热工计算
57836_暖气片计算工式
当
A=100mm , B3=1.15
B3=1.00
散热器用挡板挡住,挡板下端留有空气孔。其高度为0.8A
B3=0.9
0.8 K=2.5△t0.239 0.6 K=3.53△t0.235 0.6 K=1.23△t
0.246
1 K=2.07△t0.14 1 K=1.3△t
0.18
1 K=1.88△t0.的组装片数修正系数 6~10 11~20 0.95 1 1.05 注:仅适用各种柱型,长翼和圆翼型不修正.
8 1.32 1.16 1.03 1.35 1.4 4.42
28 7 6.6 5.7 6 8 38.2
0.4 K=1.743△t0.28 0.5 K=2.426△t 0.5 K=2.503△t 0.5 K2.02△t
0.286 0.293
5.59 7.99 8.49 7.13 6.25 7.87 5.81 5.08 4.65
0.3069 2
备注
8.94 钢板厚1.5mm,表面涂调合漆 6.76 钢板厚1.5mm,表面涂调合漆 9.4 钢板厚1.5mm,表面涂调合漆 3.4 钢板厚1.5mm,表面涂调合漆 3.71 对应流量G=50kg/h时的工况 2.75 对应流量G=150kg/h时的工况 2.97 对应流量G=250kg/h时的工况
0.5 K=3.663△t0.16
0.271 0.302
0.5 K=2.237△t 0.5
k 钢制散热器规格及散热系数,w/m2 ·c ° 型号 钢制柱式散热器600*120 钢制板式散热器600*1000 钢制扁和散热器 单板520*1000 单板带对流片624*1000 闭式钢串片散热器 150*80 240*100 500*90 每片散热量/m 每片水容量L 每片质量/kg 工作压力/MPa 传热系数计算公式 热水热媒△t=64.5° c时k 0.15 2.75 1.151 5.55 3.15 5.72 7.44 1 4.6 4.71 5.49 1.05 1.47 2.5 2.2 18.4 15.1 27.4 10.5 17.4 30.5 0.8 K=2.489△t
导热系数、传热系数、热阻值概念及热工计算方法(简述实用版)
导热系数、传热系数、热阻值概念及热工计算方法导热系数入[W/(m.k)]:导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K, C),在1小时内,通过1平方米面积传递的热量,单位为瓦/米?度(W/m?K,此处的K可用C代替)。
导热系数可通过保温材料的检测报告中获得或通过热阻计算。
传热系数K [W/( rf?K)] : 传热系数以往称总传热系数。
国家现行标准规范统一定名为传热系数。
传热系数K 值,是指在稳定传热条件下,围护结构两侧空气温差为1度(K,r),1小时内通过1平方米面积传递的热量,单位是瓦/平方米?度(W/ rf?K,此处K可用r代替)。
传热系数可通过保温材料的检测报告中获得。
热阻值R(m.k/w) :热阻指的是当有热量在物体上传输时,在物体两端温度差与热源的功率之间的比值。
单位为开尔文每瓦特(K/W)或摄氏度每瓦特(r /W)。
传热阻:传热阻以往称总热阻,现统一定名为传热阻。
传热阻R0是传热系数K的倒数,即R0=1/K,单位是平方米*度/瓦(rf *K/W )围护结构的传热系数K值愈小,或传热阻R0值愈大,保温性能愈好。
(节能)热工计算:1、围护结构热阻的计算单层结构热阻:R=S /入式中:材料层厚度(m);入一材料导热系数[W/(m.k)]多层结构热阻:R=R1+R2+----Rn= S 1/ 入1+ S 2/ 入2+----+ S n/ 入n式中: R1 、R2、---Rn —各层材料热阻(m.k/w)S 1、S 2、--- S n-各层材料厚度(m)入1、入2、---入n-各层材料导热系数[W/(m.k)]2、围护结构的传热阻R0=Ri+R+Re式中: Ri -内表面换热阻(m.k/w)( 一般取0.11) Re -外表面换热阻(m.k/w)( 一般取0.04) R -围护结构热阻(m.k/w)3、围护结构传热系数计算K=1/ R0式中: R0 —围护结构传热阻外墙受周边热桥影响条件下,其平均传热系数的计算Km=(KpFp+Kb1Fb1+Kb2Fb2+ Kb3Fb3 )/( Fp + Fb1+Fb2+Fb3)式中:Km—外墙的平均传热系数[W/(m.k)]Kp —外墙主体部位传热系数[W/(m.k)]Kb1、Kb2、Kb3-外墙周边热桥部位的传热系数[W/(m.k)]Fp —外墙主体部位的面积Fb1 、Fb2、Fb3—外墙周边热桥部位的面积4、单一材料热工计算运算式热阻值R(m.k/w) = 1 / 传热系数K [W/( rf?K)]导热系数入[W/(m.k)]= 厚度S (m) / 热阻值R(m.k/w) 厚度S (m)= 热阻值R(m.k/w) * 导热系数入[W/(m.k)]厚度S (m)=导热系数入[W/(m.k)] / 传热系数K [W/( rf?K)]5、围护结构设计厚度的计算厚度S (m)=热阻值R(m.k/w) * 导热系数入[W/(m.k)] *修正系数(见下表)R值和入值是用于衡量建筑材料或装配材料热学性能的两个指标。
热工计算公式及参数
热工计算公式及参数热工计算是指通过一系列公式和参数来计算热量、功率、效率等热力学参数的过程。
热工计算在工程设计、能源管理和热力学研究等领域起着重要的作用。
本文将介绍一些常用的热工计算公式和参数。
1.热功率计算公式:热功率(Q)是表示单位时间内传输的热量的物理量。
常用的热功率计算公式如下:Q=m×c×ΔT其中,Q表示热功率,m表示物体的质量,c表示物体的比热容,ΔT表示物体的温度变化。
2.传热系数计算公式:传热系数(k)是表示单位时间内在单位面积上传输的热量的物理量。
常用的传热系数计算公式如下:k=Q/(A×ΔT)其中,k表示传热系数,Q表示传输的热量,A表示传热面积,ΔT表示温度差。
3.热效率计算公式:热效率(η)是指燃烧设备、热交换设备或热动力系统中实际产生的热量与理论上可能产生的最大热量之比。
常用的热效率计算公式如下:η=(实际产生的热量/理论可能产生的最大热量)×100%4.压力与体积关系公式:热工系统中的工质一般按照多种状态方程进行描述,其中最常用的是理想气体状态方程:PV=nRT其中,P表示压力,V表示体积,n表示物质的摩尔数,R表示气体常数,T表示温度。
5.比容与温度关系公式:比容(v)是指单位质量的物质占据的体积。
对于理想气体,比容与温度的关系可以用热力学公式来表示:v=(R×T)/P其中,v表示比容,R表示气体常数,T表示温度,P表示压力。
6.热辐射传热计算公式:热辐射传热是指两个物体之间通过热辐射方式传输热量的过程。
常用的热辐射传热计算公式如下:Q=ε×σ×A×(T1^4-T2^4)其中,Q表示传输的热量,ε表示发射率,σ表示热辐射常数,A表示辐射面积,T1和T2分别表示两个物体的温度。
7.热导率计算公式:热导率(λ)是指单位时间内通过单位厚度、单位面积的热流量。
常用的热导率计算公式如下:λ=(Q×L)/(A×ΔT)其中,λ表示热导率,Q表示传输的热量,L表示传热路径的长度,A表示传热的面积,ΔT表示温度差。
商品混凝土热工计算
商品混凝土热工计算商品混凝土热工计算低温条件下商品混凝土施工,无论采用哪种方法保温,都应按规程要求,进行商品混凝土的热工计算。
热工计算主要是商品混凝土搅拌、运输、浇筑温度的计算,一直计算到浇注完毕养护前。
商品混凝土拌和物的最终温度:Tb=[0.92(tsWs+tgWg+tcWc)+btwWw+b(PsWsts+PgWgtg)-B(psWs+pgW g)]/[0.92(Wc+Ws+Wg)+bWw+b(PsWs+PgWg)](1)Tb≥Tm+Ts+tc (2)Tb------商品混凝土合成后的温度,℃;Wc、Ws、Wg-----水泥、砂、石的干燥质量,kg;Ww------拌和加水的质量(不包括骨料的含水);tc、ts、tg、tw-----水泥砂石水装入拌合机时的温度,℃;Ps、Pg-----砂石的含水量率;b、B------水泥的比热能及溶解热,℃,当骨料温度>0℃时,b=4.19、B=0;当骨料温度≤0℃时,b=2.09、B=335;Tm-------商品混凝土拌和物在搅拌过程中的热量损失,℃;Ts------商品混凝土运输至成型的温度损失,℃;商品混凝土运输至成型的温度损失:Ts=(at+0.032n)(To-Td) (3)Tm=0.16(Tb-Td)(4)Tc------商品混凝土开始养护时所需温度,℃;一般不小于5℃;Td------搅拌棚内温度,℃;t------商品混凝土运输至成型的时间,h;n------商品混凝土倒运次数,To------商品混凝土自拌合机中倾出时的温度,℃;Tb------室外温度,℃;a--------每小时温度损失系数,用液动式拌合机,a=0.25;用敞开式自卸汽车时,a =0.20;用封闭式自卸汽车时,a=0.10;用人力手推车时,a=0.50。
热工计算流程
辐射换热系数
Hr
•自然界中的各个物体都在不停地想空间散发出辐射热,同时又在不停地吸收其他物体散 发出的辐射热,这种在物体表面之间由辐射与吸收综合作用下完成的热量传递就是辐射换 热。
线传热系数
定义:表示门窗或幕墙玻璃边缘与框的组合传热效应所产生附 加传热量的参数,简称线传热系数。 线传热系数,顾名思义,是通过框与玻璃接触,传递给玻 璃的热量散失,也就是边缘玻璃的额外热量损失。
LBNL软件计算实例
Optics
玻璃的光学分析
LBNL
Window
整窗玻璃的热工计 算及单片玻璃热工 性能计算 复杂模型的热工计 算
THERM
OPTICS
(1) 支持光谱和国际玻璃光谱数据格式; (2) 多层玻璃系统的光学热工性能计算与玻璃模拟设计; (3) 玻璃光谱曲线及颜色显示; (4) 玻璃表面温度计算及显示; (5) NFRC、ISO标准计算,玻璃更换厚度、膜层等模拟设计;
热工定义及 计算流程讲解
甘旭东
深圳市三鑫幕墙工程有限公司
内容摘要
1.热量散失的途径 2.热工计算重要参数的定义 3.线传热系数的介绍 4.LBNL软件计算计算实例 5.非透明幕墙手算方法 6.欧标、美标、国标U值区别 7.结露计算
热工计算
第十章传热过程与换热器计算基础§10-1 传热过程一、复合换热(Combined Heat Transfer )问题工程上的处理方法是将辐射换热量折成对流换热量来处理。
1. 求出辐射换热量Φrt A h t h h A t Ah t Ah t c r r c r c ∆∆∆∆ΦΦΦ=+=+=+=)(convection c =4. radiationr =tAh r r ∆Φ=tA h r r ∆Φ/=3. 由上式求出2. 将Φr 写成牛顿冷却定律形式r c t h h h +=二、通过平壁的传热21111h h k ++=λδh 1和h 2由前述公式来计算通过平壁的传热系数可由下式计算:* 注:这里所说的复合换热处理方法对以后的讨论完全适用。
如不特殊说明,则认为h 即为总的换热系数。
用时省去下标t ,用h表示。
二、通过圆管的传热物理问题l:为管长d i,d o:圆管内径,外径;t fi,t fo:管内、外流体温度;t wi,t wo:管内、外壁温度;h i,h o:管内、外侧复合表面传热系数;λ:管壁导热系数;:热流量。
ld h t t t t l d h i i wifi wi fi i i π1)(π-=-=Φ由分析可知:i owowi i o wo wi lnπ21-ln )-(π2d d l t t d d t t l λλ==ld h t t t t l d h o o fowo fo wo o o π1)(π-=-=经整理,可得:oo i oi i fo fi 1ln 211)(πd h d d d h t t l Q ++-=λ对外侧面积而言(即以管外侧面积为基准)的传热系数的计算式为:oi o o i o i 1ln 211h d d d d d h k ++=λ习惯上,工程计算都以管外侧面积为基准。
从热阻的角度来看,上式可以改写为:oi o i i o 1ln π2111hA d d l A h kA ++=λ若以管内侧面积为基准,则传热系数为:oio i o i i i 1ln 211d d h d dd h k ++=λ§10-2 传热的强化和隔热保温技术一、强化传热的原则和强化对流换热的手段强化换热mt k q ∆=q ↑就是强化换热∆t m ↑k ↑q ↑●增加温差,常常使不可逆损失增大●增加k ,主流例题:压缩空气在中间冷却器的管外横掠流过,h o =90W /(m 2.K)。
热工计算
附件3:
公共建筑
热工计算书
工程名称:
设计单位:
建设单位:
计算人:
联系电话:
计算时间:
1 工程概况
注:该建筑面积应按《建筑工程建筑面积计算规范》GB/T 50353-2005确定。
2 计算依据
山东省工程建设标准《公共建筑节能设计标准》(DBJ 14- 036-2006)
3 基本参数计算
注:1 窗墙面积比应按标准第2.0.8条规定计算;
2 建筑面积A O、建筑体积V0应按标准附录G中规定的方法进行计算。
4 规定性方法计算(条件具备可采用节能设计软件计算)
4.1 围护结构热工计算
附:外墙平均传热系数计算过程
4.2建筑采暖空调系统设备性能表
表4.2
4.3 规定性指标判定
当设计建筑的围护结构热工性能及其他指标满足标准中规定的刚性指标,采暖空调系统的设备性能系数符合标准的规定值,可直接判定该设计建筑为节能设计。
亦可采用节能设计软件直接判定。
5 性能化设计方法
当所设计建筑的围护结构某些热工性能不能满足标准中刚性指标规定时,则必须对设计建筑进行热工性能权衡判断。
5.1 动态的权衡判断
应采用节能设计软件进行全年8760小时的逐时能耗模拟计算,而且要有完整的计算书。
5.2 简化的权衡判断(条件具备时可采用节能设计软件判断)
单体建筑面积小于或等于20000m2,大于300m2,且不全面设置空气调节系统的公共建筑,可采用简化的权衡判断(稳态计算法),步骤如下:
5.2.1 传热面积计算表(设计建筑和参照建筑应分别列表计算)
2
5.2.2 围护结构热工性能简化权衡判断计算表。
导热系数、传热系数、热阻值概念及热工计算方法简述实用版)
导热系数、传热系数、热阻值概念及热工计算方法导热系数λ[W/(m.k)]:导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,℃),在1小时内,通过1平方米面积传递的热量,单位为瓦/米?度(W/m?K,此处的K可用℃代替)。
导热系数可通过保温材料的检测报告中获得或通过热阻计算。
传热系数K [W/(㎡?K)]:传热系数以往称总传热系数。
国家现行标准规范统一定名为传热系数。
传热系数K 值,是指在稳定传热条件下,围护结构两侧空气温差为1度(K,℃),1小时内通过1平方米面积传递的热量,单位是瓦/平方米?度(W/㎡?K,此处K可用℃代替)。
传热系数可通过保温材料的检测报告中获得。
热阻值R(m.k/w):热阻指的是当有热量在物体上传输时,在物体两端温度差与热源的功率之间的比值。
单位为开尔文每瓦特(K/W)或摄氏度每瓦特(℃/W)。
传热阻:传热阻以往称总热阻,现统一定名为传热阻。
传热阻R0是传热系数K的倒数,即R0=1/K,单位是平方米*度/瓦(㎡*K/W)围护结构的传热系数K值愈小,或传热阻R0值愈大,保温性能愈好。
(节能)热工计算:1、围护结构热阻的计算单层结构热阻: R=δ/λ式中:δ—材料层厚度(m);λ—材料导热系数[W/(m.k)]多层结构热阻: R=R1+R2+----Rn=δ1/λ1+δ2/λ2+----+δn/λn式中: R1、R2、---Rn—各层材料热阻(m.k/w)δ1、δ2、---δn—各层材料厚度(m)λ1、λ2、---λn—各层材料导热系数[W/(m.k)]2、围护结构的传热阻R0=Ri+R+Re式中: Ri —内表面换热阻(m.k/w)(一般取0.11)Re —外表面换热阻(m.k/w)(一般取0.04)R —围护结构热阻(m.k/w)3、围护结构传热系数计算K=1/ R0式中: R0—围护结构传热阻外墙受周边热桥影响条件下,其平均传热系数的计算Km=(KpFp+Kb1Fb1+Kb2Fb2+ Kb3Fb3 )/( Fp + Fb1+Fb2+Fb3)式中:Km—外墙的平均传热系数[W/(m.k)]Kp—外墙主体部位传热系数[W/(m.k)]Kb1、Kb2、Kb3—外墙周边热桥部位的传热系数[W/(m.k)]Fp—外墙主体部位的面积Fb1、Fb2、Fb3—外墙周边热桥部位的面积4、单一材料热工计算运算式①热阻值R(m.k/w) = 1 / 传热系数K [W/(㎡?K)]②导热系数λ[W/(m.k)] = 厚度δ(m) / 热阻值R(m.k/w)③厚度δ(m) = 热阻值R(m.k/w) * 导热系数λ[W/(m.k)]④厚度δ(m) = 导热系数λ[W/(m.k)] / 传热系数K [W/(㎡?K)]5、围护结构设计厚度的计算厚度δ(m) = 热阻值R(m.k/w) * 导热系数λ[W/(m.k)] *修正系数(见下表)R值和λ值是用于衡量建筑材料或装配材料热学性能的两个指标。
建筑热工设计计算公式及参数
建筑热工设计计算公式及参数
以下是建筑热工设计常用的计算公式和参数:
1.建筑热负荷计算公式:
建筑热负荷(Q)=冷负荷(Qc)+供暖负荷(Qh)+通风负荷(Qv)
其中,冷负荷计算公式为:Qc=(Ql+Qw+Qv)
供暖负荷计算公式为:Qh=(Ql+Qw+Qv)
通风负荷计算公式为:Qv=V(t1-t2)ρc
其中,V为室内空气流量,t1为新风温度,t2为室内空气平均温度,ρc为空气密度和比热容之积。
2.热传导计算公式:
热传导热阻(R)=L/(λ*A)
其中,L为热传导距离,λ为材料的热导率,A为传导截面面积。
3.热辐射计算公式:
热辐射(Qr)=ε*σ*A*(T1^4-T2^4)
其中,ε为材料表面的辐射率,σ为斯特藩-玻尔兹曼常数,A为
辐射表面积,T1和T2分别为表面温度和环境温度。
4.太阳辐射计算公式:
太阳辐射(Qs)= G * A * f * k * cosθ
其中,G为太阳总辐射,A为所接受辐射的面积,f为表面吸收系数,k为太阳辐射入射角度与法线夹角的余弦值,θ为太阳高度角。
5.空气换算参数:
空气换算需要使用以下参数:
空气密度ρ=P/(R*T)
其中,P为大气压强,R为气体常数,T为气温。
6.热容量计算公式:
热容量(C)=m*c
其中,m为物体质量,c为物体比热容。
以上是建筑热工设计中常用的计算公式和参数,通过这些公式和参数
可以计算建筑的热负荷、热传导、热辐射、太阳辐射以及空气换算等关键
指标,从而指导建筑的热工设计和能源利用优化。
热工计算
附录A 热工计算根据实际工程情况,本热工计算假设以当地冬期施工时平均温度为-15℃的情况下进行计算。
应用中可根据实际情况进行调整。
C20混凝土配合比,每立方米混凝土中,水156kg温度60℃,砂742kg温度15℃,石1268kg温度15℃,水泥274kg温度10℃,搅拌棚内温度10℃,砂含水率2%,石含水率1%。
A.1 混凝土组成材料热工计算A.1.1 混凝土拌合物的温度公式T0=[0.92(m ce T ce+m sa T sa+m g T g)+4.2T w(m w-w sa m sa-w g m g)+c1(w sa m sa T sa+w g m g T g)-c2(w sa m sa +w g m g)]÷[4.2 m w+0.9(m ce+m sa+m g)] (A—1) A.1.2 砼拌合物的出机温度T1= T0-0.16(T0- T i)(A—2) A.1.3砼拌合物经运输至成型完成时的温度公式T2= T1-(αt1+0.032n)(T1- T a)(A—3) A.1.4砼的入模温度T3=(C c m c T2+C f m f T f+C s m s T s)/( C c m c+C f m f+C s m s) (A—4) A.1.5符号意义T0—砼拌合物的理论温度(℃)m ce、m w、m sa、m g—每1m3砼中水泥,水,砂,石的用量(kg)T ce、T sa、T g、T w—水泥,砂,石,水的温度(℃)w sa、w g—砂.石的含水率(%)c1—水的比热(KJ/kg.k)及溶解热(KJ/kg)c2—冰的溶解热(KJ/kg)当骨料温度>0℃时,c1=4.2, c2=0≤0℃时,c1=2.1, c2=335T1—砼拌合物的出机温度(℃)T i—搅拌机棚内温度(℃)T2—砼经运输、成型后损失的温度(℃)α—温度损失系数(h-1)采用开敞式自卸翻斗车运输时α=0.30采用砼搅拌车运输时运输时α=0.25采用开敞式大型自卸汽车运输时α=0.20采用封闭式自卸汽车运输时α=0.10采用开敞式人力手推车α=0.50t1—砼运输至浇筑的时间n—砼倒运次数T a—室外温度T3—砼的入模温度m c—1m3砼的重量m s、m f—与1m3砼相接触的钢筋、模板重量C c—砼比热容,普通砼取0.92kJ/kg.K;C f—模板比热容,钢材取0.48kJ/kg.K;C s—钢筋比热容,取0.48kJ/kg.K;T f、T s—模板、钢筋的温度,未预热时可取当时环境温度。
热工计算
热工计算步骤第一步:首先分析物料的性质,通过查找各有机物的热值可以计算出三废(固废、废液、废气)的热值。
特殊情况:知道废液的COD(COD指的是废液的化学耗氧量,单位:g/L)可以计算出废液的热值Q=3.28*COD(单位:kcal/kg),本公式只适合废液。
第二步:知道三废的热值可以计算出需要空气量和生成的烟气量,具体理论公式如下:1、对于固废(Q为固废的热值,单位:kcal/kg;α为空气过剩系数;m为固体的重量,单位:kg/h)(1)固废燃烧所需的理论空气量:A O=1.01*Q/1000+0.5(单位:Nm3/kg)(2)固废燃烧所需的实际空气量:A= A O*α(单位:Nm3/kg)(3)固废燃烧所需的实际总空气量:A总= A*m(单位:Nm3/ h)(4)固废燃烧所需的理论烟气量:G O=0.89*Q/1000+1.65(单位:Nm3/kg)(5)固废燃烧所需的实际烟气量:G= G O +A O*(α-1)(单位:Nm3/kg)(6)固废燃烧所需的实际总烟气量:G总= G*m(单位:Nm3/ h)2、对于废液(Q为废液的热值,单位:kcal/kg;α为空气过剩系数;m为废液的重量,单位:kg/h)(7)废液燃烧所需的理论空气量:A O=0.203*Q*4.18/1000+2(单位:Nm3/kg)(8)废液燃烧所需的实际空气量:A= A O*α(单位:Nm3/kg)(9)废液燃烧所需的实际总空气量:A总= A*m(单位:Nm3/ h)(10)废液燃烧所需的理论烟气量:G O=0.265*Q*4.18/1000+2(单位:Nm3/kg)(11)废液燃烧所需的实际烟气量:G= G O +A O*(α-1)(单位:Nm3/kg)(12)废液燃烧所需的实际总烟气量:G总= G*m(单位:Nm3/ h)3、对于废气(Q为废气的热值,单位:kcal/Nm3;α为空气过剩系数;m为废气的重量,单位:Nm3/h)(13)废气燃烧所需的理论空气量:A O=0.2*Q*4.18/1000+0.03(单位:Nm3/Nm3)(14)废气燃烧所需的实际空气量:A= A O*α(单位:Nm3/Nm3)(15)废气燃烧所需的实际总空气量:A总= A*m(单位:Nm3/ h)(16)废气燃烧所需的理论烟气量:G O= A O+0.98-0.03*Q*4.18/1000(单位:Nm3/Nm3)(17)废气燃烧所需的实际烟气量:G= G O +A O*(α-1)(单位:Nm3/Nm3)(18)废气燃烧所需的实际总烟气量:G总= G*m(单位:Nm3/ h)第三步:根据三废的总热值和生成总烟气量可以确定烟气焓,根据烟气焓表大致可以确定烟气温度是否达到燃烧温度要求,假如达不到要求还需加助燃燃料(如:柴油、重油、天然气、助燃溶剂等)1)三废(固废、废液、废气)的总热值Q总=Q* m(单位:kcal/h)公式中Q指三废(固废、废液、废气)的热值,单位:kcal/kg(Nm3);m指三废(固废、废液、废气)的处理量,单位:kg(Nm3)/h2)生成总烟气量G总(上面第二步中已经求得)3)生成的烟气焓=总热值/总烟气量=Q总/G总(单位:kcal /Nm3)4)单位换算:1kcal /Nm3=4.18kj/Nm35)。
热工计算
混凝土搅拌、运输、浇筑温度计算1、混凝土拌合物温度按下式计算:T o=[0.92*(m ce*T ce+m sa*T sa+m g*T g)+4.2*T w(m w-w sa*m sa-w g* m g)+C1*(w sa*m sa*T sa+w g*m g*T g)-C2*(w sa*m sa+w g*m g)]÷[4.2*m w+0.9*(m ce+m sa+m g)]式中:T o——混凝土拌合物温度(℃)m ce——水泥用量(kg)m w——水用量(kg)m sa——砂用量(kg)m g——石用量(kg)T w——水的温度(℃)T ce——水泥温度(℃)T sa——砂温度(℃)T g——石温度(℃)w g——石含水率%w sa——砂含水率%C1——水的比热容(kj/kg.k)C2——冰的溶解热(kj/kg)当骨料温度大于0℃时,C1=4.2,C2=0;当骨料温度小于或等于0℃时,C1=2.1 C2=335;2、混凝土拌合物出机温度按下式计算:T1= T o-0.16(T o-T i)式中T1——混凝土拌合物出机温度(℃);T i——搅拌机室内温度(℃)。
3、混凝土拌合物运输到浇筑时温度按下式计算:T2=T1-(a*t1+0.032n)*(T1-T a)T2——混凝土浇筑温度℃t1——混凝土运输至浇筑的时间,取1.5小时n——混凝土拌合物运转次数,取1次T a——混凝土拌合物浇筑环境温度;a——温度损失系数4、考虑模板和钢筋的吸热影响,混凝土浇筑成型完成时的温度按下式计算:T3=(C c*m c*T2+C f*m f*T f+C s*m s*T s)÷(C c*m c+C f*m f+C s*m s) T3——考虑模板和钢筋吸热影响,混凝土浇筑成型完成时的温度℃C c——混凝土的比热容(kj/kg.K);C f——模板的比热容(kj/kg.K);C s——钢筋的比热容(kj/kg.K);m c——每m3混凝土的重量(kg);m f——每m3混凝土相接触的模板重量(kg);m s——每m3混凝土相接触的钢筋重量(kg);T f——模板的温度,未预热时可采用当时的环境温度(℃)T s——钢筋的温度,未预热时可采用当时的环境温度(℃)5、设当日气温为-5℃,C40混凝土每立方米的材料用量为:水泥470kg,水180kg,砂子735kg,碎石1040kg。
混凝土热工详细计算
混凝土热工计算:依据《建筑施工手册》(第四版)、《大体积混凝土施工规范》(GB_50496-2009)进行取值计算。
砼强度为:C40 砼抗渗等级为:P6砼供应商提供砼配合比为:水:水泥:粉煤灰:外加剂:矿粉:卵石:中砂155: 205 : 110 : 10.63 : 110 : 1141 : 727一、温度控制计算1、最大绝热温升计算T MAX= W·Q/c·ρ=(m c+K1FA+K2SL+UEA)Q/Cρ式中:T MAX——混凝土的最大绝热温升;W——每m3混凝土的凝胶材料用量;m c——每m3混凝土的水泥用量,取205Kg/m3;FA——每m3混凝土的粉煤灰用量,取110Kg/m3;SL——每m3混凝土的矿粉用量,取110Kg/m3;UEA——每m3混凝土的膨胀剂用量,取10.63Kg/m3;K1——粉煤灰折减系数,取0.3;K2——矿粉折减系数,取0.5;Q——每千克水泥28d 水化热,取375KJ/Kg;C——混凝土比热,取0.97[KJ/(Kg·K)];ρ——混凝土密度,取2400(Kg/m3);T MAX=(205+0.3×110+0.5×110+10.63)×375/0.97×2400T MAX=303.63×375/0.97×2400=48.91(℃)2、各期龄时绝热温升计算Th(t)=W·Q/c·ρ(1-e-mt)= T MAX(1-e-mt);Th——混凝土的t期龄时绝热温升(℃);е——为常数,取2.718;t——混凝土的龄期(d);m——系数、随浇筑温度改变。
根据商砼厂家提供浇注温度为20℃,m值取0.362Th(t)=48.91(1-e-mt)计算结果如下表:3、砼内部中心温度计算T1(t)=T j+Thξ(t)式中:T1(t)——t 龄期混凝土中心计算温度,是该计算期龄混凝土温度最高值;T j——混凝土浇筑温度,根据商砼厂家提供浇注温度为20℃;ξ(t)——t 龄期降温系数,取值如下表T1(t)=T j+Thξ(t)=20+ Thξ(t)计算结果如下表:由上表显示,砼中心温度最高值出现在第三天。
热工计算
126.00 1000 1.05 9.03 1137.78 1575.00 3600 8 0.004375 0.001393312 0.037327096 0.074654192 75
烟道计算 0.21875 0.21875 0.069665605 0.263942428 0.527884855
M3/h
1479.114 秒 风速 每秒截面积 半径乘方 半径 直径 空气管径DN 耗气量 燃气热值 8600 3600 8 0.03950625 0.012581608 0.112167768 0.224335537 224.3355369
m mm
2 已知热值总量求功率 热值总量 36272727.27 烧嘴个数 6 单位换算 860 烧嘴功率 7029.598309 燃气热值 8600 燃气流量 4217.758985 空气流量 38086.36364 秒 3600 风速 20 每秒截面积 0.058579986 半径乘方 0.018656046 半径 0.136587139 直径 0.273174277 273.1742775 煤气管径DN
151620000 36272727.27
M mm
煤气 136.4 4772.7 2727.3
btu 1800000 kj 429594.27 kcal 42.959427
107.5 177.3 0.0 136.4 227.3 272.7 300.0 363.6 454.5 2909.1
ห้องสมุดไป่ตู้
热工计算公式 1 已知功率求热值总量 燃气热值 烧嘴功率 烧嘴个数 单位换算 热值总量 燃气流量 单位换算 空气系数 配风系数 空气流量 烟气量 秒 流速 每秒截面积 半径乘方 半径 直径 燃气管径DN
热工计算公式及参数
热⼯计算公式及参数附录⼀建筑热⼯设计计算公式及参数(⼀)热阻的计算1.单⼀材料层的热阻应按下式计算:式中R——材料层的热阻,㎡·K/W;δ——材料层的厚度,m;λc——材料的计算导热系数,W/(m·K),按附录三附表3.1及表注的规定采⽤。
2.多层围护结构的热阻应按下列公式计算:R=R1+R2+……+Rn(1.2)式中R1、R2……Rn——各材料层的热阻,㎡·K/W。
3.由两种以上材料组成的、两向⾮均质围护结构(包括各种形式的空⼼砌块,以及填充保温材料的墙体等,但不包括多孔粘⼟空⼼砖),其平均热阻应按下式计算:(1.3)式中——平均热阻,㎡·K/W;Fo——与热流⽅向垂直的总传热⾯积,㎡;Fi——按平⾏于热流⽅向划分的各个传热⾯积,㎡;(参见图3.1);Roi——各个传热⾯上的总热阻,㎡·K/WRi——内表⾯换热阻,通常取0.11㎡·K/W;Re——外表⾯换热阻,通常取0.04㎡·K/W;φ——修正系数,按本附录附表1.1采⽤。
图3.1 计算图式修正系数φ值附/注:(1)当围护结构由两种材料组成时,λ2应取较⼩值,λ1应取较⼤值,然后求得两者的⽐值。
(2)当围护结构由三种材料组成,或有两种厚度不同的空⽓间层时,φ值可按⽐值/λ1确定。
(3)当围护结构中存在圆孔时,应先将圆孔折算成同⾯积的⽅孔,然后再按上述规定计算。
4.围护结构总热阻应按下式计算:Ro=Ri+R+Re(1.4)式中Ro——围护结构总热阻,㎡·K/W;Ri——内表⾯换热阻,㎡·K/W;按本附录附表1.2采⽤;Re——外表⾯换热阻,㎡·K/W,按本附录附表1.3采⽤;r——围护结构热阻,㎡·K/W。
内表⾯换热系数αi 及内表⾯换热阻Ri 值注:表中h 为肋⾼,s为肋间净距。
5.空⽓间层热阻值的确定(1)不带铝箔,单⾯铝箔、双⾯铝箔封闭空⽓间层的热阻值应按附表1.4采⽤。
50%节能热工计算
项目 传热耗热量 屋顶 外墙
计算式及计算结果 QH· =(ti-te)(∑i·Ki·Fi) T QR=17.6×0.91×0.8×492.6=6311.6 QW· =17.6×0.70×0.90×521.3=5780.2 S QW· =17.6×0.92×0.90×469.7=6844.9 N QW· =17.6×0.86×0.90×146.7=1991.6 E QW· =17.6×0.86×0.90×172.7=2352.6 W QW· =17.6×0.60×1.83×644.5=12454.8 S QD· =17.6×0.60×2.70×105.8=3016.6 S 有:QG· =17.6×0.50×KG×151.2=1330.6 KG S 无:QG· =17.6×0.18×KG×63.0=199.6 KG S 无:QG· =17.6×0.76×KG×131.0=1752.3 KG N 有:QG· =17.6×0.74×KG×12.6=164.1 KG E 无:QG· =17.6×0.57×KG×20.2=202.6 KG E 无:QG· =17.6×0.57×KG×10.1=101.3 KG W QB· =17.6×0.70×1.70×40.2=841.9 S QB· =17.6×0.86×1.70×3.8=97.8 E 周边:QF1=17.6×0.52×196.1=1794.7 非周边:QF2=17.6×0.30×257.9=1361.7 式中:ti-te=16+1.6=17.6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整樘窗玻璃热工计算
窗在进行热工计算时应按下列 规定进行面积划分: 窗框投影面积Af :从室内、外 两侧分别投影,得到的可视框 投影面积中的较大值,简称 “窗框面积”(指从室内、外 两侧可视的凸出的框投影面积 大者); 玻璃投影面积Ag(或其他镶嵌 板的投影面积Ap):指从室内、 外侧可见玻璃(或其他镶嵌板) 边缘围合面积的较小值,简称 “玻璃面积”(或“镶嵌板面 积”); 整樘窗总投影面积At:指窗框 面积Af与窗玻璃面积Ag(或其 他镶嵌板的面积Ap)之和,简 称“窗面积”。
整樘窗可见光透射比
整樘窗的可见光透射比应按下式计算: ΣτvAg τt= 公式(四) At 式中 τt—整樘窗的可见光透射比;
τv—窗玻璃(或其他镶嵌板)的可见光透射比;
Ag—窗玻璃(或者其他镶嵌板)面积(m2);
At—窗面积(m2);
玻璃幕墙热工计算
幕墙传热系数 ΣUgAg+ΣUpAP+ ΣUfAf+ Σφglg+Σφplp Ucw= 公式(五) ΣAg+ΣAP+ ΣAf 式中 Ucw—单幅幕墙的传热系数[W/(m2· K)]; Ag—玻璃或透明面板面积(m2); lg—玻璃或透明面板边缘长度(m); Ug—玻璃或透明面板传热系数[W/(m2· K)]; φg—玻璃或透明面板边缘的线传热系数[W/(m2· K)]; AP—非透明面板面积(m2); lp—非透明面板边缘长度(m); Up—非透明面板传热系数[W/(m2· K)]; φp—非透明面板边缘的线传热系数[W/(m2· K)]; Af—框面积(m2); Uf—框的传热系数[W/(m2· K)];
玻璃和框结合处的线传热系数对应的边缘长度lφ应为框与玻璃接 缝长度,并应取室内、室外值中的较大值。
整樘窗传热系数
整樘窗传热系数应按下式计算: ΣAgUg+ ΣAfUf+ Σlφφ
U数[W/(m2· K)];
公式(一)
Ag—窗玻璃(或者其他镶嵌板)面积(m2);
Af—窗框面积(m2); At—窗面积(m2); lφ—玻璃区域(或者其他镶嵌板区域)的边缘长度(m); Ug—窗玻璃(或者其他镶嵌板)的传热系数[W/(m2· K)]; Uf—窗框的传热系数[W/(m2· K)]; Φ—窗框和窗玻璃(或者其他镶嵌板)之间的线传热系数[W/(m2· K)];
整樘窗遮阳系数