(线性代数)第三章 线性方程组

合集下载

文档:线性代数第三章 线性方程组

文档:线性代数第三章 线性方程组

第三章 线性方程组第一章中的克莱姆法则解决了部分线性方程组的求解问题。

当系数矩阵行列式||0A =,或方程组的个数与未知量个数不相等时,克莱姆法则就无法给出解的存在性。

另外即使可用克莱姆法则求解的线性方程组,其计算量也非常大,这一章主要解决一般线性方程组的求解问题。

§1 解的有关概念对于一般线性方程组11112211211222221122n n n n m m mn n ma x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩, 记()ij m n A a ⨯=,12(,,,)T n X x x x =,12(,,,)T m B b b b =,则线性方程组可写成矩阵形式AX B =。

记(|)A A B =,称为线性方程组的增广矩阵。

如果0X 满足0AX B =,则称0X 为线性方程组AX B =的解;如果对任意X ,AX B =均不成立,称线性方程组AX B =无解。

有解的线性方程组也称为相容的线性方程组,无解的线性方程组称为不相容的线性方程组。

定义1:设有线性方程组11 (I)A X B =和22(II)A X B =,如果(I)的解全是(II)的解,且(II)的解也是(I)的解,则称线性方程组(I)与(II)同解。

如果线性方程组的解能用统一的形式来表示,称该解为线性方程组一般解(或通解);相对应的具体的解称为特解。

求解线性方程组就是把线性方程组经过同解变换化成容易求解的方程组。

从而写出方程组的解。

§2 线性方程组的解法定义2:下列变换称为方程组的初等变换: 1) 交换两个方程位置; 2) 某一方程的非零k 倍;3) 某一方程的k 倍加到另一方程上。

性质1:方程组的初等变换是同解变换。

按同解的定义验证每经过一次方程组的初等变换均不改变方程组的解即可。

性质2:方程组的初等变换,对应于增广矩阵的初等行变换。

第三章线性方程组

第三章线性方程组

第三章 线性方程组本章说明与要求:本章主要介绍线性方程组的基本概念以及求解线性方程组的消元法,并由此引出矩阵及其初等变换的有关概念.讨论一般的n 元线性方程组的求解问题.一般的线性方程组的形式为⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++m n mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111(I)方程的个数m 与未知量的个数n 不一定相等,对于线性方程组(I ),需要研究以下两个问题:(1) 怎样判断线性方程组是否有解?即它有解的充分必要条件是什么?(2) 方程组有解时,它究竟有多少个解及如何去求解?。

本章重点:解线性方程组;线性方程组解的判定.。

本章难点:用矩阵的初等变换解线性方程组;线性方程组解的判定.§1 线性方程组的消元法解二元、三元线性方程组时曾用过加减消元法,实际上是解一般n 元线性方程组的最有效的方法.下面通过例子介绍如何用消元法解一般的线性方程组.例1.求解线性方程组⎪⎩⎪⎨⎧=--=+-=+-5212253321321321x x x x x x x x x(1)解:交换第一、三两个方程的位置: ⎪⎩⎪⎨⎧=+-=+-=--2531252321321321x x x x x x x x x第一个方程乘以(–1)加于第二个方程,第一个方程乘以(–3)加于第三个方程,得:⎪⎩⎪⎨-=+-=+1385433232321x x x x第二个方程乘以(–5)加于第三个方程,得⎪⎩⎪⎨⎧=--=+=--774352332321x x x x x x(2) 第三个方程乘以(–71),求得x 3=–1,再代入第二个方程,求出x 2=–1,最后求出x 1=2.这样就得到了方程组(1)的解:⎪⎩⎪⎨⎧-=-==112321x x x方程组(2)称为阶梯形方程组.如果在本例中,把原方程组中的第一个方程改为2x 1–3x 2+ x 3=6,得到一个新的方程组⎪⎩⎪⎨⎧=--=+-=+-5212632321321321x x x x x x x x x(3)用类似的方法,可以把方程组化为 ⎩⎨⎧-=+=+-431232321x x x x x (4)即 ⎩⎨⎧--=--=32313453x x x x 显然,此方程组有无穷多个解.如果在本例中,把原方程组的第一个方程改为2x 1–3x 2+ x 3=5,作出新的方程组 ⎪⎩⎪⎨⎧=--=+-=+-5212532321321321x x x x x x x x x(5)用类似的方法,可得到⎪⎩⎪⎨-=-=+104332321x x (6)显然方程组无解. 上面的方法具有一般性,即无论方程组只有一个解或有无穷个解还是没有解,都可用消元法将其化为一个阶梯形方程组,从而判断出它是否有解.分析一下消元法,不难看出,它实际上是反复地对方程组进行变换,而所作的变换,也只是由以下三种基本的变换所构成:1. 交换方程组中某两个方程的位置;2. 用一个非零数乘某一个方程;3. 用一个数乘某一个方程后加到另一个方程上.这三种变换称为线性方程组的初等变换.用消元法解线性方程组的过程就是对线性方程组反复地实行初等变换的过程.方程组(I)的全部解称为(I)的解集合.如果两个方程组有相同的解集合,就称它们是同解的或等价的方程组.现在证明:初等变换把方程组变成与它同解的方程组.考虑线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++m n mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111 (I)我们只对第三种变换来证明.为简便起见,不妨设把第二个方程乘以数k 后加到第一个方程上,这样,得到新方程组⎪⎪⎩⎪⎪⎨⎧=+++=++++=++++++mn mn m m n n n n n b x a x a x a b x a x a x a kb b x ka a x ka a x ka a 22112222212121212221212111)()()( (I ' ) 设x i =c i (i =1,2,…,n )是(I)的任意一个解.因(I)与(I ' )的后m –1个方程是一样的,所以,x i =c i (i =1,2,…,n )满足(I ' )的后m –1个方程 .又x i =c i (i =1,2,…,n )满足(I)的前两个方程,所以有⎩⎨⎧=+++=+++22222211211122121111b x c a x c a x c a b x c a x c a x c a n n n n n n 把第二式的两边乘以k ,再与第一式相加,即为21212221212111)()()(kb b c ka a c ka a c ka a n n n +=++++++这说明x i =c i (i =1,2,…,n )又满足(I')的第一个方程,故x i =c i (i =1,2,…,n )是(I')的解.类似地可以证明(I ')的任意一个解也是(I)的解,这就证明了(I) 与(I ')是同解的.容易证明另外两种初等变换,也把方程组变成与它同解的方程组.下面来说明,如何利用初等变换来解一般的线性方程组.对于方程组(I),首先检查x 1的系数.如果x 1的系数a 11, a 21, … , a m 1全为零,那么方程组(I)对x 1没有任何限制,x 1就可以任意取值,而方程组(I)可看作x 2, …, x n 的方程组来解.如果x 1的系数不全为零,不妨设a 11≠0不等于零,否则可利用初等变换1,交换第一个方程与另一个方程的位置,使得第一个方程中x 1的系数不为零.然后利用初等变换3,分别把第一个方程的)(111a a i -倍加到第i 个(i =2,3,…, m )方程,于是方程组(I)变成 ⎪⎪⎩⎪⎪⎨⎧=++=++=+++m n mn m n n n n b x a x a b x a x a b x a x a x a 222222*********(Ⅱ) 其中 n j m i a a a a a j i ij ij ,,2 ,,,2 ,'1111⋅⋅⋅=⋅⋅⋅=-= 显然方程组(Ⅱ)与(Ⅰ)是同解的.对方程组(Ⅱ)再按上面的考虑进行变换,并且这样一步一步做下去,必要时改变未知量的次序,最后就得到一个阶梯形方程组.为了讨论方便,不妨设所得到的阶梯形方程组为⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧====++=++++=++++++000001222222111212111r r n rn r rr n n r r n n r r d d x c x c d x c x c x c d x c x c x c x c (Ⅲ)其中c ii ≠0, i =1,2,…,r .方程组(Ⅲ)中“0 = 0”是一些恒等式,可以去掉,并不影响方程组的解.我们知道,(I)与(Ⅲ)是同解的,根据上面的分析,方程组(Ⅲ)是否有解就取决于第r +1个方程0 = d r +1是否矛盾,于是方程组(I)有解的充分必要条件为d r+1= 0.在方程组有解时,分两种情形:1) 当r =n 时,阶梯形方程组为⎪⎪⎩⎪⎪⎨⎧==++=+++n n nn n n n n d x c d x c x c d x c x c x c 2222211212111 (Ⅳ)其中c ii ≠0, i =1,2,…, n .由克莱姆法则(Ⅳ)有唯一解,从而(I)有唯一解.例如 前面讨论过的方程组(1)⎪⎩⎪⎨⎧=--=+-=+-5212253321321321x x x x x x x x x经过一系列的初等变换后,变为阶梯形方程组⎪⎩⎪⎨⎧=--=+=--774352332321x x x x x x这时方程的个数等于未知量的个数,方程组的唯一解是⎪⎩⎪⎨⎧-=-==112321x x x2) 当 r <n 时,这时阶梯形方程组为⎪⎪⎩⎪⎪⎨⎧=+++=+++++=++++++++++++211221122222111111212111d x c x c x c d x c x c x c x c d x c x c x c x c x c n rn r rr r rr n n r r r r n n r r r r其中 c ii ≠0, i =1,2,…, r , 写成如下形式⎪⎪⎩⎪⎪⎨⎧---=---=++---=+++++++++n rn r rr r rr n n r r r r n r r n r r x c x c d x c x c x c d x c x c x c x c d x c x c x c 112211222222111111212111(Ⅴ)当x r+1,…,x n 任意取定一组值,就唯一确定出x 1,…,x r 值,也就是定出方程组(Ⅴ)的一个解,一般地,由(Ⅴ)可以把x 1,x 2…,x r 的值由x r+1,…,x n 表示出来.这样表示出来的解称为方程组(I)的一般解,因x r+1,…,x n 可以任意取值,故称它们为自由未知量.显然,(Ⅴ)有无穷多个解,即(I)有无穷多个解.如上面讨论过的方程组(3)⎪⎩⎪⎨⎧=--=+-=+-5212632321321321x x x x x x x x x经过一系列的变换后,得到阶梯形方程组⎩⎨⎧-=+=+-431232321x x x x x 将x 1,x 2用x 3表示出来即有⎩⎨⎧--=--=32313453x x x x 这就是方程组(3)的一般解,而x 3是自由未知量.用消元法解线性方程组的过程,归纳起来就是,首先用初等变换把方程组化为阶梯形方程组,若最后出现一些等式“0 = 0”,则将其去掉.如果剩下的方程当中最后一个方程是零等于一个非零的数,那么方程组无解,否则有解.方程组有解时,如果阶梯形方程组中方程的个数等于未知量的个数,则方程组有唯一解;如果阶梯形方程组中方程个数小于未知量的个数,则方程组有无穷多个解.当线性方程组(1)中的常数项b 1= b 2=…= b m = 0时,即⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++000221122221211212111n mn m m n n n n x a x a x a x a x a x a x a x a x a(Ⅵ)称为齐次线性方程组.显然,齐次线性方程组是一定有解的.因为x 1= x 2=…= x n =0就是它的一个解.这个解称为齐次方程组的零解.我们所关心的是它除了零解之外,还有没有非零解?把上述对非齐次线性方程组讨论的结果应用到齐次线性方程组,就有如下定理.定理 在齐次线性方程组(Ⅵ)中,如果m<n ,则它必有非零解.证明:因为(Ⅵ)一定有解,又r ≤m<n ,所以它有无穷多个解,因而有非零解.§2 线性方程组有解判别定理从消元法解线性方程组的过程中可看到,在对方程组作初等变换时,只是对方程组的系数和常数项进行运算,而未知量并没有参加运算,也就是说,线性方程组的解仅仅依赖于方程组中未知量的系数与常数项.因此,在用消元法解线性方程组时,为了书写简便起见,可以只写出方程组的系数和常数项.通常把方程组(I)的系数和常数项写成下列表格的形式⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅m mn m m n n b a a a b a a a b a a a 21222221111211表中的第i 行代表方程组(I)的第i 个方程,第j 列表示x j 的系数,最后一列表示常数项.这个表称为线性方程组(I)的增广矩阵.去掉最后一列,得到另一个表⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅mn m m n n a a a a a a a a a 212222111211它称为线性方程组的系数矩阵.已知用消元法解线性方程组就是对方程组反复地施行初等变换,反映在矩阵上,就是1) 交换矩阵的某两行的位置;2) 用一个非零的数去乘矩阵的某一行;3) 用一个数乘某一行后加到另一行上.这三种变换称为矩阵的初等行变换.类似地,有1’) 交换矩阵的某两列的位置;2’) 用一个非零的数去乘矩阵的某一列;3’) 用一个数乘某一列后加到另一列上.1’) ,2’) ,3’)称为矩阵的初等列变换.矩阵的初等行变换和矩阵的初等列变换统称为矩阵的初等变换.利用方程组的初等变换把线性方程组化为阶梯形方程组,相当于用矩阵的初等行变换至多利用第一种列变换,把方程组的增广矩阵化为阶梯形矩阵.这一节我们利用矩阵秩的概念来讨论线性方程组解的情况.设线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++mn mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111(1)的系数矩阵和增广矩阵分别为A 和A , 即 A =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅mn m m n n a a a a a a a a a 212222111211, A =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅m mn m m n n b a a a b a a a b a a a 21222221111211. 定理1 线性方程组(1)有解的充分必要条件是:系数矩阵的秩与增广矩阵的秩相等,即r (A )=r (A )证:必要性如果方程组(1)有解,则β可由α1,α2,…,αn 线性表出,从而向量组α1,α2,…,αn ,β 可由α1,α2,…,αn 线性表出.又显然α1,α2,…,αn 可由α1,α2,…,αn ,β 线性表出,于是 {α1,α2,…,αn }≅{α1,α2,…,αn ,β}.所以 r {α1,α2,…,αn }=r {α1,α2,…,αn ,β},因此 r (A )=r (A )充分性 若 r (A )=r (A ),则有 r {α1,α2,…,αn }=r {α1,α2,…,αn ,β},又向量组 α1,α2,…,αn 可由α1,α2,…,αn ,β 线性表出,于是由§4的定理4知{}n ααα,,,21 ≅{}βααα,,,,21n ,因此β可由n ααα,,,21 线性表出,这就表明线性方程组(1)有解.此定理与前面§1介绍的消元法所得的结果是一致的.用消元法解线性方程组就是用初等行变换把增广矩阵化为阶梯形矩阵,这个阶梯形矩阵在适当调动前几列的顺序之后可能有两种情形:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 1222221111211r r rn rr n r n r d d c c d c c c d c c c c 或者⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 222221111211r rn rr n r n r d c c d c c c d c c c c其中c ii ≠0,i =1,2,…, r ,d r+1≠0.在前一种情形,我们说原方程组无解,而后一种情形方程组有解.实际上,把阶梯形矩阵中最后一列去掉,就是系数矩阵经过初等变换所变成的阶梯形矩阵.所以,当d r+1≠0时,r (A )≠r (A ),方程无解;当d r+1=0时,r (A )=r (A ),方程组有解.例1 判断方程组有解还是无解.⎪⎩⎪⎨⎧=++-=-++=+--72512420563432143214321x x x x x x x x x x x x解:⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛---→----→---=5000011216700563172432140112167005631712151241205631A 显然,r (A )=3,而r (A )=2,所以方程组无解.下面讨论线性组在有解的条件下解的情况.设线性方程组(1)有解,则r (A )=r (A )=r ,因而A 必有一个r 阶子式D ≠0(当然它也是A 的不为零的r 阶子式).为方便叙述起见,不妨设D 位于A 的左上角.显然这时D 所在的行是A 的一个极大无关组,第r +1, r +2, …, m 行都可由它们线性表出.因此方程组(1)与⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++r n rn r r n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111(2)同解.当r =n 时,由克拉默法则,方程组(2)有唯一解,即线性方程组有唯一解. 当r<n 时,把方程组(2)改写为⎪⎪⎩⎪⎪⎨⎧---=+++---=+++---=+++++++++n rn r r r r r rr r r n n r r r r n n r r r r x a x a b x a x a x a x a x a b x a x a x a x a x a b x a x a x a 112211212222222121111111212111 (3)此方程组作为x 1,x 2,…,x r 的方程组时,其系数行列式正是D ,而D ≠0,由克拉默法则,对于x r+1,x r+2,…,x n 的任意一组值,方程组(3)都有唯一解,也就是方程组(1)都有唯一解.x r+1,x r+2,…,x n 就是方程组(1)的一组自由未知量.对于(3)用克拉默法则,可解出x 1,x 2,…,x r :⎪⎪⎩⎪⎪⎨⎧'++'+'='++'+'='++'+'=++++++n rn r rrr r n n r r n n r r x c x c d x x c x c d x x c x c d x 11211222111111 (4)这就是线性方程组(1)的一般解.从上面的讨论可得:定理2 当线性方程组有解时,(1) 若r (A )=r =n ,则方程组有唯一解.(2) 若r (A )=r<n ,则方程组有无穷多解.例2 求解方程组⎪⎩⎪⎨⎧=-+-=-+-=-+-1223223553132432143214321x x x x x x x x x x x x解:对增广矩阵A 作初等行变换化为阶梯形矩阵→⎪⎪⎪⎭⎫ ⎝⎛------→⎪⎪⎪⎭⎫ ⎝⎛------=104101041011321122322355311321A⎪⎪⎪⎭⎫ ⎝⎛-----→⎪⎪⎪⎭⎫ ⎝⎛----000001041011501000001041011321由于r (A )=r (A )=2<4,所以方程组有解无穷多解,而且方程的全部解为⎩⎨⎧+-=++-=424314151x x x x x x 3、x 4为自由未知量.对于齐次线性方程组,由于它的系数矩阵A 与增广矩阵的秩总是相等的,所以齐次方程组总是有解的,至少有零解.那么,何时有非零解呢?将定理2用于齐次线性方程组立即可得到如下推论.推论1 齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++000221122221211212111n mn m m nn n n x a x a x a x a x a x a x a x a x a 有非零解的充分必要条件是:系数矩阵的秩r (A )=r<n . 推论2 齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++000221122221211212111n nn n n nn n n x a x a x a x a x a x a x a x a x a 有非零解的充分必要条件是:系数行列式D =0 例3 λ取何值时方程组⎪⎩⎪⎨⎧=++++=+-+=+++0)3()1(30)1(02)3(321321321x x x x x x x x x λλλλλλ 有非零解?并求其一般解.解:计算系数行列式λλλλλλλλλλλλλλλλλλ 0 0 1 1 0 21 1 1 0 1 1 02 1 31 1 02 13 )1(31 1 2 1 3-=+--=+-=++-+=D =λ2(λ–1)令D =0,知λ=0或 λ=1时,方程组有非零解.(1) 当λ=0时,易求得一般解为⎩⎨⎧=-=3231x x x x x 3为自由未知量.(2) 当λ=1时,易求得一般解为⎩⎨⎧=-=32312x x x x x 3为自由未知量.思考题:1. 当λ为何值时,下述齐次线性方程组有非零解?并且求出它的一般解.⎪⎩⎪⎨⎧=+++=--+-=---0)3(14202)8(023)2(321321321x x x x x x x x x λλλ 2. 当a 与b 取什么值时,线性方程组⎪⎪⎩⎪⎪⎨⎧=-+++=+++=-+++=++++bx x x x x x x x x a x x x x x x x x x x 5432154325432154321334536223231 有解?在有解的情况下,求它的一般解.§3 线性方程组的应用线性方程组是线性代数的核心内容之一,它不仅可以广泛地应用于科学、工程计算和统计分析等领域,同时也应用于财经类的后继课程. 很多实际问题的处理最后也往往归结为比较容易处理的线性方程组的问题, 由于数学软件的优化普及, 使线性方程组能够更好地解决我们现实中的问题. 本节将简要介绍线性方程组在几何学、运筹学、经济学等方面的基本应用.一、在解析几何中的应用解析几何是数与形的有机结合, 它将几何体用代数形式巧妙的表示出来, 然后通过研究代数方程的相关性质, 从而揭示几何图形的内在本质. 例1 已知平面上三条不同直线的方程分别为1L :230ax by c ++=,2L :230bx cy a ++=, 3L :230cx ay b ++=,试证:这三条直线交于一点的充分必要条件为0a b c ++=.证 必要性 设三直线1L , 2L , 3L 交于一点, 则线性方程组232323ax by c bx cy a cx ay b +=-⎧⎪+=-⎨⎪+=-⎩(1) 有唯一解, 故系数矩阵222a b A b c c a ⎛⎫ ⎪= ⎪ ⎪⎝⎭与增广矩阵232323a b c A b c a c a b -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭的秩均为2, 于是det()0A =, 即22223det()236()()23ab cA bc a a b c a b c ab ac bc cab-=-=++++----=0, 所以0a b c ++=.充分性 由0a b c ++=, 则从必要性的证明可知, det()0A =, 故()3r A <. 而22222132()2[()]2[()]0224a bac b a a b b a b b b c =-=-++=-++≠,因此()()2r A r A ==. 所以线性方程组(1)有唯一解, 即三直线1L ,2L ,3L 交于一点. 例2 要使得平面上三点()111,x y P , ()222,x y P , ()333,x y P 在同一条直线上, 则需满足什么条件?解 三点位于平面同一条直线上, 不妨令直线为0ax by c ++=, ,,a b c 不全为零. 三点坐标满足齐次线性方程组112233000ax by c ax by c ax by c ++=⎧⎪++=⎨⎪++=⎩ 从而有以,,Y X Z 为未知量的方程组112233000x Yy x Yy x Yy X ++Z =⎧⎪X ++Z =⎨⎪X ++Z =⎩ 存在非零解 ,,a Y b Z c X ===; 由线性方程组解的判别方法可知:齐次线性方程组有非零解等价于1122331131x y r x y n x y ⎛⎫⎪<= ⎪ ⎪⎝⎭(n 为未知量的个数); 因此, 平面上三点,()i i i x y P (1,2,3i =)在1122331131x y r x y n x y ⎛⎫⎪<= ⎪ ⎪⎝⎭条件下共线. 二、在运筹学中的应用在运筹学中, 很多问题往往要用到线性方程组中的知识去运算求解.例3 有三个生产同一产品的工厂1A 、2A 和3A , 其年产量分别为40吨、20吨和10吨, 该产品每年有两个用户1B 和2B , 其用量分别为45吨和25吨, 由各产地i A 到各用户j B 的距离ij C (千米), 如下表所示(1,2,3,1,2i j ==). 各厂的产品如何调配才能使运费最少?(按每吨产品每千米的运费为1元计算)解 为了解决这个问题, 我们假设各厂i A 调运到各用户j B 的产品数量为ij x (1,2,3,1,2i j ==).容易看出, 三个厂的总产量与两个用户的总用量刚好相等, 所以对产地来说产品应全部调出, 因此有111240x x +=, (2)212220x x +=, (3) 313210x x +=, (4)同时对用户来说调来的产品刚好是所需要的, 因此又有11213145x x x ++=, (5) 12223225x x x ++=, (6)以上方程(2)-(6)就是ij x 应满足的一些条件. 要使运费最小, 即使得112131122232455892587236s x x x x x x =+++++达到最小.于是, 题目要解决的问题是:如何选择非负数ij x ,1,2,3,1,2i j ==, 使之满足(2)-(6), 而是总运费s 最小.三、在经济学中的应用例4 假设一个经济系统由三个行业:五金化工、能源(如燃料、电力等)、机械组成, 每个行业的产出在各个行业中的分配见下表, 每一列中的元素表示占该行业总产出的比例. 以第二列为例, 能源行业的总产出的分配如下:80%分配到五金化工行业, 10%分配到机械行业, 余下的供本行业使用. 因为考虑了所有的产出, 所以每一列的小数加起来必须等于 1. 把五金化工、能源、机械行业每年总产出的价格(即货币价值)分别用123,,p p p 表示. 试求出使得每个行业的投入与产出都相等的平衡价格.产出分配购买者五金化工 能源 机械 0.2 0.8 0.4 五金化工 0.3 0.1 0.4 能源 0.50.10.2机械假设一个国家的经济分为很多行业, 例如制造业、通讯业、娱乐业和服务行业等. 我们知道每个部门一年的总产出, 并准确了解其产出如何在经济的其它部门之间分配或“交易”.把一个部门产出的总货币价值称为该产出的价格(price). 我们有如下结论: 存在赋给各部门总产出的平衡价格, 使得每个部门的投入与产出都相等.解 表可以看出, 沿列表示每个行业的产出分配到何处, 沿行表示每个行业所需的投入. 例如, 第1行说明五金化工行业购买了80%的能源产出、40%的机械产出以及20%的本行业产出, 由于三个行业的总产出价格分别是123,,p p p , 因此五金化工行业必须分别向三个行业支付1230.2,0.8,0.4p p p 元. 五金化工行业的总支出为1230.20.80.4p p p ++. 为了使五金化工行业的收入1p 等于它的支出, 因此希望11230.20.80.4p p p p =++.采用类似的方法处理上表中第2、3行, 同上式一起构成齐次线性方程组1123212331230.20.80.40.30.10.40.50.10.2p p p p p p p p p p p p=++⎧⎪=++⎨⎪=++⎩ 该方程组的通解为1233 1.4170.9171.000p p p p ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 此即经济系统的平衡价格向量, 每个3p 的非负取值都确定一个平衡价格的取值. 例如, 我们取3p 为 1.000亿元, 则1 1.417p =亿元,20.917p =亿元. 即如果五金化工行业产出价格为1.417亿元, 则能源行业产出价格为0.917亿元, 机械行业的产出价格为1.000亿元, 那么每个行业的收入和支出相等. 在研究一些数量在网络中的流动时自然推导出线性方程组. 例如, 城市规划和交通工程人员监控一个网络状的市区道路的交通流量模式;电气工程师计算流经电路的电流;以及经济学家分析通过分销商和零售商的网络从制造商到顾客的产品销售, 许多网络中的方程组涉及成百甚至上千的变量和方程.例5 下图给出了某城市部分单行道的交通流量(每小时过车数).假设 (1) 流入网络的流量等于全部流出网络的流量;(2) 全部流入一个节点的流量等于全部流出此节点的流量. 请确定该交通网络未知部分的具体流量.100x x解 首先写出表示流量的线性方程组, 然后求出方程组的通解. 图中各节点的流入量和流出量见下表:网络节点 流入量流出量A 24x x + 1300x +B 100400+ 26x x +C 7200x +3400x +D 300500+ 45x x +E 56x x +200600+F 400600+ 78x x +G 300600+ 9500x +H 9200x + 10xJ 10500x +400700+整个系统20001381000x x x +++根据假设(1)和(2), 经过简单整理, 可得到该网络流系统满足的线性方程组为124263745567891013830050020080080010004006001000x x x x x x x x x x x x x x x x x x -++=⎧⎪+=⎪⎪-+=⎪+=⎪⎪+=⎨⎪+=⎪=⎪⎪=⎪⎪++=⎩ 交通流量模式(即方程组的通解)为124385464789102005008008001000400600x x xx x x x x x x x x x =⎧⎪=-⎪⎪=-⎪=-⎪⎨=⎪⎪=-⎪=⎪⎪=⎩,48,x x 是自由变量.。

线性代数第三章线性方程组第4节线性方程组解的结构

线性代数第三章线性方程组第4节线性方程组解的结构

c1
1 0
c2
0 1
k1
1 1
k2
2 2
1
0
0
1
得 c1 k2
cc12
k1 k1
2k2 2k2
c1 k2
即 c1 k2 0
cc12
k1 k1
2k2 2k2
0 0
c1 k2 0
解得 c1 k2,c2 k2,k1 k2.

k2 k 0,
则方程组(Ⅰ)、(Ⅱ)的公共解为
(kk21
(k1 k2 )
k2 k2
)0 0
解之得到
k1 k2.
当k1 k2 0时,向量
k1(0,1,1, 0)T k2 (1, 2, 2,1)T k2[(0,1,1, 0)T (1, 2, 2,1)T
满足方程组(Ⅰ).
k2 (1,1,1,1)T
并且它也是方程组(Ⅱ)的解,故它是方程组(Ⅰ)与(Ⅱ)的 公共解.
定理3.17 若0是非齐次线性方程组AX=b的一个解,则方程组 AX=b的任意一个解 都可以表示为 0 其中 是其导出组AX=0的某个解,0称为方程组
AX=b的一个特解.
例7 求线性方程组
x1 2x2 3x3 x4 3x5 5
3x1
2x1 4x2
x2 2x4 6x5 1 5x3 6x4 3x5
0 0
x1 5x2 6x3 8x4 6x5 0
的一个基础解系.并求方程组的通解.
解 方程组中方程个数小于未知量的个数,所以方程组有 无穷多解.
对方程组的系数矩阵施以初等行变换,化为简化的阶 梯形矩阵:
3 1 6 4 2
A 2
2
3 5
3
1 5 6 8 6

线性代数第3章(矩阵的初等变换与线性方程组)

线性代数第3章(矩阵的初等变换与线性方程组)

第3章 矩阵的初等变换与线性方程组本章先引进矩阵的初等变换,建立矩阵的秩的概念,并利用初等变换讨论矩阵的秩的性质;然后利用矩阵的秩讨论线性方程组无解、有惟一解或有无限多解的充分必要条件,并介绍用初等变换解线性方程组的方法.§1矩阵的初等变换矩阵的初等变换是矩阵的一种十分重要的运算,它在解线性方程组、求逆矩阵及矩阵理论的探讨中都可起重要的作用.为引进矩阵的初等变换,先来分析用消元法解线性方程组的例子.引例 求解线性方程组解这里, (1)→(B1)是为消x1作准备. (B1)→(B2)是保留①中的x1,消去②、③、④中的x1.(B2)→(B3)是保留②中的x2并把它的系数变为1,然后消去③、④中的x2,在此同时恰好把x3也消去了. (B3)→(B4)是消去x4,在此同时恰好把常数也消去了,得到恒等式0=0(若常数项不能消去,就将得到矛盾方程0= 1,则说明方程组无解).至此消元完毕.(B4)是4个未知数3个有效方程的方程组,应有一个自由未知数,由于方程组(B4)呈阶梯形,可把每个台阶的第一个未知数(即x1,x2,x4)选为非自由未知数,剩下的x3选为自由未知数.这样,就只需用“回代”的方法便能求出解:由③得x4=-3;将x4=-3代入②,得x2 = x3 +3;以x4=-3, x2 =x3+3代入①,得x1=x3+4.于是解得其中x3可任意取值.或令x3=c,方程组的解可记作即其中c为任意常数.在上述消元过程中,始终把方程组看作一个整体,即不是着眼于某一个方程的变形,而是着眼于整个方程组变成另一个方程组.其中用到三种变换,即: (i)交换方程次序(ⓘ与ⓙ相互替换); (i i)以不等于0的数乘某个方程(以ⓘ×k替换ⓘ); (i i i)一个方程加上另一个方程的k倍(以ⓘ+kⓙ替换ⓘ).由于这三种变换都是可逆的,即因此变换前的方程组与变换后的方程组是同解的,这三种变换都是方程组的同解变换,所以最后求得的解(2)是方程组(1)的全部解.在上述变换过程中,实际上只对方程组的系数和常数进行运算,未知数并未参与运算.因此,如果记方程组(1)的增广矩阵为那么上述对方程组的变换完全可以转换为对矩阵B的变换.把方程组的上述三种同解变换移植到矩阵上,就得到矩阵的三种初等变换.定义1下面三种变换称为矩阵的初等行变换:(i)对换两行(对换i,j两行,记作r i↔r j);(i i)以数k≠0乘某一行中的所有元(第i行乘k,记作r i×k);(i i i)把某一行所有元的k倍加到另一行对应的元上去(第j行的k倍加到第i行上,记作r i+k r j).把定义中的“行”换成“列”,即得矩阵的初等列变换的定义(所用记号是把“r”换成“c”).矩阵的初等行变换与初等列变换,统称初等变换.显然,三种初等变换都是可逆的,且其逆变换是同一类型的初等变换;变换r i↔r j的逆变换就是其本身;变换r i×k的逆变换为变换r i+kr j的逆变换为r i+(-k)r j(或记作r i-k r j).如果矩阵A经有限次初等行变换变成矩阵B,就称矩阵A与B行等价,记作;如果矩阵A经有限次初等列变换变成矩阵B,就称矩阵A与B列等价,记作;如果矩阵A经有限次初等变换变成矩阵B,就称矩阵A与B等价,记作A~B.矩阵之间的等价关系具有下列性质:(i)反身性A~A;(i i)对称性 若A~B,则B~A;(i i i)传递性 若A~B,B~C,则A~C.下面用矩阵的初等行变换来解方程组(1),其过程可与方程组(1)的消元过程一一对照:由方程组(B4)得到解(2)的回代过程,也可用矩阵的初等行变换来完成,即B5对应方程组取x3为自由未知数,并令x3=c,即得其中c为任意常数.矩阵B4和B5的特点是:都可画出一条从第一行某元左方的竖线开始到最后一列某元下方的横线结束的阶梯线,它的左下方的元全为0;每段竖线的高度为一行,竖线的右方的第一个元为非零元,称为该非零行的首非零元.具有这样特点的矩阵称为行阶梯形矩阵.为明确起见给出如下定义:定义2 (1)非零矩阵若满足(i)非零行在零行的上面; (i i)非零行的首非零元所在列在上一行(如果存在的话)的首非零元所在列的右面,则称此矩阵为行阶梯形矩阵;(2)进一步,若A是行阶梯形矩阵,并且还满足: (i)非零行的首非零元为1;(i i)首非零元所在的列的其他元均为0,则称A为行最简形矩阵.于是B4和B5都是行阶梯形矩阵,且B5还是行最简形矩阵.用归纳法不难证明(这里不证):对于任何非零矩阵A m×n,总可经有限次初等行变换把它变为行阶梯形矩阵和行最简形矩阵.利用初等行变换,把一个矩阵化为行阶梯形矩阵和行最简形矩阵,是一种很重要的运算.由引例可知,要解线性方程组只需把增广矩阵化为行最简形矩阵.由行最简形矩阵B5,即可写出方程组的解(2);反之,由方程组的解(2)也可写出矩阵B5.由此可猜想到一个矩阵的行最简形矩阵是惟一确定的(行阶梯形矩阵中非零行的行数也是惟一确定的).对行最简形矩阵再施以初等列变换,可变成一种形状更简单的矩阵,称为标准形.例如矩阵F称为矩阵B的标准形,其特点是:F的左上角是一个单位矩阵,其余元全为0.对于m×n矩阵A,总可经过初等变换(行变换和列变换)把它化为标准形此标准形由m,n,r三个数完全确定,其中r就是行阶梯形矩阵中非零行的行数.所有与A等价的矩阵组成一个集合,标准形F是这个集合中形状最简单的矩阵.矩阵的初等变换是矩阵的一种最基本的运算,为探讨它的应用,需要研究它的性质,下面介绍它的一个最基本的性质.定理1设A与B为m×n矩阵,那么(i)的充分必要条件是存在m阶可逆矩阵P,使PA =B;(i i) A~B的充分必要条件是存在n阶可逆矩阵Q,使A Q=B;(i i i)A~B的充分必要条件是存在m阶可逆矩阵P及n阶可逆矩阵Q,使PA Q=B.为证明定理1,我们引进初等矩阵的知识.定义3由单位矩阵E经过一次初等变换得到的矩阵称为初等矩阵.三种初等变换对应有三种初等矩阵.(i)把单位矩阵中第i,j两行对换(或第i,j两列对换),得初等矩阵用m阶初等矩阵E m(i,j)左乘矩阵A=(a i j)m×n,得其结果相当于对矩阵A施行第一种初等行变换:把A的第i行与第j行对换(r i↔r j).类似地,以民阶初等矩阵E n(i,j)右乘矩阵A,其结果相当于对矩阵A施行第一种初等列变换:把A的第i列与第j列对换( c i↔c j).(i i)以数k≠0乘单位矩阵的第i行(或第i列),得初等矩阵可以验知:以E m(i(k))左乘矩阵A,其结果相当于以数k乘A的第i行(r i×k);以E n(i(k))右乘矩阵A,其结果相当于以数k乘A的第i列(c i×k).(i i i)以k乘单位矩阵的第j行加到第i行上或以k乘单位矩阵的第i列加到第j列上,得初等矩阵可以验知:以E m(i j(k))左乘矩阵A,其结果相当于把A的第j行乘k加到第i行上(r i+kr j);以E n(i j(k))右乘矩阵A,其结果相当于把A的第i列乘k加到第j 列上(c j+kc i).归纳上面的讨论,可得性质1设A是一个m×n矩阵,对A施行一次初等行变换,相当于在A的左边乘相应的m阶初等矩阵;对A施行一次初等列变换,相当于在A的右边乘相应的n阶初等矩阵.显然初等矩阵都是可逆的,且其逆矩阵是同一类型的初等矩阵:性质2方阵A可逆的充分必要条件是存在有限个初等矩阵P1,P2,…,P l,使A =P1P2…P l.证 先证充分性.设A=P1P2…P l,因初等矩阵可逆,有限个可逆矩阵的乘积仍可逆.故A可逆.再证必要性.设n阶方阵A可逆,它经有限次初等行变换成为行最简形矩阵B.由性质1,知有初等矩阵Q1,…,Q l使Q l…Q1A=B.因A,Q1,…,Q l均可逆,故B也可逆,从而B的非零行数为n,即B有n个首非零元1,但B总共只有n个列,故B=E.于是这里为初等矩阵,即A是若干个初等矩阵的乘积. 证毕下面应用初等矩阵的知识来证明定理1.定理1的证明:(i)依据A~B的定义和初等矩阵的性质,有A~B ⇔A经有限次初等行变换变成B⇔存在有限个m阶初等矩阵P1,P2,…, P l,使P l… P2P1A=B⇔存在m阶可逆矩阵P,使PA=B.类似可证明(i i)和(i i i).证毕定理1把矩阵的初等变换与矩阵的乘法联系了起来,从而可以依据矩阵乘法的运算规律得到初等变换的运算规律,也可以利用矩阵的初等变换去研究矩阵的乘法.下面先给出定理1的一个推论,然后介绍一种利用初等变换求逆阵的方法.推论 方阵A可逆的充分必要条件是证A可逆⇔存在可逆矩阵P,使PA=E定理1表明,如果,即A经一系列初等行变换变为B,则有可逆矩阵P,使PA=B.那么,如何去求出这个可逆矩阵P?由于因此,如果对矩阵(A,E)作初等行变换,那么,当把A变为B时,E就变为P.于是就得到所求的可逆矩阵P.例1设的行最简形矩阵为F,求F,并求一个可逆矩阵P,使PA=F.解 把A用初等行变换化成行最简形矩阵,即为F.但需求出P,故按上段所述,对(A,E)作初等行变换把A化成行最简形矩阵,便同时得到F和P.运算如下:故为A的行最简形矩阵,而使PA=F的可逆矩阵注 上述解中所得(F,P),可继续作初等行变换r3×k,r1+kr3,r2+kr3,则F不变而P变.由此可知本例中使PA=F的可逆矩阵P不是惟一的.例2设证明A可逆,并求A-1.解 如同例1,初等行变换把(A,E)化成(F,P),其中F为A的行最简形矩阵.如果F=E,由定理1之推论知A可逆,并由PA=E,知P=A-1.运算如下:例3求解矩阵方程A X=B,其中解 设可逆矩阵P使PA =F为行最简形矩阵,则P(A,B)=(F,P B),因此对矩阵(A,B)作初等行变换把A变为F,同时把B变为PB.若F=E,则A 可逆,且P=A-1,这时所给方程有惟一解X=PB=A-1B.由可见因此A可逆,且即为所给方程的惟一解.例2和例3是一种用初等行变换求A-1或A-1B的方法,当A为3阶或更高阶的矩阵时,求A-1或A-1B通常都用此方法.这是当A为可逆矩阵时,求解方程A X=B的方法(求A-1也就是求方程A X=E的解).这方法就是把方程A X=B 的增广矩阵(A,B)化为行最简形矩阵,从而求得方程的解.特别地,求解线性方程组Ax=b (A为可逆矩阵)时把增广矩阵(A,b)化为行最简形矩阵,其最后一列就是解向量,从而得到了一个求解线性方程组的新途径.例4求解线性方程组解 记此方程组为Ax=b,则增广矩阵因故 A可逆,于是方程组有解,且解为此方程组我们已在第2章例16中分别用克拉默法则和逆矩阵求解过.比较这三种方法,显然这里介绍的方法最为方便和快捷.§2矩阵的秩为了更好地理解矩阵的秩的概念,重新讨论上节引例中增广矩阵B及其行阶梯形矩阵B4和B5:我们发现B4和B5都恰好有3个非零行.自然要问:每一个与B行等价的行阶梯形矩阵是否都恰好有3个非零行?回答是肯定的.为阐明这一问题先引入矩阵子式的概念.定义4在m×n矩阵A中,任取k行与k列(k≤m,k≤n),位于这些行列交叉处的k2个元素,不改变它们在A中所处的位置次序而得的k阶行列式,称为矩阵A的k阶子式.m×n矩阵A的k阶子式共有个.现在来观察行阶梯形矩阵B4的子式.取B4的第1、第2、第3行和第1、第2、第4列,得到三阶非零子式而它的任一四阶子式都将因含有零行而成为0.换言之,B4中非零子式的最高阶数是3.同样B5中非零子式的最高阶数也是3.非零子式在矩阵的初等行变换中的意义可以表述成如下的引理.引理 设,则A与B中非零子式的最高阶数相等.证 先证B是A经过一次初等行变换而得的情形.设D是A中的r阶非零子式.当或对,在B中总能找到与D相对应的r阶子式D1,由于D1=D或D1=-D或D1=kD,因此D1≠0.当时,因为对于作变换r i↔ r j时结论成立,所以只需考虑这一特殊情形.分两种情形讨论: (① D不包含A的第1行,这时D也是B的r阶非零子式;② D包含A 的第1行,这时把B中与D对应的r阶子式D1记作若p=2,则D1=D≠0;若p≠2,则D2也是B的r阶子式,由D1-kD2=D≠0,知D1与D2不同时为0.总之,B中存在r阶非零子式D1或D2.记A和B中非零子式的最高阶数分别为s和t,那么上述表明s≤ t.因A经一次初等行变换成为B,B也就可经一次初等行变换成为A,故又有t≤ s,于是s=t.经一次初等行变换结论成立,即可知经有限次初等行变换结论也成立. 证毕现在可以回答本节一开始提出的问题了.设C是任一与B行等价的行阶梯形矩阵,由引理,C中非零子式的最高阶数应与B4中非零子式的最高阶数相同,即C有且仅有3个非零行.值得注意的是上面的讨论中,关心的并不是非零子式(作为行列式)本身,而是它的阶数,尤其是非零子式的最高阶数.由此给出矩阵的秩的定义:定义5设在矩阵A中有一个不等于0的r阶子式D,且所有r+1阶子式(如果存在的话)全等于0,那么D称为矩阵A的最高阶非零子式,数r称为矩阵A的秩,记作R(A).并规定零矩阵的秩等于0.由行列式的性质可知,在A中当所有r+1阶子式全等于0时,所有高于r+1阶的子式也全等于0,因此把r阶非零子式称为最高阶非零子式,而A的秩R(A)就是A的非零子式的最高阶数.由于R(A)是A的非零子式的最高阶数,因此,若矩阵A中有某个s阶子式不为0,则R(A)≥s;若A中所有t阶子式全为0,则R(A)<t.显然,若A为m×n矩阵,则0≤R(A)≤mi n{m,n}.由于行列式与其转置行列式相等,因此A T的子式与A的子式对应相等,从而R(A T)=R(A).对于n阶矩阵A,由于A的n阶子式只有一个︳A ︳,故当︳A ︳≠0时R(A)= n,当︳A ︳=0时R(A)<n.可见可逆矩阵的秩等于矩阵的阶数,不可逆矩阵的秩小于矩阵的阶数.因此,可逆矩阵又称满秩矩.阵,不可逆矩阵(奇异矩阵)又称降秩矩阵.矩阵的初等变换作为一种运算,其深刻意义在于它不改变矩阵的秩,即有定理2若A~B,则R(A)=R(B).证 由引理,只须证明A经初等列变换变成B的情形,这时A T经初等行变换变为B T,由引理知R(A T)=R(B T),又R(A)=R(A T),R(B)=R(B T),因此R(A)= R(B).总之,若A经有限次初等变换变为B(即A~B),则R(A)=R(B). 证毕由于A~B的充分必要条件是有可逆矩阵P、Q,使PA Q=B,因此可得推论 若可逆矩阵P、Q使PA Q=B,则R(A)=R(B).对于一般的矩阵,当行数与列数较高时,按定义求秩是很麻烦的.然而对于行阶梯形矩阵,如前所示,它的秩就等于非零行的行数,一看便知毋须计算.因此依据定理2把矩阵化为行阶梯形矩阵来求秩是方便而有效的方法.例5求矩阵A和B的秩,其中解 在A中,容易看出一个2阶子式A的3阶子式只有一个经计算可知因此R(A)= 2.对B作初等行变换变成行阶梯形矩阵因为行阶梯形矩阵有3个非零行,所以R(B)= 3.例6设求矩阵A及矩阵B=(A,b)的秩.解 对B作初等行变换变为行阶梯形矩阵,设B的行阶梯形矩阵为,则就是A的行阶梯形矩阵,故从中可同时看出R(A)及R(B).因此R(A)=2,R(B)= 3.从矩阵B的行阶梯形矩阵可知,本例中的A与b所对应的线性方程组Ax=b是无解的,这是因为行阶梯形矩阵的第3行表示矛盾方程0=1.例7设已知R(A)=2,求λ与μ的值.解因R(A)=2,故下面讨论矩阵的秩的性质.前面我们已经提出了矩阵秩的一些最基本的性质,归纳起来有①0≤R(A m×n)≤ min{ m,n}.②R(A T)=R(A).③若A~B,则R(A)= R(B).④若P、Q可逆,则R(PA Q)=R(A).下面再介绍几个常用的矩阵秩的性质:⑤ma x{R(A),R(B)}≤R(A,B)≤R(A)+R(B),特别地,当B=b为非零列向量量时,有R(A)≤R(A,b)≤R(A)+1.证 因为A的最高阶非零子式总是(A,B)的非零子式,所以R(A)≤R(A,B).同理有R(B)≤R(A,B).两式合起来,即为max{R(A),R(B)}≤R(A,B).设R(A)=r,R(B)=t.把A T和B T分别作初等行变换化为行阶梯形矩阵和.因由性质2,R(A T)=r,R(B T)=t,故和中分别含r个和t个非零行,从而中只含r+t个非零行,并且.于是证毕例如令则⑥ R(A+B)≤R(A)+R(B).证 无妨设A,B为m×n矩阵.对矩阵作初等行变换ri-r n+i(i=1,2,…,n)即得于是证毕后面我们还要介绍两条常用的性质,现先罗列于下:⑦ R(A B)≤mi n{R(A),R(B)}(见下节定理7).⑧若A m×n B n×l=O,则R(A)+R(B)≤ n(见下章例13)例8设A为n阶矩阵,证明R(A+E)+R(A-E)≥ n.证 因(A+E)+(E-A)=2E,由性质⑥,有R(A+E)+R(E-A)≥R(2E)= n,而R(E-A)= R(A-E),所以R(A+E)+R(A-E)≥≥n.例9证明:若A m×n B n×l=C,且R(A)= n,则R(B)=R(C).证 因R(A)=n,知A的行最简形矩阵为,并有m阶可逆矩阵P,使于是由矩阵秩的性质④,知R(C)=R(PC),而故R(C)=R(B).本例中的矩阵A的秩等于它的列数,这样的矩阵称为列满秩矩阵.当A为方阵时,列满秩矩阵就成为满秩矩阵,也就是可逆矩阵.因此,本例的结论当A 为方阵这一特殊情形时就是矩阵秩的性质④.本例另一种重要的特殊情形是C=O,这时结论为设A B=O,若A为列满秩矩阵,则B=O.这是因为,按本例的结论,这时有R(B)=0,故B=O.这一结论通常称为矩阵乘法的消去律.§3线性方程组的解设有n个未知数m个方程的线性方程组(3)式可以写成以向量x为未知元的向量方程A x=b,(4)第二章中已经说明,线性方程组(3)与向量方程(4)将混同使用而不加区分,解与解向量的名称亦不加区别.线性方程组(3)如果有解,就称它是相容的;如果无解,就称它不相容.利用系数矩阵A和增广矩阵B=(A,b)的秩,可以方便地讨论线性方程组是否有解(即是否相容)以及有解时解是否惟一等问题,其结论是定理3 n元线性方程组Ax=b(i)无解的充分必要条件是R(A)<R(A,b);(i i)有惟一解的充分必要条件是R(A)=R(A,b)=n;(i i i)有无限多解的充分必要条件是R(A)=R(A,b)<n.证 只需证明条件的充分性,因为(i),(i i),(i i i)中条件的必要性依次是(i i)(i i i),(i)(i i i),(i)(i i)中条件的充分性的逆否命题.设R(A)=r.为叙述方便,无妨设B=(A,b)的行最简形矩阵为(i)若R(A)<R(B),则中的d r+1=1,于是的第r+1行对应矛盾方程0= 1,故方程(4)无解.(i i)若R(A)=R(B),则进一步把B化成行最简形矩阵,而对于齐次线性方程组,则把系数矩阵A化成行最简形矩阵.(i i i)设R(A)=R(B)=r,把行最简形中r个非零行的首非零元所对应的未知数取作非自由未知数,其余n-r个未知数取作自由未知数,并令自由未知数分别等于c1,c2,…,c n-r,由B(或A)是行最简形矩阵,即可写出含n-r个参数的通解.例10求解齐次线性方程组解 对系数矩阵A施行初等行变换变为行最简形矩阵即得与原方程组同解的方程组由此即得令x3 =c1,x4=c2,把它写成通常的参数形式其中c1,c2为任意实数,或写成向量形式例11求解非齐次线性方程组解 对增广矩阵B施行初等行变换可见R(A)=2,R(B)=3,故方程组无解.例12求解非齐次线性方程组解 对增广矩阵B施行初等行变换即得亦即例13 设有线性方程组问λ取何值时,此方程组(1)有惟一解; (2)无解; (3)有无限多解?并在有无限多解时求其通解.解法1对增广矩阵B=(A,b)作初等行变换把它变为行阶梯形矩阵,有(1)当λ≠0且λ≠-3时,R(A)= R(B)=3,方程组有惟一解;(2)当λ=0时,R(A)=1,R(B)= 2,方程组无解;(3)当λ=-3时,R(A)=R(B)= 2,方程组有无限多个解,这时由此便得通解即解法2因系数矩阵A为3阶方阵,故有R(A)≤ R(A,b)3×4≤ 3.于是由定理3,知方程有惟一解的充分必要条件是A的秩R(A)=3,即︳A ︳≠0.而因此,当λ≠0且λ≠-3时,方程组有惟一解.当λ=0时知R(A)=1,R(B)=2,故方程组无解.当λ=-3时知R(A)=R(B)=2,故方程组有无限多个解,且通解为比较解法1与解法2,显见解法2较简单.但解法2的方法只适用于系数矩阵为方阵的情形.对含参数的矩阵作初等变换时,例如在本例中对矩阵B作初等变换时,由于λ+1,λ+3等因式可以等于0,故不宜作诸如这样的变换.如果作了这种变换,则需对λ+1=0(或λ+3=0)的情形另作讨论.因此,对含参数的矩阵作初等变换较不方便.由定理3容易得出线性方程组理论中两个最基本的定理,这就是定理4 n元齐次线性方程组Ax=0有非零解的充分必要条件是R(A)<n.定理5线性方程组A x=b有解的充分必要条件是R(A)=R(A,b).显然,定理4是定理3(i i i)的特殊情形,而定理5就是定理3(i).为了下一章论述的需要,下面把定理5推广到矩阵方程.定理6矩阵方程A X=B有解的充分必要条件是R(A)= R(A,B).证 设A为m×n矩阵,B为m×l矩阵,则X为n×l矩阵.把X和B按列分块,记为X=(x1,x2,…,x l), B=(b1,b2,…,b l),则矩阵方程A X=B等价于l个向量方程A x i=b i(i=1,2,…,l).又,设R(A)=r,且A的行最简形矩阵为,则有r个非零行,且的后m-r行全为零行.再设从而由上述讨论并依据定理5,可得A X=B有解⇔Ax i=b i有解(i=1,2,…,l)⇔R(A,b i)=R(A) (i=1,2,…,l)⇔b i的后m-r个元全为零(i=1,2,…,l)⇔(b1,b2,…,b l)的后m-r行全为零行⇔R(A,B)=r=R(A). 证毕利用定理6,容易得出矩阵的秩的性质7,即定理7设A B=C,则R(C)≤min{ R(A),R(B)}.证 因A B=C,知矩阵方程A X=C有解X=B,于是据定理6有R(A)= R(A,C).而R(C)≤R(A,C),因此R(C)≤R(A).又B T A T=C T,由上段证明知有R(C T)≤R(B T),即R(C)≤ R(B).综合便得R(C)≤min{R(A),R(B)}.证毕定理6和定理7的应用,我们在下一章中讨论.习 题 三1.用初等行变换把下列矩阵化为行最简形矩阵:2.设求一个可逆矩阵P,使PA为行最简形矩阵.3.设(1)求可逆矩阵P,使PA为行最简形矩阵;(2)求一个可逆矩阵Q,使QA T为行最简形矩阵.4.试利用矩阵的初等变换,求下列方阵的逆矩阵:5.试利用矩阵的初等行变换,求解第2章习题二第15题之(2).6. (1)设求X使A X=B;(2)设 求X使XA=B;(3)设A A X=2X+A,求X.7.在秩是r的矩阵中,有没有等于0的r-1阶子式?有没有等于0的r阶子式?8.从矩阵A中划去一行得到矩阵B,问A,B的秩的关系怎样?9.求作一个秩是4的方阵,它的两个行向量是(1,0,1,0,0),(1,-1,0,0,0).10.求下列矩阵的秩:11.设A、B都是m×n矩阵,证明A~B的充分必要条件是R(A)=R(B).12.设,问k为何值,可使(1)R(A)= 1;(2)R(A)=2;(3)R(A)=3.13.求解下列齐次线性方程组:14.求解下列非齐次线性方程组:15.写出一个以为通解的齐次线性方程组.16.设有线性方程组问λ为何值时(1)有惟一解;(2)无解; (3)有无限多解?并在有无限多解时求其通解.17.λ取何值时,非齐次线性方程组(1)有惟一解; (2)无解; (3)有无限多个解?并在有无限多解时求其通解.18.非齐次线性方程组当λ取何值时有解?并求出它的通解.19.设问λ为何值时,此方程组有惟一解、无解或有无限多解?并在有无限多解时求其通解.20.证明R(A)=1的充分必要条件是存在非零列向量 a及非零行向量 b T,使A=ab T.21.设A为列满秩矩阵,A B=C,证明线性方程Bx=0与Cx=0同解.22.设A为m×n矩阵,证明方程A X=E m有解的充分必要条件是R(A)=m.。

线性代数讲义03线性方程组

线性代数讲义03线性方程组

第三章 线性方程组第一节 线性方程组与矩阵的行等价一 线性方程组以前学过求解二元一次方程组与三元一次方程组的方法. 这里研究一般的一次方程组.定义3.1 多元一次方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++mn mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111称为线性方程组. 方程组有m 个方程, n 个未知数i x (1,2,,i n =), 而ij a (1,2,,i n =;m j ,,2,1 =)是未知数的系数, j b (m j ,,2,1 =)是常数项.如果0=j b (m j ,,2,1 =), 则称为齐次线性方程组, 否则称为非齐次线性方程组.数组n c c c ,,,21 是方程组的一个解, 如果用它们分别代替方程组中的未知数n x x x ,,,21 , 可以使方程组变成等式组. 方程组的全部解的集合称为方程组的通解. 相对于通解, 称方程组的一个解为特解.定义3.2 如果两个线性方程组有相同的通解, 则称它们同解.按照定义, 两个方程组同解是指它们的解的集合相等. 集合相等是一种等价关系, 因此方程组同解也是一种等价关系. 特别, 方程组同解具有传递性.通过消元, 可将线性方程组变成比较简单的同解方程组, 从而得到原方程组的解.例3.1 解线性方程组⎪⎩⎪⎨⎧=++=++=+-52452132321321321x x x x x x x x x .解 从上向下消元, 得同解方程组1232332312243x x x x x x -+=⎧⎪-=⎨⎪-=-⎩. 这种方程组称为阶梯形方程组. 从下向上消元, 得同解方程组⎪⎩⎪⎨⎧-=-=-=310232321x x x .再除以第一个未知数的系数, 得线性方程组的解2/31-=x , 52=x , 33=x .解线性方程组的基本方法是加减消元法. 求解过程中常用三种运算.定义3.3 下列三种运算称为方程组的初等变换.(1) 交换两个方程的位置;(2) 用一个非零常数乘以一个方程;(3) 将一个方程的k 倍加到另一个方程上去.注意 如果用一种初等变换将一个线性方程组变成另一个线性方程组, 则也可以用初等变换将后者变成前者. 即初等变换的过程是可逆的.定理3.1 用初等变换得到的新的线性方程组与原方程组同解.证 先证明只进行一次初等变换.首先如果一组数是原方程组的解, 则它满足方程组中的每一个方程. 此后, 无论进行的是哪种初等变换, 这组数也满足新方程组的每个方程, 因此是新方程组的解. 反之, 由于初等变换的可逆性, 新方程组的解也是原方程组的解. 因此, 两个方程组同解.最后, 由于方程组同解的传递性, 进行任意多次初等变换所得方程组与原方程组同解.二 矩阵的行等价用矩阵乘法, 可以将线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++mn mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111写作 11121121222212n n m m mn n a a a x a a a x a a a x ⎛⎫⎛⎫ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=m b b b 21, 称为线性方程组的矩阵表示. 其中n m ⨯矩阵)(ij a A =称为方程组的系数矩阵, 1⨯n 列矩阵),,,(21'=n x x x x 称为未知数(矩阵), 1⨯m 列矩阵),,,(21'=m b b b b 称为常数(矩阵). 此时, 线性方程组可以简写作b Ax =.如果数组n c c c ,,,21 是线性方程组b Ax =的解, 令列矩阵12(,,,)n c c c ξ'=, 则有矩阵等式A b ξ=. 列矩阵12(,,,)n c c c ξ'=是方程组的解的矩阵表示.将常数矩阵添加到系数矩阵上作为最后一列, 得到分块矩阵),(b A A =, 称为线性方程组的增广矩阵.线性方程组与其增广矩阵是互相唯一确定的. 因此, 可以将方程组的语言翻译成矩阵的语言. 从线性方程组的初等变换, 产生矩阵的行初等变换的概念.定义3.4 设A 是矩阵, 则下列三种运算称为对矩阵A 的行初等变换.(1) 交换A 的两行;(2) 用非零常数k 乘以A 的一行;(3) 将A 的一行的k 倍加到另一行上去.定义 3.5 如果通过行初等变换, 可以将矩阵A 变成矩阵B , 则称矩阵A 与B 行等价. 记作B A r−→−. 仿照定理3.1的证明, 可以得到下面的结果.性质3.1 行等价是一种等价关系, 即具有下述性质.(1) 反身性: A A r −→−; (2) 对称性: 如果B A r −→−, 则A B r −→−; (3) 传递性: 如果B A r −→−,C B r −→−, 则C A r −→−. 当一类对象具有多种不同的等价关系时,要用不同的符号予以区别. 矩阵的相等是一种等价关系, 已经用等号表示为B A =. 作为矩阵的另一种等价关系, 行等价使用符号B A r −→−. 用矩阵的行等价的概念, 可以将定理3.1写作:定理3.2 如果两个线性方程组的增广矩阵行等价,则这两个线性方程组同解.通过初等变换, 可以从线性方程组产生一个阶梯形方程组. 换成矩阵的语言, 通过行初等变换, 可以从矩阵产生下面的具有特殊结构的矩阵.如果矩阵中某行中所有元素都是0, 则称为零行, 否则称为非零行.定义3.6 具有下面的性质的矩阵称为行阶梯形阵.(1) 非零行在上, 零行在下;(2) 每个非零行的第一个非零元素(首元素)在上面的非零行的首元素的右下方.例3.2 用行初等变换化简矩阵⎪⎪⎪⎭⎫ ⎝⎛-=521451121312A .解 做行初等变换, 得⎪⎪⎪⎭⎫ ⎝⎛-=521451121312A ⎪⎪⎪⎭⎫ ⎝⎛---−→−343042201312r ⎪⎪⎪⎭⎫ ⎝⎛----−→−310042201312r . 经过消元, 得到的已经是行阶梯形阵. 继续消元, 得⎪⎪⎪⎭⎫ ⎝⎛----−→−310042201312r A ⎪⎪⎪⎭⎫ ⎝⎛----−→−3100100208012r ⎪⎪⎪⎭⎫ ⎝⎛---−→−3100100203002r .最后, 每行除以其首元素, 得⎪⎪⎪⎭⎫ ⎝⎛---−→−3100100203002r A ⎪⎪⎪⎭⎫ ⎝⎛-−→−310050102/3001r .定义3.7 具有下列性质的行阶梯形阵称为行最简阵.(1) 每个非零行的首元素等于1;(2) 包含首元素的列的其它元素都是0.在例3.2中, 最后得到的是行最简阵. 由以上的讨论, 可得下面的定理.定理3.3 对于任意矩阵A , 存在一个行最简阵R , 使得A 与R 行等价.如果矩阵A 与行阶梯形阵R 行等价,则称R 是A 的行阶梯形阵. 如果A 与行最简阵R 行等价, 则称R 为矩阵A 的行等价标准形.其实, 例3.2中的矩阵就是例3.1中线性方程组的增广矩阵. 而矩阵的行初等变换的过程与线性方程组的初等变换的过程完全一样. 唯一的区别在于这里只有系数和常数, 没有未知数和等号. 由于增广矩阵与线性方程组可以互相唯一确定, 缺少未知数和等号完全不影响问题的解决.习题3-11. 写出线性方程组⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x 的系数矩阵与增广矩阵, 并用消元法求解.2. 设线性方程组的增广矩阵为⎪⎪⎪⎭⎫ ⎝⎛------1681355422351312, 写出该线性方程组, 并用消元法求解.3. 求下列矩阵的行等价标准形.(1)102120313043-⎛⎫ ⎪ ⎪ ⎪-⎝⎭; (2) 023*********-⎛⎫ ⎪- ⎪ ⎪--⎝⎭; (3) 11343335412232033421--⎛⎫ ⎪-- ⎪ ⎪-- ⎪ ⎪---⎝⎭; (4) 23137120243283023743--⎛⎫ ⎪-- ⎪ ⎪- ⎪ ⎪-⎝⎭. 4. 求t 的值, 使得矩阵⎪⎪⎪⎭⎫ ⎝⎛-----t 22122351311321的行等价标准形恰有两个非零行.第二节 矩阵的秩一 矩阵的秩的定义定义 3.8 设矩阵n m ij a A ⨯=)(, 从A 中任意选取k 行,k 列(},min{n m k ≤), 位于这些行与列的交叉点上的2k 个元素按照原来的相对位置构成的k 阶行列式称为A 的一个k 阶子式. 例如, 位于矩阵⎪⎪⎪⎭⎫ ⎝⎛---=312097102431A 的第一,三行, 第二,四列的二阶子式为133223-=-. 一个n m ⨯矩阵有kn k m C C 个k 阶子式. 矩阵的每个元素都是它的一个一阶子式. 而n 阶方阵的行列式是它的唯一的n 阶子式.定义3.9 如果矩阵n m ij a A ⨯=)(中有一个r 阶子式不等于零, 而所有1+r 阶子式都等于零, 则称矩阵A 的秩等于r . 记作r A =)rank(.如果矩阵的所有1+r 阶子式都等于零, 根据行列式按照一行展开, 可以证明所有更高阶的子式也都等于零. 因此, 矩阵的秩等于它的不等于零的子式的最高阶数.约定 对于零矩阵O , 约定0)rank(=O .由矩阵的秩的定义, 可以得到下面简单事实:(1) 设A 是非零矩阵, 则1)rank(≥A ;(2) 设A 是n m ⨯矩阵, 则},min{)rank(n m A ≤;(3) n 阶方阵A 可逆的充分必要条件为n A =)rank(. 于是, 可逆阵又称为满秩阵.例3.3 设⎪⎪⎪⎭⎫ ⎝⎛=064212100321A , 求它的秩.解 左上角的二阶子式不等于零. 而所有四个三阶子式都等于零. 于是, 2)rank(=A . 例3.4 求对角阵),,,diag(21n a a a A =的秩.解 由不等于0的主对角元素所在的行与列确定的子式不等于0. 而阶数高于这个子式的子式必然有零行. 因此对角阵的秩等于其不等于0的主对角线元素的个数.例3.5 设矩阵A 的秩等于0>r , 从A 删除一行得到矩阵B , 问B 的秩可能取哪些值? 如果给A 添加一行呢?解 因为矩阵B 的子式也是矩阵A 的子式, 所以B 的秩不大于A 的秩.已知r A =)r a n k (, 不妨设A 的r 阶子式D 不等于0. 如果D 也是B 的子式, 则r B =)rank(. 否则, 根据行列式按照一行展开, 在D 的未被删除的1-r 行中, 至少有一个1-r 阶子式不等于0. 于是1)rank(-≥r B .仿照上面的证明, 添加一行所得矩阵的秩等于r , 或者1+r .性质3.2 设A 是矩阵, k 是数, 则(1) 转置: )rank()rank(A A =';(2) 数乘: 如果0≠k , 则)rank()rank(A kA =.证 只证(2).考虑矩阵A 的一个s 阶子式s D , 根据矩阵的性质2.6, 矩阵kA 的相应的子式等于s s D k .已知0≠k , 因此0=s s D k 的充分必要条件为0=s D .设r A =)rank(, 则A 有一个r 阶子式不等于0, 而所有1+r 阶子式都等于0. 根据前面的分析, 矩阵kA 具有相同的性质. 因此, r kA =)rank(.二 行初等变换用定义计算矩阵的秩时, 需要计算许多个行列式. 计算量非常大.定理3.4 设矩阵A 与B 行等价, 则rank()rank()A B =.证 设一次行初等变换将矩阵A 变成矩阵B ,且r A =)r a n k (, 则A 的所有1+r 阶子式都等于0. 下面对于三种行初等变换证明矩阵B 的所有1+r 阶子式也都等于0.(1) 矩阵A 的一行乘以非零常数k . 此时B 的一个1+r 阶子式或者就是A 的相同位置的1+r 阶子式, 或者是A 的相同位置的1+r 阶子式的一行乘以非零常数k . 于是, B 的所有1+r 阶子式都等于0.(2) 交换矩阵A 的两行. 考虑B 的一个1+r 阶子式D , 则A 有一个1+r 阶子式与D 的差别至多是行的顺序不同. 于是, B 的所有1+r 阶子式都等于0.(3) 将A 的第j 行的k 倍加到第i 行. 如果B 的一个1+r 阶子式不包含A 的第i 行, 它就是A 的相同位置的1+r 子式. 如果B 的一个1+r 阶子式D 包含A 的第i 行, 用行列式的性质, 这个子式可以分解为21kD D +, 其中1D 就是A 的相同位置的1+r 子式. 如果D 不包含A 的第j 行, 则2D 可以由A 的某个1+r 阶子式经交换行得到. 如果D 包含A 的第j 行, 则2D 有两个相同的行. 于是, B 的所有1+r 阶子式都等于0.总之, )rank()rank(A r B =≤.另一方面, 由矩阵的行等价的对称性, 也可以用行初等变换将矩阵B 变成矩阵A . 从而还有)rank()rank(B A ≤. 于是, 无论做哪种行初等变换, 都有rank()rank()A B =.最后, 由矩阵的行等价的传递性, 进行多次行初等变换也不改变矩阵的秩.推论 3.1 矩阵的秩等于它的行阶梯形阵中非零行的个数, 也就是行等价标准形中非零行的个数.证 设矩阵A 的行等价标准形R 中恰有r 个非零行, 则所有1+r 阶子式都等于0. 另一方面, 它的非零行的首元素所在的列的前r 行构成r 阶单位阵. 于是r R =)rank(. 根据定理 3.4, 有r A =)rank(.例3.6 求矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=7931181332111511A 的秩. 解 用行初等变换, 得⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=7931181332111511A −→−r ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----81440472047201511−→−r ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---0000000047201511. 矩阵A 的行阶梯形阵有两个非零行, 因此, 2)rank(=A .例3.7 设分块矩阵⎪⎪⎭⎫ ⎝⎛=C O O B A , 求证: )rank()rank()rank(C B A +=. 证 设矩阵C B ,的行等价标准形分别为R 和S , 分别对B 和C 所在的行做行初等变换, 得⎪⎪⎭⎫ ⎝⎛=C O O B A ⎪⎪⎭⎫ ⎝⎛−→−S O O R r , 其中R 和S 分别是B 和C 的行等价标准形. 将R 所在的行中的零行移动到矩阵的最下方, 而不改变非零行的上下顺序, 可得到一个行最简阵. 而且, 这就是A 的行等价标准形. 于是, A 的行等价标准形中非零行的个数恰等于B 与C 的行等价标准形中非零行的个数之和.用这个方法可以证明: 准对角阵的秩等于各对角块的秩的和.习题3-21. 设矩阵⎪⎪⎭⎫ ⎝⎛=75211111A ,按照从小到大的顺序排列它的所有二阶子式. 2. 设n m ⨯矩阵A 的秩等于r , 任取A 的s 行构成矩阵B , 求证: m s r B -+≥)rank(. *3. 设A 是n m ⨯矩阵,求证:1)rank(=A 的充分必要条件为: 存在1⨯m 非零矩阵B 与n ⨯1非零矩阵C ,使得BC A =.4. 用行初等变换求下列矩阵的秩.(1) 123235471⎛⎫ ⎪- ⎪ ⎪⎝⎭; (2) 321322131345561---⎛⎫ ⎪-- ⎪ ⎪--⎝⎭; (3) 1010011000011000011001011⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭; (4) 132541413514243273613-⎛⎫ ⎪ ⎪ ⎪ ⎪-⎝⎭. 5. 求t 的值, 使得方阵⎪⎪⎪⎭⎫ ⎝⎛-=t A 23312231的秩等于2.第三节 齐次线性方程组的基础解系齐次线性方程组的矩阵表示为0=Ax . 此时方程组与其系数矩阵A 互相唯一确定.齐次线性方程组0=Ax 总有零解. 于是, 解齐次线性方程组的基本问题是:(1) 对给定的齐次线性方程组,判定是否有非零解;(2) 如果有非零解, 求出所有的解(通解). 性质 3.3 如果列矩阵1ξ与2ξ是齐次线性方程组0=Ax 的两个特解, 则对于任意的数k h ,, 列矩阵21ξξk h +也是方程组的解.证 将21ξξk h +代入方程组, 得)(21ξξk h A +00021=+=+=ξξkA hA . 由定理3.2与定理3.3可得解齐次线性方程组的基本路线. 下面通过例题予以说明.例1求齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=-+++=-+++=-----=+++0434503223006225432154321543215432x x x x x x x x x x x x x x x x x x x 的通解. 解 首先写出方程组的系数矩阵.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------=14345321231111162210A . 然后做行初等变换, 由矩阵A 产生行阶梯形阵. ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------14345321236221011111⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----−→−00000010006221011111r . 继续做行初等变换, 得到矩阵A 的行等价标准形.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00000010006021050101⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--−→−00000010006021050101r . 从行等价标准形得到同解方程组⎪⎪⎩⎪⎪⎨⎧===++=--000062054532531x x x x x x x .将行等价标准形的非零行中的首元素对应的未知数留在方程组的左边, 将其余未知数移到方程组的右边, 得到⎪⎪⎩⎪⎪⎨⎧==--=+=0006254532531x x x x x x x . 任意取定右边未知数(自由未知数)的值, 则左边未知数(约束未知数)的值也随之确定, 由此产生方程组的一个解.实际上,由此可以得到方程组的全部解. 设),,,,(54321'd d d d d 是方程组的任意的特解, 上面求解时3x 与5x 可以任意取值, 自然包含取值33d x =与55d x =. 由于),,,,(54321'd d d d d 是方程组的解, 必须满足方程组.因此5315d d d +=,53262d d d --=,04=d . 于是, 这个特解可以由上面的方法产生.令h x =3,k x =5, 得到齐次线性方程组的通解k h x 51+=,k h x 622--=,h x =3, 04=x , k x =5, 其中k h ,是任意常数.在通解中令1=h ,0=k , 得到齐次线性方程组的一个特解1(1,2,1,0,0)ξ'=-. 反之, 令0=h ,1=k , 得到另一个特解2(5,6,0,0,1)ξ'=-. 从而得到齐次线性方程组的通解的矩阵表示: 12x h k ξξ=+, 其中k h ,是任意常数. 为了得到方程组的通解, 只须求得特解1ξ与2ξ, 因此, 称12,ξξ为齐次线性方程组的基础解系.注意 将一个自由未知数取1, 其他自由未知数取0, 得到齐次线性方程组的一个特解. 这些特解的集合就是基础解系. 因此, 如果有s 个自由未知数, 则方程组的基础解系包含s 个特解.定理 3.5 设A 是n m ⨯矩阵, 则齐次线性方程组0=Ax 的基础解系中所包含的特解的个数等于)rank(A n -.证 根据推论 3.1, 系数矩阵A 的秩等于行等价标准形R 中非零行的个数, 也就是约束未知数的个数. 于是, 未知数的个数n 与系数矩阵的秩)rank(A 的差等于自由未知数的个数, 也就是基础解系中所包含的特解的个数.推论 3.2 齐次线性方程组只有零解的充分必要条件为: 系数矩阵的秩等于它的列数.证 根据定理 3.5, 此时没有自由未知数, 于是只有一个零解.推论3.3 设A 是n 阶方阵,求证:齐次线性方程组0=Ax 只有零解的充分必要条件为: 行列式0||≠A .证 根据推论3.2, 齐次线性方程组0=Ax 只有零解的充分必要条件为n A =)rank(. 由矩阵的秩的定义, n A =)rank(的充分必要条件为0||≠A .例 3.9 设A 是n 阶方阵, 且n r A <=)rank(, 求证: 存在n 阶方阵B , 满足O AB =, 且r n B -=)rank(.证 考虑齐次线性方程组0=Ax , 根据定理3.5, 它的r n -个特解12,,,n r ξξξ-组成基础解系. 即有0i A ξ=, r n i -=,,2,1 .构造分块n 阶方阵12(,,,,0,,0)n rB ξξξ-=, 即B 的前r n -列是基础解系中的特解构成的列矩阵, 后面的r 个列的元素都是0. 由基础解系的构造, 在B 的前r n -列中, 与自由未知数对应的行可以构成一个单位阵, 因此r n B -=)rank(.另一方面, 由分块矩阵的运算规则, 有12(,,,,0,,0)n r AB A ξξξ-=12(,,,,0,,0)n r A A A O ξξξ-==.习题3-31. 求下列齐次线性方程组的通解.(1)⎪⎩⎪⎨⎧=+=++=+-03200231321321x x x x x x x x ; (2)⎪⎩⎪⎨⎧=-+-+=+--+=-+-+024242052420632543215432154321x x x x x x x x x x x x x x x ; (3)⎪⎪⎩⎪⎪⎨⎧=-+++=+++=-+++=++++033450622032305432154325432154321x x x x x x x x x x x x x x x x x x x ; (4)⎪⎪⎩⎪⎪⎨⎧=+-+-=-+--=-+-+=+-+-02252022303220254321543215432154321x x x x x x x x x x x x x x x x x x x x .2. 设齐次线性方程组的系数矩阵的列数大于行数, 求证: 该方程组有非零解.3. 当a 满足什么条件时, 齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x ax x x x ax 只有零解?4. 求a 的值, 使得齐次线性方程组⎪⎩⎪⎨⎧=+-=++=++004202321321321x x x x x x x x ax 有非零解. 并求其基础解系.5. 设0>n , 求证: n 次多项式至多有n 个两两不同的零点.第四节 非齐次线性方程组的通解解非齐次线性方程组b Ax =的基本问题是:(1) 对于给定的方程组, 判断是否有解;(2) 如果有解, 求出全部解(通解).定义 3.10 将非齐次线性方程组b Ax =中各方程的右边变成0, 得到的齐次线性方程组0=Ax 称为方程组b Ax =的导出组.性质3.4 设列矩阵1η与2η是线性方程组b Ax =的两个特解, 则它们的差21ηηξ-=是它的导出组0=Ax 的解.证 将21ηηξ-=代入导出组的左边, 得)(21ηηξ-=A A 021=-=-=b b A A ηη.推论 3.4 如果非齐次线性方程组有解, 则它的通解是它的一个特解与它的导出组的通解的和.证 首先, 设列矩阵η是方程组b Ax =的特解, 列矩阵ξ是其导出组0=Ax 的特解, 则有b b A A A =+=+=+0)(ηξηξ,即列矩阵ηξ+是方程组b Ax =的解.其次, 设列矩阵ζ是方程组b Ax =的任意的特解, 根据性质3.4, 列矩阵ηζξ-=是导出组0=Ax 的解. 移项, 得ξηζ+=, 即方程组b Ax =的任意的特解ζ可以表示为它的取定的特解η与导出组0=Ax 的解ξ的和.综合两方面, 即得本推论.注意 求非齐次线性方程组的通解, 只须求出它的一个特解, 以及它的导出组的通解. 而后面的问题已经解决.在齐次线性方程组的解题路线中, 用增广矩阵代替系数矩阵, 得非齐次线性方程组的解题路线. 现举例说明.例 3.10 求非齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=-+++-=-+++-=-----=+++13334533237246225432154321543215432x x x x x x x x x x x x x x x x x x x 的通解. 解 首先写出方程组的增广矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------13133453311237111112462210. 然后做行初等变换, 由增广矩阵产生行阶梯形阵.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------13133453311232462210711111⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------−→−0000000000002462210711111r . 继续做行初等变换, 得到增广矩阵的行等价标准形.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00000000000024622101751101⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----−→−00000000000024622101751101r . 从行等价标准形得到同解方程组⎪⎪⎩⎪⎪⎨⎧===+++-=---00002462217554325431x x x x x x x x . 将自由未知数移到右边, 得⎪⎪⎩⎪⎪⎨⎧==+---=-++=00002462217554325431x x x x x x x x . 将自由未知数取值0, 计算约束未知数的值, 即得非齐次方程组的一个特解)0,0,0,24,17('-=η.根据推论 3.3, 还需要求它的导出组的基础解系. 注意到: 如果删除增广矩阵的最后一列, 就是系数矩阵. 在做行初等变换之后, 如果删除增广矩阵的行等价标准形的最后一列, 也就是系数矩阵的行等价标准形. 于是, 如果将非齐次方程组的同解方程组的常数项变成0, 就是它的导出组的同解方程组. 用前面的方法, 得基础解系)0,0,1,2,1(1'-=ξ, )0,1,0,2,1(2'-=ξ,)1,0,0,6,5(2'-=ξ.于是, 非齐次线性方程组的通解的矩阵表示为332211ξξξηk k k x +++=, 其中321,,k k k 是任意常数.例 3.11 解非齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=-+++-=-+++-=-----=+++13334523237246225432154321543215432x x x x x x x x x x x x x x x x x x x .解 这个方程组的增广矩阵为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------13133453311237111112462210. 通过行初等变换, 得到行阶梯形阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------0000001000002462210711111. 在这里, 有一个非零行的首元素在最后一列. 当从行阶梯形阵出发, 得同解方程组时, 该行对应矛盾方程: 10=. 因此, 同解方程组无解. 于是, 原线性方程组无解. 反之, 如果不出现这种情况, 则用前面的方法可以求出通解.于是, 非齐次线性方程组有解的充分必要条件为: 它的增广矩阵的行阶梯形阵的非零行的首元素不出现在最后一列(常数项). 下面的定理用矩阵的秩表述这个结论.定理 3.6 非齐次线性方程组有解的充分必要条件为: 它的系数矩阵的秩等于它的增广矩阵的秩.证 在增广矩阵的行阶梯形阵中, 首元素不出项在最后一列的充分必要条件为: 增广矩阵的行阶梯形阵的非零行的个数等于系数矩阵的行阶梯形阵的非零行的个数. 由推论 3.1, 即系数矩阵与增广矩阵有相同的秩.推论 3.5 非齐次线性方程组有唯一解的充分必要条件为: 它的系数矩阵的秩等于其列数, 且等于增广矩阵的秩.证 综合定理3.6和推论3.2即可.例 3.12 当b a ,取何值时, 非齐次线性方程组⎪⎪⎩⎪⎪⎨⎧-=+++=--+-=++=+++1232)3(122043214324324321ax x x x bx x a x x x x x x x x 有唯一解, 无解, 有无穷多解? 对后者求通解.解 对增广矩阵做行初等变换, 得⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----112323101221001111a b a⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------−→−1321023101221001111a b a r ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+-−→−01000101001221001111a b a r ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+----−→−01000101001221011101a b a r 根据定理3.6, 当1,1-≠=b a 时无解.当1,1-==b a 时, 非齐次线性方程组的特解为)0,0,1,1('-=η, 导出组的基础解系为)0,1,2,1(1'-=ξ, )1,0,2,1(2'-=ξ,通解为2211ξξηk k x ++=, 其中21,k k 是任意常数.当1≠a 时有唯一解)0,1,32,2(11'+--+--=b b a a b a η. 例3.13 设A 是n 阶方阵, 且0||≠A . 将A 分块),(C B A =, 其中C 是A 的最后一列, 求证: 线性方程组C Bx =无解.证 线性方程组的增广矩阵就是A , 由0||≠A , 增广矩阵的秩等于n . 而线性方程组的系数矩阵B 只有1-n 列, 它的秩不大于1-n . 根据定理3.6, 线性方程组C Bx =无解.推论 3.6 设A 是n 阶方阵, 则线性方程组b Ax =有唯一解的充分必要条件为: 行列式0||≠A .证 充分性. 设0||≠A , 则方阵A 的秩等于其列数n . 又方程组的增广矩阵),(b A 只有n 行, 于是, 由例3.5, 有≤=)rank(A n n b A ≤),rank(.根据推论3.5, 方程组有唯一解.必要性. 设方程组b Ax =有唯一解, 根据推论 3.5, 方阵A 的秩等于其列数n . 于是, 行列式0||≠A .条件0||≠A 保证方阵A 可逆. 用A 的逆阵左乘b Ax =, 得b A x 1-=. 这个公式是用逆阵表示线性方程组的唯一解. 从这个公式出发, 可以得到另一个公式. 根据定理2.1, 有 b A x 1-=b A A *||1=, 其中方阵*A 是A 的伴随阵. 计算这个矩阵等式的第j 行的元素, 得)(||12211n nj j j j b A b A b A A x +++= , n j ,,2,1 =. 根据定理 1.3, 等式右边的括号可以看作: 用常数矩阵b 代替系数行列式||A 的第j 列所得的行列式, 按照第j 列的展开式. 将这个行列式记作j D , 又将||A 改写作D , 则上式为D D x jj =, n j ,,2,1 =.这个公式是用行列式的商表示线性方程组的唯一解,称为克拉默法则.习题3-41. 设列矩阵i η(m i ,,,2,1 =)是非齐次线性方程组Ax b =的特解, 数i k (m i ,,,2,1 =)满足121=+++m k k k , 求证: 列矩阵1122m mk k k ηηη+++也是方程组Ax b =的特解.2. 求下列非齐次线性方程组的通解. (1)⎪⎪⎩⎪⎪⎨⎧=-+=++-=-+--=-+337713434234313214321431x x x x x x x x x x x x x ; (2) ⎪⎩⎪⎨⎧-=-+-=+-=-+-22344324314324321x x x x x x x x x x ; (3) ⎪⎪⎩⎪⎪⎨⎧=++-=+-=--=++0644352523222321321321321x x x x x x x x x x x x ; (4) ⎪⎪⎩⎪⎪⎨⎧=+++=++++=++++----nx x x x x x x x x x x x n n n n n n 122113113221 , 其中1>n .3. 求证: 线性方程组⎪⎩⎪⎨⎧=++-=+++=-++2543222432143214321x x x x x x x x x x x x 无解. 4. 求b的值, 使得线性方程组⎪⎩⎪⎨⎧=+-+=+-+=++-b x x x x x x x x x x x x 432143214321114724212有解, 并求其通解.5. 当d c b a ,,,满足什么条件时, 线性方程组⎪⎪⎩⎪⎪⎨⎧=+=+=+=+d x x cx x b x x a x x 42314321有解? 并求其通解.6. 当b a ,取何值时, 线性方程组⎪⎩⎪⎨⎧=++=++=++b ax x x x x x x x x 32132132132263132有唯一解, 无解, 有无穷多解? 对后者求其通解.*7. 设A 是n 阶方阵, b 是1⨯n 矩阵, 且分块方阵满足)rank(0rank A b b A =⎪⎪⎭⎫ ⎝⎛', 求证: 非齐次线性方程组b Ax =有解.第五节 初等方阵与初等变换一 初等方阵定义3.11 对单位阵E 做行初等变换所得方阵称为初等方阵.三种行初等变换产生三种初等方阵:(1) 交换E 的第i 行与第j 行所得方阵记作ij P ;(2) 用非零常数k 乘以E 的第i 行所得方阵记作)(k D i ;(3) 将E 的第j 行的k 倍加到第i 行所得方阵记作)(k T ij .三种初等方阵是可逆阵, 且它们的逆阵也是初等方阵. 实际上, 有ij ij P P =-1, ⎪⎭⎫ ⎝⎛=-k D k D i i 1)(1, )()(1k T k T ij ij -=-.定理 3.7 对矩阵A 做一种行初等变换, 相当于左乘一个相应的初等方阵.注意 定理3.7在矩阵的相等与矩阵的行等价之间建立了联系, 从而可以用矩阵的运算性质研究矩阵的行等价. 下面将看到, 有时这是非常方便的.推论 3.7 任意矩阵A 可以表示成R E E E A s 21=, 其中i E 是初等方阵, R 是A 的行等价标准形.证 对A 做行初等变换, 可得其行等价标准形R . 这个过程相当于用一系列初等方阵i E 左乘矩阵A . 即有R A E E E s =12 . 由于初等方阵可逆, 用它们的逆阵逐个左乘此式, 得R E E E A s 11211---= . 因为初等方阵的逆阵还是初等方阵, 换符号即得推论中的表示.推论3.8 方阵A 可逆的充分必要条件为: 它可以表示成初等方阵的乘积.例3.14 设B A ,都是n m ⨯矩阵, 求证: A 与B 行等价的充分必要条件为存在m 阶可逆阵P , 使得B PA =.二 矩阵方程矩阵方程B AX =, 其中A 是n 阶可逆阵, B 是m n ⨯矩阵, 而X 是m n ⨯未知矩阵.已知A 是可逆阵, 用其逆阵左乘方程, 得矩阵方程的解B A X 1-=. 对于可逆阵A , 存在初等方阵i E , 使得E A E E E s =12 . 用同样的初等方阵左乘矩阵方程B AX =, 得EX AX E E E s =12 B E E E X s 12 ==这个等式说明, 对可逆阵A 与矩阵B 做相同的行初等变换, 当将A 变成单位阵时, 矩阵B 变成矩阵方程B AX =的解B A X 1-=.例3.15设方阵⎪⎪⎪⎭⎫⎝⎛--=111012112A ,⎪⎪⎪⎭⎫ ⎝⎛--=521234311B , 解矩阵方程B AX =.解 做分块矩阵: 左边部分是A ,右边部分是B . 做行初等变换, 得()=B A |⎪⎪⎪⎭⎫⎝⎛----521111234012311112⎪⎪⎪⎭⎫⎝⎛----−→−311112234012521111r⎪⎪⎪⎭⎫ ⎝⎛-------−→−143100872230521111r⎪⎪⎪⎭⎫ ⎝⎛---−→−1431003/1053/80103/813/2001r .于是,⎪⎪⎪⎭⎫ ⎝⎛---==-1433/1053/83/813/21B A X . 如果矩阵方程B AX =中的方阵A 可逆, 方阵B 是单位阵E , 则用这个方法得到的矩阵方程的解E A X 1-=1-=A 就是A 的逆阵. 由此得到计算逆阵的简单方法.例3.16 求方阵⎪⎪⎪⎭⎫ ⎝⎛--=523012101A 的逆阵. 解 用初等变换法.()=E A |⎪⎪⎪⎭⎫ ⎝⎛--100523010012001101⎪⎪⎪⎭⎫ ⎝⎛---−→−127200012210001101r⎪⎪⎪⎭⎫ ⎝⎛----−→−2/112/71001150102/112/5001r于是 ⎪⎪⎪⎭⎫ ⎝⎛----=-2/112/71152/112/51A . 如果X 与B 是列矩阵, 用这里的方法可以得到线性方程组B AX =的解B A X 1-=. 而且这种解法正是前面的消元法.性质 3.5 两个矩阵的乘积的秩不大于每个因子的秩.证 设A 是p m ⨯矩阵, B 是n p ⨯矩阵, r A =)rank(. 先证明r AB ≤)rank(.根据推论 3.7, 有R A E E E s =12 , 其中A 的行等价标准形R 恰有r 个非零行. 用矩阵B 右乘此式, 得RB AB E E E s =)(12 . 根据矩阵乘法定义, 矩阵RB 至多有r 个非零行. 根据定理3.4, 有)rank()rank()rank(A r RB AB =≤=.转置可证明另一部分.例3.17 设A 是可逆阵,则)rank()rank(B AB =.证1 记矩阵AB C =. 由性质 3.5, 有)rank()rank(B C ≤. 用逆阵1-A 左乘AB C =, 得C A B 1-=, 从而有)rank()rank(C B ≤.上面的证明主要体现了逆阵的一种应用, 并不是最简捷的证明.证2 已知A 是可逆阵,根据推论3.8, 有B E E E AB s 12 =. 再根据定理 3.4, 有)rank()rank(B AB =.三 初等变换与矩阵的行初等变换类似, 可以定义矩阵的列初等变换.定义3.12 设A 是矩阵, 称下面三种变换为对矩阵A 的列初等变换.(1) 交换A 的两列;(2) 用非零常数k 乘以A 的一列;(3) 将A 的一列的k 倍加到另一列上去,与行初等变换类似, 可以定义矩阵的列等价与列等价标准形.性质 3.6 列初等变换与列等价具有下述性质.(1) 列初等变换不改变矩阵的秩;(2) 对一个矩阵做列初等变换, 相当于用相应的初等方阵右乘这个矩阵;(3) 矩阵的列等价是等价关系;(4) 矩阵B 与A 列等价的充分必要条件为: 存在可逆阵Q , 使得B AQ =.与用行初等变换解矩阵方程B AX =类似, 可以用列初等变换解矩阵方程B XA =.例3.18设⎪⎪⎪⎭⎫ ⎝⎛--=111012112A , ⎪⎭⎫ ⎝⎛-=234311B , 解矩阵方程B XA =.解 做分块矩阵, 上边是A , 下边是B . 然后做列初等变换. 当将A 变成单位阵时, B变成矩阵方程的解1-=BA X . 如果用→表示列等价, 则有⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---234311111012112⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---→423131*********⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---→253321301011001⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---→3/253/8122100010001. 于是⎪⎭⎫ ⎝⎛---=3/253/8122X . 例 3.19 设分块矩阵),(B A , 求证: )rank()rank(),rank(B A B A +≤.证 设矩阵B A ,的列等价标准形分别为S R ,,则R 与S 分别有)ra nk(A 与)rank(B 个非零列. 从而分块矩阵),(S R 有)rank()rank(B A +个非零列. 另一方面, 如果在矩阵),(B A 中分别对两个子块做列初等变换, 则可以得到分块矩阵),(S R . 于是, 有)rank()rank(),rank(),rank(B A S R B A +≤=.。

线性代数 第三章

线性代数  第三章

( b1 , b2 ,, bm 为不全为零的常数) (3-1-1)
在上一章知道,它的矩阵表达式为 常数项与未知阵。
a11 a 21 A , B 将系数矩阵与常数项矩阵放在一起构成的矩阵 ~ 称为方程组(3-1-1)的增广矩阵(也可记作 A )。 a m1
第三章 向量组与线性方程组
• 3.1 线性方程组及其矩阵表示
设非齐次线性方程组的一般形式为
a11 x1 a12 x 2 a1n x n b1 a x a x a x b 21 1 22 2 2n n 2 a m1 x1 a m 2 x 2 a mn x n bm
Ax B与 Sx T 同解。(证)
证明 由于对矩阵作一次初等行变换等价于矩阵左乘一个初等矩阵,因此存在初等矩 阵 P 记 Pk Pk 1 P1 P 显然 P 可逆。 1, P 2 ,, P k 使得 P kP k 1 P 1 ( A, B) ( S , T )
x x1 为 Ax B 的解,即 Ax1 B Sx1 T 于是 x x1 为 Sx T 的解。
21 1
22
2
2n
n
x1 2 x 2 2 x3 x 4 1 【例1】把线性方程组 2 x1 x 2 2 x 2 5 x 4 2 表示为矩阵方程的形式。 x 3 x 7 x 4 x 0 2 3 4 1 x1 1 2 2 1 1 解 设 A x2 B 2 1 2 5 2 则原方程组可表示为 Ax B x 1 3 7 4 0 x3 x 4
Ax B 其中 A, B, x 分别是系数阵、

张小向老师《线性代数》第3章-线性方程组

张小向老师《线性代数》第3章-线性方程组

东南大学-张小向 272365083@
2
请双面打印/复印,节约纸张。
2014/4/22
第三章 线性方程组
§ 3.1 线性方程组和Gauss消元法
第三章 线性方程组
§ 3.1 线性方程组和Gauss消元法
一. 线性方程组的概念 (system of linear equations) 一般形式: a11x1+a12x2+…+a1nxn = b1 a21x1+a22x2+… a2nxn = b2 (3.1) … … … … … … … am1x1+am2x2+…+amnxn = bm 齐次线性方程组(homogeneous ~) 非齐次线性方程组(non (nonhomogeneous homogeneous ~) 解(to solve, solution) 相容(consistent consistent) )
a11 a12 … a1n a21 a22 … a2n 称A = … … … … 为(3.1)的系数矩阵 am1 am2 … amn (coefficient matrix), a11 a12 … a1n b1 a21 a22 … a2n b2 (A, b) = … … … … … 为(3.1)的增广矩阵 am1 am2 … amn bm (augmented matrix).
莱布尼茨[德] (1646.7.1 1646.7.1~ ~1716.11.14 1716.11.14) )
顺治1644 1644-1662 康熙1662 1662-1723 雍正1723 1723-1736 乾隆1736 1736-1796 嘉庆1796 1796-1821 道光1821 1821-1851 咸丰1851 1851-1862 同治1862 1862-1875 光绪1875 1875-1908 宣统1908 1908-1911

线性代数_第三章

线性代数_第三章
lts ks 0
这与1,2, . . .,s与线性无关矛盾.

推论1 两个等价的且线性无关的向量组,含有相 同个数的向量。

推论2 等价的向量组有相同的秩。

推论3 向量组(I)的秩为r1,向量组(II)的秩为r2,且
组(I)可由组(II)线性表出,则r1≤r2。
lts ks 0
于是
1 , 2 ,
k1 k2 b1 , b 2 , , s ks
l11 l12 l21 l22 , bt lt1 lt 2
l1s k1 0 l2 s k 2 0
第三章 向量组与线性方程组
§3.1 向量组的线性相关性
2 x1 3 x2 3 x3 5 x1 2 x2 x3 2 7 x2 x3 1
2 3 3 5 1 2 1 2 0 7 1 1

显然第三行是前两行的代数和; 也就是说,第三个方程能由前两 个方程“表示”;
4, (III) 1, 2, 3, 5, 且向量组的秩分别
为R(I)=R(II)=3, R(III)=4. 证明:向量组1, 2, 3, 5-4的秩为4.

证明: 由R(I)=R(II)=3得知向量组(I)线性无关,向
量组(II)线性相关,且4可由1, 2, 3,线性表出,
lm m 0
定理3 设m≤n,则m个n维向量1 ,2 ,
,m 线性无关的充
分必要条件是,其组成的矩阵的秩R(A)=m.即A为列满秩。
证:必要性. 因为Q可逆,必有l1,l2,…,lm不全为零, 这与1,2,…,m线性无关矛盾。 因此,R(A)=m。

线性代数第三章

线性代数第三章

例4 向量组 α1 , α 2 ,⋯ , α s 中的 任意一个向量 α j ( j = 1, 2,⋯ , s ) 都可 由该向量线性表示, 由该向量线性表示,因为 α j = 0α1 + ⋯+ 1α j + ⋯+ 0αs
例题4 例题 详见教材85页 详见教材 页
(例5 + 例6) )
定义3.3.2给定向量组 给定向量组 定义
例6
设有线性方程组
x1 + x2 − 2 x3 + 3x4 = 0 2 x + x − 6 x + 4 x = −1 1 2 3 4 3x1 + 2 x2 + ax3 + 7 x4 = −1 x1 − x2 − 6 x3 − x4 = b
讨论当 a , b 为何值时, 为何值时, 方程组有解?( ?(2 无解? (1) 方程组有解?(2)无解? (3)当有解时,试求出其解。 当有解时,试求出其解。
0 = (0, 0,⋯ , 0)
n维向量 α = (a1 , a2 ,⋯ , an ) 的各分量都取相反数组成的向 维向量 量称为的负向量, 量称为的负向量,记作
−α = (−a1 , −a2 ,⋯ , −an )
α 定义3.2.3 如果 维向量 = (a1 , a2 ,⋯ , an ) 如果n维向量 定义
3、仅含有两个向量的向量组线性相关的充分必要条件是这两个向量的 、 对应分量成比
定理3.3.1 向量组 A : α 1 , α 2 , ⋯ , α m 线性相关当且仅当以 A = (α1 , α 2 ,⋯ , α m ) 定理 为系数矩阵的齐次线性方程组 AX
=0
有非零解。 有非零解。
推论3.3.1向量组 A : α 1 , α 2 , ⋯ , α n 线性相关当且仅当矩阵 A = (α1 , α 2 ,⋯ , α n ) 向量组 推论 的行列式值为零。 的行列式值为零。 定理3.3.2向量组 A : α1 , α2 ,⋯, αm (m ≥ 2) 线性相关的充要条件是向量组A: α1,α2 ,⋯,αm 向量组 定理 中至少有一个向量可由其余向量线性表示。 中至少有一个向量可由其余向量线性表示。

《线性代数》第三章线性方程组

《线性代数》第三章线性方程组

5、方程组的解:
方程组的解是满足方程组的未知量的
一组取值: x 1 c 1 ,x 2 c 2 , ,x n c n .
也可记为c: 1,c2( ,,cn)
例如:
显然,
5x1 x2 2x3 0 2x1 x2 x3 0 9x1 2x2 5x3 0
x1 0
x2
0
x 3 0
就是它的一 组解。
(P-132)
含有自由未知量的解称为方程组的一般解。
自由未知量可以取任的意值,因此有无穷多。
【例6】设线性方程组AX=b的增广矩阵通过
初等行变换化为:1 3 1 2 6
0 1 3 1
4
0 0 0 2 1
0
0
00
0
则此线性方程组的一般解中自由未知量的
个数为____1______。
【分析】先确定基本未知量为: x1, x2, x4 则其余的为自由未知量: x 3
A 2
5
3
③+①(-3) 0
1
1
3 8
0 1 6
③+②(-1)
1 0
3 1
2
1
0 0 5
对于齐次线性方程组,要使其有非零解,
则要求: 秩r(A)n 3
故 5 = , 0 , = 5 时 当 即 r A 2 , 3
此时方程组有非零解。 这时系数矩阵变为:
1 3 2
定理3.1,3.2实际上告诉我们要通过 求“增广矩阵”的秩来判断解的情况。总结:
设r=秩(A),n为未知量的个数.
(1)若 r秩 (A)秩 (A)则, 方程组无解。 (2)若 r秩 (A)秩 (A)则方程组有解。
(2.1)若r = n 就有唯一解; (2.2)若r < n 就有无穷多解。

(完整版)线性代数第三章线性方程组33

(完整版)线性代数第三章线性方程组33
设a1 a2 an是m维列向量组 则a1 a2 an线性相关的 充分必要条件是 以a1 a2 an为列向量的矩阵的秩小于向量 的个数n
提示 根据方程x1a1x2a2 xn ano有非零解的充要条件
定理34(判断方法) 设a1 a2 an是m维列向量组 则a1 a2 an线性相关的
充分必要条件是 以a1 a2 an为列向量的矩阵的秩小于向量 的个数n
定理的另一叙述 设a1 a2 an是m维行向量组 则a1 a2 an线性相关的
充分必要条件是 以a1T a2T anT为列向量的矩阵的秩小于 向量的个数n
定理的另一叙述 设a1 a2 an是m维列向量组 则a1 a2 an线性无关的
充分必要条件是 以a1 a2 an为列向量的矩阵的秩小等于 向量的个数n
解 设x1a1x2a2b1 因为
1 2 4 1 2 4 1 2 4 1 0 2
(பைடு நூலகம்1T
a2T
b1T
)
2 1 5
1 1 1
1311 000
5 3
9
953 000
1 0 0
001
000
1 0 0
001
秩(a1T a2T b1T)秩(a1T a2T) 所以b1可由a1 a2线性表示 且存在x12 x21使2a1a2b
线性方程组有无解的等价提法
线性方程组
a11x1a12x2 a1nxn b1 aam211xx11 aa2m22xx22aa2mn xnxnnbb2 m 可以分别写为
a11
a21 am1
a12
a22 am2
a1n
a2n amn
x1
x2 xn
bbbm12

提示 根据方程x1a1x2a2 xn anb有解的充要条件

线性代数教学课件3

线性代数教学课件3

阶梯形线性方程组(B)与原线性方程组(A)同解.
在线性方程组(B)中, 将第三式的x3= -2代入第二个 方程,得x2= 2; 再将x2= 2, x3= -2代入第一个方程,得x1= 1.
所以原方程组的解为: x1=1, x2=2, x3= -2.

由阶梯形方程组逐次求得各未知量的过程,称为回代
过程, 线性方程组的这种解法称为高斯消元法.
a1r a1r 1 a2r a2r 1
a1n d1 a2n d2
于是结得论同:解2方. d程r+组1=0: , 则x1 同aˆ1,解r 1x方r 1 程组有aˆ1n x解n , dˆ1
A 00
arr arr 1
arn dr
从x2 而aˆ2原r 1x方r 1程组Aaˆ2Xn x=n b dˆ2
00
00
x1
1
x2
2
x3
2

100 1 010 2 001 2
13
机动 目录 上页 下页 返回 结束
例2. 解线性方程组
x1 3x2 x3 2x4 x5 4 3x1 x2 2x3 5x4 4x5 1 2x1 4x2 x3 3x4 5x5 5 5x1 5x2 3x3 8x4 9x5 6
解: 对方程组的增广矩阵作行初等变换, 化成阶梯形 矩阵, 再化成行最简阶梯形矩阵.
为求解线性方程组(1), 必须解决以下一些问题:
(i) 线性方程组(1)是否有解? (ii) 如果线性方程组(1)有解, 那么它有多少个解? (iii) 当线性方程组有解(1)时, 如何求出它的全部解?
4
机动 目录 上页 下页 返回 结束
定义 m个方程、 n个未知量 的线性方程组
a11x1 a12 x2 a1n xn b1

第三章-线性方程组的解

第三章-线性方程组的解

线性代数——第 3章
所以方程组的通解为
x1 1 0 1 2 x2 = c 1 + c 0 + 0 . x3 2 0 4 2 1 2 其中c2 ,c4 任意. 0 1 0 x4
可写成矩阵方程:
Ax b
B ( A, b)
线性代数——第 3章

1 2 2 1 1 0 2 4 8 2 设A , b 3 2 4 2 3 3 6 0 6 4
求矩阵A及矩阵B ( A b)的秩.
线性代数——第 3章
定理1 (1) (2) (3)
n元线性方程组Ax=b
无解的充分必要条件是R(A)<R(A,b); 有唯一解的充分必要条件是R(A)=R(A,b)=n; 有无穷多个解的充分必要条件是R(A)=R(A,b)<n;
线性代数——第 3章
1 0 0 ~ B0 0 0 x1
5 x1 2c2 3 c2 , x 2c 4 c , 2 2 3 2 x c , 3 1 x4 c 2 ,
线性代数——第 3章
2、非齐次线性方程组 增广矩阵化成行阶梯形矩阵,便可判断其是否有 解.若有解,化成行最简形矩阵,便可写出其通解. 例2 求解非齐次线性方程组
线性代数——第 3章

对系数矩阵 A 施行初等行变换:
1 2 2 1 1 2 2 1 r2 2r1 A 2 1 2 2 0 3 6 4 1 1 4 3 r3 r1 0 3 6 4
d d

线性代数————第3章:线性方程组

线性代数————第3章:线性方程组

线性代数————第3章:线性方程组一、例题解析:1.单项选择题(1)向量组[][][][]αααα1234110100111001====,,,,,,,,,,,的极大线性无关组是( )。

A. αα12,B. αα24,C. ααα134,,D. ααα123,, 解:因为向量组ααα123,,线性无关,而向量组ααα134,,线性相关,所以原向量组的极大线性无关组是ααα123,,。

正确答案:D(2)设线性方程组的增广矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--0000103006211041231,则此线性方程组的一般解中自由元的个数为( )。

A. 1B. 2C. 3D. 4解:因为方程组中未知量个数是4,增广矩阵的秩)(B A r =3,所以 一般解的自由元个数 = 方程组中未知量个数 - )(B A r = 4-3=1 所以,线性方程组的一般解中自由元的个数为1。

正确答案:A (3)n 元齐次线性方程组0=AX 有非零解的充分必要条件是( )。

A. n A r =)(B. n A r >)(C. n A r <)(D. )(A r 与n 无关 解:n 元齐次线性方程组0=AX 有非零解的充分必要条件是n A r >)( 正确答案:C(4)设线性方程组B AX =的两个解21,X X )(21X X ≠,则下列向量中( )一定是B AX =的解。

A. 21X X +B. 21X X -C. 212X X -D. 122X X - 解:因为B B B AX AX X X A =-=-=-22)2(1212,所以122X X -是线性方程组B AX =的解。

正确答案:D2. 填空题(1)一个向量组中如有零向量,则此向量组一定线性 。

解:设0, m αα,,1 为一组n 维向量,取00≠k ,01===m k k ,则0k 0 +m m k k α++α 11= 0由定义可知,向量组0, m αα,,1 线性相关。

线性代数第三章 矩阵的初等变换与线性方程组

线性代数第三章  矩阵的初等变换与线性方程组

✓一个方程加上另一个方程的 k 倍,记作 i +k j .
其逆变换是:
ij
i ×k i +k j
ij
i ÷k i -k j
结论: 1. 由于对原线性方程组施行的变
换是可逆变换,因此变换前后 的方程组同解. 2. 在上述变换过程中,实际上只 对方程组的系数和常数进行运 算,未知数并未参与运算.
定义:下列三种变换称为矩阵的初等行变换:
0 0 0 0 1
以 k 乘单位阵第 i 列加到第 j 列.
1 0 0 0 0
1 0 0 0 0
0
1
0
0
0
0
1
0
0
0
? E5
0
0
1
0
0 c53 c53 k 0
0
1
0
k0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 1
0 0 0k 0 1
a11 a12 a13 a14
第三章 矩阵的初等变换与线性方程组
知识点回顾:克拉默法则
a11 x1 a12 x2 a1n xn b1

a21
x1
a22 x2
a2n xn b2
(1)
an1 x1 an2 x2 ann xn bn
结论 1 如果线性方程组(1)的系数行列式不等于零,则该 线性方程组一定有解,而且解是唯一的.(P. 24定理4)
✓对调两行,记作 ri rj ; ✓以非零常数 k 乘某一行的所有元素,记作 ri k ; ✓某一行加上另一行的 k 倍,记作 ri krj .
其逆变换是:
ri rj ri k ri krj
ri rj ; ri k; ri krj .

线性代数第三章线性方程组3.5齐次线性方程组解得结构

线性代数第三章线性方程组3.5齐次线性方程组解得结构

1
12
由定理3.10可得求解齐次线性方程组通解的步骤 (1)对矩阵 A 进行初等行变换,将其化为行最简形阶
梯矩阵;
(2)将其行最简形阶梯矩阵转化为同解的阶梯形方
程组; (3)由同解的阶梯形方程组写出方程组的一个
基础解系 1 ,2 , ,nr ;
b11
1
br
1
1
,
0
0
b12
2
1
0
B
(1 ,
2
,
3
,
4
,
5
)
0
0
0
0
0
1
18
1 , 2 是B的列向量组的一个极大线性无关组,且有
3 21 2 , 4 1 32 , 5 21 2
21 2 3 0 4 0 5 0
1
32
0
3
4
0
5
0
2
1
2
0
3
0
4
5
0
1
19
1 ,2 是A的列向量组的一个极大线性无关组,且有
xn
1
2
则上述方程组( 3.12 )可写成矩阵方程
AX O 性质1 若 1 ,2 是齐次线性方程组( 3.12 )的解,则 1 2也是它的解.
证 因为 1 ,2是方程组( 3.12 )的解,故
A1 O, A2 O
A1 2 A1 A2 O
故1 2 也是AX O的解.
性质2 若 是齐次线性方程组( 3.12 )的解,则对任意
x1 2x2 2x1 3x2
3x3 5x3
0, 0,
x1 x2 ax3 0,
(I
)和

线性代数第三章,矩阵初等变换与线性方程组

线性代数第三章,矩阵初等变换与线性方程组

(称 B 是该线性方程组的增广矩阵)
3
6 9
7 9
1 1 2 1 4 1 1 2 1 4
~r1
r2
2
r3
1 2
2
3
1 3 6
1 1 9
1 1 7
~ 2
r2 r3
r3 2 r1
0
2
r4
3r1
0
9 0
2 5 3
2 5 3
2 3 4
0
6
3
1 1 2 1 4 1 1 2 1 4
A,
E
2
3
2 4
1 3
0 0
1 0
0 1
r2 r3
2 r1
~
3r1
0 0
2 5 2 2 6 3
1 0
0
1
1
r1 r2
~ r3 r2
0 0
0 2 1 1 2 5 2 1 0 1 1 1
0 1
0 1
r1 2r3
~
r2 5r3
0 0
0 0 1 3 2
2 0
3
6
5
0 1 1 1 1
2 4 4
2 4 0
4 4 0
240
故 R A 2 。
特别,当 n 阶方阵 A 的行列式 A 0 ,则 R A n ;反之,当 n 阶方阵 A 的秩 R A n ,
则 A 0 。因此 n 阶方阵可逆的充分必要条件是 R A n (满秩)。
定理 若 A ~ B ,则 R A RB 。
3 2 0 5 0
x2
c
1
2
x3 1 0
一些推广:
1. 矩阵方程 AX B 有解 R A R A, B 。 2. AB C ,则 RC min{R A, RB}。 3. 矩阵方程 Amn X nl O 只有零解 R A 0 。

线性代数课件PPT 第3章.线性方程组

线性代数课件PPT 第3章.线性方程组

2) (α β) γ α ( β γ() 加法结合律)
3) 存在任意一个向量α,有α 0n α 4)存在任意一个向量α,存在负向量-α,使α (α) 0n
5) 1α α
6) k(lα) (kl)α(数乘结合律)
7) k(α β) kα kβ(数乘分配律)
m
kiai k1α1 k2α2 L kmαm
i 1
称为向量组α1, α2,L , αm在数域F上的一个线性组合。如果记
m
β kiαi,就说β可由α1, α2,L , αm线性表示。 i 1
10
3.1 n维向量及其线性相关性
线性相关性 定义:如果对m个向量α1, α2, α3, ... , αm∈Fn,有m个不全 为0的数k1,k2,...,km∈F,使
α=(a1 a2 an) 其中ai 称为α的第i个分量。
向量写成行的形式称为行向量,向量写作列的形式称为 列向量(也可记作行向量的转置)。
a1
αT


a2

M
an

3
3.1 n维向量及其线性相关性
向量的定义 数域F上全体n元向量组成的集合,记作Fn。
4
3.1 n维向量及其线性相关性
向量的运算
定义:设α=(a1, a2, ... , an),β=(b1, b2, ... , bn)∈Fn,k∈F,
定义:
1)α=β,当且仅当ai=bi (i=1,...,n); 2)向量加法(或α与β之和)为
α β (a1 b1, a2 b2 , ... , an bn )
k1α1 k2α2 L kmαm 0n
成立,则称α1, α2, α3, ... ,αm线性相关;否则,称α1, α2, α3, ... ,αm线性无关。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(
)
第三章 线性方程组
§3.1 线性方程组和高斯消元法
1. 阶梯阵的形状与线性方程组的解
r1 = r(A) r2 = r(A,b) A,b) ~ ~ ~ Ax = b Ax = b 解的情况 (A, b) (A, ~) b 2x1+3x2 −x3 = 1 +3x 2 3 −4 1 无解 2x2+x3 = 2 0 2 1 2 0 0 0 1 r2 = r1+1 0=1 x1−x2+2x3 = 8 +2x 1 −1 2 8 2x2 +x3 = 1 有唯一解 0 2 1 1 0 0 1 5 x 3 = 5 r2 = r1 = 3
x1 = x2 = … … xr = xr+1 = xr+2 = … … xn = c1,r+1xr+1 1,r c2,r+1xr+1 2,r … … cr,r+1xr+1 xr+1 + c1,r+2xr+2 1,r + c2,r+2xr+2 2,r … … … + cr,r+2xr+2 + … + c1nxn + … + c2nxn … … + … + crnxn
第三章 线性方程组
§3.1 线性方程组和高斯消元法 一. 线性方程组的概念 二. 高斯消元法 r2 = r1+1 ↔ 无解 r2 = r1=n ↔ 唯一解 r2 = r1< n ↔ 无穷多解
§3.2 齐次线性方程组 一. 齐次线性方程组有非零解的条件 二. 齐次线性方程组解的结构 三. 基础解系
第三章 线性方程组
1+λ 1 1 1 1 1+λ A = 1 1+λ 1 r1 ↔ r3 1 1+λ 1 1 1 1 1+λ 1+λ 1 1 1 1+λ r + r 1 1 1+λ r 2− r 1 3 2 0 λ 0 λ −λ −λ r3− (1+λ) 0 −λ −λ(2+λ) 0 0 −λ(3+λ) r1 当λ=0或λ = −3时, r(A)<3, 有非零解; 有非零解; ∴ 只有零解. ∴当λ≠0且λ ≠ −3时, r(A)=3, 只有零解.
第三章 线性方程组
§3.1 线性方程组和高斯消元法 +…+a a11x1+a12x2+…+a1nxn = b1 一. 基本概念 a21x1+a22x2+…+a2nxn = b2 +…+a (3.1) … … … … … … … am1x1+am2x2+…+amnxn = bm +…+a 系数矩阵 a11 a12 … a1n a21 a22 … a2n 设A = … … … … , b = am1 am2 … amn Ax = b ( A, b ) b1 b2 , x= … bm x1 x2 , … xn
第三章 线性方程组
§3.2 齐次线性方程组
定理3.2. 定理3.2. 设A∈Rm×n, r(A) = r. 若r < n,则Ax = 0 任一基础解系中均含有n 个解向量. 的任一基础解系中均含有n−r个解向量. 证明: 证明: A 初等行变换 B B为行最简形矩阵 0有 个自由未知量. r(B) = r(A) = r ∴ Bx = 0有 n−r 个自由未知量.
§3.2 齐次线性方程组
一. 齐次线性方程组有非零解的条件 可写成: 令A = (α1, α2, …, αn), 则 Ax = 0 可写成: x1α1+x2α2 +…+xnαn = 0 有非零解 +…+x ⇔ α1, α2, …, αn 线性相关 ⇔ r(A) < n 定理3.1 设 ∈ × Ax= . 定理3.1.设A∈Rm×n, 则Ax=0 有非零解 ⇔ r(A)<n. 推论3.1. 推论3.1. 设A∈Rm×n. 若m<n(方程的个数小于 未知量的个数), =0有非零解 有非零解. 未知量的个数), 则Ax =0有非零解. 推论3.2 设 ∈ × 推论3.2.设A∈Rn×n , 则 Ax = 0 有非零解 ⇔ |A|=0. 不可逆, ⇔ A不可逆,退化,奇异 不可逆 退化,奇异. 推论3.3 设 ∈ × 推论3.3.设A∈Rn×n , 则 Ax = 0 只有零解 ⇔ |A|≠0. ≠ 可逆, ⇔ A可逆,非退化,非奇异 可逆 非退化,非奇异.
第三章 线性方程组
§3.2 齐次线性方程组
(1 + λ )x1 + x2 + x3 = 0 例1. 设有线性方程组 x1 + (1 + λ )x2 + x3 = 0 为何值时, 问λ为何值时, 此方程组 x + x + (1 + λ )x = 0 (1)有非零解 (2)只有零解 (1)有非零解; (2)只有零解? 1 有非零解; 只有零解? 2 3
解: 对系数矩阵 作初等行变换 化为阶梯阵 对系数矩阵A作初等 变换, 化为阶梯阵. 作初等行
第三章 线性方程组
§3.2 齐次线性方程组
二. 齐次线性方程组的解的结构 V = { x∈Rn | Ax = 0 } 齐次线性方程组的解空间 性质1 性质1 若α,β是Ax = 0 的解, 则kα +lβ也是Ax =0的解. 也是Ax =0的 事实上, 事实上, A (kα +lβ) = kAα + l Aβ = 0. 2. Ax = 0的一组解η1, η2,…, ηs称为一个基础解系: 0的一组解 称为一个基础解系: 一个基础解系 (1) η1, η2, …, ηs 线性无关; 线性无关; 0的任一解都可由 线性表示. (2) Ax = 0的任一解都可由η1, η2, …, ηs线性表示. 那么该方程组的通解就可表示成 x = k1η1 +k2η2+…+ksηs, 其中k1, k2, …,ks为常数. +…+k 其中k …,k 为常数. 这种形式的通解称为Ax =0的结构式通解. 这种形式的通解称为Ax =0的结构式通解.
第三章 线性方程组
§3.2 齐次线性方程组
2. Ax = 0的一组解η1, η2,…, ηs 称为一个基础解系: 0的一组解 称为一个基础解系: 一个基础解系 线性无关; (1) η1, η2, …, ηs 线性无关; (2) Ax = 0的任一解都可由η1, η2, …, ηs线性表示. 0的任一解都可由 线性表示. Ax = 0 的结构式通解可表示成 结构式通解可表示成 x = k1η1 +k2η2+…+ksηs, 其中k1, k2, …,ks为常数. +…+k 其中k …,k 为常数. 解向量组的极大无关组 注1:基础解系是Ax = 0解向量组的极大无关组, 基础解系是Ax 0解向量组的极大无关组, 所以基础解系不唯一 不唯一, 所以基础解系不唯一, 且任意两个基础解系等价 等价; 且任意两个基础解系等价; 解向量组的秩 注2:Ax = 0 解向量组的秩是基础解系含有的向 : 量的个数, 量的个数,即n−r(A).
增广系数矩阵
第三章 线性方程组
§3.1 线性方程组和高斯消元法
Ax = b 齐次线性方程组( 齐次线性方程组( b = 0) 线性方程组的分类 非齐次线性方程组 (b ≠ 0)
无解 (不相容) 不相容) 线性方程组的解 唯一解 相容) 有解 (相容) 无穷多解 (通解) 通解)
第三章 线性方程组
第三章 线性方程组
§3.1 线性方程组和高斯消元法
阶梯形方程组
最简形方程组
x1 − 5x3 = 1 x1+2x2 −x3 = −3 +2x x2+2x3 = − 2 +2x x2+2x3 = − 2 ×(−2) +2x 0=0 0=0 由此可得原方程组的通解 x1 = 5x3+1 1 0 −5 1 0 1 2 −2 x2 = −2x3−2 0 0 0 0 x3 = x3(任意) 任意) 5c+1 行最简形矩阵 其中c 或者 x = −2c−2 , 其中c为 可直接读出解 任意数. 任意数. c
= xr+1η1 + xr+2 η2 + … + xn ηn-r
∴η1 , η2 , … , ηn-r 线性无关
第三章 线性方程组
x1+2x2+x3 + x4 = 2 有无穷多解 1 2 1 1 2 +2x 0 0 1 4 3 x3+4x4 = 3 +4x 0 0 0 0 0 0 = 0 r2 = r1 < 4
第三章 线性方程组
§3.1 线性方程组和高斯消元法
2. 线性方程组的相容性 定理. 定理. 设A∈Rm×n, b∈Rm, 则 (1)当 (1)当r(A, b) = r(A)+1时, Ax = b无解; )+1时 无解; (2) 当r(A, b) = r(A) = n时, Ax = b有唯一解; 有唯一解; (3) 当r(A, b) = r(A)<n时, Ax = b有无穷多解, 有无穷多解, 且通解中含有n 且通解中含有n−r(A)个自由未知量. 个自由未知量. 推论. 推论. 设A∈Rm×n, 则 (1) 当r(A)=n时, Ax = 0只有零解; 只有零解; (2) 当r(A)<n时, Ax = 0有非零解, 且通解中含 有非零解, 个自由未知量. 有n−r(A)个自由未知量.
§3.1 线性方程组和高斯消元法
二. 高斯消元法
−2 −3 4 4 1 2 −1 −3 2 2 −6 −2 ×1/2
−2x1−3x2+4x3 = 4 +4x x1+2x2 −x3 = −3 +2x 2x1+2x2 −6x3 = −2 ×1/2 +2x
相关文档
最新文档