高一下册数学期中必备知识点空间几何体的表面积与体积
知识点立体几何中的体积与表面积
知识点立体几何中的体积与表面积在立体几何中,体积和表面积是重要的知识点。
体积是指三维物体所占据的空间大小,而表面积则是指物体外部覆盖的面积。
本文将介绍立体几何中的体积和表面积的计算方法以及相关的应用。
一、体积的计算方法在立体几何中,常见的三维物体包括立方体、圆柱体、金字塔等。
不同形状的物体有不同的计算方法来求解其体积。
1. 立方体的体积计算立方体是一个六个面都是正方形的立体,其体积计算公式为V = a³,其中a表示正方形的边长。
例如,一个边长为5cm的立方体的体积可以计算为V = 5³ = 125 cm³。
2. 圆柱体的体积计算圆柱体是一个底面为圆形的立体,其体积计算公式为V = πr²h,其中π表示圆周率,r表示圆柱底面的半径,h表示圆柱的高度。
例如,一个半径为4cm,高度为6cm的圆柱体的体积可以计算为V = π(4²)(6)= 96π cm³。
3. 金字塔的体积计算金字塔是一个底面为多边形的立体,其顶点与底面上的点相连,形成三角形。
金字塔的体积计算公式为V = (1/3)Ah,其中A表示底面的面积,h表示金字塔的高度。
例如,底面面积为9cm²,高度为12cm的金字塔的体积可以计算为V = (1/3)(9)(12) = 36 cm³。
二、表面积的计算方法与体积类似,不同形状的物体也有不同的计算表面积的方法。
1. 立方体的表面积计算立方体的表面积计算公式为S = 6a²,其中a表示正方体的边长。
例如,一个边长为5cm的立方体的表面积可以计算为S = 6(5²) = 150 cm²。
2. 圆柱体的表面积计算圆柱体的表面积计算公式为S = 2πr² + 2πrh,其中r表示圆柱底面的半径,h表示圆柱的高度。
例如,一个半径为4cm,高度为6cm的圆柱体的表面积可以计算为S = 2π(4²) + 2π(4)(6) = 112π cm²。
高一下册数学期中必备知识点空间几何体的表面积与体积
高一下册数学期中必备知识点空间几何体的表面积与体积
高一下册数学期中必备知识点空间几何体的表
面积与体积
数学是利用符号语言研究数量、结构、变化以及空间模型等概念的一门学科。
查字典数学网为大家推荐了高一下册数学期中必备知识点,请大家仔细阅读,希望你喜欢。
一、课标要求:
了解一些简单的几何体的表面积的计算方法,了解棱柱、棱锥、台的表面积计算公式(不要求记忆公式)
二、教学目标:
(1) 了解平面展开图的概念及柱、锥、台的表面积公式;
(2) 会求一些简单几何体的表面积公式;
(3) 让学生经历空间几何体的侧面展开过程,感知几何体的形状;
(4) 让学生通过对照比较,理顺柱体、锥体、台体侧面积之间的转换关系,体会数和形的完美结合.
(5) 通过学习使学生感受到空间几何体侧面积的求解过程,对自己空间思维能力的影响,从而增强学习数学的信心.
三、教学重点、难点:
重点;空间几何体侧面积的计算
难点;空间几何体侧面展开
四、设计思路:
借助多媒体,通过动态演示一些多面体的平面展开图的过。
空间几何体的体积与表面积
空间几何体的体积与表面积几何体是我们在日常生活中经常遇到的立体物体,如立方体、圆柱体、圆锥体等。
而其中最重要的两个概念就是体积和表面积。
本文将分别介绍空间几何体的体积和表面积,并探讨它们之间的关系。
一、体积体积是指一个几何体所占据的空间大小。
不同几何体的体积计算公式各不相同,下面将以几何体的常见类型为例进行介绍。
1. 立方体立方体是最基本的几何体之一,它具有六个相等的正方形面。
计算立方体的体积,只需要将边长进行三次相乘即可,公式为:V = a³,其中V表示体积,a表示边长。
2. 圆柱体圆柱体是一个有两个平行圆底的几何体。
计算圆柱体的体积,需要先计算底面圆的面积,然后再与高度相乘。
公式为:V = πr²h,其中V表示体积,π表示圆周率,r表示底面圆的半径,h表示圆柱体的高度。
3. 圆锥体圆锥体是由一个圆锥面和一个底面圆所围成的几何体。
计算圆锥体的体积,同样需要计算底面圆的面积,然后再乘以高度的三分之一。
公式为:V = (1/3)πr²h,其中V表示体积,π表示圆周率,r表示底面圆的半径,h表示圆锥体的高度。
二、表面积表面积是指一个几何体所有外部面积的总和。
不同几何体的表面积计算公式也是各不相同,下面同样以几何体的常见类型为例进行介绍。
1. 立方体立方体的表面积等于六个面的面积之和。
计算立方体的表面积,只需要将一个面的面积乘以6即可,公式为:S = 6a²,其中S表示表面积,a表示边长。
2. 圆柱体圆柱体的表面积由底面圆的面积、顶面圆的面积和侧面的面积之和组成。
计算圆柱体的表面积,需要将底面圆和顶面圆的面积相加,再乘以2,然后再加上侧面的面积。
公式为:S = 2πr² + 2πrh,其中S表示表面积,π表示圆周率,r表示底面圆的半径,h表示圆柱体的高度。
3. 圆锥体圆锥体的表面积由底面圆的面积和侧面的面积之和组成。
计算圆锥体的表面积,只需要将底面圆的面积与侧面的面积相加即可,公式为:S = πr² + πrl,其中S表示表面积,π表示圆周率,r表示底面圆的半径,l表示圆锥体的斜高。
几何体的体积与表面积知识点总结
几何体的体积与表面积知识点总结几何体是指在三维空间中有一定形状的物体。
了解几何体的体积和表面积是数学中的重要知识点,它们与实际生活中的量度、测量和建模都有着密切的关系。
本文将对几何体的体积与表面积的概念、计算方法及其应用进行总结。
一、体积的概念和计算方法1. 体积的概念:体积是指几何体所占据的空间大小。
它是一个三维量,通常用单位立方米(m³)表示。
2. 常见几何体的体积计算:a. 直方体的体积计算公式:体积 = 长 ×宽 ×高。
b. 正方体的体积计算公式:体积 = 边长³。
c. 圆柱体的体积计算公式:体积 = 底面积 ×高。
d. 圆锥体的体积计算公式:体积 = 1/3 ×底面积 ×高。
e. 球体的体积计算公式:体积= 4/3 × π × 半径³。
3. 组合体的体积计算:组合体是由多个几何体组合而成的复合体,计算其体积时需将每个几何体的体积计算出来,再进行合并。
二、表面积的概念和计算方法1. 表面积的概念:表面积是指几何体表面的总面积。
它是一个二维量,通常用单位平方米(m²)表示。
2. 常见几何体的表面积计算:a. 直方体的表面积计算公式:表面积 = 2 × (长 ×宽 + 长 ×高 + 宽×高)。
b. 正方体的表面积计算公式:表面积 = 6 ×边长²。
c. 圆柱体的表面积计算公式:表面积 = 2 ×圆底面积 + 圆周长 ×高。
d. 圆锥体的表面积计算公式:表面积 = 圆底面积 + 圆底面积到尖顶的侧面积。
e. 球体的表面积计算公式:表面积= 4 × π × 半径²。
3. 组合体的表面积计算:同样,对于组合体的表面积计算,需将每个几何体的表面积计算出来,再进行合并。
三、体积和表面积的应用1. 应用于物体量度和测量:了解几何体的体积和表面积可以帮助我们测量实际物体的容量和表面大小,例如房屋的体积和墙壁的面积。
高中数学 空间几何体的表面积和体积
1、表面积:几何体表面的面积 2、体积:几何体所占空间的大小。
表面积、全面积和侧面积
• 表面积:立体图形的所能触摸到的面积之 和叫做它的表面积。(每个面的面积相加 )
• 全面积 全面积是立体几何里的概念, 相对于截面积(“截面积”即切面的面积) 来说的,就是表面积总和
2r
l
圆锥的侧面展开图是扇形
rO
S r2 r l r(r l)
(3)台体的侧面积
①正棱台:设正n棱台的上底面、下底面周 长分别为c′、c,斜高为h′,则正n棱台的侧面积公
式:S正棱台侧= 1∕2(c+c.′)h′
②圆台:如果圆台的上、下底面半径分别为
r′、r,母线长为l,则S圆台侧= πl(r′+. r)
(2)锥体的侧面积
①正棱锥:设正棱锥底面正多边形的周长为c,斜 高为h′,则
S正棱锥侧= 1∕2ch.(′ 类比三角形的面积)
②圆锥:如果圆锥的底面半径为r,母线长为l,那 么
S圆锥侧= πrl.(类比三角形的面积)
把正三棱锥侧面沿一条侧棱展开,得到什么图形? 侧面积怎么求?
h' h'
S正棱锥= 侧 12ch'
棱锥的侧面展开图是什么?如何计算它的表面积?
正三棱锥的侧面展开图
h/ h/
侧面展开
h' h'
正五棱锥的侧面展开图
S表面积 S侧S底
思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线
展开,分别得到什么图形?展开的图形与原图
有什么关系?
扇形
R扇= l
l扇=
nl
180
l
r
S圆锥 = S 侧 扇 = n 3l6 201 2l扇 lrl
高一年级数学必修四知识点:空间几何体的表面积与体积
高一年级数学必修四知识点:空间几何体的表面积与体积(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如幼儿教案、音乐教案、语文教案、知识梳理、英语教案、物理教案、化学教案、政治教案、历史教案、其他范文等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of educational materials for everyone, such as preschool lesson plans, music lesson plans, Chinese lesson plans, knowledge review, English lesson plans, physics lesson plans, chemistry lesson plans, political lesson plans, history lesson plans, and other sample texts. If you want to learn about different data formats and writing methods, please stay tuned!高一年级数学必修四知识点:空间几何体的表面积与体积本店铺高一频道为你准备的,希望你喜欢!空间几何体表面积体积公式:1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高,3、a-边长,S=6a2,V=a34、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc5、棱柱S-h-高V=Sh6、棱锥S-h-高V=Sh/37、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/38、S1-上底面积,S2-下底面积,S0-中h-高,V=h(S1+S2+4S0)/69、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—,S 表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h =πr2h10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)11、r-底半径h-高V=πr^2h/312、r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr^3=πd^3/614、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/315、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/616、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/417、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)练习题:1.正四棱锥P—ABCD的侧棱长和底面边长都等于,有两个正四面体的棱长也都等于.当这两个正四面体各有一个面与正四棱锥的侧面PAD,侧面PBC完全重合时,得到一个新的多面体,该多面体是()(A)五面体(B)七面体(C)九面体(D)十一面体2.正四面体的四个顶点都在一个球面上,且正四面体的高为4,则球的表面积为()(A)9(B)18(C)36(D)643.下列说法·正确的是()A.棱柱的侧面可以是三角形B.正方体和长方体都是特殊的四棱柱C.所有的几何体的表面都能展成平面图形D.棱柱的各条棱都相等。
高中数学的解析立体几何中的体积与表面积
高中数学的解析立体几何中的体积与表面积解析立体几何是高中数学的重要内容之一,其中体积和表面积是解析立体几何的两个关键概念。
体积和表面积的计算对于解决各种实际问题和数学题目起着重要作用。
本文将介绍解析立体几何中的体积和表面积的计算方法,以及应用场景和注意事项。
一、体积的计算方法体积是一个立体所占的空间大小,在解析立体几何中可以通过计算公式或者积分方法来获得。
1. 直角坐标系下的体积计算在直角坐标系下,常见的几何体如长方体、正方体和圆柱体的体积计算可以采用公式来解决。
以长方体为例,其体积计算公式为 V = lwh,其中 l、w、h 分别表示长方体的长、宽和高。
对于其他几何体,也有相应的计算公式,需要根据具体情况来确定。
2. 参数方程下的体积计算在解析几何中,有时候几何体的边界不容易用简单的直线方程来表示,这时可以使用参数方程来描述几何体的形状,并通过参数方程来计算体积。
常见的几何体包括圆锥、椭球和抛物线旋转体等。
以圆锥为例,其参数方程为x = rcosθ,y = rsinθ,z = ht,其中 r 为底面半径,h 为高度,θ 为参数。
通过参数方程,可以建立体积的积分式进行计算。
二、表面积的计算方法表面积是指一个几何体外部的总面积,也可以通过计算公式或者积分方法来获得。
1. 直角坐标系下的表面积计算类似于体积的计算方法,在直角坐标系下,常见几何体的表面积计算也可以采用公式来解决。
以长方体为例,其表面积由公式 A = 2lw +2lh + 2wh 给出。
其他几何体的表面积计算也有相应的公式。
2. 参数方程下的表面积计算对于采用参数方程描述的几何体,可以通过参数方程来计算表面积。
以球体为例,其参数方程为x = rsinθcosφ,y = rsinθsinφ,z = rcosθ,其中 r 为球体半径,θ 和φ 分别为参数。
通过参数方程,可以建立表面积的积分式进行计算。
三、应用场景和注意事项体积和表面积的计算方法在解决各种实际问题中有广泛的应用。
高中数学的几何体表面积和体积公式是哪些
高中数学的几何体表面积和体积公式是哪些高中数学的几何体表面积和体积公式1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高)3、正方体:表面积:S=6a2,体积:V=a3(a-边长)4、长方体:表面积:S=2(ab+ac+bc)体积:V=abc(a-长,b-宽,c-高)5、棱柱:体积:V=Sh(S-底面积,h-高)6、棱锥:体积:V=Sh/3(S-底面积,h-高)7、棱台:V=h[S1+S2+(S1S2)^1/2]/3(S1上底面积,S2下底面积,h-高)8、拟柱体:V=h(S1+S2+4S0)/6(S1-上底面积,S2-下底面积,S0-中截面积,h-高)9、圆柱:S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h(r-底半径,h-高,C—底面周长,S底—底面积,S侧—侧面积,S表—表面积)10、空心圆柱:V=πh(R^2-r^2)(R-外圆半径,r-内圆半径,h-高)11、直圆锥:V=πr^2h/3(r-底半径,h-高)12、圆台:V=πh(R2+Rr+r2)/3(r-上底半径,R-下底半径,h-高)13、球:V=4/3πr^3=πd^3/6(r-半径,d-直径)14、球缺:V=πh(3a2+h2)/6=πh2(3r-h)/3(h-球缺高,r-球半径,a-球缺底半径)15、球台:V=πh[3(r12+r22)+h2]/6(r1球台上底半径,r2-球台下底半径,h-高)16、圆环体:V=2π2Rr2=π2Dd2/4(R-环体半径,D-环体直径,r-环体截面半径,d-环体截面直径)数学基础差的学生如何提高数学成绩基础薄弱的同学提高数学成绩的方法数学基础打牢,是个非常重要的事,很多及格成绩不到的同学,基本是连计算和公式都不是很过关。
对于这一类学生有以下几点建议。
高一数学下册第一单元期中章节复习要点空间几何体的表面积与体积
高一数学下册第一单元期中章节复习要点空间几何体的表面积与体积
高一数学下册第一单元期中章节复习要点空间
几何体的表面积与体积
数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的逻辑推理及对完美境界的追求。
以下是查字典数学网为大家整理的高一数学下册第一单元期中章节复习要点,希望可以解决您所遇到的相关问题,加油,查字典数学网一直陪伴您。
1、几何体的侧面积和全面积:
几何体侧面积是指(各个)侧面面积之和,而全面积是侧面积与所有底面积之和.对侧面积公式的记忆,最好结合几何体的侧面展开图来进行.
2、求体积时应注意的几点:
(1)、求一些不规则几何体的体积常用割补的方法转化成已知体积公式的几何体进行解决.
(2)、与三视图有关的体积问题注意几何体还原的准确性及数据的准确性.
3、求组合体的表面积时注意几何体的衔接部分的处理.
三视图为载体的几何体
1、以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.
2、多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.。
2 第2讲 空间几何体的表面积与体积
第2讲 空间几何体的表面积与体积1.圆柱、圆锥、圆台的侧面展开图及其侧面积公式圆柱圆锥圆台侧面 展开图侧面 积公式 S 圆柱侧 =2πrlS 圆锥侧 =πrlS 圆台侧= π(r +r ′)l表面积 体积 柱体 (棱柱和圆柱)S 表面积=S 侧+2S 底 V =S 底h 锥体 (棱锥和圆锥)S 表面积=S 侧+S 底 V =13S 底h台体 (棱台和圆台)S 表面积=S 侧 +S 上+S 下 V =13(S 上+S 下+S 上S 下)h 球 S =4πR 2V =43πR 3常用知识拓展1.正方体的棱长为a ,外接球的半径为R ,内切球的半径为r . (1)若球为正方体的外接球,则2R =3a . (2)若球为正方体的内切球,则2r =a . (3)若球与正方体的各棱相切,则2R ′=2a .2.长方体的共顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.判断正误(正确的打“√”,错误的打“×”) (1)多面体的表面积等于各个面的面积之和.( ) (2)锥体的体积等于底面积与高之积.( ) (3)球的体积之比等于半径比的平方.( )(4)简单组合体的体积等于组成它的简单几何体体积的和或差.( ) (5)长方体既有外接球又有内切球.( ) 答案:(1)√ (2)× (3)× (4)√ (5)×以长为a ,宽为b 的矩形的一边所在的直线为轴旋转一周所得圆柱的侧面积为( )A .abB .πabC .2πabD .2ab解析:选C.若以长边所在的直线为轴旋转,则S 侧=2πab ,若以短边所在的直线为轴旋转,则S 侧=2πba .所以S 圆柱侧=2πab ,故选C.某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A .8 cm 3B .12 cm 3 C.323cm 3 D.403cm 3 解析:选C.由三视图可知,该几何体是由一个正方体和一个正四棱锥构成的组合体.下面是棱长为2 cm 的正方体,体积V 1=2×2×2=8(cm 3);上面是底面边长为2 cm ,高为2 cm 的正四棱锥,体积V 2=13×2×2×2=83(cm 3),所以该几何体的体积V =V 1+V 2=323(cm 3).(2018·高考天津卷)如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为1,则四棱锥A 1BB 1D 1D 的体积为____________.解析:法一:连接A 1C 1交B 1D 1于点E ,则A 1E ⊥B 1D 1,A 1E ⊥BB 1,则A 1E ⊥平面BB 1D 1D ,所以A 1E 为四棱锥A 1BB 1D 1D 的高,且A 1E =22,矩形BB 1D 1D 的长和宽分别为2,1,故VA 1BB 1D 1D =13×1×2×22=13.法二:连接BD 1,则四棱锥A 1BB 1D 1D 分成两个三棱锥B -A 1DD 1与B -A 1B 1D 1,V A 1BB 1D 1D=V B A 1DD 1+V B A 1B 1D 1=13×12×1×1×1+13×12×1×1×1=13.答案:13(2017·高考全国卷Ⅱ)长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为________.解析:依题意得,长方体的体对角线长为32+22+12=14,记长方体的外接球的半径为R ,则有2R =14,R =142,因此球O 的表面积等于4πR 2=14π. 答案:14π空间几何体的表面积(师生共研)(1)(2018·高考全国卷Ⅰ)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .122πB .12πC .82πD .10π(2)(2019·沈阳质量检测(一))某四棱锥的三视图如图所示,则该四棱锥的侧面积是( )A .4+4 2B .42+2C .8+4 2D. 83【解析】 (1)因为过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,所以圆柱的高为22,底面圆的直径为22,所以该圆柱的表面积为2×π×(2)2+22π×22=12π.(2)由三视图可知该几何体是一个四棱锥,记为四棱锥P -ABCD ,如图所示,其中P A ⊥底面ABCD ,四边形ABCD 是正方形,且P A =2,AB =2,PB =22,所以该四棱锥的侧面积S 是四个直角三角形的面积和,即S =2×⎝⎛⎭⎫12×2×2+12×2×22=4+42,故选A. 【答案】 (1)B (2)A空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积问题应注意衔接部分的处理. (3)旋转体的表面积问题应注意其侧面展开图的应用.1.(2019·湖南五市联考)某几何体的三视图如图所示,则该几何体的表面积是( )A .20+4 5B .12+4 5C .20+2 5D .12+2 5解析:选A.由三视图知该几何体是一个直三棱柱,底面是直角边分别为4,2的直角三角形,高为2,所以该几何体的表面积是(2+4+22+42)×2+2×12×2×4=20+45,故选A.2.(2019·唐山市摸底考试)已知某几何体的三视图如图所示(俯视图中曲线为四分之一圆弧),则该几何体的表面积为( )A .1-π4B .3+π2C .2+π4D .4解析:选D.由题设知,该几何体是棱长为1的正方体被截去底面半径为1的14圆柱后得到的,如图所示,所以表面积S =2×⎝⎛⎭⎫1×1-14×π×12+2×(1×1)+14×2π×1×1=4.故选D.空间几何体的体积(多维探究)角度一 求简单几何体的体积(1)(一题多解)(2017·高考全国卷Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π(2)(2019·高考全国卷Ⅰ)已知∠ACB =90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC 的距离均为3,那么P 到平面ABC 的距离为____________.【解析】 (1)法一(补形法):如图所示,由几何体的三视图,可知该几何体是一个圆柱被截去上面虚线部分所得.将圆柱补全,并将圆柱体从点A 处水平分成上下两部分.由图可知,该几何体的体积等于下部分圆柱的体积加上上部分圆柱体积的12,所以该几何体的体积V =π×32×4+π×32×6×12=63π.法二(估值法):由题意,知12V 圆柱<V 几何体<V 圆柱.又V 圆柱=π×32×10=90π,所以45π<V 几何体<90π.观察选项可知只有63π符合.(2)如图,过点P 分别作PE ⊥BC 交BC 于点E ,作PF ⊥AC 交AC 于点F .由题意知PE =PF = 3.过P 作PH ⊥平面ABC 于点H ,连接HE ,HF ,HC ,易知HE =HF ,则点H 在∠ACB 的平分线上,又∠ACB =90°,故△CEH 为等腰直角三角形.在Rt △PCE 中,PC =2,PE =3,则CE =1,故CH =2,在Rt △PCH 中,可得PH =2,即点P 到平面ABC 的距离为 2.【答案】 (1)B (2) 2角度二 求组合体的体积(2019·福州市质量检测)如图,网格纸上小正方形的边长为1,实线画出的是某几何体的三视图,则该几何体的体积为( )A.π12+3 B.π12+6 C.π3+3 D.π3+6【解析】 由三视图可知,该几何体是由直四棱柱与圆锥拼接而成的简单组合体,如图所示.由题设得,V 四棱柱=12×(1+2)×2×1=3,V 圆锥=13π⎝⎛⎭⎫122×1=π12,所以该几何体的体积V=V 四棱柱+V 圆锥=3+π12.故选A.【答案】 A求空间几何体的体积的常用方法1.(2019·高考全国卷Ⅲ)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体ABCD -A 1B 1C 1D 1挖去四棱锥O -EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,AB =BC =6 cm ,AA 1=4 cm.3D 打印所用原料密度为0.9 g/cm 3.不考虑打印损耗,制作该模型所需原料的质量为____________g.解析:长方体ABCD -A 1B 1C 1D 1的体积V 1=6×6×4=144(cm 3),而四棱锥O -EFGH 的底面积为矩形BB 1C 1C 的面积的一半,高为AB 长的一半,所以四棱锥O -EFGH 的体积V 2=13×12×4×6×3=12(cm 3),所以长方体ABCD -A 1B 1C 1D 1挖去四棱锥O -EFGH 后所得几何体的体积V =V 1-V 2=132(cm 3),所以制作该模型所需原料的质量为132×0.9=118.8(g).答案:118.82.如图是一个以A 1B 1C 1为底面的直三棱柱被一平面所截得到的几何体,截面为ABC ,已知A 1B 1=B 1C 1=2,∠A 1B 1C 1=90°,AA 1=4,BB 1=3,CC 1=2,则几何体的体积为____________.解析:过C 作平行于平面A 1B 1C 1的截面A 2B 2C ,交AA 1,BB 1分别于点A 2,B 2.由直三棱柱性质及∠A 1B 1C 1=90°, 则V =V A1B 1C 1A 2B 2C +V C ABB 2A 2=12×2×2×2+13×12×(1+2)×2×2=6. 答案:6球与空间几何体的接、切问题(师生共研)(1)(2017·高考全国卷Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A.πB.3π4C.π2D.π4(2)(2018·高考全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( )A .12 3B .18 3C .24 3D .54 3【解析】 (1)设圆柱的底面半径为r ,则r 2=12-⎝⎛⎭⎫122=34,所以,圆柱的体积V =34π×1=3π4,故选B.(2)设等边三角形ABC 的边长为x ,则12x 2sin 60°=93,得x =6.设△ABC 的外接圆半径为r ,则2r =6sin 60°,解得r =23,所以球心到△ABC 所在平面的距离d =42-(23)2=2,则点D 到平面ABC 的最大距离d 1=d +4=6,所以三棱锥D -ABC 体积的最大值V max =13S △ABC ×6=13×93×6=18 3.【答案】 (1)B (2)B处理球的“切”“接”问题的求解策略(1)“切”的处理与球有关的内切问题主要是指球内切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果内切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.(2)“接”的处理把一个多面体的几个顶点放在球面上即为球的外接问题.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.1.正四棱锥P -ABCD 的侧棱和底面边长都等于22,则它的外接球的表面积是( ) A .16π B .12π C .8πD .4π解析:选A.设正四棱锥的外接球半径为R ,顶点P 在底面上的射影为O ,因为OA =12AC=12AB 2+BC 2=12(22)2+(22)2=2,所以PO =P A 2-OA 2=(22)2-22=2.又OA =OB =OC =OD =2,由此可知R =2,于是S 球=4πR 2=16π.2.设球O 内切于正三棱柱ABC -A 1B 1C 1,则球O 的体积与正三棱柱ABC -A 1B 1C 1的体积的比值为________.解析:设球O 半径为R ,正三棱柱ABC -A 1B 1C 1的底面边长为a ,则R =33×a 2=36a ,即a =23R ,又正三棱柱ABC -A 1B 1C 1的高为2R ,所以球O 的体积与正三棱柱ABC -A 1B 1C 1的体积的比值为43πR 334a 2×2R =43πR 334×12R 2×2R =23π27.答案:23π27直观想象——数学文化与三视图(2019·长春市质量检测(一))《九章算术》卷五商功中有如下问题:今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何?刍甍:底面为矩形的屋脊状的几何体(网格纸中粗线部分为其三视图,设网格纸上每个小正方形的边长为1),那么该刍甍的体积为( )A .4B .5C .6D .12【解析】 如图,由三视图可还原得几何体ABCDEF ,过E ,F 分别作垂直于底面的截面EGH 和FMN ,将原几何体拆分成两个底面积为3,高为1的四棱锥和一个底面积为32,高为2的三棱柱,所以V ABCDEF =2V 四棱锥E -ADHG +V 三棱柱EHG -FNM =2×13×3×1+32×2=5,故选B. 【答案】 B本题是数学文化与三视图结合,主要是根据几何体的三视图及三视图中的数据,求几何体的体积或侧(表)面积.此类问题难点:一是根据三视图的形状特征确定几何体的结构特征;二是将三视图中的数据转化为几何体的几何度量.考查了直观想象这一核心素养.(2019·郑州市第二次质量预测)我国南北朝时期数学家、天文学家——祖暅,提出了著名的祖暅原理:“幂势既同,则积不容异”,“幂”是截面积,“势”是几何体的高,意思是两等高立方体,若在每一等高处的截面积都相等,则两立方体体积相等.已知某不规则几何体与如图所对应的几何体满足“幂势同”,则该不规则几何体的体积为( )A .4-π2B .8-4π3C .8-πD .8-2π解析:选C.由祖暅原理可知,该不规则几何体的体积与已知三视图的几何体体积相等.根据题设所给的三视图,可知题图中的几何体是从一个正方体中挖去一个半圆柱,正方体的体积为23=8,半圆柱的体积为12×(π×12)×2=π,因此该不规则几何体的体积为8-π,故选C.[基础题组练]1.(2019·安徽合肥质检)已知圆锥的高为3,底面半径为4,若一球的表面积与此圆锥侧面积相等,则该球的半径为( )A .5 B. 5 C .9D .3解析:选B.因为圆锥的底面半径r =4,高h =3,所以圆锥的母线l =5,所以圆锥的侧面积S =πrl =20π,设球的半径为R ,则4πR 2=20π,所以R =5,故选B.2.《九章算术》中,将底面是直角三角形的直三棱柱称为“堑堵”.已知某“堑堵”的三视图如图所示,俯视图中间的实线平分矩形的面积,则该“堑堵”的侧面积为( )A .2B .4+2 2C .4+4 2D .4+6 2解析:选C.由三视图知,该几何体是直三棱柱ABC -A 1B 1C 1,其中AB =AA 1=2,BC =AC =2,∠C =90°,其直观图如图所示,侧面为三个矩形,故该“堑堵”的侧面积S =(2+22)×2=4+42,故选C.3.如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( )A.500π3cm 3B.866π3cm 3C.1 372π3cm 3D.2 048π3cm 3解析:选A.设球的半径为R ,则由题意知球被正方体上面截得的圆的半径为4 cm ,球心到截面圆的距离为(R -2)cm ,则R 2=(R -2)2+42,解得R =5,所以球的体积为4π×533=500π3cm 3.4.(2019·福建市第一学期高三期末考试)已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于( )A .4π B.163π C.323π D .16π解析:选D.如图,由题意知圆柱的中心O 为这个球的球心,于是,球的半径r =OB =OA 2+AB 2=12+(3)2=2.故这个球的表面积S =4πr 2=16π.故选D.5.(2019·武汉市武昌调研考试)中国古代数学名著《九章算术》中记载了公元前344年商鞅监制的一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若π取3,其体积为12.6(单位:立方寸),则图中的x 为( )A .1.2B .1.6C .1.8D .2.4解析:选B.该几何体是一个组合体,左边是一个底面半径为12的圆柱,右边是一个长、宽、高分别为5.4-x 、3、1的长方体,所以组合体的体积V =V 圆柱+V 长方体=π·⎝⎛⎭⎫122×x +(5.4-x )×3×1=12.6(其中π=3),解得x =1.6.故选B.6.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1EDF 的体积为________.解析:三棱锥D 1EDF 的体积即为三棱锥F DD 1E 的体积.因为E ,F 分别为AA 1,B 1C 上的点,所以在正方体ABCD A 1B 1C 1D 1中,△EDD 1的面积为定值12,F 到平面AA 1D 1D 的距离为定值1,所以V D 1EDF =V F DD 1E =13×12×1=16.答案:167.(2017·高考江苏卷)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________. 解析:设球O 的半径为r ,则圆柱的底面半径为r ,高为2r ,所以V 1V 2=πr 2·2r 43πr 3=32. 答案:328.如图,在四边形ABCD 中,∠DAB =90°,∠ADC =135°,AB =5,CD =22,AD =2,求四边形ABCD 绕AD 旋转一周所成几何体的表面积及体积.解:由已知得:CE =2,DE =2,CB =5,S 表面积=S 圆台侧+S 圆台下底+S 圆锥侧=π(2+5)×5+π×25+π×2×22=(60+42)π,V =V 圆台-V 圆锥=13(π·22+π·52+22·52π2)×4-13π×22×2=1483π. [综合题组练]1.(2019·蓉城名校第一次联考)已知一个几何体的正视图和侧视图如图1所示,其俯视图用斜二测画法所画出的水平放置的直观图是一个直角边长为1的等腰直角三角形(如图2所示),则此几何体的体积为( )A .1 B. 2 C .2D .2 2解析:选B.根据直观图可得该几何体的俯视图是一个直角边长分别是2和2的直角三角形(如图所示),根据三视图可知该几何体是一个三棱锥,且三棱锥的高为3,所以体积V =13×⎝⎛⎭⎫12×2×2×3= 2.故选B. 2.(2019·福州市质量检测)已知正三棱柱ABC -A 1B 1C 1中,底面积为334,一个侧面的周长为63,则正三棱柱ABC -A 1B 1C 1外接球的表面积为( )A .4πB .8πC .16πD .32π解析:选C.如图所示,设底面边长为a ,则底面面积为34a 2=334,所以a = 3.又一个侧面的周长为63,所以AA 1=2 3.设E ,D 分别为上、下底面的中心,连接DE ,设DE 的中点为O ,则点O 即为正三棱柱ABC -A 1B 1C 1的外接球的球心,连接OA 1,A 1E ,则OE =3,A 1E =3×32×23=1.在直角三角形OEA 1中,OA 1=12+(3)2=2,即外接球的半径R =2,所以外接球的表面积S =4πR 2=16π,故选C.3.(2019·福建泉州质检)如图,在正方形网格纸上,实线画出的是某多面体的三视图及其部分尺寸.若该多面体的顶点在同一球面上,则该球的表面积等于( )A .8πB .18πC .24πD .86π解析:选C.设球的半径为R .多面体是两个正四棱锥的组合体(底面重合).两顶点之间的距离为2R ,底面是边长为2R 的正方形,由R 2+⎝⎛⎭⎫2R 22=32⇒R 2=6,故该球的表面积S =4πR 2=24π.选C.4.(2019·辽宁五校协作体模考)一个长方体被一平面截去一部分后,所剩几何体的三视图如图所示,则该几何体的体积为( )A .36B .48C .64D .72解析:选B.由几何体的三视图可得几何体如图所示,将几何体分割为两个三棱柱,所以该几何体的体积为12×3×4×4+12×3×4×4=48,故选B.5.(2019·洛阳市第一次统考)一个几何体的三视图如图所示,图中的三个正方形的边长均为2,则该几何体的体积为( )A .8-2π3B .4-π3C .8-π3D .4-2π3解析:选A.由三视图可得该几何体的直观图如图所示,该几何体是一个棱长为2的正方体上、下各挖去一个底面半径为1,高为1的圆锥后剩余的部分,其体积为23-2×13×π×12×1=8-2π3.故选A.6.(应用型)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P -A 1B 1C 1D 1,下部的形状是正四棱柱ABCD -A 1B 1C 1D 1(如图所示),并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍,若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?解:由PO 1=2 m ,知O 1O =4PQ 1=8 m.因为A 1B 1=AB =6 m ,所以正四棱锥P -A 1B 1C 1D 1的体积V 锥=13·A 1B 21·PO 1=13×62×2=24(m 3);正四棱柱ABCD -A 1B 1C 1D 1的体积 V 柱=AB 2·O 1O =62×8=288(m 3),所以仓库的容积V =V 锥+V 柱=24+288=312(m 3). 故仓库的容积是312 m 3.。
立体几何中的体积与表面积
立体几何中的体积与表面积立体几何是研究三维空间中的图形、形体的学科。
其中,体积和表面积是重要的概念。
体积指的是一个物体所占据的三维空间的容积大小,而表面积是物体外部表面的测量。
一、体积体积是描述一个物体所占据的空间大小的物理量。
在立体几何中,体积通常用立方单位来衡量,如立方米(m³)、立方厘米(cm³)等。
不同形状的物体有不同的体积计算方法。
1. 立方体的体积计算公式为边长的立方;2. 球体的体积计算公式为4/3πr³,其中r为球的半径;3. 圆柱体的体积计算公式为底面积乘以高度;4. 圆锥体的体积计算公式为底面积乘以高度再除以3;5. 更复杂的立体形状,可以通过分解成简单形状的部分来计算体积。
例如,一个边长为3cm的立方体的体积为27cm³。
另外,一个半径为5cm的球体的体积为约523.3cm³。
二、表面积表面积是描述一个物体外部边界的面积的物理量。
在立体几何中,表面积通常用平方单位来衡量,如平方米(m²)、平方厘米(cm²)等。
同样地,不同形状的物体有不同的表面积计算方法。
1. 立方体的表面积计算公式为6倍的边长的平方;2. 球体的表面积计算公式为4πr²,其中r为球的半径;3. 圆柱体的表面积计算公式为2πr²加上底面积的2倍,其中r为底面圆的半径;4. 圆锥体的表面积计算公式为πr²加上底面面积。
例如,一个边长为3cm的立方体的表面积为54cm²。
另外,一个半径为5cm的球体的表面积为约314.2cm²。
体积和表面积在日常生活中有着广泛的应用。
在建筑领域,测量物体的体积可以帮助设计师合理规划空间,而表面积的计算可以用于计算涂料、瓷砖等材料的用量。
在容器设计中,体积的计算可以帮助确定容器所能容纳的物质量,而表面积的计算可以影响容器的散热效果。
总结起来,体积和表面积是立体几何中重要的概念。
高一数学空间几何体的表面积和体积知识点及题型例题
空间几何体的表面积和体积例题解析一.课标要求了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆,理解为主)。
二.命题走向———-用选择、填空题考查本章的基本性质和求积公式; 三.要点精讲l 表示侧棱长。
12 上、下底面半径,R 表示半径。
四.典例解析题型1:柱体的体积和表面积例1.一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm依题意得:⎩⎨⎧=++=++24)(420)(2z y x zx yz xy )2()1(由(2)2得:x 2+y 2+z 2+2xy+2yz+2xz=36(3)由(3)-(1)得x 2+y 2+z 2=16即l 2=16所以l =4(cm ).点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。
我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系.例2.如图1所示,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB⊥AD,∠A 1AB=∠A 1AD=3π。
(1)求证:顶点A 1在底面ABCD 上的射影O 在∠BAD 的平分线上; (2)求这个平行六面体的体积。
图1 图2解析:(1)如图2,连结A 1O ,则A 1O⊥底面ABCD 。
作OM⊥AB 交AB 于M ,作ON⊥AD 交AD 于N,连结A 1M ,A 1N 。
由三垂线定得得A 1M⊥AB,A 1N⊥AD。
∵∠A 1AM=∠A 1AN ,∴Rt△A 1NA≌Rt△A 1MA ,∴A 1M=A 1N ,从而OM=ON 。
∴点O 在∠BAD 的平分线上。
(2)∵AM=AA 1cos 3π=3×21=23∴AO=4cosπAM =223。
又在Rt△AOA 1中,A 1O 2=AA 12 – AO 2=9-29=29,∴A 1O=223,平行六面体的体积为22345⨯⨯=V 230=。
2023年高中数学基础知识梳理及基础题型归纳-立体几何模块-第五节空间几何体的表面积和体积
第五节 空间几何体的表面积和体积【知识点20】空间几何体的表面积一般地,我们可以把多面体展开成平面图形,求出展开图中各个小多边形的面积,然后相加即为多面体的表面积. 1.直棱柱和正棱锥的表面积(1)直棱柱的侧面积①侧棱和底面垂直的棱柱叫做直棱柱.②直棱柱的侧面展开图是矩形,这个矩形的长等于直棱柱的底面周长c ,宽等于直棱柱的高h ,因此,直棱柱的侧面积是S 直棱柱侧=ch . ③底面为正多边形的直棱柱叫做正棱柱. (2)正棱锥的侧面积①如果一个棱锥的底面是正多边形,并且顶点在底面的正投影是底面中心,那么称这样的棱锥为正棱锥.正棱锥的侧棱长都相等.②棱锥的侧面展开图是由各个侧面组成的,展开图的面积就是棱锥的侧面积.如果正棱锥的底面周长为c ,斜高(即侧面等腰三角形底边上的高)为h ′,它的侧面积是S 正棱锥侧=12ch ′.2.正棱台的表面积正棱锥被平行于底面的平面所截,截面和底面之间的部分叫做正棱台.与正棱锥的侧面积公式类似,若设正棱台的上、下底面的周长分别为c ′,c ,斜高为h ′,则其侧面积是S 正棱台侧=12(c +c ′)h ′. 3.圆柱、圆锥、圆台的表面积【推导圆柱侧面积及表面积】S 侧=2πrl ,S 表=2πr (r +l ).【推导圆锥侧面积及表面积】底面周长是2πr ,利用扇形面积公式得 S 侧=12×2πrl =πrl ,S 表=πr 2+πrl =πr (r +l ).【推导圆台侧面积及表面积】由题图知,圆台的侧面展开图是扇环,内弧长等于圆台上底周长,外弧长等于圆台下底周长,则x x +l =r R ,解得x =r R -rl . S 扇环=S 大扇形-S 小扇形=12(x +l )×2πR -12x ×2πr =π[(R -r )x +Rl ]=π(r +R )l ,所以S 圆台侧=π(r +R )l ,S 圆台表=π(r 2+rl +Rl +R 2).【类型一】 求多面体的侧面积和表面积 【例1】正四棱台两底面边长分别为a 和b (a <b ).(1)若侧棱所在直线与上、下底面正方形中心的连线所成的角为45°,求棱台的侧面积;(2)若棱台的侧面积等于两底面面积之和,求它的高.【变式1】已知正四棱台的高是12 cm,两底面边长之差为10 cm,表面积为512 cm2,求底面的边长.【反思】(1)求棱锥、棱台及棱柱的侧面积和表面积的关键是求底面边长,高,斜高,侧棱.求解时要注意直角三角形和梯形的应用.(2)正棱柱、正棱锥、正棱台的所有侧面都全等,因此求侧面积时,可先求一个侧面的面积,然后乘以侧面的个数.(3)棱台是由棱锥所截得到的,因此棱台的侧面积也可由大小棱锥侧面积作差得到.【变式2】已知正四棱锥的侧面积是底面积的2倍,高为3,求它的表面积.【变式3】如图,在正方体ABCD —A1B1C1D1中,三棱锥D1—AB1C的表面积与正方体的表面积的比为________.【思考1】如图,已知正三棱锥S-ABC的侧面积是底面积的2倍,正三棱锥的高SO=3,求此正三棱锥的表面积.【类型二】与三视图结合综合问题【例2】某四面体的三视图如图所示,该四面体四个面的表面积为 .【变式1】一个四面体的三视图如图所示,则该四面体的表面积是()A. 2+B. 1C. 1+D.【变式2】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体各面中直角三角形的个数是A. 2B. 3C. 4D. 5【变式3】已知一个几何体的三视图如图所示(单位:m),其中俯视图为正三角形,则该几m何体的体积为_______3【思考2】某几何体的三视图如图所示,则该几何体的表面积为.【思考3】某三棱锥的三视图如图所示,则该三棱锥的体积为A. 60B. 30C. 20D. 10【变式1】如图是一个几何体的三视图,在该几何体的各个面中,面积最小的面的面积为()A. 8B. 4C.D.【类型三】求旋转体的表面积【例3】圆台的上、下底面半径分别为10 cm和20 cm.它的侧面展开图扇环的圆心角为180°,那么圆台的表面积是________ cm2.(结果中保留π)【变式1】圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,求圆台较小底面的半径.【反思】(1)求圆柱、圆锥和圆台的侧面积和表面积,只需求出上、下底半径和母线长即可,求半径和母线长时常借助轴截面.(2)解答旋转体的侧面积与表面积问题可先把空间问题转化为平面问题,即在展开图内求母线的长,再进一步代入侧面积公式求出侧面积,进而求出表面积.(3)旋转体的轴截面是化空间问题为平面问题的重要工具,因为在轴截面中集中体现了旋转体的“关键量”之间的关系.在推导这些量之间的关系时要注意比例性质的应用.【变式2】若圆锥的母线长为2 cm,底面圆的周长为2π cm,则圆锥的表面积为________ cm2.【变式3】以圆柱的上底中心为顶点,下底为底作圆锥,假设圆柱的侧面积为6,圆锥的侧面积为5,求圆柱的底面半径.【变式4】若一个圆台的轴截面如图所示,则其侧面积等于______.【变式5】.一个圆柱和一个圆锥的轴截面分别是边长为a 的正方形和正三角形,则它们的表面积之比为________.【类型四】与三视图结合的综合问题【例4】一个几何体的三视图如图所示,其中正视图与侧视图都是斜边长为的直角三角形,俯视图是半径为,圆心角为的扇形,则该几何体的表面积是( )A. B. C. D.【变式1】如图是一个封闭几何体的三视图,则该几何体的表面积为( )A. 27cm π B. 28cm π C. 29cm π D. 211cm π【类型五】 简单组合体的表面积【例5】牧民居住的蒙古包的形状是一个圆柱与圆锥的组合体,尺寸如图所示(单位:m),请你帮助算出要搭建这样的一个蒙古包至少需要多少篷布?(精确到0.01 m 2)【反思】 (1)组合体的侧面积和表面积问题,首先要弄清楚它是由哪些简单几何体组成,然后再根据条件求各个简单组合体的基本量,注意方程思想的应用.(2)在实际问题中,常通过计算物体的表面积来研究如何合理地用料,如何节省原材料等,在求解时应结合实际,明确实际物体究竟是哪种几何体,哪些面计算在内,哪些面实际没有. 【变式1】有两个相同的直棱柱,高为2a ,底面三角形的边长分别为3a,4a,5a (a >0).用它们拼成一个三棱柱或四棱柱,在所有可能的情形中,表面积最小的是一个四棱柱,求a 的取值范围.【变式2】如图所示,△ABC 的三边长分别是AC =3,BC =4,AB =5,作CD ⊥AB ,垂足为点D .以AB 所在直线为轴,将此三角形旋转一周,求所得旋转体的表面积.【方法小结】1.多面体的表面积为围成多面体的各个面的面积之和.棱柱的表面积等于它的侧面积加底面积;棱锥的表面积等于它的侧面积加底面积;棱台的表面积等于它的侧面积加两个底的面积.2.有关旋转体的表面积的计算要充分利用其轴截面,就是说将已知条件尽量归结到轴截面中求解.而对于圆台有时需要将它还原成圆锥,再借助相似的相关知识求解.3.S圆柱表=2πr(r+l);S圆锥表=πr(r+l);S圆台表=π(r2+rl+Rl+R2).【思考1】如图(1)所示,已知正方体面对角线长为a,沿阴影面将它切割成两块,拼成如图(2)所示的几何体,那么此几何体的表面积为________.【思考2】一个圆锥的底面半径为2 cm,高为6 cm,在其中有一个高为x cm的内接圆柱.(1)求圆锥的侧面积;(2)当x为何值时,圆柱的侧面积最大?求出最大值.【变式1】已知某圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则该圆台较小底面的半径为________.【知识点21】空间几何体的体积【类型一】柱体、锥体、台体的体积【例1】(1)如图所示,已知三棱柱ABC-A1B1C1的所有棱长均为1,且AA1⊥底面ABC,则三棱锥B1-ABC1的体积为____________.(2)现有一个底面直径为20 cm的装有一部分水的圆柱形玻璃杯,水中放着一个底面直径为6 cm,高为20 cm的圆锥形铅锤,铅锤完全浸没在水中.当铅锤从水中取出后,杯里的水将下降________ cm.【反思】(1)常见的求几何体体积的方法①公式法:直接代入公式求解.②等积法:如四面体的任何一个面都可以作为底面,只需选用底面积和高都易求的形式即可.一、柱体、锥体、台体的体积公式1.柱体的体积公式V=Sh(S为底面面积,h为高).2.锥体的体积公式V=13Sh(S为底面面积,h为高).3.台体的体积公式V=13(S′+S′S+S)h(S′,S为上、下底面面积,h为高).4.柱体、锥体、台体的体积公式之间的关系V=Sh V=13(S′+S′S+S)h V=13Sh.二、球的表面积和体积公式1.球的表面积公式S=4πR2(R为球的半径).2.球的体积公式V=43πR3.三、球体的截面的特点1.球既是中心对称的几何体,又是轴对称的几何体,它的任何截面均为圆.2.利用球半径、截面圆半径、球心到截面的距离构建直角三角形是把空间问题转化为平面问题的主要途径.③分割法:将几何体分割成易求解的几部分,分别求体积.(2)求几何体体积时需注意的问题柱、锥、台体的体积的计算,一般要找出相应的底面和高,要充分利用截面、轴截面,求出所需要的量,最后代入公式计算.【变式1】如图所示,在长方体ABCD-A′B′C′D′中,用截面截下一个棱锥C-A′DD′,求棱锥C-A′DD′的体积与剩余部分的体积之比.【变式2】已知一个三棱台上、下底面分别是边长为20 cm和30 cm的正三角形,侧面是全等的等腰梯形,且侧面面积等于上、下底面面积之和,求棱台的高和体积.【变式3】已知正三棱锥S—ABC,D,E分别为底面边AB,AC的中点,则四棱锥S—BCED 与三棱锥S—ABC的体积之比为________.【变式4】圆柱形容器内盛有高度为6 cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球,如图所示.则球的半径是________ cm.【变式5】如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,如果不计容器的厚度,则球的体积为____ cm3.【类型二】球的表面积与体积【例2】(外接球)(1)设长方体的长,宽,高分别为2a,a,a,其顶点都在一个球面上,则该球的表面积为________.(2)求球与它的外切等边圆锥(轴截面是正三角形的圆锥叫等边圆锥)的体积之比.【变式1】一倒置圆锥体的母线长为10 cm,底面半径为6 cm.(1)求圆锥体的高;(2)一球刚好放进该圆锥体中,求这个球的半径以及此时圆锥体剩余的空间.【反思】(1)正方体的内切球球与正方体的六个面都相切,称球为正方体的内切球,此时球的半径为r 1=a2,过在一个平面上的四个切点作截面如图①. (2)球与正方体的各条棱相切球与正方体的各条棱相切于各棱的中点,过球心作正方体的对角面有r 2=22a ,如图②. (3)长方体的外接球长方体的八个顶点都在球面上,称球为长方体的外接球,根据球的定义可知,长方体的体对角线是球的直径,若长方体过同一顶点的三条棱长为a ,b ,c ,则过球心作长方体的对角面有球的半径为r 3=12a 2+b 2+c 2,如图③.(4)正方体的外接球正方体棱长a 与外接球半径R 的关系为2R =3a . (5)正四面体的外接球正四面体的棱长a 与外接球半径R 的关系为2R =62a . 【练习1】长方体共顶点的三个侧面面积分别为3,5,15,则它的外接球表面积为________.【练习2】将棱长为2的正方体木块削成一个体积最大的球,则该球的体积为________.【练习3】设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为________.【练习4】三棱锥P ABC -中, ,,PA PB PC 互相垂直, 1PA PB ==, M 是线段BC上一动点,若直线AM 与平面PBC 所成角的正切的最大值是2,则三棱锥P ABC -的外接球的表面积是( )A. 2πB. 4πC. 8πD. 16π【例3】在正三棱锥S −ABC 中,SA =2√7,AB =6,则该三棱锥外接球的直径为( )A. 7B. 8C. 9D. 10【反思】在一个多面体的面找外接圆的圆心,过该圆的圆心,作垂直于该面的垂线,球心O 在垂线上,构造三角形,解三角形。
立体几何中的体积与表面积
立体几何中的体积与表面积在立体几何中,体积和表面积是两个重要的概念。
体积指的是三维物体所占据的空间大小,表面积则是三维物体外部的表面总面积。
本文将介绍立体几何中的体积与表面积的计算公式以及应用。
一、体积的计算体积是衡量一个物体所占空间大小的量度。
不同的立体形状有不同的计算方法。
1.1 直线体的体积立方体是最简单的直线体,其体积计算公式为立方体的边长的三次方,即V=a³,其中V表示体积,a表示边长。
长方体也属于直线体的一种,其体积计算方法与立方体相同,即V=lwh,其中V表示体积,l表示长度,w表示宽度,h表示高度。
其他直线体如正方体、长方体变形以及长方体切割等形状的体积计算方法也遵循以上原则。
1.2 曲面体的体积曲面体的体积计算略显复杂,需要采用数学方法进行求解。
例如,球体的体积计算公式为V=4/3πr³,其中V表示体积,r表示球的半径。
圆柱体的体积计算公式为V=πr²h,其中V表示体积,r表示底面半径,h表示高度。
其他曲面体如圆锥体、棱柱体、棱锥体等也有相应的体积计算公式。
二、表面积的计算表面积是指一个物体外部所有面的总面积。
同样,不同形状的立体有不同的表面积计算方法。
2.1 直线体的表面积直线体的表面积计算公式与体积的计算方法相似,只是多了一些需要计算的面的面积。
例如,立方体的表面积计算公式为S=6a²,其中S表示表面积,a表示边长。
因为立方体有六个面,所以要乘以6。
长方体的表面积计算公式为S=2lw + 2lh + 2wh,其中S表示表面积,l表示长度,w表示宽度,h表示高度。
同样,因为长方体有六个面,所以每个面的面积都需要计算并累加起来。
其他直线体如正方体、长方体变形以及长方体切割等形状的表面积计算方法也遵循以上原则。
2.2 曲面体的表面积曲面体的表面积计算同样需要采用数学方法。
例如,球体的表面积计算公式为S=4πr²,其中S表示表面积,r表示球的半径。
几何体的体积与表面积
几何体的体积与表面积几何体是指具有一定形状和空间的物体,常见的几何体包括球体、立方体、圆柱体、锥体和棱柱体等。
在几何学中,我们常常需要计算几何体的体积和表面积来解决各种问题。
一、球体的体积与表面积球体是一种最简单的几何体,表面上呈现出完全圆滑的形状。
球体的体积和表面积的计算公式如下:1. 球体的体积公式:V = (4/3)πr³,其中V表示体积,π表示圆周率,r表示球的半径。
2. 球体的表面积公式:S = 4πr²,其中S表示表面积,π表示圆周率,r表示球的半径。
二、立方体的体积与表面积立方体是一种六个面都呈正方形的几何体,具有均匀分布的表面和体积。
立方体的体积和表面积的计算公式如下:1. 立方体的体积公式:V = a³,其中V表示体积,a表示立方体的边长。
2. 立方体的表面积公式:S = 6a²,其中S表示表面积,a表示立方体的边长。
三、圆柱体的体积与表面积圆柱体是由两个平行的圆底和一个侧面围成的几何体。
圆柱体的体积和表面积的计算公式如下:1. 圆柱体的体积公式:V = πr²h,其中V表示体积,π表示圆周率,r表示圆底的半径,h表示圆柱体的高度。
2. 圆柱体的表面积公式:S = 2πrh + 2πr²,其中S表示表面积,π表示圆周率,r表示圆底的半径,h表示圆柱体的高度。
四、锥体的体积与表面积锥体是由一个圆底和一个侧面围成的几何体,侧面呈三角形形状。
锥体的体积和表面积的计算公式如下:1. 锥体的体积公式:V = (1/3)πr²h,其中V表示体积,π表示圆周率,r表示圆底的半径,h表示锥体的高度。
2. 锥体的表面积公式:S = πrl + πr²,其中S表示表面积,π表示圆周率,r表示圆底的半径,l表示锥体的斜高。
五、棱柱体的体积与表面积棱柱体是由两个并列的多边形底面和若干个连接底面的长方形侧面围成的几何体。
棱柱体的体积和表面积的计算公式如下:1. 棱柱体的体积公式:V = Bh,其中V表示体积,B表示底面积,h表示棱柱体的高度。
立体几何中的体积和表面积
立体几何中的体积和表面积立体几何是研究空间中的图形的一个分支,其中最基本的概念就是体积和表面积。
在我们日常生活中,我们经常遇到各种各样的物体,比如球体、立方体、圆柱体等,而了解这些物体的体积和表面积可以帮助我们更好地理解它们的性质及应用。
本文将详细介绍立体几何中的体积和表面积的概念及计算方法。
一、体积的概念及计算方法体积是用来衡量一个物体内部的三维空间大小的物理量。
在立体几何中,我们常见的物体如立方体、长方体、球体、圆柱体等都有对应的体积计算公式。
1. 立方体和长方体的体积计算立方体是具有六个相等的面以及六条相等的边的立体图形。
它的体积计算公式为:体积 = 边长 x 边长 x 边长,或者简记为体积 = a³,其中a代表边长。
长方体与立方体类似,但它的三个边长可以不相等。
长方体的体积计算公式为:体积 = 长 x 宽 x 高,或者简记为体积 = lwh,其中l、w 和h分别代表长方体的长度、宽度和高度。
2. 球体的体积计算球体是一个面全部由曲面组成的物体,其内部点到球心的距离都相等。
球体的体积计算公式为:体积= (4/3)πr³,其中π约等于3.14159,r代表球的半径。
3. 圆柱体的体积计算圆柱体由一个圆面和一个平行于圆底的矩形面组成。
圆柱体的体积计算公式为:体积= πr²h,其中π约等于3.14159,r为圆底的半径,h 为圆柱体的高度。
二、表面积的概念及计算方法表面积是用来衡量一个物体外部覆盖的总面积的物理量。
在立体几何中,不同形状的物体有不同的表面积计算方法。
1. 立方体和长方体的表面积计算立方体的表面积计算公式为:表面积 = 6a²,其中a代表立方体的边长。
长方体的表面积计算公式为:表面积 = 2lw + 2lh + 2wh,其中l、w 和h分别代表长方体的长度、宽度和高度。
2. 球体的表面积计算球体的表面积计算公式为:表面积= 4πr²,其中π约等于3.14159,r代表球的半径。
高一数学知识点归纳大全必修二
高一数学知识点归纳大全必修二一、空间几何体1. 棱柱、棱锥、棱台的结构特征:棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行。
棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形。
棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。
2. 圆柱、圆锥、圆台、球的结构特征:圆柱:以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体。
圆锥:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体。
圆台:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分。
球:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体。
3. 空间几何体的三视图和直观图:三视图:正视图、侧视图、俯视图。
直观图:斜二测画法。
4. 空间几何体的表面积与体积:棱柱、棱锥、棱台的表面积和体积公式。
圆柱、圆锥、圆台、球的表面积和体积公式。
二、点、直线、平面之间的位置关系1. 平面的基本性质:公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。
公理2:过不在一条直线上的三点,有且只有一个平面。
公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
2. 空间中直线与直线之间的位置关系:平行、相交、异面。
平行公理、等角定理。
3. 空间中直线与平面之间的位置关系:直线在平面内、直线与平面平行、直线与平面相交。
4. 平面与平面之间的位置关系:平行、相交。
三、直线与方程1. 直线的倾斜角与斜率:倾斜角的定义和范围。
斜率的定义和计算公式。
2. 直线的方程:点斜式、斜截式、两点式、截距式、一般式。
3. 两直线的位置关系:平行、垂直的判定条件。
4. 距离公式:两点间的距离公式。
点到直线的距离公式。
两平行直线间的距离公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一下册数学期中必备知识点空间几何体的表
面积与体积
数学是利用符号语言研究数量、结构、变化以及空间模型等概念的一门学科。
为大家推荐了高一下册数学期中必备知识点,请大家仔细阅读,希望你喜欢。
一、课标要求:
了解一些简单的几何体的表面积的计算方法,了解棱柱、棱锥、台的表面积计算公式(不要求记忆公式)
二、教学目标:
(1) 了解平面展开图的概念及柱、锥、台的表面积公式;
(2) 会求一些简单几何体的表面积公式;
(3) 让学生经历空间几何体的侧面展开过程,感知几何体的形状;
(4) 让学生通过对照比较,理顺柱体、锥体、台体侧面积之间的转换关系,体会数和形的完美结合.
(5) 通过学习使学生感受到空间几何体侧面积的求解过程,对自己空间思维能力的影响,从而增强学习数学的信心.
三、教学重点、难点:
重点;空间几何体侧面积的计算
难点;空间几何体侧面展开
四、设计思路:
借助多媒体,通过动态演示一些多面体的平面展开图的过
程,让学生在直观感知的基础上了解平面展开图的概念,进而结合前面已研究的柱、锥、台这三类几何体的概念,介绍正棱柱、正棱锥、正棱台的概念,结合模型组织学生感知探索侧面展开图的形成过程及侧面展开图的构成,得出它们侧面积的计算公式。
五、活动设计
教学进程教师活动学生活动活动目标及说明
1、创设情境
多媒体演示空间几何体的平面展开图
小编为大家提供的高一下册数学期中必备知识点,大家仔细阅读了吗?最后祝同学们学习进步。