公式法求一元二次方程

合集下载

一元二次方程的解法(公式法)

一元二次方程的解法(公式法)

通过本课时的学习,需要我们掌握:
1.由配方法解一般形式的一元二次方程 ax2+bx+c=0 (a≠0),若 b2-4ac≥0,得求根公式:
x b b2 4ac 2a
2.会熟练应用公式法解一元二次方程.
1、关于x的一元二次方程ax2+bx+c=0 (a≠0).当a,b,c
满足什么条件时,方程的两根互为相反数?
一元二次方程的解法
————公式法
回顾复习:
解法一:直接开平方法:x2+6x+9=0
解法二:因式分解法:
1.x2 (5 2)x 5 2 0
2. 3x2 5x 0
3.x2 12x 27 0
1.x1 5; x 2 2.
15
2.x1 0;x2
. 3
3.x1 3;x2 9.
回顾复习:
解法三:配方法:
2x2 4x 1 0
用配方法解一元二次方程的步骤: (1)二次项系数化为1:x2+px+q=0 (2)移项,整理得 x2+px=-q ;
(3)配方: (4)开平方法解方程.
用配方法解一般形式的一元二次方程 ax2+bx+c=0 (a≠0)
【解析】把方程两边都除以a, 移项,得 x2 + x= ba
【解析】设方程的两个根为x1,x2,依题意,得
x1 +x2 b
b 2+ 4ac
2a
b
0
a
b b2 4ac 2a
因为a≠0, 所以b=0.
所以当a≠0, b=0, ac≤0时,方程的两根为互为相反数.
2.《九章算术》“勾股”章中有一题:“今有户高多于广

一元二次方程式解法公式

一元二次方程式解法公式

一元二次方程式解法公式一元二次方程是指形式为ax^2 + bx + c = 0的方程,其中a、b、c为已知数,且a≠0。

解一元二次方程的一种常用方法是使用解法公式,也称为求根公式。

解法公式可以直接计算出方程的解,进而求解方程。

一元二次方程的解法公式可以分为两种情况讨论:当方程有实数根时,以及当方程有复数根时。

1. 当方程有实数根时:一元二次方程的解法公式为:x = (-b ± √(b^2 - 4ac)) / (2a)公式中的±表示两个解,一个为加号前面的解,另一个为减号前面的解。

在解法公式中,根号下的部分被称为判别式,用Δ表示,即Δ = b^2 - 4ac。

判别式Δ的值决定了方程的根的性质:- 当Δ > 0时,方程有两个不相等的实数根;- 当Δ = 0时,方程有两个相等的实数根,即重根;- 当Δ < 0时,方程没有实数根,但有两个复数根。

2. 当方程有复数根时:一元二次方程的解法公式为:x = (-b ± i√(4ac - b^2)) / (2a)公式中的±表示两个解,一个为加号前面的解,另一个为减号前面的解。

在解法公式中,复数根的虚部用i表示,即i = √(-1)。

与实数根的情况相比,复数根的判别式为4ac - b^2。

当判别式4ac - b^2 > 0时,方程有两个共轭复数根;当判别式4ac - b^2 = 0时,方程有两个相等的复数根,即重根;当判别式4ac - b^2 < 0时,方程没有实数根,但有两个复数根。

通过解法公式,可以直接计算出一元二次方程的解。

根据公式中的系数a、b、c的不同取值,可以得到方程的不同解的情况。

需要注意的是,解法公式只适用于一元二次方程,对于其他类型的方程不适用。

此外,解法公式的使用还需要注意以下几点:1. 在计算解时,需要先计算出判别式的值,然后根据判别式的值来确定方程的根的性质。

2. 当判别式的值为0时,仍然需要进行计算,并且在计算过程中需要注意虚部的表示方式。

元二次方程公式法

元二次方程公式法

一元二次方程公式法
一元二次方程的公式法解法是指通过公式来求解一元二次方程的解。

一元二次方程一般形式为ax2 + bx + c = 0,其中a、b、c为常数,且a不等于0。

解一元二次方程的公式如下:
x = [-b ±sqrt(b2- 4ac)] / 2a
其中,±表示取两个解,一个为正数,一个为负数。

sqrt 表示求平方根。

具体步骤如下:
1. 将常数项移到等号右侧,得到ax2 + bx = -c。

2. 将系数化为正数,并将右侧的-c移到左侧,得到ax2 + bx + c = 0。

3. 将系数除以2a,得到x = [-b ±sqrt(b2 - 4ac)] / 2a。

4. 化简公式,得到两个解x1、x2,即x1 = [-b + sqrt(b2 - 4ac)] / 2a,x2 = [-b - sqrt(b2- 4ac)] / 2a。

需要注意的是,在求解一元二次方程时,需要先判断方程的判别式b2 -4ac 的值,如果判别式大于等于0,则方程有两个实数根;如果判别式小于0,则方程有两个共轭复数根。

一元二次方程公式大全

一元二次方程公式大全

一元二次方程公式大全
1. 一元二次方程的一般式:ax²+bx+c=0(a≠0)。

2. 一元二次方程的根公式:x=[-b±√(b²-4ac)]/2a。

3.一元二次方程的顶点公式:x=-b/2a,y=c-b²/4a。

4.一元二次方程的轴对称式:y=a(x-h)²+k,其中(h,k)为顶点坐标。

5. 一元二次方程的判别式公式:Δ=b²-4ac;当Δ>0时,有两个不
相等的实根;当Δ=0时,有一个重根;当Δ<0时,无实根。

6.一元二次方程的解的性质公式:两根之和=-b/a,两根之积=c/a。

7. 一元二次方程的因式分解公式:ax²+bx+c=a(x-x₁)(x-x₂),其中x₁、x₂为方程的两个实根。

8. 一元二次方程的求导公式:y'=2ax+b,其中a、b为方程系数。

9. 一元二次方程的求和差公式:(x+y)²=x²+2xy+y²,(x-y)²=x²-
2xy+y²。

10. 一元二次方程的配方法公式:根据(a±b)²=a²±2ab+b²,将一元
二次方程化为完全平方形式。

用公式法求解一元二次方程

用公式法求解一元二次方程

实例二
总结词
此实例展示了如何使用公式法求解一元二次方程的特殊形式。
详细描述
当一元二次方程为$x^{2} + bx + c = 0$时,若$b^{2} - 4ac = 0$,则两个解相等。在这种情况下, 可以使用因式分解法求解,将方程化为$(x + b/2)^{2} = 0$的形式,解得$x = - b/2$。
用公式法求解一元二次方程
xx年xx月xx日
目 录
• 一元二次方程的概述 • 公式法求解一元二次方程的原理 • 公式法求解一元二次方程的步骤 • 公式法求解一元二次方程的实例 • 公式法的扩展的概述
一元二次方程的定义
定义
ax²+bx+c=0,其中a、b、c为实数,且a≠0
详细描述
当一元二次方程为$ax^{2} + bx + c = 0$时,使用求 根公式求解。首先,需要计算判别式$b^{2} - 4ac$, 然后确定方程的解。如果$b^{2} - 4ac > 0$,则有两 个不相等的实数解;如果$b^{2} - 4ac = 0$,则有两 个相等的实数解;如果$b^{2} - 4ac < 0$,则没有实 数解。
06
总结与回顾
公式法求解一元二次方程的优势
01
普遍适用
02
直接求解
公式法适用于所有一元二次方程的求 解,具有普遍性。
公式法可以直接求解方程的根,不需 要额外的技巧和步骤。
03
简单易懂
公式法原理简单,易于理解和掌握, 对初学者较为友好。
公式法求解一元二次方程的不足之处
计算量大
使用公式法求解一元二次方程时 ,需要进行大量的计算和化简, 过程较为繁琐。

公式法解一元二次方程全面版

公式法解一元二次方程全面版

25
x3 25 3 5
22
4
即: x1 2,x2
1 2
2 x 3 2 x 9 6 0
解: 原方 2 x 2 9 程 x 6 x 2 化 6 7 0为
整理 2x2 为 3x2: 10
a 2 ,b 3 ,c 21
公式法解一元二次方程
一、回顾
用配方法解方程:x2bxc0
x 解:移项得: 2bxc
x22b 2xb 22b 22c
则:
xb22
b2 4
c
当b2 c0时,方程有实.数解 4
二、公式的推导
a2x b x c0a0
解: a0x2 bxc0
关于一元二次方程 a2x bxc0a0 ,当
a,b,c满足什么条件时,方程的两根互
为相反数?
解:一元二次方程 a2x b xc0a0的解为:
x 1 b 2 b a 2 4 a,x c 2 b 2 b a 2 4 ac
x1x2
b b24acb b24ac
x__ 5_2 _7 ____
即x1: _1 _x_ 2_ _-6,___
2、用公式法解方程
1 x 2 2 x 5 2 6 t 2 13 t 5 0 3 3 x 2 1 x 1 0
22
4 x 2 2 2 x 3 0
2
3、想一想:
b24ac32 4221
9168
177
x3 177
22
即 :x13417,x7 234177
例3 解方程: x2323x
解: 原方x 程 2 23 x 化 30 为:
a 1 ,b 23 ,c 3

公式法解一元二次方程的公式步骤

公式法解一元二次方程的公式步骤

公式法解一元二次方程的公式步骤在代数学中,一元二次方程是一个常见的方程类型。

解决这种方程可以使用不同的方法,其中一种常见的方法是通过使用公式法。

这个方法基于一元二次方程的通用解法,其基本步骤如下:1. 确定方程的形式首先,我们需要确定方程的标准形式为ax^2 + bx + c = 0,其中a、b和c是已知的常数,且a ≠ 0。

2. 计算判别式我们需要计算方程的判别式∆,其公式为∆ = b^2 - 4ac。

判别式描述了实数根的性质,可以帮助我们确定方程的解的类型。

3. 根据判别式确定解的类型根据计算得到的判别式∆,我们可以确定方程的解的类型: - 如果∆ > 0,则方程有两个不相等的实数解。

- 如果∆ = 0,则方程有两个相等的实数解。

- 如果∆< 0,则方程没有实数解,而是有两个共轭复数解。

4. 根据解的类型计算解根据前面确定的解的类型,我们可以使用以下公式计算方程的解: - 如果方程有两个不相等的实数解,则解可以通过以下公式计算:x = (-b ± √∆) / 2a。

-如果方程有两个相等的实数解,则解可以通过以下公式计算:x = -b / 2a。

- 如果方程没有实数解而是有两个共轭复数解,则解可以通过以下公式计算:x = (-b ± i√(-∆)) / 2a,其中i是虚数单位。

5. 求解实际问题理解了如何使用公式法解决一元二次方程后,我们可以应用这个方法来解决实际的问题。

对于给定的实际问题,我们可以将其转化为一元二次方程,然后使用公式法求解。

以下是一个示例:问题:设某物体从离地面100米高的位置自由下落,在空气阻力忽略不计的情况下,求物体落地所需要的时间。

解答: - 在这个问题中,我们可以使用以下公式来描述物体的高度h(单位: 米)与时间t(单位: 秒)之间的关系:h = 100 - 4.9t^2。

这是一个典型的二次方程。

- 我们希望知道物体落地时的高度h为零。

一元二次方程的解法(公式法3种题型)(解析版)

一元二次方程的解法(公式法3种题型)(解析版)

一元二次方程的解法(公式法3种题型)1.了解求根公式的推导过程.(难点)2.掌握用公式法解一元二次方程.(重点)3.理解并会用判别式求一元二次方程的根.4.会用判别式判断一元二次方程的根的情况一、公式引入一元二次方程20ax bx c ++=(0a ≠),可用配方法进行求解:得:2224()24b b acx a a −+=.对上面这个方程进行讨论:因为0a ≠,所以240a >①当240b ac −≥时,22404b aca−≥利用开平方法,得:x += 即:x = ②当240b ac −<时,22404b ac a −< 这时,在实数范围内,x 取任何值都不能使方程2224()24b b acx a a−+=左右两边的值相等,所以原方程没有实数根.二、求根公式一元二次方程20ax bx c ++=(0a ≠),当240b ac −≥时,有两个实数根:1x =2x =这就是一元二次方程20ax bx c ++=(0a ≠)的求根公式. 三、用公式法解一元二次方程一般步骤①把一元二次方程化成一般形式20ax bx c ++=(0a ≠); ②确定a 、b 、c 的值;③求出24b ac −的值(或代数式);④若240b ac −≥,则把a 、b 、c 及24b ac −的值代入求根公式,求出1x 、2x ;若240b ac −<,则方程无解.四、 根的判别式1.一元二次方程根的判别式:我们把24b ac −叫做一元二次方程20(0)ax bx c a ++=≠的根的判别式,通常用符号“∆”表示,记作2=4b ac ∆−.2.一元二次方程20(0)ax bx c a ++=≠, 当2=40b ac ∆−>时,方程有两个不相等的实数根; 当2=40b ac ∆−=时,方程有两个相等的实数根;当2=40b ac ∆−<时,方程没有实数根.五、根的判别式的应用(1)不解方程判定方程根的情况; (2)根据参数系数的性质确定根的范围; (3)解与根有关的证明题.题型1根的判别式例1.选择:(1) 下列关于x 的一元二次方程中,有两个不.相等的实数根的方程是( )(A )012=+x(B )0122=++x x (C )0322=++x x(D )0322=−+x x(2) 不解方程,判别方程25750x x −+=的根的情况是()(A )有两个相等的实数根 (B )有两个不相等的实数根 (C )只有一个实数根(D )没有实数根(3)方程2510x x −−=的根的情况是()(A )有两个相等实根 (B )有两个不等实根 (C )没有实根(D )无法确定(4) 一元二次方程2310x x +−=的根的情况为()(A )有两个不相等的实数根 (B )有两个相等的实数根 (C )只有一个实数根(D )没有实数根【答案】(1)D ;(2)D ;(3)B ;(4)A .【答案】【答案】【解析】(1)A :1a =,0b =,1c =,2440b ac ∆=−=−<,方程无实根;B :1a =,2b =,1c =,240b ac ∆=−=,方程有两个相等实根; C :1a =,2b =,3c =,2480b ac ∆=−=−<,方程无实根;D :1a =,2b =,3c =−,24160b ac ∆=−=>,方程有两不等实根实根,故选D ;(2)5a =,7b =−,5c =,24510b ac ∆=−=−<,方程无实根,故选D ; (3)1a =,5b =−,1c =−,24290b ac ∆=−=>,方程有两不等实根,故选B ; (4)1a =,3b =,1c =−,24130b ac ∆=−=>,方程有两个相等实根,故选A .【总结】考查一元二次方程根的判别式判定方程根的情况,先列出方程中的a 、b 、c ,再代值计算∆,根据∆与0的大小关系确定方程根的情况,注意a 、c 异号时则必有两不等实根. 例2.不解方程,判别下列方程的根的情况: (1)24530x x −−=; (2)22430x x ++=;(3)223x +=;(4)22340x x +−=.【答案】(1)方程有两不等实根;(2)方程无实数根;(3)方程有两相等实根; (4)方程有两不等实根.【答案】【答案】【解析】(1)4a =,5b =−,3c =−,24730b ac ∆=−=>,方程有两不等实根;2a =,4b =,3c =,2480b ac ∆=−=−<,方程无实数根;2a =,b =−3c =,240b ac ∆=−=,方程有两相等实根;(4)2a =,3b =,4c =−,24410b ac ∆=−=>,方程有两不等实根.【总结】考查一元二次方程根的判别式判定方程根的情况,先将方程整理成一般形式,列出方程中的a 、b 、c ,再代值计算∆,根据∆与0的大小关系确定方程根的情况,注意a 、c 异号时则必有两不等实根.题型2用公式法解一元二次方程例3.(2022秋·江苏苏州·九年级校考期中)用公式法解方程:22720x x −+=.【答案】12x x ==【分析】根据公式法解一元二次方程即可求解.【详解】解:22720x x −+=,∴2,7,2a b c ==−=,244942233b ac ∆=−=−⨯⨯=,∴x ==,解得:12x x ==.【点睛】本题考查了公式法解一元二次方程,掌握一元二次方程的求根公式是解题的关键. 例4.用公式法解下列方程:(1)2320x x +−=;(2)25610x x −++=.【答案】(1)12x x ==;(2)12x x =.【解析】(1)132a b c ===−,,1742=−ac b ,则2173±−=x ,∴12x x ==;(2)561a b c =−==,,,则5642=−ac b ,则101426−±−=x ,∴123355x x −==,.【总结】本题主要考查一元二次方程求根公式x =的运用.例5.用公式法解下列方程:(1)291x +=;(220+−=.【答案】(1)12x x ==;(2)12x x ==【解析】(1)1,66,9=−==c b a ,则18042=−ac b ,则185666±=x ,∴原方程的解为:12x x ==;22,34,2−===c b a ,则6442=−ac b ,则22834±−=x ,∴原方程的解为:12x x ==【总结】本题主要考查一元二次方程求根公式的运用.题型3根的判别式的应用例6.(2022秋·江苏扬州·九年级校联考期中)关于x 的一元二次方程()21360x k x k +++−=.(1)求证:方程总有两个实数根;(2)若方程有一个根不小于7,求k 的取值范围. 【答案】(1)见解析. (2)5k ≤−.【分析】(1)计算根的判别式的值,利用配方法得到()25k ∆=−,根据非负数的性质得到0∆≥,然后根据判别式的意义得到结论; (2)利用求根公式得到13x =−,22kx =−.根据题意得到27k −≥,即可求得k 的取值范围.【详解】(1)解:()()21436k k ∆=+−−2211224k k k =++−+ 21025k k =−+()250k =−≥,∴方程总有实数根; (2)解:∵()250k ∆=−≥,∴()()152k k x −+±−=,解方程得:13x =−,22kx =−,由于方程有一个根不小于7, ∴27k −≥, 解得:5k ≤−.【点睛】本题考查的是根的判别式及一元二次方程的解的定义,在解答(2)时得到方程的两个根是解题的关键.例7.(2023·江苏苏州·统考一模)已知关于x 的一元二次方程22210x mx m −+−=. (1)若该方程有一个根是2x =,求m 的值;(2)求证:无论m 取什么值,该方程总有两个实数根. 【答案】(1)32m =(2)证明见解析【分析】(1)直接把2x =代入到原方程中得到关于m 的方程,解方程即可得到答案; (2)根据一元二次方程根的判别式进行求解即可.【详解】(1)解:∵关于x 的一元二次方程22210x mx m −+−=的一个根为2x =,∴224210m m −+−=,∴32m =;(2)证明:由题意得,()()()222242421484410b ac m m m m m ∆=−=−−−=−+=−≥,∴无论m 取什么值,该方程总有两个实数根.【点睛】本题主要考查了一元二次方程的解和根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根;一元二次方程的解是使方程左右两边相等的未知数的值.例8.(2023秋·江苏扬州·九年级校考期末)关于x 的一元二次方程()23220x k x k −+++=.(1)求证:方程总有两个实数根;(2)若方程有一个根小于2,求k 的取值范围. 【答案】(1)见解析 (2)1k <【分析】(1)计算一元二次方程根的判别式,根据根的判别式进行判断即可得证;(2)根据公式法求得方程的解,得出122,1==+x x k ,根据题意列出不等式,解不等式即可求解. 【详解】(1)证明:关于x 的一元二次方程()23220x k x k −+++=,∴1,(3),22a b k c k ==−+=+ ∵[]224(3)41(22)−=−+−⨯⨯+b ac k k221k k =−+2(1)0k =−≥,∴此方程总有两个实数根; (2)∵()23220x k x k −+++=∵2(1)k ∆=−∴3(1)2+±−==k k x解得:122,1==+x x k ,∵方程有一个根小于2, ∴12k +<, 解得1k <.【点睛】本题考查了一元二次方程根的判别式,解一元二次方程,熟练掌握一元二次方程根的情况与判别式的关系是解题的关键.一、单选题1.(2023·江苏徐州·统考一模)关于一元二次方程2430x x ++=根的情况,下列说法中正确的是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .无法确定【答案】A【分析】直接利用一元二次方程根的判别式即可得.【详解】解:2430x x ++=其中1a =,4b =,3c =,∴2Δ441340=−⨯⨯=>,∴方程有两个不相等的实数根. 故选:A .【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题关键. 2.(2023·江苏徐州·校考一模)关于x 的一元二次方程240x x k −+=有实数根,则k 的值可以是( ) A .4 B .5 C .6 D .7【答案】A【分析】利用一元二次方程根的判别式求解即可.【详解】解:∵关于x 的一元二次方程240x x k −+=有实数根,∴()2440k ∆=−−≥,∴4k ≤,∴四个选项中只有A 选项符合题意, 故选A .【点睛】本题主要考查次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.3.(2023秋·江苏盐城·九年级统考期末)若关于x 的一元二次方程240x x k −−=没有实数根,则k 的值可以是( ) A .5− B .4− C .3− D .2【答案】A【分析】利用一元二次方程根的判别式求解即可.【详解】解:∵关于x 的一元二次方程240x x k −−=无实数根,∴()2440k ∆=−+<,∴4k <−,∴四个选项中,只有A 选项符合题意, 故A .【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.4.(2023春·江苏盐城·九年级统考期末)若关于x 的一元二次方程220x x k −+=没有实数根,则k 的值可以是( ) A .2 B .1 C .0 D .1−【答案】A【分析】根据一元二次方程根的判别式进行求解即可.【详解】解:∵关于x 的一元二次方程220x x k −+=没有实数根,∴()2240k ∆=−−<,∴1k >,∴四个选项中,只有选项A 符合题意, 故选A .【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.5.(2023秋·江苏·九年级统考期末)若关于x 的一元二次方程2440x x k −−+=没有实数根,则k 的取值范围为( ) A .0k > B .4k > C .0k < D .4k <【答案】C【分析】根据一元二次方程根的判别式进行判断即可求解.【详解】解:∵关于x 的一元二次方程2440x x k −−+=没有实数根,∴()2416440b ac k ∆=−=−−<,解得:0k <故选:C .【点睛】本题考查了一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=−,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根. 二、填空题6.(2023·江苏常州·校考一模)若关于x 的一元二次方程()22210k x x −−−=有实数根,则实数k 的取值范围是______. 【答案】1k ≥且2k ≠【分析】根据一元二次方程的定义和判别式的性质计算,即可得到答案.【详解】∵关于x 的一元二次方程()22210k x x −−−=有实数根, ∴()()()22024210k k −≠⎧⎪⎨−−−⨯−≥⎪⎩ ∴21k k ≠⎧⎨≥⎩,即1k ≥且2k ≠. 故答案为:1k ≥且2k ≠.【点睛】本题考查了一元二次方程的定义和跟的判别式,解题的关键是熟练掌握一元二次方程的定义和判别式的性质,从而完成求解.7.(2023·江苏常州·统考一模)若关于x 的方程20x x m −+=(m 为常数)有两个相等的实数根,则m =______.【答案】14【分析】先根据方程有两个相等的实数根得出△0=,求出m 的值即可.【详解】解:关于x 的方程20(x x m m −+=为常数)有两个相等的实数根,∴△2(1)40m =−−=,解得14m =.故答案为:14.【点睛】本题考查的是根的判别式,孰知当△0=时,一元二次方程2(0)y ax bx c a =++≠有两个相等的实数根是解答此题的关键.8.(2023·江苏盐城·校考二模)已知关于x 的一元二次方程240x ax ++=有一个根为1,则a 的值为________.【答案】5a =−【分析】将1x =代入方程240x ax ++=,解方程即可得到a 的值.【详解】∵关于x 的一元二次方程240x ax ++=有一个根为1,∴将1x =代入方程240x ax ++=,得140a ++=,解得:5a =−, 故答案为:5−【点睛】本题主要考查一元二次方程的解,理解一元二次方程的解是使得方程左右两边相等的未知数的值是解题的关键.9.(2023·江苏宿迁·模拟预测)关于x 的方程()21210m x x −−+=有实数根,则m 的取值范围是______. 【答案】2m ≤/2m ≥【分析】分当10m −=时,当10m −≠,即1m ≠时,两种情况讨论求解即可. 【详解】解:当10m −=时,即1m =时,原方程即为210x −+=,解得12x =,符合题意;当10m −≠,即1m ≠时,∵关于x 的方程()21210m x x −−+= ∴()()22410m ∆=−−−≥,解得2m ≤且1m ≠; 综上所述,2m ≤, 故答案为:2m ≤.【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.10.(2023·江苏·模拟预测)请填写一个常数,使得一元二次方程25x x −+____________0=没有实数根.【答案】7(答案不唯一)【分析】设这个常数为a ,根据根的判别式求出a 的取值范围即可得到答案. 【详解】解:设这个常数为a ,∴方程250x x a −+=没有实数根,∴()2540a ∆=−−<,∴254a >,∴7a =满足题意,故答案为:7(答案不唯一).【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.11.(2023秋·江苏无锡·九年级校联考期末)请填写一个常数,使得关于x 的方程24x x −+________=0有两个不相等的实数根. 【答案】1(答案不唯一)【分析】根据方程的系数结合根的判别式2=40b ac ∆−>,即可得出关于c 的不等式,求解即可得出答案.【详解】解:1a =,4b =−,设常数为c ,()22=44410b ac c ∆−=−−⨯⨯>4c ∴<故答案为:1(答案不唯一).【点睛】本题考查了根的判别式,牢记“当0∆>时,方程有两个不相等的实数根”是解题的关键. 三、解答题12.(2022秋·江苏淮安·九年级统考期末)求证:关于x 的方程2()0()x m n x mn m n +++=≠有两个不相等的实数根. 【答案】见解析【分析】根据224()41b ac m n mn ∆=−=+−⨯⨯,再判断出的符号,即可得出结论. 【详解】解∶2222()412()m n mn m n mn m n ∆=+−⨯⨯=+−=−,m n ≠()2m n ∴−>∴方程有两个不相等的实数根.【点睛】本题考查了一元二次方程20(0)ax bx c a ++=≠的根的判别式2Δ4b ac =−:当0∆>,方程有两个不相等的实数根;当Δ0=,方程有两个相等的实数根;当Δ0<,方程没有实数根. 13.(2023·江苏盐城·校考一模)已知关于x 的一元二次方程210x ax a −+−=. (1)求证:方程总有两个实数根;(2)若该方程有一实数根大于4,求a 的取值范围. 【答案】(1)见解析 (2)5a >【分析】(1)根据一元二次方程根的判别式进行求解即可;(2)利用因式分解法解方程求出方程两个根为1211x x a ==−,,再根据该方程有一实数根大于4进行求解即可.【详解】(1)解:∵知关于x 的一元二次方程为210x ax a −+−=,∴()()()222414420a a a a a ∆=−−−=−+=−≥,∴方程总有两个实数根;(2)解:∵210x ax a −+−=,∴()()110x x a −+−=,∴10x −=或10x a +−=, 解得1211x x a ==−,,∵该方程有一实数根大于4, ∴14a −>, ∴5a >.【点睛】本题主要考查了一元二次方程根的判别式,解一元二次方程,灵活运用所学知识是解题的关键. 14.(2023秋·江苏南通·九年级统考期末)关于x 的一元二次方程2(23)10mx m x m ++++=有两个不等的实数根.(1)求m 的取值范围;(2)当m 取最小整数时,求x 的值. 【答案】(1)98m >−且0m ≠(2)10x =,21x =【分析】(1)由0∆>得到关于m 的不等式,解之得到m 的范围,根据一元二次方程的定义求得答案; (2)由(1)知1m =−,还原方程,利用因式分解法求解可得.【详解】(1)解:由题意得:2(23)4(1)0m m m +−+>, 解得:98m >−且0m ≠;(2)由(1)知,m 最小整数为1−,此时方程为:20x x −+=,解得:10x =,21x =.【点睛】本题主要考查一元二次方程的定义及根的判别式,解题的关键是熟练掌握方程的根的情况与判别式的值之间的关系.【答案】(1)28n m =−(2)见解析【分析】(1)根据根的判别式符号进行求解;(2)根据判别式以及一元二次方程的解法即可求出答案. 【详解】(1)由题意得:()242n m ∆=−⋅−28n m ∆=+方程有两个相等的实数根, 0∴∆=280n m ∴+= 28n m ∴=−(2)当2n m =−()228m m ∆=−+2Δ44m m =++()224420m m m ++=+≥∴方程始终有两个实数根【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的判别式.一、单选题1.(2023春·江苏南京·九年级南京市竹山中学校考阶段练习)一元二次方程2440x x +−=的根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .没有实数根 D .无法确定【答案】B【分析】利用一元二次方程根的判别式求解即可. 【详解】解:由题意得,()24414320∆=−⨯⨯−=>,∴原方程有两个不相等的实数根, 故选B .【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.2.(2022秋·江苏宿迁·九年级校考阶段练习)关于x 的一元二次方程250x ax −−=的根的情况是( ) A .有两个不相等的实数根 B .可能有实数根,也可能没有 C .有两个相等的实数根 D .没有实数根【答案】A【分析】利用一元二次方程根的判别式求解即可.【详解】解:∵关于x 的一元二次方程为250x ax −−=,∴()()22451200a a ∆=−−⨯−⨯=+>,∴关于x 的一元二次方程250x ax −−=有两个不相等的实数根,故答案为:A .【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.3.(2023春·江苏宿迁·九年级统考阶段练习)若关于x 的一元二次方程22(1)0x x k +−−=有实数根,则k 的取值范围是( ) A .0k > B .0k ≥ C .0k < D .0k ≤【答案】B【分析】根据一元二次方程有实数根,可知240b ac −≥,求出解即可.【详解】∵一元二次方程22(1)0x x k +−−=有实数根,∴240b ac −≥,即224[(1)]0k −−−≥, 解得0k ≥. 故选:B .【点睛】本题主要考查了一元二次方程根的判别式,掌握24b ac −与一元二次方程20(0)ax bx c a ++=≠的根的关系是解题的关键.即当240b ac −>时,一元二次方程20(0)ax bx c a ++=≠有两个不相等的实数根;当240b ac −=时,一元二次方程20(0)ax bx c a ++=≠有两个相等的实数根;当240b ac −<时,一元二次方程20(0)ax bx c a ++=≠没有实数根.5.(2023春·江苏盐城·九年级校考阶段练习)关于x 的一元二次方程2210kx x −−=有两个不相等的实数根,则k 的取值范围是( ) A .1k >−B .1k <C .1k >−且0k ≠D .1k <且0k ≠【答案】C【分析】根据一元二次方程的定义,以及一元二次方程根的判别式得出不等式组,解不等式组即可求解.【详解】解:∵关于x 的一元二次方程2210kx x −−=有两个不相等的实数根,∴0k ≠且0∆>,即2(2)4(1)0k −−⨯⨯−>, 解得1k >−且0k ≠. 故选:C .【点睛】本题考查了一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=−,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根. 二、填空题5.(2023春·江苏泰州·九年级校联考阶段练习)请填写一个常数,使得关于x 的方程22+−x x __________0=有两个相等的实数根. 【答案】1【分析】设这个常数为a ,利用一元二次方程根的判别式得出a 的方程,解方程即可得到答案. 【详解】解:设这个常数为a , ∵要使原方程有两个相等的实数根, ∴()2=240a ∆−−=,∴1a =,∴满足题意的常数可以为1, 故答案为:1.【点睛】本题考查了根的判别式,一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=−有如下关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程无实数根.6.(2023春·江苏泰州·九年级靖江市靖城中学校考阶段练习)方程220x x m −+=没有实数根,则m 的取值范围是______. 【答案】1m >/1m <【分析】根据一元二次方程无实数根得到Δ0<,代入即可得出答案.【详解】方程220x x m −+=没有实数根,4410m ∴∆=−⨯⨯<, 1m ∴>,故答案为:1m >.【点睛】本题考查一元二次方程有无实数根,熟记判别式24b ac ∆=−是解题的关键.三、解答题7.(2022秋·江苏连云港·九年级校考阶段练习)已知关于x 的一元二次方程210x ax a ++−=. (1)若该方程的一个根为2−,求a 的值及该方程的另一根; (2)求证:无论a 取何实数,该方程都有实数根. 【答案】(1)3a =,该方程的另一根为1− (2)证明见解析【分析】(1)先根据一元二次方程解的定义把2x =−代入到210x ax a ++−=中求出a 的值,再利用因式分解法解方程即可;(2)根据一元二次方程根的判别式进行求解即可.【详解】(1)解:∵关于x 的一元二次方程210x ax a ++−=的一个根为2−,∴4210a a −+−=, ∴3a =,∴原方程即为2320x x ++=,∴()()120x x ++=,解得=1x −或2x =−, ∴方程的另一个根为1−;(2)解:∵关于x 的一元二次方程为210x ax a ++−=,∴()()222414420a a a a a ∆=−−=−+=−≥,∴无论a 取何实数,该方程都有实数根.【点睛】本题主要考查了一元二次方程解的定义,解一元二次方程,一元二次方程判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.8.(2023春·江苏盐城·九年级校考阶段练习)关于x 的一元二次方程2430mx x -+=有实数根. (1)求m 的取值范围;(2)若m 为正整数,求出此时方程的根. 【答案】(1)43m ≤且0m ≠(2)11x =,23x =【分析】(1)由二次项系数非零及根的判别式0∆≥,可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围;(2)由(1)的结论,结合m 为正整数,可得出m 的值,再其代入原方程,解之即可得出结论.【详解】(1)解:∵关于x 的一元二次方程2430mx x -+=有实数根,∴()20Δ4430m m ≠⎧⎪⎨=−−⨯⨯≥⎪⎩, 解得:43m ≤且0m ≠,∴m 的取值范围为43m ≤且0m ≠;(2)∵43m ≤且0m ≠,且m 为正整数, ∴1m =,∴原方程为2430x x −+=,即()()310x x −−=, 解得:11x =,23x =.【点睛】本题考查了一元二次方程根的判别式、一元二次方程的定义以及因式分解法解一元二次方程,解题的关键是:(1)利用二次项系数非零及根的判别式0∆≥,找出关于m 的一元一次不等式组;(2)代入m 的值,求出方程的解.9.(2022秋·江苏南京·九年级校考阶段练习)已知关于x 的方程()242440mx m x m +−+−=(m 为常数,且0m ≠)(1)求证:方程总有实数根; (2)若该方程有两个实数根;①不论m 取何实数,该方程总有一个不变的实数根为______; ②若m 为整数,且方程的两个实数根都是整数,求m 的值. 【答案】(1)证明见解析 (2)①2−;②1m =±或2m =±【分析】(1)利用一元二次方程根的判别式求解即可;(2)①利用公式法求出方程的两个实数根即可得到答案;②根据①所求两实数根,结合m 为整数,且方程的两个实数根都是整数进行求解即可. 【详解】(1)解:由题意得()()22=442444b ac m m m ∆−=−−−2216164161640m m m m =−+−+=>,∴方程总有实数根; (2)解:①∵关于x 的方程()242440mx m x m +−+−=有两个实数根,∴2422m x m −±==, ∴1224222242222m m m x x m m m −+−−−====−,,∴不论m 取何实数,该方程总有一个不变的实数根为2−, 故答案为:2−;②由①得,方程的两个实数根为12222mx x m −==−,,∵m 为整数,且方程的两个实数根都是整数, ∴2222m m m −=−为整数,∴1m =±或2m =±.【点睛】本题主要考查了一元二次方程根的判别式,公式法解一元二次方程,熟知一元二次方程的相关知识是解题的关键.10.(2022秋·江苏南通·九年级校考阶段练习)已知关于x 的方程2(1)(3)20m x m x +−++=. (1)证明:不论m 为何值时,方程总有实数根; (2)m 为何整数时,方程有两个不相等的正整数根. 【答案】(1)证明见解析(2)0m =【分析】(1)求出方程根的判别式,利用配方法进行变形,根据平方的非负性证明即可;(2)利用一元二次方程求根公式求出方程的两个根,根据题意求出m 的值.【详解】(1)(1)证明:①1m =−时,该方程为一元一次方程220x −+=,有实数根1x =;②1m ≠−时,该方程为一元二次方程,2(3)8(1)m m ∆=+−+221m m =−+2(1)m =−,不论m 为何值时,2(1)0m −…, ∴0∆…, ∴方程总有实数根;综上,不论m 为何值时,方程总有实数根.(2)解:解方程得,(3)(1)2(1)m m x m +±−=+, 11x =,221x m =+,方程有两个不相等的正整数根,m 为整数,0m ∴=.【点睛】本题考查的是一元二次方程根的判别式和求根公式的应用,掌握一元二次方程根的情况与判别式△的关系:0∆>⇔方程有两个不相等的实数根;0∆=⇔方程有两个相等的实数根;0∆<⇔方程没有实数根是解题的关键.【答案】22212x x x −−或【分析】根据分式的混合运算法则化简后,再求出x 的值,代入求值即可.【详解】解:221222121x x x x x x x ⎛⎫÷ ⎪⎝⎭−−−−+++()()()()()22112221121x x x x x x x x x x x ⎡⎤=÷⎢⎥⎣⎦+−−−−++++()()()()21211112x x x x x x +=⨯++−−()2211x x x =−− 22221x x x =−−∵210x x −−=,∴21x x −=,∴原式()2221x x x −=−2211x =−⨯12x =−, 对于210x x −−=来说,1,1,1,a b c ==−=−∵()()22414115b ac −=−−⨯⨯−=,∴x =,∴12x x ==,∴当x =时,原式12x =−,当x =时,原式12x =−=.【点睛】此题考查了分式的化简求值,解一元二次方程等知识,熟练掌握运算法则是解题的关键. 12.(2022秋·江苏盐城·九年级校考阶段练习)解下列方程:2231x x +=【答案】x x ==12,【分析】先将原方程化为一元二次方程的一般形式,然后用公式法求解即可;【详解】解:原方程可化为:22310x x +−=a b c ===−231 , ,()b ac −=−⨯⨯−=>2243421170x ∴==x x ==12,【点睛】本题考查了一元二次方程的解法,掌握一元二次方程的基本解法是解题的关键. 13.(2022秋·江苏无锡·九年级校联考阶段练习)已知关于x 的方程220x mx m +−=−.(1)当该方程的一个根为1−时,求m 的值及该方程的另一根;(2)求证:不论m 取何实数,该方程都有两个不相等的实数根.【答案】(1)1=2m ,方程的另一根为32(2)见解析【分析】(1)把1x =−代入原方程求得m 的值,进一步求得方程的另一个根即可;(2)计算出根的判别式,进一步利用配方法和非负数的性质证得结论即可.【详解】(1)解:把1x =−代入方程 220x mx m +−=−得 120m m ++−=∴1=2m ,把1=2m 代入到原方程得 213022x x −−=∴1x =−或3=2x 故答案为:1=2m ,方程的另一根为32;(2)证明:∵方程220x mx m +−=−,∴根的判别式()()()224224m m m ∆=−−−=−+∵()220m −≥∴()2240m ∆=−+> ∴不论m 取何实数,该方程都有两个不相等的实数根.【点睛】本题考查了一元二次方程的根的判别式的性质,对于一元二次方程()200ax bx c a ++=≠的根的判别式24b ac ∆=−:当0∆>,方程有两个不相等的实数根;当0∆=,方程有两个相等的实数根;当0∆<,方程没有实数根;熟练掌握一元二次方程根的判别式的性质是解本题的关键. 14.(2022秋·江苏常州·九年级校考阶段练习)用指定方法解下列一元二次方程:(1)2820x x −−=(配方法)(2)2320x x ++=(公式法)【答案】(1)14x =+24x =−(2)11x =−,22x =−【分析】(1)将常数项移至方程的右边,然后两边都加上一次项系数的一半的平方配方成完全平方后,再开方,即可得出结果;(2)利用公式法计算即可.【详解】(1)解:2820x x −−=移项,得:282x x −=,配方,得:2228424x x −+=+,即()2418x −=,由此可得:4x −=±14x =+24x =−(2)解:2320x x ++=1a =,3b =,2c =,224341210b ac ∆=−=−⨯⨯=>,方程有两个不等的实数根,3131212x −±−±===⨯,即11x =−,22x =−.【点睛】本题考查了解一元二次方程,解本题的关键在熟练掌握用配方法和公式法解一元二次方程.解一元二次方程的基本思路是:将二次方程转化为一次方程,即降次.。

解一元二次方程的方法公式法

解一元二次方程的方法公式法

解一元二次方程的方法公式法要解一元二次方程,我们可以使用求根公式法,也叫做二次公式法。

该方法利用了二次方程的性质,通过求解方程中的系数来求得方程的根。

一元二次方程可以表示为:ax^2 + bx + c = 0,其中a、b、c是已知系数,x是未知数。

我们首先来推导二次公式的具体形式。

设方程的两个根分别为x1和x2,那么根据二次方程的性质,我们有以下两个关系式:x1+x2=-b/a,(1)x1*x2=c/a。

(2)我们要将x1和x2表示为a、b、c的函数,可以将(1)式两边同时乘以x2,将(2)式两边同时除以x2,得到:x2*(x1+x2)=-b/a*x2,(3)x1*x2/x2=c/a。

(4)根据(4)式,我们得到了一个等式x1=c/a,接下来我们将(1)式和(3)式代入求得的x1中,可以得到:x2*(x1+x2)=-b/a*x2化简得到:x2^2+(x1*x2)=-b/a*x2由于x1*x2=c/a,我们可以写成:x2^2+c/a=-b/a*x2移项得到:x2^2+(b/a)*x2+c/a=0然后将方程两边同时乘以a,得到:a*x2^2+b*x2+c=0。

经过推导,我们得到了一个等价的二次方程a*x2^2+b*x2+c=0,其中x2是方程的根。

类似的,我们可以得到一个与x1有关的等价的二次方程。

综上所述,我们可以得到一元二次方程求根的公式:x1 = (-b + √(b^2 - 4ac)) / 2ax2 = (-b - √(b^2 - 4ac)) / 2a。

这个公式就叫做一元二次方程的求根公式或二次公式。

我们只需将方程的系数a、b、c代入公式中,就能求得方程的根。

需要注意的是,当方程无实根时,也就是判别式(b^2 - 4ac)小于零时,公式中的√(b^2 - 4ac)将导致虚数根的出现。

下面我们通过几个例子来演示一元二次方程的求根过程。

例1:解方程x^2-4x+3=0。

根据二次公式x1=(-(-4)+√((-4)^2-4*1*3))/(2*1)=(4+√(16-12))/2=(4+2)/2=3x2=(-(-4)-√((-4)^2-4*1*3))/(2*1)=(4-√(16-12))/2=(4-2)/2=1所以方程的根是x1=3和x2=1例2:解方程2x^2+5x-3=0。

一元二次方程公式法求根公式

一元二次方程公式法求根公式

一元二次方程公式法求根公式二次方程在整个数学学习中非常重要,尤其是在初中阶段。

它不仅在中考数学中占有很大的比重,而且在实践中也有广泛的应用。

其中方程根的求解是一元二次方程的重中之重。

下面分析一下初中一元二次方程的常见解法:[1]求解一元二次方程求解一元二次方程方程常见的有三种方法:(1)公式法:将一元二次方程化为一般形式 ax^2+bx+c=0 ,然后利用求根公式 ,x=\frac{-b\pm\sqrt{△}}{2a},(△=b^2-4ac)当△>0时,一元二次方程有两个不相等的实数根;当△=0时,一元二次方程有两个相等的实数根;当△<0时,一元二次方程没有实数根;例1用公式法求解方程 x^2+4x+8=2x+11 的根。

解:化简得 x^2+2x-3=0△=2^2-4*1*(-3)=16 >0∴方程有两个不相等的实数根,利用公式得x=\frac{-2\pm\sqrt{16}}{2*1} = \frac{-2\pm4}{2}∴ x=1 或者 x=-3该公式对任何一元二次方程都有效,更常用于求解一元二次方程的解。

(2)配方法:将一元二次方程化为 a^2=p 的形式当p>0时,方程有两个不相等的实数根;当p<0时,方程没有实数根;当p=0时,方程有两个相等的实数根。

(利用0划分是因为 \sqrt{p} 中, p\geq0 时, \sqrt{p} 才有意义,P<0时, \sqrt{p}没有意义)例2.用配方法求解方程 x^2+10x+16=0 的解解:化简得(x+5)^2-9=0进一步化简得(x+5)^2=9∴两边同时开方得 x+5=\pm3∴ x=-2 或者是 x=-8注意:在配方时我们常将二次项得系数化为1,然后加上一次项系数得一半的平方,再减去一次项系数得一半的平方,将常数项合并,然后将常数项移到等式右边,等式左边即为完全平方式,最后等式两边同时开方就可得到方程的根。

解1元2次方程公式法

解1元2次方程公式法

解1元2次方程公式法解一元二次方程公式法是初中数学中比较重要的一个知识点,也是进一步学习高中数学、大学数学的基础。

本篇文章就为大家详细介绍一下解一元二次方程公式法的内容和方法,希望读者在阅读后能够更加深入地了解这一知识点,掌握解题方法。

一、什么是一元二次方程先来了解一下什么是一元二次方程。

一元二次方程是形如ax²+bx+c=0的方程,其中a、b、c是已知的实数,x是未知数。

其中a≠0,这个不等于号起到限制条件的作用,保证x²项系数不为0,从而把一元二次方程与其他形式的方程进行区分。

二、公式法的推导过程公式法是解一元二次方程的一种常用方法。

我们先来看一下它的推导过程。

1.将一元二次方程ax²+bx+c=0移项,得到ax²+bx=-c。

2.两边同时乘以4a,得到4a²x²+4abx=-4ac。

3.左边加上b²,得到4a²x²+4abx+b²=b²-4ac。

4.因为4a²x²+4abx+b²=(2ax+b)²,所以(2ax+b)²=b²-4ac。

5.开方得到2ax+b=±√(b²-4ac),再移项,得到2ax=-b±√(b²-4ac)。

6.最后,除以2a,得到x=(-b±√(b²-4ac))/(2a)。

这就是公式法的推导过程。

将解出的x带入原方程验证,若方程成立,则已经得到正确答案。

三、公式法的应用接下来让我们来看一些具体的例题,来了解一下公式法的应用。

例1:求解2x²-5x+2=0的解根据公式法的推导过程,我们可以知道a=2,b=-5,c=2。

那么代入公式x=(-b±√(b²-4ac))/(2a)即可,得到x1=2,x2=1/2。

因此2x²-5x+2=0的解为x1=2,x2=1/2。

解一元二次方程公式法公式

解一元二次方程公式法公式

解一元二次方程公式法公式要解一元二次方程,大家可能会觉得有点头疼。

不过,别担心,今天就带大家轻松愉快地了解一下这个公式法,保证你听完后会觉得简单得像喝水一样。

一元二次方程长得很像是个“高富帅”,它的标准形式是ax² + bx + c = 0。

这里的 a、b、c 都是数字,a 可不能是零,不然这方程就变成了一元一次方程,乍一看,好像变得简单了不少。

不过,今天我们就来专注于这高大上的二次方程,别把它放错架子。

说到解这个方程,我们就不得不提到一个“神器”——求根公式。

哇,听上去是不是有点像魔法?其实也差不多,公式长得是这样的:x = (b ± √(b² 4ac)) / 2a。

看起来复杂,实际操作起来可轻松了。

这个公式就像是一把钥匙,可以帮助我们打开未知的“门”,找到方程的根。

我们来看看每个部分到底在干啥。

b 是把 b 这个小家伙翻转个身,有点像变魔术,瞬间变成了负值。

然后是√(b² 4ac),这里面其实藏着一个秘密,叫做判别式。

如果这个判别式大于零,那就说明有两个不同的实根;如果等于零,那就意味着有一个重复的根;要是小于零,那就没戏了,根本没有实数解,变成了复数的世界,真是有点让人哭笑不得。

你看,这个公式就像是一道美味的菜,材料准备好后,接下来就是烹饪的过程。

我们把 a、b、c 代入,心里默念“好戏上场”!接下来算出b² 和 4ac,再做个简单的减法,得到判别式。

然后我们再一看,如果这个判别式是个正数,那就可以放心大胆地继续往下走。

根号下的数字计算出来,±符号意味着你有两个选择,就像是去餐厅点菜一样。

搞定了根号,我们再算一算 b,接着加上根号的结果和减去根号的结果,最后都除以 2a,哇,神奇的事情就发生了!你就能得到两个数值,嘿,这两个数就是方程的解了,心里是不是像吃了蜜一样甜?对了,有时候你会碰到特别简单的方程,比如说x² 4 = 0。

用公式法求解一元二次方程

用公式法求解一元二次方程

用公式法求解一元二次方程 一、公式法公式法:求根公式:一般地,对于一元二次方程ax 2+bx +c =0(a ≠0),当b 2-4ac ≥0时,它的根是:2b x a-±=.上面这个式子称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为公式法.【知识拓展】(1)求根公式专指一元二次方程的求根公式,只有确定方程是一元二次方程时,才可以使用.(2)应用公式法解一元二次方程时,要先把方程化成一般形式,确定二次项系数、一次项系数、常数项,且要注意它们的符号.(3)b 2-4ac ≥0是公式使用的前提条件,是公式的重要组成部分.一元二次方程的求根公式的推导:一元二次方程的求根公式的推导过程就是用配方法解一般形式的一元二次方程ax 2+bx +c =0(a ≠0)的过程.∵a ≠0,∴方程的两边同除以a 得20b cx x a a++=.配方得22222b b c b x x a a a a ⎛⎫⎛⎫++=-+ ⎪ ⎪⎝⎭⎝⎭,222424b b ac x a a -⎛⎫+= ⎪⎝⎭, ∵a ≠0,∴a 2>0,∴4a 2>0.∴当b 2-4ac ≥时,2244b ac a-是一个非负数.此时两边开平方得22b x a a+=,∴2b x a-±=【知识拓展】(1)被开方数b2--4ac有意义.(2)由求根公式可知一元二次方程的根是由其系数a ,b ,c 决定的,只要确定了a ,b ,c 的值,就可以代入公式求一元二次方程的根.【新课导读·点拨】因为a =1,b =-1,c =-90,所以119212x ±==⨯.故x 1=10,x 2=-9(不符合实际,舍去).所以全校有10个队参赛.【例1】解下列方程.(1)x 2-2x =0; (2)3x 2+4x =-1; (3)2x 2-4x +5=0. 分析:解:(1)x 2-2x -2=0,∵a =1,b =-2,c =-2,∴b 2-4ac =(-2)2-4X1×(-2)-12>0,∴2222x ±±==,∴11x =+11x =- (2)原方程可化为3x 2+4x +1=0,∵a =3,b =4,c =1,∴b 2-4ac =42-4×3×1=4>0, (3)2x 2-4x +5=0,∵a =2,b =-4,c =5,∴b 2-4ac =(-4)2-4×2×5=-24<0, ∴该方程没有实数根.二、一元二次方程根的判别式定义:一元二次方程ax 2+bx +c =0(a ≠0)的根的情况可由b 2-4ac 来判定.我们把b 2-4ac 叫做一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用希腊字母“△”来表示,读作:“delta(德尔塔)”.对于一元二次方程ax 2+bx +c =0(a ≠0),当b 2-4ac >0时,方程有两个不相等的实数根; 当b 2-4ac =0时,方程有两个相等的实数根; 当b 2-4ac <0时,方程没有实数根. 反之亦成立.【知识拓展】(1)根的判别式是△=b 2-4ac ,而不是24b =-(2)根的判别式是在一元二次方程的一般形式下得出的,因此,必须把所给的方程化为一般形式再判别根的情况,要注意方程中各项系数的符号.(3)如果一元二次方程有实根,那么应当包括有两个不相等的实数根和有两个相等的实数根两种情况,此时b 2-4ac ≥0.探究交流已知关于x的一元二次方程x2+2x+m=0有实数根,当m取最大值时,求该一元二次方程的根.分析:根据根的判别式的意义可得△=4-4m≥0,解得m≤1,所以m的最大值为1,此时方程为x2+2x+1=0,然后运用公式法解方程.解:∵关于x的一元二次方程x2+2x+m=0有实数根,∴△=4-4m≥0,∴m≤1,∴m的最大值为1,当m=1时,一元二次方程变形为x2+2x+1=0,解得x1=x2=1.【例2】一元二次方程x2+x+3=0的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定分析:判断上述方程的根的情况,只要看根的判别式△=b2-4ac的值的符号就可以了.∵a=1,b=1,c=3,∴△=b2-4ac=12-4×1×3=-11<0,∴此方程没有实数根.故选C.##整理归纳##$$练习$$##题型##单选##题干##(2013·珠海中考)已知一元二次方程:①x2+2x+3=0,x2-2x--3=0.下列说法正确的是( )A.99帮有实数解B.①无实数解,②有实数解C.①有实数解,②无实数解D.①②都无实数解##答案##B##解析##方程①的判别式△=4-12=-8,则①没有实数解;②的判别式△=4+12=16,则②有实数解.故选B.$$更多练习$$##题型##主观填空题##题干##(2011·上海中考)如果关于x 的一元二次方程x 2-6x +c =0(c 是常数)没有实数根,那么c 的取值范围是______. ##答案## c >9##解析##∵关于xx 2-6x +c =0(c 是常数)没有实数根,∴△=(-6)2-4c <0,即36-4c <0,c >9##题型## 主观题 ##题干##(2012·珠海中考)已知关于x 的一元二次方程x 2+2x +m =0. (1)当m =3时,判断方程的根的情况; (2)当m =3时,求方程的根. ##答案##解:(1)当m =3时,△=b 2-4ac =22-4×3=-8<0,∴原方程无实数根. (2)当m =-3时,原方程变形为x 2+2x -3=0.∵b 2-4ac =4+12=16,2122x -±==-±,∴x 1=1,x 2=-3.##题型## 主观题 ##题干##(2013·乐山中考)已知关于x 的一元二次方程x 2-(2k +1)x +k 2+k =0. (1)求证方程有两个不相等的实数根;(2)若△ABC 的两边AB ,AC 的长是这个方程的两个实数根,第三边BC 的长为5,当△ABC 是等腰三角形时,求k 的值.##答案##(1)证明:∵△=(2k +1)2-4(k 2+k)=1>0,∴方程有两个不相等的实根.(2)解:一元二次方程x 2-(2k+1)x +k 2+k =0的解为212k x +±=,即x 1=k ,x 2=k+1,不妨设AB =k ,AC =k +1,当AB =BC 时,△ABC 是等腰三角形,则k =5;当AC =BC 时,△ABC 是等腰三角形,则k +1=5,解的k =4.所以k 的值为5或4.$$典型$$ ##典例精析##类型一 用公式法解一元二次方程 【例1】用公式法解下列方程. (1)x 2+2x -2=0;(2) 23x+=;(3)21028n n -+=分析:方程(1)(3)可直接确定a ,b ,c 的值,方程(2)需先化为一般形式,再确定a ,b ,c 的值.解:(1)∵a =1,b =2,c =-2,∴b 2-4ac =22-4×1×(-2)=12>0,∴212x -±==-±11x =-+,11x =--(2)将方程化为一般形式,得230x -+=.∵a =1,b =-,c =3,∴(224241340b a c -=-⨯⨯=-<∴原方程没有实数根.(3)∵a =1,b =-,18c =,∴221441028b ac ⎛⎫-=--⨯⨯= ⎪⎝⎭,∴224n ±==,∴124n n ==.规律方法小结:(1)用公式法解一元二次方程时,一定要先将方程化为一般形式,再确定a ,b ,c 的值.(2)b 2-4ac ≥0是公式中的一个重要组成部分,b 2-4ac <0时,原方程没有实数根.(3)当b2-4ac =0时,应把方程的根写成122bx x a==-,的形式,用以说明一元二次方程有两个相等的根,而不是一个根.类型二不解方程判定根的情况【例2】不解方程,判断下列方程的根的情况.(1)x2-x-1=0;(2)2x2+3x=-2;(3)-2x2-3x+4=0.解:(1)∵a=1,b=-1,c=-1,∴△=b2-4ac=1+4=5>0,∴该方程有两个不相等的实数根.(2)原方程可变形为2x2+3x+2=0,∵a=2,b=3,c=2,∴△=b2-4ac=9-16=-7<0,∴原方程没有实数根.(3)原方程可变形为2x2+3x-4=0,∵a=2,b=3,c=-4,∴b2-4ac=32-4×2×(-4)=41>0,∴原方程有两个不相等的实数根.类型三几何图形中的方案设计问题【例3】(2012·湘潭中考)如图2所示,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25 m),现在已备足可以砌50 m长的墙的材料,试设计一种砌法,使矩形花园的面积为300 m2.(所备材料全部用完)分析:设未知数,将矩形的长和宽表示出来,再根据矩形的面积公式列方程,解一元二次方程即可.解:设AB=x m,则BC=(50-2x)m.根据题意可得x(50-2x)=300,解得x1=10,x2=15.当x=10时,BC=50-2×10=30>25,不符合题意,舍去,当x=15时,BC=50-2×15=20<25,符合题意,故AB=15 m,BC=20 m.答:可以围成AB的长为15 m,BC的长为20 m的矩形.【解题策略】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列方程求解,注意围墙MN最长可利用25 m,舍掉不符合题意的数据.类型四用公式法解含字母系数的一元二次方程【例4】解关于x的方程x2-2mx+m2-2=0.解:∵a=1,b=-2m,c=m2-2,∴()222212mb mx ma--±-±±====±⨯∴1x m =+2x m =- 【解题策略】要熟练运用公式法求一元二次方程的解,准确确定a ,b ,c 的值是解题的关键.类型五 根据方程根的情况,确定待定系数的取值范围.【例5】k 取何值时,关于x 的一元二次方程kx 2-12x +9=0. (1)有两个不相等的实数根? (2)有两个相等的实数根? (3)没有实数根?分析:(1)当△=b 2-4ac >0时,方程有两个不相等的实数根;(2)当△=b 2-4ac =0时,方程有两个相等的实数根;(3)当△=b 2-4ac <0时,方程没有实数根.分别求出是的取值范围即可.解题时注意二次项系数k ≠0. 解:方程是一元二次方程,则k ≠0. (1)若方程有两个不相等的实数根,则△= b 2-4ac =144-36k >0,解得k <4.所以k <4且k ≠0. (2)若方程有两个相等的实数根,则△=b 2-4ac =144—36k =0,解得k =4. (3)若方程没有实数根,则△=b 2-4ac =144-36k <0,解得k >4.类型六 设计方案解决几何图形面积问题【例6】(2013·连云港中考)小林准备进行如下操作实验:把一根长为40 cm 的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm2,小林该怎么剪? (2)小峰对小林说:“这两个正方形的面积之和不可能等于48 cm 2.”他的说法对吗?请说明理由.分析:(1)设剪成的较短的一段长x cm ,则较长的一段长(40-x)cm ,这样就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于58 cm 2建立方程求出其解即可;(2)设剪成的较短的一段长优咖,则较长的一段长(40-m)cm ,这样就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于48 cm 2建立方程,如果方程有解就说明小峰的说法错误,否则正确. 解:(1)设剪成的较短的一段长x cm ,则较长的一段长(40-x)cm , 由题意,得22405844x x -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,解得x 1=12,x 2=28.当x =12时,40-x =40-12=28,当x =28时,40-x =40-28=12<28(舍去). ∴较短的一段长12 cm ,较长的一段长28 cm.(2)设剪成的较短的一段长m cm ,则较长的一段长(40-m)cm ,由题意,得22404844m m -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,整理,得m 2-40m +416=0,∵△=(-40)2-4×416=-64<0,∴原方程无解.∴小峰的说法正确,这两个正方形的面积之和不可能等于48 cm 2.类型七 分类讨论求方程的根【例7】解关于x 的方程(k -1)x 2+(k -2)x -2k =0.(23k >)分析:解含有字母系数的方程,往往要按字母的取值分类讨论.此题有两种情况,k =1和k ≠1,当且仅当k ≠1时,二次项系数不为零,才能用一元二次方程的求根公式来解.解:当k =1时,原方程为-x -2=0,∴x =-2. 当k ≠1时,∵a =k -1,b =k -2,c =-2k ,∴b 2-4ac =(k -2)2-4(k -1)(-2k)=9k 2-12k +4=(3k -2)2≥0, ∴21xk =-,∴11kx k =-,22x =-【解题策略】当二次项系数中含有参数时,要讨论;次项系数是否为零.类型八 应用根的判别式判断三角形的形状【例8】已知a ,b ,c 分别是伽c 的三边长,当m >0时,关于x 的一元二次方程()()220cx m b x m ++--=有两个相等的实数根,则△ABC 是什么形状的三角形?分析:由方程有两个相等的实数根可得根的判别式为0,得到与m 有关的等式,由m >0得a ,b ,c之间的关系,从而判定三角形的形状. 解:将方程化为一般形式()()20b c x c b m +-+-=.因为原方程有两个相等的实数根, 所以()()()240b c c b m ∆=--+-=,即4m(a 2+b 2-c 2)=0,又因为m >0,所以a 2+b 2-c 2=0,即a 2+b 2=c 2.根据勾股定理的逆定理知△ABC 是直角三角形.类型九 探索含字母系数的一元二次方程的根的情况【例9】已知关于z 的一元二次方程ax 2+bx +c =o(a ≠0).(1)当a ,c 异号时,试说明该方程必有两个不相等的实数根;(2)当a ,c 同号时,该方程要有实数根,还需要满足什么条件?请你写出一个a ,c 同号,且有实数根的一元二次方程,并解这个方程.分析:(1)只需说明b 2-4ac >0即可.(2)是一个开放性问题,写出的方程满足a ,c 同号,且b 2-4ac ≥0即可.解:(1)因为a ,c 异号,所以ac <O ,所以-4ac >0,所以b 2-4ac >0, 所以,当a ,c 异号时,该方程必有两个不相等的实数根.(2)当a ,c 同号时,该方程要有实数根,还需满足条件b 2-4ac ≥0. 例如方程x 2-4x +3=0,解得x 1=3,x 2=1.【解题策略】(2)中并不是任意的方程都可以,它满足的条件是a ,c 同号且b 2-4ac ≥0,而这样的方程有无数个,我们可以选取一些解答较方便的方程。

一元二次方程的解法公式法

一元二次方程的解法公式法

求解匀加速直线运动的速度,已知初速度 $v_0$、加速度 $a$ 和时间 $t$,则末速度 $v = v_0 + at$。
04 一元二次方程的解法与其 他方法的比较
配方法与公式法的比较
配方法
通过配方将一元二次方程转化为完全平方的形式,然后求解。
公式法
直接使用一元二次方程的解的公式进行求解。
比较
配方法适用于所有的一元二次方程,而公式法只适用于一般形式的一元二次方程。配方法 在求解过程中需要更多的步骤,但适用范围更广;公式法直接简单,但适用范围有限。
直接开平方法:通过直接开平方的方式求解一元二次方程。
公式法:同上。
比较:直接开平方法适用于可以开平方的一元二次方程,而公式法适用于所有的一般形式的 一元二次方程。直接开平方法在求解过程中需要满足特定的条件,但求解过程简单;公式法 适用范围广,但求解过程相对复杂。
05 一元二次方程解法的扩展 和深化
通过因式分解、配方、使用二项式定 理等方法,将高次方程转化为低次方 程或一元一次方程,然后求解。
二元二次方程组的解法
定义
二元二次方程组是指包含两个未 知数的两个二次方程组成的方程
组。Leabharlann 解法通过消元法、代入法、行列式法 等方法,将二元二次方程组转化 为二元一次方程组或一元一次方
程,然后求解。
例子
求解方程组{x^2 + y^2 = 4, x + y = 2},可以通过代入法得到x
简单实例
01
02
总结词
简单的一元二次方程,可以直 接套用公式求解。
实例1
$x^2 - 2x - 3 = 0$
03
实例2
$x^2 + 4x - 1 = 0$

《公式法解一元二次方程》知识全解

《公式法解一元二次方程》知识全解

《公式法解一元二次方程》知识全解课标要求1.理解公式法,能用公式法解数字系数的一元二次方程.2.会用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等.知识结构内容解析1.公式法:一元二次方程20ax bx c ++=(a ≠0)的求根公式为:242b b ac x a --=(240b ac -≥),其中公式中的a 、b 、c 分别是一元二次方程的二次项系数、一次项系数及常数项.我们用求根公式法求一元二次方程解的方法称为公式法.2.求根公式的推导:解:20ax bx c ++= 方程两边都除以a ,得:20b c x x a a++= 配方,得:222()()22b b c b x x a a a a ++=-+ 即:2224()24b b ac x a a-+= 当24b ac -≥0时,开平方得:242b b ac x a ±-+= 所以方程的解是:24b b ac x -±-= 当24b ac -<0时,方程无实数根.⑶用公式法解一元二次方程的一般步骤是:①首先把一元二次方程化为一般形式;②确定公式中a 、b 、c 的值;③求出24b ac -的值;④若24b ac -≥0,则把a 、b 、c 及24b ac -的值代入求根公式即可求解.当24b ac -<0时,此时方程无实数解.注意:⑴求根公式是专指一元二次方程的求根公式,只有方程为一元二次方程时,方可运用求根公式,即20ax bx c ++=中a ≠0.⑵公式中的“24b ac -≥0”是公式成立的一个前提条件.3.一元二次方程20ax bx c ++=(a ≠0)的根的情况由24b ac -来确定,我们把24b ac -叫做一元二次方程20ax bx c ++=(a ≠0)的根的判别式,通常用符号“△”表示,即△=24b ac -.一般地,方程20ax bx c ++=(a ≠0).当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.反过来,有 当方程有两个不相等的实数根时,△>0;当方程有两个相等的实数根时,△=0; 当方程没有实数根时, △<0.注意:一元二次方程根的判别式的应用:①不解方程判别根的情况;②根据方程解的情况确定系数的取值范围.重点难点教学重点:正确、熟练地使用一元二次方程的求根公式解一元二次方程,提高学生的综合运算能力.关键是由特殊的解法(配方法)引导探究一般形式一元二次方程的解的形式展开,利用学生已有的知识,让学生多交流,主动参与到教学活动中来,让学生处于主导地位.通过比较合理的问题设计、小组讨论形式让学生更好的掌握知识.教学难点:正确地推导出一元二次方程的求根公式,理解 b 2-4ac 判别式对一元二次方程根的影响和应用.关键是在教师的指导下,经历观察、推导、交流归纳等活动导出一元二次方程的求根公式和灵活运用根的判别式.教法导引采用启发式、自主探究式的教学方法.教学中力求体现“类比---探究-----归纳”的模式.有计划的逐步展示知识的产生过程,渗透数学思想方法.由于学生配平方的能力有限,所以,本节课借助多媒体辅助教学,由特殊到一般指导学生通过观察与演示,总结配方规律,从而突破难点.同时学生经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力,发挥学生的自觉性、活动性和创造性.通过复习回顾,用配方法解一元二次方程的一般步骤,并通过纠正板演同学的解题过程,加深学生的印象;进而复习配方法解一元二次方程的步骤.为了解决“配方法、公式法”谁更好用?很多学生都明白公式法是在配方法上基础上的推导出来,并且有一个通用公式可算,所以学生潜意识已经认为公式法更简单.通过现场测试,很多同学又一次回到首先移项,接着只能用公式法的做法上.其实,在这里学生让没有抓住配方法的精髓.这两题依然是可以用配方法,而且很快就可以解出来.学法建议依照学生的认知规律引导学生从简单的问题中发现规律,在训练内容的选择上考虑到学生接受新旧知识结合的能力:一是以方法为主,采用层层递进的方式,由配方法过渡到公式法解一元二次方程.二是以基本技能为主,而不追求繁难的一元二次方程的解题特殊技巧.在运用不同的方法解一元二次方程时,要具体问题具体分析选择最佳方法合理解题.在精心设计的练习过程中抓住学生问题的症结,培养学生独立分析、理解能力和思考解决问题的能力,提高解题技巧.。

用公式法求解一元二次方程

用公式法求解一元二次方程

CHAPTER 03
使用公式法求解一元二次方 程
求解方程的步骤
1. 写出方程的标准形式
首先,我们要确保方程是一元二次方程的标准形式,即 $ax^2+bx+c=0$。
2. 计算判别式
判别式$\Delta=b^2-4ac$,它可以帮助我们确定方程的 根的类型。
3. 代入求根公式
如果判别式$\Delta\geq0$,则方程有实数根,可以代入 求根公式$x=\frac{-b\pm\sqrt{\Delta}}{2a}$求解;如果 $\Delta<0$,则方程有复数根。
实例解析二:利用公式法解决实际问题
01
02
03
04
05
问题描述:一个自由落 体运动,物体从高度 $h$ 处自由落下,求物 体落地所需时间 $t$。
• 分析:自由落体运动 的位移公式为 $s = \frac{1} 通过公式变换,可得 一元二次方程 $\frac{1}{2}gt^2 - h = 0$。
二次方程的理解和掌握。
学习其他求解一元二次方程的方 法,如因式分解法、配方法等,
提高解题的灵活性和多样性。
在学习的过程中,注重理论与实 践相结合,多做练习和实际应用 ,提高数学素养和解决问题的能
力。
THANKS FOR WATCHING
感谢您的观看
通用性
公式法可以用于求解所有形式的 一元二次方程,不像配方法或因 式分解法那样依赖于方程的特定
形式。
精确性
只要计算准确,公式法可以给出精 确解,而不会产生近似误差。
系统性
公式法是一种系统性的解题方法, 无需过多的思考和试探,只需按照 公式步骤进行计算即可。
公式法的缺点
计算复杂性
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 1 x x 0 3 3
2
2 1 1 1 x2 x ( )2 0 3 3 9 3
(x 1 2 2 ) 0 3 9
7 2 25 (x ) 4 16 7 5 x 4 4 1 7 5 x 3 x x 2 4 4
1 2
1 2 ( x )2 3 9
b 4ac 对方程根的情况有何影响?
2

b2 4ac 0
2
时,方程有两个不相等的实数根 _______________
方程有两个相等的实数根 当 b 4ac 0 时, _______________
2 方程没有实数根 b 4 ac 0 当 时,_______________
第二章
第3节
一元二次方程
用公式法求解一元二次方程(一)
一、温故知新
用配方法解下列方程: (1)2x2+3=7x (2)3x2+2x+1=0
2
7 3 解: x x 0 2 2 7 7 2 49 3 2 x x( ) 0 2 4 16 2
7 2 25 (x ) 0 4 16
(2)4 x 1 4 x
2
解:将原方程化为一般形式,得
4 x2 4 x 1 0
三、强化训练
(1)2 x 4 x 1 0
2
(2)5x 2 3x
2
(3)( x 2)(3x 5) 1
3 (4)0.2 x 5 x 2
2
四、议一议
2 ax bx c 0(a 0) 对于一元二次方程

2 0 9
∴原方程无解
二、探求新知 用配方法解一元二次方程: ax2+bx+c=0(a≠0)
二、探求新知 对于一元二次方程 ax bx c 0
2
2 b 当 4ac 0 时的根是
a0
b b 4ac x 2a
2
三、例题讲解
用公式法解方程
(1) x2 7 x 18 0
六、拓展延伸
1.一个直角三角形三边的长为三个连续 的偶数,求这个三角形的三条边长.。 2.已知长方形城门的高比宽多6尺8寸,门的对 角线长1丈,那么,门的高和宽各是多少?
(一元二次方程ax2+bx+c=0(a≠0) 的求根公式是什么? 2、如何判断一元二次方程根的情况? 3、用公式法解方程应注意的问题是什么? 4、你在解方程的过程中有哪些小技巧?
五、跟踪练习
一、判断下列方程解的情况:
(1) 2x2+3=7x
两个不相同的实数解
(2)x2-7x=18
两个不相同的实数解
(3)3x2+2x+1=0
没有实数解
(4)9x2+6x+1=0
两个相同的实数解
2 4( y 0.09) 2.4 y (6)
(5)4x(x-1)+3=0
没有实数解
两个相同的实数解
相关文档
最新文档