2017届江苏泰州兴化市顾庄学区三校九年级上期末数学试卷(带解析)
江苏省泰州市兴化市顾庄学区三校联考2017年中考数学三模试卷(解析版)
江苏省泰州市兴化市顾庄学区三校联考2017年中考数学三模试卷(解析版)一、选择题(本大题共6小题,每小题3分,共18分.)1.人体中红细胞的直径约为0.0000077m,将数0.0000077用科学记数法表示为()A.77×10﹣5B.0.77×10﹣7C.7.7×10﹣6 D.7.7×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000077=7.7×10﹣6,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.2.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、既是轴对称图形又是中心对称图形,故本选项正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.估计﹣1+的值()A.在4和5之间B.在3和4之间C.在2和3之间D.在1和2之间【分析】先估算出的范围,即可得出答案.【解答】解:∵4<<5,∴﹣1+4<﹣1+<﹣1+5,即3<<4,﹣1+的值在3和4之间,故选B.【点评】本题考查了估算无理数的大小,能估算出的范围是解此题的关键.4.如图是某几何体的三视图,该几何体是()A.三棱柱B.长方体C.圆锥D.圆柱【分析】根据主视图和左视图都是宽度相等的长方形,可判断该几何体是柱体,再根据俯视图的形状,可判断柱体是长方体.【解答】解:根据所给出的三视图得出该几何体是长方体;故选B.【点评】本题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥体,如果有两个矩形,该几何体一定柱体,其底面由第三个视图的形状决定.5.对于一组数据﹣1,﹣1,4,2,下列结论不正确的是()A.平均数是1 B.众数是﹣1 C.中位数是0.5 D.方差是3.5【分析】根据众数、中位数、方差和平均数的定义和计算公式分别对每一项进行分析,即可得出答案.【解答】解:这组数据的平均数是:(﹣1﹣1+4+2)÷4=1;﹣1出现了2次,出现的次数最多,则众数是﹣1;把这组数据从小到大排列为:﹣1,﹣1,2,4,最中间的数是第2、3个数的平均数,则中位数是=0.5;这组数据的方差是: [(﹣1﹣1)2+(﹣1﹣1)2+(4﹣1)2+(2﹣1)2]=4.5;则下列结论不正确的是D;故选D.【点评】此题考查了方差、平均数、众数和中位数,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2];一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.已知关于x、y的方程组,给出下列说法:①当a=1时,方程组的解也是方程x+y=2的一个解;②当x﹣2y>8时,a>;③不论a取什么实数,2x+y的值始终不变;④若y=x2+5,则a=﹣4.以上说法正确的是()A.②③④B.①②④C.③④D.②③【分析】①将a=1代入方程组,求出方程组的解,即可做出判断;②先求出y的值,进一步得到x﹣2y,得出关于a的不等式,解不等式即可求解;③将a看做已知数求出2x+y的值即可;④根据y=x2+5,得到关于a的方程,解方程即可求解.【解答】解:关于x、y的方程组,解得:.①将a=1代入,得:,将x=4,y=﹣4代入方程左边得:x+y=0,右边=2,左边≠右边,本选项错误;②当x﹣2y>8时,a+3﹣2(﹣2a﹣2)>8,解得a>,本选项正确;③将原方程组中第一个方程×3,加第二个方程得:4x+2y=8,即2x+y=4,不论a取什么实数,2x+y的值始终不变,本选项正确;④若y=x2+5,则﹣2a﹣2=(a+3)2+5,解得a=﹣4,此选项正确.故选:A.【点评】本题考查了二元一次方程组的解,解题的关键是牢记二元一次方程组的解题方法.二、填空题(本大题共有10小题,每小题3分,共30分,请把答案直接写在答题卡相应位置上)7.﹣27的立方根是﹣3.【分析】根据立方根的定义求解即可.【解答】解:∵(﹣3)3=﹣27,∴=﹣3故答案为:﹣3.【点评】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.8.若正多边形的一个外角为40°,则这个正多边形是九边形.【分析】利用任意凸多边形的外角和均为360°,正多边形的每个外角相等即可求出答案.【解答】解:多边形的每个外角相等,且其和为360°,据此可得=40,解得n=9.故答案为:九.【点评】本题主要考查了正多边形外角和的知识,正多边形的每个外角相等,且其和为360°,比较简单.9.分解因式:2x2﹣2y2=2(x+y)(x﹣y).【分析】先提取公因式2,再根据平方差公式进行二次分解即可求得答案.【解答】解:2x2﹣2y2=2(x2﹣y2)=2(x+y)(x﹣y).故答案为:2(x+y)(x﹣y).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.10.一只不透明袋子中装有2个红球、1个黄球,这些球除颜色外都相同.小明搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1个球.则两次摸出的球都是黄球的概率是.【分析】画出树状图,然后根据概率公式列式计算即可得解.【解答】解:列树状图如下:由图可知,共有9种情况,其中两次摸到黄球的情况有1种,所以,P(两次摸到黄球)=.故答案为:.【点评】本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.11.一个三角板(含30°、60°角)和一把直尺摆放位置如图所示,直尺与三角板的一角相交于点A,一边与三角板的两条直角边分别相交于点D、点E,且CD=CE,点F在直尺的另一边上,那么∠BAF的大小为15°.【分析】先根据△CDE是等腰直角三角形,得出∠CED=45°,再根据DE∥AF,即可得到∠CAF=45°,最后根据∠BAC=60°,即可得出∠BAF的大小.【解答】解:由图可得,CD=CE,∠C=90°,∴△CDE是等腰直角三角形,∴∠CED=45°,又∵DE∥AF,∴∠CAF=45°,∵∠BAC=60°,∴∠BAF=60°﹣45°=15°,故答案为:15.【点评】本题主要考查了平行线的性质以及等腰直角三角形的性质,解题时注意:两直线平行,同位角相等.本题也可以根据∠CFA是三角形ABF的外角进行求解.12.在Rt△ABC中,AD是斜边BC边上的中线,G是△ABC重心,如果BC=6,那么线段AG 的长为2.【分析】根据直角三角形斜边上的中线性质得到AD=BC=3,然后根据重心的性质得=2,所以AG=AD=2.【解答】解:∵AD是斜边BC边上的中线,∴AD=BC=×6=3,∵G是△ABC重心,∴=2,∴AG=AD=×3=2.故答案为2.【点评】本题考查了三角形的重心:三角形的重心是三角形三边中线的交点;重心到顶点的距离与重心到对边中点的距离之比为2:1.也考查了直角三角形斜边上的中线性质.13.已知a2+5ab+b2=0(a≠0,b≠0),则代数式+的值等于﹣5.【分析】根据题目中的式子,等是两边同时除以ab,然后变形即可解答本题.【解答】解:∵a2+5ab+b2=0(a≠0,b≠0),∴,∴+=﹣5,故答案为:﹣5.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.14.圆锥体的底面半径为2,侧面积为8π,则其侧面展开图的圆心角等于180°.【分析】设圆锥的侧面展开图的圆心角为n°,母线长为R,先根据锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式得到•2π•2•R=8π,解得R=4,然后根据弧长公式得到2•2π,再解关于n的方程即可.【解答】解:设圆锥的侧面展开图的圆心角为n°,母线长为R,根据题意得•2π•2•R=8π,解得R=4,所以=2•2π,解得n=180,即圆锥的侧面展开图的圆心角为180°.故答案为:180°.【点评】本题考查了圆锥的计算:锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.15.如图,抛物线y=x2﹣2x+k(k<0)与x轴相交于A(x1,0)、B(x2,0)两点,其中x1<0<x2,当x=x1+2时,y<0(填“>”“=”或“<”号).【分析】根据抛物线方程求出对称轴方程x=1,然后根据二次函数的图象的对称性知x1与对称轴x=1距离大于1,所以当x=x1+2时,抛物线图象在x轴下方,即y<0.【解答】解:∵抛物线y=x2﹣2x+k(k<0)的对称轴方程是x=1,又∵x1<0,∴x1与对称轴x=1距离大于1,∴x1+2<x2,∴当x=x1+2时,抛物线图象在x轴下方,即y<0.故答案是:<.【点评】本题考查了二次函数的性质.解答此题时,利用了二次函数图象的对称性.16.在矩形ABCD中,AB=4,BC=3,点P在边AB上.若将△DAP沿DP折叠,使点A落在矩形ABCD的对角线上,则AP的长为或.【分析】分两种情况探讨:点A落在矩形对角线BD上,点A落在矩形对角线AC上,在直角三角形中利用勾股定理列出方程,通过解方程可得答案.【解答】解:①点A落在矩形对角线BD上,如图1,∵AB=4,BC=3,∴BD=5,根据折叠的性质,AD=A′D=3,AP=A′P,∠A=∠PA′D=90°,∴BA′=2,设AP=x,则BP=4﹣x,∵BP2=BA′2+PA′2,∴(4﹣x)2=x2+22,解得:x=,∴AP=;②点A落在矩形对角线AC上,如图2,根据折叠的性质可知DP⊥AC,∴△DAP∽△ABC,∴=,∴AP==.故答案为:或.【点评】本题考查了折叠问题、勾股定理,矩形的性质以及三角形相似的判定与性质;解题中,找准相等的量是正确解答题目的关键.三、解答题(本大题共有10小题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)(1)计算:|1﹣|﹣+2cos30°﹣20170;(2)解不等式组并求其最小整数解.【分析】(1)首先计算乘方和开方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.(2)分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可确定出最小的整数解.【解答】解:(1)原式=﹣1﹣2+﹣1=﹣2.(2)解不等式①得x ≥﹣1; 解不等式②得x >﹣5; 不等式组的解集为x ≥﹣1;最小整数解为﹣1.【点评】此题考查了实数的运算,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.18.(8分)某校为更好地开展“传统文化进校园”活动,随机抽查了部分学生,了解他们最喜爱的传统文化项目类型(分为书法、围棋、戏剧、国画共4类),并将统计结果绘制成如图不完整的频数分布表及频数分布条形图.最喜爱的传统文化项目类型频数分布表根据以上信息完成下列问题:(1)直接写出频数分布表中a的值;(2)补全频数分布条形图;(3)若全校共有学生1500名,估计该校最喜爱围棋的学生大约有多少人?【分析】(1)首先根据围棋类是14人,频率是0.28,据此即可求得总人数,然后利用18除以总人数即可求得a的值;(2)用50乘以0.20求出b的值,即可解答;(4)用总人数1500乘以喜爱围棋的学生频率即可求解.【解答】解:(1)14÷0.28=50(人),a=18÷50=0.36.(2)b=50×0.20=10,如图,(3)1500×0.28=420(人),答:若全校共有学生1500名,估计该校最喜爱围棋的学生大约有420人.【点评】本题考查了频数分布表及频数分布直方图,用到的知识点是:频率=频数÷总数,用样本估计整体让整体×样本的百分比即可.19.(8分)某篮球运动员去年共参加40场比赛,其中3分球的命中率为0.25,平均每场有12次3分球未投中.(1)该运动员去年的比赛中共投中多少个3分球?(2)在其中的一场比赛中,该运动员3分球共出手20次,小亮说,该运动员这场比赛中一定投中了5个3分球,你认为小亮的说法正确吗?请说明理由.【分析】(1)设该运动员共出手x个3分球,则3分球命中0.25x个,未投中0.75x个,根据“某篮球运动员去年共参加40场比赛,平均每场有12次3分球未投中”列出方程,解方程即可;(2)根据概率的意义知某事件发生的概率,就是在大量重复试验的基础上事件发生的频率稳定到的某个值;由此加以理解即可.【解答】解:(1)设该运动员共出手x个3分球,根据题意,得=12,解得x=640,0.25x=0.25×640=160(个),答:运动员去年的比赛中共投中160个3分球;(2)小亮的说法不正确;3分球的命中率为0.25,是40场比赛来说的平均水平,而在其中的一场比赛中,命中率并不一定是0.25,所以该运动员这场比赛中不一定投中了5个3分球.【点评】此题考查了一元一次方程的应用及概率的意义.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程及正确理解概率的含义.20.(8分)如图,已知菱形ABCD的对角线AC,BD相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:四边形BECD是平行四边形;(2)若∠E=60°,AC=4,求菱形ABCD的面积.【分析】(1)根据菱形的对边平行且相等可得AB=CD,AB∥CD,然后证明得到BE=CD,BE ∥CD,从而证明四边形BECD是平行四边形;(2)欲求菱形ABCD的面积,已知AC=4,只需求得BD的长度即可.利用平行四边形以及菱形的性质可得AC⊥CE,再解直角△ACE求出CE的长度,即为BD的长度.则利用菱形ABCD的面积等于两对角线乘积的一半即可求解.【解答】(1)证明:∵四边形ABCD是菱形,∴AB=CD,AB∥CD,又∵BE=AB,∴BE=CD,BE∥CD,∴四边形BECD是平行四边形;(2)解:∵四边形BECD是平行四边形,∴DB∥CE,∵四边形ABCD是菱形,∴AC⊥BD,∴∠E=∠OBA,∴AC⊥CE.在直角△ACE中,∵∠E=60°,AC=4,∴CE===4.∵四边形BECD是平行四边形,∴BD=CE=4,∴S菱形ABCD=AC•BD=×4×4=8.【点评】本题综合考查了菱形的性质,平行四边形的判定与性质以及解直角三角形.证明出四边形BECD是平行四边形是解题的关键.21.(10分)为了倡导节能低碳的生活,某公司对集体宿舍用电收费作如下规定:一间宿舍一个月用电量不超过a千瓦时,则一个月的电费为20元;若超过a千瓦时,则除了交20元外,超过部分每千瓦时要交元.某宿舍3月份用电80千瓦时,交电费35元;4月份用电45千瓦时,交电费20元.(1)求a的值;(2)若该宿舍5月份交电费45元,那么该宿舍当月用电量为多少千瓦时?【分析】(1)由题意知,3月份电量超过了a千瓦,可列等式20+(80﹣a)=35,解一元二次方程求出a的值即可;(2)设月用电量为x千瓦时,交电费y元.根据题意列出分段函数,然后求出5月份的电量.【解答】解:(1)根据3月份用电80千瓦时,交电费35元,得,,即a2﹣80a+1500=0.解得a=30或a=50.由4月份用电45千瓦时,交电费20元,得,a≥45.∴a=50.(2)设月用电量为x千瓦时,交电费y元.则∵5月份交电费45元,∴5月份用电量超过50千瓦时.∴45=20+0.5(x﹣50),解得x=100.答:若该宿舍5月份交电费45元,那么该宿舍当月用电量为100千瓦时.【点评】本题主要考查一元二次函数的应用和分段函数的知识点,解答本题的关键是理解题意,列出一元二次方程,此题难度一般.22.(10分)如图,CD为⊙O的直径,点B在⊙O上,连接BC、BD,过点B的切线AE与CD的延长线交于点A,∠AEO=∠C,OE交BC于点F.(1)求证:OE∥BD;(2)当⊙O的半径为5,sin∠DBA=时,求EF的长.【分析】(1)连接OB.只要证明∠E=∠ABD即可解决问题.(2)由△CBD∽△EBO.可得=,推出EO=,由OE∥BD,CO=OD,可得OF=BD=2,由此即可解决问题.【解答】(1)证明:连接OB,∵CD为⊙O的直径,∴∠CBD=∠CBO+∠OBD=90°,∵AE是⊙O的切线,∴∠ABO=∠OBD+∠ABD=90°,∴∠ABD=∠CBO,∵OB、OC是⊙O的半径,∴OB=OC.∴∠C=∠CBO,∴∠C=∠ABD,∵∠E=∠C,∴∠E=∠ABD,∴OE∥BD.(2)解:由(1)可得sin∠C=∠DBA=,在Rt△OBE中,sin∠C=,OC=5∴BD=4,∵∠CBD=∠EBO=90°,∠E=∠C,∴△CBD∽△EBO.∴=,∴EO=,∵OE∥BD,CO=OD,OF=BD=2,∴CF=FB.EF=OE﹣OF=.【点评】本题考查切线的性质、相似三角形的判定和性质、解直角三角形、平行线的判定等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,正确寻找相似三角形解决问题,属于中考常考题型.23.(10分)如图,从A地到B地的公路需经过C地,图中AC=6千米,∠CAB=15°,∠CBA=30°.因城市规划的需要,将在A、B两地之间修建一条笔直的公路.(1)求改直后的公路AB的长;(2)问公路改直后该段路程比原来缩短了多少千米?(结果保留根号)【分析】(1)过点A作AD⊥BC交BC的延长线于点D,在RtACD中,∠ADC=90°,∠ACD=45°,AC=6,推出CD=AD=3,在RtABD中,∠ADB=90°,∠B=30°,AD=3,推出AB=6,即可解决问题.(2)根据AC和BC的长度,即可得出公路改直后该段路程比原来缩短的路程.【解答】解:(1)过点A作AD⊥BC交BC的延长线于点D,∵∠B=30°,∠CAB=15°,∴∠ACD=45°.在RtACD中,∠ADC=90°,∠ACD=45°,AC=6,∴CD=AD=3,在RtABD中,∠ADB=90°,∠B=30°,AD=3,∴AB=6,答:改直后的公路AB的长为6千米.(2)在RtABD中,∠ADB=90°,∠B=30°,AD=3,∴BD=3∴BC=3﹣3,AC+BC﹣AB=6+3﹣3﹣6=6+3﹣9(1分)答:公路改直后该段路程比原来缩短了(6+3﹣9)千米.【点评】此题主要考查了解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.24.(10分)已知点A(1,2)、点B在双曲线y=(x>0)上,过B作BC⊥x轴于点C,如图,P是y轴上一点,(1)求k的值及△PBC的面积;(2)设点M(x1,y1)、N(x2,y2)(x2>x1>0)是双曲线y=(x>0)上的任意两点,s=,t=,试判断s与t的大小关系,并说明理由.【分析】(1)利用待定系数法即可求得k的值;设B的坐标是(m,n)则mn=2,BC=n,OC=m,利用三角形的面积公式求解;(2)把y1和y2用x1和x2表示出来,然后求s﹣t的值,对式子进行变形判断s﹣t的符号即可.【解答】解:(1)把A(1,2)代入y=得k=2;设B的坐标是(m,n)则mn=2,BC=n,OC=m.则S△PBC=BC•OC=mn=1;(2)s>t;理由:∵s﹣t=══=,∵x2>x1>0,∴>0,x1•x2•(x1+x2)>0,∴;∴s>t.【点评】本题考查了待定系数法求反比例函数的解析式,以及比较分式的值的大小,常用的方法一般是转化为求差,判断差的符号解决.25.(12分)如图,点A在直线l上,点Q沿着直线l以3厘米/秒的速度由点A向右运动,以AQ为边作Rt△ABQ,使∠BAQ=90°,tan∠ABQ=,点C在点Q右侧,CQ=1厘米,过点C作直线m⊥l,过△ABQ的外接圆圆心O作OD⊥m于点D,交AB右侧的圆弧于点E.在射线CD上取点F,使DF=CD,以DE、DF为邻边作矩形DEGF.设运动时间为t秒.(1)直接用含t的代数式表示BQ、DF;(2)当0<t<1时,求矩形DEGF的最大面积;(3)点Q在整个运动过程中,当矩形DEGF为正方形时,求t的值.【分析】(1)由已知得出AQ=3t,由三角函数求出AB=4t,再由勾股定理求出BQ==5t,作OM⊥AQ于M,则AM=QM=AQ=1.5t,CD=OM,由三角形中位线定理得出CD=OM=AB=2t,得出DF=CD=t;(2)设矩形DEGF的面积为S,求出OE=t,OD=QM+CQ=t+1,得出DE=OD﹣OE=1﹣t,由矩形面积得出S是t的二次函数,即可得出答案;(3)当矩形DEGF为正方形时,则DE=DF,分两种情况:①当0<t<1时,得出方程,解方程即可;②当t≥1时,DE=t﹣1,得出方程,解方程即可.【解答】解:(1)∵点Q沿着直线l以3厘米/秒的速度由点A向右运动,运动时间为t秒.∴AQ=3t,∵∠BAQ=90°,tan∠ABQ==,∴AB=4t,∴BQ==5t,作OM⊥AQ于M,则AM=QM=AQ=1.5t,CD=OM,∴OM是△ABQ的中位线,∴CD=OM=AB=2t,∴DF=CD=t;(2)设矩形DEGF的面积为S,∵OE=OB=BQ=t,OD=QM+CQ=t+1,∴DE=OD﹣OE=t+1﹣t=1﹣t,∴,∴当t=时,矩形DEGF的最大面积为;(3)当矩形DEGF为正方形时,则DE=DF,分两种情况:①当0<t<1时,如图1所示:DE=1﹣t,∴1﹣t=t,解得:t=;②当t≥1时,如图2所示:DE=t﹣1,∴t﹣1=t,解得:t=3;综上所述:当矩形DEGF为正方形时,t的值为或3.【点评】本题是圆的综合题目,考查了垂径定理、三角函数、勾股定理、矩形的面积、二次函数的最值、正方形的性质等知识;本题综合性强,有一定难度.26.(14分)已知抛物线y1=a(x﹣x1)(x﹣x2)(a≠0,x1≠x2)与x轴分别交于A(x1,0)、B(x2,0)两点,直线y2=2x+t经过点A.(1)已知A、B两点的横坐标分别为3、﹣1.①当a=1时,直接写出抛物线y1和直线y2相应的函数表达式;②如图,已知抛物线y1在3<x<4这一段位于直线y2的下方,在5<x<6这一段位于直线y2的上方,求a的取值范围;(2)若函数y=y1+y2的图象与x轴仅有一个公共点,探求x2﹣x1与a之间的数量关系.【分析】(1)①根据已知条件得到当a=1,得到y1=(x﹣3)(x+1),由于直线y2=2x+t经过点A,得到方程0=2×3+t,得到t=﹣6,于是得到结论;②设y1=a(x﹣3)(x+1),根据题意得不等式,即可得到结论;(2)根据已知条件得到y=y1+y2=a(x﹣x1)(x﹣x2)+2x﹣2x1=(x﹣x1)[a(x﹣x1)+2]根据函数y的图象与x轴仅有一个公共点,于是得到结论.【解答】解:(1)①∵已知抛物线y1=a(x﹣x1)(x﹣x2)经过A(x1,0)、B(x2,0)两点,当a=1,∴y1=(x﹣3)(x+1),∵直线y2=2x+t经过点A,∴0=2×3+t,解得:t=﹣6,∴y2=2x﹣6;②设y1=a(x﹣3)(x+1),由题意可得,当x=4时,y1=5a<2,∴a<,当x=5时,y1=12a>4,∴a>,∴a<;(2)∵直线y2过点A(x1,0),∴0=2x1+t,∴t=﹣2x1,∴y=y1+y2=a(x﹣x1)(x﹣x2)+2x﹣2x1=(x﹣x1)[a(x﹣x1)+2]∴方程的根为x1,x2﹣,∵函数y的图象与x轴仅有一个公共点,∴x1=x2﹣,∴x2﹣x1=.【点评】本题考查了抛物线与x轴的交点,一次函数图象上点的坐标特征,二次函数图象上点的坐标特征,正确的理解题意是解题的关键.。
江苏省泰州市兴化市九年级上学期期末模拟数学试题
江苏省泰州市兴化市九年级上学期期末模拟数学试题一、选择题1.如图,ABC ∆与A B C '''∆是以坐标原点O 为位似中心的位似图形,若点A 是OA '的中点,ABC ∆的面积是6,则A B C '''∆的面积为( )A .9B .12C .18D .242.方程(1)(2)0x x --=的解是( )A .1x =B .2x =C .1x =或2x =D .1x =-或2x =-3.对于二次函数2610y x x =-+,下列说法不正确的是( ) A .其图象的对称轴为过(3,1)且平行于y 轴的直线. B .其最小值为1. C .其图象与x 轴没有交点.D .当3x <时,y 随x 的增大而增大.4.将一副学生常用的三角板如下图摆放在一起,组成一个四边形ABCD ,连接AC ,则tan ACD ∠的值为( )A 3B 31C 31D .235.如图1,S 是矩形ABCD 的AD 边上一点,点E 以每秒k cm 的速度沿折线BS -SD -DC 匀速运动,同时点F 从点C 出发点,以每秒1cm 的速度沿边CB 匀速运动.已知点F 运动到点B 时,点E 也恰好运动到点C ,此时动点E ,F 同时停止运动.设点E ,F 出发t 秒时,△EBF 的面积为2ycm .已知y 与t 的函数图像如图2所示.其中曲线OM ,NP 为两段抛物线,MN 为线段.则下列说法:①点E 运动到点S 时,用了2.5秒,运动到点D 时共用了4秒; ②矩形ABCD 的两邻边长为BC =6cm ,CD =4cm ; ③sin ∠ABS =32; ④点E 的运动速度为每秒2cm .其中正确的是( )A .①②③B .①③④C .①②④D .②③④6.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =-- 7.小华同学某体育项目7次测试成绩如下(单位:分):9,7,10,8,10,9,10.这组数据的中位数和众数分别为( ) A .8,10B .10,9C .8,9D .9,108.如图,△ABC 内接于⊙O ,若∠A=α,则∠OBC 等于( )A .180°﹣2αB .2αC .90°+αD .90°﹣α9.如图,在边长为1的正方形组成的网格中,△ABC 的顶点都在格点上,将△ABC 绕点C 顺时针旋转60°,则顶点A 所经过的路径长为( )A .10πB .103C .103π D .π10.如图,P 、Q 是⊙O 的直径AB 上的两点,P 在OA 上,Q 在OB 上,PC ⊥AB 交⊙O 于C ,QD ⊥AB 交⊙O 于D ,弦CD 交AB 于点E ,若AB=20,PC=OQ=6,则OE 的长为( )A .1B .1.5C .2D .2.511.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s 2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是( ) A .平均分不变,方差变大 B .平均分不变,方差变小 C .平均分和方差都不变D .平均分和方差都改变12.如图,已知一组平行线////a b c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且 1.5AB =,2BC =, 1.8DE =,则EF =( )A .4.4B .4C .3.4D .2.4 13.已知△ABC ≌△DEF ,∠A =60°,∠E =40°,则∠F 的度数为( )A .40B .60C .80D .10014.在平面直角坐标系中,将二次函数y =32x 的图象向左平移2个单位,所得图象的解析式为( ) A .y =32x −2 B .y =32x +2 C .y =3()22x -D .y =3()22x + 15.若关于x 的一元二次方程x 2﹣2x +a ﹣1=0没有实数根,则a 的取值范围是( )A .a <2B .a >2C .a <﹣2D .a >﹣2二、填空题16.已知扇形半径为5cm ,圆心角为60°,则该扇形的弧长为________cm .17.在一块边长为30 cm 的正方形飞镖游戏板上,有一个半径为10 cm 的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.18.在比例尺为1∶500 000的地图上,量得A 、B 两地的距离为3 cm ,则A 、B 两地的实际距离为_____km .19.二次函数y=x 2−4x+5的图象的顶点坐标为 .20.当a≤x≤a+1时,函数y=x 2﹣2x+1的最小值为1,则a 的值为_____.21.已知点11(,)A x y ,22(,)B x y 在二次函数2(1)1y x =-+的图象上,若121x x >>,则1y __________2y .(填“>”“<”“=”)22.如图,在ABCD 中,13BE DF BC ==,若1BEG S ∆=,则ABF S ∆=__________.23.长度等于62的弦所对的圆心角是90°,则该圆半径为_____. 24.一元二次方程x 2﹣4=0的解是._________25.一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同,从中随机摸出一个球,摸到红球的概率是______.26.如图,四边形ABCD 内接于⊙O ,若∠BOD=140°,则∠BCD=_____.27.点P 在线段AB 上,且BP APAP AB=.设4AB cm =,则BP =__________cm . 28.如图,在边长为1的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点O ,则tan ∠AOD=________.29.如图,123////l l l ,直线a 、b 与1l 、2l 、3l 分别相交于点A 、B 、C 和点D 、E 、F .若AB=3,BC=5,DE=4,则EF 的长为______.30.若函数y =(m +1)x 2﹣x +m (m +1)的图象经过原点,则m 的值为_____.三、解答题31.(1)问题提出:苏科版《数学》九年级(上册)习题2.1有这样一道练习题:如图①,BD 、CE 是△ABC 的高,M 是BC 的中点,点B 、C 、D 、E 是否在以点M 为圆心的同一个圆上?为什么?在解决此题时,若想要说明“点B 、C 、D 、E 在以点M 为圆心的同一个圆上”,在连接MD 、ME 的基础上,只需证明 .(2)初步思考:如图②,BD 、CE 是锐角△ABC 的高,连接DE .求证:∠ADE =∠ABC ,小敏在解答此题时,利用了“圆的内接四边形的对角互补”进行证明.(请你根据小敏的思路完成证明过程.)(3)推广运用:如图③,BD 、CE 、AF 是锐角△ABC 的高,三条高的交点G 叫做△ABC 的垂心,连接DE 、EF 、FD ,求证:点G 是△DEF 的内心.32.如图,AB 是⊙O 的直径,弦DE 垂直平分半径OA ,C 为垂足,弦DF 与半径OB 相交于点P ,连接EF 、EO ,若DE =2,∠DPA =45°. (1)求⊙O 的半径; (2)求图中阴影部分的面积.33.如图,在Rt ABC ∆中,90C =∠,矩形DEFG 的顶点G 、F 分别在边AC 、BC 上,D 、E 在边AB 上.(1)求证:ADG ∆∽FEB ∆;(2)若2AD GD =,则ADG ∆面积与BEF ∆面积的比为 . 34.解方程:3x 2﹣4x +1=0.(用配方法解) 35.如图示,AB 是O 的直径,点F 是半圆上的一动点(F 不与A ,B 重合),弦AD 平分BAF ∠,过点D 作DE AF ⊥交射线AF 于点AF .(1)求证:DE 与O 相切:(2)若8AE =,10AB =,求DE 长;(3)若10AB =,AF 长记为x ,EF 长记为y ,求y 与x 之间的函数关系式,并求出AF EF ⋅的最大值. 四、压轴题36.已知P 是⊙O 上一点,过点P 作不过圆心的弦PQ ,在劣弧PQ 和优弧PQ 上分别有动点A 、B(不与P ,Q 重合),连接AP 、BP . 若∠APQ=∠BPQ. (1)如图1,当∠APQ=45°,AP=1,BP=22时,求⊙O 的半径;(2)如图2,选接AB ,交PQ 于点M ,点N 在线段PM 上(不与P 、M 重合),连接ON 、OP ,若∠NOP+2∠OPN=90°,探究直线AB 与ON 的位置关系,并证明.37.如图,在平面直角坐标系中,直线1l :162y x =-+分别与x 轴、y 轴交于点B 、C ,且与直线2l :12y x =交于点A .(1)分别求出点A 、B 、C 的坐标;(2)若D 是线段OA 上的点,且COD △的面积为12,求直线CD 的函数表达式; (3)在(2)的条件下,设P 是射线CD 上的点,在平面内里否存在点Q ,使以O 、C 、P 、Q 为顶点的四边形是菱形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.38.如图1:在Rt △ABC 中,AB =AC ,D 为BC 边上一点(不与点B ,C 重合),试探索AD ,BD ,CD 之间满足的等量关系,并证明你的结论.小明同学的思路是这样的:将线段AD 绕点A 逆时针旋转90°,得到线段AE ,连接EC ,DE .继续推理就可以使问题得到解决.(1)请根据小明的思路,试探索线段AD ,BD ,CD 之间满足的等量关系,并证明你的结论;(2)如图2,在Rt △ABC 中,AB =AC ,D 为△ABC 外的一点,且∠ADC =45°,线段AD ,BD ,CD 之间满足的等量关系又是如何的,请证明你的结论;(3)如图3,已知AB 是⊙O 的直径,点C ,D 是⊙O 上的点,且∠ADC =45°. ①若AD =6,BD =8,求弦CD 的长为 ;②若AD+BD =14,求2AD BD CD ⎛⎫⋅+ ⎪ ⎪⎝⎭的最大值,并求出此时⊙O 的半径.39.已知,如图Rt △ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点P 为AC 的中点,Q 从点A 运动到B ,点Q 运动到点B 停止,连接PQ ,取PQ 的中点O ,连接OC ,OB . (1)若△ABC ∽△APQ ,求BQ 的长;(2)在整个运动过程中,点O 的运动路径长_____;(3)以O 为圆心,OQ 长为半径作⊙O ,当⊙O 与AB 相切时,求△COB 的面积.40.如图,抛物线y =ax 2-4ax +b 交x 轴正半轴于A 、B 两点,交y 轴正半轴于C ,且OB =OC =3.(1) 求抛物线的解析式;(2) 如图1,D 为抛物线的顶点,P 为对称轴左侧抛物线上一点,连接OP 交直线BC 于G ,连GD .是否存在点P ,使2GDGO=P 的坐标;若不存在,请说明理由; (3) 如图2,将抛物线向上平移m 个单位,交BC 于点M 、N .若∠MON =45°,求m 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据位似图形的性质,再结合点A 与点A '的坐标关系可得出两个三角形的相似比,再根据面积比等于相似比的平方即可得出答案. 【详解】解:∵△ABC 与△A B C '''是以坐标原点O 为位似中心的位似图形,且A 为O A '的中心, ∴△ABC 与△A B C '''的相似比为:1:2; ∵位似图形的面积比等于相似比的平方,∴△A B C '''的面积等于4倍的△ABC 的面积,即4624⨯=. 故答案为:D. 【点睛】本题考查的知识点是位似图形的性质,位似是特殊的相似,熟记位似图形的面积比等于相似比的平方是解题的关键.2.C解析:C 【解析】 【分析】方程左边已经是两个一次因式之积,故可化为两个一次方程,解这两个一元一次方程即得答案. 【详解】解:∵(1)(2)0x x --=, ∴x -1=0或x -2=0,解得:1x =或2x =. 故选:C. 【点睛】本题考查了一元二次方程的解法,属于基本题型,熟练掌握分解因式解方程的方法是关键.3.D解析:D 【解析】 【分析】先将二次函数变形为顶点式,然后可根据二次函数的性质判断A 、B 、D 三项,再根据抛物线的顶点和开口即可判断C 项,进而可得答案. 【详解】解:()2261031y x x x =-+=-+,所以抛物线的对称轴是直线:x =3,顶点坐标是(3,1);A 、其图象的对称轴为过(3,1)且平行于y 轴的直线,说法正确,本选项不符合题意;B 、其最小值为1,说法正确,本选项不符合题意;C 、因为抛物线的顶点是(3,1),开口向上,所以其图象与x 轴没有交点,说法正确,本选项不符合题意;D 、当3x <时,y 随x 的增大而增大,说法错误,所以本选项符合题意. 故选:D. 【点睛】本题考查了二次函数的图象和性质,属于基本题型,熟练掌握抛物线的性质是解题的关键.4.B解析:B 【解析】 【分析】设AC 、BD 交于点E ,过点C 作CF ⊥BD 于点F ,过点E 作EG ⊥CD 于点G ,则CF ∥AB ,△CDF 和△DEG 都是等腰直角三角形,设AB =2,则易求出CF CEF ∽△AEB ,可得EF CF BE AB ==,于是设EF ,则2BE x =,然后利用等腰直角三角形的性质可依次用x 的代数式表示出CF 、CD 、DE 、DG 、EG 的长,进而可得CG 的长,然后利用正切的定义计算即得答案. 【详解】解:设AC 、BD 交于点E ,过点C 作CF ⊥BD 于点F ,过点E 作EG ⊥CD 于点G ,则CF ∥AB ,△CDF 和△DEG 都是等腰直角三角形, ∴△CEF ∽△AEB , 设AB =2,∵∠ADB =30°,∴BD =∵∠BDC =∠CBD =45°,CF ⊥BD ,∴CF=DF=BF =12BD =3, ∴3EF CF BE AB ==, 设EF =3x ,则2BE x =,∴()23BF CF DF x ===+, ∴()()2223226CD DF x x ==+=+,()()233223DE DF EF x x x =+=++=+,∴()()2222326EG DG DE x x ===+=+,∴()()226262CG CD DG x x x =-=+-+=,∴()62tan 312x EG ACD CG x+∠===+.故选:B.【点睛】本题以学生常见的三角板为载体,考查了锐角三角函数和特殊角的三角函数值、30°角的直角三角形的性质、等腰三角形的性质等知识,构图简洁,但有相当的难度,正确添加辅助线、熟练掌握等腰直角三角形的性质和锐角三角函数的知识是解题的关键.5.C解析:C 【解析】 【分析】①根据函数图像的拐点是运动规律的变化点由图象即可判断.②设AB CD acm ==,BC AD bcm ==,由函数图像利用△EBF 面积列出方程组即可解决问题.③由 2.5BS k =,1.5SD k =,得53BS SD =,设3SD x =,5BS x =,在RT ABS ∆中,由222AB AS BS +=列出方程求出x ,即可判断.④求出BS 即可解决问题.解:函数图像的拐点时点运动的变化点根据由图象可知点E 运动到点S 时用了2.5秒,运动到点D 时共用了4秒.故①正确.设AB CD acm ==,BC AD bcm ==, 由题意,1··( 2.5)721·(4)42a b a b ⎧-=⎪⎪⎨⎪-=⎪⎩ 解得46a b =⎧⎨=⎩, 所以4AB CD cm ==,6BC AD cm ==,故②正确,2.5BS k =, 1.5SD k =, ∴53BS SD =,设3SD x =,5BS x =, 在Rt ABS ∆中,222AB AS BS +=,2224(63)(5)x x ∴+-=,解得1x =或134-(舍), 5BS ∴=,3SD =,3AS =,3sin 5AS ABS BS ∴∠==故③错误, 5BS =,5 2.5k ∴=,2/k cm s ∴=,故④正确,故选:C .【点睛】本题考查二次函数综合题、锐角三角函数、勾股定理、三角形面积、函数图象问题等知识,读懂图象信息是解决问题的关键,学会设未知数列方程组解决问题,把问题转化为方程去思考,是数形结合的好题目,属于中考选择题中的压轴题.6.A解析:A【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A . 7.D【解析】试题分析:把这组数据从小到大排列:7,8,9,9,10,10,10,最中间的数是9,则中位数是9;10出现了3次,出现的次数最多,则众数是10;故选D.考点:众数;中位数.8.D解析:D【解析】连接OC,则有∠BOC=2∠A=2α,∵OB=OC,∴∠OBC=∠OCB,∵∠OBC+∠OCB+∠BOC=180°,∴2∠OBC+2α=180°,∴∠OBC=90°-α,故选D.9.C解析:C【解析】【分析】【详解】如图所示:在Rt△ACD中,AD=3,DC=1,根据勾股定理得:2210AD CD+=又将△ABC绕点C顺时针旋转60°,则顶点A所经过的路径长为l=6010101803π=.故选C. 10.C 解析:C【分析】因为OCP和ODQ为直角三角形,根据勾股定理可得OP、DQ、PQ的长度,又因为CP//DQ,两直线平行内错角相等,∠PCE=∠EDQ,且∠CPE=∠DQE=90°,可证CPE∽DQE,可得CP DQ=PE EQ,设PE=x,则EQ=14-x,解得x的取值,OE= OP-PE,则OE的长度可得.【详解】解:∵在⊙O中,直径AB=20,即半径OC=OD=10,其中CP⊥AB,QD⊥AB,∴OCP和ODQ为直角三角形,根据勾股定理:,,且OQ=6,∴PQ=OP+OQ=14,又∵CP⊥AB,QD⊥AB,垂直于用一直线的两直线相互平行,∴CP//DQ,且C、D连线交AB于点E,∴∠PCE=∠EDQ,(两直线平行,内错角相等)且∠CPE=∠DQE=90°,∴CPE∽DQE,故CP DQ=PE EQ,设PE=x,则EQ=14-x,∴68=x14-x,解得x=6,∴OE=OP-PE=8-6=2,故选:C.【点睛】本题考察了勾股定理、相似三角形的应用、两直线平行的性质、圆的半径,解题的关键在于证明CPE与DQE相似,并得出线段的比例关系.11.B解析:B【解析】【分析】根据平均数、方差的定义计算即可.【详解】∵小亮的成绩和其它39人的平均数相同,都是90分,∴40人的平均数是90分,∵39人的方差为41,小亮的成绩是90分,40人的平均分是90分,∴40人的方差为[41×39+(90-90)2]÷40<41,∴方差变小,∴平均分不变,方差变小【点睛】本题考查了平均数与方差,熟练掌握定义是解题关键. 12.D解析:D【解析】【分析】根据平行线等分线段定理列出比例式,然后代入求解即可.【详解】解:∵////a b c∴AB DEBC EF=即1.5 1.82EF=解得:EF=2.4故答案为D.【点睛】本题主要考查的是平行线分线段成比例定理,利用定理正确列出比例式是解答本题的关键.13.C解析:C【解析】【分析】根据全等三角形对应角相等可得∠B=∠E=40°,∠F=∠C,然后利用三角形内角和定理计算出∠C的度数,进而可得答案.【详解】解:∵△ABC≌△DEF,∴∠B=∠E=40°,∠F=∠C,∵∠A=60°,∴∠C=180°-60°-40°=80°,∴∠F=80°,故选:C.【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.14.D解析:D【解析】【分析】先确定抛物线y=3x2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)向左平移2个单位所得对应点的坐标为(-2,0),然后利用顶点式写出新抛物线解析式即可.【详解】解:抛物线y=3x 2的顶点坐标为(0,0),把点(0,0)向左平移2个单位所得对应点的坐标为(-2,0),∴平移后的抛物线解析式为:y=3(x+2)2.故选:D .【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.15.B解析:B【解析】【分析】根据题意得根的判别式0<,即可得出关于a 的一元一次不等式,解之即可得出结论.【详解】∵1a =,2b =-,1c a =-,由题意可知:()()22424110b ac a =-=--⨯⨯-<⊿,∴a >2,故选:B .【点睛】本题考查了一元二次方程20ax bx c ++=(a ≠0)的根的判别式24b ac =-⊿:当0>,方程有两个不相等的实数根;当0=,方程有两个相等的实数根;当0<,方程没有实数根. 二、填空题16.【解析】【分析】直接利用弧长公式进行计算.【详解】解:由题意得:=,故答案是:【点睛】本题考查了弧长公式,考查了计算能力,熟练掌握弧长公式是关键. 解析:53π 【解析】【分析】直接利用弧长公式180n R l π=进行计算. 【详解】 解:由题意得:605180l π==53π, 故答案是:53π 【点睛】 本题考查了弧长公式,考查了计算能力,熟练掌握弧长公式是关键.17.【解析】【分析】分别计算半径为10cm 的圆的面积和边长为30cm 的正方形ABCD 的面积,然后计算即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm 的圆的面积=π•102=100 解析:9π 【解析】【分析】 分别计算半径为10cm 的圆的面积和边长为30cm 的正方形ABCD 的面积,然后计算S S 半圆正方形即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm 的圆的面积=π•102=100πcm 2,边长为30cm 的正方形ABCD 的面积=302=900cm 2,∴P (飞镖落在圆内)=100==9009S S ππ半圆正方形,故答案为:9π. 【点睛】本题考查了几何概率,掌握概率=相应的面积与总面积之比是解题的关键.18.15【解析】【分析】由在比例尺为1:50000的地图上,量得A 、B 两地的图上距离AB=3cm ,根据比例尺的定义,可求得两地的实际距离.【详解】解:∵比例尺为1:500000,量得两地的距离解析:15【解析】【分析】由在比例尺为1:50000的地图上,量得A 、B 两地的图上距离AB=3cm ,根据比例尺的定义,可求得两地的实际距离.【详解】解:∵比例尺为1:500000,量得两地的距离是3厘米,∴A 、B 两地的实际距离3×500000=1500000cm=15km ,故答案为15.【点睛】此题考查了比例尺的性质.注意掌握比例尺的定义,注意单位要统一.19.(2,1)【解析】【分析】将二次函数解析式化为顶点式,即可得到顶点坐标.【详解】将二次函数配方得则顶点坐标为(2,1)考点:二次函数的图象和性质.解析:(2,1)【解析】【分析】将二次函数解析式化为顶点式,即可得到顶点坐标.【详解】将二次函数245y x x =-+配方得22()1y x =-+则顶点坐标为(2,1)考点:二次函数的图象和性质. 20.2或﹣1【解析】【分析】利用二次函数图象上点的坐标特征找出当y=1时x 的值,结合当a≤x≤a+1时函数有最小值1,即可得出关于a 的一元一次方程,解之即可得出结论.【详解】当y=1时,有x解析:2或﹣1【解析】【分析】利用二次函数图象上点的坐标特征找出当y=1时x 的值,结合当a≤x≤a+1时函数有最小值1,即可得出关于a 的一元一次方程,解之即可得出结论.【详解】当y=1时,有x 2﹣2x+1=1,解得:x 1=0,x 2=2.∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=﹣1,故答案为:2或﹣1.【点睛】本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y=1时x 的值是解题的关键.21.【解析】抛物线的对称轴为:x=1,∴当x>1时,y 随x 的增大而增大.∴若x1>x2>1 时,y1>y2 .故答案为>解析:12y y >【解析】抛物线()2y x 11=-+的对称轴为:x=1,∴当x>1时,y 随x 的增大而增大.∴若x 1>x 2>1 时,y 1>y 2 .故答案为> 22.6【解析】【分析】先根据平行四边形的性质证得△BEG ∽△FAG ,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得,根据相似三角形的性质可求得,进而可得答案.【详解】解:∵四解析:6【解析】【分析】先根据平行四边形的性质证得△BEG ∽△FAG ,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得ABG S ∆,根据相似三角形的性质可求得AFG S ∆,进而可得答案.【详解】解:∵四边形ABCD 是平行四边形,∴AD=BC ,AD ∥BC ,∴△BEG ∽△FAG , ∵13BE DF BC ==, ∴12EG BE AG AF ==, ∴211,24BEG BEG ABG AFG S S EG BE S AG S AF ∆∆∆∆⎛⎫==== ⎪⎝⎭, ∵1BEG S ∆=,∴2ABG S ∆=,4AFG S ∆=,∴6ABF ABG AFG S S S ∆∆∆=+=.故答案为:6.【点睛】本题考查了平行四边形的性质、相似三角形的判定和性质以及三角形的面积等知识,属于常考题型,熟练掌握平行四边形的性质和相似三角形的判定与性质是解答的关键. 23.6【解析】【分析】结合等腰三角形的性质,根据勾股定理求解即可.【详解】解:如图AB =6,∠AOB =90°,且OA =OB ,在中,根据勾股定理得,即∴,故答案为:6.【点睛】解析:6【解析】【分析】结合等腰三角形的性质,根据勾股定理求解即可.【详解】解:如图AB =,∠AOB =90°,且OA =OB ,在Rt OAB 中,根据勾股定理得222OA OB AB +=,即222272OA AB === ∴236OA =,OA>6OA∴=故答案为:6.【点睛】本题考查了等腰三角形的性质及勾股定理,在等腰直角三角形中灵活利用勾股定理求线段长度是解题的关键.24.x=±2【解析】移项得x2=4,∴x=±2.故答案是:x=±2.解析:x=±2【解析】移项得x2=4,∴x=±2.故答案是:x=±2.25.【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红解析:5 8【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红球,共5个,从中随机摸出一个,则摸到红球的概率是55 538= +故答案为: 58.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.26.110°.【解析】【分析】由圆周角定理,同弧所对的圆心角是圆周角的2倍.可求∠A=∠BOD=70°,再根据圆内接四边形对角互补,可得∠C=180-∠A=110°【详解】∵∠BOD=140°解析:110°.【解析】【分析】由圆周角定理,同弧所对的圆心角是圆周角的2倍.可求∠A=12∠BOD=70°,再根据圆内接四边形对角互补,可得∠C=180-∠A=110°【详解】∵∠BOD=140°∴∠A=12∠BOD=70°∴∠C=180°-∠A=110°,故答案为:110°.【点睛】此题考查圆周角定理,解题的关键在于利用圆内接四边形的性质求角度. 27.【解析】【分析】根据题意,将问题转化为解一元二次方程的求解问题即可得出答案.【详解】解:设BP=x,则AP=4-x,根据题意可得,,整理为:,利用求根公式解方程得:,∴,(舍去).解析:(625)-【解析】【分析】根据题意,将问题转化为解一元二次方程的求解问题即可得出答案.【详解】解:设BP=x ,则AP=4-x ,根据题意可得,444x x x -=-, 整理为:212160x x -+=, 利用求根公式解方程得:121444161245x 625±-⨯±===±, ∴1625x =-,26254x =+>(舍去).故答案为:625-.【点睛】本题考查的知识点是由实际问题抽化出来的一元二次方程问题,将问题转化为一元二次方程求解问题,熟记一元二次方程的求根公式是解此题的关键.28.2【解析】【分析】首先连接BE ,由题意易得BF=CF ,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO :CO=1:3,即可得OF :CF=OF :BF=1:2,在Rt△OBF 中,即可求解析:2【解析】【分析】首先连接BE ,由题意易得BF=CF ,△ACO ∽△BKO ,然后由相似三角形的对应边成比例,易得KO :CO=1:3,即可得OF :CF=OF :BF=1:2,在Rt △OBF 中,即可求得tan ∠BOF 的值,继而求得答案.【详解】如图,连接BE ,∵四边形BCEK 是正方形,∴KF=CF=12CK ,BF=12BE ,CK=BE ,BE ⊥CK ,∴BF=CF ,根据题意得:AC ∥BK ,∴△ACO ∽△BKO ,∴KO :CO=BK :AC=1:3,∴KO :KF=1:2,∴KO=OF=12CF=12BF , 在Rt △PBF 中,tan ∠BOF=BF OF =2, ∵∠AOD=∠BOF ,∴tan ∠AOD=2.故答案为2【点睛】此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.29.【解析】【分析】直接根据平行线分线段成比例定理即可得.【详解】,,,,解得,故答案为:.【点睛】本题考查了平行线分线段成比例定理,熟记平行线分线段成比例定理是解题关键. 解析:203【解析】【分析】直接根据平行线分线段成比例定理即可得.【详解】123////l l l ,AB DE BC EF∴=,3,5,4 AB BC DE===,345EF∴=,解得203 EF=,故答案为:203.【点睛】本题考查了平行线分线段成比例定理,熟记平行线分线段成比例定理是解题关键.30.0或﹣1【解析】【分析】根据题意把原点(0,0)代入解析式,得出关于m的方程,然后解方程即可.【详解】∵函数经过原点,∴m(m+1)=0,∴m=0或m=﹣1,故答案为0或﹣1.【点解析:0或﹣1【解析】【分析】根据题意把原点(0,0)代入解析式,得出关于m的方程,然后解方程即可.【详解】∵函数经过原点,∴m(m+1)=0,∴m=0或m=﹣1,故答案为0或﹣1.【点睛】本题考查二次函数图象上点的坐标特征,解题的关键是知道函数图象上的点满足函数解析式.三、解答题31.(1)ME=MD=MB=MC;(2)证明见解析;(3)证明见解析.【解析】【分析】(1)要证四个点在同一圆上,即证明四个点到定点距离相等.(2)由“直角三角形斜边上的中线等于斜边的一半”,即能证ME=MD=MB=MC,得到四边形BCDE为圆内接四边形,故有对角互补.(3)根据内心定义,需证明DG、EG、FG分别平分∠EDF、∠DEF、∠DFE.由点B、C、D、E 四点共圆,可得同弧所对的圆周角∠CBD=∠CED.又因为∠BEG=∠BFG=90°,根据(2)易证点B、F、G、E也四点共圆,有同弧所对的圆周角∠FBG=∠FEG,等量代换有∠CED=∠FEG,同理可证其余两个内角的平分线.【详解】解:(1)根据圆的定义可知,当点B、C、D、E到点M距离相等时,即他们在圆M上故答案为:ME=MD=MB=MC(2)证明:连接MD、ME∵BD、CE是△ABC的高∴BD⊥AC,CE⊥AB∴∠BDC=∠CEB=90°∵M为BC的中点∴ME=MD=12BC=MB=MC∴点B、C、D、E在以点M为圆心的同一个圆上∴∠ABC+CDE=180°∵∠ADE+∠CDE=180°∴∠ADE=∠ABC(3)证明:取BG中点N,连接EN、FN∵CE、AF是△ABC的高∴∠BEG=∠BFG=90°∴EN=FN=12BG=BN=NG∴点B、F、G、E在以点N为圆心的同一个圆上∴∠FBG=∠FEG∵由(2)证得点B、C、D、E在同一个圆上∴∠FBG=∠CED∴∠FEG=∠CED同理可证:∠EFG=∠AFD,∠EDG=∠FDG∴点G是△DEF的内心【点睛】本题考查了直角三角形斜边中线定理、中点的性质、三角形内心的判定、圆周角定理、角平分线的定义,综合性较强,解决本题的关键是熟练掌握三角形斜边中线定理、圆周角定理,能够根据题意熟练掌握各个角之间的内在联系.32.(1)23;(2)13π﹣23.【解析】【分析】(1)根据垂径定理得CE的长,再根据已知DE平分AO得CO=12AO=12OE,根据勾股定理列方程求解.(2)先求出扇形的圆心角,再根据扇形面积和三角形的面积公式计算即可.【详解】解:(1)连接OF,∵直径AB⊥DE,∴CE=12DE=1.∵DE平分AO,∴CO=12AO=12OE.设CO=x,则OE=2x.由勾股定理得:12+x2=(2x)2.x3∴OE=2x=233.即⊙O的半径为3. (2)在Rt △DCP 中,∵∠DPC =45°,∴∠D =90°﹣45°=45°.∴∠EOF =2∠D =90°.∴S 扇形OEF=2903360π⎛⎫⋅⋅ ⎪⎝⎭=13π. ∵∠EOF =2∠D =90°,OE =OFS Rt △OEF=212⨯⎝⎭=23. ∴S 阴影=S 扇形OEF ﹣S Rt △OEF =13π﹣23. 【点睛】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了扇形的面积公式、圆周角定理和含30度的直角三角形三边的关系.33.(1)见解析;(2)4.【解析】【分析】(1)先证∠AGD=∠B ,再根据∠ADG=∠BEF=90°,即可证明;(2)由(1)得ADG ∆∽FEB ∆,则△ADG 面积与△BEF 面积的比=2AD EF ⎛⎫ ⎪⎝⎭=4. 【详解】(1)证:在矩形DEFG 中,GDE FED ∠=∠=90°∴GDA FEB ∠=∠=90°∵C GDA ∠=∠=90°∴A AGD A B ∠+∠=∠+∠=90°∴AGD B ∠=∠在ADG ∆和FEB ∆中∵AGD B ∠=∠,GDA FEB ∠=∠=90°∴ADG ∆∽FEB ∆(2)解:∵四边形DEFG 为矩形,∴GD=EF ,∵△ADG ∽△FEB ,∴224ADG BEF S AD AD S EF GD ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ 故答案为4.【点睛】本题考查了相似三角形的判定与性质,根据题意证得△ADG ∽△FEB 是解答本题的关键. 34.x 1=1,x 2=13 【解析】【分析】首先把系数化为1,移项,把常数项移到等号的右侧,然后在方程的左右两边同时加上一次项系数的一半,即可使左边是完全平方公式,右边是常数项,即可求解.【详解】3x 2﹣4x +1=0 3(x 2﹣43x )+1=0 (x ﹣23)2=19 ∴x ﹣23=±13∴x 1=1,x 2=13 【点睛】本题考查解一元二次方程的方法,解题的关键是熟练掌握用配方法解一元二次方程的一般步骤.35.(1)详见解析;(2)4;(3)252【解析】【分析】(1)首先连接OD ,通过半径和角平分线的性质进行等角转换,得出OD AE ∥,进而得出OD DE ⊥,即可得证;(2)首先连接BD ,得出AED ADB ∆∆∽,进而得出2A D A A E B =⋅,再根据勾股定理得出DE ;(3)首先连接DF ,过点D 作DG AB ⊥,得出AED AGD ∆∆≌,再得EDF GDB ∆∆≌,进而得出2AB AF EF =+,然后构建二次函数,即可得出其最大值.【详解】(1)证明:连接OD∵OD OA =∴12∠=∠∵AD 平分BAE ∠。
江苏省泰州市九年级(上)期末数学试卷解析版
江苏省泰州市九年级(上)期末数学试卷解析版一、选择题1.如图,已知点D 在ABC ∆的BC 边上,若CAD B ∠=∠,且:1:2CD AC =,则:CD BD =( )A .1:2B .2:3C .1:4D .1:32.已知34a b=(0a ≠,0b ≠),下列变形错误的是( ) A .34a b = B .34a b =C .43b a = D .43a b =3.若关于x 的方程 ()2m 110x mx -+-= 是一元二次方程,则m 的取值范围是( ) A .m 1≠.B .m 1=.C .m 1≥D . m 0≠.4.在平面直角坐标系中,如图是二次函数y =ax 2+bx +c (a ≠0)的图象的一部分,给出下列命题:①a +b +c =0;②b >2a ;③方程ax 2+bx +c =0的两根分别为﹣3和1;④b 2﹣4ac >0,其中正确的命题有( )A .1个B .2个C .3个D .4个5.若将二次函数2y x 的图象先向左平移2个单位长度,再向下平移2个单位长度,则所得图象对应函数的表达式为( )A .2(2)2y x =++B .2(2)2y x =--C .2(2)2y x =+-D .2(2)2y x =-+6.下列函数中属于二次函数的是( ) A .y =12x B .y =2x 2-1C .y 23x +D .y =x 2+1x+1 7.一个扇形的半径为4,弧长为2π,其圆心角度数是( ) A .45B .60C .90D .1808.如图示,二次函数2y x mx =-+的图像与x 轴交于坐标原点和()4,0,若关于x 的方程20x mx t -+=(t 为实数)在15x <<的范围内有解,则t 的取值范围是( )A .53t -<<B .5t >-C .34t <≤D .54t -<≤9.如图,四边形ABCD 中,90BAD ACB ∠=∠=,AB AD =,4AC BC =,设CD 的长为x ,四边形ABCD 的面积为y ,则y 与x 之间的函数关系式是( )A .2225y x = B .2425y x = C .225y x = D .245y x =10.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 7211.如图,在⊙O 中,AB 为直径,圆周角∠ACD=20°,则∠BAD 等于( )A .20°B .40°C .70°D .80°12.如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( )A .2332π-B .233π- C .32π-D .3π-13.如图,O 的半径为2,弦2AB =,点P 为优弧AB 上一动点,60PAC ∠=︒,交直线PB 于点C ,则ABC 的最大面积是 ( )A .12B .1C .2D .214.在△ABC 中,点D 、E 分别在AB ,AC 上,DE ∥BC ,AD :DB =1:2,,则:ADE ABC S S ∆∆=( ), A .19B .14C .16 D .1315.下列方程中,是一元二次方程的是( ) A .2x +y =1B .x 2+3xy =6C .x +1x=4 D .x 2=3x ﹣2二、填空题16.已知∠A =60°,则tan A =_____.17.如图,已知菱形ABCD 中,4AB =,C ∠为钝角,AM BC ⊥于点M ,N 为AB 的中点,连接DN ,MN .若90DNM ∠=︒,则过M 、N 、D 三点的外接圆半径为______.18.设1x ,2x 是关于x 的一元二次方程240x x +-=的两根,则1212x x x x ++=______.19.已知扇形的圆心角为90°,弧长等于一个半径为5cm 的圆的周长,用这个扇形恰好围成一个圆锥的侧面(接缝忽略不计).则该圆锥的高为__________cm .20.如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,D 是以点A 为圆心2为半径的圆上一点,连接BD ,M 为BD 的中点,则线段CM 长度的最小值为__________.21.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径2r cm =,扇形的圆心角120θ=,则该圆锥的母线长l 为___cm .22.在▱ABCD 中,∠ABC 的平分线BF 交对角线AC 于点E ,交AD 于点F .若AB BC =35,则EFBF的值为_____.23.一天,小青想利用影子测量校园内一根旗杆的高度,在同一时刻内,小青的影长为2米,旗杆的影长为20米,若小青的身高为1.60米,则旗杆的高度为__________米.24.圆锥的母线长是5 cm,底面半径长是3 cm,它的侧面展开图的圆心角是____.25.方程290x 的解为________.26.如图,P 为O 外一点,PA 切O 于点A ,若3PA =,45APO ∠=︒,则O 的半径是______.27.二次函数2y ax bx c =++的图象如图所示,若点()11,A y ,()23,B y 是图象上的两点,则1y ____2y (填“>”、“<”、“=”).28.一次安全知识测验中,学生得分均为整数,满分10分,这次测验中甲、乙两组学生人数都为6人,成绩如下:甲:7,9,10,8,5,9;乙:9,6,8,10,7,8. (1)请补充完整下面的成绩统计分析表:平均分 方差 众数 中位数甲组 89乙组5388(2)甲组学生说他们的众数高于乙组,所以他们的成绩好于乙组,但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组,请你给出一条支持乙组学生观点的理由_____________________________.29.如图,C 、D 是线段AB 的两个黄金分割点,且CD =1,则线段AB 的长为_____.30.若二次函数24y x x =-的图像在x 轴下方的部分沿x 轴翻折到x 轴上方,图像的其余部分保持不变,翻折后的图像与原图像x 轴上方的部分组成一个形如“W ”的新图像,若直线y =-2x +b 与该新图像有两个交点,则实数b 的取值范围是__________三、解答题31.某公司经销一种成本为10元的产品,经市场调查发现,在一段时间内,销售量y (件)与销售单价x ( 元/件 )的关系如下表:()x元/件⋯15202530⋯y()件⋯550500450400⋯设这种产品在这段时间内的销售利润为w(元),解答下列问题:(1)如y是x的一次函数,求y与x的函数关系式;(2)求销售利润w与销售单价x之间的函数关系式;(3)求当x为何值时,w的值最大?最大是多少?32.如图,有一路灯杆AB(底部B不能直接到达),在灯光下,小明在点D处测得自己的影长DF=3m,沿BD方向到达点F处再测得自己得影长FG=4m,如果小明的身高为1.6m,求路灯杆AB的高度.33.如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,∠ACB=90°,∠BAC=30°,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s 的速度向右移动.(1)当点B于点O重合的时候,求三角板运动的时间;(2)三角板继续向右运动,当B点和E点重合时,AC与半圆相切于点F,连接EF,如图2所示.①求证:EF平分∠AEC;②求EF的长.34.对于实数a,b,我们可以用{}max,a b表示a,b两数中较大的数,例如{}max3,13-=,{}max2,22=.类似的若函数y1、y2都是x的函数,则y=min{y1, y2}表示函数y1和y2的取小函数.(1)设1y x=,21 =yx ,则函数1max,y xx⎧⎫=⎨⎬⎩⎭的图像应该是___________中的实线部分.(2)请在下图中用粗实线描出函数()(){}22max 2,2y x x =---+的图像,观察图像可知当x 的取值范围是_____________________时,y 随x 的增大而减小.(3)若关于x 的方程()(){}22max 2,20x x t ---+-=有四个不相等的实数根,则t 的取值范围是_____________________.35.如图,AD 、A ′D ′分别是△ABC 和△A ′B ′C ′的中线,且AB BD ADA B B D A D ==''''''.判断△ABC 和△A ′B ′C ′是否相似,并说明理由.四、压轴题36.如图,在平面直角坐标系中,直线l :y =﹣13x +2与x 轴交于点B ,与y 轴交于点A ,以AB 为斜边作等腰直角△ABC ,使点C 落在第一象限,过点C 作CD ⊥AB 于点D ,作CE ⊥x 轴于点E ,连接ED 并延长交y 轴于点F .(1)如图(1),点P 为线段EF 上一点,点Q 为x 轴上一点,求AP +PQ 的最小值. (2)将直线l 进行平移,记平移后的直线为l 1,若直线l 1与直线AC 相交于点M ,与y 轴相交于点N ,是否存在这样的点M 、点N ,使得△CMN 为等腰直角三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.37.如图,在▱ABCD中,AB=4,BC=8,∠ABC=60°.点P是边BC上一动点,作△PAB的外接圆⊙O交BD于E.(1)如图1,当PB=3时,求PA的长以及⊙O的半径;(2)如图2,当∠APB=2∠PBE时,求证:AE平分∠PAD;(3)当AE与△ABD的某一条边垂直时,求所有满足条件的⊙O的半径.38.如图,在平面直角坐标系中,直线l分别交x轴、y轴于点A,B,∠BAO = 30°.抛物线y = ax2 + bx + 1(a < 0)经过点A,B,过抛物线上一点C(点C在直线l上方)作CD∥BO交直线l于点D,四边形OBCD是菱形.动点M在x轴上从点E( -3,0)向终点A匀速运动,同时,动点N在直线l上从某一点G向终点D匀速运动,它们同时到达终点.(1)求点D的坐标和抛物线的函数表达式.(2)当点M运动到点O时,点N恰好与点B重合.①过点E作x轴的垂线交直线l于点F,当点N在线段FD上时,设EM = m,FN = n,求n 关于m的函数表达式.②求△NEM面积S关于m的函数表达式以及S的最大值.39.()1尺规作图1:已知:如图,线段AB 和直线且点B 在直线上求作:点C ,使点C 在直线上并且使ABC 为等腰三角形. 作图要求:保留作图痕迹,不写作法,做出所有符合条件的点C .()2特例思考:如图一,当190∠=时,符合()1中条件的点C 有______个;如图二,当160∠=时,符合()1中条件的点C 有______个.()3拓展应用:如图,AOB 45∠=,点M ,N 在射线OA 上,OM x =,ON x 2=+,点P 是射线OB 上的点.若使点P ,M ,N 构成等腰三角形的点P 有且只有三个,求x 的值.40.如图1,ABC ∆是⊙O 的内接等腰三角形,点D 是弧AC 上异于,A C 的一个动点,射线AD 交底边BC 所在的直线于点E ,连结BD 交AC 于点F . (1)求证:ADB CDE ∠=∠;(2)若7BD =,3CD =,①求AD DE •的值;②如图2,若AC BD ⊥,求tan ACB ∠;(3)若5tan 2CDE ∠=,记AD x =,ABC ∆面积和DBC ∆面积的差为y ,直接写出y 关于x 的函数关系式.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D解析:D 【解析】 【分析】根据两角对应相等证明△CAD ∽△CBA ,由对应边成比例得出线段之间的倍数关系即可求解. 【详解】解:∵∠CAD=∠B ,∠C=∠C, ∴△CAD ∽△CBA,∴12CD CA CA CB, ∴CA=2CD,CB=2CA, ∴CB=4CD, ∴BD=3CD,∴13CD BD. 故选:D. 【点睛】本题考查相似三角形的判定与性质,得出线段之间的关系是解答此题的关键.2.B解析:B 【解析】 【分析】根据两内项之积等于两外项之积对各项分析判断即可得解. 【详解】 解:由34a b,得出,3b=4a, A.由等式性质可得:3b=4a ,正确; B.由等式性质可得:4a=3b ,错误; C. 由等式性质可得:3b=4a ,正确; D. 由等式性质可得:4a=3b ,正确. 故答案为:B. 【点睛】本题考查的知识点是等式的性质,熟记等式性质两内项之积等于两外项之积是解题的关键.3.A解析:A 【解析】 【分析】根据一元二次方程的定义可得m ﹣1≠0,再解即可. 【详解】由题意得:m ﹣1≠0,解得:m≠1,故选A .【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.4.C解析:C【解析】【分析】根据二次函数的图象可知抛物线开口向上,对称轴为x =﹣1,且过点(1,0),根据对称轴可得抛物线与x 轴的另一个交点为(﹣3,0),把(1,0)代入可对①做出判断;由对称轴为x =﹣1,可对②做出判断;根据二次函数与一元二次方程的关系,可对③做出判断,根据根的判别式解答即可.【详解】由图象可知:抛物线开口向上,对称轴为直线x =﹣1,过(1,0)点,把(1,0)代入y =ax 2+bx +c 得,a +b +c =0,因此①正确;对称轴为直线x =﹣1,即:﹣2b a=﹣1,整理得,b =2a ,因此②不正确; 由抛物线的对称性,可知抛物线与x 轴的两个交点为(1,0)(﹣3,0),因此方程ax 2+bx +c =0的两根分别为﹣3和1;故③是正确的;由图可得,抛物线有两个交点,所以b 2﹣4ac >0,故④正确;故选C .【点睛】考查二次函数的图象和性质,抛物线通常从开口方向、对称轴、顶点坐标、与x 轴,y 轴的交点,以及增减性上寻找其性质.5.C解析:C【解析】【分析】根据抛物线的平移规律:上加下减,左加右减解答即可.【详解】解:将2y x 的图象先向左平移2个单位长度,再向下平移2个单位长度,则所得二次函数的表达式为:2(2)2y x =+-.故选:C.【点睛】本题考查了抛物线的平移,属于基本知识题型,熟练掌握抛物线的平移规律是解题的关键.6.B解析:B【解析】【分析】根据反比例函数的定义,二次函数的定义,一次函数的定义对各选项分析判断后利用排除法求解.【详解】解:A. y=12x是正比例函数,不符合题意;B. y=2x2-1是二次函数,符合题意;C. yD. y=x2+1x+1不是二次函数,不符合题意.故选:B.【点睛】本题考查了二次函数的定义,解题关键是掌握一次函数、二次函数、反比例函数的定义.7.C解析:C【解析】【分析】根据弧长公式即可求出圆心角的度数.【详解】解:∵扇形的半径为4,弧长为2π,∴4 2180nππ⨯=解得:90n=,即其圆心角度数是90︒故选C.【点睛】此题考查的是根据弧长和半径求圆心角的度数,掌握弧长公式是解决此题的关键.8.D解析:D【解析】【分析】首先将()4,0代入二次函数,求出m,然后利用根的判别式和求根公式即可判定t的取值范围.【详解】将()4,0代入二次函数,得2440m-+=∴4m=∴方程为240x x t -+=∴4164t x ±-= ∵15x <<∴54t -<≤故答案为D .【点睛】此题主要考查二次函数与一元二次方程的综合应用,熟练掌握,即可解题.9.C解析:C【解析】【分析】四边形ABCD 图形不规则,根据已知条件,将△ABC 绕A 点逆时针旋转90°到△ADE 的位置,求四边形ABCD 的面积问题转化为求梯形ACDE 的面积问题;根据全等三角形线段之间的关系,结合勾股定理,把梯形上底DE ,下底AC ,高DF 分别用含x 的式子表示,可表示四边形ABCD 的面积.【详解】 作AE ⊥AC ,DE ⊥AE ,两线交于E 点,作DF ⊥AC 垂足为F 点,∵∠BAD=∠CAE=90°,即∠BAC+∠CAD=∠CAD+∠DAE∴∠BAC=∠DAE又∵AB=AD ,∠ACB=∠E=90°∴△ABC ≌△ADE (AAS )∴BC=DE ,AC=AE ,设BC=a ,则DE=a ,DF=AE=AC=4BC=4a ,CF=AC-AF=AC-DE=3a ,在Rt △CDF 中,由勾股定理得,CF 2+DF 2=CD 2,即(3a )2+(4a )2=x 2,解得:a=5x , ∴y=S 四边形ABCD =S 梯形ACDE =12×(DE+AC )×DF =12×(a+4a )×4a =10a 2=25x 2. 故选C .【点睛】本题运用了旋转法,将求不规则四边形面积问题转化为求梯形的面积,充分运用了全等三角形,勾股定理在解题中的作用.10.B解析:B【解析】【分析】根据已知条件想办法证明BG=GH=DH ,即可解决问题;【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC ,∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH ,∴S 平行四边形ABCD =6 S △AGH ,∴S △AGH :ABCD S 平行四边形=1:6,∵E 、F 分别是边BC 、CD 的中点, ∴12EF BD =, ∴14EFC BCDD S S =, ∴18EFC ABCD S S =四边形, ∴1176824AGH EFCABCD S S S +=+=四边形=7∶24, 故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.11.C解析:C【解析】【分析】连接OD,根据∠AOD=2∠ACD,求出∠AOD,利用等腰三角形的性质即可解决问题.【详解】连接OD.∵∠ACD=20°,∴∠AOD=2∠ACD=40°.∵OA=OD,∴∠BAD=∠ADO=12(180°﹣40°)=70°.故选C.【点睛】本题考查了圆周角定理、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.12.B解析:B【解析】【分析】根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.【详解】连接BD,∵四边形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等边三角形,∵AB=2,∴△ABD3,∵扇形BEF的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H , 在△ABG 和△DBH 中,2{34A AB BD ∠=∠=∠=∠,∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD =26021233602π⨯-⨯⨯ =233π-. 故选B . 13.B解析:B【解析】【分析】连接OA 、OB ,如图1,由2OA OB AB ===可判断OAB 为等边三角形,则60AOB ∠=︒,根据圆周角定理得1302APB AOB ∠=∠=︒,由于60PAC ∠=︒,所以90C ∠=︒,因为2AB =,则要使ABC 的最大面积,点C 到AB 的距离要最大;由90ACB ∠=︒,可根据圆周角定理判断点C 在D 上,如图2,于是当点C 在半圆的中点时,点C 到AB 的距离最大,此时ABC 为等腰直角三角形,从而得到ABC 的最大面积.【详解】解:连接OA 、OB ,如图1,2OA OB ==,2AB =,OAB ∴为等边三角形,60AOB ∴∠=︒,1302APB AOB ∴∠=∠=︒, 60PAC ∠=︒90ACP ∴∠=︒2AB =,要使ABC 的最大面积,则点C 到AB 的距离最大,作ABC 的外接圆D ,如图2,连接CD ,90ACB ∠=︒,点C 在D 上,AB 是D 的直径,当点C 半圆的中点时,点C 到AB 的距离最大,此时ABC 等腰直角三角形,CD AB ∴⊥,1CD =,12ABC S ∴=⋅AB ⋅CD 12112=⨯⨯=, ABC ∴的最大面积为1.故选B .【点睛】本题考查了圆的综合题:熟练掌握圆周角定理和等腰直角三角形的判断与性质;记住等腰直角三角形的面积公式.14.A解析:A【解析】【分析】根据DE ∥BC 得到△ADE ∽△ABC ,再结合相似比是AD :AB=1:3,因而面积的比是1:9.【详解】解:如图:∵DE ∥BC ,∴△ADE ∽△ABC ,∵AD :DB=1:2,∴AD :AB=1:3,∴S △ADE :S △ABC =1:9.故选:A .【点睛】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.15.D解析:D【解析】【分析】利用一元二次方程的定义判断即可.【详解】解:A、原方程为二元一次方程,不符合题意;B、原式方程为二元二次方程,不符合题意;C、原式为分式方程,不符合题意;D、原式为一元二次方程,符合题意,故选:D.【点睛】此题主要考查一元二次方程的识别,解题的关键是熟知一元二次方程的定义.二、填空题16.【解析】【分析】直接利用特殊角的三角函数值得出答案.【详解】tanA=tan60°=.故答案为:.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.【解析】【分析】直接利用特殊角的三角函数值得出答案.【详解】tan A=tan60°.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.17.【解析】【分析】通过延长MN交DA延长线于点E,DF⊥BC,构造全等三角形,根据全等性质证出DE=DM,,再通过AE=BM=CF,在Rt△DMF和Rt△DCF中,利用勾股定理列方程求DM长,根1【解析】【分析】通过延长MN 交DA 延长线于点E ,DF ⊥BC,构造全等三角形,根据全等性质证出DE=DM,,再通过AE=BM=CF,在Rt △DMF 和Rt △DCF 中,利用勾股定理列方程求DM 长,根据圆的性质即可求解.【详解】如图,延长MN 交DA 延长线于点E ,过D 作DF ⊥BC 交BC 延长线于F,连接MD,∵四边形ABCD 是菱形,∴AB=BC=CD=4,AD ∥BC,∴∠E=∠EMB, ∠EAN=∠NBM,∵AN=BN,∴△EAN ≌BMN,∴AE=BM,EN=MN,∵90DNM ∠=︒,∴DN ⊥EM,∴DE=DM,∵AM ⊥BC,DF ⊥BC,AB=DC,AM=DF∴△ABM ≌△DCF,∴BM=CF,设BM=x,则DE=DM=4+x,在Rt △DMF 中,由勾股定理得,DF 2=DM 2-MF 2=(4+x)2-42,在Rt △DCF 中,由勾股定理得,DF 2=DC 2-CF 2=4 2-x 2,∴(4+x)2-42=4 2-x 2,解得,x 1=2,x 2=232(不符合题意,舍去)∴DM=2,∴90DNM ∠=︒∴过M 、N 、D 三点的外接圆的直径为线段DM, ∴其外接圆的半径长为1312DM .31.【点睛】本题考查菱形的性质,全等的判定与性质,勾股定理及圆的性质的综合题目,根据已知条件结合图形找到对应的知识点,通过“倍长中线”构建“X 字型”全等模型是解答此题的突破口,也是解答此题的关键.18.-5.【解析】【分析】根据一元二次方程根与系数的关系即可求解.【详解】∵,是关于的一元二次方程的两根,∴,∴,故答案为:.【点睛】本题考查了一元二次方程根与系数的关系,如果,是方解析:-5.【解析】【分析】根据一元二次方程根与系数的关系即可求解.【详解】∵1x ,2x 是关于x 的一元二次方程240x x +-=的两根,∴121214x x x x +=-=-,, ∴()1212145x x x x ++=-+-=-,故答案为:5-.【点睛】本题考查了一元二次方程根与系数的关系,如果1x ,2x 是方程20x px q ++=的两根,那么12x x p +=﹣,12x x q =.19.【解析】 【分析】利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高. 【详解】解:设扇形半径为R ,根据弧长公式得, ∴R解析:【解析】 【分析】利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高. 【详解】解:设扇形半径为R ,根据弧长公式得,90=25180R∴R=20,225515 .故答案为: 【点睛】本题考查弧长公式,及圆锥的高与母线、底面半径之间的关系,底面周长等于扇形的弧长这个等量关系和勾股定理是解答此题的关键.20.【解析】 【分析】作AB 的中点E,连接EM,CE,AD 根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM 和CE 长,再根据三角形的三边关系确定CM 长度的范围,从而确定CM 的最小值. 【解析:32【解析】 【分析】作AB的中点E,连接EM,CE,AD根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM和CE长,再根据三角形的三边关系确定CM长度的范围,从而确定CM的最小值.【详解】解:如图,取AB的中点E,连接CE,ME,AD,∵E是AB的中点,M是BD的中点,AD=2,∴EM为△BAD的中位线,∴112122EM AD ,在Rt△ACB中,AC=4,BC=3,由勾股定理得,AB=2222435AC BC+=+=∵CE为Rt△ACB斜边的中线,∴1155222 CE AB,在△CEM中,551122CM ,即3722CM,∴CM的最大值为3 2 .故答案为:3 2 .【点睛】本题考查了圆的性质,直角三角形的性质及中位线的性质,利用三角形三边关系确定线段的最值问题,构造一个以CM为边,另两边为定值的的三角形是解答此题的关键和难点. 21.【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长cm,设圆锥的母线长为,则:,解得,故答案为. 【点睛】 本解析:【解析】 【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长. 【详解】圆锥的底面周长224ππ=⨯=cm , 设圆锥的母线长为R ,则: 1204180Rππ⨯=, 解得6R =, 故答案为6. 【点睛】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为:180n rπ. 22.. 【解析】 【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解. 【详解】解:∵四边形ABCD 是平行四边形, ∴AD∥BC, ∴∠AFB=∠EBC, ∵B解析:38. 【解析】 【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解. 【详解】解:∵四边形ABCD 是平行四边形, ∴AD ∥BC , ∴∠AFB =∠EBC , ∵BF 是∠ABC 的角平分线,∴∠EBC =∠ABE =∠AFB , ∴AB =AF ,∴35AB AF BC BC ==, ∵AD ∥BC ,∴△AFE ∽△CBE ,∴35AF EF BC BE ==, ∴38EF BF =; 故答案为:38.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知平行四边形的性质、角平分线的性质及相似三角形的判定定理.23.16 【解析】 【分析】易得△AOB ∽△ECD ,利用相似三角形对应边的比相等可得旗杆OA 的长度. 【详解】解:∵OA ⊥DA ,CE ⊥DA ,∴∠CED=∠OAB=90°, ∵CD ∥OE , ∴∠C解析:16 【解析】 【分析】易得△AOB ∽△ECD ,利用相似三角形对应边的比相等可得旗杆OA 的长度. 【详解】解:∵OA ⊥DA ,CE ⊥DA ,∴∠CED=∠OAB=90°, ∵CD ∥OE ,∴∠CDA=∠OBA,∴△AOB∽△ECD,∴CE OA16OA,DE AB220==,解得OA=16.故答案为16.24.216°.【解析】【分析】【详解】圆锥的底面周长为2π×3=6π(cm),设圆锥侧面展开图的圆心角是n°,则=6π,解得n=216.故答案为216°.【点睛】本题考查了圆锥的计算,解析:216°.【解析】【分析】【详解】圆锥的底面周长为2π×3=6π(cm),设圆锥侧面展开图的圆心角是n°,则π5 180n⨯=6π,解得n=216.故答案为216°.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.25.【解析】【分析】这个式子先移项,变成x2=9,从而把问题转化为求9的平方根.【详解】解:移项得x2=9,解得x=±3.故答案为.【点睛】本题考查了解一元二次方程-直接开平方法,解这x=±解析:3【解析】【分析】这个式子先移项,变成x2=9,从而把问题转化为求9的平方根.【详解】解:移项得x2=9,解得x=±3.x=±.故答案为3【点睛】本题考查了解一元二次方程-直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.注意:(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.26.3【解析】【分析】由题意连接OA,根据切线的性质得出OA⊥PA,由已知条件可得△OAP是等腰直角三角形,进而可求出OA的长,即可求解.【详解】解:连接OA,∵PA切⊙O于点A,∴OA解析:3【解析】【分析】由题意连接OA,根据切线的性质得出OA⊥PA,由已知条件可得△OAP是等腰直角三角形,进而可求出OA的长,即可求解.【详解】解:连接OA,∵PA 切⊙O 于点A , ∴OA ⊥PA , ∴∠OAP=90°, ∵∠APO=45°, ∴OA=PA=3, 故答案为:3. 【点睛】本题考查切线的性质即圆的切线垂直于经过切点的半径.若出现圆的切线,连接过切点的半径,构造定理图,得出垂直关系.27.> 【解析】 【分析】利用函数图象可判断点,都在对称轴右侧的抛物线上,然后根据二次函数的性质可判断与的大小. 【详解】解:∵抛物线的对称轴在y 轴的左侧,且开口向下, ∴点,都在对称轴右侧的抛物线解析:> 【解析】 【分析】利用函数图象可判断点()11,A y ,()23,B y 都在对称轴右侧的抛物线上,然后根据二次函数的性质可判断1y 与2y 的大小. 【详解】解:∵抛物线的对称轴在y 轴的左侧,且开口向下, ∴点()11,A y ,()23,B y 都在对称轴右侧的抛物线上, ∴1y >2y . 故答案为>. 【点睛】本题考查二次函数图象上点的坐标特征,二次函数的性质.解决本题的关键是判断点A 和点B 都在对称轴的右侧.28.(1),8.5,8;(2)两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定. 【解析】 【分析】(1)根据方差、平均数的计算公式求出甲组方差和乙组平均数,根据中位数的定义,取出甲组中解析:(1)83,8.5,8;(2)两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定. 【解析】 【分析】(1)根据方差、平均数的计算公式求出甲组方差和乙组平均数,根据中位数的定义,取出甲组中位数;(2)根据(1)中表格数据,分别从反应数据集中程度的中位数和平均分及反应数据波动程度的方差比较甲、乙两组,由此找出乙组优于甲组的一条理由. 【详解】 (1)甲组方差:()()()()()()22222218789810888589863⎡⎤-+-+-+-+-+-=⎣⎦ 甲组数据由小到大排列为:5,7,8,9,9,10 故甲组中位数:(8+9)÷2=8.5 乙组平均分:(9+6+8+10+7+8)÷6=8 填表如下:故答案为:83,8.5,8;两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定. 【点睛】本题考查数据分析,熟练掌握反应数据集中趋势的中位数、众数和平均数以及反应数据波动程度的方差的计算公式和定义是解题关键.29.2+ 【解析】 【分析】设线段AB =x ,根据黄金分割点的定义可知AD =AB ,BC =AB ,再根据CD =AB ﹣AD ﹣BC 可列关于x 的方程,解方程即可 【详解】∵线段AB =x ,点C 、D 是AB 黄金分割点解析:【解析】 【分析】设线段AB =x ,根据黄金分割点的定义可知AD =352AB ,BC =352AB ,再根据CD=AB ﹣AD ﹣BC 可列关于x 的方程,解方程即可 【详解】∵线段AB =x ,点C 、D 是AB 黄金分割点, ∴较小线段AD =BC =35x -, 则CD =AB ﹣AD ﹣BC =x ﹣2×352x -=1, 解得:x =2+5. 故答案为:2+5 【点睛】本题考查黄金分割的知识,解题的关键是掌握黄金分割中,较短的线段=原线段的352倍.30.【解析】 【分析】当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线与新图象有三个交点,当直线y=-2x+b 处于直线m 、n 之间时,与该新图 解析:18b -<<【解析】 【分析】当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线与新图象有三个交点,当直线y=-2x+b 处于直线m 、n 之间时,与该新图象有两个公共点,即可求解. 【详解】解:设y=x 2-4x 与x 轴的另外一个交点为B ,令y=0,则x=0或4,过点B (4,0), 由函数的对称轴,二次函数y=x 2-4x 翻折后的表达式为:y=-x 2+4x ,。
泰州市九年级上学期期末数学试卷 (解析版)
泰州市九年级上学期期末数学试卷 (解析版)一、选择题1.已知一元二次方程2330p p --=,2330q q --=,则p q +的值为( ) A .3- B .3C .3-D .32.如图,CD 为O 的直径,弦AB CD ⊥于点E ,2DE =,8AB =,则O 的半径为( )A .5B .8C .3D .103.如图,已知一组平行线a ∥b ∥c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且AB =1.5,BC =2,DE =1.8,则EF =( )A .4.4B .4C .3.4D .2.44.若关于x 的一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,则实数k 的取值范围是( ) A .k >﹣1B .k <1且k≠0C .k≥﹣1且k≠0D .k >﹣1且k≠05.如图,在平面直角坐标系xOy 中,点A 为(0,3),点B 为(2,1),点C 为(2,-3).则经画图操作可知:△ABC 的外心坐标应是( )A .()0,0B .()1,0C .()2,1--D .()2,06.分别写有数字﹣4,0,﹣1,6,9,2的六张卡片,除数字外其它均相同,从中任抽一张,则抽到偶数的概率是()A.16B.13C.12D.237.如图,点A、B、C是⊙O上的三点,∠BAC= 40°,则∠OBC的度数是()A.80°B.40°C.50°D.20°8.某篮球队14名队员的年龄如表:年龄(岁)18192021人数5432则这14名队员年龄的众数和中位数分别是()A.18,19 B.19,19 C.18,4 D.5,4 9.已知圆内接正六边形的边长是1,则该圆的内接正三角形的面积为()A.433B.23C.334D.32210.已知a是方程x2+3x﹣1=0的根,则代数式a2+3a+2019的值是( )A.2020 B.﹣2020 C.2021 D.﹣202111.已知一组数据共有20个数,前面14个数的平均数是10,后面6个数的平均数是15,则这20个数的平均数是()A.23B.1.15C.11.5D.12.512.如图,∠1=∠2,要使△ABC∽△ADE,只需要添加一个条件即可,这个条件不可能是()A.∠B=∠D B.∠C=∠E C.AD ABAE AC=D.AC BCAE DE=13.已知△ABC≌△DEF,∠A=60°,∠E=40°,则∠F的度数为()A.40 B.60 C.80 D.10014.在△ABC中,∠C=90°,tan A=13,那么sin A的值是()A .12B .13C .1010D .3101015.如图,AB ,AM ,BN 分别是⊙O 的切线,切点分别为 P ,M ,N .若 MN ∥AB ,∠A =60°,AB =6,则⊙O 的半径是( )A .32B .3C .323 D .3二、填空题16.已知一组数据为1,2,3,4,5,则这组数据的方差为_____.17.如图,点A 、B 分别在y 轴和x 轴正半轴上滑动,且保持线段AB =4,点D 坐标为(4,3),点A 关于点D 的对称点为点C ,连接BC ,则BC 的最小值为_____.18.如图,若抛物线2y ax h =+与直线y kx b =+交于()3,A m ,()2,B n -两点,则不等式2ax b kx h -<-的解集是______.19.如图,用一张半径为10 cm 的扇形纸板做一个圆锥形帽子(接缝忽略不计),如果做成的圆锥形帽子的高为8 cm ,那么这张扇形纸板的弧长是________cm .20.如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,D 是以点A 为圆心2为半径的圆上一点,连接BD ,M 为BD 的中点,则线段CM 长度的最小值为__________.21.如图,利用标杆BE 测量建筑物的高度,已知标杆BE 高1.2m ,测得1.6,12.4AB m BC m ==,则建筑物CD 的高是__________m .22.如图,曲线AB 是顶点为B ,与y 轴交于点A 的抛物线y =﹣x 2+4x +2的一部分,曲线BC 是双曲线ky x=的一部分,由点C 开始不断重复“A ﹣B ﹣C ”的过程,形成一组波浪线,点P (2018,m )与Q (2025,n )均在该波浪线上,则mn =_____.23.已知关于x 的一元二次方程2230x x k -+=有两个不相等的实数根,则k 的取值范围是________.24.某盏路灯照射的空间可以看成如图所示的圆锥,它的高AO =8米,母线AB =10米,则该圆锥的侧面积是_____平方米(结果保留π).25.甲、乙两同学近期6次数学单元测试成绩的平均分相同,甲同学成绩的方差S 甲2=6.5分2,乙同学成绩的方差S 乙2=3.1分2,则他们的数学测试成绩较稳定的是____(填“甲”或“乙”).26.如图,123////l l l ,直线a 、b 与1l 、2l 、3l 分别相交于点A 、B 、C 和点D 、E 、F .若AB=3,BC=5,DE=4,则EF 的长为______.27.若a b b -=23,则ab的值为________. 28.如图,边长为2的正方形ABCD ,以AB 为直径作O ,CF 与O 相切于点E ,与AD 交于点F ,则CDF ∆的面积为__________.29.设二次函数y =x 2﹣2x ﹣3与x 轴的交点为A ,B ,其顶点坐标为C ,则△ABC 的面积为_____.30.顶点在原点的二次函数图象先向左平移1个单位长度,再向下平移2个单位长度后,所得的抛物线经过点(0,﹣3),则平移后抛物线相应的函数表达式为_____.三、解答题31.解方程(1)x 2-6x -7=0; (2) (2x -1)2=9.32.某商场销售一批衬衫,每件成本为50元,如果按每件60元出售,可销售800件;如果每件提价5元出售,其销售量就减少100件,如果商场销售这批衬衫要获利润12000元,又使顾客获得更多的优惠,那么这种衬衫售价应定为多少元?(1)设提价了x 元,则这种衬衫的售价为___________元,销售量为____________件. (2)列方程完成本题的解答.33.(1)(学习心得)于彤同学在学习完“圆”这一章内容后,感觉到一些几何问题如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图1,在ABC 中,,90AB AC BAC ∠==,D 是ABC 外一点,且AD AC =,求BDC ∠的度数.若以点A为圆心,AB 为半径作辅助A ,则C 、D 必在A 上,BAC ∠是A 的圆心角,而BDC ∠是圆周角,从而可容易得到BDC ∠=________.(2)(问题解决)如图2,在四边形ABCD 中,90BAD BCD ∠=∠=,25BDC ∠=,求BAC ∠的度数.(3)(问题拓展)如图3,,E F 是正方形ABCD 的边AD 上两个动点,满足AE DF =.连接交于点,连接CF 交BD 于点G ,连接BE 交于点H ,若正方形的边长为2,则线段DH 长度的最小值是_______.34.一个四边形被一条对角线分割成两个三角形,如果被分割的两个三角形相似,我们被称为该对角线为相似对角线.(1)如图1,正方形ABCD 的边长为4,E 为AD 的中点,1AF =,连结CE .CP ,求证:EF 为四边形AECF 的相似对角线.(2)在四边形ABCD 中,120BAD ︒∠=,3AB =,6AC =,AC 平分BAD ∠,且AC 是四边形ABCD 的相似对角线,求BD 的长.(3)如图2,在矩形ABCD 中,6AB =,4BC =,点E 是线段AB (不取端点A .B )上的一个动点,点F 是射线AD 上的一个动点,若EF 是四边形AECF 的相似对角线,求BE 的长.(直接写出答案)35.已知A (n ,-2),B (1,4)是一次函数y =kx +b 的图象和反比例函数y=mx的图象的两个交点,直线AB 与y 轴交于点C .(1)求反比例函数和一次函数的关系式; (2)求△AOC 的面积;(3)求不等式kx +b -mx<0的解集(直接写出答案).四、压轴题36.如图1,△ABC 中,AB=AC=4,∠BAC=100,D 是BC 的中点.小明对图1进行了如下探究:在线段AD 上任取一点E ,连接EB .将线段EB 绕点E 逆时针旋转80°,点B 的对应点是点F ,连接BF ,小明发现:随着点E 在线段AD 上位置的变化,点F 的位置也在变化,点F 可能在直线AD 的左侧,也可能在直线AD 上,还可能在直线AD 的右侧.请你帮助小明继续探究,并解答下列问题:(1)如图2,当点F 在直线AD 上时,连接CF ,猜想直线CF 与直线AB 的位置关系,并说明理由.(2)若点F 落在直线AD 的右侧,请在备用图中画出相应的图形,此时(1)中的结论是否仍然成立,为什么?(3)当点E 在线段AD 上运动时,直接写出AF 的最小值.37.问题提出(1)如图①,在ABC 中,2,6,135AB AC BAC ==∠=,求ABC 的面积.问题探究(2)如图②,半圆O 的直径10AB =,C 是半圆AB 的中点,点D 在BC 上,且2CD BD =,点P 是AB 上的动点,试求PC PD +的最小值.问题解决(3)如图③,扇形AOB 的半径为20,45AOB ∠=在AB 选点P ,在边OA 上选点E ,在边OB 上选点F ,求PE EF FP ++的长度的最小值.38.如图,等边ABC 内接于O ,P 是AB 上任一点(点P 不与点A 、B 重合),连接AP 、BP ,过点C 作CMBP 交PA 的延长线于点M .(1)求APC ∠和BPC ∠的度数; (2)求证:ACM BCP △≌△;(3)若1PA =,2PB =,求四边形PBCM 的面积; (4)在(3)的条件下,求AB 的长度. 39.已知抛物线y =﹣14x 2+bx +c 经过点A (4,3),顶点为B ,对称轴是直线x =2.(1)求抛物线的函数表达式和顶点B 的坐标;(2)如图1,抛物线与y 轴交于点C ,连接AC ,过A 作AD ⊥x 轴于点D ,E 是线段AC 上的动点(点E 不与A ,C 两点重合);(i )若直线BE 将四边形ACOD 分成面积比为1:3的两部分,求点E 的坐标; (ii )如图2,连接DE ,作矩形DEFG ,在点E 的运动过程中,是否存在点G 落在y 轴上的同时点F 恰好落在抛物线上?若存在,求出此时AE 的长;若不存在,请说明理由. 40.如图1,ABC ∆是⊙O 的内接等腰三角形,点D 是弧AC 上异于,A C 的一个动点,射线AD 交底边BC 所在的直线于点E ,连结BD 交AC 于点F . (1)求证:ADB CDE ∠=∠;(2)若7BD =,3CD =,①求AD DE •的值;②如图2,若AC BD ⊥,求tan ACB ∠;(3)若5tan 2CDE ∠=,记AD x =,ABC ∆面积和DBC ∆面积的差为y ,直接写出y 关于x 的函数关系式.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据题干可以明确得到p,q 是方程2330x x -=的两根,再利用韦达定理即可求解. 【详解】解:由题可知p,q 是方程2330x x -=的两根, ∴3, 故选B. 【点睛】本题考查了一元二次方程的概念,韦达定理的应用,熟悉韦达定理的内容是解题关键.2.A解析:A 【解析】 【分析】作辅助线,连接OA ,根据垂径定理得出AE=BE=4,设圆的半径为r ,再利用勾股定理求解即可. 【详解】解:如图,连接OA ,设圆的半径为r ,则OE=r-2, ∵弦AB CD ⊥, ∴AE=BE=4,由勾股定理得出:()22242r r =+-, 解得:r=5, 故答案为:A. 【点睛】本题考查的知识点主要是垂径定理、勾股定理及其应用问题;解题的关键是作辅助线,灵活运用勾股定理等几何知识点来分析、判断或解答.3.D解析:D 【解析】 【分析】直接利用平行线分线段成比例定理对各选项进行判断即可. 【详解】 解:∵a ∥b ∥c , ∴AB DEBC EF=, ∵AB =1.5,BC =2,DE =1.8,∴1.5 1.82EF = , ∴EF=2.4 故选:D . 【点睛】本题考查了平行线分线段成比例,掌握三条平行线截两条直线,所得的对应线段成比例是关键.4.D解析:D【解析】∵一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴△=b2﹣4ac=4+4k>0,且k≠0.解得:k>﹣1且k≠0.故选D.考点:一元二次方程的定义,一元二次方程根的判别式,分类思想的应用.5.C解析:C【解析】外心在BC的垂直平分线上,则外心纵坐标为-1.故选C.6.D解析:D【解析】【分析】根据概率公式直接计算即可.【详解】解:在这6张卡片中,偶数有4张,所以抽到偶数的概率是46=23,故选:D.【点睛】本题主要考查了随机事件的概率,随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,灵活利用概率公式是解题的关键.7.C解析:C【解析】∵∠BOC=2∠BAC,∠BAC=40°∴∠BOC=80°,∵OB=OC,∴∠OBC=∠OCB=(180°-80°)÷2=50°故选C.8.A解析:A【解析】【分析】根据众数和中位数的定义求解可得.【详解】∵这组数据中最多的数是18,∴这14名队员年龄的众数是18岁,∵这组数据中间的两个数是19、19,∴中位数是19192+=19(岁),故选:A.【点睛】本题考查众数和中位数,将一组数据从小到大的顺序排列,如果数据的个数是奇数,则处于中间位置的数称为这组数据的中位数;如果数据的个数是偶数,则中间两个数的平均数称为这组数据的中位数;一组数据中出现次数最多的数据称为这组数据的众数;熟练掌握定义是解题关键.9.C解析:C【解析】【分析】根据圆内接正六边形的边长是1可得出圆的半径为1,利用勾股定理可求出该内接正三角形的边长为3,高为32,从而可得出面积.【详解】解:由题意可得出圆的半径为1,∵△ABC为正三角形,AO=1,AD BC⊥,BD=CD,AO=BO,∴1DO2=,32AD=,∴223BD OB OD=-=,∴BC3=∴1333322ABCS=⨯=.故选:C.【点睛】本题考查的知识点是正多边形的性质以及解直角三角形,根据圆内接正多边形的边长求出圆的半径是解此题的关键.10.A解析:A【解析】【分析】根据一元二次方程的解的定义,将a代入已知方程,即可求得a2+3a的值,然后再代入求值即可.【详解】解:根据题意,得a2+3a﹣1=0,解得:a2+3a=1,所以a2+3a+2019=1+2019=2020.故选:A.【点睛】此题考查的是一元二次方程的解,掌握一元二次方程解的定义是解决此题的关键11.C解析:C【解析】【分析】由题意可以求出前14个数的和,后6个数的和,进而得到20个数的总和,从而求出20个数的平均数.【详解】解:由题意得:(10×14+15×6)÷20=11.5,故选:C.【点睛】此题考查平均数的意义和求法,求出这些数的总和,再除以总个数即可..12.D解析:D【解析】【分析】先求出∠DAE=∠BAC,再根据相似三角形的判定方法分析判断即可.【详解】∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,∴∠DAE=∠BAC,A、添加∠B=∠D可利用两角法:有两组角对应相等的两个三角形相似可得△ABC∽△ADE,故此选项不合题意;B、添加∠C=∠E可利用两角法:有两组角对应相等的两个三角形相似可得△ABC∽△ADE,故此选项不合题意;C 、添加AD AB AE AC=可利用两边及其夹角法:两组边对应成比例且夹角相等的两个三角形相似,故此选项不合题意; D 、添加AC BC AE DE=不能证明△ABC ∽△ADE ,故此选项符合题意; 故选:D .【点睛】 本题考查相似三角形的判定,解题的关键是掌握相似三角形判定方法:两角法、两边及其夹角法、三边法、平行线法.13.C解析:C【解析】【分析】根据全等三角形对应角相等可得∠B=∠E=40°,∠F=∠C ,然后利用三角形内角和定理计算出∠C 的度数,进而可得答案.【详解】解:∵△ABC ≌△DEF ,∴∠B=∠E=40°,∠F=∠C ,∵∠A=60°,∴∠C=180°-60°-40°=80°,∴∠F=80°,故选:C .【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.14.C解析:C【解析】【分析】根据正切函数的定义,可得BC ,AC 的关系,根据勾股定理,可得AB 的长,根据正弦函数的定义,可得答案.【详解】tan A =BC AC =13,BC =x ,AC =3x , 由勾股定理,得AB x ,sin A =BC AB =10, 故选:C .【点睛】本题考查了同角三角函数的关系,利用正切函数的定义得出BC=x,AC=3x是解题关键.15.D解析:D【解析】【分析】根据题意可判断四边形ABNM为梯形,再由切线的性质可推出∠ABN=60°,从而判定△APO≌△BPO,可得AP=BP=3,在直角△APO中,利用三角函数可解出半径的值.【详解】解:连接OP,OM,OA,OB,ON∵AB,AM,BN 分别和⊙O 相切,∴∠AMO=90°,∠APO=90°,∵MN∥AB,∠A=60°,∴∠AMN=120°,∠OAB=30°,∴∠OMN=∠ONM=30°,∵∠BNO=90°,∴∠ABN=60°,∴∠ABO=30°,在△APO和△BPO中,OAP OBPAPO BPOOP OP∠=∠⎧⎪∠=∠⎨⎪=⎩,△APO≌△BPO(AAS),∴AP=12AB=3,∴tan∠OAP=tan30°=OPAP=33,∴OP=3,即半径为3.故选D.【点睛】本题考查了切线的性质,切线长定理,解直角三角形,全等三角形的判定和性质,关键是说明点P是AB中点,难度不大.二、填空题16.【解析】试题分析:先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案.由平均数的公式得:(1+2+3+4+5)÷5=3,∴方差=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4解析:【解析】试题分析:先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案.由平均数的公式得:(1+2+3+4+5)÷5=3,∴方差=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]÷5=2.考点:方差.17.6【解析】【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于6.解析:6【解析】【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于6.【详解】解:如图所示,取AB的中点E,连接OE,DE,OD,由题可得,D是AC的中点,∴DE是△ABC的中位线,∴BC=2DE,∵点D坐标为(4,3),∴OD225,34∵Rt △ABO 中,OE =12AB =12×4=2, ∴当O ,E ,D 在同一直线上时,DE 的最小值等于OD ﹣OE =3,∴BC 的最小值等于6,故答案为:6.【点睛】本题主要考查了勾股定理,三角形三条边的关系,直角三角形斜边上中线的性质以及三角形中位线定理的运用,解决问题的关键是掌握直角三角形斜边上中线的性质以及三角形中位线定理.18.【解析】【分析】观察图象当时,直线在抛物线上方,此时二次函数值小于一次函数值,当或时,直线在抛物线下方,二次函数值大于一次函数值,将不等式变形,观察图象确定x 的取值范围,即为不等式的解集.【解析:23x -<<【解析】【分析】观察图象当23x -<<时,直线在抛物线上方,此时二次函数值小于一次函数值,当2x <-或3x >时,直线在抛物线下方,二次函数值大于一次函数值,将不等式变形,观察图象确定x 的取值范围,即为不等式的解集.【详解】解:设21y ax h =+,2y kx b =+,∵2ax b kx h -<-∴2ax h kx b +<+,∴12y y <即二次函数值小于一次函数值,∵抛物线与直线交点为()3,A m ,()2,B n -,∴由图象可得,x 的取值范围是23x -<<.【点睛】本题考查不等式与函数的关系及函数图象交点问题,理解图象的点坐标特征和数形结合思想是解答此题的关键.19.【解析】【分析】首先求出圆锥的底面半径,然后可得底面周长,问题得解.【详解】解:∵扇形的半径为10cm,做成的圆锥形帽子的高为8cm,∴圆锥的底面半径为cm,∴底面周长为2π×6=12解析:12π【解析】【分析】首先求出圆锥的底面半径,然后可得底面周长,问题得解.【详解】解:∵扇形的半径为10cm,做成的圆锥形帽子的高为8cm,6=cm,∴底面周长为2π×6=12πcm,即这张扇形纸板的弧长是12πcm,故答案为:12π.【点睛】本题考查圆锥的计算,用到的知识点为:圆锥的底面周长=侧面展开扇形的弧长.20.【解析】【分析】作AB的中点E,连接EM,CE,AD根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM和CE长,再根据三角形的三边关系确定CM长度的范围,从而确定CM的最小值.【解析:3 2【解析】【分析】作AB的中点E,连接EM,CE,AD根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM和CE长,再根据三角形的三边关系确定CM长度的范围,从而确定CM的最小值.【详解】解:如图,取AB的中点E,连接CE,ME,AD,∵E是AB的中点,M是BD的中点,AD=2,∴EM为△BAD的中位线,∴112122EM AD ,在Rt△ACB中,AC=4,BC=3,由勾股定理得,5==∵CE为Rt△ACB斜边的中线,∴1155222 CE AB,在△CEM中,551122CM ,即3722CM,∴CM的最大值为3 2 .故答案为:3 2 .【点睛】本题考查了圆的性质,直角三角形的性质及中位线的性质,利用三角形三边关系确定线段的最值问题,构造一个以CM为边,另两边为定值的的三角形是解答此题的关键和难点. 21.5【解析】【分析】先证△AEB∽△ABC,再利用相似的性质即可求出答案.【详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴,即:,∴CD=10.解析:5【解析】【分析】先证△AEB∽△ABC,再利用相似的性质即可求出答案.【详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴BE AB CD AC=,即:1.2 1.61.612.4 CD=+,∴CD=10.5(m).故答案为10.5.【点睛】本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键. 22.24【解析】【详解】点B是抛物线y=﹣x2+4x+2的顶点,∴点B的坐标为(2,6),2018÷6=336…2,故点P离x轴的距离与点B离x轴的距离相同,∴点P的坐标为(2018,6),解析:24【解析】【详解】点B是抛物线y=﹣x2+4x+2的顶点,∴点B的坐标为(2,6),2018÷6=336…2,故点P离x轴的距离与点B离x轴的距离相同,∴点P的坐标为(2018,6),∴m=6;点B(2,6)在kyx=的图象上,∴k=6;即12yx=,2025÷6=337…3,故点Q离x轴的距离与当x=3时,函数12yx=的函数值相等,又x=3时,1243y==,∴点Q的坐标为(2025,4),即n=4,∴mn=6424.⨯=故答案为24.【点睛】本题主要考查了反比例函数图象上的点的坐标特征以及二次函数的图象与性质.本题是一道找规律问题.找到点P、Q在A﹣B﹣C段上的对应点是解题的关键.23.【解析】【分析】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围. ,,方程有两个不相等的实数解析:3k<【解析】【分析】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.1a,b=-,c k=方程有两个不相等的实数根,241240b ac k∴∆=-=->,3k∴<.故答案为:3k<.【点睛】本题考查了根的判别式.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.24.【解析】【分析】根据勾股定理求得OB,再求得圆锥的底面周长即圆锥的侧面弧长,根据扇形面积的计算方法S=lr,求得答案即可.【详解】解:∵AO=8米,AB=10米,∴OB=6米,∴圆锥的解析:60π【解析】【分析】根据勾股定理求得OB,再求得圆锥的底面周长即圆锥的侧面弧长,根据扇形面积的计算方法S=12lr,求得答案即可.【详解】解:∵AO=8米,AB=10米,∴OB=6米,∴圆锥的底面周长=2×π×6=12π米,∴S扇形=12lr=12×12π×10=60π米2,故答案为60π.【点睛】本题考查圆锥的侧面积,掌握扇形面积的计算方法S=12lr是解题的关键.25.乙【解析】【分析】根据方差越小数据越稳定即可求解.【详解】解:因为甲、乙两同学近期6次数学单元测试成绩的平均分相同且S甲2 >S 乙2,所以乙的成绩数学测试成绩较稳定.故答案为:乙.【解析:乙【解析】【分析】根据方差越小数据越稳定即可求解.【详解】解:因为甲、乙两同学近期6次数学单元测试成绩的平均分相同且S甲2>S乙2,所以乙的成绩数学测试成绩较稳定.故答案为:乙.【点睛】本题考查方差的性质,方差越小数据越稳定.26.【解析】【分析】直接根据平行线分线段成比例定理即可得.【详解】,,,,解得,故答案为:.【点睛】本题考查了平行线分线段成比例定理,熟记平行线分线段成比例定理是解题关键. 解析:203【解析】【分析】直接根据平行线分线段成比例定理即可得.【详解】123////l l l ,AB DE BC EF∴=, 3,5,4AB BC DE ===,345EF∴=, 解得203EF =, 故答案为:203. 【点睛】 本题考查了平行线分线段成比例定理,熟记平行线分线段成比例定理是解题关键.27.【解析】【分析】根据条件可知a 与b 的数量关系,然后代入原式即可求出答案.【详解】∵=,∴b=a,∴=,故答案为:.【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则. 解析:53【解析】【分析】根据条件可知a 与b 的数量关系,然后代入原式即可求出答案.【详解】 ∵a b b -=23, ∴b=35a, ∴a b =5335a a =, 故答案为:53. 【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则. 28.【解析】【分析】运用切线长定理和勾股定理求出DF ,进而完成解答.【详解】解:∵与相切于点,与交于点∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x在Rt△C 解析:32【解析】【分析】运用切线长定理和勾股定理求出DF ,进而完成解答.【详解】解:∵CF 与O 相切于点E ,与AD 交于点F∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x在Rt △CDF 中,由勾股定理得:DF 2=CF 2-CD 2,即(2-x)2=(2+x)2-22解得:x=12,则DF=32∴CDF ∆的面积为13222⨯⨯=32 故答案为32.本题考查了切线长定理和勾股定理等知识点,根据切线长定理得到相等的线段是解答本题的关键.29.8【解析】【分析】首先求出A、B的坐标,然后根据坐标求出AB、CD的长,再根据三角形面积公式计算即可.【详解】解:∵y=x2﹣2x﹣3,设y=0,∴0=x2﹣2x﹣3,解得:x1=3,解析:8【解析】【分析】首先求出A、B的坐标,然后根据坐标求出AB、CD的长,再根据三角形面积公式计算即可.【详解】解:∵y=x2﹣2x﹣3,设y=0,∴0=x2﹣2x﹣3,解得:x1=3,x2=﹣1,即A点的坐标是(﹣1,0),B点的坐标是(3,0),∵y=x2﹣2x﹣3,=(x﹣1)2﹣4,∴顶点C的坐标是(1,﹣4),∴△ABC的面积=12×4×4=8,故答案为8.【点睛】本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的三种形式的应用,主要考查学生运用性质进行计算的能力,题目比较典型,难度适中.30.y=﹣(x+1)2﹣2【解析】【分析】根据坐标平移规律可知平移后的顶点坐标为(﹣1,﹣2),进而可设二次函数为,再把点(0,﹣3)代入即可求解a的值,进而得平移后抛物线的函数表达式.解析:y =﹣(x +1)2﹣2【解析】【分析】根据坐标平移规律可知平移后的顶点坐标为(﹣1,﹣2),进而可设二次函数为()212y a x +-=,再把点(0,﹣3)代入即可求解a 的值,进而得平移后抛物线的函数表达式.【详解】由题意可知,平移后的函数的顶点为(﹣1,﹣2),设平移后函数的解析式为()212y a x +-=,∵所得的抛物线经过点(0,﹣3),∴﹣3=a ﹣2,解得a =﹣1,∴平移后函数的解析式为()212y x +=--,故答案为()212y x +=--.【点睛】本题考查坐标与图形变化-平移,解题的关键是掌握坐标平移规律:“左右平移时,横坐标左移减右移加,纵坐标不变;上下平移时,横坐标不变,纵坐标上移加下移减”。
江苏省泰州市兴化市顾庄学区三校联考2017年中考数学三模试卷及参考答案
12. 在Rt△ABC中,AD是斜边BC边上的中线,G是△ABC重心,如果BC=6,那么线段AG的长为________.
13. 已知a2+5ab+b2=0(a≠0,b≠0),则代数式 + 的值等于________.
14. 圆锥体的底面半径为2,侧面积为8π,则其侧面展开图的圆心角等于________. 15. 如图,抛物线y=x2﹣2x+k(k<0)与x轴相交于A(x1 , 0)、B(x2 , 0)两点,其中x1<0<x2 , 当x=x1+2时,y ________0(填“>”“=”或“<”号).
18. 某校为更好地开展“传统文化进校园”活动,随机抽查了部分学生,了解他们最喜爱的传统文化项目类型(分为书法 、围棋、戏剧、国画共4类),并将统计结果绘制成如图不完整的频数分布表及频数分布条形图.
最喜爱的传统文化项目类型频数分布表
项目类型
频数
频率
书法类
18
a
围棋类
14
0.28
喜剧类
8
0.16
国画类
小亮的说法正确吗?请说明理由.
20. 如图,已知菱形ABCD的对角线AC,BD相交于点O,延长AB至点E,使BE=AB,连接CE.
(1) 求证:四边形BECD是平行四边形; (2) 若∠E=60°,AC=4 ,求菱形ABCD的面积. 21. 为了倡导节能低碳的生活,某公司对集体宿舍用电收费作如下规定:一间宿舍一个月用电量不超过a千瓦时,则一 个月的电费为20元;若超过a千瓦时,则除了交20元外,超过部分每千瓦时要交 元.某宿舍3月份用电80千瓦时,交 电费35元;4月份用电45千瓦时,交电费20元. (1) 求a的值; (2) 若该宿舍5月份交电费45元,那么该宿舍当月用电量为多少千瓦时? 22. 如图,CD为⊙O的直径,点B在⊙O上,连接BC、BD,过点B的切线AE与CD的延长线交于点A,∠AEO=∠C,O E交BC于点F.
2017届江苏省兴化市顾庄学区三校九年级上学期期末考试化学试卷(带解析)
绝密★启用前2017届江苏省兴化市顾庄学区三校九年级上学期期末考试化学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:60分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、某有机物6.0g 在空气中完全燃烧,共得到17.6g 二氧化碳和10.8g 水,则该化合物的组成元素是() A .一定只含有碳元素 B .一定只含有碳、氢两种元素 C .一定含有碳、氢、氧三种元素D .一定含有碳、氢元素,可能含有氧元素2、下列关于燃烧与灭火的说法,正确的是()A .放在空气中的木桌椅没有燃烧,是因为木桌椅不是可燃物B .防止森林大火蔓延,开挖隔离带,是为了将可燃物与火隔离C .油锅着火,用锅盖盖上,是为了降低可燃物的温度D .住房失火,消防队员用水扑灭,是为了降低可燃物的着火点3、下列叙述正确的是A.原子是最小的粒子,不可再分 B.物质都是由分子构成的C.带电的微粒都是离子 D.最外层电子数决定元素的化学性质4、下列关于实验现象的描述中,正确的是A.红磷在空气中燃烧,产生大量的白雾B.木炭在氧气中燃烧,发出白光,生成二氧化碳C.铁丝在空气中燃烧,火星四射,生成黑色固体D.氢气在空气中燃烧,产生淡蓝色火焰,放出大量的热,烧杯内壁有水雾5、为了防止钢铁制品锈蚀,下列做法不当的是A.在铁制品表面镀上一层锌B.在车船的表面喷涂油漆C.将使用过的菜刀用布擦干D.用洗涤剂把铁制品表面的油膜洗净6、把铁片放入下列溶液中充分反应后,溶液的质量比反应前减轻的是A.稀H2SO4 B.稀HCl C.CuSO4溶液 D.FeSO4溶液7、现有100g溶质质量分数为10%的某溶液,使其浓度增大一倍可采用的方法是(假设蒸发溶剂时没有晶体析出)A.溶剂的质量蒸发掉一半B.溶质的质量增加一倍C.蒸发掉的溶剂的质量等于溶液质量的一半D.加入200g溶质质量分数为25%的此溶液第II卷(非选择题)二、选择填充题(题型注释)8、A、B、C三种物质各15g,在一定条件下充分反应后生成新物质D30g;若增加10gA,反应停止后,只有物质C剩余。
初中数学兴化市顾庄学区三校春学期期末学业质量测试含答案.docx
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:观察下列关于自然数的等式:a1:32-12=8×1;a2:52-32=8×2;a3:72-52=8×3;……根据上述规律解决下列问题:(1)写出第a4个等式:___________;(2)写出你猜想的第a n个等式(用含n的式子表示),并验证其正确性;(3)对于正整数k,若a k,a k+1,a k+2为△ABC的三边,求k的取值范围.试题2:如图,直线m与直线n互相垂直,垂足为O,A、B两点同时从点O出发,点A沿直线m向左运动,点B沿直线n向上运动.(1)若∠BAO和∠ABO的平分线相交于点P,在点A、B的运动过程中,∠APB的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(2)若∠ABO的两个外角的平分线AQ、BQ相交于点Q,AP的延长线交QB的延长线于点C,在点A、B的运动过程中,∠Q和∠C的大小是否会发生变化?若不发生变(第24题图)化,请求出∠Q和∠C的度数;若发生变化,请说明理由.试题3:已知关于x、y的方程组(1)求方程组的解(用含m的代数式表示);(第22题图)(2)若方程组的解满足条件x<0,且y<0,求m的取值范围.试题4:如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.试题5:学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元.2(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,问A型节能灯最多可以买多少只?试题6:如图,点D在AB上,点E在AC上,BE、CD相交于点O.(1)若∠A=50°,∠BOD=70°,∠C=30°,求∠B的度数;(2)试猜想∠BOC与∠A+∠B+∠C之间的关系,并证明你猜想的正确性.(第20题图)试题7:解不等式,把它的解集在数轴上表示出来,并求出这个不等式的负整数解.试题8:因式分解:.试题9:因式分解:2x3y-8xy;试题10:已知x2+x﹣5=0,求代数式(x﹣1)2﹣x(x﹣3)+(x+2)(x﹣2)的值.试题11:试题12:我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”,这个三角形给出了(a+b)n(n=1,2,3,4,……)的展开式的系数规律(按n的次数由大到小的顺序):请依据上述规律,写出(x-2)2017展开式中含x2016项的系数是.试题13:已知关于的不等式组的整数解共有3个,则的取值范围是.试题14:某地准备对一段长120 m的河道进行清淤疏通.若甲工程队先用 4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要3天.设甲工程队平均每天疏通河道x m,乙工程队平均每天疏通河道y m,则的值为试题15:如图,已知∠1=∠2=90°,AD=AE,那么图中有对全等三角形.试题16:已知a+b=3,a b=2,则(a-b)2= .试题17:如图所示,AB=DB,∠ABD=∠CBE,请你添加一个适当的条件,使△ABC≌△DBE(只需添加一个即可,不添加辅助线).试题18:命题“如果a>b,那么ac>bc ”的逆命题是_ 命题(填“真”或“假”).试题19:不等式组的解集是.试题20:一个长方体的长、宽、高分别是3x-4,2x和x,它的体积等于.试题21:生物学家发现了一种病毒的长度约为0.00000432毫米,数据0.00000432用科学记数法表示为.试题22:如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则结论:①PA平分∠RPS;②AS=AR;③QP∥AR;④△BRP≌△CSP.其中正确的有()A.4个 B.3个C.2个 D.1个试题23:下列命题中,为真命题的是()A.如果-2x>-2,那么x>1 B.如果a2=b2,那么a3=b3 C.面积相等的三角形全等 D.如果a∥b,b∥c,那么a∥c试题24:若多项式=,则a,b的值分别是()A.,B.,C., D.,试题25:不等式2x+1≥5的解集在数轴上表示正确的是 ( )试题26:已知是关于x、y的方程4kx-3y=-1的一个解,则k的值为()A.1B.-1C.2D.-2试题27:化简﹣b•b3•b4的正确结果是()A.﹣b7 B.b7 C.-b8 D.b8试题28:已知A=2 a -7,B=a2- 4a+3,C= a2 +6a-28,其中.(1)求证:B-A>0,并指出A与B的大小关系;(2)阅读对B因式分解的方法:解:B=a2- 4a+3=a2- 4a+4-1=(a-2)2-1=(a-2+1)(a-2-1)=(a-1)(a-3).请完成下面的两个问题:①仿照上述方法分解因式:x2- 4x-96;②指出A与C哪个大?并说明你的理由.试题1答案:(1)a4应为92—72=8×4(2分);(2)规律:(2n+1)2-(2n-1)2=8n(n为正整数)(4分,不写“n为正整数”不扣分).验证:(2n+1)2-(2n-1)2=[(2n+1)+(2n-1)] [(2n+1)-(2n-1)] =4n×2=8n(6分);(3)由(2)可知,a k=8k,a k+1=8(k+1),a k+2=8(k+2)(9分),易知8k<8(k+1)<8(k+2),要使它们能构成一个三角形,则必须有8k+8(k+1)>8(k+2)(11分),解得k>1.所以k的取值范围是k>1且k为正整数(12分)试题2答案:(1)不变化(1分).理由:∵AP和BP分别是∠BAO和∠ABO的平分线,∠AOB=90°,∴∠APB=180°-(∠OAB+ABO)=180°-×90°=135°(5分);(2)都不变(6分).理由:∵AQ和BQ分别是∠BAO的邻补角和∠ABO的邻补角的平分线,AP和BP分别是∠BAO和∠ABO的平分线,∴∠CAQ=∠QBP=90°,又∠APB=135°,∴∠Q=45°,∴∠C=45°(10分). 试题3答案:(1)(5分,求出x、y各2分,方程组的解1分);(2)根据题意,得(7分),m<-8(10分).试题4答案:(1)∵AD⊥BC,CE⊥AB,∴∠AEF=∠CEB=∠ADC=90°,即∠AFE+∠EAF=∠CFD+∠ECB=90°.又∵∠AFE=∠CFD,∴∠EAF=∠ECB(3分).在△AEF和△CEB中,∠AEF=∠CEB,AE=CE,∠EAF=∠ECB,∴△AEF≌△CEB(5分);(2)由△AEF≌△CEB,可得AF=BC(6分).又∵AD⊥BC,∴∠ADB=∠ADC=90°.在Rt△ABD和Rt △ACD中∵AB=AC,AD=AD,∴Rt△ABD≌Rt△ACD(HL),∴CD=BD,∴BC=2CD,∴AF=2CD(10分)(直接用“三线合一”扣3分)试题5答案:(1)设一只A型节能灯的售价是元,一只B型节能灯的售价是元(1分). 依题意得(3分),解得(4分).答;一只A型节能灯的售价是5元,一只B型节能灯的售价是7元(5分);(2)设购进A型节能灯只,则购进B型节能灯(50-m)只,依题意有(8分),解得(9分).∵m是正整数,∴m=37.答:A型节能灯最多购进37只(10分)试题6答案:(1)∵∠A=500,∠C=300,∴∠BDO=80°(2分);∵∠BOD=700,∴∠B=30°(4分);(2)∠BOC=∠A+∠B+∠C(5分).理由:∵∠BOC=∠BEC +∠C,∠BEC=∠A+∠B,∴∠BOC=∠A+∠B+∠C试题7答案:去分母得:2(2x﹣1)-3(5x+1)≤6,去括号得:4x﹣2﹣15x﹣3≤6,移项得:4x﹣15x≤6+2+3,合并同类项得:﹣11x≤11,把x的系数化为1得:x≥﹣1(5分).这个不等式的解集可表示如图:,其所有负整数解为-1 .试题8答案:原式=(x2-4x+4)(x2+4x+4) =(x-2)2(x+ 2)2试题9答案:原式= 2xy(x2-4)(2分)=2xy(x+2)(x-2)试题10答案:原式=x2﹣2x+1﹣x2+3x+x2﹣4=x2+x﹣3 ,因为x2+x﹣5=0,所以x2+x=5,所以原式=5﹣3=2().试题11答案:原式=1-++1(4分)=2试题12答案:4034.试题13答案:;试题14答案:20;试题15答案:3;试题16答案:1;试题17答案:BE=BC或∠BDE=∠BAC或∠DEB=∠ACB;试题18答案:假;试题19答案:3≤x<6;试题20答案:6x3-8x2;试题21答案:4.32×10-6;试题22答案:B.试题23答案:D;试题24答案:B;试题25答案:D;试题26答案:A;试题27答案:C;试题28答案:(1)B-A= a2- 4a+3-2 a+7= a2- 6a+10=(a-3)2+1>0,B>A(3分);(2)①x2- 4x-96=x2- 4x+4-100=(x-2)2-102=(x-2+10)(x-2-10)=(x+8)(x-12)(6分);②C-A=a2+6a-28-2a+7=a2+4a-21=(a+7)(a-3)(10分)(直接用十字相乘法扣3分).因为a>2,所以a+7>0 ,从而当2<a<3时,A>C(12分);当a=3时,A=C(13分);当a>3时,A<C 【。
2017届江苏泰州兴化市顾庄学区三校九年级上期末数学试卷(带解析)
绝密★启用前2017届江苏泰州兴化市顾庄学区三校九年级上期末数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:80分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、在平面直角坐标系中,已知点E (﹣4,2),F (﹣2,﹣2),以原点O 为位似中心,相似比为2:1,把△EFO 缩小,则点E 的对应点E′的坐标是( )A .(﹣2,1)B .(﹣8,4)C .(﹣2,1)或(2,﹣1)D .(﹣8,4)或(8,﹣4)【答案】C .试卷第2页,共19页【解析】试题分析:∵点E (﹣4,2),以O 为位似中心,按2:1的相似比把△EFO 缩小为△E′F′O , ∴点E 的对应点E′的坐标为:(2,﹣1)或(﹣2,1). 故选C .考点:1.位似变换;2.坐标与图形性质.2、已知直角三角形ABC 中,斜边AB 的长为m ,∠B=50°,则直角边BC 的长是( ) A .msin50°B .mtan50°C .mcos50°D .【答案】C . 【解析】试题分析:∵cosB=,AB=m ,∠B=50°,∴BC=AB×cosB=mcos50°, 故选C .考点:锐角三角函数的定义.3、小红同学四次数学测试成绩分别是:96,104,104,116,关于这组数据下列说法错误的是( ) A .平均数是105B .众数是104C .中位数是104D .方差是50【答案】D . 【解析】试题分析:A 平均数为:(96+104+104+116)÷4=105,故A 正确; B 出现最多的数据是104,所以众数是104,故B 正确;C 先排序:96、104、104、116,所以中位数为÷2=104,故C 正确;D 方差为: [(96﹣105)2+(10-105)2+(104-105)2+(116-105)2]=51,故D 错误.故选D .考点:1.方差;2.算术平均数;3.中位数;众数. 4、一个事件的概率不可能是( )A .B .0C .1D .【答案】A.【解析】试题分析:∵>1,∴A不成立.故选A.考点:概率的意义.5、天虹百货某服装销售商在进行市场占有率的调查时,他最应该关注的是()A.服装型号的平均数B.服装型号的众数C.服装型号的中位数D.最小的服装型号【答案】B.【解析】试题分析:由于众数是数据中出现最多的数,销售商最感兴趣的是服装型号的销售量哪个最大,所以他最应该关注的是众数.故选B.考点:统计量的选择.6、已知A、B两地的实际距离AB=5km,画在图上的距离A′B′=2cm,则图上的距离与实际距离的比是()A.2:5 B.1:2 500 C.250 000:1 D.1:250 000【答案】D.【解析】试题分析:∵5千米=500000厘米,∴比例尺=2:500000=1:250000;故选D.考点:比例线段.试卷第4页,共19页第II 卷(非选择题)二、填空题(题型注释)7、如图,抛物线y=﹣(x+1)(x ﹣3)与x 轴交于A 、B 两点,与y 轴交于点C ,点D 为该抛物线的对称轴上一点,当点D 到直线BC 和到x 轴的距离相等时,则点D 的坐标为 .【答案】(1,)或(1,﹣2).【解析】试题分析:如图所示:∵抛物线y=﹣(x+1)(x ﹣3)与x 轴交于A 、B 两点,与y 轴交于点C ,∴当﹣(x+1)(x ﹣3)=0时,x=﹣1,或x=3,当x=0时,y=3,∴A (﹣1,0),B (3,0),C (0,3),对称轴x=1,∴BM=3﹣1=2,当点D 到直线BC 和到x 轴的距离相等时,点D 在∠ABC 或∠ABE 的平分线上, ①点D 在∠ABC 的平分线上时,∵tan ∠ABC==,∴∠ABC=60°, ∴∠ABD=30°,∴DM=BM=,∴D (1,);②点D 在∠ABE 的平分线上时,∠ABE=180°﹣60°=120°, ∴∠ABD=60°, ∴DM=BM=2,∴D (1,﹣2).考点:抛物线与x 轴的交点.8、将∠AOB 放置在5×5的正方形网格中,则tan ∠AOB 的值是 .【答案】1 【解析】试题分析:由图可得tan ∠AOB=1. 考点:锐角三角函数的定义.9、把抛物线y=x 2+2x+3向右平移2个单位,再向上平移1个单位,所得的新抛物线相应的函数表达式为 .【答案】y=x 2﹣2x+4 【解析】试题分析:∵抛物线y=x 2+2x+3可化为y=(x+1)2+2,试卷第6页,共19页∴向右平移2个单位,再向上平移1个单位,所得的新抛物线相应的函数表达式为y=(x+1﹣2)2+2+1,即y=x 2﹣2x+4. 考点:二次函数图象与几何变换.10、如图,在△ABC 中,DE ∥BC ,AE :EC=3:5,则S △ADE :S △ABC = .【答案】【解析】试题分析:∵DE ∥BC , ∴△AED ∽△ACB , ∵AE :EC=3:5, ∴AE :AC=3:8,∴考点:相似三角形的判定与性质.11、如图是一个拦水大坝的横断面图,AD ∥BC ,如果背水坡AB 的坡度为1:,则坡角∠B= .【答案】30° 【解析】试题分析:设迎水坡的坡角为α, ∴tan ∠B=i=1:,∴∠B=30°.考点:解直角三角形的应用-坡度坡角问题.12、在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20cm ,则它的宽约为 cm .(保留2位小数)【答案】12.36 【解析】试题分析:∵书的宽与长之比为黄金比,长为20cm ,∴它的宽=20•=10(﹣1)≈12.36(cm ).考点:黄金分割.13、现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.2.估计这些卡片中绘有孙悟空这个人物的卡片张数约为 .【答案】10. 【解析】试题分析:因为通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3, 所以估计抽到绘有孙悟空这个人物卡片的概率为0.2,则这些卡片中绘有孙悟空这个人物的卡片张数=0.2×50=10(张). 所以估计这些卡片中绘有孙悟空这个人物的卡片张数约为10张. 考点:利用频率估计概率.14、如图,甲、乙两个转盘转动一次,最终指针指向红色区域 (填“是”或“不是”)等可能性事件.【答案】是. 【解析】试题分析:甲、乙两个转盘转动一次,最终指针指向红色区域可能性为.考点:可能性的大小.15、在一次信息技术考试中,某兴趣小组7名同学的成绩分别是:7,10,9,8,7,9,9(单位:分),则这组数据的极差是 .【答案】3.试卷第8页,共19页【解析】试题分析:由题意可知,数据中最大的值为10,最小值为7,所以极差为10﹣7=3. 考点:极差.三、计算题(题型注释)16、(1)计算:(3﹣π)0﹣2﹣2+2sin30°;(2)计算:.【答案】(1);(2)【解析】试题分析:(1)原式利用零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果;(2)原式利用特殊角的三角函数值计算即可得到结果.试题解析:(1)原式=1﹣+1=;(2)原式=.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.四、解答题(题型注释)17、已知,在以O 为原点的直角坐标系中,抛物线的顶点为A (﹣1,﹣4),且经过点B (﹣2,﹣3),与x 轴分别交于C 、D 两点.(1)求直线OB 以及该抛物线相应的函数表达式;(2)如图1,点M 是抛物线上的一个动点,且在直线OB 的下方,过点M 作x 轴的平行线与直线OB 交于点N ,求MN 的最大值;(3)如图2,过点A 的直线交x 轴于点E ,且AE ∥y 轴,点P 是抛物线上A 、D 之间的一个动点,直线PC 、PD 与AE 分别交于F 、G 两点.当点P 运动时,EF+EG 是否为定值?若是,试求出该定值;若不是,请说明理由.【答案】(1)直线OB 解析式为y=x ,抛物线为y=x 2+2x ﹣3;(2);(3)点P运动时,EF+EG 为定值8. 【解析】试题分析:(1)由B 点坐标利用待定系数法可求直线OB 解析式,利用顶点式可求得抛物线解析式;(2)设M (t ,t 2+2t ﹣3),MN=s ,则可表示出N 点坐标,由MN 的纵坐标相等可得到关于s 和t 的关系式,再利用二次函数的性质可求得其最大值;(3)设P (t ,t 2+2t ﹣3),则可表示出PQ 、CQ 、DQ ,再利用相似三角形的性质可用t 分别表示出EF 和EG 的长,则可求得其定值.试题解析:(1)设直线OB 解析式为y=kx ,由题意可得﹣3=﹣2k ,解得k=,∴直线OB 解析式为y=x ,∵抛物线顶点坐标为(﹣1,﹣4), ∴可设抛物线解析式为y=a (x+1)2﹣4, ∵抛物线经过B (﹣2,﹣3), ∴﹣3=a ﹣4,解得a=1,试卷第10页,共19页∴抛物线为y=x 2+2x ﹣3;(2)设M (t ,t 2+2t ﹣3),MN=s ,则N 的横坐标为t ﹣s ,纵坐标为,∵MN ∥x 轴,∴t 2+2t ﹣3=,得s==,∴当t=时,MN 有最大值,最大值为;(3)EF+EG=8.理由如下:如图2,过点P 作PQ ∥y 轴交x 轴于Q ,在y=x 2+2x ﹣3中,令y=0可得0=x 2+2x ﹣3,解得x=﹣3或x=1, ∴C (﹣3,0),D (1,0),设P (t ,t 2+2t ﹣3),则PQ=﹣t 2﹣2t+3,CQ=t+3,DQ=1﹣t , ∵PQ ∥EF , ∴△CEF ∽△CQP ,∴,∴EF=•PQ=(﹣t 2﹣2t+3),同理△EGD ∽△QPD 得,∴EG=•PQ=,∴EF+EG=(﹣t 2﹣2t+3)+=2(﹣t 2﹣2t+3)()试卷第11页,共19页=2(﹣t 2﹣2t+3)()=2(﹣t 2﹣2t+3)()=8,∴当点P 运动时,EF+EG 为定值8. 考点:二次函数综合题.18、已知,点O 在线段AB 上,AB=6,OC 为射线,且∠BOC=45°.动P 以每秒1个单位长度的速度从点O 出发,沿射线OC 做匀速运动.设运动时间为t 秒.(1)如图1,若AO=2.①当 t=6秒时,则OP= ,S △ABP = ; ②当△ABP 与△PBO 相似时,求t 的值;(2)如图2,若点O 为线段AB 的中点,当AP=AB 时,过点A 作AQ ∥BP ,并使得∠QOP=∠B ,求AQ•BP 的值.【答案】(1)①6;;②t=+4;(2)18.【解析】试题分析:(1)①如图1中,作PE ⊥AB 于E .求出PE 的长,根据S △APB =•AB•PE ,即可计算.②如图1中,过点B 作OC 的垂线,垂足为H ,由△ABP ∽△PBO ,得,即PB 2=BO•BA=24,推出BP=,再利用勾股定理求出OH 、HP 即可解决问题.(2)如图中,作OE ∥AP ,交BP 于点E .由△QAO ∽△OEP ,得,即AQ•EP=EO•AO ,由三角形中位线定理得OE=3,推出AQ•EP=9,由此即可解决问题. 试题解析:(1)①如图1中,作PE ⊥AB 于E .试卷第12页,共19页在Rt △OPE 中,OP=6,∠POE=45°, ∴PE=OP•sin45°=3,∴S △APB =•AB•PE=9,②如图1中,过点B 作OC 的垂线,垂足为H , ∵△ABP ∽△PBO ,∴,∴PB 2=BO•BA=24, ∴BP=,在Rt △OHB 中,∵∠BOH=45°,OB=4, ∴OH=HB=,在Rt △PHB 中,PH==4∴OP=+4,∴t=+4(秒)时,△ABP ∽△PBO .(2)如图中,作OE ∥AP ,交BP 于点E .∵AP=AB , ∴∠APB=∠B , ∴∠OEB=∠APB=∠B , ∵AQ ∥BP ,∴∠QAB+∠B=180°.试卷第13页,共19页又∵∠OEP+∠OEB=180°, ∴∠OEP=∠QAB ,又∵∠AOC=∠2+∠B=∠1+∠QOP , ∵∠B=∠QOP , ∴∠AOQ=∠OPE , ∴△QAO ∽△OEP ,∴,即AQ•EP=EO•AO ,由三角形中位线定理得OE=3, ∴AQ•EP=9,AQ•BP=AQ•2EP=2AQ•EP=18. 考点:相似形综合题.19、为给人们的生活带来方便,2017年兴化市准备在部分城区实施公共自行车免费服务.图1是公共自行车的实物图,图2是公共自行车的车架示意图,点A 、D 、C 、E 在同一条直线上,CD=35cm ,DF=24cm ,AF=30cm ,FD ⊥AE 于点D ,座杆CE=15cm ,且∠EAB=75°. (1)求AD 的长;(2)求点E 到AB 的距离(结果保留整数). (参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)【答案】(1)18cm ;(2)66cm . 【解析】试题分析:(1)利用勾股定理可求得AD 的长;(2)过点E 作EH ⊥AB ,垂足为H ,利用∠EAH 的正弦列式求EH 的长即可. 试题解析:(1)在Rt △ADF 中,AF=30,DF=24, 由勾股定理得:AD=cm ;(2)过点E 作EH ⊥AB ,垂足为H ,试卷第14页,共19页∵AE=AD+DC+CE=68,∴EH=AEsin75°=68sin75°=68×0.97=65.96≈66(cm ), ∴车座点E 到车架档AB 的距离约是66cm .考点:解直角三角形的应用.20、河上有一座桥孔为抛物线形的拱桥,水面宽为6米时,水面离桥孔顶部3米.把桥孔看成一个二次函数的图象,以桥孔的最高点为原点,过原点的水平线为横轴,过原点的铅垂线为纵轴,建立如图所示的平面直角坐标系. (1)请求出这个二次函数的表达式;(2)因降暴雨水位上升1米,此时水面宽为多少?【答案】(1) 二次函数的表达式y=x 2;;(2)米【解析】试题分析:(1)待定系数法求解可得; (2)求出y=﹣2时x 的值,从而得出CD . 试题解析:(1)设抛物线解析式为y=ax 2,把x=3,y=﹣3代入,得a=,这个二次函数的表达式y=x 2;(2)把y=﹣2代入解y=x 2得,x=,试卷第15页,共19页所以CD=.答:此时水面宽为米.考点:二次函数的应用.21、如图,点E 是矩形ABCD 中CD 边上一点,△BCE 沿BE 折叠为△BFE ,点F 落在AD 上.(1)求证:△ABF ∽△DFE ;(2)如果AB=12,BC=15,求tan ∠FBE 的值.【答案】(1)证明见解析;(2)【解析】试题分析:(1)由矩形的性质推知∠A=∠D=∠C=90°.然后根据折叠的性质,等角的余角相等推知∠ABF=∠DFE ,易证得△ABE ∽△DFE ;(2)由勾股定理求得AF=9,得出DF=6,由△ABF ∽△DFE ,求得EF=7.5,由三角函数定义即可得出结果.试题解析:(1)∵四边形ABCD 是矩形. ∴∠A=∠D=∠C=90°,AD=BC , ∵△BCE 沿BE 折叠为△BFE . ∴∠BFE=∠C=90°,∴∠AFB+∠DFE=180°﹣∠BFE=90°, 又∠AFB 十∠ABF=90°, ∴∠ASF=∠DFE , ∴△ABF ∽△DFE .(2)由折叠的性质得:BF=BC=15, 在Rt △ABF 中,由勾股定理求得AF=,∴DF=AD ﹣AF=6, ∵△ABF ∽△DFE ,试卷第16页,共19页∴,即,解得:EF=7.5,∴tan ∠FBE=.考点:1.相似三角形的判定与性质;2.矩形的性质;3.翻折变换(折叠问题);4.解直角三角形.22、如图,AB 和DE 是直立在地面上的两根立柱.AB=4m ,某一时刻AB 在阳光下的投影BC=3m .(1)请你在图中画出此时DE 在阳光下的投影.(2)在测量AB 的投影时,同时测量出DE 在阳光下的投影长为8m ,请你计算DE 的长.【答案】(1)作图见解析;(2)m .【解析】试题分析:(1)根据投影的定义,作出投影即可;(2)根据在同一时刻,不同物体的物高和影长成比例;构造比例关系AB :DE=BC :EF .计算可得DE=10(m ).试题解析:(1)连接AC ,过点D 作DF ∥AC ,交直线BC 于点F ,线段EF 即为DE 的投影.(2)∵AC ∥DF ,试卷第17页,共19页∴∠ACB=∠DFE . ∵∠ABC=∠DEF=90° ∴△ABC ∽△DEF . ∴AB :DE=BC :EF , ∵AB=4m ,BC=3m ,EF=8 ∴4:3=DE :8∴DE=m .考点:平行投影.23、小明、小刚和小红打算各自随机选择本周日的上午或下午去兴化李中水上森林游玩. (1)小明和小刚都在本周日上午去游玩的概率为 ; (2)求他们三人在同一个半天去游玩的概率.【答案】(1);(2)【解析】试题分析:(1)画树状图展示所有4种等可能的结果数,找出小明和小刚都在本周日上午去游玩的结果数,然后根据概率公式求解;(2)画树状图展示所有8种等可能的结果数,找出小明和小刚都在本周日上午去游玩的结果数,然后根据概率公式求解. 试题解析:(1)画树状图为:共有4种等可能的结果数,其中小明和小刚都在本周日上午去游玩的结果数为1,所以小明和小刚都在本周日上午去游玩的概率=;(2)画树状图为:共有8种等可能的结果数,其中他们三人在同一个半天去游玩的结果数为2,试卷第18页,共19页所以他们三人在同一个半天去游玩的概率=.考点:列表法与树状图法.24、如图,a ∥b ∥c .直线m 、n 与a 、b 、c 分别相交于点A 、B 、C 和点D 、E 、F . (1)若AB=3,BC=5,DE=4,求EF 的长; (2)若AB :BC=2:5,DF=10,求EF 的长.【答案】(1);(2).【解析】试题分析:(1)根据平行线分线段成比例定理得到,然后利用比例性质求EF ;(2)根据平行线分线段成比例定理得到,然后利用比例性质求EF即可.试题解析:(1)∵a ∥b ∥c ,∴,即,解得;(2)∵a ∥b ∥c ,∴,∴,解得.考点:平行线分线段成比例.试卷第19页,共19页25、某校初三学生开展踢毽子活动,每班派5名学生参加,按团体总分排列名次,在规定时间内每人踢100个以上(含100)为优秀.表是甲班和乙班成绩最好的5名学生的比赛成绩. 经统计发现两班5名学生踢毽子的总个数相等.此时有学生建议,可以通过考查数据中的其它信息作为参考.请你回答下列问题: (1)甲班的优秀率为60%,则乙班的优秀率为 ;(2)甲班比赛成绩的方差S 甲2=,求乙班比赛成绩的方差;(3)根据以上信息,你认为应该把团体第一名的奖状给哪一个班?简述理由.【答案】(1)40%;(2);(3)应该把团体第一名的奖状给甲班,理由见解析.【解析】试题分析:(1)根据已知数据求出优秀率; (2)利用方差公式求出方差; (3)根据方差的性质比较解答即可试题解析:(1)×100%=40%,∴乙班的优秀率为40%,(2)乙班的平均数为:×(99+100+95+109+97)=100,乙班的方差为:=[(99﹣100)2+2+(95﹣100)2+2+(97﹣100)2]=;(3)应该把团体第一名的奖状给甲班,理由如下:因为甲班的优秀率比乙班高;甲班的方差比乙班低,比较稳定,综合评定甲班比较好. 考点:1.方差;2.加权平均数.。
兴化顾庄等三校中考第一次模拟联考数学试题及答案
(第4题图)一、选择题(本大题共6小题,每小题3分,满分18分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,选择正确选项的字母代号涂在答题卡相应的位置上) 1.-3的相反数是( ▲ ) A .-3B .3C .-31D .31 2.刻画一组数据波动大小的统计量是( ▲ ).A .平均数B .方差C .众数D .中位数 3.下列图形中,既是轴对称图形,又是中心对称图形的是( ▲ )A. B. C. D.4.如图是由两块长方体叠成的几何体,其主视图是( ▲ )A .B .C .D .5.下列运算正确的是( ▲ )A .236x x x ⋅=B .3223()()1a a -÷-=C .1122-=D .552332=+ 6.设P 是函数2y x=在第一象限的图像上的任意一点,点P 关于原点的对称点为P ',过P 作PA 平行于y 轴,过P '作P A '平行于x 轴,PA 与P A '交于A 点,则PAP '△的面积( ▲ )A .随P 点的变化而变化B .等于1C .等于2D .等于4二、填空题(本大题共10小题,每小题3分,满分30分.请把答案直接AOPP 'xy(第6题图)填写在答题卡相应位置上.)7. 9的算术平方根是 ▲ .8. H 7N 9型流感病毒变异后的直径为0.00000013米,将这个数写成科学记数法是 ▲ 米.9. 因式分解:4a 2-16= ▲ .10.若一个多边形的内角和是900,则这个多边形的边数为 ▲ .11.把一块矩形直尺与一块直角三角板如图放置,若140∠=°, 则2∠的度数为 ▲ .12.五位女生的体重(单位:kg )分别为38、42、35、45、40,则这五位女生体重的方差为 ▲ kg 2.13. 阳阳的身高是 1.6m ,他在阳光下的影长是 1.2m ,在同一时刻测得某棵树的影长为3.6m ,则这棵树的高度为 ▲ m .14.已知圆锥的侧面积为π8cm 2,侧面展开图的圆心角为60°. 则该圆锥的母线长为 ▲ cm.15.按一定规律排列的一列数依次为:111,,315351,63,…,按此规律排列下去,这列数中的第7个数是 ▲ .16.如图,在平面直角坐标系中,O 为坐标原点,⊙O 的半径为5,点B 的坐标为(3,0),点A 为⊙O 上一动点,当∠OAB 取最大 值时,点A 的坐标为 ▲ .三、解答题(本大题共10小题,满分102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本题满分12分)(1821()2-+(-1)0-2sin45°;B O Axy(第16题图)(2)解方程:2220x x --=.18.(本题满分8分)先化简532)224m m m m -+-÷--(,然后在0<2m-1<6的范围内选取一个合适的整数作为m 的值代入求值.19.(本题满分8分)在一个不透明的袋中装有3 个完全相同的小球,上面分别标号为1、2、3,从中随机摸出两个小球,并用球上的数字组成一个两位数. (1)求组成的两位数是奇数的概率;(2)小明和小华做游戏,规则是:若组成的两位数是4的倍数,小明得3分,否则小华得3分,你认为该游戏公平吗?说明理由;若不公平,请修改游戏规则,使游戏公平.20.(本题满分8分)某校全体学生积极参加校团委组织的“献爱心捐款”活动,为了解捐款情况,随机抽取了部分学生并对他们的捐款情况作了统计,绘制了两幅不完整的 统计图(统计图中每组含最小值..., 不含最大值...). 请依据图中信息解答下列问题: (1)求随机抽取的学生人数. (2)填空:(直接填答案)①“20元~25元”部分对应的 圆心角度数为__▲____.②捐款的中位数落在__▲____(填金额范围) .(3)若该校共有学生3500人,请估算全校捐款不少于20元的人数.21.(本题满分10分)如图,△ABC 中,AB=AC ,∠BAC=40°,将△ABC 绕点A 按逆时针方向旋转100°.得到△ADE ,连接BD 、CE ,两线交于点F .b%a%40%10%25元~30元元~25元15元~20元10元~15元捐款人数扇形统计图24181263025201510捐款人数分布统计图金额人数(第20题图)EAD40°100°(1)求证:△ABD≌△ACE;(2)求证:四边形ABFE是菱形.22. (本题满分10分)如图,学校打算用材料围建一个面积为18平方米的矩形ABCD的生物园,用来饲养小兔,其中矩形ABCD的一边AB靠墙,墙长为8米,设AD的长为y 米, CD的长为x米.(1)求y与x之间的函数表达式;(2)若围成矩形ABCD的生物园的三边材料总长不超过18米,材料AD和DC的长都是整米数,求出满足条件的所有围建方案.23.(本题满分10分)某数学兴趣小组的同学在一次数学活动中,为了测量某建筑物AB 的高,他们来到与建筑物AB在同一平地且相距12米的建筑物CD上的C处观察,测得某建筑物顶部A的仰角为30°、底部B的俯角为45°.求建筑物AB的高(精确到1米).(可供选用的数据:2≈1.4,3≈1.7).24. (本题满分10分) 如图,在Rt △ABC 中,∠C=90°,∠BAC 的角平分线AD 交BC 边于D .以AB 上某一点O 为圆心作⊙O ,使⊙O 经过点A 和点D. (1)判断直线BC 与⊙O 的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求⊙O 的半径;②设⊙O 与AB 边的另一个交点为E ,求线段BD 、BE 与劣弧DE 所围成的阴影部分的图形面积.(结果保留根号和π)25. (本题满分12分)如图, 在四边形ABCD 中,AD ∥BC ,∠D=90°,BC=50,AD=36,CD=27. 点E 从C 出发以每秒5个单位长度的速度向B 运动,点F 从A 出发,以每秒4个单位长度的速度向D 运动.两点同时出发,当其中一个动点到达终点时,另一个动点也随之停止运动.过点F 作FG ⊥BC,垂足为G ,连结AC 交FG 于P ,连结EP . (1)点E 、F 中,哪个点最先到达终点?(2)求△PEC 的面积S 与运动时间t 的函数表达式,并写出自变量t 的取值范围. 当t 为何值时,S 的值最大;(3)当△CEP 为锐角三角形时,求运动时间t 的取值范围.PF DA(第24题图)26.(本题满分14分)如图,抛物线与y轴相交于点A(0,2),与x轴相交于B(4,0)、C(12,0)两点.直线l经过A、B两点.(1)分别求出直线l和抛物线相应的函数表达式;(2)平行于y轴的直线x=2交抛物线于点P,交直线l于点D.①直线x=t(0≤t≤4)与直线l相交于点E,与抛物线相交于点F.若EF:DP=3:4,求t的值;②将抛物线沿y轴上下平移,所得的抛物线与y轴交于点A′,与直线x=2交于点P′.当P′O平分∠A′P′P时,求平移后的抛物线相应的函数表达式.初三网上阅卷适应性训练数学参考答案一、选择题(本大题共有6小题,每小题3分,共18分)三、解答题(本大题共10小题,满分102分) 17.(12分)(1)22+4+1-2(4分)=2+5(2分);(2)⊿=23(2分),x 1=13+(2分),x 2=13-(2分).18.(8分)化简得2m+6或2(m+3)(3分),不等式解得0.5<m <3.5(2分),当m=1时(1分),原式=8(2分).19.(8分)(1)树状图或列表正确(2分),一共有6种等可能的结果,组成的两位数是奇数的有13,23,21,31共4种情况,两位数是奇数的概率为2/3(2分); (2)∵组成的两位数是4的倍数的有2种情况,∴P (小明得3分)= 1/3,P (小华得3分)= 2/3,∴该游戏不公平(2分).可改游戏规则为:组成的两位数是4的倍数,小明得2分,否则小华得1分(2分).解法较多,根据情况给分.20.(8分)(1)60人(2分);(2)72(2分);15元~20元(2分);(3)1050人(2分).21.(10分)(1)证明:∵ABC 绕点A 按逆时针方向旋转100°,∴∠BAC=∠DAE=40°,∴∠BAD=∠CAE=100°(2分),又∵AB=AC ,∴AB=AC=AD=AE ,在△ABD 与△ACE 中,AB=AC ,∠BAD=∠CAE ,AD=AE ,∴△ABD ≌△ACE (SAS )(3分).(2)证明:∵∠BAD=∠CAE=100°,AB=AC=AD=AE ,∴∠ABD=∠ADB=∠ACE=∠AEC=40°(2分).∵∠BAE=∠BAD+∠DAE=140°,∴∠ABD+∠BAE=180°, ∴AE ∥BD,同理AB ∥EF ,∴四边形ABFE 是平行四边形(2分),∵AB=AE ,∴平行四边形ABFE 是菱形(1分).方法较多灵活给分.22. (10分)(1)根据题意得xy=18(2分),即y=18/x (2分);(2)由y=18/x ,且x 、y 都是正整数,所以x 可取1、2、3、6、9、18(2分),但x ≤8,x+2y ≤18,所以符合条件的有:x=3时,y=6;x=6时,y=3(3分).答:满足条件的所有围建方案:AD=6cm ,CD=3cm 或AD=3cm ,CD=6cm (1分).23.(10分)过点C 作AB 的垂线,垂足为E (辅助线正确1分),CD=12(2分),BE=CE=12(2分),AE=43,AB=43+12(3分)≈19(米)(1分),答:建筑物AB 的高为19米(1分).24. (10分) (1)直线BC 与⊙O 相切(1分),连结OD ,因为OA=OD ,所以∠OAD=∠ODA,因为∠BAC 的角平分线AD 交BC 边于D ,所以∠CAD=∠OAD,所以∠CAD=∠ODA,所以O D ∥AC ,所以∠ODB=∠C=90°, 即OD BC ⊥.又直线BC 过半径OD 的外端,所以直线BC 与⊙O 相切(2分).(2)设OA OD r ==,在Rt BDO △中,∠B=30°,所以OB=2r ,在Rt △ACB 中,∠B=30°,所以AB=2AC=6,有3r=6,解得2r =(3分).(3)在Rt △ACB 中,∠B=30°60BOD ∴∠=°.260π22π3603ODE S ∴=扇形·=.(2分)∴所求图形面积为223π3BOD ODE S S --△扇形=.(2分)。
江苏省泰州市兴化市九年级上学期期末模拟数学试题(1)
江苏省泰州市兴化市九年级上学期期末模拟数学试题(1) 一、选择题 1.如图是一个圆柱形输水管横截面的示意图,阴影部分为有水部分,如果水面AB 的宽为8cm ,水面最深的地方高度为2cm ,则该输水管的半径为( )A .3cmB .5cmC .6cmD .8cm2.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到红灯的概率是( )A .13B .512C .12D .13.在Rt △ABC 中,AB =6,BC =8,则这个三角形的内切圆的半径是( )A .5B .2C .5或2D .2或7-1 4.如图,已知O 的内接正方形边长为2,则O 的半径是( )A .1B .2C .2D .225.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=3:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A .3:4B .9:16C .9:1D .3:16.下列函数中属于二次函数的是( )A .y =12xB .y =2x 2-1C .y 23x +D .y =x 2+1x+1 7.抛物线y =x 2先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是( ) A .y =(x+1)2+3B .y =(x+1)2﹣3C .y =(x ﹣1)2﹣3D .y =(x ﹣1)2+38.如图,四边形ABCD 中,90BAD ACB ∠=∠=,AB AD =,4AC BC =,设CD 的长为x ,四边形ABCD 的面积为y ,则y 与x 之间的函数关系式是( )A .2225y x =B .2425y x =C .225y x =D .245y x =9.如图,P 、Q 是⊙O 的直径AB 上的两点,P 在OA 上,Q 在OB 上,PC ⊥AB 交⊙O 于C ,QD ⊥AB 交⊙O 于D ,弦CD 交AB 于点E ,若AB=20,PC=OQ=6,则OE 的长为( )A .1B .1.5C .2D .2.5 10.一元二次方程230x x k -+=的一个根为2x =,则k 的值为( )A .1B .2C .3D .4 11.已知二次函数y =x 2+mx +n 的图像经过点(―1,―3),则代数式mn +1有( ) A .最小值―3 B .最小值3 C .最大值―3 D .最大值312.点P 1(﹣1,1y ),P 2(3,2y ),P 3(5,3y )均在二次函数22y x x c =-++的图象上,则1y ,2y ,3y 的大小关系是( )A .321y y y >>B .312y y y >=C .123y y y >>D .123y y y =>13.如图,PA 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,连接AB ,若∠B =25°,则∠P 的度数为( )A .25°B .40°C .45°D .50° 14.小明同学发现自己一本书的宽与长之比是黄金比约为0.618.已知这本书的长为20cm ,则它的宽约为( )A .12.36cmB .13.6cmC .32.386cmD .7.64cm15.如图,点A 、B 、C 在⊙O 上,∠ACB =130°,则∠AOB 的度数为( )A .50°B .80°C .100°D .110°二、填空题16.平面直角坐标系内的三个点A (1,-3)、B (0,-3)、C (2,-3),___ 确定一个圆.(填“能”或“不能”)17.如图,△ABC 中,D 、E 分别在AB 、AC 上,DE ∥BC ,AD :AB=1:3,则△ADE 与△ABC 的面积之比为______.18.如图,边长为2的正方形ABCD ,以AB 为直径作⊙O ,CF 与⊙O 相切于点E ,与AD 交于点F ,则△CDF 的面积为________________19.二次函数y=x 2−4x+5的图象的顶点坐标为 .20.某一时刻身高160cm 的小王在太阳光下的影长为80cm ,此时他身旁的旗杆影长10m ,则旗杆高为______.21.抛物线y=ax 2-4ax+4(a≠0)与y 轴交于点A .过点B(0,3)作y 轴的垂线l ,若抛物线y=ax 2-4ax+4(a≠0)与直线l 有两个交点,设其中靠近y 轴的交点的横坐标为m ,且│m│<1,则a 的取值范围是______.22.一组数据:2,5,3,1,6,则这组数据的中位数是________.23.关于x 的方程220kx x --=的一个根为2,则k =______.24..甲、乙、丙、丁四位同学在五次数学测验中他们成绩的平均分相等,方差分别是2.3,3.8,5.2,6.2,则成绩最稳定的同学是______.25.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是_________.26.当21x -≤≤时,二次函数22()1y x m m =--++有最大值4,则实数m 的值为________.27.如图,在边长为 6 的等边△ABC 中,D 为 AC 上一点,AD=2,P 为 BD 上一点,连接 CP ,以 CP 为 边,在 PC 的右侧作等边△CPQ ,连接 AQ 交 BD 延长线于 E ,当△CPQ 面积最小时,QE=____________.28.一组数据:3,2,1,2,2,3,则这组数据的众数是_____.29.甲、乙两人在100米短跑训练中,某5次的平均成绩相等,甲的方差是0.12,乙的方差是0.05,这5次短跑训练成绩较稳定的是_____.(填“甲”或“乙”)30.如图,Rt △ABC 中,∠ACB =90°,BC =3,tan A =34,将Rt △ABC 绕点C 顺时针旋转90°得到△DEC ,点F 是DE 上一动点,以点F 为圆心,FD 为半径作⊙F ,当FD =_____时,⊙F 与Rt △ABC 的边相切.三、解答题31.如图,已知抛物线经过原点O ,顶点为A(1,1),且与直线-2y x =交于B ,C 两点. (1)求抛物线的解析式及点C 的坐标;(2)求△ABC 的面积;(3)若点N 为x 轴上的一个动点,过点N 作MN ⊥x 轴与抛物线交于点M ,则是否存在以O ,M ,N 为顶点的三角形与△ABC 相似?若存在,请求出点N 的坐标;若不存在,请说明理由.32.为加快城乡对接,建设美丽乡村,某地区对A 、B 两地间的公路进行改建,如图,A ,B 两地之间有一座山.汽车原来从A 地到B 地需途经C 地沿折线ACB 行驶,现开通隧道后,汽车可直接沿直线AB 行驶,已知BC =80千米,∠A =45°,∠B =30°.(1)开通隧道前,汽车从A 地到B 地要走多少千米?(2)开通隧道后,汽车从A 地到B 地可以少走多少千米?(结果保留根号)33.利用一面墙(墙的长度为20m ),另三边用长58m 的篱笆围成一个面积为200m 2的矩形场地.求矩形场地的各边长?34.如图,二次函数22y ax ax c =-+ (a < 0) 与 x 轴交于 A 、C 两点,与 y 轴交于点 B ,P 为 抛物线的顶点,连接 AB ,已知 OA :OC=1:3.(1)求 A 、C 两点坐标;(2)过点 B 作 BD ∥x 轴交抛物线于 D ,过点 P 作 PE ∥AB 交 x 轴于 E ,连接 DE , ①求 E 坐标;②若 tan ∠BPM=25,求抛物线的解析式.35.2016年,某贫困户的家庭年人均纯收入为2500元,通过政府产业扶持,发展了养殖业后,到2018年,家庭年人均纯收入达到了3600元.(1)求该贫困户2016年到2018年家庭年人均纯收入的年平均增长率;(2)若年平均增长率保持不变,2019年该贫困户的家庭年人均纯收入是否能达到4200元?四、压轴题36.阅读理解:如图,在纸面上画出了直线l与⊙O,直线l与⊙O相离,P为直线l上一动点,过点P作⊙O的切线PM,切点为M,连接OM、OP,当△OPM的面积最小时,称△OPM为直线l与⊙O的“最美三角形”.解决问题:(1)如图1,⊙A的半径为1,A(0,2) ,分别过x轴上B、O、C三点作⊙A的切线BM、OP、CQ,切点分别是M、P、Q,下列三角形中,是x轴与⊙A的“最美三角形”的是.(填序号)①ABM;②AOP;③ACQ(2)如图2,⊙A的半径为1,A(0,2),直线y=kx(k≠0)与⊙A的“最美三角形”的面积为12,求k的值.(3)点B在x轴上,以B为圆心,3为半径画⊙B,若直线y=3x+3与⊙B的“最美三角形”的面积小于32,请直接写出圆心B的横坐标B x的取值范围.37.如图,在矩形ABCD中,AB=20cm,BC=4cm,点p从A开始折线A——B——C——D以4cm/秒的速度移动,点Q从C开始沿CD边以1cm/秒的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动,设运动的时间t(秒)(1)t 为何值时,四边形APQD 为矩形. (2)如图(2),如果⊙P 和⊙Q 的半径都是2cm ,那么t 为何值时,⊙P 和⊙Q 外切?38.如图,在正方形ABCD 中,P 是边BC 上的一动点(不与点B ,C 重合),点B 关于直线AP 的对称点为E ,连接AE ,连接DE 并延长交射线AP 于点F ,连接BF(1)若BAP α∠=,直接写出ADF ∠的大小(用含α的式子表示).(2)求证:BF DF ⊥.(3)连接CF ,用等式表示线段AF ,BF ,CF 之间的数量关系,并证明.39.如图,抛物线y =ax 2-4ax +b 交x 轴正半轴于A 、B 两点,交y 轴正半轴于C ,且OB =OC =3.(1) 求抛物线的解析式;(2) 如图1,D 为抛物线的顶点,P 为对称轴左侧抛物线上一点,连接OP 交直线BC 于G ,连GD .是否存在点P ,使2GD GO=?若存在,求点P 的坐标;若不存在,请说明理由; (3) 如图2,将抛物线向上平移m 个单位,交BC 于点M 、N .若∠MON =45°,求m 的值.40.如图1(注:与图2完全相同)所示,抛物线212y x bx c =-++经过B 、D 两点,与x 轴的另一个交点为A ,与y 轴相交于点C .(1)求抛物线的解析式.(2)设抛物线的顶点为M,求四边形ABMC的面积(请在图1中探索)(3)设点Q在y轴上,点P在抛物线上.要使以点A、B、P、Q为顶点的四边形是平行四边形,求所有满足条件的点P的坐标(请在图2中探索)【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先过点O作OD⊥AB于点D,连接OA,由垂径定理可知AD=12AB,设OA=r,则OD=r﹣2,在Rt△AOD中,利用勾股定理即可求出r的值.【详解】解:如图所示:过点O作OD⊥AB于点D,连接OA,∵OD⊥AB,∴AD=12AB=4cm,设OA=r,则OD=r﹣2,在Rt△AOD中,OA2=OD2+AD2,即r2=(r﹣2)2+42,解得r=5cm.∴该输水管的半径为5cm;故选:B.【点睛】此题主要考查垂径定理,解题的关键是熟知垂径定理及勾股定理的运用.2.C解析:C【解析】【分析】根据随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用红灯亮的时间除以以上三种灯亮的总时间,即可得出答案.【详解】解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴红灯的概率是:301 302552=++.故答案为:C.【点睛】本题考查的知识点是简单事件的概率问题,熟记概率公式是解题的关键.3.D解析:D【解析】【分析】分AC为斜边和BC为斜边两种情况讨论.根据切线定理得过切点的半径垂直于三角形各边,利用面积法列式求半径长.【详解】第一情况:当AC为斜边时,如图,设⊙O是Rt△ABC的内切圆,切点分别为D,E,F,连接OC,OA,OB,∴OD⊥AC, OE⊥BC,OF⊥AB,且OD=OE=OF=r,在Rt△ABC中,AB=6,BC=8,由勾股定理得,2210AC AB BC=+= ,∵=++ABC AOC BOC AOBS S S S ,∴11112222AB BC AB OF BC OE AC OD ,∴1111686810 2222r r r ,∴r=2.第二情况:当BC为斜边时,如图,设⊙O是Rt△ABC的内切圆,切点分别为D,E,F,连接OC,OA,OB,∴OD⊥BC, OE⊥AC,OF⊥AB,且OD=OE=OF=r,在Rt△ABC中,AB=6,BC=8,由勾股定理得,2227AC BC AB ,∵=++ABC AOC BOC AOBS S S S ,∴11112222AB AC AB OF BC OD AC OE ,∴11116276827 2222r r r ,∴r=71- .故选:D.【点睛】本题考查了三角形内切圆半径的求法及勾股定理,依据圆的切线性质是解答此题的关键.等面积法是求高度等线段长的常用手段.4.C解析:C【解析】【分析】如图,连接BD,根据圆周角定理可得BD为⊙O的直径,利用勾股定理求出BD的长,进而可得⊙O的半径的长.【详解】如图,连接BD,∵四边形ABCD是正方形,边长为2,∴BC=CD=2,∠BCD=90°,∴2222+2,∵正方形ABCD是⊙O的内接四边形,∴BD是⊙O的直径,∴⊙O的半径是1222⨯=2,故选:C.【点睛】本题考查正方形的性质、圆周角定理及勾股定理,根据圆周角定理得出BD是直径是解题关键.5.B解析:B【解析】【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【详解】∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:16.故选B.6.B解析:B【解析】【分析】根据反比例函数的定义,二次函数的定义,一次函数的定义对各选项分析判断后利用排除法求解.【详解】解:A. y=12x是正比例函数,不符合题意;B. y=2x2-1是二次函数,符合题意;C. y23x+D. y=x2+1x+1不是二次函数,不符合题意.故选:B.【点睛】本题考查了二次函数的定义,解题关键是掌握一次函数、二次函数、反比例函数的定义.7.D解析:D【解析】【分析】按“左加右减,上加下减”的规律平移即可得出所求函数的解析式.【详解】抛物线y=x2先向右平移1个单位得y=(x﹣1)2,再向上平移3个单位得y=(x﹣1)2+3.故选D.【点睛】本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a(x-h)2+k(a,b,c为常数,a≠0),确定其顶点坐标(h,k),在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.8.C解析:C【解析】【分析】四边形ABCD图形不规则,根据已知条件,将△ABC绕A点逆时针旋转90°到△ADE的位置,求四边形ABCD的面积问题转化为求梯形ACDE的面积问题;根据全等三角形线段之间的关系,结合勾股定理,把梯形上底DE,下底AC,高DF分别用含x的式子表示,可表示四边形ABCD的面积.【详解】作AE⊥AC,DE⊥AE,两线交于E点,作DF⊥AC垂足为F点,∵∠BAD=∠CAE=90°,即∠BAC+∠CAD=∠CAD+∠DAE∴∠BAC=∠DAE又∵AB=AD,∠ACB=∠E=90°∴△ABC≌△ADE(AAS)∴BC=DE,AC=AE,设BC=a,则DE=a,DF=AE=AC=4BC=4a,CF=AC-AF=AC-DE=3a,在Rt△CDF中,由勾股定理得,CF2+DF2=CD2,即(3a)2+(4a)2=x2,解得:a=5x,∴y=S四边形ABCD=S梯形ACDE=12×(DE+AC)×DF=12×(a+4a)×4a=10a2=25x2.故选C.【点睛】本题运用了旋转法,将求不规则四边形面积问题转化为求梯形的面积,充分运用了全等三角形,勾股定理在解题中的作用.9.C解析:C【解析】【分析】因为OCP和ODQ为直角三角形,根据勾股定理可得OP、DQ、PQ的长度,又因为CP//DQ,两直线平行内错角相等,∠PCE=∠EDQ,且∠CPE=∠DQE=90°,可证CPE∽DQE,可得CP DQ=PE EQ,设PE=x,则EQ=14-x,解得x的取值,OE= OP-PE,则OE的长度可得.【详解】解:∵在⊙O中,直径AB=20,即半径OC=OD=10,其中CP⊥AB,QD⊥AB,∴OCP和ODQ为直角三角形,根据勾股定理:,,且OQ=6,∴PQ=OP+OQ=14,又∵CP⊥AB,QD⊥AB,垂直于用一直线的两直线相互平行,∴CP//DQ,且C、D连线交AB于点E,∴∠PCE=∠EDQ,(两直线平行,内错角相等)且∠CPE=∠DQE=90°,∴CPE∽DQE,故CP DQ=PE EQ,设PE=x,则EQ=14-x,∴68=x14-x,解得x=6,∴OE=OP-PE=8-6=2,故选:C.【点睛】本题考察了勾股定理、相似三角形的应用、两直线平行的性质、圆的半径,解题的关键在于证明CPE 与DQE 相似,并得出线段的比例关系.10.B解析:B【解析】【分析】将x=2代入方程即可求得k 的值,从而得到正确选项.【详解】解:∵一元二次方程x 2-3x+k=0的一个根为x=2,∴22-3×2+k=0,解得,k=2,故选:B .【点睛】本题考查一元二次方程的解,解题的关键是明确一元二次方程的解一定使得原方程成立.11.A解析:A【解析】【分析】把点(-1,-3)代入y =x 2+mx +n 得n=-4+m ,再代入mn +1进行配方即可.【详解】∵二次函数y =x 2+mx +n 的图像经过点(-1,-3),∴-3=1-m+n ,∴n=-4+m ,代入mn+1,得mn+1=m 2-4m+1=(m-2)2-3.∴代数式mn +1有最小值-3.故选A.【点睛】本题考查了二次函数图象上点的坐标特征,以及二次函数的性质,把函数mn+1的解析式化成顶点式是解题的关键.12.D解析:D【解析】试题分析:∵22y x x c =-++,∴对称轴为x=1,P 2(3,2y ),P 3(5,3y )在对称轴的右侧,y 随x 的增大而减小,∵3<5,∴23y y >,根据二次函数图象的对称性可知,P 1(﹣1,1y )与(3,2y )关于对称轴对称,故123y y y =>,故选D .考点:二次函数图象上点的坐标特征.13.B解析:B【解析】【分析】连接OA,由圆周角定理得,∠AOP=2∠B=50°,根据切线定理可得∠OAP=90°,继而推出∠P=90°﹣50°=40°.【详解】连接OA,由圆周角定理得,∠AOP=2∠B=50°,∵PA是⊙O的切线,∴∠OAP=90°,∴∠P=90°﹣50°=40°,故选:B.【点睛】本题考查圆周角定理、切线的性质、三角形内角和定理,解题的关键是求出∠AOP的度数.14.A解析:A【解析】【分析】根据黄金分割的比值约为0.618列式进行计算即可得解.【详解】解:∵书的宽与长之比为黄金比,书的长为20cm,∴书的宽约为20×0.618=12.36cm.故选:A.【点睛】本题考查了黄金比例的应用,掌握黄金比例的比值是解题的关键.15.C解析:C【解析】【分析】根据圆内接四边形的性质和圆周角定理即可得到结论.【详解】在优弧AB上任意找一点D,连接AD,BD.∵∠D=180°﹣∠ACB=50°,∴∠AOB=2∠D=100°,故选:C.【点睛】本题考查了圆周角定理,圆内接四边形的性质,正确的作出辅助线是解题的关键.二、填空题16.不能【解析】【分析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆.【详解】解:∵B(0,-3)、C(2,-3),∴BC∥x轴,而点A(1,-3)与C、解析:不能【解析】【分析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆.【详解】解:∵B(0,-3)、C(2,-3),∴BC∥x轴,而点A(1,-3)与C、B共线,∴点A、B、C共线,∴三个点A(1,-3)、B(0,-3)、C(2,-3)不能确定一个圆.故答案为:不能.【点睛】本题考查了确定圆的条件:不在同一直线上的三点确定一个圆.17.1:9.【解析】试题分析:由DE∥BC,可得△ADE∽△ABC,根据相似三角形的面积之比等于相似比的平方可得S△ADE:S△ABC=(AD:AB)2=1:9.考点:相似三角形的性质.解析:1:9.【解析】试题分析:由DE∥BC,可得△ADE∽△ABC,根据相似三角形的面积之比等于相似比的平方可得S△ADE:S△ABC=(AD:AB)2=1:9.考点:相似三角形的性质.18.【解析】【分析】首先判断出AB、BC是⊙O的切线,进而得出FC=AF+DC,设AF=x,再利用勾股定理求解即可.【详解】解:∵∠DAB=∠ABC=90°,∴AB、BC是⊙O的切线,∵C解析:3 2【解析】【分析】首先判断出AB、BC是⊙O的切线,进而得出FC=AF+DC,设AF=x,再利用勾股定理求解即可.【详解】解:∵∠DAB=∠ABC=90°,∴AB、BC是⊙O的切线,∵CF是⊙O的切线,∴AF=EF,BC=EC,∴FC=AF+DC,设AF=x,则,DF=2-x,∴CF=2+x,在RT△DCF中,CF2=DF2+DC2,即(2+x)2=(2-x)2+22,解得x=12,∴DF=2-12=32,∴113322222 CDFS DF DC=⋅=⨯⨯=,故答案为:32. 【点睛】 本题考查了正方形的性质,切线长定理的应用,勾股定理的应用,熟练掌握性质定理是解题的关键.19.(2,1)【解析】【分析】将二次函数解析式化为顶点式,即可得到顶点坐标.【详解】将二次函数配方得则顶点坐标为(2,1)考点:二次函数的图象和性质.解析:(2,1)【解析】【分析】将二次函数解析式化为顶点式,即可得到顶点坐标.【详解】将二次函数245y x x =-+配方得22()1y x =-+则顶点坐标为(2,1)考点:二次函数的图象和性质. 20.20m【解析】【分析】根据相同时刻的物高与影长成比例列出比例式,计算即可.【详解】解:设旗杆的高度为xm ,根据相同时刻的物高与影长成比例,得到160::10,解得.故答案是:20m .解析:20m【解析】【分析】根据相同时刻的物高与影长成比例列出比例式,计算即可.【详解】解:设旗杆的高度为xm ,根据相同时刻的物高与影长成比例,得到160:80x=:10,解得x20=.故答案是:20m.【点睛】本题考查的是相似三角形的应用,掌握相似三角形的性质是解题的关键.21.a>或a<.【解析】【分析】先确定抛物线的对称轴,根据开口的大小与a的关系,即开口向上时,a>0,且a越大开口越小,开口向下时,a<0,且a越大,开口越大,从而确定a的范围. 【详解】解:如解析:a>13或a<15-.【解析】【分析】先确定抛物线的对称轴,根据开口的大小与a的关系,即开口向上时,a>0,且a越大开口越小,开口向下时,a<0,且a越大,开口越大,从而确定a的范围.【详解】解:如图,观察图形抛物线y=ax2-4ax+4的对称轴为直线422axa-=-= ,设抛物线与直线l交点(靠近y轴)为(m,3),∵│m│<1,∴-1<m<1.当a>0时,若抛物线经过点(1,3)时,开口最大,此时a值最小,将点(1,3)代入y=ax2-4ax+4,得,3=a-4a+4解得a=1 3 ,∴a>1 3 ;当a<0时,若抛物线经过点(-1,3)时,开口最大,此时a值最大,将点(-1,3)代入y=ax2-4ax+4,得,3=a+4a+4解得a=1 5 - ,∴a<1 5 -.a的取值范围是a>13或a<15-.故答案为:a>13或a<15-.【点睛】本题考查抛物线的性质,首先明确a值与开口的大小关系,观察图形,即数形结合的思想是解答此题的关键.22.3【解析】【分析】根据中位数的定义进行求解即可得出答案.【详解】将数据从小到大排列:1,2,3,5,6,处于最中间的数是3,∴中位数为3,故答案为:3.【点睛】本题考查了中位数的定义,中解析:3【解析】【分析】根据中位数的定义进行求解即可得出答案.【详解】将数据从小到大排列:1,2,3,5,6,处于最中间的数是3,∴中位数为3,故答案为:3.【点睛】本题考查了中位数的定义,中位数是将一组数据从小到大或从大到小排列,处于最中间(中间两数的平均数)的数即为这组数据的中位数.23.1【解析】【分析】方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于k 的方程,从而求得k 的值.【详解】把x =2代入方程得:4k−2−2=0,解得k =1故解析:1【解析】【分析】方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于k 的方程,从而求得k 的值.【详解】把x =2代入方程得:4k−2−2=0,解得k =1故答案为:1.【点睛】本题主要考查了方程的根的定义,是一个基础的题目.24.甲【解析】【分析】方差反映了一组数据的波动情况,方差越小越稳定,据此可判断.【详解】∵2.3<3.8<5.2<6.2,∴,∴成绩最稳定的是甲.故答案为:甲.【点睛】本题考查了方差解析:甲【解析】【分析】方差反映了一组数据的波动情况,方差越小越稳定,据此可判断.【详解】∵2.3<3.8<5.2<6.2,∴2222甲乙丁丙<<<S S S S ,∴成绩最稳定的是甲.故答案为:甲.【点睛】本题考查了方差的概念,正确理解方差所表示的意义是解题的关键.25.【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】∵总面积为3×3=9,其中阴影部分面积为4××1×2=4,∴飞镖落在阴影部分的概率是,解析:4 9【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】∵总面积为3×3=9,其中阴影部分面积为4×12×1×2=4,∴飞镖落在阴影部分的概率是49,故答案为:49.【点睛】此题考查几何概率,解题关键在于掌握运算法则.26.2或【解析】【分析】求出二次函数对称轴为直线x=m,再分m<-2,-2≤m≤1,m>1三种情况,根据二次函数的增减性列方程求解即可.【详解】解:二次函数的对称轴为直线x=m,且开口向下,解析:2或【解析】【分析】求出二次函数对称轴为直线x=m,再分m<-2,-2≤m≤1,m>1三种情况,根据二次函数的增减性列方程求解即可.【详解】 解:二次函数22()1y x m m =--++的对称轴为直线x=m ,且开口向下,①m <-2时,x=-2取得最大值,-(-2-m )2+m 2+1=4,解得74m =-, 724->-, ∴不符合题意,②-2≤m≤1时,x=m 取得最大值,m 2+1=4,解得3m =±,所以3m =-,③m >1时,x=1取得最大值,-(1-m )2+m 2+1=4,解得m=2,综上所述,m=2或3-时,二次函数有最大值.故答案为:2或3-.【点睛】本题考查了二次函数的最值,熟悉二次函数的性质及图象能分类讨论是解题的关键.27.【解析】【分析】如图,过点D 作DF⊥BC 于F ,由“SAS”可证△ACQ≌△BCP,可得AQ =BP ,∠CAQ=∠CBP,由直角三角形的性质和勾股定理可求BD 的长,由锐角三角函数可求BP 的长,由相解析:67 【解析】【分析】如图,过点D 作DF ⊥BC 于F ,由“SAS ”可证△ACQ ≌△BCP ,可得AQ =BP ,∠CAQ =∠CBP ,由直角三角形的性质和勾股定理可求BD 的长,由锐角三角函数可求BP 的长,由相似三角形的性质可求AE 的长,即可求解.【详解】如图,过点D 作DF ⊥BC 于F ,∵△ABC ,△PQC 是等边三角形,∴BC =AC ,PC =CQ ,∠BCA =∠PCQ =60°,∴∠BCP =∠ACQ ,且AC =BC ,CQ =PC ,∴△ACQ ≌△BCP (SAS )∴AQ =BP ,∠CAQ =∠CBP ,∵AC =6,AD =2,∴CD =4,∵∠ACB =60°,DF ⊥BC ,∴∠CDF =30°,∴CF =12CD =2,DF =CF ÷tan30°= ∴BF =4,∴BD ,∵△CPQ 是等边三角形,∴S △CPQ 2, ∴当CP ⊥BD 时,△CPQ 面积最小,∴cos ∠CBD =BP BF BC BD =, ∴6BP =,∴BP ,∴AQ =BP , ∵∠CAQ =∠CBP ,∠ADE =∠BDC ,∴△ADE ∽△BDC , ∴AE AD BC BD=, ∴6AE =,∴AE ,∴QE =AQ−AE =7.故答案为;7. 【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,锐角三角函数,相似三角形的判定和性质,直角三角形的性质,勾股定理等知识,求出BP的长是本题的关键.28.【解析】【分析】根据众数的定义:一组数据中出现次数最多的数据解答即可.【详解】在数据:3,2,1,2,2,3中,2出现3次,出现的次数最多,∴这组数据的众数是2,故答案为:2.【点睛解析:【解析】【分析】根据众数的定义:一组数据中出现次数最多的数据解答即可.【详解】在数据:3,2,1,2,2,3中,2出现3次,出现的次数最多,∴这组数据的众数是2,故答案为:2.【点睛】此题考查的是求一组数据的众数,掌握众数的定义是解决此题的关键.29.乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0解析:乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0.14,乙的方差为0.06,∴S甲2>S乙2,∴成绩较为稳定的是乙;故答案为:乙.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.30.或【解析】【分析】如图1,当⊙F与Rt△ABC的边AC相切时,切点为H,连接FH,则HF⊥AC,解直角三角形得到AC=4,AB=5,根据旋转的性质得到∠DCE=∠ACB=90°,DE =AB=5解析:209或145【解析】【分析】如图1,当⊙F与Rt△ABC的边AC相切时,切点为H,连接FH,则HF⊥AC,解直角三角形得到AC=4,AB=5,根据旋转的性质得到∠DCE=∠ACB=90°,DE=AB=5,CD=AC=4,根据相似三角形的性质得到DF=209;如图2,当⊙F与Rt△ABC的边AC相切时,延长DE交AB于H,推出点H为切点,DH为⊙F的直径,根据相似三角形的性质即可得到结论.【详解】如图1,当⊙F与Rt△ABC的边AC相切时,切点为H,连接FH,则HF⊥AC,∴DF=HF,∵Rt△ABC中,∠ACB=90°,BC=3,tan A=BCAC=34,∴AC=4,AB=5,将Rt△ABC绕点C顺时针旋转90°得到△DEC,∴∠DCE=∠ACB=90°,DE=AB=5,CD=AC=4,∵FH⊥AC,CD⊥AC,∴FH∥CD,∴△EFH∽△EDC,∴FH CD =EF DE , ∴4DF =55DF , 解得:DF =209; 如图2,当⊙F 与Rt △ABC 的边AC 相切时,延长DE 交AB 于H ,∵∠A =∠D ,∠AEH =∠DEC∴∠AHE =90°,∴点H 为切点,DH 为⊙F 的直径,∴△DEC ∽△DBH ,∴DE BD =CD DH , ∴57=4DH, ∴DH =285, ∴DF =145, 综上所述,当FD =209或145时,⊙F 与Rt △ABC 的边相切, 故答案为:209或145. 【点睛】 本题考查了切线的判定和性质,相似三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.三、解答题31.(1)y=﹣(x ﹣1)2+1,C(﹣1,﹣3);(2)3;(3)存在满足条件的N 点,其坐标为(53,0)或(73,0)或(﹣1,0)或(5,0) 【解析】【分析】(1)可设顶点式,把原点坐标代入可求得抛物线解析式,联立直线与抛物线解析式,可求得C 点坐标;(2)设直线AC 的解析式为y =kx +b ,与x 轴交于D ,得到y =2x−1,求得BD 于是得到结论;(3)设出N 点坐标,可表示出M 点坐标,从而可表示出MN 、ON 的长度,当△MON 和△ABC 相似时,利用三角形相似的性质可得MN ON AB BC =或MN ON BC AB=,可求得N 点的坐标.【详解】(1)∵顶点坐标为(1,1),∴设抛物线解析式为y=a (x ﹣1)2+1,又抛物线过原点,∴0=a (0﹣1)2+1,解得a=﹣1,∴抛物线解析式为y=﹣(x ﹣1)2+1,即y=﹣x 2+2x ,联立抛物线和直线解析式可得22-2y x x y x ⎧=+⎨=⎩﹣, 解得20x y =⎧⎨=⎩或13x y =-⎧⎨=-⎩,∴B (2,0),C (﹣1,﹣3); (2)设直线AC 的解析式为y=kx+b ,与x 轴交于D ,把A (1,1),C (﹣1,﹣3)的坐标代入得13k b k b=+⎧⎨-=-+⎩, 解得:21k b =⎧⎨=-⎩, ∴y=2x ﹣1,当y=0,即2x ﹣1=0,解得:x=12,∴D (12,0), ∴BD=2﹣12=32, ∴△ABC 的面积=S △ABD +S △BCD =12×32×1+12×32×3=3; (3)假设存在满足条件的点N ,设N (x ,0),则M (x ,﹣x 2+2x ),∴ON=|x|,MN=|﹣x 2+2x|,由(2)知,,,∵MN ⊥x 轴于点N ,∴∠ABC=∠MNO=90°,∴当△ABC 和△MNO 相似时,有MN ON AB BC =或MN ON BC AB=, ①当MN ON AB BC =时,∴=|x||﹣x+2|=13|x|, ∵当x=0时M 、O 、N 不能构成三角形,∴x≠0,∴|﹣x+2|=13,∴﹣x+2=±13,解得x=53或x=73,此时N点坐标为(53,0)或(73,0);②当或MN ONBC AB=时,∴=,即|x||﹣x+2|=3|x|,∴|﹣x+2|=3,∴﹣x+2=±3,解得x=5或x=﹣1,此时N点坐标为(﹣1,0)或(5,0),综上可知存在满足条件的N点,其坐标为(53,0)或(73,0)或(﹣1,0)或(5,0).【点睛】本题为二次函数的综合应用,涉及知识点有待定系数法、图象的交点问题、直角三角形的判定、勾股定理及逆定理、相似三角形的性质及分类讨论等.在(1)中注意顶点式的运用,在(3)中设出N、M的坐标,利用相似三角形的性质得到关于坐标的方程是解题的关键,注意相似三角形点的对应.本题考查知识点较多,综合性较强,难度适中.32.(1)开通隧道前,汽车从A地到B地要走)千米;(2)汽车从A地到B地比原来少走的路程为千米.【解析】【分析】(1)过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD,进而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,进而求出汽车从A地到B地比原来少走多少路程.【详解】(1)过点C作AB的垂线CD,垂足为D,∵AB⊥CD,sin30°=CDBC,BC=80千米,∴CD=BC•sin30°=80×12=40(千米),AC=CDsin45︒=千米),AC+BC=80+1-8(千米),答:开通隧道前,汽车从A地到B地要走(80+1-8)千米;(2)∵cos30°=BDBC,BC=80(千米),∴BD=BC•cos30°=千米),。
2017-2018年兴化市顾庄学区九年级上第二次月考数学试卷含答案
2017-2018学年江苏省泰州市兴化市顾庄学区九年级(上)第二次月考数学试卷一.单选题(共10题;共30分)1.(3分)若实数x、y满足(x+y+3)(x+y﹣1)=0,则x+y的值为()A.1 B.﹣3 C.3或﹣1 D.﹣3或12.(3分)如图OA=OB=OC且∠ACB=30°,则∠AOB的大小是()A.40°B.50°C.60°D.70°3.(3分)圆锥的母线长为5cm,底面半径为4cm,则圆锥的侧面积是()A.15πB.20πC.25πD.30π4.(3分)下列语句中,正确的有()(1)相等的圆心角所对的弧相等;(2)平分弦的直径垂直于弦;(3)长度相等的两条弧是等弧;(4)圆是轴对称图形,任何一条直径都是对称轴.A.0个 B.1个 C.2个 D.3个5.(3分)如图,已知点A为⊙O内一点,点B、C均在圆上,∠C=30°,∠A=∠B=45°,线段OA=﹣1,则阴影部分的周长为()A. +2B. +2C. +D. +6.(3分)已知一元二次方程x2+3x+2=0,下列判断正确的是()A.该方程无实数解B.该方程有两个相等的实数解C.该方程有两个不相等的实数解D.该方程解的情况不确定7.(3分)为执行“均衡教育”政策,某县2014年投入教育经费2500万元,预计到2016年底三年累计投入1.2亿元.若每年投入教育经费的年平均增长百分率为x,则下列方程正确的是()A.2500(1+x)2=1.2B.2500(1+x)2=12000C.2500+2500(1+x)+2500(1+x)2=1.2D.2500+2500(1+x)+2500(1+x)2=120008.(3分)下列关于x的方程:①ax2+bx+c=0;②x2+=6;③x2=0;④x=3x2⑤(x+1)(x ﹣1)=x2+4x中,一元二次方程的个数是()A.1个 B.2个 C.3个 D.4个9.(3分)某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.410.(3分)已知关于x的一元二次方程(k﹣1)x2+3x+k2﹣1=0有一根为0,则k=()A.1 B.﹣1 C.±1 D.0二.填空题(共8题;共24分)11.(3分)某种植物的主干长出若干数目的支干,每个支干又长出同样多数目的小分支,主干、支干、小分支一共是91个,则每个支干长出的小分支数目为.12.(3分)如图所示,P是⊙O外一点,PA,PB分别和⊙O切于A,B两点,C是上任意一点,过C作⊙O的切线分别交PA,PB于D,E.(1)若△PDE的周长为10,则PA的长为;(2)连接CA、CB,若∠P=50°,则∠BCA的度数为度.13.(3分)已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为.14.(3分)半径等于12的圆中,垂直平分半径的弦长为.15.(3分)用一个圆心角为180°,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为.16.(3分)正六边形的边长为8cm,则它的面积为cm2.17.(3分)若(m+1)x m(m+2﹣1)+2mx﹣1=0是关于x的一元二次方程,则m的值是.18.(3分)用一个圆心角为120°,半径为18cm 的扇形作一个圆锥的侧面,则这个圆锥的底面半径应等于.三.解答题(共5题;共36分)19.如图,在四边形ABCD中,AB=AD,对角线AC,BD交于点E,点O在线段AE上,⊙O过B,D两点,若OC=5,OB=3,且cos∠BOE=.求证:CB是⊙O的切线.20.如图所示,菱形ABCD的顶点A、B在x轴上,点A在点B的左侧,点D在y轴的正半轴上,∠BAD=60°,点A的坐标为(﹣2,0).(1)求线段AD所在直线的函数表达式;(2)动点P从点A出发,以每秒1个单位长度的速度,按照A⇒D⇒C⇒B⇒A的顺序在菱形的边上匀速运动一周,设运动时间为t秒、求t为何值时,以点P为圆心、以1为半径的圆与对角线AC相切.21.如图,在△ABC中,点D是AC边上一点,以AD为直径的⊙O与边BC切于点E,且AB=BE.(1)求证:AB是⊙O的切线;(2)若BE=3,BC=7,求⊙O的半径长.22.设a,b是方程x2+x﹣2017=0的两个实数根,求代数式a2+2a+b的值.23.解方程:(1)2x2+x﹣3=0(用公式法)(2)(x﹣1)(x+3)=12.四.综合题(10分)24.(10分)如图,AB=AC,点O在AB上,⊙O过点B,分别与BC、AB交于D、E,过D作DF⊥AC于F.(1)求证:DF是⊙O的切线;(2)若AC与⊙O相切于点G,⊙O的半径为3,CF=1,求AC长.2017-2018学年江苏省泰州市兴化市顾庄学区九年级(上)第二次月考数学试卷参考答案与试题解析一.单选题(共10题;共30分)1.(3分)若实数x、y满足(x+y+3)(x+y﹣1)=0,则x+y的值为()A.1 B.﹣3 C.3或﹣1 D.﹣3或1【解答】解:(x+y+3)(x+y﹣1)=0,(x+y)2+2(x+y)﹣3=0,(x+y+3)(x+y﹣1)=0,x+y+3=0,x+y﹣1=0,∴x+y=﹣3,x+y=1.故选D.2.(3分)如图OA=OB=OC且∠ACB=30°,则∠AOB的大小是()A.40°B.50°C.60°D.70°【解答】解:由OA=OB=OC,得到以O为圆心,OA长为半径的圆经过A,B及C,∵圆周角∠ACB与圆心角∠AOB都对,且∠ACB=30°,∴∠AOB=2∠ACB=60°.故选C3.(3分)圆锥的母线长为5cm,底面半径为4cm,则圆锥的侧面积是()A.15πB.20πC.25πD.30π【解答】解:圆锥的侧面积=2π×5×4÷2=20π.故选B.4.(3分)下列语句中,正确的有()(1)相等的圆心角所对的弧相等;(2)平分弦的直径垂直于弦;(3)长度相等的两条弧是等弧;(4)圆是轴对称图形,任何一条直径都是对称轴.A.0个 B.1个 C.2个 D.3个【解答】解:(1)在同圆或等圆中,相等的圆心角所对的弧相等,故本小题错误;(2)平分弦的直径垂直于弦(非直径),故本小题错误;(3)在同圆或等圆中,长度相等的两条弧是等弧,故本小题错误;(4)每一条直径所在的直线是圆的对称轴.对称轴是直线,而直径是线段,故本小题错误.故选A.5.(3分)如图,已知点A为⊙O内一点,点B、C均在圆上,∠C=30°,∠A=∠B=45°,线段OA=﹣1,则阴影部分的周长为()A. +2B. +2C. +D. +【解答】解:延长AO交BC于点D,连接OB.∵∠A=∠ABC=45°,∴AD=BD,∠ADB=90°,即AD⊥BC.∴BD=CD.在Rt△COD中,设OD=x,∵∠C=30°,∴∠COD=60°,OC=2x,CD=x.∴∠COB=120°,AD=x.∴OA=AD﹣OD=x﹣x=(﹣1)x.而OA=﹣1,∴x=1,即OD=1,OC=2,BC=2CD=2.∴阴影部分的周长为: +2=+2.故选:A.6.(3分)已知一元二次方程x2+3x+2=0,下列判断正确的是()A.该方程无实数解B.该方程有两个相等的实数解C.该方程有两个不相等的实数解D.该方程解的情况不确定【解答】解:∵a=1,b=3,c=2,∴△=b2﹣4ac=32﹣4×1×2=1>0,∴方程有两个不相等的实数根.故选C.7.(3分)为执行“均衡教育”政策,某县2014年投入教育经费2500万元,预计到2016年底三年累计投入1.2亿元.若每年投入教育经费的年平均增长百分率为x,则下列方程正确的是()A.2500(1+x)2=1.2B.2500(1+x)2=12000C.2500+2500(1+x)+2500(1+x)2=1.2D.2500+2500(1+x)+2500(1+x)2=12000【解答】解:设每年投入教育经费的年平均增长百分率为x,由题意得,2500+2500×(1+x)+2500(1+x)2=12000.故选D.8.(3分)下列关于x的方程:①ax2+bx+c=0;②x2+=6;③x2=0;④x=3x2⑤(x+1)(x ﹣1)=x2+4x中,一元二次方程的个数是()A.1个 B.2个 C.3个 D.4个【解答】解:①当a=0时,ax2+bx+c=0不是一元二次方程;②x2+=6是分式方程;③x2=0是一元二次方程;④x=3x2是一元二次方程⑤(x+1)(x﹣1)=x2+4x,整理后不含x 的二次项,不是一元二次方程.故选:B.9.(3分)某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.4【解答】解:设二、三月份的月增长率是x,依题意有10+10(1+x)+10(1+x)2=36.4,故选D.10.(3分)已知关于x的一元二次方程(k﹣1)x2+3x+k2﹣1=0有一根为0,则k=()A.1 B.﹣1 C.±1 D.0【解答】解:把x=0代入一元二次方程(k﹣1)x2+3x+k2﹣1=0,得k2﹣1=0,解得k=﹣1或1;又k﹣1≠0,即k≠1;所以k=﹣1.故选B.二.填空题(共8题;共24分)11.(3分)某种植物的主干长出若干数目的支干,每个支干又长出同样多数目的小分支,主干、支干、小分支一共是91个,则每个支干长出的小分支数目为9.【解答】解:设每个支干长出的小分支的数目是x个,根据题意列方程得:x2+x+1=91,解得:x=9或x=﹣10(不合题意,应舍去);∴x=9;故答案为:912.(3分)如图所示,P是⊙O外一点,PA,PB分别和⊙O切于A,B两点,C是上任意一点,过C作⊙O的切线分别交PA,PB于D,E.(1)若△P DE的周长为10,则PA的长为5;(2)连接CA、CB,若∠P=50°,则∠BCA的度数为115度.【解答】解:(1)∵PA、PB、DE分别切⊙O于A、B、C,∴PA=PB,DA=DC,EC=EB;=PD+DE+PE=PD+DA+EB+PE=PA+PB=10;∴C△PDE∴PA=PB=5;(2)连接OA、OB、AC、BC,在⊙O上取一点F,连接AF、BF,∵PA、PB分别切⊙O 于A、B;∴∠PAO=∠PRO=90°∴∠AOB=360°﹣90°﹣90°﹣50°=130°;∴∠AFB=∠AOB=65°,∵∠AFB+∠BCA=180°∴∠BCA=180°﹣65°=115°;故答案是:5,115°.13.(3分)已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为3π.【解答】解:L===3π.故答案为:3π.14.(3分)半径等于12的圆中,垂直平分半径的弦长为12.【解答】解:如图,∵OD=CD=6,∴由勾股定理得AD=6,∴由垂径定理得AB=12,故答案为:12.15.(3分)用一个圆心角为180°,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为2.【解答】解:设这个圆锥的底面圆的半径为R,由题意:2πR=,解得R=2.故答案为2.16.(3分)正六边形的边长为8cm,则它的面积为96cm2.【解答】解:如图所示,正六边形ABCD中,连接OC、OD,过O作OE⊥CD;∵此多边形是正六边形,∴∠COD==60°;∵OC=OD,∴△COD是等边三角形,∴OE=CE•tan60°=×=4cm,=CD•OE=×8×4=16cm2.∴S△OCD=6×16=96cm2.∴S正六边形=6S△OCD17.(3分)若(m+1)x m(m+2﹣1)+2mx﹣1=0是关于x的一元二次方程,则m的值是﹣2或1.【解答】解:根据题意得,,由(1)得,m=1或m=﹣2;由(2)得,m≠﹣1;可见,m=1或m=﹣2均符合题意.18.(3分)用一个圆心角为120°,半径为18cm 的扇形作一个圆锥的侧面,则这个圆锥的底面半径应等于6cm.【解答】解:设这个圆锥的底面半径为rcm,根据题意得2πr=,解得r=6.故答案为:6cm.三.解答题(共5题;共36分)19.如图,在四边形ABCD中,AB=AD,对角线AC,BD交于点E,点O在线段AE上,⊙O过B,D两点,若OC=5,OB=3,且cos∠BOE=.求证:CB是⊙O的切线.【解答】证明:∵AB=AD,OB=OD,∴AO是线段BD的垂直平分线,∴AE⊥BD于点E,∵OC=5,OB=3,且cos∠BOE=,∴OE=OB•cos∠BOE=3×=,∴BE=,∴CE=OC﹣OE=5﹣=,∴BC==4,∵OB=3,OC=5,∴OB2+BC2=32+42=52=OC2,∴△OBC是直角三角形,∠OBC=90°,∴CB是⊙O的切线.20.如图所示,菱形ABCD的顶点A、B在x轴上,点A在点B的左侧,点D在y轴的正半轴上,∠BAD=60°,点A的坐标为(﹣2,0).(1)求线段AD所在直线的函数表达式;(2)动点P从点A出发,以每秒1个单位长度的速度,按照A⇒D⇒C⇒B⇒A的顺序在菱形的边上匀速运动一周,设运动时间为t秒、求t为何值时,以点P为圆心、以1为半径的圆与对角线AC相切.【解答】解:(1)∵点A的坐标为(﹣2,0),∠BAD=60°,∠AOD=90°,∴OD=OA•tan60°=,∴点D的坐标为(0,),(1分)设直线AD的函数表达式为y=kx+b,,解得.∴直线AD的函数表达式为.(3分)(2)∵四边形ABCD是菱形,∴∠DCB=∠BAD=60°,∴∠1=∠2=∠3=∠4=30°,AD=DC=CB=BA=4,(5分)如图所示:①点P在AD上与AC相切时,连接P1E,则P1E⊥AC,P1E=r,∵∠1=30°,∴AP1=2r=2,∴t1=2.(6分)②点P在DC上与AC相切时,CP2=2r=2,∴AD+DP2=6,∴t2=6.(7分)③点P在BC上与AC相切时,CP3=2r=2,∴AD+DC+CP3=10,∴t3=10.(8分)④点P在AB上与AC相切时,AP4=2r=2,∴AD+DC+CB+BP4=14,∴t4=14,∴当t=2、6、10、14时,以点P为圆心、以1为半径的圆与对角线AC相切.(9分)21.如图,在△ABC中,点D是AC边上一点,以AD为直径的⊙O与边BC切于点E,且AB=BE.(1)求证:AB是⊙O的切线;(2)若BE=3,BC=7,求⊙O的半径长.【解答】(1)证明:连接OB、OE,如图所示:在△ABO和△EBO中,,∴△ABO≌△EBO(SSS),∴∠BAO=∠BEO,∵⊙O与边BC切于点E,∴OE⊥BC,∴∠BEO=∠BAO=90°,即AB⊥AD,∴AB是⊙O的切线;(2)解:∵BE=3,BC=7,∴AB=BE=3,CE=4,∵AB⊥AD,∴AC=,∵OE⊥BC,∴∠OEC=∠BAC=90°,∠ECO=∠ACB,∴△CEO∽△CAB,∴,即,解得:OE=,∴⊙O的半径长为22.设a,b是方程x2+x﹣2017=0的两个实数根,求代数式a2+2a+b的值.【解答】解:∵a,b是方程x2+x﹣2017=0的两个实数根,∴a2+a﹣2017=0,即a2+a=2017,a+b=﹣1,∴a2+2a+b=a2+a+a+b=2017﹣1=2016.23.解方程:(1)2x2+x﹣3=0(用公式法)(2)(x﹣1)(x+3)=12.【解答】解:(1)a=2,b=1,c=﹣3,△=b2﹣4ac=1﹣4×2×(﹣3)=25>0,x==,x1=1,x2=﹣;(2)方程化简,得x2+2x﹣15=0,因式分解,得(x+5)(x﹣3)=0,于是,得x+5=0或x﹣3=0,解得x1=﹣5,x2=3.四.综合题(10分)24.(10分)如图,AB=AC,点O在AB上,⊙O过点B,分别与BC、AB交于D、E,过D作DF⊥AC于F.(1)求证:DF是⊙O的切线;(2)若AC与⊙O相切于点G,⊙O的半径为3,CF=1,求AC长.【解答】(1)证明:连接OD,∵AB=AC,∴∠B=∠C,∵OB=OD,∴∠B=∠ODB,∴∠ODB=∠C,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,则DF为圆O的切线;(2)解:连接OG,∵AC与圆O相切,∴OG⊥AC,∴∠OGF=∠GFD=∠ODF=90°,且OG=OD,∴四边形ODFG为边长为3的正方形,设AB=AC=x,则有AG=x﹣3﹣1=x﹣4,AO=x﹣3,在Rt△AOG中,利用勾股定理得:AO2=AG2+OG2,即(x﹣3)2=(x﹣4)2+32,解得:x=8,则AC=8.。
兴化初三数学期末试卷答案
一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. √2B. πC. -3D. 2.5答案:C解析:有理数是可以表示为两个整数之比的数,其中分母不为0。
选项C中的-3可以表示为-3/1,是有理数。
2. 下列函数中,一次函数是()A. y = x^2 + 1B. y = 2x - 3C. y = √xD. y = 3/x答案:B解析:一次函数的图像是一条直线,其表达式为y = kx + b,其中k和b是常数。
选项B中的函数符合一次函数的定义。
3. 在等腰三角形ABC中,AB = AC,若∠BAC = 40°,则∠B = ()A. 50°B. 40°C. 70°D. 80°答案:A解析:在等腰三角形中,底角相等,顶角等于底角之和的一半。
因此,∠B = ∠C = (180° - ∠BAC) / 2 = (180° - 40°) / 2 = 50°。
4. 已知一元二次方程x^2 - 4x + 3 = 0,下列选项中,正确的解法是()A. 因式分解B. 完全平方C. 二次公式D. 直接开平方答案:A解析:一元二次方程x^2 - 4x + 3 = 0可以通过因式分解得到(x - 1)(x - 3) = 0,从而得到x = 1或x = 3。
5. 下列各数中,正比例函数的图像是一条直线的是()A. y = 2x + 3B. y = 3/xC. y = √xD. y = 2x答案:D解析:正比例函数的图像是一条通过原点的直线,其表达式为y = kx,其中k是常数。
选项D中的函数符合正比例函数的定义。
二、填空题(每题5分,共50分)6. 已知等腰三角形ABC中,AB = AC,若∠BAC = 60°,则∠B = ______°。
答案:60°解析:在等腰三角形中,底角相等,顶角等于底角之和的一半。
江苏省泰州市兴化市顾庄学区三校联考九年级数学上学期期末考试试题(含解析) 苏科版
江苏省泰州市兴化市顾庄学区三校联考2016届九年级数学上学期期末试题一、选择题(本大题共有6小题,每小题3分,共18分)1.某次器乐比赛设置了6个获奖名额,共有11名选手参加,他们的比赛得分均不相同.若知道某位选手的得分.要判断他能否获奖,在下列11名选手成绩的统计量中,只需知道()A.方差 B.平均数C.众数 D.中位数2.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为()A.B.C.D.3.二次函数y=(x﹣1)2+1的图象顶点坐标是()A.(1,﹣1)B.(﹣1,1)C.(1,1)D.(﹣1,﹣1)4.下列命题中,是真命题的为()A.锐角三角形都相似 B.直角三角形都相似C.等腰三角形都相似 D.等边三角形都相似5.在Rt△ABC中,∠C=90°,当已知∠A和a时,求c,应选择的关系式是()A.c=B.c=C.c=a•tanA D.c=6.在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,相似比为,把△EFO缩小,则点E的对应点E′的坐标是()A.(﹣2,1)B.(﹣8,4)C.(﹣8,4)或(8,﹣4)D.(﹣2,1)或(2,﹣1)二、填空题(本大题共有10小题,每小题3分,共30分)7.若一组数据 1,1,2,3,x的平均数是3,则这组数据的众数是.8.某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉40只黄羊,发现其中两只有标志.从而估计该地区有黄羊.9.甲、乙、丙三人随意排成一列拍照,甲恰好排在中间的概率是.10.若,且a+2b﹣c=12,则b= .11.△ABC与△DEF的相似比为3:4,则△ABC与△DEF的面积的比为.12.抛物线y=x2﹣+m的顶点在x轴上,则m= .13.把二次函数y=x2+bx+c的图象沿y轴向下平移1个单位长度,再沿x轴向左平移5个单位长度后,所得的抛物线的顶点坐标为(﹣2,0),原抛物线相应的函数表达式是.14.在正方形网格中,∠AOB的位置如图所示,则cos∠AOB的值是.15.如图所示,已知⊙O的半径为5cm,弦AB的长为8cm,P是AB延长线上一点,BP=2cm,则tan ∠OPA等于.16.如图,在△ABC中,∠A=30°,∠B=45°,AC=,则AB的长为.三、解答题(本大题共有10小题,共102分.解答时应写出必要的步骤)17.(1)计算:(3﹣π)0﹣3﹣2+||+2sin60°;(2)求值:.18.如图,AF是△ABC的高,点D、E分别在AB、AC上,且DE∥BC,DE交AF于点G.设AD=10,AB=30,AC=24,GF=12.(1)求AE的长;(2)求点A到DE的距离.19.甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为奇数时,则甲胜;若两次摸出的球的标号之和为偶数时,则乙胜.(1)用画树状图或表格的方法,列出这个游戏所有可能出现的结果;(2)试分析这个游戏是否公平?请说明理由.20.某鱼塘中养了某种鱼4000条,为了估计该鱼塘中该种鱼的总质量,从鱼塘中捕捞了3次,取得的数据如下:数量/条平均每条鱼的质量/kg第1次捕捞15 1.6第2次捕捞15 2.0第3次捕捞10 1.8(1)求样本中平均每条鱼的质量;(2)估计鱼塘中该种鱼的总质量;(3)设该种鱼每千克的售价为12元,求出售该种鱼的收入y(元)与出售该种鱼的质量x(kg)之间的函数关系,并估计自变量x的取值范围.21.如图,有一路灯杆AB高8m,在路灯下,身高1.6m的小明在距B点6m的点D处测得自己的影长DH,沿BD方向再走14m到达点F处,再测得自己的影长FG.小明身影的长度是变短了还是变长了?变短或变长了多少米?22.如图,在△ABC中∠C=90°,点D在BC上,BD=4,AD=BC,,求:(1)DC的长;(2)sinB的值.23.如图,一楼房AB后有一假山,其坡度为i=1:,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25m,与亭子距离CE=20m,小丽从楼房顶测得E点的俯角为45°.求:(1)点E到AB的距离;(2)楼房AB的高.24.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6,AF=4,求AE的长.25.如图1,在Rt△ABC中,∠ACB=90°.半径为1的⊙A与边AB相交于点D,与边AC相交于点E,连接DE并延长,与边BC的延长线交于点P.(1)当∠B=30°时,求证:△ABC∽△EPC;(2)当∠B=30°时,连接AP,若△AEP与△BDP相似,求CE的长;(3)若CE=2,BD=BC,求∠BPD的正切值.26.如图,抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B.(1)求抛物线的解析式;(2)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线BC对称的点的坐标;(3)在(2)的条件下,连接BD,点P为抛物线上一点,且∠DBP=45°,求点P的坐标.江苏省泰州市兴化市顾庄学区三校联考2016届九年级上学期期末数学试卷参考答案与试题解析一、选择题(本大题共有6小题,每小题3分,共18分)1.某次器乐比赛设置了6个获奖名额,共有11名选手参加,他们的比赛得分均不相同.若知道某位选手的得分.要判断他能否获奖,在下列11名选手成绩的统计量中,只需知道()A.方差 B.平均数C.众数 D.中位数【考点】统计量的选择.【专题】应用题.【分析】由于比赛设置了6个获奖名额,共有11名选手参加,根据中位数的意义分析即可.【解答】解:11个不同的分数按从小到大排序后,中位数及中位数之后的共有6个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故选D.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.2.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为()A.B.C.D.【考点】概率公式.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【解答】解:∵小明的讲义夹里放了大小相同的试卷共12页,数学2页,∴他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为=.故选C.【点评】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.3.二次函数y=(x﹣1)2+1的图象顶点坐标是()A.(1,﹣1)B.(﹣1,1)C.(1,1)D.(﹣1,﹣1)【考点】二次函数的性质.【分析】根据顶点式的意义直接解答即可.【解答】解:二次函数y=(x﹣1)2+1的图象的顶点坐标是(1,1).故选:C.【点评】本题考查了二次函数的性质,要熟悉顶点式的意义,并明确:y=a(x﹣h)2+k(a≠0)的顶点坐标为(h,k).4.下列命题中,是真命题的为()A.锐角三角形都相似 B.直角三角形都相似C.等腰三角形都相似 D.等边三角形都相似【考点】相似三角形的判定.【专题】常规题型.【分析】可根据相似三角形的判定方法进行解答.【解答】解:A、锐角三角形的三个内角都小于90°,但不一定都对应相等,故A选项错误;B、直角三角形的直角对应相等,但两组锐角不一定对应相等,故B选项错误;C、等腰三角形的顶角和底角不一定对应相等,故C选项错误;D、所有的等边三角形三个内角都对应相等(都是60°),所以它们都相似,故D选项正确;故选:D.【点评】此题考查的是相似三角形的判定方法.需注意的是绝对相似的三角形大致有三种:①全等三角形;②等腰直角三角形;③等边三角形.5.在Rt△ABC中,∠C=90°,当已知∠A和a时,求c,应选择的关系式是()A.c=B.c=C.c=a•tanA D.c=【考点】锐角三角函数的定义.【分析】作出图形,然后根据锐角的正弦等于对边比斜边解答.【解答】解:如图,∵已知∠A和a,求c,∴sinA=,∴c=.故选A.【点评】本题考查了锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边,作出图形更形象直观.6.在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,相似比为,把△EFO缩小,则点E的对应点E′的坐标是()A.(﹣2,1)B.(﹣8,4)C.(﹣8,4)或(8,﹣4)D.(﹣2,1)或(2,﹣1)【考点】位似变换;坐标与图形性质.【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k进行计算即可.【解答】解:∵点E(﹣4,2),以O为位似中心,相似比为,∴点E的对应点E′的坐标为:(﹣4×,2×)或(﹣4×(﹣),2×(﹣)),即(﹣2,1)或(2,﹣1),故选:D.【点评】本题考查的是位似变换,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.二、填空题(本大题共有10小题,每小题3分,共30分)7.若一组数据 1,1,2,3,x的平均数是3,则这组数据的众数是 1 .【考点】众数;算术平均数.【专题】计算题.【分析】根据平均数的定义可以先求出x的值,再根据众数的定义求出这组数的众数即可.【解答】解:利用平均数的计算公式,得(1+1+2+3+x)=3×5,求得x=8,则这组数据的众数即出现最多的数为1.故答案为:1.【点评】本题考查的是平均数和众数的概念.注意一组数据的众数可能不只一个.8.某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉40只黄羊,发现其中两只有标志.从而估计该地区有黄羊400只.【考点】用样本估计总体.【分析】捕捉40只黄羊,发现其中2只有标志.说明有标记的占到,而有标记的共有20只,根据所占比例解得.【解答】解:20÷=400(只).故答案为400只.【点评】统计的思想就是用样本的信息来估计总体的信息,本题体现了统计思想,考查了用样本估计总体.9.甲、乙、丙三人随意排成一列拍照,甲恰好排在中间的概率是.【考点】概率公式.【专题】应用题.【分析】先求出甲、乙、丙三人随意排成一列拍照可能出现的所有情况,再求出甲在中间的情况,根据概率公式解答即可.【解答】解:甲、乙、丙三人随意排成一列拍照,共6种情况,即甲、乙、丙;乙、甲、丙;甲、丙、乙;乙、丙、甲;丙、甲、乙;丙、乙、甲;甲排在中间的有2种情况,故其概率是.【点评】本题考查随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.10.若,且a+2b﹣c=12,则b= 10 .【考点】比例的性质.【分析】首先设=k,可得a=3k,b=5k,c=7k,又由a+2b﹣c=12,即可求得k的值,继而求得b的值.【解答】解:设=k,则a=3k,b=5k,c=7k,∵a+2b﹣c=12,∴3k+2×5k﹣7k=12,解得:k=2,∴b=5k=10.故答案为:10.【点评】此题考查了比例的性质.此题比较简单,注意设=k是解此题的关键.11.△ABC与△DEF的相似比为3:4,则△ABC与△DEF的面积的比为9:16 .【考点】相似三角形的性质.【分析】已知了相似三角形的相似比,根据相似三角形的面积比等于相似比的平方可直接得出答案.【解答】解:∵△ABC与△DEF相似,且相似比为3:4,∴△ABC与△DEF的面积比为32:42,即9:16;故答案为:9:16.【点评】此题主要考查的知识点是:相似三角形的面积比等于相似比的平方.12.抛物线y=x2﹣+m的顶点在x轴上,则m= .【考点】二次函数的性质.【分析】先根据二次函数的顶点坐标在x轴上得出关于m的方程,求出m的值即可.【解答】解:∵抛物线y=x2﹣+m的顶点在x轴上,∴b2﹣4ac=(﹣)2﹣4m=0,解得:m=.故答案为:.【点评】此题主要考查了二次函数的性质,正确记忆顶点在x轴上b2﹣4ac=0是解题关键.13.把二次函数y=x2+bx+c的图象沿y轴向下平移1个单位长度,再沿x轴向左平移5个单位长度后,所得的抛物线的顶点坐标为(﹣2,0),原抛物线相应的函数表达式是y=x2﹣6x+10 .【考点】二次函数图象与几何变换.【专题】计算题.【分析】逆向思考:把平移后的抛物线顶点(﹣2,0)向上平移1个单位长度,再沿x轴向右平移5个单位长度后得到原抛物线的顶点坐标,然后利用顶点式写出原抛物线相应的函数表达式.【解答】解:把点(﹣2,0)向上平移1个单位长度,再沿x轴向右平移5个单位长度后所得对应点的坐标为(3,1),即二次函数y=x2+bx+c图象的顶点坐标为(3,1),所以原抛物线相应的函数表达式为y=(x﹣3)2+1,即y=x2﹣6x+10.故答案为y=x2﹣6x+10.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.14.在正方形网格中,∠AOB的位置如图所示,则cos∠AOB的值是.【考点】锐角三角函数的定义.【专题】网格型.【分析】观察图形,可知在直角△COD中,OD=1,CD=2,首先由勾股定理求出OC的值,再根据锐角三角函数的定义求值.【解答】解:∵在直角△COD中,OD=1,CD=2,∴OC=,∴cos∠AOB==.【点评】本题主要考查了锐角三角函数的定义及运用:在直角三角形中,锐角的余弦为邻边比斜边.15.如图所示,已知⊙O的半径为5cm,弦AB的长为8cm,P是AB延长线上一点,BP=2cm,则t an∠OPA 等于.【考点】垂径定理;勾股定理;锐角三角函数的定义.【分析】过C作OC⊥AB于C,根据垂径定理求出AC=BC=4cm,根据勾股定理求出OC,求出PC,根据锐角三角函数的定义求出即可.【解答】解:过C作OC⊥AB于C,∵OC⊥AB,OC过圆心O,∴AC=BC=AB,∵AB=8cm,∴AC=BC=4cm,∵在Rt△ACO中,∠ACO=90°,AC=4cm,OA=5cm,由勾股定理得:OC=3cm,∵BP=2cm∴PC=PB+BC=2cm+4cm=6cm,在△O CP中,tan∠OPA===,故答案为:.【点评】本题考查了垂径定理,勾股定理,锐角三角函数的定义等知识点,关键是能运用性质求出OC和PC的长,主要考查学生的计算能力和推理能力.16.如图,在△ABC中,∠A=30°,∠B=45°,AC=,则AB的长为3+.【考点】解直角三角形.【专题】几何图形问题.【分析】过C作CD⊥AB于D,求出∠BCD=∠B,推出BD=CD,根据含30度角的直角三角形求出CD,根据勾股定理求出AD,相加即可求出答案.【解答】解:过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠B=45°,∴∠BCD=∠B=45°,∴CD=BD,∵∠A=30°,AC=2,∴CD=,∴BD=CD=,由勾股定理得:AD==3,∴AB=AD+BD=3+.故答案为:3+.【点评】本题考查了勾股定理,等腰三角形的性质和判定,含30度角的直角三角形性质等知识点的应用,关键是构造直角三角形,题目具有一定的代表性,是一道比较好的题目.三、解答题(本大题共有10小题,共102分.解答时应写出必要的步骤)17.(1)计算:(3﹣π)0﹣3﹣2+||+2sin60°;(2)求值:.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】(1)原式第一项利用零指数幂法则计算,第二项利用负整数指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果;(2)原式利用特殊角的三角函数值计算即可得到结果.【解答】解:(1)原式=1﹣+2﹣+2×=2;(2)原式===.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.如图,AF是△ABC的高,点D、E分别在AB、AC上,且DE∥BC,DE交AF于点G.设AD=10,AB=30,AC=24,GF=12.(1)求AE的长;(2)求点A到DE的距离.【考点】相似三角形的判定与性质.【分析】(1)由DE∥BC,得到△ADE∽△ABC,根据相似三角形的性质得到,代入数据即可得到结论;(2)根据平行线的性质得到得到AF⊥DE,根据DE∥BC,推出△ADG∽△ABF,根据相似三角形的性质得到,代入数据即可得到结论.【解答】解:(1)∵DE∥BC,∴△ADE∽△ABC,∴,∵AD=10,AB=30,AC=24,∴,∴AE=8;(2)∵AF是△ABC的高,∴AF⊥BC,∵DE∥BC,∴AF⊥DE,∵DE∥BC,∴△ADG∽△ABF,∴,∵GF=12,∴,∴AG=6,∴点A到DE的距离是6.【点评】本题考查了相似三角形的判定和性质,平行线的性质,熟练掌握相似三角形的判定和性质是解题的关键.19.甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为奇数时,则甲胜;若两次摸出的球的标号之和为偶数时,则乙胜.(1)用画树状图或表格的方法,列出这个游戏所有可能出现的结果;(2)试分析这个游戏是否公平?请说明理由.【考点】游戏公平性;列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)利用(1)中所求得出甲胜,乙胜的情况,即可求得求概率,比较大小,即可知这个游戏是否公平.【解答】解:(1)画树状图得:,由图可得共有9种等可能的结果为:2,3,4,3,4,5,4,5,6;(2)这个游戏不公平.理由:∵两次摸出的球的标号之和为偶数的有5种情况,两次摸出的球的标号之和为奇数的有4种情况,∴P(乙胜)=,P(甲胜)=.∴P(甲胜)≠P(乙胜),故这个游戏不公平.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.20.某鱼塘中养了某种鱼4000条,为了估计该鱼塘中该种鱼的总质量,从鱼塘中捕捞了3次,取得的数据如下:数量/条平均每条鱼的质量/kg第1次捕捞15 1.6第2次捕捞15 2.0第3次捕捞10 1.8(1)求样本中平均每条鱼的质量;(2)估计鱼塘中该种鱼的总质量;(3)设该种鱼每千克的售价为12元,求出售该种鱼的收入y(元)与出售该种鱼的质量x(kg)之间的函数关系,并估计自变量x的取值范围.【考点】用样本估计总体;根据实际问题列一次函数关系式;加权平均数.【分析】(1)根据平均数的公式求解,(2)每条鱼的平均质量×总条数=总质量,(3)根据题意列出函数表达式即可.【解答】解:(1)样本中平均每条鱼的质量为kg;(2)估计鱼塘中该种鱼的总质量为1.8×4000=7200 kg;(3)所求函数表达式为y=12x,估计自变量x的取值范围为0≤x≤7200.【点评】本题考查了用样本估计总体的思想,解题时要认真观察统计表,从统计表中获取信息.21.如图,有一路灯杆AB高8m,在路灯下,身高1.6m的小明在距B点6m的点D处测得自己的影长DH,沿BD方向再走14m到达点F处,再测得自己的影长FG.小明身影的长度是变短了还是变长了?变短或变长了多少米?【考点】相似三角形的应用;中心投影.【分析】由于CD∥AB,故有△HCD∽△HAB,同理可得△EFG∽△ABG,即可由相似三角形的性质求解.【解答】解:设HD=x,GF=y∵CD∥AB,∴△HCD∽△HAB,∴=,∴=,解得:x=1.5同理,可解得y=5.∴小明身影的长度是变长了.变长了5﹣1.5=3.5(米).【点评】此题主要考查了相似三角形的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解答问题.22.如图,在△ABC中∠C=90°,点D在BC上,BD=4,AD=BC,,求:(1)DC的长;(2)sinB的值.【考点】解直角三角形.【分析】根据,就是已知CD:AD=3:5,因而可以设CD=3x,AD=5x,AC=4x.根据BD=4,就可以得到关于x的方程,就可以求出x,求出各线段的长度,求出sinB的值.【解答】解:(1)在直角△ACD中,=,因而可以设CD=3x,AD=5x,根据勾股定理得到AC=4x,则BC=AD=5x,∵BD=4,∴5x﹣3x=4,解得x=2,因而BC=10,AC=8,CD=6;(2)在直角△ABC中,根据勾股定理得到AB=2,∴sinB===.【点评】本题主要考查了三角函数的定义,正确求出图形中的线段的长是解决本题的关键.23.如图,一楼房AB后有一假山,其坡度为i=1:,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25m,与亭子距离CE=20m,小丽从楼房顶测得E点的俯角为45°.求:(1)点E到AB的距离;(2)楼房AB的高.【考点】解直角三角形的应用-仰角俯角问题.【分析】(1)过点E作EG⊥AB于G,过点E作EF⊥BC交BC的延长线于F,根据矩形的性质得到EF=BG,FB=EG,在Rt△ECF中,tan∠ECF=,求得∠ECF=30°,解直角三角形即可得到结论;(2)根据小丽从楼房顶测得E点的俯角为45°,求得∠FAE=∠FEA=45°,于是得到AF=EF=20+10(m),根据得到结论.【解答】解:(1)过点E作EG⊥AB于G,过点E作EF⊥BC交BC的延长线于F,∵四边形EFBG是矩形,∴EF=BG,FB=EG,∵在Rt△ECF中,tan∠ECF=,∴∠ECF=30°,∵C E=20 m,∴EF=10m,CF=10m,∵BC=25m,∴BF=BC+CF=20+10(m),∴EG=20+10(m)∴点E到AB的距离是m;(2)∵小丽从楼房顶测得E点的俯角为45°,∴∠FAE=∠FEA=45°∴AF=EF=20+10(m),∵FB=EG=10 m,∴AB=AF+FB=20+10+10=30+10(m)∴楼房AB的高是(30+10)m.【点评】本题考查了解直角三角形的应用﹣﹣仰角俯角问题、坡度坡角问题,要求学生能借助仰角构造直角三角形并解直角三角形.24.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6,AF=4,求AE的长.【考点】相似三角形的判定与性质;勾股定理;平行四边形的性质.【专题】压轴题.【分析】(1)利用对应两角相等,证明两个三角形相似△ADF∽△DEC;(2)利用△ADF∽△DEC,可以求出线段DE的长度;然后在Rt△ADE中,利用勾股定理求出线段AE的长度.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠C+∠B=180°,∠ADF=∠DEC.∵∠AFD+∠AFE=180°,∠AFE=∠B,∴∠AFD=∠C.在△ADF与△DEC中,∴△ADF∽△DEC.(2)解:∵四边形ABCD是平行四边形,∴CD=AB=8.由(1)知△ADF∽△DEC,∴,∴DE===12.在Rt△ADE中,由勾股定理得:AE===6.【点评】本题主要考查了相似三角形的判定与性质、平行四边形的性质和勾股定理三个知识点.题目难度不大,注意仔细分析题意,认真计算,避免出错.25.如图1,在Rt△ABC中,∠ACB=90°.半径为1的⊙A与边AB相交于点D,与边AC相交于点E,连接DE并延长,与边BC的延长线交于点P.(1)当∠B=30°时,求证:△ABC∽△EPC;(2)当∠B=30°时,连接AP,若△AEP与△BDP相似,求CE的长;(3)若CE=2,BD=BC,求∠BPD的正切值.【考点】圆的综合题.【分析】(1)由已知条件易求∠A=60°,又因为AD=AE,所以△ADE是等边三角形,进而可得∠CEP=60°,由三角形内角和定理可求∠P=30°,继而可证明△ABC∽△EPC;(2)根据∠B=30°,∠ACB=90°可得∠BAC=60°,从而得到△ADE是等边三角形,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BPD=30°,然后根据等角对等边的性质可得BD=PD,再根据△AEP与△BDP相似可得PE=AE,然后根据30°角所对的直角边等于斜边的一半即可求解;(3)设BD=BC=x,表示出AB、AC的长度,然后利用勾股定理列式求出x的值为4,过点C作CF∥DP 交AB于点F,再根据平行线分线段成比例定理求出DF=2,然后求出BF的长度,再次利用平行线分线段成比例定理求出CP的长度,然后根据正切值的定义解答即可.【解答】解:(1)∵∠ACB=90°,∠B=30°,∴∠A=60°,∵AD=AE,∴△ADE是等边三角形,∴∠ADE=∠AED=60°,∴∠PEC=∠AED=60°,∵∠ACB=∠ECP=90°,∴∠P=30°,∴△ABC∽△EPC;(2)∵∠B=30°,∠ACB=90°,∴∠BAC=90°﹣30°=60°,∴△ADE是等边三角形,在△BDP中,∠ADE=∠B+∠BPD,即60°=30°+∠BPD,解得∠BPD=30°,∴∠B=∠BPD,∴BD=PD,∵△AEP与△BDP相似,∴AE=PE,∵⊙A的半径为1,∴PE=1,在Rt△PCE中,CE=PE=;(3)设BD=BC=x,∵⊙A的半径为1,CE=2,∴AB=x+1,AC=2+1=3,∵∠ACB=90°,∴AC2+BC2=AB2,即32+x2=(x+1)2,解得x=4,过点C作CF∥DP交AB于点F,(如图2)则,,即,解得DF=2,∴BF=BD﹣DF=4﹣2=2,又由CF∥DP可得,即,解得CP=4,∴tan∠BPD=.【点评】本题考查了相似三角形的性质,等边三角形的判定与性质,勾股定理的应用,平行线分线段成比例定理,等角对等边的性质,利用比例式的基本性质得到有关线段的数量关系解题的关键.26.如图,抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B.(1)求抛物线的解析式;(2)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线BC对称的点的坐标;(3)在(2)的条件下,连接BD,点P为抛物线上一点,且∠DBP=45°,求点P的坐标.【考点】二次函数综合题.【专题】压轴题.【分析】(1)分析抛物线过两点,由待定系数求出抛物线解析式;(2)根据D、E中点坐标在直线BC上,求出D点关于直线BC对称点的坐标;(3)有两种方法:法一作辅助线PF⊥AB于F,DE⊥BC于E,根据几何关系,先求出tan∠PBF,再设出P点坐标,根据几何关系解出P点坐标;法二过点D作BD的垂线交直线PB于点Q,过点D作DH⊥x轴于H.过Q点作QG⊥DH于G,由角的关系,得到△QDG≌△DBH,再求出直线BP的解析式,解出方程组从而解出P点坐标.【解答】解:(1)∵抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,∴,解得,∴抛物线的解析式为y=﹣x2+3x+4;(2)∵点D(m,m+1)在抛物线上,∴m+1=﹣m2+3m+4,即m2﹣2m﹣3=0∴m=﹣1或m=3∵点D在第一象限∴点D的坐标为(3,4)由(1)知OC=OB∴∠CBA=45°设点D关于直线BC的对称点为点E∵C(0,4)∴CD∥AB,且CD=3∴∠ECB=∠DCB=45°∴E点在y轴上,且CE=CD=3∴OE=1∴E(0,1)即点D关于直线BC对称的点的坐标为(0,1);(3)方法一:作PF⊥AB于F,DE⊥BC于E,由(1)有:OB=OC=4∴∠OBC=45°∵∠DBP=45°∴∠CBD=∠PBA∵C(0,4),D(3,4)∴CD∥OB且CD=3∴∠DCE=∠CBO=45°∴DE=CE=∵OB=OC=4∴BC=4∴BE=BC﹣CE=∴tan∠PBF=tan∠CBD=设PF=3t,则BF=5t,OF=5t﹣4∴P(﹣5t+4,3t)∵P点在抛物线上∴3t=﹣(﹣5t+4)2+3(﹣5t+4)+4∴t=0(舍去)或t=∴P(,);方法二:过点D作BD的垂线交直线PB于点Q,过点D作DH⊥x轴于H,过Q点作QG⊥DH于G,∵∠PBD=45°,∴QD=DB,∴∠QDG+∠BDH=90°,又∵∠DQG+∠QDG=90°,∴∠DQG=∠BDH,∴△QDG≌△DBH,∴QG=DH=4,DG=BH=1由(2)知D(3,4),∴DH=4,∴HG=3,QF=1,∴Q(﹣1,3)∵B(4,0)∴直线BQ的解析式为y=﹣x+解方程组得,∴点P的坐标为(,).【点评】此题考查传统的待定系数求函数解析式,第二问考查点的对称问题,作合适的辅助线,根据垂直和三角形全等来求P点坐标.。
【精编】2017-2018学年兴化市顾庄学区九年级上期中数学模拟试卷有答案.doc
2017-2018学年江苏省泰州市兴化市顾庄学区九年级(上)期中数学模拟试卷一.单选题(共10题;共30分)1.(3分)如图,AB为⊙O的直径,点C在⊙O上,∠A=40°,则∠B的度数为()A.20°B.40°C.50°D.60°2.(3分)如图,AB是⊙O的直径,点C在⊙O上,若∠BOC=40°,则∠C的度数等于()A.20°B.40°C.60°D.80°3.(3分)如图,△ABC的三边分别切⊙O于D,E,F,若∠A=50°,则∠DEF=()A.65°B.50°C.130° D.80°4.(3分)方程2x(x﹣3)=5(x﹣3)的根是()A.x= B.x=3 C.x1=,x2=3 D.x1=﹣,x2=﹣35.(3分)如图,PA、PB是⊙O的切线,切点分别为A、B,点C在⊙O上,如果∠P=50°,那么∠ACB等于()A.40°B.50°C.65°D.130°6.(3分)如图,已知⊙O的直径AB⊥弦CD于点E,下列结论中一定正确的是()A.AE=OE B.CE=DE C.OE=CE D.∠AOC=60°7.(3分)已知一个圆锥的底面半径为3cm,母线长为10cm,则这个圆锥的侧面积为()A.15πcm2B.30πcm2C.60πcm2D.3cm28.(3分)某商品原价500元,连续两次降价a%后售价为200元,下列所列方程正确的是()A.500(1+a%)2=200 B.500(1﹣a%)2=200 C.500(1﹣2a%)=200 D.500(1﹣a2%)=2009.(3分)用公式法解﹣x2+3x=1时,先求出a、b、c的值,则a、b、c依次为()A.﹣1,3,﹣1 B.1,﹣3,﹣1 C.﹣1,﹣3,﹣1 D.﹣1,3,110.(3分)如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,点D在⊙O上,∠ADC=54°,则∠BAC的度数等于()A.36°B.44°C.46°D.54°二.填空题(共8题;共24分)11.(3分)小华在解一元二次方程x2﹣4x=0时,只得出一个根是x=4,则被他漏掉的一个根x=.12.(3分)如图,⊙O是△ABC的外接圆,连接OA,OB,∠OBA=48°,则∠C的度数为.13.(3分)如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=24,AH=18,⊙O的半径OC=13,则AB=.14.(3分)如图,PA、PB分别与⊙O相切于点A、B,⊙O的切线EF分别交PA、PB于点E、F,切点C在上,若PA长为2,则△PEF的周长是.15.(3分)已知如图所示的图形的面积为24,根据图中的条件,可列出方程:.16.(3分)已知关于x的方程x2﹣3x+m=0的一个根是1,则m=,另一个根为.17.(3分)如图,线段AB与⊙O相切于点B,线段AO与⊙O相交于点C,AB=12,AC=8,则⊙O的半径长为.18.(3分)若关于x的一元二次方程x2+3x+k=0有两个不相等的实数根,则k的取值范围是.三.解答题(共6题;共36分)19.(6分)如图:=,D、E分别是半径OA和OB的中点,求证:CD=CE.20.(6分)如图1,Rt△ABC两直角边的边长为AC=3,BC=4.(1)如图2,⊙O与Rt△ABC的边AB相切于点X,与边BC相切于点Y.请你在图2中作出并标明⊙O的圆心(用尺规作图,保留作图痕迹,不写作法和证明)(2)P是这个Rt△ABC上和其内部的动点,以P为圆心的⊙P与Rt△ABC的两条边相切.设⊙P的面积为S,你认为能否确定S的最大值?若能,请你求出S的最大值;若不能,请你说明不能确定S的最大值的理由.21.(6分)已知:△ABC(如图),(1)求作:作△ABC的内切圆⊙I.(要求:用尺规作图,保留作图痕迹,不写作法,不要求证明).(2)在题(1)已经作好的图中,若∠BAC=88°,求∠BIC的度数.22.(6分)如图,点G.H分别是正六边形ABCDEF的边BC.CD上的点,且BG=CH,AG 交BH于点P.(1)求证:△ABG≌△BCH;(2)求∠APH的度数.23.(6分)岳一中初三某学生聆听了感恩励志主题演讲《不要让爱你的人失望》后,写了一份《改变,从现在开始》的倡议书在微信朋友圈传播,规则为:将倡议书发表在自己的朋友圈,再邀请n个好友转发倡议书,每个好友转发倡议书之后,又邀请n个互不相同的好友转发倡议书,依此类推,已知经过两轮传播后,共有421人参与了传播活动,求n的值.24.(6分)在直径为10cm的圆柱形油槽内装入一些油后,截面如图,油面宽AB为6cm,当油面宽AB为8cm时,油上升了多少cm?四.综合题(10分)25.(10分)如图,点A是⊙O直径BD延长线上的一点,C在⊙O上,AC=BC,AD=CD (1)求证:AC是⊙O的切线;(2)若⊙O的半径为4,求△ABC的面积.2017-2018学年江苏省泰州市兴化市顾庄学区九年级(上)期中数学模拟试卷参考答案与试题解析一.单选题(共10题;共30分)1.(3分)如图,AB为⊙O的直径,点C在⊙O上,∠A=40°,则∠B的度数为()A.20°B.40°C.50°D.60°【解答】解:∵AB是⊙O的直径,∴∠C=90°,∵∠A=40°,∴∠B=50°,故选:C.2.(3分)如图,AB是⊙O的直径,点C在⊙O上,若∠BOC=40°,则∠C的度数等于()A.20° B.40°C.60°D.80°【解答】解:∵∠BOC=40°,∴∠C+∠A=40°,AO=CO,∴∠C=∠A=20°.故选:A.3.(3分)如图,△ABC的三边分别切⊙O于D,E,F,若∠A=50°,则∠DEF=()A.65°B.50°C.130° D.80°【解答】解:连接OD,OF.则∠ADO=∠AFO=90°,∴∠DOF=180°﹣∠A=130°,∴∠DEF=65°.故选:A.4.(3分)方程2x(x﹣3)=5(x﹣3)的根是()A.x=B.x=3 C.x1=,x2=3 D.x1=﹣,x2=﹣3【解答】解:方程变形为:2x(x﹣3)﹣5(x﹣3)=0,∴(x﹣3)(2x﹣5)=0,∴x﹣3=0或2x﹣5=0,∴x1=3,x2=.故选:C.5.(3分)如图,PA、PB是⊙O的切线,切点分别为A、B,点C在⊙O上,如果∠P=50°,那么∠ACB等于()A.40°B.50°C.65°D.130°【解答】解:连接OA,OB.根据切线的性质,得∠OBP=∠OAP=90°,根据四边形的内角和定理得∠AOB=130°,再根据圆周角定理得∠C=∠AOB=65°.故选:C.6.(3分)如图,已知⊙O的直径AB⊥弦CD于点E,下列结论中一定正确的是()A.AE=OE B.CE=DE C.OE=CE D.∠AOC=60°【解答】解:根据⊙O的直径AB⊥弦CD于点E∴CE=DE.故选:B.7.(3分)已知一个圆锥的底面半径为3cm,母线长为10cm,则这个圆锥的侧面积为()A.15πcm2B.30πcm2C.60πcm2D.3cm2【解答】解:这个圆锥的侧面积=π×3×10=30πcm2,故选:B.8.(3分)某商品原价500元,连续两次降价a%后售价为200元,下列所列方程正确的是()A.500(1+a%)2=200 B.500(1﹣a%)2=200 C.500(1﹣2a%)=200 D.500(1﹣a2%)=200【解答】解:依题意得:500(1﹣a%)2=200.故选:B.9.(3分)用公式法解﹣x2+3x=1时,先求出a、b、c的值,则a、b、c依次为()A.﹣1,3,﹣1 B.1,﹣3,﹣1 C.﹣1,﹣3,﹣1 D.﹣1,3,1【解答】解:方程﹣x2+3x=1整理得:﹣x2+3x﹣1=0,则a,b,c依次为﹣1;3;﹣1.故选:A.10.(3分)如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,点D在⊙O上,∠ADC=54°,则∠BAC的度数等于()A.36°B.44°C.46°D.54°【解答】解:∵AB为⊙O直径,∴∠ACB=90°,∵∠ADC=54°,∴∠ABC=54°,∴∠BAC=180°﹣90°﹣54°=36°,故选:A.二.填空题(共8题;共24分)11.(3分)小华在解一元二次方程x2﹣4x=0时,只得出一个根是x=4,则被他漏掉的一个根x=0.【解答】解:设方程的另一根为x1,∵方程的常数项为0,又∵x=4,∴x1•4=0解得x1=0.12.(3分)如图,⊙O是△ABC的外接圆,连接OA,OB,∠OBA=48°,则∠C的度数为42°.【解答】解:∵OA=OB,∠OBA=48°,∴∠OAB=∠OBA=48°,∴∠AOB=180°﹣48°×2=84°,∴∠C=∠AOB=42°,故答案为:42°.13.(3分)如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=24,AH=18,⊙O的半径OC=13,则AB=.【解答】解:作直径AE,连接CE,∴∠ACE=90°,∵AH⊥BC,∴∠AHB=90°,∴∠ACE=∠AHB,∵∠B=∠E,∴△ABH∽△AEC,∴=,∴AB=,∵AC=24,AH=18,AE=2OC=26,∴AB==,故答案为:.14.(3分)如图,PA、PB分别与⊙O相切于点A、B,⊙O的切线EF分别交PA、PB于点E、F,切点C在上,若PA长为2,则△PEF的周长是4.【解答】解:∵PA、PB分别与⊙O相切于点A、B,⊙O的切线EF分别交PA、PB于点E、F,切点C在上,∴AE=CE,FB=CF,PA=PB=2,∴△PEF的周长=PE+EF+PF=PA+PB=4.故填空答案:4.15.(3分)已知如图所示的图形的面积为24,根据图中的条件,可列出方程:(x+1)2=25.【解答】解:根据题意得:(x+1)2﹣1=24,即:(x+1)2=25.故答案为:(x+1)2=25.16.(3分)已知关于x的方程x2﹣3x+m=0的一个根是1,则m=2,另一个根为2.【解答】解:将x=1代入方程得:1﹣3+m=0,解得:m=2,方程为x2﹣3x+2=0,即(x﹣1)(x﹣2)=0,解得:x=1或x=2,则另一根为2.故答案为:2,2.17.(3分)如图,线段AB与⊙O相切于点B,线段AO与⊙O相交于点C,AB=12,AC=8,则⊙O的半径长为5.【解答】解:连接OB,∵AB切⊙O于B,∴OB⊥AB,∴∠ABO=90°,设⊙O的半径长为r,由勾股定理得:r2+122=(8+r)2,解得r=5.故答案为:5.18.(3分)若关于x的一元二次方程x2+3x+k=0有两个不相等的实数根,则k的取值范围是k<.【解答】解:由题意得:△=9﹣4k>0,解得:k<,故答案为:k<.三.解答题(共6题;共36分)19.(6分)如图:=,D、E分别是半径OA和OB的中点,求证:CD=CE.【解答】证明:连接OC.在⊙O中,∵=∴∠AOC=∠BOC,∵OA=OB,D、E分别是半径OA和OB的中点,∴OD=OE,∵OC=OC(公共边),∴△COD≌△COE(SAS),∴CD=CE(全等三角形的对应边相等).20.(6分)如图1,Rt△ABC两直角边的边长为AC=3,BC=4.(1)如图2,⊙O与Rt△ABC的边AB相切于点X,与边BC相切于点Y.请你在图2中作出并标明⊙O的圆心(用尺规作图,保留作图痕迹,不写作法和证明)(2)P是这个Rt△ABC上和其内部的动点,以P为圆心的⊙P与Rt△ABC的两条边相切.设⊙P的面积为S,你认为能否确定S的最大值?若能,请你求出S的最大值;若不能,请你说明不能确定S的最大值的理由.【解答】解:(1)由∠B得角平分线、平角∠BXA的平分线、平角∠BYC的角平分线中的任意两条得交点即为所求圆的圆心O;(2)若⊙P与△ABC的BA、BC两条边相切,且面积最大,则点P为∠ABC的角平分线与AC边的交点,作PH⊥AB于H,∵Rt△ABC两直角边的边长为AC=3,BC=4,∴AB=5,则BH=BC=4,∴AH=1,∵∠A=∠A,∠PHA=∠BCA,∴△APH∽△ABC,∴==,∴PH=AH,在Rt△APH中,PH=AH=,即R1=,同理,⊙P与△ABC的CA、AC两条边相切,R2=,若⊙P与△ABC的CA、BC两条边相切,R3=,故R3>R2>R1,符合要求⊙P的最大面积为:.21.(6分)已知:△ABC(如图),(1)求作:作△ABC的内切圆⊙I.(要求:用尺规作图,保留作图痕迹,不写作法,不要求证明).(2)在题(1)已经作好的图中,若∠BAC=88°,求∠BIC的度数.【解答】解:(1)如图,⊙I为所作;(2)∵⊙I为△ABC的内切圆,∴BI平分∠ABC,CI平分∠ACB,∴∠IBC=∠ABC,∠ICB=∠ACB,∴∠IBC+∠ICB=(∠ABC+∠ACB)=(180°﹣∠BAC)=(180°﹣88°)=46°,∴∠BIC=180°﹣∠IBC﹣∠ICB=180°﹣(∠IBC+∠ICB)=180°﹣46°=134°.22.(6分)如图,点G.H分别是正六边形ABCDEF的边BC.CD上的点,且BG=CH,AG 交BH于点P.(1)求证:△ABG≌△BCH;(2)求∠APH的度数.【解答】(1)证明:∵在正六边形ABCDEF中,AB=BC,∠ABC=∠C=120°,在△ABG与△BCH中,∴△ABG≌△BCH;(2)由(1)知:△ABG≌△BCH,∴∠BAG=∠HBC,∴∠BPG=∠ABG=120°,∴∠APH=∠BPG=120°.23.(6分)岳一中初三某学生聆听了感恩励志主题演讲《不要让爱你的人失望》后,写了一份《改变,从现在开始》的倡议书在微信朋友圈传播,规则为:将倡议书发表在自己的朋友圈,再邀请n个好友转发倡议书,每个好友转发倡议书之后,又邀请n个互不相同的好友转发倡议书,依此类推,已知经过两轮传播后,共有421人参与了传播活动,求n的值.【解答】解:由题意,得n+n2+1=421,解得:n1=﹣21(舍去),n2=20.故所求n的值是20.24.(6分)在直径为10cm的圆柱形油槽内装入一些油后,截面如图,油面宽AB为6cm,当油面宽AB为8cm时,油上升了多少cm?【解答】解:连接AO,过点O作OC⊥AB于点C,如图所示.∵OC⊥AB于C,且AB为弦,∴AC=AB.当AB=6cm时,在Rt△OAC中,OA==5cm,AC=3cm,∴OC==4cm;当AB=8cm时,在Rt△OAC中,OA==5cm,AC=4cm,∴OC==3cm.∴4cm﹣3cm=1cm.答:油上升了1cm.四.综合题(10分)25.(10分)如图,点A是⊙O直径BD延长线上的一点,C在⊙O上,AC=BC,AD=CD (1)求证:AC是⊙O的切线;(2)若⊙O的半径为4,求△ABC的面积.【解答】解:(1)证明:如图,连接OC.∵AC=BC,AD=CD,OB=OC,∴∠A=∠B=∠1=∠2.又∵BD是直径,∴∠BCD=90°,∵∠ACO=∠DCO+∠2,∴∠ACO=∠DCO+∠1=∠BCD,∴∠ACO=90°,即AC⊥OC,又C在⊙O上,∴AC是⊙O的切线;(2)解:由题意可得△DCO是等腰三角形,∵∠CDO=∠A+∠2,∠DOC=∠B+∠1,∴∠CDO=∠DOC,即△DCO是等边三角形.∴∠A=∠B=∠1=∠2=30°,CD=AD=OD=4,在直角△BCD中,BC==4.作CE⊥AB于点E.在直角△BEC中,∠B=30°,∴CE=BC=2,=AB•CE=×12×2=12.∴S△ABC。
江苏省兴化市顾庄学区三校九年级数学上学期第二次月考
A .江苏省兴化市顾庄学区三校2017届九年级数学上学期第二次月考(12月)试题(考试时间:120分钟,满分:150分) 成绩_______一、选择题(本大题共6小题,每题3分,共18分)1.盒子中装有2个红球和4个绿球,每个球除颜色外完全相同,从盒子中任意摸出一个球,是绿球的概率是( ) A .41B.31C.32D.21 2.抛物线 y =-x 2不具有的性质是 ( ) A .开口向下B .对称轴是y 轴C .与 y 轴不相交D .最高点是原点3.在半径为1的⊙O 中,120°的圆心角所对的弧长是 ( ) A .3πB .23πC .πD .32π 4.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC △相似的是( )5.已知抛物线2y ax =+0)过A (2-,0)、O (0,0)、B (3-,1y )、C (3,2y )四点,则1y 与2y 的大小关系是( ) A .1y >2yB .1y 2y =C .1y <2yD .不能确定6.如图,D 、E 分别是△ABC 的边AB 、BC 上的点,且DE ∥AC ,AE 、CD 相交于点O ,若S △DOE :S △COA = 1:25,则S △BDE 与S △CDE 的比是( ) A .1:3B .1:4C .1:5D .1:25二、填空题(本大题共10小题,每题3分,共30分)7.若3,a ,4,5的众数是4,则这组数据的平均数是 . 8.若432z y x ==,则=++xzy x _________. 9.在比例尺为1:5000的地图上,某校到果园的图距为8cm ,那么实际距离为________m 。
10. 如图,已知∠A=∠D ,要使△ABC ∽△DEF ,还需添加一个条件,你添加的条件是 .(只需写一个条件,不添加辅助线和字母)11.若点A(2,m )在函数12-=x y 的图象上,则点A 关于x 轴的对称点的坐标是 .12.我们知道古希腊时期的巴台农神庙(Parthenom Temple )的正面是一个黄金矩形。
江苏省兴化顾庄等三校九年级上学期期末考试数学试题
2014年秋学期期末学业质量测试九年级数学试卷(考试用时:120分钟 满分:150分)说明:1.本试卷分选择题和非选择题两部分,共6页.2.答题前,考生务必将本人的学校、班级、姓名、考试号填写在答题纸相应位置上.3.考生答题必须用0.5毫米黑色墨水签字笔,写在答题纸指定位置处,答在试卷、草稿纸等其他位置上一律无效.一、选择题(本大题共有6小题,每小题3分,共18分)1. 一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是( ▲ ). A .6 B .7 C .8 D .92.掷一个骰子时,点数小于2的概率是( ▲ ).A .B .C .D .0 3. 下列说法中,正确的是( ▲ ).A .长度相等的弧叫等弧B .直角所对的弦是直径C .同弦所对的圆周角相等D .等弧所对的弦相等 4. 如图,坡角为的斜坡上两树间的水平距离AC 为,则 两树间的坡面距离AB 为( ▲ ). A . B . C . D .5. 若两个相似多边形的面积之比为1:4,则它们的周长之比为( ▲ ). A . 1:2B .1:4C .2:1D .4:16. 如图,在平面直角坐标系中,抛物线y =经过平移得到抛物线y =,其对称轴与两段抛物线所围成的阴影部分的面积为( ▲ ). A .2 B .4C .8D .16二、填空题(本大题共10小题,每小题3分,共30分,请把答案直接写在相应的位置上) 7. 在比例尺为1:10000000的地图上,量得甲、乙两地的距离是30厘米,则两地的实际距离 是 ▲ 千米.8. 已知x :y =2 :3,则(x+y ) :y 的值为 ▲ .9. 一个不透明的袋中装有2枚白色棋子和n 枚黑色棋子,它们除颜色不同外,其余均相同.若小明从中随机摸出一枚棋子,多次实验后发现摸到黑色棋子的频率稳定在80%.则n 很可能是 ▲ 枚.10. 在△ABC 中,∠C =90°,BC =2,,则边AC 的长是 ▲ .11. 某居民小区为了了解本小区100户居民家庭平均月使用塑料袋的数量情况,随机调査了10户居民家庭月使用塑料袋的数量,结果如下:(単位:只) 65 70 85 74 86 78 74 92 82 94根据统计情况,估计该小区这100户家庭平均使用塑料袋 ▲ 只.第4题图12. 在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为▲m.13. 如图,抛物线的对称轴是直线,与x轴交于A、B两点,若B点坐标是,则A点的坐标是▲.DA第13题图第14题图第16题图14. 如图,P A、PB分别与⊙O相切于点A、B,⊙O的切线EF分别交P A、PB于点E、F,切点C在⌒AB上,若PA长为2,则△PEF的周长是▲.15. 若粮仓顶部是圆锥形,且这个圆锥的高为2m,母线长为2.5m,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是▲m2.16. 如图,△ABC中,∠ACB=90°,AC=8cm,BC=6cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<15),连接DE,当△BDE是直角三角形时,t的值为▲.三、解答题(本大题共有10小题,共102分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)(1)计算:3sin30°-2cos45°+tan2600;(2)在Rt△ABC中,∠C=90° , c=20,∠A=30° , 解这个直角三角形.18.(8分)甲、乙两人在相同的条件下各射靶10次,每次命中的环数如下:甲:9,7,8,9,7,6,10,10,6,8;乙:7,8,8,9,7,8,9,8,10,6(1)分别计算甲、乙两组数据的方差;(2)根据计算结果比较两人的射击水平.19. (8分)在一个不透明的布口袋中装有只有颜色不同,其他都相同的白、红、黑三种颜色的小球各只,甲、乙两人进行摸球游戏:甲先从袋中摸出一球,看清颜色后放回,再由乙从袋中摸出一球.(1)试用树状图(或列表法)表示摸球游戏所有可能的结果;(2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为甲胜,问谁在游戏中获胜的可能性更大些?20.(8分)某课题组为了解全市九年级学生对数学知识的掌握情况,在一次数学检测中,从全市20000名九年级考生中随机抽取部分考生的数学成绩进行调查,并将调查结果绘制成如下图表:(1)表中a 和b 所表示的数分别为a = ,b = ; (2)请在图中补全频数分布直方图;(3)如果把成绩在70分以上(含70分)定为合格,那么该市20000名九年级考生数学成绩为合格的考生约有多少名?21. (10分)如图,某居民小区有一朝向为正南方向的居民楼,•该居民楼的一楼是高米的小区超市,超市以上是居民住房,在该楼的前面米处要盖一栋高米的新楼.当冬季正午的阳光与水平线的夹角为时.()问超市以上的居民住房采光是否有影响,为什么? ()若要使超市采光不受影响,两楼应相距多少米? (参考数据:sin ≈,cos ≈≈.)22.(10分) 如图,已知二次函数y =ax 2+bx +c 的图像过A (2,0),B (0,﹣1)和C (4,5)三点.第21题图(1)求二次函数的解析式;(2)设二次函数的图像与x轴的另一个交点为D,求点D的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.23.(10分)一块直角三角形木版的一条直角边AB为3m,面积为6,要把它加工成一个面积最大的正方形桌面,小明打算按图①进行加工,小华准备按图②进行裁料,他们谁的加工方案符合要求?图①图②第23题图24.(10分))如图,在△ABC中,AB=AC,以AB为直径作半圆⊙0,交BC于点D,连接AD,过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.(1)求证:EF是⊙0的切线;(2)如果⊙0的半径为9,sin∠ADE=,求AE的长.第24题图25. (12分)如图所示,E是正方形ABCD的边AB上的动点,正方形的边长为4,EF⊥DE交BC 于点F.(1)求证:△ADE∽△BEF;(2)AE=x,BF=y.当x取什么值时,y有最大值? 并求出这个最大值;(3) 已知D、C 、F、E四点在同一个圆上,连接CE、DF,若sin∠C EF =,求此圆直径.第25题图备用图26.(14分)如图,二次函数的图像交x轴于A、C两点,交y轴于B点,已知A点坐标是(2,0),B点的纵坐标是8.(1)求这个二次函数的表达式及其图像的顶点坐标;(2)作点A关于直线BC的对称点A’,求点A’的坐标;(3)在y轴上是否存在一点M,使得∠AMC=30°,如存在,直接写出点M的坐标,如不存在,请说明理由.第26题图 备用图九年级数学试卷参考答案(下列答案仅供参考............,请参照标准给........,如有其它解法分.,如有输入错误........)......,请以正确答案给分一.选择题(本大题共有6小题,每小题3分,共18分)1. C;2.A;3.D;4.C;5.A;6.B.二、填空题(本大题共10小题,每小题3分,共30分)7. 3000;8.;9. 8; 10.; 11.80;12. 15;13.;14. 4; 15.;16. 5或8.2或11.8(少一解扣1分,多解不扣分)三、解答题(本大题共有10小题,共102分)17.(12分)(1)(3分)=(3分);(2)a=10(2分),b=(2分),∠B=60°(2分)18.(8分)(1)甲、乙的平均数分别是8, 8(2分); .甲、乙的方差分别是2,1.2(4分);(2)∵S2甲>S2乙,∴乙的射击水平高(2分).19. (8分)(1)树状图如下或列表如下:(4分);(2)乙摸到与甲相同颜色的球有三种情况,乙能取胜的概率为,所以甲在游戏中获胜的可能性更大(4分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017届江苏泰州兴化市顾庄学区三校九年级上期末数学试卷(带解析)学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、已知A 、B 两地的实际距离AB=5km ,画在图上的距离A′B′=2cm ,则图上的距离与实际距离的比是( )A .2:5B .1:2 500C .250 000:1D .1:250 0002、天虹百货某服装销售商在进行市场占有率的调查时,他最应该关注的是( ) A .服装型号的平均数 B .服装型号的众数 C .服装型号的中位数 D .最小的服装型号3、一个事件的概率不可能是( )A .B .0C .1D .4、小红同学四次数学测试成绩分别是:96,104,104,116,关于这组数据下列说法错误的是( )A .平均数是105B .众数是104C .中位数是104D .方差是505、已知直角三角形ABC 中,斜边AB 的长为m ,∠B=50°,则直角边BC 的长是( )A .msin50°B .mtan50°C .mcos50°D .6、在平面直角坐标系中,已知点E (﹣4,2),F (﹣2,﹣2),以原点O 为位似中心,相似比为2:1,把△EFO 缩小,则点E 的对应点E′的坐标是( )A .(﹣2,1)B .(﹣8,4)C .(﹣2,1)或(2,﹣1)D .(﹣8,4)或(8,﹣4)第II 卷(非选择题)二、填空题(题型注释)7、在一次信息技术考试中,某兴趣小组7名同学的成绩分别是:7,10,9,8,7,9,9(单位:分),则这组数据的极差是 .8、如图,甲、乙两个转盘转动一次,最终指针指向红色区域 (填“是”或“不是”)等可能性事件.9、现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.2.估计这些卡片中绘有孙悟空这个人物的卡片张数约为 .10、在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20cm ,则它的宽约为 cm .(保留2位小数)11、如图是一个拦水大坝的横断面图,AD ∥BC ,如果背水坡AB 的坡度为1:,则坡角∠B= .12、如图,在△ABC 中,DE ∥BC ,AE :EC=3:5,则S △ADE :S △ABC = .13、把抛物线y=x 2+2x+3向右平移2个单位,再向上平移1个单位,所得的新抛物线相应的函数表达式为 .14、将∠AOB 放置在5×5的正方形网格中,则tan ∠AOB 的值是 .15、如图,抛物线y=﹣(x+1)(x ﹣3)与x 轴交于A 、B 两点,与y 轴交于点C ,点D 为该抛物线的对称轴上一点,当点D 到直线BC 和到x 轴的距离相等时,则点D 的坐标为 .三、计算题(题型注释)16、(1)计算:(3﹣π)0﹣2﹣2+2sin30°;(2)计算:.四、解答题(题型注释)17、某校初三学生开展踢毽子活动,每班派5名学生参加,按团体总分排列名次,在规定时间内每人踢100个以上(含100)为优秀.表是甲班和乙班成绩最好的5名学生的比赛成绩.经统计发现两班5名学生踢毽子的总个数相等.此时有学生建议,可以通过考查数据中的其它信息作为参考.请你回答下列问题: (1)甲班的优秀率为60%,则乙班的优秀率为 ;(2)甲班比赛成绩的方差S 甲2=,求乙班比赛成绩的方差;(3)根据以上信息,你认为应该把团体第一名的奖状给哪一个班?简述理由.18、如图,a ∥b ∥c .直线m 、n 与a 、b 、c 分别相交于点A 、B 、C 和点D 、E 、F . (1)若AB=3,BC=5,DE=4,求EF 的长; (2)若AB :BC=2:5,DF=10,求EF 的长.19、小明、小刚和小红打算各自随机选择本周日的上午或下午去兴化李中水上森林游玩. (1)小明和小刚都在本周日上午去游玩的概率为 ; (2)求他们三人在同一个半天去游玩的概率.20、如图,AB 和DE 是直立在地面上的两根立柱.AB=4m ,某一时刻AB 在阳光下的投影BC=3m .(1)请你在图中画出此时DE 在阳光下的投影.(2)在测量AB 的投影时,同时测量出DE 在阳光下的投影长为8m ,请你计算DE 的长.21、如图,点E 是矩形ABCD 中CD 边上一点,△BCE 沿BE 折叠为△BFE ,点F 落在AD 上.(1)求证:△ABF ∽△DFE ;(2)如果AB=12,BC=15,求tan ∠FBE 的值.22、河上有一座桥孔为抛物线形的拱桥,水面宽为6米时,水面离桥孔顶部3米.把桥孔看成一个二次函数的图象,以桥孔的最高点为原点,过原点的水平线为横轴,过原点的铅垂线为纵轴,建立如图所示的平面直角坐标系. (1)请求出这个二次函数的表达式;(2)因降暴雨水位上升1米,此时水面宽为多少?23、“4000辆自行车、187个服务网点”,台州市区现已实现公共自行车服务全覆盖,为人们的生活带来了方便.图①是公共自行车的实物图,图②是公共自行车的车架示意图,点A 、D 、C 、E 在同一条直线上,CD=30cm ,DF=20cm ,AF=25cm ,FD ⊥AE 于点D ,座杆CE=15cm ,且∠EAB=75°. (1)求AD 的长;(2)求点E 到AB 的距离.(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)24、已知,点O 在线段AB 上,AB=6,OC 为射线,且∠BOC=45°.动P 以每秒1个单位长度的速度从点O 出发,沿射线OC 做匀速运动.设运动时间为t 秒.(1)如图1,若AO=2.①当 t=6秒时,则OP= ,S △ABP = ; ②当△ABP 与△PBO 相似时,求t 的值;(2)如图2,若点O 为线段AB 的中点,当AP=AB 时,过点A 作AQ ∥BP ,并使得∠QOP=∠B ,求AQ•BP 的值.25、已知,在以O 为原点的直角坐标系中,抛物线的顶点为A (﹣1,﹣4),且经过点B (﹣2,﹣3),与x 轴分别交于C 、D 两点.(1)求直线OB 以及该抛物线相应的函数表达式;(2)如图1,点M 是抛物线上的一个动点,且在直线OB 的下方,过点M 作x 轴的平行线与直线OB 交于点N ,求MN 的最大值;(3)如图2,过点A 的直线交x 轴于点E ,且AE ∥y 轴,点P 是抛物线上A 、D 之间的一个动点,直线PC 、PD 与AE 分别交于F 、G 两点.当点P 运动时,EF+EG 是否为定值?若是,试求出该定值;若不是,请说明理由.参考答案1、D.2、B.3、A.4、D.5、C.6、C.7、3.8、是.9、10.10、12.3611、30°12、13、y=x2﹣2x+414、115、(1,)或(1,﹣2).16、(1);(2)17、(1)40%;(2);(3)应该把团体第一名的奖状给甲班,理由见解析.18、(1);(2).19、(1);(2)20、(1)作图见解析;(2)m.21、(1)证明见解析;(2)22、(1) 二次函数的表达式y=x2;;(2)米23、(1)18cm;(2)66cm.24、(1)①6;;②t=+4;(2)18.25、(1)直线OB解析式为y=x,抛物线为y=x2+2x﹣3;(2);(3)点P运动时,EF+EG为定值8.【解析】1、试题分析:∵5千米=500000厘米,∴比例尺=2:500000=1:250000;故选D.考点:比例线段.2、试题分析:由于众数是数据中出现最多的数,销售商最感兴趣的是服装型号的销售量哪个最大,所以他最应该关注的是众数.故选B.考点:统计量的选择.3、试题分析:∵>1,∴A不成立.故选A.考点:概率的意义.4、试题分析:A平均数为:(96+104+104+116)÷4=105,故A正确;B出现最多的数据是104,所以众数是104,故B正确;C先排序:96、104、104、116,所以中位数为÷2=104,故C正确;D方差为:[(96﹣105)2+(10-105)2+(104-105)2+(116-105)2]=51,故D错误.故选D.考点:1.方差;2.算术平均数;3.中位数;众数.5、试题分析:∵cosB=,AB=m,∠B=50°,∴BC=AB×cosB=mcos50°,故选C.考点:锐角三角函数的定义.6、试题分析:∵点E(﹣4,2),以O为位似中心,按2:1的相似比把△EFO缩小为△E′F′O,∴点E的对应点E′的坐标为:(2,﹣1)或(﹣2,1).故选C.考点:1.位似变换;2.坐标与图形性质.7、试题分析:由题意可知,数据中最大的值为10,最小值为7,所以极差为10﹣7=3.考点:极差.8、试题分析:甲、乙两个转盘转动一次,最终指针指向红色区域可能性为.考点:可能性的大小.9、试题分析:因为通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3,所以估计抽到绘有孙悟空这个人物卡片的概率为0.2,则这些卡片中绘有孙悟空这个人物的卡片张数=0.2×50=10(张).所以估计这些卡片中绘有孙悟空这个人物的卡片张数约为10张.考点:利用频率估计概率.10、试题分析:∵书的宽与长之比为黄金比,长为20cm,∴它的宽=20•=10(﹣1)≈12.36(cm).考点:黄金分割.11、试题分析:设迎水坡的坡角为α,∴tan∠B=i=1:,∴∠B=30°.考点:解直角三角形的应用-坡度坡角问题.12、试题分析:∵DE∥BC,∴△AED∽△ACB,∵AE:EC=3:5,∴AE:AC=3:8,∴考点:相似三角形的判定与性质.13、试题分析:∵抛物线y=x2+2x+3可化为y=(x+1)2+2,∴向右平移2个单位,再向上平移1个单位,所得的新抛物线相应的函数表达式为y=(x+1﹣2)2+2+1,即y=x2﹣2x+4.考点:二次函数图象与几何变换.14、试题分析:由图可得tan∠AOB=1.考点:锐角三角函数的定义.15、试题分析:如图所示:∵抛物线y=﹣(x+1)(x﹣3)与x轴交于A、B两点,与y轴交于点C,∴当﹣(x+1)(x﹣3)=0时,x=﹣1,或x=3,当x=0时,y=3,∴A(﹣1,0),B(3,0),C(0,3),对称轴x=1,∴BM=3﹣1=2,当点D到直线BC和到x轴的距离相等时,点D在∠ABC或∠ABE的平分线上,①点D在∠ABC的平分线上时,∵tan∠ABC==,∴∠ABC=60°,∴∠ABD=30°,∴DM=BM=,∴D(1,);②点D在∠ABE的平分线上时,∠ABE=180°﹣60°=120°,∴∠ABD=60°,∴DM=BM=2,∴D(1,﹣2).考点:抛物线与x轴的交点.16、试题分析:(1)原式利用零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果;(2)原式利用特殊角的三角函数值计算即可得到结果.试题解析:(1)原式=1﹣+1=;(2)原式=.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.17、试题分析:(1)根据已知数据求出优秀率;(2)利用方差公式求出方差;(3)根据方差的性质比较解答即可试题解析:(1)×100%=40%,∴乙班的优秀率为40%,(2)乙班的平均数为:×(99+100+95+109+97)=100,乙班的方差为:=[(99﹣100)2+2+(95﹣100)2+2+(97﹣100)2]=;(3)应该把团体第一名的奖状给甲班,理由如下:因为甲班的优秀率比乙班高;甲班的方差比乙班低,比较稳定,综合评定甲班比较好.考点:1.方差;2.加权平均数.18、试题分析:(1)根据平行线分线段成比例定理得到,然后利用比例性质求EF;(2)根据平行线分线段成比例定理得到,然后利用比例性质求EF即可.试题解析:(1)∵a∥b∥c,∴,即,解得;(2)∵a∥b∥c,∴,∴,解得.考点:平行线分线段成比例.19、试题分析:(1)画树状图展示所有4种等可能的结果数,找出小明和小刚都在本周日上午去游玩的结果数,然后根据概率公式求解;(2)画树状图展示所有8种等可能的结果数,找出小明和小刚都在本周日上午去游玩的结果数,然后根据概率公式求解.试题解析:(1)画树状图为:共有4种等可能的结果数,其中小明和小刚都在本周日上午去游玩的结果数为1,所以小明和小刚都在本周日上午去游玩的概率=;(2)画树状图为:共有8种等可能的结果数,其中他们三人在同一个半天去游玩的结果数为2,所以他们三人在同一个半天去游玩的概率=.考点:列表法与树状图法.20、试题分析:(1)根据投影的定义,作出投影即可;(2)根据在同一时刻,不同物体的物高和影长成比例;构造比例关系AB:DE=BC:EF.计算可得DE=10(m).试题解析:(1)连接AC,过点D作DF∥AC,交直线BC于点F,线段EF即为DE 的投影.(2)∵AC∥DF,∴∠ACB=∠DFE.∵∠ABC=∠DEF=90°∴△ABC∽△DEF.∴AB:DE=BC:EF,∵AB=4m,BC=3m,EF=8∴4:3=DE:8∴DE=m.考点:平行投影.21、试题分析:(1)由矩形的性质推知∠A=∠D=∠C=90°.然后根据折叠的性质,等角的余角相等推知∠ABF=∠DFE,易证得△ABE∽△DFE;(2)由勾股定理求得AF=9,得出DF=6,由△ABF∽△DFE,求得EF=7.5,由三角函数定义即可得出结果.试题解析:(1)∵四边形ABCD是矩形.∴∠A=∠D=∠C=90°,AD=BC,∵△BCE沿BE 折叠为△BFE.∴∠BFE=∠C=90°,∴∠AFB+∠DFE=180°﹣∠BFE=90°,又∠AFB十∠ABF=90°,∴∠ASF=∠DFE,∴△ABF∽△DFE.(2)由折叠的性质得:BF=BC=15,在Rt△ABF中,由勾股定理求得AF=,∴DF=AD﹣AF=6,∵△ABF∽△DFE,∴,即,解得:EF=7.5,∴tan∠FBE=.考点:1.相似三角形的判定与性质;2.矩形的性质;3.翻折变换(折叠问题);4.解直角三角形.22、试题分析:(1)待定系数法求解可得;(2)求出y=﹣2时x的值,从而得出CD.试题解析:(1)设抛物线解析式为y=ax2,把x=3,y=﹣3代入,得a=,这个二次函数的表达式y=x2;(2)把y=﹣2代入解y=x2得,x=,所以CD=.答:此时水面宽为米.考点:二次函数的应用.23、试题分析:(1)根据勾股定理求出AD的长;(2)作EH⊥AB于H,求出AE的长,根据正弦的概念求出点E到车架AB的距离;试题解析:解:在Rt△ADF中,由勾股定理得则AE=AD+CD+EC=15+30+15=60(cm)过点E作EH⊥AB于H,如图所示:在Rt△AEH中,sin EAH=,故EH=AE sin EAH=AB sin75°≈60×0.97=58.2(cm)答:点E到AB的距离为58.2cm.【点睛】本题考查的是解直角三角形的知识,正确找出辅助线、掌握锐角三角函数的概念是解题的关键。