大一下学期 数学分析 第四套复习题

合集下载

(NEW)华东师范大学数学系《数学分析》(第4版)(下册)笔记和课后习题(含考研真题)详解

(NEW)华东师范大学数学系《数学分析》(第4版)(下册)笔记和课后习题(含考研真题)详解

目 录第12章 数项级数12.1 复习笔记12.2 课后习题详解12.3 名校考研真题详解第13章 函数列与函数项级数13.1 复习笔记13.2 课后习题详解13.3 名校考研真题详解第14章 幂级数14.1 复习笔记14.2 课后习题详解14.3 名校考研真题详解第15章 傅里叶级数15.1 复习笔记15.2 课后习题详解15.3 名校考研真题详解第16章 多元函数的极限与连续16.1 复习笔记16.2 课后习题详解16.3 名校考研真题详解第17章 多元函数微分学17.1 复习笔记17.2 课后习题详解17.3 名校考研真题详解第18章 隐函数定理及其应用18.1 复习笔记18.2 课后习题详解18.3 名校考研真题详解第19章 含参量积分19.1 复习笔记19.2 课后习题详解19.3 名校考研真题详解第20章 曲线积分20.1 复习笔记20.2 课后习题详解20.3 名校考研真题详解第21章 重积分21.1 复习笔记21.2 课后习题详解21.3 名校考研真题详解第22章 曲面积分22.1 复习笔记22.2 课后习题详解22.3 名校考研真题详解第23章 向量函数微分学23.1 复习笔记23.2 课后习题详解23.3 名校考研真题详解第12章 数项级数12.1 复习笔记一、级数的收敛性1.相关定义(1)给定一个数列{u n},对它的各项依次用“+”号连接起来的表达式u1+u2+…u n+… (12-1)称为常数项无穷级数或数项级数(也常简称级数),其中u n称为数项级数(12-1)的通项或一般项.数项级数(12-1)也常写作或简单写作∑u n.(2)数项级数(12-1)的前n项之和,记为 (12-2)称它为数项级数(12-1)的第n个部分和,也简称部分和.(3)若数项级数(12-1)的部分和数列{S}收敛于S(即),则称数项级数(12-1)收敛,称S为数项级数(12-1)的和,记作或S=∑u n.若{S n}是发散数列,则称数项级数(12-1)发散.2.重要定理。

华东师范大学数学系数学分析第4版下册知识点总结笔记课后答案

华东师范大学数学系数学分析第4版下册知识点总结笔记课后答案

第12章数项级数12.1复习笔记一、级数的收敛性II级数的走义若S=f如存在极限值s r即HmS r = .S r则级数收敛,S为级数的和。

若{S“}发散,则级数发散。

创重要走理(1)级数收敛的柯西准则工叫收敛mN(NWN+ ),当m>N时以及又寸0p(pWN+ ),都有(2 )如果级数Zu n^£v n都收敛r则对任意常数c , d r级数工(cu n + dv n )也收敛r且》(* +叽)=c》冷加工耳(3)改变级数的有限个项不改变级数的敛散性。

(4 )在收敛级数的项中任意加括号r不改变其收敛性与和。

二、正项级数Q正项级数收敛性的一般判别原则(1)正项级数工%收敛O冥部分和数列{S,J有界。

(2)比较原则设工*和工□是两个正项级数r 3N (NGN* ) r使得对%> N都有u n<v n r则①若8n收敛,则工g也收敛。

②若»1…发散,则工口也发散。

(3 )设& =工*和S"=工V"是两个正项级数.如果则①若0 v 1 v +1级数si S"同敛散。

②若1 = 0且级数S"收敛,级数S,也收敛。

③若1 = + 0C且级数S"发散,级数S也发散。

Q比式判别法和根式判别法(1)比式判别法设工*为正项级数,且存在正整数N()及常数q (0<q<l ),则①若对任意n > N o , SPWu n+1/u n<q ,则工%收敛。

②若对任意n > N o ,都有5+ ]/11診1 ,则》i.发散。

(2 )比式判别法的极限形式若Xw为正项级数,且,则①若q V 1 ,则工Un收敛。

②若q > 1或q =+oo,则工片发散。

③若q = 1 ,则无法判断工叫的发散性。

(3)根式判别法设工g为正项级数,且存在正整数N()及正常数1 ,①若对任意n > N(”都有阪5*1 ,则工%收敛。

数学分析4测试题答案

数学分析4测试题答案

dxdy = ∫∫ e − ( x
Sa a
2
2
+ y2 )
dxdy ≤ ∫∫ e − ( x
D2
2
+ y2 )
dxdy
而 H (a ) = ∫∫ e
D1
− ( x2 + y2 )
dxdy = ∫ dθ ∫ e− r rdr =
0
π 2 0
2 2 π π (1 − e − a ) , G (a ) = (1 − e −2 a ) , 且 4 4
0 3 3 3 3 y 9 3
4. 8; 7. 8
1 3 1 x + x 2 y − xy 2 − y 3 + C 3 3 二、计算题(每小题 9 分,共 54 分) 6.
f x ( x, y ) = cos x + cos( x + y ) = 0 1. 由 ,求得稳定点 (2mπ + π , 2nπ + π ) , f y ( x, y ) = cos y + cos( x + y ) = 0 (2mπ + π π π π , 2nπ + ) , (2mπ − , 2nπ − ) . 3 3 3 3 在 点 (2mπ + π , 2nπ + π ) 处 ,
Ò ∫∫ Ò ∫∫
同理得:
S
xyzdxdy = ∫∫ xydxdy = ∫ 2 dθ ∫ r 3 sin θ cos θ dr =
D1 0 0 1 1
π
1
1 8 1 6
S
xyzdydz = ∫∫ xy 1 − y 2 dydz = ∫ dy ∫ yz 1 − y 2 =
D2 0 0

华东师范大学数学系《数学分析》(第4版)(下册)章节题库-含参量积分(圣才出品)

华东师范大学数学系《数学分析》(第4版)(下册)章节题库-含参量积分(圣才出品)

第19章含参量积分§1含参量正常积分1.设(这个函数在x=y时不连续),试证由含参量积分所确定的函数在上连续,并作函数F(y)的图像.解:由于因此当y<0时时,f(x,y)=﹣1,当时,所以它在上连续,F(y)的图像见图19-1图19-12.求下列极限:解:(1)在区域上连续.因此(2)在区域上连续,因此3.设求F'(x).解:存在k>0,使二元函数与在矩形区域上连续,x与x2均为可微函数.则函数在[﹣k,k]上可微,且4.应用对参量的微分法,求下列积分:解:(1)若,所以同理若,设则又因所以因而(2)设当|a|<1时因而为连续函数,且具有连续导数,所以故当|a|<1时,I(a)=C(常数),又I(0)=0,从而I(a)=0.当|a|>1时,令,则|b|<1,有I(b)=0,于是当|a|=1时,同理可得I(﹣1)=0.综上所述得5.应用积分号下的积分法,求下列积分:解:(1)记因为故令贝g(x)在[0,1]上连续,于是有记则f(x,y)在上连续,所以作代换x=e﹣t后得到因此(2)类似于(1)题6.试求累次积分与并指出它们为什么与定理19.6的结果不符.解:由于故有因为在点(0,0)不连续,所以与定理19.6的结果不符.7.研究函数的连续性,其中f(x)在闭区间[0,1]上是正的连续函数.解:由于f(x)在[0,1]上是正的连续函数,故存在正数m,使得,f(x)≥m>0,x∈[0,1].当y>0时,当y<0时,因此所以F(y)在y=0处不连续,当时在上连续,所以当y≠0时,函数F(y)连续.8.设函数f(x)在闭区间[a,A]上连续,证明:证明:因为当h→0时.所以9.设其中,f(z)为可微函数,求F xy(x,y).解:10.设,其中0<k<1(这两个积分称为完。

华东师范大学数学系《数学分析》(第4版)(下册)课后习题-重积分(圣才出品)

华东师范大学数学系《数学分析》(第4版)(下册)课后习题-重积分(圣才出品)

证明:假设 f 在 D 上可积,但在 D 上无界,那么,对 D 的任一分割

必在某个小区域 上无界.
当 i≠k 时,任取

由于 f 在 上无界,从而存在 从而
使得
另一方面,由 f 在 D 上可积知:存在
对任一 D 的分割

时,T 的任一积分和
都满足
1 / 48
圣才电子书 十万种考研考证电子书、题库视频学习平台
时).即 f(x,y)在 D 上不可积.
因此
的极
7.证明:若 f(x,y)在有界闭区域 D 上连续,g(x,y)在 D 上可积且不变号,则
存在一点
使得
证明:不妨设
令 M,m 分别是 f 在 D 上的最大、最小值,从而

=0,则由上式

则必大于 0,于是
于是任取
即可.
3 / 48
圣才电子书

为D内
证明:设 D 在 x 轴和 y 轴上的投影区间分别为[a,b]和[c,d].
考虑
9 / 48
圣才电子书 十万种考研考证电子书、题库视频学习平台

由于
因此
所以
,同理可证


7.设 D=[0,1]×[0,1],
其中 表示有理数 x 化成既约分数后的分母.证明 f(x,y)在 D 上的二重积分存在而两个
同理可证先 y 后 x 的累次积分不存在.
8.设 D=[0,1]×[0,1],
其中 意义同第 7 题.证明 f(x,y)在 D 上的二重积分不存在而两个累次积分存在.
10 / 48
圣才电子书 十万种考研考证电子书、题库视频学习平台

证明:因为在正方形的任何部分内,函数 f 的振幅等于 1.所以二重积分不存在.对固

华东师范大学数学系《数学分析》(第4版)(下册)课后习题-数项级数(圣才出品)

华东师范大学数学系《数学分析》(第4版)(下册)课后习题-数项级数(圣才出品)
圣才电子书

十万种考研考证电子书、题库视频学习平台
第二部分 课后习题
第 12 章 数项级数
§1 级数的收敛性
1.证明下列级数的收敛性,并求其和: (1) (2) (3) (4) (5) 证明:(1)
所以原级数收敛,且和数 (2)
1 / 26
圣才电子书 十万种考研考证电子书、题库视频学习平台
也发散.
证明:假设
收敛.因 c≠0,故级数
矛盾,所以若
发散.
也发散(c≠0).
收敛,这与题设
发散
3.设级数 与级数 都发散,试问
一定发散吗?又若 un 与 vn(n=1,
2,…)都是非负数,则能得出什么结论?
解:(1)当 与 都发散时,
不一定发散.如
两级数均发散,但
,即
收敛.
又如,
,两级数均发散,且
所以
从而级数
由比较原则知 收敛.
.又
收敛,
6.设级数 收敛,证明 证明:因为
也收敛.
又及
收敛,故
收敛,所以由比较原则得
收敛.
7.设正项级数 收敛,证明级数
也收敛.
证明:因为
,义由已知碍 及
收敛,所以
收敛,进而由比较原则得
收敛.
8.利用级数收敛的必要条件,证明下列等式:
证明:(1)设
,考察正项级数 的收敛性,因为
发敛.
8 / 26
圣才电子书 十万种考研考证电子书、题库视频学习平台

(5)因
,而级数
收敛,故级数
收敛.
(6)因
,而级数
发散,故级数
发散.
(7)因
,而级数
发散,故级数

数学分析第四学期试题

数学分析第四学期试题

试题(1卷)一.填空(每小题3分,共15分)1.若平面曲线L 由方程0),(=y x F 给出,且),(y x F 在点),(000y x P 的某邻域内满足隐函数定理的条件,则曲线L 在点0P 的切线方程为 ; 2.含参量积分⎰=)()(),()(x d x c dyy x f x F 的求导公式为=')(x F ;3。

Γ函数的表达式为 =Γ)(s ,0>s ;4。

二重积分的中值定理为:若),(y x f 在有界闭区域D 上连续,则存在D ∈),(ηξ,使⎰⎰=Dd y x f σ),( ;5.当0),,(≥z y x f 时,曲面积分⎰⎰S dSz y x f ),,(的物理意义是: 。

二.完成下列各题(每小题5分,共15分)1。

设5422222=-+-++z y x z y x ,求y z x z ∂∂∂∂,; 2。

设 ⎩⎨⎧-=+=,cos ,sin v u e y v u e x u u 求 x v x u ∂∂∂∂, ;3. 求积分)0(ln 1>>-⎰a b dx x x x ab .三。

计算下列积分(每小题10分,共50分)1。

⎰L xyzds,其中L 为曲线)10(21,232,23≤≤===t t z t y t x 的一段;2.⎰+-Ly x xdxydy 22,其中L 为圆t a y t a x sin ,cos ==在第一象限的部分,并取逆时针方向;3.作适当变换计算⎰⎰-+D dxdyy x y x )sin()(, 其中D }{ππ≤-≤≤+≤=y x y x y x 0,0),(; 4。

⎰⎰⎰+Vy x dxdydz22,其中V 是由x y z x x ====,0,2,1与y z =围成的区域;5.dSy xS)(22⎰⎰+,其中S 为圆锥面222z y x =+被平面1,0==z z 截取的部分。

四.应用高斯公式计算dxdy z dzdx y dydz x S333++⎰⎰,其中S 为球面2222a z y x =++的外侧。

数学分析第四版答案 (3)

数学分析第四版答案 (3)

数学分析第四版答案简介《数学分析第四版》是一本经典的数学教材,主要介绍了数学分析的基本概念、理论和方法。

本文档旨在提供《数学分析第四版》习题的答案,帮助读者更好地理解和掌握数学分析的知识。

第一章简介1.1 数学分析的基本概念习题答案:1.由已知条件可知,当a=a时,a(a)=a(a)成立。

所以函数a(a)是一个常函数。

2.对于任意实数a和a,有a(a+a)=a(a)+a(a),即函数a(a)满足加法性。

根据题意,我们需要证明a(aa)=a(a)a(a)。

证明:设实数a和a,并令a=a和 $b=\\frac{y}{x}$,根据加法性,我们有:$$ f(a+b) = f(a) + f(b) \\quad \\text{(1)} $$将a=a和 $b=\\frac{y}{x}$ 代入上式,得到:$$ f\\left(x + \\frac{y}{x}\\right) = f(x) +f\\left(\\frac{y}{x}\\right) \\quad \\text{(2)} $$又根据题目条件,我们知道a(aa)=a(a)a(a),将$b=\\frac{y}{x}$ 代入该式,得到:$$ f(xy) = f\\left(x\\cdot\\frac{y}{x}\\right) =f(x)f\\left(\\frac{y}{x}\\right) \\quad \\text{(3)} $$将式 (3) 代入式 (2),得到:$$ f\\left(x + \\frac{y}{x}\\right) = f(xy) \\quad \\text{(4)} $$根据题目条件中的函数性质,我们得到:$$ x+\\frac{y}{x} = xy $$上式可以转化为二次方程的形式,解得:$$ x^2 - xy + \\frac{y}{x} = 0 $$由上式可知,a是方程a2−aa+a=0的一个根。

根据韦达定理,该方程的两个根分别为:$$ x_1 = \\frac{y+\\sqrt{y^2+4}}{2} \\quad \\text{和}\\quad x_2 = \\frac{y-\\sqrt{y^2+4}}{2} $$由于题目中没有限制a的取值范围,所以a可以取任意实数。

华东师范大学数学系《数学分析》(第4版)(下册)章节题库-曲面积分(圣才出品)

华东师范大学数学系《数学分析》(第4版)(下册)章节题库-曲面积分(圣才出品)

第22章曲面积分1.设S是椭圆面的上半部分,点,Ⅱ为S在点P的切平面, (x,y,z)为点O(0,0,0)到平面Ⅱ的距离,求.解:设(X,Y,Z)为Ⅱ上任意一点,则Ⅱ的方程为由此易知由S的方程有,于是其中是S在xOy平面上的投影.作极坐标变换容易求出:2.计算积分其中S:x+y+z=t,解:将z=t-x-y代入整理可得:由此可知,当时,平面S在球内;当时,平面S在球之外,所以显然当时.F(t)=0,所以只需计算时的积分:其中D是式(1)所表示的区域.作变换则D变为,其中.于是对式(3)右边进一步计算得所以3.设曲面S由方程所确定,求曲面S的面积.解:在球坐标变换:x=rsinφcosθ,y=rsinφsinθ,z=rcosφ之下,曲面S的方程是,其参数方程为通过计算易知,由此得由曲面的对称性,只需求第一卦限部分的面积即可.而此时,并且由曲面方程知cos2θ≥0,所以0≤θ≤π/4.故S的面积为4.计算曲面积分,其中S是曲面x2+y2=R2及两个平面z=R,z=-R(R>0)所围的立体的表面的外侧(数学Ⅰ,Ⅱ).解:设S1,S2,S3分别为S的上、下底面和圆柱侧面,则记S1+S2在xOy平面上的投影区域为D xy,则在S3上,而S3在yOz平面上的投影区域D yz:-R≤y≤R,-R≤z≤R,故从而曲面积分5.求,其中S是球面x2+y2+z2=a2(x>0,y≥0,z≥0)的第一卦限部分,取外侧.解:球面在点(x,y,z)处的法向量为,由两类曲面积分的关系,有(利用轮换对称性)其中,x≥0,y≥0.作极坐标变换,有6.计算曲面积分S是闭曲面|x-y+z|+|y-z+x|+|z-x+y|=1,方向取外侧.解:由高斯公式,可得其中Ω是由闭曲面S所围的空间区域.作变换:u=x-y+z,v=y-z+x,w=z-x+y,则区域力变成Ω1:|u|+|v|+|w|≤1.由对称性,有7.计算第二型曲面积分其中f(x,y,z)为连续函数,∑是平面x-y+z=1在第四卦限部分,方向取上侧.解:设曲面∑的单位法向量为(cosα,cosβ,cosγ),则dydz=cosαdS,dzdx=cosβdS,dxdy=cosγdS.由此可得具体到本例,,因而dydz=dxdy,dzdx=-dxdy.于是其中D xy={(x,y)1≤x≤1+y,-1≤y≤0}是曲面∑在xOy平面的投影。

(完整word版)数学分析复习题及答案(word文档良心出品)

(完整word版)数学分析复习题及答案(word文档良心出品)

数学分析复习题及答案一.单项选择题1. 已知, 则=()A. B. C. D.2. 设, 则()A. B. C. D.3. ()A. B. C. D.4. 下列函数在内单调增加的是()A. B. C. D.二、填空题1. 设函数2.3.在处连续, 则三、判断题1. 若函数在区间上连续, 则在上一致连续。

()2. 实轴上的任一有界无限点集至少有一个聚点。

()3.设为定义在上的单调有界函数, 则右极限存在。

()四、名词解释1. 用的语言叙述函数极限的定义2. 用的语言叙述数列极限的定义五、计算题1. 根据第四题第1小题证明2. 根据第四题第2小题证明3. 设, 求证存在, 并求其值。

4.证明:在上一致连续, 但在上不一致连续。

5. 证明: 若存在, 则6. 证明: 若函数在连续, 则与也在连续, 问: 若在或在上连续, 那么在上是否必连续。

一、1.D 2.C 3.B 4.C二、1. 2. 3.三、1.× 2.√ 3.√四、1.函数极限定义: 设函数在点的某个空心邻域内有定义, 为定数。

, , 当时, , 则。

2.数列极限定义:设为数列, 为定数, , , 当时, 有, 则称数列收敛于。

五、1.证明:, , 当时, ;得证。

2.证明:令, 则, 此时, ,, , 当时,3.证明:⑴,⑵)1)(1(1111111----+++-=+-+=-n n n n n n n n n n x x x x x x x x x x 而, 由数学归纳法可知, 单调增加。

综合⑴, ⑵可知存在,设, 则由解得=A 215+(负数舍去)4.证明: 先证在上一致连续。

, 取, 则当且有时, 有 []δ•''+'≤''-'''+'=''-'x x x x x x x f x f ))(()()(εε<+⋅++≤)(2)1(2b a b a故2)(x x f =在[]b a ,上一致连续。

数学分析复旦大学第四版大一期末考试

数学分析复旦大学第四版大一期末考试

数学分析复旦大学第四版大一期末考试一、填空题(每空1分,共9分)1.函数()f x =的定义域为________________2.已知函数sin ,1()0,1x x f x x ⎧<⎪=⎨≥⎪⎩,则(1)____,()____4f f π== 3.函数()sin cos f x x x =+的周期是_____4.当0x →时,函数tan sin x x -对于x 的阶数为______5.已知函数()f x 在0x x =处可导,则00011()()23lim ____h f x h f x h h→+--= 6.曲线y =在点(1,1)处的切线方程为______________,法线方程为________________ 7.函数2()f x x =在区间[0,3]上的平均值为________二、判断题(每小题1.5分,共9分)1.函数()f x x =与()g x =是同一个函数。

( ) 2.两个奇函数的积仍然是奇函数。

( )3.极限0lim x x x→不存在。

( ) 4.函数1,0()1,0x f x x >⎧=⎨-<⎩是初等函数,而1,0()0,01,0x g x x x >⎧⎪==⎨⎪-<⎩不是初等函数。

( ) 5.函数()sin f x x x =在区间[0,]π上满足罗尔中值定理。

( )6.函数()f x 在区间[,]a b 上可导,则一定连续;反之不成立。

( )三、计算题(64分)1.求出下列各极限(每小题4分,共20分)(1)111lim(...)1223(1)n n n →∞+++⨯⨯⨯+ (2)...n →∞++ (3)4x → (4)210lim (cos )x x x →+ (5)211lim 1x t x e dt x →-⎰ 2.求出下列各导数(每小题4分,共16分)(1)2()xt x f x e dt --=⎰ (2)cos ()(sin )x f x x = (3) sin 1cos x t t y t =-⎧⎨=-⎩(4)由方程arctan y x=所确定的函数()y f x =。

(完整版)数值分析第四版习题和答案解析

(完整版)数值分析第四版习题和答案解析

h 应取多少 ?
9. 若 yn 2 n , 求 4 yn 及 4 yn .
10. 如 果 f ( x) 是 m 次 多 项 式 , 记 f (x) f (x h) f ( x) , 证 明 f (x) 的 k 阶 差 分
k f (x)(0 k m) 是 m k 次多项式 , 并且 m l f ( x) 0(l 为正整数 ).
.专业资料 . 整理分享 .
.WORD. 格式 .
11. 证明 ( f k g k ) fk g k gk 1 f k .
n1
fk gk
12. 证明 k 0
fngn
f0 g0
n1
gk 1 f k .
k0
n1
2 yj
13. 证明 j 0
14. 若 f (x) a0
yn y0. a1 x L an 1 xn 1
.
.专业资料 . 整理分享 .
.WORD. 格式 .
18. f ( x) 、 g( x) C1 a,b , 定义
b
b
( a)( f , g) f (x) g (x)dx;( b)( f , g ) f ( x) g ( x) dx f (a) g (a);
a
a
问它们是否构成内积 ?
6
1 x dx
19. 用许瓦兹不等式 (4.5) 估计 0 1 x 的上界 , 并用积分中值定理估计同一积分的上下界
5. 计算球体积要使相对误差限为 1% , 问度量半径 R时允许的相对误差限是多少 ?
6. 设 Y0 28, 按递推公式
1
Yn Yn 1
783
100
( n=1,2, … )
计算到 Y100 . 若取 783 ≈ 27.982( 五位有效数字 ), 试问计算 Y100 将有多大误差 ?

数学分析答案第四版

数学分析答案第四版

数学分析答案第四版【篇一:数学分析(4)复习提纲(全部版)】>第一部分实数理论1 实数的完备性公理一、实数的定义在集合r内定义加法运算和乘法运算,并定义顺序关系,满足下面三条公理,则称r为实数域或实数空间。

(1)域公理:(2)全序公理:则或a中有最大元而a?中无最小元,或a中无最大元而a?中有最小元。

评注域公理和全序公理都是我们熟悉的,连续性公理也称完备性公理有许多等价形式(比如确界原理),它是区别于有理数域的根本标志,它对实数的描述没有借助其它概念而非常易于接受,故大多数教科把它作为实数理论起步的公理。

二、实数的连续性(完备性)公理实数的连续性(完备性公理)有许多等价形式,它们在使用起来方便程度不同,这些公理是本章学习的重点。

主要有如下几个公理:确界原理:单调有界定理:区间套定理:有限覆盖定理:(heine-borel)聚点定理:(weierstrass)致密性定理:(bolzano-weierstrass)柯西收敛准则:(cauchy)习题1 证明dedekind分割原理与确界原理的等价性。

习题2 用区间套定理证明有限覆盖定理。

习题3 用有限覆盖定理证明聚点定理。

评注以上定理哪些能够推广到欧氏空间r?如何叙述? n2 闭区间上连续函数的性质有界性定理:上册p168;下册p102,th16.8;下册p312,th23.4最值定理:上册p169;下册下册p102,th16.8介值定理与零点存在定理:上册p169;下册p103,th16.10一致连续性定理(cantor定理):上册p171;下册p103,th16.9;下册p312,th23.7 习题4 用有限覆盖定理证明有界性定理习题5 用致密性定理证明一致连续性定理3 数列的上(下)极限三种等价定义:(1)确界定义;(2)聚点定义;(3)??n定义评注确界定义易于理解;聚点定义易于计算;??n定义易于理论证明习题6 用区间套定理证明有界数列最大(小)聚点的存在性。

华东师范大学数学系《数学分析》(第4版)(下册)配套题库-名校考研真题(下)(圣才出品)

华东师范大学数学系《数学分析》(第4版)(下册)配套题库-名校考研真题(下)(圣才出品)

,其中 为曲线
(1,1,1)的部分.[哈尔滨工业大学 2009 研]
解:设
因为
从(1,1,0)到
所以积分与路径无关. 取积分路径为从(1,1,0)到(1,1,1)的直线段,则
10 / 25
圣才电子书 十万种考研考证电子书、题库视频学习平台

一致收敛.
另外
对于固定的 y∈[0,1]都单调,且在 x∈[1,+∞)时,满足
即一
致有界.从而由阿贝尔判别法知,I(y)在[0,1]上一致收敛.
2.研究函数 f x
0
e xt2 1 t2
dt
的连续性及可微性.[郑州大学
2009
研]
解: 设f
x, t
0
e xt2 1 t2
dt

由于当 x
5 / 25
圣才电子书 十万种考研考证电子书、题库视频学习平台

所以由狄利克雷判别法知
t e2 xt2 0 1t2
dt 在
0,
上一致收敛,
故 f(x)在0, 上可微.
3.证明:含参量反常积分 (0,+∞)内不一致收敛.[武汉大学研]
证明:(1)令 x=xy,有
8 / 25
圣才电子书

十万种考研考证电子书、题库视频学习平台
第 20 章 曲线积分
1.求曲线积分
这里 L 是球面

交成的曲线.[北京大学 2009 研]
解:
等价于

利用斯托克斯公式得,
2.计算线积分
,其中 ABC 为三点 A(1,0),B(0,1),C(-1,0)
上一致收敛(其中 >0),在
根据定义,
.取

(NEW)华东师范大学数学系《数学分析》(第4版)(下册)配套题库【名校考研真题+课后习题章节题库模拟试题

(NEW)华东师范大学数学系《数学分析》(第4版)(下册)配套题库【名校考研真题+课后习题章节题库模拟试题

有界,由Dirichlet判别法,知 二、解答题
收敛.
1.设 ,求级数
的和.[苏州大学2004研]
解:设
, 的收敛区间为



,则


,则

从而
2.
.[武汉大学2004研]
解:原式 3.判断下列级数是绝对收敛、条件收敛还是发散:
(1)

(2)
.[北京科技大学2011研]
解:(1)因为

收敛,
所以由级数的比较判别法知,级数
上逐
点收敛,即由Osgood定理,得
上一致收敛.
(Osgood定理)设函数列 在有限闭区间 上连续, 在 上等 度连续,如果

(1)
上连续;
(2)
上一致收敛于 [哈尔滨工业大学2009研]
证明:(1)由 在 上等度连续,得

,当
成立;
时,不等式
令 取极限得,
由此得
上连续;
,对所有
(2)由 时,有

;对于任意的
目 录
第一部分 名校考研真题 第12章 数项级数 第13章 函数列与函数项级数 第14章 幂级数 第15章 傅里叶级数 第16章 多元函数的极限与连续 第17章 多元函数微分学 第18章 隐函数定理及其应用 第19章 含参量积分
第20章 曲线积分 第21章 重积分 第22章 曲面积分 第23章 向量函数微分学 第二部分 课后习题 第12章 数项级数 第13章 函数列与函数项级数 第14章 幂级数 第15章 傅里叶级数 第16章 多元函数的极限与连续
闭区间的性质可知,存在
即 这里
,由比值判别法知
绝对收敛.

华东师范大学数学系《数学分析》(第4版)(下册)章节题库-重积分(圣才出品)

华东师范大学数学系《数学分析》(第4版)(下册)章节题库-重积分(圣才出品)

显然当 p>1 时,积分收敛,且积分值为

13.计算广义三重积分
其中 D 为 解:作变换:

,则

所以

其中 D′为

再作球坐标变换

.且
.而

其中 作变换:
.由上式可见,积分是存在的,下面展开计算. ,则
11 / 20
圣才电子书 十万种考研考证电子书、题库视频学习平台

其中在 内
.在

,所以
原式
(3) 所以
,其中
(4)积分区域为 y 是奇函数,所以
,D 关于 x 轴对称,而函数
从而原式 令 原式
,则
所以
关于
(5)方法一 积分区域关于直线 y=x 对称,所以

2 / 20
圣才电子书 十万种考研考证电子书、题库视频学习平台

方法二 作变换 x+y=u,x-y=v,则 D 变为
于是
,所以
(6)积分区域关于 y=x 对称,所以
于是

3.作极坐标变换,将二重积分
化为定积分,其中 解:如图 21-1 所示:
图 21-1
3 / 20
圣才电子书 十万种考研考证电子书、题库视频学习平台


,则
4.计算积分
其中 解:因为积分区域 D 关于 x 轴对称,而
8 / 20
圣才电子书

因此球体Ω的重心坐标为
十万种考研考证电子书、题库视频学习平台

10.求由
所围的立体的体积.
解:显见立体关于 xOy 平面、yOz 平面对称.在上半空间 y≥0 上,用 表示位于第一

大学数学第四册详细答案汇总

大学数学第四册详细答案汇总

第四章 样本及其分布练习4.1 简单随机样本一、填空题(略) 二、解:)1061051039492(51++++=x =100, 412=S [(92–100)2+(94–100)2+(103–100)2+(105–100)2+(106–100)2]=42.6三、解:利用y i =100(x i –80),得变换后样本数据:–2, 4, 2, 4, 3, 3, 4, -3, 5, 3, 2, 0, 2这时,有131=x [(–2+4+2+4+3+3+4–3+5+3+2+2)1001+80×13]=80.02 1212=S [(42+4+0+4+1+1+4+25+9+1+0+4+0)/10000]=5.75×10-4四、解:∵ E (X i )=p ,D (X i )=p (1-p ),)(11)(11122212∑∑==--=--=ni i i n i X n X n X X n S , ∴p p n n X E n X n E X E i n i n i i =⋅===∑∑==1)(1)1()(11;)1(1)1(1)(1)1()(2121p p n p np n X D n X n D X D i n i n i i -=-⋅===∑∑==;)]()([1)(1)(11)(222212X E X E n n X E n n X E n S E in i --=---=∑= =)]()([1]}))(()([)]([)({122X D X D n n X E X D X E X D n n --=+-+- =)1()()(11)](1)([1p p X D X D nn n n X D n X D n n -==-⋅-=--。

五、解:∵ E (X i )=λ, D (X i )=λ, )(111222∑=--=ni i X n X n S ,∴ λλ=⋅==∑=n n X E n X E i n i 1)(1)(1;n n nX D n X D i n i λλ=⋅==∑=2121)(1)(;)]()([1)(1)(11)(222212X E X E n n X E n n X E n S E in i --=---=∑= =λλλ=-⋅-=--)(1)]()([1nn n X D X D n n 。

数学分析第四版下册课后练习题含答案

数学分析第四版下册课后练习题含答案

数学分析第四版下册课后练习题含答案前言《数学分析(第四版)》是由中国地质大学出版社出版的一套教材,该教材适用于大学数学分析课程的教学。

作为研究数学的基础学科,数学分析的学习是深入理解数学各领域的前置条件。

为了帮助各位学生更好地完成课程学习,本文将给出《数学分析(第四版)下册》的课后练习题答案。

第一章选择题1.选D.2.选B.3.选A.4.选C.5.选A.填空题1.$\\frac{a}{2}$, $\\frac{b}{2}$,$\\sqrt{\\frac{a^2}{4}+\\frac{b^2}{4}}$.2.$\\frac{1}{2}(x^2+y^2+z^2-xy-yz-xz)$.论述题1.略第二章选择题1.选D.2.选B.3.选A.4.选C.5.选A.填空题1.$\\ln a - \\ln b$.2.$\\frac{a}{\\sqrt{2}}$, $-\\frac{a}{\\sqrt{2}}$. 论述题1.略第三章选择题1.选D.2.选B.3.选A.4.选C.5.选A.填空题1.a n=n3−n2.2.不成立.论述题1.略第四章选择题1.选D.2.选B.3.选A.4.选C.5.选A.填空题1.$\\frac{1}{2}x^2+\\frac{1}{2}(y-2x)^2+1$, $\\sqrt{2}$.2.$\\frac{1}{2}\\sqrt{2}$.论述题1.略结语本文提供了《数学分析(第四版)下册》课后习题的解答,希望对各位学生完成课程学习有所帮助。

如有不懂之处,请咨询相应的教师或学长学姐。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数学分析》期末考试复习题(第四套)
班级 学 号 姓 名
一.( 满分 2 0 分,每小题 2 分)判断题:
1. 设ξ是数集E 的聚点 . 则存在0 >δ,使在) , (δξδξ+-外仅有数集E 的 有限个点. ( ) 2. 单调有界数列必为基本列 . ( ) 3. 闭区间] , [b a 上仅有一个间断点的函数必( R )可积 . ( )
4. 当无穷积分

+∞
a
dx x f )(和
⎰+∞
a
dx
x g )(都收敛时,积分

+∞
a
dx x g x f )()(必收敛
() 5. 若级数∑

11n
收敛 , 则必有0>α. ( )
6. 设0>n u 且) ( , 0∞→→n u n . 则级数∑+-n n u 1) 1 (必收敛 . ( )
7. 设在区间I 上对n ∀有)( |)(|x v x u n n ≤. 若级数∑)(x v n 在区间I 上 一致收 敛 , 则级数∑)(x u n 也在区间I 上 一致收敛 . ( )
8. 设在区间I 上函数列)}({x f n 收敛于函数)(x f .若存在数列⊂} {n x I , 使 0|)()(|→/-n n n x f x f ,则函数列)}({x f n 在区间I 上非一致收敛 . ( )
9. 设函数)(x f 在区间)0 ( ) , (>-R R R 内有任意阶导数 , 且其Maclaurin 级数


=0
)
(!
)
0(n n
n x n f
在 ) , (R R -内收敛 . 则在 ) , (R R -内有=
)(x f ∑

=0
)
(!
)
0(n n
n x n f
.()
二. ( 满分 1 0 分,每小题 2 分)填空题:
10. ()⎰-=+-+-1
1
52212sin ||dx x x x x x x .
11. =
+⎰
→3
2
)1ln(lim
x
dt
t x
x .
12. =
+∑

=1
)
1( 2n n n .
13. |
|1)(2
2
2
x n x
n x f n +=
, ) , (∞+∞-∈x . =∞
→)(lim x f n n .
14. 幂级数∑

=-1
1
2!n n n
x
n
n 的收敛区间为 .
三.(满分 2 4 分,每小题 6 分)计算题:
15. )
21( 21lim
3
3
3
44
4
n n n
n ++++++∞
→ .
16. 把函数=)(x f x 2sin 展开成 x 的幂级数 .
17. 在区间] , [ππ-上把函数=)(x f x 展开成Fourier 级数 .
18. 求幂级数∑

=++0
3
)
2(!n n n n x
的和函数 .
四.(满分1 0 分,每小题 5 分)判敛题:
19. 判断级数 ∑

=-++1
2
)
12(2n n n n n 的敛散性 .
20. ] 1 , 0 [ ,)(∈=x x x f n n . 讨论函数列)}({x f n 在区间] 1 , 0 [上的一致收敛性.
五.证明题
21. 证明函数项级数∑

=1
cos n n
nx 在) , 0 (π内条件收敛 .
22. 设函数项级数∑)(x u n 和∑)(x v n 在区间I 上一致收敛 . 试证明级数
()∑+)()(x v x u
n n
也在区间I 上一致收敛 .
23. ∑

==
1
1)(n x
n
x f . 试证明函数)(x f 在区间) , 1 (∞+内连续 .
注:本套无解答。

相关文档
最新文档