.x 264+y239=1 B.x239+y264=1 C.x2256+y2241=1 D.x2241+y2256=1【详解】解:设动圆圆心C的坐标为(x,y),半径为r,则|CC1|=r+1,|CC2|=15−r,∴|CC1|+|CC2|=r+1+15−r=16>|C1C2|=10,由椭圆的定义知,点C的轨迹是以C1,C2为焦点的椭圆,则2a=16,a=8,c=5,b2=82−52=39,椭圆的方程为:x264+y239=1【点睛】考查圆与圆的位置关系,考查椭圆的定义,考查学生分析解决问题的能力,中档题.3.设F1、F2是椭圆E:x 2a2+y2b2=1(a>b>0)的左、右焦点,P为直线x=3a2上一点,ΔF2PF1是底角为30∘的等腰三角形,则E的离心率为()A.12B.23C.34D.45试题分析:如下图所示,ΔF2PF1是底角为30∘的等腰三角形,则有|F1F2|=|PF2|,∠PF1F2=∠F2PF1=30∘所以∠PF2A=60∘,∠F2PA=30∘,所以|PF2|=2|AF2|=2(32a−c)=3a−2c又因为|F1F2|=2c,所以,2c=3a−2c,所以e=ca =34所以答案选C.考点:椭圆的简单几何性质.4.椭圆x 29+y26=1的焦点为F1,F2,点P在椭圆上,若|PF1|=4,则ΔPF1F2的面积为()A.2√3B.3√2C.√32D.√23【详解】解:∵椭圆x29+y26=1的焦点为F1、F2,点P在椭圆上,|PF1|=4,∴F1(−√3,0),F2(√3,0),|PF2|=6﹣4=2,|F1F2|=2√3,则△PF1F2是直角三角形,∴△PF1F2的面积为S=12×2×2√3=2√3.【点睛】本题考查椭圆的简单性质,三角形的面积的求法,是基础题,解题时要认真审题,注意椭圆性质的合理运用.5.已知椭圆x 24+y2=1的焦点分别是F1,F2,点M在该椭圆上,如果F1M⃑⃑⃑⃑⃑⃑⃑⃑ ⋅F2M⃑⃑⃑⃑⃑⃑⃑⃑ =0,那么点M到y轴的距离是()A.√2B.2√63C.3√22D.1【详解】设M(x,y),则椭圆x24+y2=1…①,∵椭圆x24+y2=1的焦点分别是F1,F2,∴F1(−√3,0),F2(√3,0)∵F 1M ⃑⃑⃑⃑⃑⃑⃑⃑ =(x −√3,y),F 2M ⃑⃑⃑⃑⃑⃑⃑⃑ =(x +√3,y), F 1M ⃑⃑⃑⃑⃑⃑⃑⃑ ⋅F 2M ⃑⃑⃑⃑⃑⃑⃑⃑ =0,∴x 2+y 2=3…②由①②得x 2=83,x =±2√63, ∴点M 到y 轴的距离为2√63,故选B .【点睛】本题考查了椭圆的方程及向量运算,属于中档题. 7.已知直线l 与椭圆x 216+y 22=1交于A,B 两点,AB 中点是M (−2,1),则直线l 的斜率为( )A.-4B.-14C.14D.4【详解】设交点坐标A (x 1,y 1),B (x 2,y 2),则{x 1216+y 122=1x 2216+y 222=1,两式相减得,(x 1+x 2)(x 1−x 2)16+(y 1+y 2)(y 1−y 2)2=0 ,故y 1−y2x 1−x 2=−2(x 1+x 2)16(y 1+y 2)=−2×(−2×2)16×(1×2)=14 ,故选C【点睛】本题考查了直线与椭圆的相交弦问题,一般涉及弦的中点和直线斜率问题时,可采用“点差法”,建立中点坐标与斜率的关系求解.8.如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B,C 两点,且∠BFC =90°,则该椭圆的离心率为( )A.√63B.2√33C.12D.√22【详解】将y =b2代入椭圆方程得:B (−√32a,b2),C (√32a,b2)又椭圆焦点F (c,0) ∴BF ⃑⃑⃑⃑⃑ =(c +√32a,−b 2),CF ⃑⃑⃑⃑⃑ =(c −√32a,−b 2) ∵∠BFC =90∘∴BF ⃑⃑⃑⃑⃑ ⋅CF⃑⃑⃑⃑⃑ =c 2−34a 2+b 24=c 2−34a 2+a 2−c 24=34c 2−12a 2=0∴e 2=c 2a 2=23 ∴e =√63,故选A 【点睛】本题考查椭圆离心率的求解问题,关键是能够利用垂直关系构造出关于a,c 的齐次方程,从而根据e =ca 求得离心率.9.设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则|PM |+|PF 1|的最大值为() A.13B.15C.16D.25【详解】如图所示,由椭圆x 225+y 216=1,可得a =5,b =4,c =√a 2−b 2=3,所以F 1(−3,0),F 2(3,0),由椭圆的定义可得|PF 1|+|PF 2|=2a =10,所以|PM |+|PF 1|=|PM |+2a −|PF 2|=10+(|PM |−|PF 2|)≤10+|MF 2|=10+√32+42=15,则|PM |+|PF 1|的最大值15.故选B . 【点睛】本题主要考查了椭圆的定义及标准方程的应用,以及三角形三边大小关系的应用,其中解答中熟练应用椭圆的定义转化是解答的关键,着重考查了推理与运算能力,属于基础题.10.椭圆C :x 2a 2+y 2b 2=1(a >b >0)的长轴长、短轴长和焦距成等差数列,若点P 为椭圆C 上的任意一点,且P 在第一象限,O 为坐标原点,F (3,0)为椭圆C 的右焦点,则OP ⃑⃑⃑⃑⃑ •PF ⃑⃑⃑⃑⃑ 的取值范围为( ) A.(−16,−10)B.(−10,−394)C.(−16,−394]D.(−∞,−394]【详解】因为椭圆C 的长轴长、短轴长和焦距成等差数列 所以2a +2c =4b ,即a +c =2b F(3,0)为椭圆C 的右焦点,所以c=3 在椭圆中,a 2=c 2+b 2所以{a 2=c 2+b 2a +c =2bc =3 ,解方程组得{a =5b =4c =3所以椭圆方程为x 225+y 216=1设P(m,n) (0<m <5)则m 225+n 216=1,则n 2=16−1625m 2 OP ⃑⃑⃑⃑⃑ ⋅PF ⃑⃑⃑⃑⃑ =(m,n )(3−m,−n ) =3m −m 2−n 2=3m −m 2−(16−1625m 2) =−925m 2+3m −16=−925(m −256)2−394因为0<m <5,所以当m =256时,OP ⃑⃑⃑⃑⃑ ⋅PF⃑⃑⃑⃑⃑ 取得最大值为−394当m 趋近于0时,OP ⃑⃑⃑⃑⃑ ⋅PF ⃑⃑⃑⃑⃑ 的值趋近于-16 ,所以OP ⃑⃑⃑⃑⃑ ⋅PF⃑⃑⃑⃑⃑ 的取值范围为(-16,-394] 【点睛】本题考查了椭圆性质的综合应用,向量在解析几何中的用法,属于中档题. 二、填空题(共 25 分) 11.已知椭圆x 24+y 23=1的左、右焦点为F 1,F 2,则椭圆的离心率为_____,过F 2且垂直于长轴的直线与椭圆交于点A ,则|F 1A |=_____. 【详解】椭圆x 24+y 23=1,可得a =2,b =√3,则c =1,所以椭圆的离心率为:e =c a =12.过F 2且垂直于长轴的直线与椭圆交于点A ,所以|AF 2|=b 2a=32,由椭圆的定义可知:|F 1A |=2a ﹣|AF 2|=4−32=52.故答案为12;52.【点睛】本题考查椭圆的离心率和椭圆的定义,解题时由椭圆标准方程确定出a,b 再计算出c ,可求离心率,而求椭圆上的点到焦点的距离时,可以与椭圆定义联系起来.12.如果椭圆x 2144+y 236=1上一点P 到焦点F 1的距离等于10,那么点P 到另一个焦点F 2的距离是______. 【详解】由椭圆x 2144+y 236=1,可得a =12,由椭圆的定义可知:|PF 1|+|PF 2|=2a =24,因为椭圆x 2144+y 236=1上一点P 到焦点F 1的距离等于10,那么点P 到另一个焦点F 2的距离是:24-10=14.故答案为14.【点睛】本题考查椭圆的简单性质以及椭圆的定义的应用,考查计算能力.属于基础题. 13.已知椭圆中心在原点,一个焦点为F(−2√3,0),且长轴长是短轴长的2倍.则该椭圆的长轴长为______;其标准方程是________. 【详解】解:已知{a =2b,c =2√3a 2−b 2=c 2∴{b 2=4a 2=162a =8则该椭圆的长轴长为8;其标准方程是x 216+y 24=1.故答案为椭圆的长轴长为8;其标准方程是x 216+y 24=1.【点睛】本题主要考查椭圆的标准方程.属基础题.14.已知P 是椭圆x 210+y 2=1上的一点,F 1,F 2是椭圆的两个焦点,当∠F 1PF 2=2π3时,则ΔPF 1F 2的面积为_____.【详解】设|PF 1|=m ,|PF 2|=n ,则m +n =2a =2√10在ΔPF 1F 2中,由余弦定理得:F 1F 22=m 2+n 2−2mncos∠F 1PF 2即:36=(m +n )2−2mn −2mncos2π3=40−mn ,解得:mn =4∴S ΔPF 1F 2=12mnsin 2π3=√3 【点睛】本题考查焦点三角形面积的求解,关键是能够利用余弦定理构造出关于焦半径之积的方程,属于常考题型.15.已知P 是椭圆E:x 2a 2+y 2b 2=1(a >b >0)上异于点A(−a,0),B(a,0)的一点,E 的离心率为√32,则直线AP 与BP 的斜率之积为__________.【解析】设P (x 0,y 0),有x 02a 2+y 02b 2=1,且c a =√32,得b a =12,k AP k BP =y 0x+a ⋅y 0x−a=y 02x 02−a 2=y 02(1−y 02b 2)a 2−a 2=−14.点睛:本题考查椭圆的几何性质.由离心率,得到a,b,c 的比例关系.本题中由题意可知,题目由点P 的位置决定,所以设P (x 0,y 0),得到斜率关系k AP k BP =y 0x 0+a ⋅y 0x0−a=y 02x02−a 2=y 02(1−y 02b 2)a 2−a 2=−14,为定值.三、解答题(共 34 分)16.已知点A(0,−2),椭圆E:x 2a2+y2b2=1(a>b>0)的离心率为√22,F是椭圆E的右焦点,直线AF的斜率为2,O为坐标原点.(1)求E的方程;(2)设过点P(0,√3)且斜率为k的直线l与椭圆E交于不同的两M、N,且|MN|=8√27,求k的值.【详解】解:(1)由离心率e=ca =√22,则a=√2c,直线AF的斜率k=0−(−2)c−0=2,则c=1,a=√2,b2=a2﹣c2=1,∴椭圆E的方程为x 22+y2=1;(2)设直线l:y=kx﹣√3,设M(x1,y1),N(x2,y2),则{y=kx−√3x22+y2=1,整理得:(1+2k2)x2﹣4√3kx+4=0,△=(﹣4√3k)2﹣4×4×(1+2k2)>0,即k2>1,∴x1+x2=4√3k1+2k2,x1x2=41+2k2,∴|MN|=√1+k2|x1−x2|=√1+k2√(x1+x2)2−4x1x2=4√(1+k2)(k2−1)1+2k2=8√27,即17k4−32k2−57=0,解得:k2=3或−1917(舍去)∴k=±√3,【点睛】考查直线与椭圆的位置关系,椭圆的求法,弦长的计算,考查转化思想以及计算能力.17.设O为坐标原点,动点M在椭圆E:x 24+y22=1上,过点M作x轴的垂线,垂足为N,点P满足NP⃑⃑⃑⃑⃑⃑ =√2NM⃑⃑⃑⃑⃑⃑⃑ .(1)求点P的轨迹方程;(2)设A(1,0),在x轴上是否存在一定点B,使|BP|=2|AP|总成立?若存在,求出B点坐标;若不存在,说明理由.【详解】(1)设P(x,y),M(x1,y1),则N(x1,0)∵M 在椭圆E 上 ∴x 124+y 122=1…①由NP ⃑⃑⃑⃑⃑⃑ =√2NM ⃑⃑⃑⃑⃑⃑⃑ 知:{x =x 1y =√2y 1 ,即:{x 1=x y 1=√22y ,代入①得:x 2+y 2=4即点P 的轨迹方程为:x 2+y 2=4…② (2)假设存在点B (m,0)满足条件,设P (x,y )由|BP |=2|AP |得:√(x −m )2+y 2=2√(x −1)2+y 2 即:3x 2+3y 2+(2m −8)x =m 2−4此方程与(1)中②表示同一方程,故:{2m −8=0m 2−4=12,解得:m =4∴存在点B (4,0)满足条件【点睛】本题考查椭圆的综合应用问题,涉及到动点轨迹的求解、定点问题的求解等知识;求解定点问题的关键是能够通过假设存在的方式,利用已知中的等量关系建立起关于变量的方程,通过求解方程确定变量的取值,从而得到定点是否存在.18.已知点M (2√33,√33)在椭圆C :x 2a 2+y 2b 2=1(a >b >0)上,且点M 到C 的左、右焦点的距离之和为2√2.(1)求C 的方程;(2)设O 为坐标原点,若C 的弦AB 的中点在线段OM (不含端点O ,M )上,求OA ⃑⃑⃑⃑⃑ ⋅OB ⃑⃑⃑⃑⃑ 的取值范围.【详解】(1)由条件知43a 2+13b 2=1,2a =2√2,所以a =√2,b =1, ∴椭圆C 的方程为x 22+y 2=1.(2)设点A 、B 的坐标为A (x 1,y 1),B (x 2,y 2),则AB 中点(x 1+x 22,y 1+y 22)在线段OM 上,且k OM =12,∴x 1+x 2=2(y 1+y 2),又x 122+y 12=1,x 222+y 22=1,两式相减得(x 1−x 2)(x 1+x 2)2+(y 1−y 2)(y 1+y 2)=0,易知x 1−x 2≠0,y 1+y 2≠0,所以y 1−y 2x 1−x 2=−x 1+x22(y 1+y 2)=−1,即k AB =−1. 设AB 方程为y =−x +m ,代入x 22+y 2=1并整理得3x 2−4mx +2m 2−2=0.由Δ=8(3−m 2)>0解得m 2<3,又由x 1+x 22=2m 3∈√3),∴0<m <√3.由韦达定理得x 1+x 2=4m 3,x 1x 2=2(m 2−1)3,故OA ⃑⃑⃑⃑⃑ ⋅OB ⃑⃑⃑⃑⃑ =x 1x 2+y 1y 2=x 1x 2+(−x 1+m )(−x 2+m ) =2x 1x 2−m (x 1+x 2)+m 2=4(m 2−1)3−4m 23+m 2 =m 2−43.而0<m <√3,所以OA ⃑⃑⃑⃑⃑ ⋅OB⃑⃑⃑⃑⃑ 的取值范围是(−43,53). 【点睛】本小题主要考查椭圆的定义和标准方程,考查直线和椭圆的位置关系,考查点差法,考查向量数量积的坐标运算,考查运算求解能力,属于中档题.19.已知Q 为圆x 2+y 2=1上一动点,Q 在x 轴,y 轴上的射影分别为点A ,B ,动点P 满足BA ⃑⃑⃑⃑⃑ =AP ⃑⃑⃑⃑⃑ ,记动点P 的轨迹为曲线C . (1)求曲线C 的方程;(2)过点(0,−35)的直线与曲线C 交于M ,N 两点,判断以MN 为直径的圆是否过定点?求出定点的坐标;若不是,请说明理由.【详解】(1)设Q(x 0,y 0),P (x,y),则x 02+y 02=1,由BA ⃑⃑⃑⃑⃑ =AP ⃑⃑⃑⃑⃑ ,可得{x 0=x2y 0=−y,代入x 02+y 02=1,得x 24+y 2=1,故曲线C 的方程为x 24+y 2=1; (2)假设存在满足条件的定点,由对称性可知该定点必在y 轴上,设定点为H(0,m), 当直线l 的斜率存在时,设直线l 的方程为y =kx −35,联立{y =kx −35x 24+y 2=1得(1+4k 2)x 2−245kx −6425=0,设M(x 1,y 1),N(x 2,y 2),则x 1+x 2=24k5(1+4k 2),x 1x 2=−6425(1+4k 2),所以y 1+y 2=k(x 1+x 2)−65=−65(1+4k 2),y 1y 2=(kx 1−35)(kx 2−35)=k 2x 1x 2−35k(x 1+x 2)+925=9−100k 225(1+4k 2), 因为HM ⃑⃑⃑⃑⃑⃑⃑ =(x 1,y 1−m),HN ⃑⃑⃑⃑⃑⃑ =(x 2,y 2−m),所以HM ⃑⃑⃑⃑⃑⃑⃑ ⋅HN ⃑⃑⃑⃑⃑⃑ =x 1x 2+y 1y 2−m(y 1+y 2)+m 2=100(m 2−1)k 2+25m 2+30m−5525(1+4k 2)=0,对任意的k 恒成立,所以{100(m 2−1)=025m 2+30m −55=0 ,解得m =1,即定点为H(0,1), 当直线l 的斜率不存在时,以MN 为直径的圆也过点(0,1), 故以MN 为直径的圆过定点(0,1).【点睛】本题主要考查椭圆的标准方程的求解、及直线与圆锥曲线的位置关系的应用问题,解答此类题目,通常联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.20.已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的离心率为√22,直线bx −y +√2a =0经过椭圆C 的左焦点. (1)求椭圆C 的标准方程;(2)若直线bx −y +4=0与y 轴交于点P ,A 、B 是椭圆C 上的两个动点,且它们在y 轴的两侧,∠APB的平分线在y 轴上,|PA |≠|PB ||,则直线AB 是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.【详解】(1)在直线方程bx −y +√2a =0中令y =0,则x =−√2ab ,故c =√2ab ,又c a=√22,故b =2,所以a =4,所以椭圆标准方程为:x 28+y 24=1.(2)因为A 、B 在在y 轴的两侧,故AB 的斜率必存在, 设AB 的方程为y =kx +b ,A (x 1,y 1),B (x 2,y 2), 因为P 在y 轴上且P 在直线2x −y +4=0,故P (0,4). 因为∠APB 的平分线在y 轴上,所以y 1−4x 1+y 2−4x 2=0,而y 1=kx 1+b,y 2=kx 2+b ,代入整理得到:2kx 1x 2+(b −4)(x 1+x 2)=0. 由{y =kx +b x 2+2y 2=8可得(1+2k 2)x 2+4kbx +2b 2−8=0,所以x1+x2=−4kb1+2k2,x1x2=2b2−81+2k2,所以2k×2b 2−81+2k2+(b−4)(−4kb1+2k2)=0,化简得到k(b−1)=0,所以对任意的k,总有b=1,故直线AB过定点(0,1).【点睛】求椭圆的标准方程,关键是基本量的确定,方法有待定系数法、定义法等. 直线与圆锥曲线的位置关系中的定点、定值、最值问题,一般可通过联立方程组并消元得到关于x或y的一元二次方程,再把要求解的目标代数式化为关于两个的交点横坐标或纵坐标的关系式,该关系中含有x1x2,x1+x2或y1y2,y1+y2,最后利用韦达定理把关系式转化为若干变量的方程(或函数),从而可求定点、定值、最值问题.21.已知椭圆的离心率为√32,椭圆C的长轴长为4.(1)求椭圆C的方程;(2)已知直线与椭圆C交于A,B两点,是否存在实数k使得以线段AB 为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由试题解析:(1)设椭圆的焦半距为c,则由题设,得{a=2ca=√32,解得{a=2c=√3,………2分所以b2=a2−c2=4−3=1,故所求椭圆C的方程为.…………..4分(2)存在实数k使得以线段AB为直径的圆恰好经过坐标原点O.理由如下:设点A(x1,y1),B(x2,y2),将直线l的方程代入,并整理,得.(*)………………………………….6分则,.………………………………………8分因为以线段AB 为直径的圆恰好经过坐标原点O ,所以OA ⃑⃑⃑⃑⃑ ⋅OB ⃑⃑⃑⃑⃑ =0,即.又,于是,…………….10分解得k =±√112,………………………………..11分经检验知:此时(*)式的Δ>0,符合题意.所以当k =±√112时,以线段AB 为直径的圆恰好经过坐标原点O .………………12分考点:直线与圆锥曲线的综合问题;椭圆的标准方程22.设曲线E 是焦点在x 轴上的椭圆,两个焦点分别是是F 1,F 2,且|F 1F 2|=2,M 是曲线上的任意一点,且点M 到两个焦点距离之和为4.(1)求E 的标准方程;(2)设E 的左顶点为D ,若直线l :y =kx +m 与曲线E 交于两点A ,B (A ,B 不是左右顶点),且满足|DA ⃑⃑⃑⃑⃑ +DB ⃑⃑⃑⃑⃑⃑ |=|DA ⃑⃑⃑⃑⃑ −DB⃑⃑⃑⃑⃑⃑ |,求证:直线l 恒过定点,并求出该定点的坐标. 【详解】(1)设椭圆方程为x 2a 2+y 2b 2=1(a >b >0), 由题意{2a =42c =2 ,即{a =2c =1,∴b =√a 2−c 2=√3, ∴椭圆E 的方程是x 24+y 23=1.(2)由(1)可知D (−2,0),设A (x 1,y 1),B (x 2,y 2),联立{y =kx +m x 24+y 23=1 ,得(3+4k 2)x 2+8mkx +4(m 2−3)=0,Δ=(8mk)2−4(3+4k 2)(4m 2−12)=16(12k 2−3m 2+9)>0,即3+4k 2−m 2>0,∴x 1+x 2=−8mk 3+4k 2,x 1x 2=4(m 2−3)3+4k 2,又y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2 =3m 2−12k 23+4k 2,∵|DA ⃑⃑⃑⃑⃑ +DB ⃑⃑⃑⃑⃑⃑ |=|DA ⃑⃑⃑⃑⃑ −DB ⃑⃑⃑⃑⃑⃑ |,∴DA ⃑⃑⃑⃑⃑ ⊥DB ⃑⃑⃑⃑⃑⃑ ,即DA ⃑⃑⃑⃑⃑ ⋅DB⃑⃑⃑⃑⃑⃑ =0, 即(x 1+2,y 1)⋅(x 2+2,y 2)=x 1x 2+2(x 1+x 2)+4+y 1y 2=0, ∴4m 2−123+4k 2+2×−8mk 3+4k 2+4+3m 2−12k 23+4k 2=0,∴7m 2−16mk +4k 2=0, 解得m 1=2k ,m 2=27k ,且均满足即3+4k 2−m 2>0,当m 1=2k 时,l 的方程为y =kx +2k =k (x +2),直线恒过(−2,0),与已知矛盾;当m 2=27k ,l 的方程为y =kx +27k =k (x +27),直线恒过(−27,0).【点睛】考查求椭圆的标准方程,直线与椭圆相交问题、椭圆中直线过定点问题.对直线与椭圆相交问题,一般设交点为A (x 1,y 1),B (x 2,y 2),由直线方程与椭圆方程联立消元用韦达定理得x 1+x 2,x 1x 2,再把这个结论代入题中另一条件可得参数k,m 的关系,求得定点.23.已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,M 为椭圆上一动点,当ΔMF 1F 2的面积最大时,其内切圆半径为b 3,设过点F 2的直线l 被椭圆C 截得线段RS ,当l ⊥x 轴时,|RS |=3.(1)求椭圆C 的标准方程;(2)若点A 为椭圆C 的左顶点,P,Q 是椭圆上异于左、右顶点的两点,设直线AP,AQ 的斜率分别为k 1,k 2,若k 1k 2=−14,试问直线PQ 是否过定点?若过定点,求该定点的坐标;若不过定点,请说明理由.【详解】解:(1)由题意及三角形内切圆的性质可得12⋅2c ⋅b =12(2a +2c)⋅b 3,得c a =12① 将x =c 代入x 2a 2+y 2b 2=1,结合a 2=b 2+c 2②,得y =±b 2a ,所以2b 2a =3③,由①②③得a =2,b =√3故椭圆C 的标准方程为x 24+y 23=1(2)设点P,Q 的坐标分别为(x 1,y 1),(x 2,y 2).①当直线PQ 的斜率不存在时,由题意得P (1,32),Q (1,−32)或P (1,−32),Q (1,32), 直线PQ 的方程为x =1②当直线PQ的斜率存在时,设直线PQ的方程为y=kx+m,联立得{x24+y23=1y=kx+m,消去y得(4k2+3)x2+8kmx+4m2−12=0,由Δ=64k2m2−4(4k2+3)(4m2−12)=48(4k2−m2+3)>0,得4k2+3>m2x1+x2=−8km4k2+3,x1x2=4m2−124k2+3.(1))由k1k2=y1y2(x1+2)(x2+2)=−14,可得4y1y2+(x1+2)(x2+2)=0,得4(kx1+m)(kx2+m)+(x1+2)(x2+2)=0,整理得(4k2+1)x1x2+(4km+2)(x1+x2)+4m2+4=0,(2)由(1)和(2)得m2−km−2k2=0,解得m=2k或m=−k当m=2k时,直线PQ的方程为y=kx+2k,过定点(−2,0),不合题意;当m=−k时,直线PQ的方程为y=kx−k,过定点(1,0),综上直线PQ过定点,定点坐标为(1,0).【点睛】本题考查求椭圆的标准方程,直线与椭圆的综合问题以及直线过定点问题,属于综合题.。
椭圆练习题及答案
椭圆练习题答案一、选择题:1.在直角坐标平面内,已知点12(4,0),(4,0)F F -,动点M 满足条件:128MF MF +=,则点M 的轨迹方程是( ) A .221169x y += B .0x = C .0y =(44x -≤≤) D .2211616x y +=解:因为动点M 满足条件:12128MF MF F F +==,所以点M 的轨迹为线段12F F ,所以轨迹方程为:0y =(44x -≤≤),故选C2.若直线4=+ny mx 和22:4O x y += 相离,则过点),(n m 的直线与椭圆14922=+y x 的交点个数为( )A. 至多一个B. 2个C. 1个D. 0个解:由题可知,直线4=+ny mx 和⊙O ∶422=+y x 相离,因此有222<+n m ,而椭圆14922=+y x 的短半轴为2,因此经过点),(n m 的直线与椭圆14922=+y x 的交点个数为2个,故选B3.椭圆221259x y +=上一点M 到焦点1F 的距离为2,N 是1MF 的中点,则ON 等于( ) A .2B .4C .6D .32解:设椭圆的另一个焦点为2F ,因为椭圆221259x y +=上点M 到焦点1F 的距离为2,即12MF =,又12210MF MF a +==,所以28MF =.因为N 是1MF 的中点,O 是12F F 的中点,所以ON 2142MF ==,故选B 4.已知椭圆()2221525x y a a +=>的两个焦点为12,F F ,且128F F =,弦AB 过点1F ,则2ABF ∆的周长为 ( )A 、10B 、20C 、241D 、 414解:因为12||8F F =,所以c=4,所以2222516,41a c a -==∴=,41a ∴=,所以2ABF ∆的周长为4441a =,故选D5.已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为23,且椭圆G 上一点到其 两个焦点的距离之和为12,则椭圆G 的方程为( )A .22149x y +=B .22194x y +=C .221369x y +=D .221936x y += 解:由椭圆G 上一点到其两个焦点的距离之和为12,则,122=a 即,6=a 又离心率,23==a c e 所以33=c ,进而,92736222=-=-=c ab 所以椭圆的方程为221369x y +=,故选C 6.21,F F 是椭圆17922=+y x 的两个焦点,A 为椭圆上一点,且∠02145=F AF ,则∆12AF F 的面积为( )A .7B .47 C .27 D .257 解:由题可知:6221==+a AF AF ,222=c ,在21F AF ∆中,12221222845cos AF AF AF ⨯⨯-+=︒,可求得271=AF ,所以272222272121=⨯⨯⨯=∆F AF ,故选C7.已知点P 是椭圆13422=+y x 上任一点,那点P 到直线l :0122=-+y x 的距离的最小值为( ) A.855 B .255 C .1655D .5解:过椭圆上任意点作l 的平行线'l ,当'l 与椭圆相切时,则点P 到直线l :0122=-+y x 的距离的最值等于'l 到l 的距离,设'l 的方程为x 2y c 0++=,联立22143x 2y c 0x y ⎧+=⎪⎨⎪++=⎩,将直线代入椭圆,得2242120x cx c -+-=,由0∆=,得4c =±;所以'l 到l 的距离2212165512c d --==+或855,故选A8.已知椭圆1:2222=+by a x E (0>>b a )的右焦点为F (3,0),过点F 的直线交椭圆于A 、B 两点,若线段AB 的中点坐标为(1,-1),则椭圆的方程为( ) A.1364522=+y x B.1273622=+y x C.1182722=+y x D.191822=+y x 解:利用代点相减法,设),(),,(2211y x B y x A ,则1221221=+bya x …(1), 1222222=+b y a x (2)(1)-(2)整理得:2121222121y y x x a b x x y y ++⋅-=--,222222a b a b k =-⋅-=,又2113)1(0=---=k ,则有222b a =,18)9(2222=⇒-=a a a ,92=b ,则椭圆的方程为191822=+y x ,故选D 9.若点O 和点F 分别为椭圆2212x y +=的中心和右焦点,点P 为椭圆上的任意一点,则的最小值为( )A .22-B .12C .22+D .1 解:设点()y x P ,,所以()()y x PF y x OP ,1,,-==,由此可得()()y x y x PF OP ,1,-∙=22y x x +-=()2112112122+-=+-=x x x ,[]2,2-∈x ,所以()21min=PF OP ,故选B 10.椭圆C :22221x y a b+=(0)a b >>的左焦点为F ,若F 关于直线30x y +=的对称点A 是椭圆C 上的点,则椭圆C 的离心率为( ) A .12 B .312- C .32D .31- 解:设(,)A m n ,则(3)13022nm cm c n ⎧⨯-=-⎪⎪+⎨-⎪⨯+=⎪⎩,解得3(,)22c A c ,代入椭圆C 中,有22223144c c a b += ∴222222434b c a c a b +=∴222222224()34()a c c a c a a c -+=-∴4224840c a c a -+=,∴42840e e -+=,∴2423e =±,∴31e =-, 故选D二、填空题:11.椭圆2214x y +=的弦AB 的中点为1(1,)2P ,则弦AB 所在直线的方程是 解:设()()1122,,A x y B x y 代入椭圆相减得121212y y x x -=-- 12k ∴=-,所以直线为220x y +-=12.过椭圆2212x y +=的右焦点2F 作倾斜角为4π弦AB ,则|AB ︳为 解:椭圆2212x y +=,则22,1,1,2c a b c e a =====,两个焦点1F (-1,0), 2F (1,0) 直线AB 的方程为1y x =-,代入2212x y +=整理得:2340x x -=所以由弦长公式得OP FP ⋅2121||AB k x x =+-=423,故答案为:42313.已知1F ,2F 是椭圆的两个焦点,过1F 且与椭圆长轴垂直的弦交椭圆于A ,B 两点,且2F ∆AB 是等腰直角三角形,则椭圆的离心率是 解:设椭圆的标准方程为22221x y a b +=,()0a b >>,焦点()()1200F c F c -,,,,如图:将x c =带入椭圆方程得22221c y a b +=;解得2y b a =± ;∵121F F AF =;∴22222b c b a c a==-,; ∴222ac a c =-,整理得:221()0cca a+⋅-=;即2210e e +-=解得21e =--(负值舍去);故答案为:21- 14.若椭圆22221x y a b+=的焦点在x 轴上,过点()2,1作圆224x y +=的切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程为解:设)1,2(M ,圆224x y +=的圆心为O ,则AB 是圆224x y +=与以OM 为直径的圆的公共弦所在直线,以OM 为直径的圆的方程为45)21()1(22=-+-y x ,即0222=--+y x y x ,两圆方程相减,即得AB 的方程为42=+y x ,则直线与坐标轴的交点为()()4,0,0,2,又因为焦点在x 轴上,则2=c ,4=b ,202=a ,所以椭圆方程为1162022=+y x15.直线过椭圆的左焦点,且与椭圆交于两点,为弦的中点,为原点,若是以线段为底边的等腰三角形,则直线的斜率为解:由椭圆的标准方程得:222222,1211a b ca b ==⇒=-=-= 所以其左焦点的坐标为()1,0-,设直线l 的斜率为k ,则直线l 的方程为:()1y k x =+联立方程组()22112y k x x y ⎧=+⎪⎨+=⎪⎩ ,消去y 得:()2222120x k x ++-=整理得:()2222124220k x k x k +++-= (*)设()()1122,,,P x y Q x y ,则是方关于x 的方程(*)的两根,所以,2122412k x x k +=-+由题设是以线段为底边的等腰三角形,所以12122x x +=- 所以,224112k k -=-+,解得:212k = ,所以22k =±所以答案应填:22± 三、解答题:16.已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为)(03,F -,且过点)(02,D(1)求该椭圆的标准方程(2)设点),(211A ,若P 是椭圆上的动点,求线段PA 的中点M 的轨迹方程解:(1)由已知得椭圆的半长轴2=a ,半焦距3=c ,则半短轴1=bl 22:12x C y +=F C ,P Q M PQO FMO ∆OF l 22:12x C y +=FMO ∆OF又椭圆的焦点在x 轴上, ∴椭圆的标准方程为1422=+y x (2)设线段PA 的中点为)(y ,x M ,点P 的坐标是)(00y ,x 由⎪⎪⎩⎪⎪⎨⎧+=+=2212100y y x x ,得⎪⎩⎪⎨⎧-=-=2121200y y x x 由点P 在椭圆上,得121241222=-+-)()(y x ∴线段PA 中点M 的轨迹方程是14142122=-+-)()(y x17.已知椭圆E :()22221 0, 0x y a b ab+=>>的离心率32e =,并且经过定点1 (3,)2P (1)求椭圆 E 的方程(2)问是否存在直线y=-x+m ,使直线与椭圆交于 A, B 两点,满足OA OB ⊥,若存在求 m 值,若不存在说明理由解:(1)由题意:32c e a ==且223114a b +=又222c a b =- 解得224,1a b ==,即椭圆E 的方程为2214x y += (2)设1122(,),(,)A x y B x y 22222214()40584404x y x m x x mx m y x m ⎧+=⎪⇒+--=⇒-+-=⎨⎪=-+⎩ (*)所以21212844,55m m x x x x -+== 22222121212128444()()()555m m y y m x m x m m x x x x m m --=--=-++=-+=由0OA OB OA OB ⊥⇒⋅= 得2211221212444210(,)(,)0,0,0,555m m x y x y x x y y m --=+=+==±又方程(*)要有两个不等实根,22(8)45(44)0,55m m m ∆=--⨯->-<<m 的值符合上面条件,所以2105m =±18.已知椭圆2222:1(0)x y C a b a b +=>>经过点(2, 1)A ,离心率为22,过点(3, 0)B 的直线l 与椭圆C 交于不同的两点,M N 。
椭圆题型练习题
椭圆题型练习题
(文章开始)
椭圆题型练习题
1. 简答题
请简要回答以下问题:
a) 什么是椭圆?
b) 椭圆的特点有哪些?
2. 计算题
a) 已知椭圆的长轴为10cm,短轴为6cm,求椭圆的离心率。
b) 椭圆的焦点在x轴上,离心距为3cm,求椭圆的方程。
c) 椭圆的焦点在y轴上,离心距为4cm,且过点A(-2, 0),求椭圆的方程。
3. 应用题
某地有一个椭圆形的运动场,长轴为80m,短轴为60m。
现在要在椭圆内部修建一条跑道,跑道的宽度为5m,求跑道的周长。
4. 解答题
解释以下命题是否正确,并简要说明理由:
a) "椭圆的离心率始终小于1"。
b) "椭圆是一种闭合曲线,可以用来描述行星的轨道"。
(正文结束)。