半导体物理学_课堂知识详细归纳总结

合集下载

半导体物理知识点梳理

半导体物理知识点梳理

半导体物理考点归纳一· 1.金刚石 1) 结构特点:a. 由同类原子组成的复式晶格。

其复式晶格是由两个面心立方的子晶格彼此沿其空间对角线位移1/4的长度形成b. 属面心晶系,具立方对称性,共价键结合四面体。

c. 配位数为4,较低,较稳定。

(配位数:最近邻原子数)d. 一个晶体学晶胞内有4+8*1/8+6*1/2=8个原子。

2) 代表性半导体:族的C ,,等元素半导体大多属于这种结构。

2.闪锌矿 1) 结构特点:a. 共价性占优势,立方对称性;b. 晶胞结构类似于金刚石结构,但为双原子复式晶格;c. 属共价键晶体,但有不同的离子性。

2) 代表性半导体:等三五族元素化合物均属于此种结构。

3.电子共有化运动:原子结合为晶体时,轨道交叠。

外层轨道交叠程度较大,电子可从一个原子运动到另一原子中,因而电子可在整个晶体中运动,称为电子的共有化运动。

4.布洛赫波:kxi k k e x u x πϕ2)()(=晶体中电子运动的基本方程为: ,K 为波矢,(x)为一个与晶格同周期的周期性函数, 5.布里渊区:禁带出现在2a 处,即在布里渊区边界上;允带出现在以下几个区: 第一布里渊区:-1/2a<k<1/2a (简约布里渊区)第二布里渊区:-1<k<-1/2a,1/2a<k<1E(k)也是k 的周期函数,周期为1,即E(k)(),能带愈宽,共有化运动就更强烈。

6.施主杂质:V 族杂质在硅,锗中电离时,能够释放电子而产生导电电子并形成正电中心,称它们 为施主杂质或n 型杂质 7.施主能级:将施主杂质束缚的电子的能量状态称为施主能级,记为。

施主能级离导带很近。

8.受主杂质:族杂质在硅,锗中能够接受电子而产生导电空穴,并形成负电中心,称它们为受主杂质或P 型杂质。

9.受主能级:把被受主杂质所束缚的空穴的能量状态称为受主能级,记)()(na x u x u k k +=为。

(完整版)半导体物理知识点及重点习题总结

(完整版)半导体物理知识点及重点习题总结

基本概念题:第一章半导体电子状态1.1 半导体通常是指导电能力介于导体和绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的小许多。

1.2能带晶体中,电子的能量是不连续的,在某些能量区间能级分布是准连续的,在某些区间没有能及分布。

这些区间在能级图中表现为带状,称之为能带。

1.2能带论是半导体物理的理论基础,试简要说明能带论所采用的理论方法。

答:能带论在以下两个重要近似基础上,给出晶体的势场分布,进而给出电子的薛定鄂方程。

通过该方程和周期性边界条件最终给出E-k关系,从而系统地建立起该理论。

单电子近似:将晶体中其它电子对某一电子的库仑作用按几率分布平均地加以考虑,这样就可把求解晶体中电子波函数的复杂的多体问题简化为单体问题。

绝热近似:近似认为晶格系统与电子系统之间没有能量交换,而将实际存在的这种交换当作微扰来处理。

1.2克龙尼克—潘纳模型解释能带现象的理论方法答案:克龙尼克—潘纳模型是为分析晶体中电子运动状态和E-k关系而提出的一维晶体的势场分布模型,如下图所示利用该势场模型就可给出一维晶体中电子所遵守的薛定谔方程的具体表达式,进而确定波函数并给出E-k关系。

由此得到的能量分布在k空间上是周期函数,而且某些能量区间能级是准连续的(被称为允带),另一些区间没有电子能级(被称为禁带)。

从而利用量子力学的方法解释了能带现象,因此该模型具有重要的物理意义。

1.2导带与价带1.3有效质量有效质量是在描述晶体中载流子运动时引进的物理量。

它概括了周期性势场对载流子运动的影响,从而使外场力与加速度的关系具有牛顿定律的形式。

其大小由晶体自身的E-k关系决定。

1.4本征半导体既无杂质有无缺陷的理想半导体材料。

1.4空穴空穴是为处理价带电子导电问题而引进的概念。

设想价带中的每个空电子状态带有一个正的基本电荷,并赋予其与电子符号相反、大小相等的有效质量,这样就引进了一个假想的粒子,称其为空穴。

它引起的假想电流正好等于价带中的电子电流。

(完整word版)半导体物理知识点总结.doc

(完整word版)半导体物理知识点总结.doc

一、半导体物理知识大纲核心知识单元 A:半导体电子状态与能级(课程基础——掌握物理概念与物理过程、是后面知识的基础)半导体中的电子状态(第 1 章)半导体中的杂质和缺陷能级(第 2 章)核心知识单元 B:半导体载流子统计分布与输运(课程重点——掌握物理概念、掌握物理过程的分析方法、相关参数的计算方法)半导体中载流子的统计分布(第 3 章)半导体的导电性(第 4 章)非平衡载流子(第 5 章)核心知识单元 C:半导体的基本效应(物理效应与应用——掌握各种半导体物理效应、分析其产生的物理机理、掌握具体的应用)半导体光学性质(第10 章)半导体热电性质(第11 章)半导体磁和压阻效应(第12 章)二、半导体物理知识点和考点总结第一章半导体中的电子状态本章各节内容提要:本章主要讨论半导体中电子的运动状态。

主要介绍了半导体的几种常见晶体结构,半导体中能带的形成,半导体中电子的状态和能带特点,在讲解半导体中电子的运动时,引入了有效质量的概念。

阐述本征半导体的导电机构,引入了空穴散射的概念。

最后,介绍了Si、Ge 和 GaAs 的能带结构。

在 1.1 节,半导体的几种常见晶体结构及结合性质。

(重点掌握)在 1.2 节,为了深入理解能带的形成,介绍了电子的共有化运动。

介绍半导体中电子的状态和能带特点,并对导体、半导体和绝缘体的能带进行比较,在此基础上引入本征激发的概念。

(重点掌握)在 1.3 节,引入有效质量的概念。

讨论半导体中电子的平均速度和加速度。

(重点掌握)在1.4 节,阐述本征半导体的导电机构,由此引入了空穴散射的概念,得到空穴的特点。

(重点掌握)在 1.5 节,介绍回旋共振测试有效质量的原理和方法。

(理解即可)在 1.6 节,介绍 Si 、Ge 的能带结构。

(掌握能带结构特征)在 1.7 节,介绍Ⅲ -Ⅴ族化合物的能带结构,主要了解GaAs 的能带结构。

(掌握能带结构特征)本章重难点:重点:1、半导体硅、锗的晶体结构(金刚石型结构)及其特点;三五族化合物半导体的闪锌矿型结构及其特点。

半导体物理归纳总结

半导体物理归纳总结

半导体物理归纳总结半导体物理是研究半导体材料及其在电子器件中的应用特性的学科领域。

在过去几十年里,半导体技术的飞速发展对我们的生活产生了巨大的影响。

本文将对半导体物理的一些重要概念和原理进行归纳总结,帮助读者更好地理解半导体器件的工作原理及其应用。

1. 半导体的基本概念半导体是介于导体和绝缘体之间的一类物质,具有中等电导率。

它的导电性质可以通过控制掺杂和温度来进行调节。

常见的半导体材料有硅和锗,它们的物理性质决定了半导体器件的性能。

2. 半导体材料的能带结构半导体材料的能带结构直接影响其导电性质。

能带是描述电子能量和电子分布的概念。

在半导体中,价带是最高的填满电子的能带,而导带是电子可以自由移动的能带。

半导体的导电性取决于导带和价带之间的能隙大小。

3. 掺杂与载流子掺杂是将某种杂质引入到半导体材料中,以改变半导体的导电特性。

掺杂可以分为施主掺杂和受主掺杂两种。

施主掺杂会引入额外的自由电子,增加半导体的导电性,而受主掺杂引入额外的空穴,减少导电性。

掺杂后产生的自由电子和空穴被称为载流子,它们在半导体中的运动导致了电流的流动。

4. pn结及其特性pn结是由p型半导体和n型半导体相接触形成的结构。

在pn结中,p区富含空穴,n区富含自由电子。

当p区和n区相接触时,会发生空穴和自由电子的复合过程,形成耗尽区。

耗尽区内形成了电场,阻止了进一步的复合。

这种特殊的结构使得pn结具有整流特性,即在正向偏置下电流可以流动,而在反向偏置下电流几乎不流动。

5. 半导体器件的应用半导体器件包括二极管、场效应晶体管、晶体管等,它们在各种电子设备中起着重要作用。

二极管是一种具有单向导电性的器件,广泛应用在电源供电和信号处理中。

场效应晶体管是一种高度可控的电流放大器,常用于放大和开关电路。

晶体管则是一种功率放大器,被广泛应用在音频和无线通讯领域。

总结:半导体物理是一门涉及半导体材料特性和器件应用的重要学科。

通过对半导体的能带结构、掺杂与载流子、pn结特性以及器件应用的介绍,我们对半导体器件的工作原理有了更深入的理解。

半导体物理笔记总结

半导体物理笔记总结

第二章1、 晶体的基本特点组成晶体的原子按一定的方式有规则的排列而成、具有固定的熔点、方向为各向异性。

2、[100]6 [110]12 [111]8 SI:两套面心立方点阵沿对角线平移1/4套构成3、晶向指数 晶面指数、密勒指数=截距倒数的互质整数4、布拉格定律:λθn d =sin 2 原因:点阵周期性5、能量量子化:孤立原子中的电子能量(状态)是一系列分离的能量的确定值(不连续),称为能级。

6、相同能量的轨道可以不止一个,具有相同能量的轨道的数目称为简并度。

7、费米能级:基态下最高被充满能级的能量2222)(LN m F πε = 8、电子的波函数是两个驻波,两个驻波使电子聚集在不同的空间区域内,因此考虑到离子实的排列,这两个波将具有不同的势能值。

这就是能隙起因。

晶体中电子波的布拉格反射——周期性势场的作用。

9、共有化运动:晶体中原子上的电子不完全局限在某一个原子上,可以由一个原子转移到相邻的原子上去,结果电子可以在整个晶体中运动。

原因:电子壳层有一定的交叠。

10、原子轨道线性组合法11、主量子数:决定电子出现几率最大的区域离核的远近(或电子层),并且是决定电子能量的主要因素;副量子数:决定原子轨道(或电子云)的形状,同时也影响着电子的能量;磁量子数:决定原子轨道(或电子云)在空间的伸展方向;自旋量子数:决定电子自旋的方向;12、自由电子模型:组成晶体的原子中束缚得最弱的电子在金属体内自由运动。

原子的加点字成为传导电子。

在自由电子近似中略去传导电子和离子实之间的力;在进行所有计算时,仿佛传导电子在样品中可以各处自由移动。

总能量全部是动能,势能被略去。

自由电子费米气体是指自由的、无相互作用的、遵从泡利不相容原理的电子气13、近自由电子近似:当周期势场起伏很小时,电子在势场中运动,可将势场的平均值U0代替晶格势Ur 作为零级近似,将周期的起伏Ur —U0作为微扰处理。

可解释金属价电子能带。

把能带电子看做仅仅是受到离子实的周期性势场微扰。

半导体知识点总结

半导体知识点总结

半导体知识点总结半导体是一种介于导体和绝缘体之间的材料,它具有一些特殊的电子性质,因此在现代电子技术中具有重要的应用。

本文将对半导体的基本概念、特性、原理以及应用进行详细的介绍和总结。

一、半导体的基本概念1、半导体材料半导体材料是一类电阻率介于导体和绝缘体之间的材料,它具有一些特殊的电子能带结构。

常见的半导体材料包括硅(Si)、锗(Ge)、GaAs等。

2、半导体的掺杂半导体材料经过掺杂后,可以改变其电子结构和导电性质。

常见的掺杂有N型和P型两种类型,分别通过掺入杂质原子,引入额外的自由电子或空穴来改变半导体的导电性质。

3、半导体的结构半导体晶体结构通常是由大量的晶格排列组成,具有一定的晶格参数和对称性。

在半导体器件中,常见的晶体结构有晶体管、二极管、MOS器件等。

二、半导体的特性1、能带结构半导体的能带结构是其特有的性质,它决定了半导体的导电性质。

半导体的能带结构通常包括价带和导带,其中价带中填充电子的能级较低,而导带中电子的能级较高,两者之间的能隙称为禁带宽度。

2、电子迁移和载流子在外加电场的作用下,半导体中的自由电子和空穴可以在晶体内迁移,并形成电流。

这些移动的载流子是半导体器件工作的基础。

3、半导体的导电性半导体的导电性是由自由电子和空穴共同贡献的,通过掺杂和外加电场的调制,可以改变半导体的导电性。

三、半导体的原理1、P-N结P-N结是半导体器件中最基本的结构之一,它由P型半导体和N型半导体组成。

P-N结具有整流、放大、开关等功能,是二极管、光电二极管等器件的基础。

2、场效应器件场效应器件是一类利用外加电场控制半导体导电性质的器件,包括MOS场效应管、JFET场效应管等。

场效应器件具有高输入电阻、低功耗等优点,在数字电路和模拟电路中得到广泛应用。

3、半导体光电器件半导体光电器件是一类利用光电效应将光能转化为电能的器件,包括光电二极管、光电导电器件等。

光电器件在光通信、光探测、光伏等领域有着重要的应用。

半导体物理知识总结

半导体物理知识总结

半导体中的电子状态主要研究内容:半导体的物理性质与半导体中电子的状态及其运动特点有密切关系。

用单电子近似的方法研究固态晶体中电子的能量状态。

所谓单电子近似,即假设每个电子是在周期性排列且固定不动的原子核势场及其他电子的平均势场中运动。

该势场是具有与晶格同周期的周期性势场。

用单电子近似法研究晶体中电子状态的理论成为能带论。

1、半导体的特点。

(1)、在纯净的半导体中,电导率随温度的上升而指数增加。

(2)、在半导体中杂质的种类和数量决定着半导体的电导率,而且在掺入杂质的情况下半导体的电导率随温度的变化较弱。

(3)、在半导体中可以实现非均匀掺杂。

(4)、光的辐照,高能电子等的注入,可以影响半导体的电导率。

2、半导体中电子的微观运动特点。

(1)、电子作稳恒运动,具有完全确定的能量。

这种稳恒运动状态称为量子态,而且同一个量子态上只能有一个电子。

(2)、在一定条件下,电子可以发生从一个量子态转移到另一个量子态的突变,这种突变称为量子跃迁。

3、能带理论晶体中的电子不再束缚于个别原子,而在一个具有晶格周期性的势场中作共有化运动,孤立原子能级按照电子共有化运动不同而分裂成彼此靠的很近且有一定宽度的能带。

能被电子填充的带称为允带,允带中的能级数与晶体中原子数相等。

允带之间有禁带(补充布里渊区,禁带宽度),禁带宽度的大小是区别绝缘体、半导体与金属的重要区别。

晶体中电子的能带在波矢空间具有反演对称性,且是倒格子的周期函数。

4、从能带理论解释导体、绝缘体、半导体的导电性。

电子的能带分为满带和不满带。

被电子完全占满的能带成为满带,未被电子完全填满的带称为不满带。

在外加电场时,满带中的电子状态随时间发生变化,但整体上分布仍保持对称分布,使得满带中的电子对导电无贡献。

不满带中的电子在无外场时成对称分布,总电流为零。

当施加外场时,漂移和碰撞作用达到平衡后,电子有一个稳定的分布,且电子的分布不再对称。

不对称部分的电子对导电有贡献。

导体的能带中有不满带,称为导带或价带。

半导体物理归纳总结高中

半导体物理归纳总结高中

半导体物理归纳总结高中半导体物理是高中物理中的重要内容之一,是学生们理解电子学和光电子学等深入领域的基础。

本文将对半导体物理的主要概念和原理进行归纳总结,帮助高中学生们更好地理解和应用这一知识。

一、半导体的基本特性半导体是一类电导率介于导体和绝缘体之间的固体材料。

其电导率随温度的变化而变化,体现了其特殊的电学性质。

半导体具有以下几个基本特性:1.1 带隙半导体的带隙是指其原子结构中包含的能带之间的能量差。

带隙越小,半导体中的电子越容易被激发到导带中,电导率越高。

常见的半导体材料如硅、锗等具有较小的带隙,因而被广泛应用。

1.2 频带理论频带理论是解释半导体电导率的重要理论基础。

在这一理论中,半导体的电子结构被描述为能带的形式,其中包含价带和导带。

价带中的电子处于低能态,不易被激发,而导带中的电子具有较高的能量,可以参与导电。

1.3 掺杂掺杂是指在半导体材料中加入少量的杂质,从而改变其电学性质。

掺杂可以使半导体呈现n型或p型的性质,分别对应电子主导的导电和空穴主导的导电。

二、半导体器件半导体器件是基于半导体材料制造的电子元件,广泛应用于各类电子设备中。

常见的半导体器件包括二极管、晶体管和集成电路等。

以下对其中几种常见的器件进行介绍:2.1 二极管二极管是由p型和n型半导体材料构成的器件,其具有单向导电性。

在导通状态下,电流可以从p区域流向n区域,而在反向偏置时,电流几乎无法通过。

二极管广泛应用于电源、信号调理、光电转换等领域。

2.2 晶体管晶体管是一种用于放大、开关、调制等功能的半导体器件,由n-p-n或p-n-p三层结构构成。

晶体管的工作原理基于控制栅极电压来改变集电极和发射极间的电流。

它的小体积、低功耗和高可靠性使其成为现代电子技术中不可或缺的元件。

2.3 集成电路集成电路是将数百万个晶体管和其他电子元件集成在一块芯片上的器件,是现代电子技术的重要组成部分。

集成电路的制造工艺和设计技术不断发展,使其性能和功能大幅提升。

半导体物理知识要点总结

半导体物理知识要点总结

第一章 半导体的能带理论1. 基本概念✧ 共有化运动:原子组成晶体后,由于电子壳层的交叠,电子不在局限在某一个原子上,可以由一个原子转移到相邻的原子上去,因而电子可以在整个晶体中运动,这种运动称为电子的共有化运动。

✧ 单电子近似:假设每个电子是在大量周期性排列且固定不动的原子核势场及其他电子的平均势场中运动。

该势场也是周期性变化的。

✧ 能带的形成:原子相互接近,形成壳层交替→电子共有化运动→能级分裂(分成允带、禁带)→形成能带✧ 能带:晶体中,电子的能量是不连续的,在某些能量区间能级分布是准连续的,在某些区间没有能及分布。

这些区间在能级图中表现为带状,称之为能带。

✧ 价带:P6✧ 导带:P6✧ 禁带:P5✧ 导体✧ 半导体✧ 绝缘体的能带✧ 本征激发:价带上的电子激发成为准自由电子,即价带电子激发成为导带电子的过程,称为本征激发。

✧ 空穴:具有正电荷q 和正有效质量的粒子✧ 电子空穴对✧ 有效质量:有效质量是在描述晶体中载流子运动时引进的物理量。

它概括了周期性势场对载流子运动的影响,从而使外场力与加速度的关系具有牛顿定律的形式。

其大小由晶体自身的E-k 关系决定。

✧ 载流子及载流子浓度2. 基本理论✧ 晶体中的电子共有化运动✧ 载流子有效质量的物理意义 :当电子在外力作用下运动时,它一方面受到外电场力f的作用,同时还和半导体内部原子、电子相互作用着,电子的加速度应该是半导体内部势场和外电场作用的综合效果。

但是,要找出内部势场的具体形式并且求得加速度遇到一定的困难,引进有效质量后可使问题变得简单,直接把外力f 和电子的加速度联系起来,而内部势场的作用则由有效质量加以概括,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。

第二章 半导体中的杂质与缺陷能级1. 基本概念✧ 杂质存在的两种形式:间隙式杂质:杂质原子位于晶格原子间的间隙位置。

替位式杂质:杂质原子取代晶格原子而位于晶格点处。

半导体物理知识点汇总总结

半导体物理知识点汇总总结

半导体物理知识点汇总总结一、半导体物理基本概念半导体是介于导体和绝缘体之间的材料,它具有一些导体和绝缘体的特性。

半导体是由单一、多层、回交或互相稀释的混合晶形的二元、三元或多元化合物所组成。

它的特点是它的电导率介于导体和绝缘体之间,是导体的电导率∗101~1015倍,是绝缘体的电导率÷102~103倍。

半导体材料具有晶体结构,对它取决于结晶度的大小,织排效应特别大。

由于它的电导率数值在半导体晶体内并不等同,所以它是隔离的,具有相当大的飞行束度,并且不容易受到外界的干扰。

二、半导体晶体结构半导体是晶体材料中最均匀最典型的材料之一,半导体的基本结构是一个由原子排成的一种规则有序的晶体结构。

半导体原子是立方体的晶体,具有600个原子的立方体晶体结构,又称之为立方的晶体结构。

半导体晶体结构的代表性六面体晶体结构,是一种由两个或两个以上的六面全部说构成的立方晶体。

半导体晶体的界面都是由两个或两个以上的六面全部说构成的晶体包围构成,是由两个或两个以上的六面全部说构成的立方晶体。

半导体晶体的界面都是由两个或两个以上的六面全部说构成的晶点构成,是由两个或两个以上的六面全部说构成的晶点构成。

三、半导体的能带结构半导体的能带“带”是指其电子是在“带”中运动的,是光电子带,又称作价带,当其中的自由电子都填满时另一种平面,又称导电带,当其中的自由电子并不填满时其另一种平面在有一些能够使电子轻易穿越的东西。

半导体的能带是由两个非常临近的能带组成的,其中价带的最上一层电子不足,而导电带的下一层电子却相当到往动能,这一些动能可能直到加到电子摆脱它自己体原子,变成自由电子,并且在整体晶体里自由活动。

四、半导体的导电机理半导体的导电机理是在外加电压加大时一部分自由电子均可以在各自能带中加速骚扰,从而增加在给导电子处所需要的电压增大并最终触碰到另一种平面上产生电流就可以。

五、半导体的掺杂掺杂是指在纯净半导体中加入某些以外杂质元素的行为。

半导体物理知识点梳理

半导体物理知识点梳理

半导体物理知识点梳理简介半导体物理学是研究半导体材料的电子结构、载流子动力学和半导体器件工作原理的学科。

它是现代微电子工业的基础和前提,包含了多种复杂的物理过程和电子器件设计原理。

在集成电路中,半导体物理学的研究对于我们理解电子器件的工作原理和提高器件性能至关重要。

一、半导体材料的电子结构1. 能带能带是指材料中的能量电子集合,可以被电子占据或空出来。

常见的能带包括价带和导带。

价带中的电子与原子核共享一个价电子对,导带则含有未占据的电子。

导带和价带之间的区域称为禁带,其中没有可用的能级,这使得该区域没有自由电子。

禁带宽度决定了材料的导电性质。

2. 牛顿力学与量子力学经典物理学,如牛顿力学,不能完全描述电子在原子中的行为,因此计算价带和导带的能量需要借助量子力学。

量子力学通过考虑波粒二象性和不确定性原理,说明电子存在于这两个能带中,以及它们的位置和能量。

3. 材料的类型半导体凭借其调谐电子运动的能力而成为电子器件的主要材料之一。

半导体材料通常可以划分为晶体(单晶或多晶)和非晶体,前者由规则排列的原子构成,后者则表现为无序空间结构。

二、载流子动力学1. 载流子类型在材料中,载流子是指负电荷(电子)或正电荷(空穴),它们的运动是电流传导的主要过程。

半导体中的载流子种类包括电子和空穴。

这些载流子的输运以及它们的沟通将直接影响材料的电学行为。

2. 拉曼散射与荷质比拉曼散射是一种通过材料中的声子色散特性筛选其材料类型和结构的方法。

这可以帮助确定载流子的荷质比,荷质比是电荷与带负荷的质量之比。

荷质比是半导体的一个关键参数,它决定了载流子的涵盖区域和速度。

3. 面掺杂多数半导体材料中的电子和空穴浓度是非常低的,这导致了它们的电导率较低。

通过面掺杂,半导体的电导率可以得到提高。

面掺杂涉及向材料表面引入杂质原子,这些原子具有带电性质以及能影响材料电荷载流子浓度的能力。

三、半导体器件工作原理1. 篱截型场效应晶体管篱截型场效应晶体管(MESFET)是一种单极型晶体管器件,它是通过在材料中形成门结构,控制源引线到漏引线通道上电子流的芯片。

半导体物理知识整理

半导体物理知识整理

基础知识1.导体,绝缘体和半导体的能带结构有什么不同?并以此说明半导体的导电机理(两种载流子参与导电)与金属有何不同?导体:能带中一定有不满带半导体:T=0K,能带中只有满带和空带;T>0K,能带中有不满带禁带宽度较小,一般小于2eV绝缘体:能带中只有满带和空带禁带宽度较大,一般大于2eV在外场的作用下,满带电子不导电,不满带电子可以导电总有不满带的晶体就是导体,总是没有不满带的晶体就是绝缘体半导体不时最容易导电的物质,而是导电性最容易发生改变的物质,用很方便的方法,就可以显著调节半导体的导电特性金属中的电子,只能在导带上传输,而半导体中的载流子:电子和空穴,却能在两个通道:价带和导带上分别传输信息2.什么是空穴?它有哪些基本特征?以硅为例,对照能带结构和价键结构图理解空穴概念。

当满带附近有空状态k’时,整个能带中的电流,以及电流在外场作用下的变化,完全如同存在一个带正电荷e和具有正有效质量|m n* | 、速度为v(k’)的粒子的情况一样,这样假想的粒子称为空穴3.半导体材料的一般特性。

电阻率介于导体与绝缘体之间对温度、光照、电场、磁场、湿度等敏感(温度升高使半导体导电能力增强,电阻率下降;适当波长的光照可以改变半导体的导电能力)性质与掺杂密切相关(微量杂质含量可以显著改变半导体的导电能力)4.费米统计分布与玻耳兹曼统计分布的主要差别是什么?什么情况下费米分布函数可以转化为玻耳兹曼函数。

为什么通常情况下,半导体中载流子分布都可以用玻耳兹曼分布来描述。

费米分布受到了泡利不相容原理的限制,而在E-EF>>k0T的条件下,泡利原理失去作用,可以化简为玻尔兹曼分布。

在半导体中,最常遇到的情况是费米能级EF位于禁带内,而且与导带底和价带顶的距离远大于k0T,所以,对导带中的所有量子态来说,被电子占据的概率一般都满足f(E)<<1,故半导体导带中的电子分布可以用电子的玻尔兹曼分布函数描写5.由电子能带图中费米能级的位置和形态(如,水平、倾斜、分裂),分析半导体材料特性。

半导体物理学知识重点总结(精)

半导体物理学知识重点总结(精)

半導體物理知識點總結附重要名詞解釋是过剩硅离子。

霍尔效应将通有 x 方向电流的晶体置于 z 方向的磁场中,则在洛仑磁力作用下在 y 方向会产生附加电场,这种现象被称为霍尔效应。

霍尔角在磁场作用下,半导体中的电流可能与电场不在同一方向上,两者间的夹角称为霍尔角。

以 p 型半导体为例,简要说明霍耳效应的形成机理。

若半导体沿 x 方向通电流,z 方向加磁场,则在 y 方向将产生横向电场,该现象称为霍耳效应产生的横向电场称为霍耳电场 Ey,它与 x 方向电流密度 Jx 和 z 方向磁感应强度 Bz 成正比,比例系数成为霍耳系数。

是由于运动电荷受落仑兹力作用的结果。

稳定条件下,横向电流为零,则由此可得:显然,对于 p 型半导体:简并半导体&非简并半导体:若费米能级进入了导带,说明 n 型杂质掺杂浓度很高(即ND 很大;也说明了导带底附近的量子态基本上被电子所占据了。

若费米能级进入了价带,说明 P 型杂质掺杂浓度很高(即 NA 很大;也说明了价带顶附近的量子态基本上被空穴所占据了。

此时要考虑泡利不相容原理,而玻尔兹曼分布不适用,必须用费米分布函数。

这此情况称为载流子的简并化。

发生载流子简并化的半导体称为简并半导体. 简并化的标准重要名詞解釋 161. 有效质量: 粒子在晶体中运动时具有的等效质量,它概括了半导体内部势场的作用。

2. 费米能级: 费米能级是 T=0 K 时电子系统中电子占据态和未占据态的分界线,是 T=0 K 时系统中电子所能具有的最高能量。

3. 准费米能级: 半导体处于非平衡态时,导带电子和价带空穴不再有统一的费米能级,但可以认为它们各自达到平衡,相应的费米能级称为电子和空穴的准费米能级。

4. 金刚石型结构:金刚石结构是一种由相同原子构成的复式晶体,它是由两个面心立方晶胞沿立方体的空间对角线彼此位移四分之一空间对角线长度套构而成。

每个原子周围都有4 个最近邻的原子,组成一个正四面体结构。

半导体物理知识点

半导体物理知识点

半导体物理知识点半导体是现代电子技术的核心材料,从我们日常使用的手机、电脑到各种高科技设备,都离不开半导体器件的应用。

了解半导体物理的基本知识点对于理解和掌握现代电子技术至关重要。

一、半导体的基本概念半导体是一种导电性能介于导体和绝缘体之间的材料。

常见的半导体材料有硅(Si)、锗(Ge)等。

在纯净的半导体中,导电能力较弱,但通过掺入杂质可以显著改变其导电性能。

半导体中的载流子包括电子和空穴。

电子带负电,空穴带正电。

在半导体中,电子和空穴都能参与导电。

二、晶体结构半导体材料通常具有晶体结构。

以硅为例,其晶体结构是金刚石结构。

在晶体中,原子按照一定的规律排列,形成晶格。

晶格常数是描述晶体结构的重要参数。

对于硅,晶格常数约为 0543 纳米。

三、能带结构在量子力学的框架下,半导体的电子能量状态形成能带。

包括导带和价带。

导带中的电子能够自由移动,从而导电;价带中的电子被束缚,不能自由导电。

导带和价带之间存在禁带宽度,也称为能隙。

能隙的大小决定了半导体的导电性能。

能隙较小的半导体,如锗,在常温下就有一定的导电能力;而能隙较大的半导体,如硅,在常温下导电性能较差。

四、施主杂质和受主杂质为了改变半导体的导电性能,常常掺入杂质。

施主杂质能够提供电子,使半导体成为n 型半导体。

例如,在硅中掺入磷(P)等五价元素,就形成了 n 型半导体。

受主杂质能够接受电子,形成空穴,使半导体成为 p 型半导体。

例如,在硅中掺入硼(B)等三价元素,就形成了 p 型半导体。

五、pn 结pn 结是半导体器件的基本结构之一。

当 p 型半导体和 n 型半导体接触时,会形成一个特殊的区域,即 pn 结。

在 pn 结处,存在内建电场,阻止多数载流子的扩散,但促进少数载流子的漂移。

pn 结具有单向导电性,这是二极管的工作基础。

六、半导体的导电性半导体的电导率与温度、杂质浓度等因素密切相关。

随着温度的升高,本征半导体的电导率会增加,因为更多的电子会从价带跃迁至导带。

半导体主要知识点总结

半导体主要知识点总结

半导体主要知识点总结一、半导体的基本概念1.1半导体的定义与特点:半导体是介于导体和绝缘体之间的一类材料,具有介于导体和绝缘体之间的电阻率。

与导体相比,半导体的电阻率较高;与绝缘体相比,半导体的电子传导性能较好。

由于半导体具有这种特殊的电学性质,因此具有重要的电子学应用价值。

1.2半导体的晶体结构:半导体晶体结构通常是由离子键或共价键构成的晶体结构。

半导体的晶体结构对其电学性质有重要的影响,这也是半导体电学性质的重要基础。

1.3半导体的能带结构:半导体的电学性质与其能带结构密切相关。

在半导体的能带结构中,通常存在导带和价带,以及禁带。

导带中的载流子为自由电子,价带中的载流子为空穴,而在禁带中则没有载流子存在。

二、半导体的掺杂和电子输运2.1半导体的掺杂:半导体的电学性质可以通过掺杂来调控。

通常会向半导体中引入杂质原子,以改变半导体的电学性质。

N型半导体是指将少量的五价杂质引入四价半导体中,以增加自由电子的浓度。

P型半导体是指将少量的三价杂质引入四价半导体中,以增加空穴的浓度。

2.2半导体中的载流子输运:在半导体中,载流子可以通过漂移和扩散两种方式进行输运。

漂移是指载流子在电场作用下移动的过程,而扩散是指载流子由高浓度区域向低浓度区域扩散的过程。

这两种过程决定了半导体材料的电学性质。

三、半导体器件与应用3.1二极管:二极管是一种基本的半导体器件,由N型半导体和P型半导体组成。

二极管具有整流和选择通道的功能,是现代电子设备中广泛应用的器件之一。

3.2晶体管:晶体管是一种由多个半导体材料组成的器件。

它通常由多个P型半导体、N型半导体和掺杂层组成。

晶体管是目前电子设备中最重要的器件之一,具有放大、开关和稳定电流等功能。

3.3集成电路:集成电路是将大量的电子器件集成在一块芯片上的器件。

它是现代电子设备中最重要的组成部分之一,可以实现各种复杂的功能,如计算、存储和通信等。

3.4发光二极管:发光二极管是一种将电能转化为光能的半导体器件,具有高效、省电和寿命长的特点。

半导体物理知识点总结

半导体物理知识点总结

半导体物理知识点总结
1. 能带和价带:半导体中电子带有能量,能量随轨道高低而不同,能带包含在价带和导带中。

2. 能隙:能量带的差值,该值越小,材料越容易被激发。

3. 电子结构:材料中的电子布局,包括离子能、波函数、能态等。

4. 掺杂:向半导体中添加不同类型的掺杂,可改变材料的电学性质,如导电性能和半导体的唯一性。

5. pn结:半导体材料中,p型和n型结合,形成一个有峰值的pn结,可以用于制作二极管、场效应管或光电转换器等电子器件。

6. 入射光:当入射光击中半导体上,产生光伏效应,电子被激发并向两侧移动,形成电流。

7. 电子迁移率:电子在半导体中移动速度的度量,影响材料的导电性质。

8. 本征载流子:半导体中由温度效应造成的材料中存在的自由电子和空穴,这些载流子决定着材料的导电性质。

9. 孪晶:半导体材料结构中的孪晶对材料电学性质造成影响,不同方向的孪晶对应不同的导电性和多晶性。

10. 激发态:半导体中的电子在受到激发后,进入能带中的激发态,相应的能级决定着电子能量的状态。

半导体物理学基础知识

半导体物理学基础知识

1半导体中的电子状态1.2半导体中电子状态和能带1.3半导体中电子的运动有效质量1半导体中E与K的关系2半导体中电子的平均速度3半导体中电子的加速度1.4半导体的导电机构空穴1硅和锗的导带结构对于硅,由公式讨论后可得:I.磁感应沿【1 1 1】方向,当改变B(磁感应强度)时,只能观察到一个吸收峰II.磁感应沿【1 1 0】方向,有两个吸收峰III.磁感应沿【1 0 0】方向,有两个吸收峰IV磁感应沿任意方向时,有三个吸收峰2硅和锗的价带结构重空穴比轻空穴有较强的各向异性。

2半导体中杂质和缺陷能级缺陷分为点缺陷,线缺陷,面缺陷(层错等)1.替位式杂质间隙式杂质2.施主杂质:能级为E(D),被施主杂质束缚的电子的能量状态比导带底E(C)低ΔE(D),施主能级位于离导带底近的禁带中。

3.受主杂质:能级为E(A),被受主杂质束缚的电子的能量状态比价带E(V)高ΔE(A),受主能级位于离价带顶近的禁带中。

4.杂质的补偿作用5.深能级杂质:⑴非3,5族杂质在硅,锗的禁带中产生的施主能级距离导带底较远,离价带顶也较远,称为深能级。

⑵这些深能级杂质能产生多次电离。

6.点缺陷:弗仑克耳缺陷:间隙原子和空位成对出现。

肖特基缺陷:只在晶体内部形成空位而无间隙原子。

空位表现出受主作用,间隙原子表现出施主作用。

3半导体中载流子的分布统计电子从价带跃迁到导带,称为本征激发。

一、状态密度状态密度g(E)是在能带中能量E附近每单位间隔内的量子态数。

首先要知道量子态,每个量子态智能容纳一个电子。

导带底附近单位能量间隔内的量子态数目,随电子的能量按抛物线关系增大,即电子能量越高,状态密度越大。

二、费米能级和载流子的统计分布在T=0K时,费米能级E(f)可看作是量子态是否被电子占据的一个界限。

附图:随着温度的升高,电子占据能量小于费米能级的量子态的概率下降,占据高于费米能级的量子态的概率上升。

2波尔兹曼分布函数在E-E(f)>>K(0)T时,服从波尔兹曼分布(是费米能级的一种简化形式)。

半导体物理知识点梳理

半导体物理知识点梳理

半导体物理知识点梳理1.半导体材料的能带结构:半导体材料的能带结构是理解其物性的基础。

在二维的能带图中,包含导带和价带之间的能隙。

导带中的电子可以自由移动,而价带中的电子需要外加能量才能进入导带。

2.纯半导体和杂质半导体:纯半导体指的是没有杂质掺杂的半导体材料,其导电能力较弱。

而杂质半导体是通过引入适量的杂质原子来改变半导体材料的导电性质,其中掺入的杂质原子被称为施主或受主。

3.载流子输运:半导体中的电导主要是由自由载流子贡献的,包括n型半导体中的电子和p型半导体中的空穴。

当施主杂质掺杂进入p型半导体时,会产生附加的自由电子;相反,当受主杂质掺杂进入n型半导体时,会产生附加的空穴。

这些自由载流子通过材料中的散射、漂移和扩散等方式进行输运。

4. pn结和二极管:pn结是由p型半导体和n型半导体结合而成的电子器件。

在pn结中,发生了空穴从p区向n区的扩散和电子从n区向p区的扩散,导致p区和n区的空间电荷区形成。

当正向偏置时,电流可以通过pn结,而反向偏置时,电流很小。

这种特性使得二极管可以用作整流器件。

5.晶体管:晶体管是一种三层结构的半导体器件,由一个n型区和两个p型区或一个p型区和两个n型区构成。

晶体管可以用作放大器和开关,其工作原理是通过控制基极电流来调节集电极电流。

6.MOSFET:金属-绝缘体-半导体场效应晶体管,即MOSFET,是一种三层结构的半导体器件。

MOSFET具有较高的输入阻抗和较低的功耗,广泛应用于集成电路中。

MOSFET的工作原理是通过调节栅极电压来调节通道中的电荷密度。

7.光电二极管和光电导:光电二极管和光电导是基于光电效应的半导体器件。

光电二极管是将光信号转换为电压信号的器件,而光电导则是将光信号转换为电流信号。

这两种器件在通信和光电探测等领域有广泛的应用。

8.半导体激光器:半导体激光器是一种利用半导体材料的发光原理来产生激光束的器件。

半导体激光器具有体积小、效率高和工作电流低等优势,广泛应用于光通信和光存储等领域。

物理学中的半导体物理知识点

物理学中的半导体物理知识点

物理学中的半导体物理知识点半导体物理学是物理学领域中的一个重要分支,研究半导体材料及其性质与行为。

本文将介绍几个半导体物理学中的知识点,包括半导体的基本概念、载流子行为、PN结及其应用。

一、半导体的基本概念半导体是一种介于导体和绝缘体之间的材料。

它的导电能力介于导体和绝缘体之间,可以通过控制外加电场或温度来改变其电导率。

根据能带理论,半导体材料中存在一个禁带,将价带和导带分开,如果半导体材料的价带被填满,而导带是空的,那么半导体就没有导电能力;当半导体材料的温度升高或者施加电场时,一些电子会跃迁到导带中,形成可以导电的载流子。

二、载流子行为在半导体中,载流子是指能够输送电流的带电粒子,可以分为自由电子和空穴两种类型。

1. 自由电子:自由电子是指在半导体晶格中脱离原子束缚的电子,它具有负电荷。

在纯净的半导体中,自由电子的数量较少。

2. 空穴:空穴是指由于半导体中某个原子缺少一个电子而形成的一个正电荷,可以看作是受激发的价带上的空位。

载流子的行为受到材料的类型和掺杂等因素的影响。

三、PN结及其应用PN结是半导体中最基本的器件之一,由P型半导体和N型半导体的结合构成。

P型半导体中的空穴浓度较高,N型半导体中的自由电子浓度较高,当这两种类型的半导体材料接触时,自由电子和空穴会发生复合,形成一个耗尽区域。

PN结的特性使得它在半导体器件中有着广泛的应用,例如:1. 整流器:利用PN结的单向导电性质,将交流电信号转换为直流电信号。

2. 发光二极管(LED):在PN结中注入电流可以激发电子跃迁,从而产生光线,实现发光效果。

3. 晶体管:晶体管是一种基于PN结的三端口器件,通过调控PN结的导电状态,实现信号放大和开关控制。

PN结的应用广泛且多样化,是现代电子技术中不可或缺的一个元件。

总结:半导体物理学作为物理学中的重要分支,研究的是半导体材料及其性质与行为。

本文介绍了半导体的基本概念,包括能带理论和禁带,以及载流子行为,其中自由电子和空穴是半导体中的两种重要载流子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章、 半导体中的电子状态习题1-1、 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。

1-2、 试定性说明Ge 、Si 的禁带宽度具有负温度系数的原因。

1-3、试指出空穴的主要特征。

1-4、简述Ge 、Si 和GaAS 的能带结构的主要特征。

1-5、某一维晶体的电子能带为[])sin(3.0)cos(1.01)(0ka ka E k E --=其中E 0=3eV ,晶格常数a=5х10-11m 。

求:(1) 能带宽度;(2) 能带底和能带顶的有效质量。

题解:1-1、 解:在一定温度下,价带电子获得足够的能量(≥E g )被激发到导带成为导电电子的过程就是本征激发。

其结果是在半导体中出现成对的电子-空穴对。

如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。

1-2、 解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。

温度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。

反之,温度降低,将导致禁带变宽。

因此,Ge 、Si 的禁带宽度具有负温度系数。

1-3、 解:空穴是未被电子占据的空量子态,被用来描述半满带中的大量电子的集体运动状态,是准粒子。

主要特征如下:A 、荷正电:+q ;B 、空穴浓度表示为p (电子浓度表示为n );C 、E P =-E nD 、m P *=-m n *。

1-4、 解:(1) Ge 、Si:a )Eg (Si :0K) = 1.21eV ;Eg (Ge :0K) = 1.170eV ;b )间接能隙结构c )禁带宽度E g 随温度增加而减小;(2) GaAs :a )E g (300K )= 1.428eV ,Eg (0K) = 1.522eV ;b )直接能隙结构;c )Eg 负温度系数特性: dE g /dT = -3.95×10-4eV/K ;1-5、 解:(1) 由题意得:[][])sin(3)cos(1.0)cos(3)sin(1.002220ka ka E a k d dE ka ka aE dk dE+=-=eVE E E E a kd dE a k E a kd dE a k a k a k ka tg dk dE ooo o 1384.1min max ,01028.2)4349.198sin 34349.198(cos 1.0,4349.198,01028.2)4349.18sin 34349.18(cos 1.0,4349.184349.198,4349.1831,04002222400222121=-=∆<⨯-=+==>⨯=+====∴==--则能带宽度对应能带极大值。

当对应能带极小值;当)(得令(2)()()()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧⨯-=⎥⎥⎦⎤⎢⎢⎣⎡⨯⨯-=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛=⨯=⎥⎥⎦⎤⎢⎢⎣⎡⨯⨯=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫⎝⎛=----------kg k d dE h m kg k d dE h m k n k n 271234401222*271234401222*10925.110625.61028.2110925.110625.61028.2121带顶带底则答:能带宽度约为1.1384Ev ,能带顶部电子的有效质量约为1.925x10-27kg ,能带底部电子的有效质量约为-1.925x10-27kg 。

第二章、半导体中的杂质和缺陷能级2-1、什么叫浅能级杂质?它们电离后有何特点?2-2、什么叫施主?什么叫施主电离?施主电离前后有何特征?试举例说明之,并用能带图表征出n 型半导体。

2-3、什么叫受主?什么叫受主电离?受主电离前后有何特征?试举例说明之,并用能带图表征出p 型半导体。

2-4、掺杂半导体与本征半导体之间有何差异?试举例说明掺杂对半导体的导电性能的影响。

2-5、两性杂质和其它杂质有何异同?2-6、深能级杂质和浅能级杂质对半导体有何影响? 2-7、何谓杂质补偿?杂质补偿的意义何在?题解:2-1、解:浅能级杂质是指其杂质电离能远小于本征半导体的禁带宽度的杂质。

它们电离后将成为带正电(电离施主)或带负电(电离受主)的离子,并同时向导带提供电子或向价带提供空穴。

2-2、解:半导体中掺入施主杂质后,施主电离后将成为带正电离子,并同时向导带提供电子,这种杂质就叫施主。

施主电离成为带正电离子(中心)的过程就叫施主电离。

施主电离前不带电,电离后带正电。

例如,在Si 中掺P ,P 为Ⅴ族元素,本征半导体Si为Ⅳ族元素,P掺入Si中后,P的最外层电子有四个与Si的最外层四个电子配对成为共价电子,而P的第五个外层电子将受到热激发挣脱原子实的束缚进入导带成为自由电子。

这个过程就是施主电离。

n型半导体的能带图如图所示:其费米能级位于禁带上方2-3、解:半导体中掺入受主杂质后,受主电离后将成为带负电的离子,并同时向价带提供空穴,这种杂质就叫受主。

受主电离成为带负电的离子(中心)的过程就叫受主电离。

受主电离前带不带电,电离后带负电。

例如,在Si中掺B,B为Ⅲ族元素,而本征半导体Si为Ⅳ族元素,P掺入B中后,B的最外层三个电子与Si的最外层四个电子配对成为共价电子,而B倾向于接受一个由价带热激发的电子。

这个过程就是受主电离。

p型半导体的能带图如图所示:其费米能级位于禁带下方2-4、解:在纯净的半导体中掺入杂质后,可以控制半导体的导电特性。

掺杂半导体又分为n型半导体和p型半导体。

例如,在常温情况下,本征Si中的电子浓度和空穴浓度均为1.5╳1010cm-3。

当在Si中掺入1.0╳1016cm-3后,半导体中的电子浓度将变为1.0╳1016cm-3,而空穴浓度将近似为 2.25╳104cm-3。

半导体中的多数载流子是电子,而少数载流子是空穴。

2-5、解:两性杂质是指在半导体中既可作施主又可作受主的杂质。

如Ⅲ-Ⅴ族GaAs中掺Ⅳ族Si。

如果Si替位Ⅲ族As,则Si为施主;如果Si替位Ⅴ族Ga,则Si为受主。

所掺入的杂质具体是起施主还是受主与工艺有关。

2-6、解:深能级杂质在半导体中起复合中心或陷阱的作用。

浅能级杂质在半导体中起施主或受主的作用。

2-7、当半导体中既有施主又有受主时,施主和受主将先互相抵消,剩余的杂质最后电离,这就是杂质补偿。

利用杂质补偿效应,可以根据需要改变半导体中某个区域的导电类型,制造各种器件。

第三章、半导体中载流子的统计分布3-1、对于某n型半导体,试证明其费米能级在其本征半导体的费米能级之上。

即E Fn>E Fi。

3-2、试分别定性定量说明:(1)在一定的温度下,对本征材料而言,材料的禁带宽度越窄,载流子浓度越高;(2)对一定的材料,当掺杂浓度一定时,温度越高,载流子浓度越高。

3-3、若两块Si样品中的电子浓度分别为2.25×1010cm-3和6.8×1016cm-3,试分别求出其中的空穴的浓度和费米能级的相对位置,并判断样品的导电类型。

假如再在其中都掺入浓度为2.25×1016cm -3的受主杂质,这两块样品的导电类型又将怎样?3-4、含受主浓度为8.0×106cm -3和施主浓度为7.25×1017cm -3的Si 材料,试求温度分别为300K 和400K 时此材料的载流子浓度和费米能级的相对位置。

3-5、试分别计算本征Si 在77K 、300K 和500K 下的载流子浓度。

3-6、Si 样品中的施主浓度为4.5×1016cm -3,试计算300K 时的电子浓度和空穴浓度各为多少?3-7、某掺施主杂质的非简并Si 样品,试求E F =(E C +E D )/2时施主的浓度。

解:3-1、证明:设n n 为n 型半导体的电子浓度,n i 为本征半导体的电子浓度。

显然n n > n iin i nF F F c c F c c E E Tk E E N Tk E E N >⎪⎪⎭⎫⎝⎛--⋅>⎪⎪⎭⎫ ⎝⎛--⋅则即00exp exp即得证。

3-2、解:(1) 在一定的温度下,对本征材料而言,材料的禁带宽度越窄,则跃迁所需的能量越小,所以受激发的载流子浓度随着禁带宽度的变窄而增加。

由公式:Tk E v c i g eN N n 02-=也可知道,温度不变而减少本征材料的禁带宽度,上式中的指数项将因此而增加,从而使得载流子浓度因此而增加。

(2)对一定的材料,当掺杂浓度一定时,温度越高,受激发的载流子将因此而增加。

由公式可知,这时两式中的指数项将因此而增加,从而导致载流子浓度增加。

⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--⋅=T k E E N p T k E E N n V F V F c c 0000exp exp 和3-3、解:由 200i n p n =得:()()()()⎪⎪⎩⎪⎪⎨⎧⨯≈⨯⨯==⨯=⨯⨯==--3316210022023101021001201103.3108.6105.1100.11025.2105.1cm n n p cm n np i i可见,型半导体本征半导体n p n p n →>→≈02020101又因为 Tk E E v v F e N p 00--=,则⎪⎪⎩⎪⎪⎨⎧+=⎪⎪⎭⎫ ⎝⎛⨯⨯⋅+=⎪⎪⎭⎫ ⎝⎛⋅+=+≈⎪⎪⎭⎫⎝⎛⨯⨯⋅+=⎪⎪⎭⎫ ⎝⎛⋅+=eV E E p N T k E E eV E E p N T k E E v v n v F v v v v F 331.0103.3101.1ln 026.0ln 234.0100.1101.1ln 026.0ln 319020210190101 假如再在其中都掺入浓度为2.25×1016cm -3的受主杂质,那么将出现杂质补偿,第一种半导体补偿后将变为p 型半导体,第二种半导体补偿后将近似为本征半导体。

答:第一种半导体中的空穴的浓度为1.1x1010cm -3,费米能级在价带上方0.234eV处;第一种半导体中的空穴的浓度为 3.3x103cm -3,费米能级在价带上方0.331eV 处。

掺入浓度为2.25×1016cm -3的受主杂质后,第一种半导体补偿后将变为p 型半导体,第二种半导体补偿后将近似为本征半导体。

3-4、解:由于杂质基本全电离,杂质补偿之后,有效施主浓度 317*1025.7-⨯≈-=cm N N N A D D则300K 时,电子浓度 ()31701025.7300-⨯=≈cm N K n D空穴浓度 ()()()3217210001011.31025.7105.1300-⨯≈⨯⨯==cm n n K p i费米能级为:()eVE E p N T k E E v v v VF 3896.01011.3100.1ln 026.0ln 21900+=⎥⎦⎤⎢⎣⎡⨯⨯⋅+=⎪⎪⎭⎫⎝⎛⋅+=在400K 时,根据电中性条件 *00DN p n +=和 20i p n p n = 得到:()()()()()()⎪⎪⎩⎪⎪⎨⎧⨯=⨯⨯==⨯≈⨯+⨯+⨯-=++-=--317821320382132171722*010249.7103795.1100.1103795.12100.141025.71025.724*cmp n n cm n N N p p i i D D费米能级为:()()eV E E p K K K N T k E E v v p v v F 0819.01025.7300400101.1ln 026.0300400300ln 172319230+=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⨯⎪⎭⎫ ⎝⎛⨯⨯⋅+=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⨯⋅+=答:300K 时此材料的电子浓度和空穴浓度分别为7.25 x1017cm -3和3.11x102cm -3,费米能级在价带上方0.3896eV 处;400 K 时此材料的电子浓度和空穴浓度分别近似为为7.248 x1017cm -3和 1.3795x108cm -3,费米能级在价带上方0.08196eV 处。

相关文档
最新文档