初中三角函数专项练习题及答案

合集下载

初中三角函数专项练习题及答案

初中三角函数专项练习题及答案

三角函数专题训练1. 甲、乙两楼相距45米,从甲楼顶部观测乙楼顶部的俯角为30°,观测乙楼的底部的俯角为45°,试求两楼的高.2. 从A 处观测铁塔顶部的仰角是30°,向前走100米到达B 处,观测铁塔的顶部的仰角是 45°,求铁塔高.3、如图,在某建筑物AC 上,挂着“多彩云南”的宣传条幅BC ,小明站在点F 处,看条幅顶端B ,测的仰角为︒30,再往条幅方向前行20米到达点E 处,看到条幅顶端B ,测的仰角为︒60,求宣传条幅BC 的长,(小明的身高不计,结果精确到0.1米)3045DA30450Ar E D BC4、一艘轮船自西向东航行,在A处测得东偏北21.3°方向有一座小岛C,继续向东航行60海里到达B处,测得小岛C此时在轮船的东偏北63.5°方向上.之后,轮船继续向东航行多少海里,距离小岛C最近?(参考数据:sin21.3°≈9 25,tan21.3°≈25, sin63.5°≈910,tan63.5°≈2)5、如图,一条小船从港口A出发,沿北偏东40o方向航行20海里后到达B处,然后又沿北偏西30o方向航行10海里后到达C处.问此时小船距港口A多少海里?(结果精确到1海里)友情提示:以下数据可以选用:sin400.6428o≈,cos400.7660o≈,tan400.8391o≈,3 1.732≈.6.海船以5海里/小时的速度向正东方向行驶,在A处看见灯塔B在海船的北偏东60°方向,2小时后船行驶到C处,发现此时灯塔B在海船的北偏西45方向,求此时灯塔B到C处的距离.A BC东CQAP北40o30o7.如图所示,A .B 两城市相距100km ,现计划在这两座城市间修建一条高速公路(即线段AB ),经测量,森林保护中心P 在A 城市的北偏东30°和B 城市的北偏西45°的方向上,已知森林保护区的范围在以P 点为圆心,50km 为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护区,为什么?(参考数据:3≈1.732,2≈1.414)8.如图,一艘轮船以每小时20海里的速度沿正北方向航行,在A 处测得灯塔C 在北偏西30°方向,轮船航行2小时后到达B 处,在B 处测得灯塔C 在北偏西60°方向.当轮船到达灯塔C 的正东方向的D 处时,求此时轮船与灯塔C 的距离.(结果保留根号)9.如图,要在木里县某林场东西方向的两地之间修一条公路MN ,已知C 点周围200米范围内为原始森林保护区,在MN 上的点A 处测得C 在A 的北偏东45°方向上,从A 向东走600米到达B 处,测得C 在点B 的北偏西60°方向上.(1)MN 是否穿过原始森林保护区?为什么?(参考数据:3 1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?CDBA北60°30°10.某校九年级数学兴趣小组的同学开展了测量湘江宽度的活动.如图,他们在河东岸边的A 点测得河西岸边的标志物B 在它的正西方向,然后从A 点出发沿河岸向正北方向行进550米到点C 处,测得B 在点C 的南偏西60°方向上,他1.414,1.732)11.如图,从热气球C 上测得两建筑物A .B 底部的俯角分别为30°和60°.如果这时气球的高度CD 为90米.且点A .D .B 在同一直线上,求建筑物A .B 间的距离.CBNMA北 东西 南12.如图,我国的一艘海监船在钓鱼岛A附近沿正东方向航行,船在B点时测得钓鱼岛A在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C点,此时钓鱼岛A在船的北偏东30°方向.求船继续沿正东方向航行与钓鱼岛A的最近距离是多少?(结果保留根号);13.我市某乡镇学校教学楼后面靠近一个山坡,坡面上是一块平地,如图所示,BC∥AD,斜坡AB=40米,坡角∠BAD=60°.(1)求山坡高度(结果保留根号);(2)为防夏季因瀑雨引发山体滑坡,保障安全,学校决定对山坡进行改造,经地质人员勘测,当坡角不超过45°时,可确保山体不滑坡,改造时保持坡脚A 不动,从坡顶B沿BC削进到E 处,问BE至少是多少米?(结果精确到0.1m.参考数据:2≈1.414,3≈1.732) BC E14.如图,某大楼顶部有一旗杆AB ,甲乙两人分别在相距6米的C 、D 两处测得B 点和A 点的仰角分别是42°和65°,且C 、D 、E 在一条直线上.如果DE =15米,求旗杆AB 的长大约是多少米?(结果保留整数)(参考数据:sin42°≈0.67, tan42°≈0.9, sin65°≈0.91, tan65°≈2.1)15.如图,一艘核潜艇在海面下500米A 点处测得俯角为30°正前方的海底有黑匣子信号发出,继续在同一深度直线航行4000米后再次在B 点处测得俯角为60°正前方的海底有黑匣子信号发出,求海底黑匣子C 点处距离海面的深2 1.4143 1.7325 2.236)16.为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥.建桥过程中需测量河的宽度(即两平行河岸AB 与MN 之间的距离).在测量时,选定河对岸MN 上的点C 处为桥的一端,在河岸点A 处,测得∠CAB = 30°,沿河岸AB 前行30米后到达B 处,在B 处测得∠CBA = 60°.请你根据以上测量数据求出河的宽度.(参考数据:2 1.41≈3 1.73;结果保留整数)A BCD42° E65°30°60°B AD C海面A BCMNP。

初中三角函数练习题及答案

初中三角函数练习题及答案

初中三角函数练习题及答案(一)精心选一选1、在直角三角形中,各边都扩大2倍,则锐角A的正弦值与余弦值都( )A、缩小2倍B、扩大2倍C、不变D、不能确定12、在Rt△ABC中,∠C=90,BC=4,sinA=54,则AC=( )A、3B、4C、5D、63、若∠A是锐角,且sinA=31,则( )A、00<∠A <300 B 、300<∠A <450 C、450<∠A <600 D、600<∠A <9004、若cosA=31,则A A AA tan 2sin 4tan sin 3+-=( )A、74B、31C、21D、05、在△ABC中,∠A:∠B:∠C=1:1:2,则a:b:c=( ) A、1:1:2 B、1:1:2 C、1:1:3D、1:1:226、在Rt△ABC中,∠C=900,则下列式子成立的是( )A、sinA=sinBB、sinA=cosBC、tanA=tanBD、cosA=tanB7.已知Rt△ABC中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是( )A.sinB=23 B.cosB=23 C.tanB=23 D.tanB=328.点(-sin60°,cos60°)关于y轴对称的点的坐标是( )A.(,12) B.(-,12) C.(-,-12) D.(-12,-32)9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣. 某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°, 若这位同学的目高1.6米,则旗杆的高度约为( )A.6.9米 B.8.5米 C.10.3米 D.12.0米10.王英同学从A地沿北偏西60º方向走100m到B地,再从B地向正南方向走200m到C地,此时王英同学离A地 ( )(A)350m (B)100 m(C)150m (D)3100m 11、如图1,在高楼前D 点测得楼顶的仰角为30︒,向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为( )A.82米B.163米C.52米D.70米12、一艘轮船由海平面上A地出发向南偏西40º的方向行驶40海里到达B 地,再由B地向北偏西10º的方向行驶40海里到达C地,则A、C两地相距( ).图1(A)30海里 (B)40海里 (C)50海里 (D)60海里 (二)细心填一填1.在Rt△ABC中,∠C=90°,AB=5,AC=3,则sinB=_____.3.在△ABC中,AB=2,AC= 4.如图,如果△APB绕点B按逆时针方向旋转30°后得到△A'P'B,且BP=2,那么PP'的长为____________. (不取近似值.以下数据供解题使用:sin15°=,cos15°=)5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.6.如图,机器人从A 点,沿着西南方向,行了个42单位,到达B点后观察到原点O在它的南偏东60°的方向上,则原来A的坐标为___________结果保留根号).7.求值:sin 260°+cos 260°=___________.第6题图第5题图第4题图8.在直角三角形ABC中,∠A=090,BC=13,AB=12,那么tan B=_________ __.9.根据图中所给的数据,求得避雷针CD的长约为_______m(结果精确的到0.01m).(可用计算器求,也可用下列参考数据求:sin43°≈0.6802,si n40°≈0.6428,cos43°≈0.7341,cos40°≈0.7660,tan43°≈0.9325,ta米(结果用含α的三角比表示).(1) (2)11.如图2所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角, 这时测得大树在地面上的影子约为10米,则大树的高约为________米.( 保留两个有效数字,三、认真答一答1,计算:sin cos cot tan tan3060456030︒+︒-︒-︒⋅︒分析:可利用特殊角的三角函数值代入直接计算;A C第10题图A第9题图2计算:22459044211(cos sin )()()︒-︒+-︒+--π分析:利用特殊角的三角函数值和零指数及负整数次幂的知识求解。

初中三角函数练习题及答案

初中三角函数练习题及答案

初中三角函数练习题及答案(一)精心选一选1、在直角三角形中,各边都扩大 2 倍,则锐角 A 的正弦值与余弦值都(C )A、缩小 2 倍B、扩大 2 倍C、不变D、不能确定4 0 12、在Rt△ABC 中,∠C90 ,BC4,sinA 5 ,则AC ( A )A、3 B、4 C、5 D、6 1 3、若∠A 是锐角,且sinA 3 ,则( A )A、00lt∠Alt300 B、300lt∠Alt450 C、450lt ∠Alt600D、600lt∠Alt900 1 3 sin A tan A 4、若cosA 3 ,则4 sin A 2 tan A ()4 1 1 A、7 B、3 C、2 D、0 5、在△ABC 中,∠A:∠B:∠C1:1:2,则a:b:c()A、1:1:2 B、1:1:2 C、1:1:3 D、1:21:2 6、在Rt △ABC 中,∠C900,则下列式子成立的是()A、sinAsinB B、sinAcosB C、tanAtanBD、cosAtanB 7.已知Rt△ABC 中,∠C90°,AC2,BC3,那么下列各式中,正确的是()2 2 2 A.sinB 3 B.cosB 3 C.tanB 3 3D.tanB 2 8.点(-sin60°,cos60°)关于y 轴对称的点的坐标是()3 1 3 1 3 1 A.(2 ,2 )B.(- 2 ,2 )C.(- 2 ,- 2 )1 3D.(- 2 ,- 2 )9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.某同学站在离旗杆12 米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,若这位同学的目高 1.6 米,则旗杆的高度约为()A.6.9 米B.8.5 米C.10.3 米D.12.0 米10.王英同学从 A 地沿北偏西60 方向走100m 到B 地,再从B 地向正南方向走200m到C 地,此时王英同学离 A 地()A (A)50 3 m (B)100 m (C)150m (D)100 3 m 30 45 11、如图1,在高楼前 D 点测得楼顶的仰角 D C B为30 ,向高楼前进60 米到 C 点,又测得仰角为图145 ,则该高楼的高度大约为()A.82 米 B.163 米 C.52 米 D.70 米12、一艘轮船由海平面上 A 地出发向南偏西40 的方向行驶40 海里到达B 再由 B 地向北偏西10 的方向行驶40 海里到达 C 地,A、两地相距地,则 C ().(A)30 海里(B)40 海里(C)50 海里(D)60 海里(二)细心填一填1.在Rt△ABC 中,∠C90°,AB5,AC3,则sinB_____.2.在△ABC 中,若BC 2 ,AB 7 ,AC3,则cosA________.3.在△ABC 中,AB2,AC 2 ,∠B30°,则∠BAC 的度数是______.4.如图,P’ 且如果△APB 绕点B 按逆时针方向旋转30°后得到△A’ B,BP2,那么PP’的长为____________.不取近似值. 以下数据供解题使用:6 2 6 2sin15° 4 ,cos15° 4 5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.北y A 乙北 B 甲第4 题图O x 第5 题图第6 题图6.如图,机器人从 A 点,沿着西南方向,行了个 4 2单位,到达 B 点后观察到原点O 在它的南偏东60°的方向上,则原来 A 的坐标为___________结果保留根号).7.求值:sin260°cos260°___________.0 8.在直角三角形ABC 中,∠A 90 ,BC13,AB12,那么tan B ___________.9.根据图中所给的数据,求得避雷针CD 的长约为_______m(结果精确的.到0.01m)(可用计算器求,也可用下列参考数据求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40 D°≈0.8391)C 43 40° B A B 52m 第9 题图10.如图,自动扶梯AB 段的长度为20 米,倾斜角 A 为α,高度BC 为___________米(结果用含α的三角比表示).A C 第10 题图1 2 11.如图2 所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30 这时测得大树在地面上的影子约为10 米,°角,(则大树的高约为________米.保留两个有效数字,2 ≈1.41,3 ≈1.73)三、认真答一答1,计算:sin 30 cos 60 cot 45 tan 60 tan 30 分析:可利用特殊角的三角函数值代入直接计算;2 计算:2 2 cos 45 sin 90 4 4 2 1 1 分析:利用特殊角的三角函数值和零指数及负整数次幂的知识求解。

初中三角函数练习试题和答案解析

初中三角函数练习试题和答案解析
处,以每小时107千米的速度向北偏东60o的BF方向移动,距台风中心200千米的范
围内是受这次台风影响的区域。
问A城是否会受到这次台风的影响?为什么?
若A城受到这次台风的影响,那么A城遭受这次台风影响的时间有多长?
学习指导参考
WORD格式整理版
0.7346如图,山上有一座铁塔,山脚下有一矩形建筑物ABCD,且建筑物周围没有开阔平
以内会受噪声影响,那么,学校是否会受到噪声影响?如果不受影响,请说明理由;如果
受影响,会受影响几分钟?
N
PAQ
M
.
15、如图,在某建筑物AC上,挂着“多彩云南”的宣传条幅BC,小明站在点F处,
看条幅顶端B,测的仰角为30,再往条幅方向前行20米到达点E处,看到
条幅顶端B,测的仰角为60,求宣传条幅BC的长,(小明的身高不计,结
0
6、在Rt△ABC中,∠C=90
,则下列式子成立的是()
A、sinA=sinBB、sinA=cosBC、tanA=tanBD、cosA=tanB
7.已知Rt△ABC中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是()
2223
A.sinB=
3B.cosB=3C.tanB=3D.tanB=2
(2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形.
B
20某学校体育场看台的侧面如图阴影部分所示,看台有四级高度相等的小台阶.已知看台
图①图②
C
高为l.6米,现要做一个不锈钢的扶手AB及两根与FG垂直且长为l米的不锈钢架杆AD和
BC(杆子的底端分别为D,C),且∠DAB=66. 5°.
7060943270603322
分析:(1)由图可知ABO是直角三角形,于是由勾股定理可求。

三角函数经典题目(带答案)

三角函数经典题目(带答案)

三角函数经典题目练习1.已知α1231、已知角2、P (x ,5则sin 1、已知2、函数(f3、已知 象限1. 已知π22.设0≤α是 .sin αtan x 若<0___.53sin +-=m m θ,524cos +-=m m θ(πθπ<<2),则=θ________.1tan tan αα,是关于x 的方程2230x kx k -+-=的个实根,且παπ273<<,则ααsin cos +的值 .0)13(22=++-m x x 的两根为()πθθθ2,0,cos ,sin ∈,求(1)m =_______(2)θθθθtan 1cos cot 1sin -+-=________.α )415tan(325cos ππ-+= . θθθθcos sin cos sin -+=2,则sin(θ-5π)·sin ⎪⎭⎫⎝⎛-θπ23= α终边上P (-4,3),)29sin()211cos()sin()2cos(απαπαπαπ+---+= .已知锐角α终边上一点P 的坐标是(2sin2,-2cos2),α= . sin163°·sin223°+sin253°·sin313°= . =-+θθtan 1tan 1_________tan 20tan 4020tan 40︒+︒︒⋅︒= α∈(0,2π),若sin α=53,则2cos(α+4π)= . 336cos =⎪⎭⎫ ⎝⎛-απ,则⎪⎭⎫ ⎝⎛+απ65cos =______,)65απ--=_____..【知二求多】1、已知cos ⎪⎭⎫ ⎝⎛-2βα= -54,sin ⎪⎭⎫ ⎝⎛-2αβ=135,且0<β<2π<α<π,则cos 2βα+=____.2已知tan α=43,cos(α+β)=-1411, α、β为锐角,则cos β=______.【方法套路】1、设21sin sin =+βα,31cos cos =+βα,则)cos(βα-=___ .2.已知ββαcos 5)2cos(8++=0,则αβαtan )tan(+= .3,41)sin(,31)sin(=-=+βαβα则___tan tan =βα【给值求角】1tan α=71,tan β=31,α,β均为锐角,则α+2β= .2、若sinA=55,sinB=1010,且A,B 均为钝角, 则A+B= .【半角公式】1α是第三象限,2524sin -=α,则tan 2α= . 2、已知01342=+++a ax x (a >1)的两根为αtan ,βtan ,且α,∈β ⎝⎛-2π,⎪⎭⎫2π,则2tan βα+=______3若cos 22π2sin 4αα=-⎛⎫- ⎪⎝⎭,则cos sin αα+= . 4、若⎥⎦⎤⎢⎣⎡∈27,25ππα,则ααsin 1sin 1-++=5x 是第三象限角xx xx x x x x cos sin 1cos sin 1cos sin 1cos sin 1-++++++-+=______ 【公式链】1=+++ 89sin 3sin 2sin 1sin 2222_______ 2sin10o sin30o sin50o sin70o=_______ 3(1+tan1o )(1+tan2o )…(1+tan45o )=_______六、给值求角 已知31sin -=x ,写出满足下列关系x 取值集合 ]3,5[)3()2(]2,0[)1(πππ--∈∈∈x R x x七、函数性质 【定义域问题】 1. x x y sin 162+-=定义域为_________2、1)32tan(--=πx y 定义域为_________【值域】1、函数y =2sin ⎝⎛⎭⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为__________2、若函数g (x )=2a sin x +b 的最大值和最小值分别为6和2,则|a |+b 的值为________3、函数x xy sin 2sin 1+-=的值域4、函数xxy cos 1sin 21+-=的值域5、函数x x y sin 2cos -=的值域【解析式】1、已知函数f (x )=3sin 2ωx -cos 2ωx 的图象关于直线x =π3对称,其中ω∈⎝⎛⎭⎫-12,52.函数f (x )的解析式为________.2、已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的图象在y 轴上的截距为1,在相邻两最值点(x 0,2),⎝⎛⎭⎫x 0+32,-2(x 0>0)上f (x )分别取得最大值和最小值.则所得图像的函数解析式是________ 3.将函数sin y x =的图像上所有的点右移10π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是___________4、()()sin f x A x h ωϕ=++(0,0,)2A πωϕ>>< 的图象如图所示,求函数)(x f 的解析式;【性质】1、已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π递减,则ω的取值范围是( )A.⎣⎡⎦⎤12,54B.⎣⎡⎦⎤12,34C.⎝⎛⎦⎤0,12 D.(0,2] 2、若函数()sin (0)f x x ωω=>在区间π0,3⎡⎤⎢⎥⎣⎦递增,在区间ππ,32⎡⎤⎢⎥⎣⎦上单调递减,则ω=3、sin(2)3y x π=+图像的对称轴方程可能是A .6x π=- B .12x π=- C .6x π= D .4、已知函数x a x x f 2cos 2sin )(+=关于x 称,则a =_______5.()2sin()f x x ωϕ=++m 对任意x 有()6f x f π+=若()6f π=3,则m=________【图象】1、为了得到函数sin(2)3y x π=-sin(2)6y x π=+的图像向____移动____2、为了得到函数sin(2)3y x π=-y=cos2x 图像向____移动____个长度单位 3.将函数sin(2)y x ϕ=+的图象沿x 个单位后,得到一个偶函数的图象,则ϕ取值为 (A)34π (B) 4π(C)0 (D) 4π-【综合练习】1、已知定义在R 上的函数f (x )满足:当sin x f (x )=cos x ,当sin x >cos x 时,f (x )=sin x .下结论:①f (x )是周期函数;②f (x )③当且仅当x =2k π(k ∈Z)时,f (x )当且仅当2k π-π2<x <(2k +1)π(k ∈Z)时,f (⑤f (x )的图象上相邻两个最低点的距离是正确的结论序号是________.f(x)=sin(2x+x x 2cos 2)62sin()6+-+ππ)求f(x)的最小值及单调减区间; )求使f(x)=3的x 的取值集合。

初中三角函数练习题及答案

初中三角函数练习题及答案

三角函数练习题(一)精心选一选1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( )A 、缩小2倍B 、扩大2倍C 、不变D 、不能确定2、在Rt △ABC 中,∠C=90,BC=4,sinA=54,则AC=( )A 、3B 、4C 、5D 、63、若∠A 是锐角,且sinA=31,则( )A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600D 、600<∠A<9004、若cosA=31,则A A AA tan 2sin 4tan sin 3+-=( )A 、74B 、31C 、21D 、05、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=( )A 、1:1:2B 、1:1:2C 、1:1:3D 、1:1:226、在Rt △ABC 中,∠C=900,则下列式子成立的是( )A 、sinA=sinB B 、sinA=cosBC 、tanA=tanBD 、cosA=tanB7.已知Rt △ABC 中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是( )A .sinB=23B .cosB=23C .tanB=23D .tanB=328.点(-sin60°,cos60°)关于y 轴对称的点的坐标是( )A .(32,12)B .(-32,12)C .(-32,-12) D .(-12,-32)9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.•某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,•若这位同学的目高1.6米,则旗杆的高度约为( )A .6.9米B .8.5米C .10.3米D .12.0米10.王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )(A )350m (B )100 m(C )150m (D )3100m 11、如图1,在高楼前D 点测得楼顶的仰角为30︒,向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为( )A.82米B.163米C.52米D.70米12、一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西10º的方向行驶40海里到达C 地,则A 、C 两地相距( ).(A )30海里 (B )40海里 (C )50海里 (D )60海里(二)细心填一填1.在Rt △ABC 中,∠C=90°,AB=5,AC=3,则sinB=_____.图145︒30︒BAD C2.在△ABC 中,若BC=2,AB=7,AC=3,则cosA=________. 3.在△ABC 中,AB=2,AC=2,∠B=30°,则∠BAC 的度数是______. 4.如图,如果△APB 绕点B 按逆时针方向旋转30°后得到△A 'P 'B ,且BP=2,那么PP '的长为____________. (不取近似值. 以下数据供解题使用:sin15°=624-,cos15°=624+)5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.6.如图,机器人从A 点,沿着西南方向,行了个42单位,到达B 点后观察到原点O 在它的南偏东60°的方向上,则原来A 的坐标为___________结果保留根号). 7.求值:sin 260°+cos 260°=___________.8.在直角三角形ABC 中,∠A=090,BC=13,AB=12,那么tan B =___________.9.根据图中所给的数据,求得避雷针CD 的长约为_______m (结果精确的到0.01m ).(可用计算器求,也可用下列参考数据求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40°≈0.8391)第6题图xOAy B北甲北乙第5题图BCD第4题图10.如图,自动扶梯AB 段的长度为20米,倾斜角A 为α,高度BC 为___________米(结果用含α的三角比表示).(1) (2) 11.如图2所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,•这时测得大树在地面上的影子约为10米,则大树的高约为________米.(•保留两个有效数字,2≈1.41,3≈1.73)三、认真答一答1,计算:sin cos cot tan tan 3060456030︒+︒-︒-︒⋅︒2计算:22459044211(cos sin )()()︒-︒+-︒+--π3 如图1,在∆ABC 中,AD 是BC 边上的高,tan cos B DAC =∠。

初中三角函数练习题及答案

初中三角函数练习题及答案

初中三角函数练习题及答案初中三角函数练习题及答案(一)精心选一选1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( )A 、缩小2倍B 、扩大2倍C 、不变D 、不能确定12、在Rt △ABC 中,∠C=90,BC=4,sinA=54,则AC=( )A 、3B 、4C 、5D 、63、若∠A 是锐角,且sinA=31,则( )A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600D 、600<∠A<9004、若cosA=31,则A A AA tan 2sin 4tan sin 3+-=( )A 、74B 、31C 、21D 、05、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=( ) A 、1:1:2 B 、1:1:2 C 、1:1:3 D 、1:1:226、在Rt △ABC 中,∠C=900,则下列式子成立的是( ) A 、sinA=sinB B 、sinA=cosB C 、tanA=tanB D 、cosA=tanB7.已知Rt△ABC中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是()A.sinB=23 B.cosB=23 C.tanB=23D .tanB=3 28.点(-sin60°,cos60°)关于y轴对称的点的坐标是()A.(32,12) B.(-32,12) C.(-32,-12)D.(-12,-32)9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.•某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,•若这位同学的目高1.6米,则旗杆的高度约为()A.6.9米 B.8.5米 C.10.3米 D.12.0米10.王英同学从A地沿北偏西60º方向走100m到B地,再从B地向正南方向走200m到C地,此时王英同学离A地()(A)350m (B)100 m(C)150m (D)3100m11、如图1,在高楼前D点测得楼顶的仰角为30︒,向高楼前进60米到C点,又测得仰角为45︒,则该高楼的高度大约为()A.82米B.163米C.52米D.70米图145︒30︒BA D C12、一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西10º的方向行驶40海里到达C 地,则A 、C 两地相距( ).(A )30海里 (B )40海里 (C )50海里 (D )60海里 (二)细心填一填1.在Rt △ABC 中,∠C=90°,AB=5,AC=3,则sinB=_____. 2.在△ABC 中,若BC=2,AB=7,AC=3,则cosA=________. 3.在△ABC 中,AB=2,AC=2,∠B=30°,则∠BAC 的度数是______. 4.如图,如果△APB 绕点B 按逆时针方向旋转30°后得到△A 'P 'B ,且BP=2,那么PP '的长为____________. (不取近似值. 以下数据供解题使用:sin15°=62-,cos15°=62+)5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.第6题x O AyB 北甲北乙第5题第46.如图,机器人从A点,沿着西南方向,行了个42单位,到达B点后观察到原点O在它的南偏东60°的方向上,则原来A的坐标为___________结果保留根号).7.求值:sin260°+cos260°=___________.8.在直角三角形ABC中,∠A=090,BC=13,AB=12,那么tan B=___________.9.根据图中所给的数据,求得避雷针CD的长约为_______m(结果精确的到0.01m).(可用计算器求,也可用下列参考数据求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40°≈0.8391)10.如图,自动扶梯AB段的长度为20米,倾斜角A为α,高度BC为___________米(结果用含α的三角比表示).(1) (2)11.如图2所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,•这时测得大树在地面上的影子约为10米,则大树的高约为________米.(•2≈1.413 1.73)三、认真答一答αA CB第10A4052CD第9B431,计算:sin cos cot tan tan 3060456030︒+︒-︒-︒⋅︒ 分析:可利用特殊角的三角函数值代入直接计算;2计算:22459044211(cos sin )()()︒-︒+-︒+--π分析:利用特殊角的三角函数值和零指数及负整数次幂的知识求解。

初中三角函数练习题及答案

初中三角函数练习题及答案

初中三角函数练习题及答案一)精心选一选1、在直角三角形中,各边都扩大2倍,则锐角A的正弦值与余弦值都()A、缩小2倍B、扩大2倍C、不变D、不能确定12、在Rt△ABC中,∠C=900,BC=4,sinA=54,则AC=()A、3B、4C、5D、63、若∠A是锐角,且sinA=31,则()A、00<∠A<300B、300<∠A<450C、450<∠A<600D、600<∠A<9005、在△ABC中,∠A:∠B:∠C=1:1:2,则a:b:c=()A、1:1:2B、1:1:根号2C、1:1:根号3D、1:1:2分之根号26、在Rt△ABC中,∠C=900,则下列式子成立的是()A、sin A=sin BB、sin A=cos BC、tan A=tan BD、cos A=tan B 7.已知Rt△ABC中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是() A.sinB=2/3 B.cosB=2/3 C.tanB=2/3 D.tanB=3/28.点(-sin60°,cos60°)关于y轴对称的点的坐标是()A.(32,12) B.(-32,12) C.(-32,-12) D.(-12,-32)9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.•某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,•若这位同学的目高1.6米,则旗杆的高度约为()A.6.9米 B.8.5米 C.10.3米 D.12.0米10.王英同学从A地沿北偏西60º方向走100m到B地,再从B地向正南方向走200m到C地,此时王英同学离A地()(A)350m (B)100 m (C)150m (D)3100m11、如图1,在高楼前D点测得楼顶的仰角为30 ,向高楼前进60米到C点,又测得仰角为45 ,则该高楼的高度大约为()A.82米B.163米C.52米D.70米12、一艘轮船由海平面上A地出发向南偏西40º的方向行驶40海里到达B地,再由B地向北偏西10º的方向行驶40海里到达C地,则A、C两地相距().(A)30海里(B)40海里(C)50海里(D)60海里(二)细心填一填1.在Rt△ABC中,∠C=90°,AB=5,AC=3,则sinB=_____.2.在△ABC中,若BC=2,AB=7,AC=3,则cosA=________.3.在△ABC中,AB=2,AC=2,∠B=30°,则∠BAC的度数是______.一、选择题1——5、CAADB 6——12、BCABDAB。

初中三角函数练习题及答案

初中三角函数练习题及答案

三角函数练习1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( ) A 、缩小2倍 B 、扩大2倍 C 、不变 D 、不能确定12、在Rt △ABC 中,∠C=900,BC=4,sinA=54,则AC=( )A 、3B 、4C 、5D 、63、若∠A 是锐角,且sinA=31,则( )A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600D 、600<∠A<9004、若cosA=31,则A A AA tan 2sin 4tan sin 3+-=( )A 、74B 、31C 、21D 、05、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=( )A 、1:1:2B 、1:1:2C 、1:1:3D 、1:1:226、在Rt △ABC 中,∠C=900,则下列式子成立的是( )A 、sinA=sinB B 、sinA=cosBC 、tanA=tanBD 、cosA=tanB7.已知Rt △ABC 中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是( )A .sinB=23B .cosB=23C .tanB=23 D .tanB=328.点(-sin60°,cos60°)关于y 轴对称的点的坐标是( )A .(32,12)B .(-32,12)C .(-32,-12)D .(-12,-32)9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.•某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,•若这位同学的目高1.6米,则旗杆的高度约为( )A .6.9米B .8.5米C .10.3米D .12.0米10.王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )(A )350m (B )100 m(C )150m (D )3100m 11、如图1,在高楼前D 点测得楼顶的仰角为30︒,向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为( )A.82米B.163米C.52米D.70米12、一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西10º的方向行驶40海里到达C 地,则A 、C 两地图145︒30︒BAD C相距( ).(A )30海里 (B )40海里 (C )50海里 (D )60海里 (二)填空1.在Rt △ABC 中,∠C=90°,AB=5,AC=3,则sinB=_____. 2.在△ABC 中,若BC=2,AB=7,AC=3,则cosA=________. 3.在△ABC 中,AB=2,AC=2,∠B=30°,则∠BAC 的度数是______.4.如图,如果△APB 绕点B 按逆时针方向旋转30°后得到△A 'P 'B ,且BP=2,那么PP '的长为____________. (不取近似值. 以下数据供解题使用:sin15°=624-,cos15°=624+)5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.第6题图xO Ay B北甲北乙第5题图第4题图6.如图,机器人从A 点,沿着西南方向,行了个42单位,到达B 点后观察到原点O 在它的南偏东60°的方向上,则原来A 的坐标为___________结果保留根号).7.求值:sin 260°+cos 260°=___________.8.在直角三角形ABC 中,∠A=090,BC=13,AB=12,那么tan B =___________. 9.根据图中所给的数据,求得避雷针CD 的长约为_______m (结果精确的到0.01m ).(可用计算器求,也可用下列参考数据求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40°≈0.8391)10.如图,自动扶梯AB 段的长度为20倾斜角A 为α,高度BC 为___________米(结果用含α的三角比表示).(1) (2)11.如图2所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,•这时测得大树在地面上的影子约为10米,则大树的高约为________米.(•保留两个有2 1.413 1.73) 三、认真答一答1,计算:s i n c o s c o t t a n t a n 3060456030︒+︒-︒-︒⋅︒α A C B第10题图A 40°52mCD第9题图 B43分析:可利用特殊角的三角函数值代入直接计算;2计算:22459044211(c o s s i n )()()︒-︒+-︒+--π分析:利用特殊角的三角函数值和零指数及负整数次幂的知识求解。

初中三角函数专项练习题及答案

初中三角函数专项练习题及答案

初中三角函数基础检测题山岳 得分(一)精心选一选(共36分)1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( )A 、缩小2倍B 、扩大2倍C 、不变D 、不能确定2、在Rt △ABC 中,∠C=90,BC=4,sinA=54,则AC=( )A 、3B 、4C 、5D 、63、若∠A 是锐角,且sinA=31,则( )A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600D 、600<∠A<9004、若cosA=31,则A A AA tan 2sin 4tan sin 3+-=( )A 、74B 、31C 、21D 、05、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=( )A 、1:1:2B 、1:1:2C 、1:1:3D 、1:1:226、在Rt △ABC 中,∠C=900,则下列式子成立的是( )A 、sinA=sinB B 、sinA=cosBC 、tanA=tanBD 、cosA=tanB 7.已知Rt △ABC 中,∠C=90°,AC=2,BC=3,则下列各式中,正确的是( )A .sinB=23B .cosB=23C .tanB=23D .tanB=328.点(-sin60°,cos60°)关于y 轴对称的点的坐标是( )A .(32,12)B .(-32,12)C .(-32,-12) D .(-12,-32)9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.•某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,•若这位同学的目高1.6米,则旗杆的高度约为( )A .6.9米B .8.5米C .10.3米D .12.0米10.王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m到C 地,此时王英同学离A 地 ( ) (A )350m (B )100 m(C )150m (D )3100m11、如图1,在高楼前D 点测得楼顶的仰角为30︒, 向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为( )A.82米B.163米C.52米D.70米12、一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西10º的方向行驶40海里到达C 地,则A 、C 两地相距( ).(A )30海里 (B )40海里 (C )50海里 (D )60海里图145︒30︒BAD C(二)细心填一填(共33分)1.在Rt △ABC 中,∠C=90°,AB=5,AC=3,则sinB=_____. 2.在△ABC 中,若BC=2,AB=7,AC=3,则cosA=________.3.在△ABC 中,AB= ,AC=2,∠B=30°,则∠BAC 的度数是______.4.如图,如果△APB 绕点B 按逆时针方向旋转30°后得到△A 'P 'B ,且BP=2,那么PP '的长为____________. (不取近似值. 以下数据供解题使用:sin15°=624-,cos15°=624+)5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.6.如图,机器人从A 点,沿着西南方向,行了个42单位,到达B 点后观察到原点O 在它的南偏东60°的方向上,则原来A 的坐标为___________结果保留根 号). 7.求值:sin 260°+cos 260°=___________.8.在直角三角形ABC 中,∠A=090,BC=13,AB=12,则tan B =_________.9.根据图中所给的数据,求得避雷针CD 的长约为_______m (结果精确的到0.01m ).(可用计算器求,也可用下列参考数据求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40°≈0.8391)10.如图,自动扶梯AB 段的长度为20米,倾斜角A 为α,高度BC 为___________米(结果用含α的三角比表示). 11.如图,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时测得大树在地面上的影子约为10米,则大树的高约为________米。

初中三角函数练习题及答案

初中三角函数练习题及答案

三角函数练习题(一)精心选一选1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( ) A 、缩小2倍 B 、扩大2倍 C 、不变 D 、不能确定2、在Rt △ABC 中,∠C=900,BC=4,sinA=54,则AC=( )3、若∠A 是锐角,且sinA=31,则( )A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600D 、600<∠A<9004、若cosA=31,则A A AA tan 2sin 4tan sin 3+-=( )5、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=( )6、在Rt △ABC 中,∠C=900,则下列式子成立的是( ) A 、sinA=sinB B 、sinA=cosB C 、tanA=tanB D 、cosA=tanB7.已知Rt △ABC 中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是( )A .sinB=23B .cosB=23C .tanB=23D .tanB=328.点(-sin60°,cos60°)关于y 轴对称的点的坐标是( )A .(32,12)B .(-32,12)C .(-32,-12) D .(-12,-32)9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.•某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,•若这位同学的目高1.6米,则旗杆的高度约为( )A .6.9米B .8.5米C .10.3米D .12.0米10.王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )(A )350m (B )100 m(C )150m (D )3100m 11、如图1,在高楼前D 点测得楼顶的仰角为30︒,向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为( )A.82米B.163米C.52米D.70米12、一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西10º的方向行驶40海里到达C 地,则A 、C 两地相距( ).(A )30海里 (B )40海里 (C )50海里 (D )60海里 (二)细心填一填1.在Rt △ABC 中,∠C=90°,AB=5,AC=3,则sinB=_____.2.在△ABC 中,若BC=2,AB=7,AC=3,则cosA=________.3.在△ABC 中,AB=2,AC=2,∠B=30°,则∠BAC 的度数是______.4.如图,如果△APB 绕点B 按逆时针方向旋转30°后得到△A 'P 'B ,且BP=2,那么PP '的长为____________. (不取近似值. 以下数据供解题使用:sin15°=624-,cos15°=624+)5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.图145︒30︒BAD C北甲北 乙第5题图第4题图7.求值:sin 260°+cos 260°=___________.8.在直角三角形ABC 中,∠A=090,BC=13,AB=12,那么tan B =___________.9.根据图中所给的数据,求得避雷针CD 的长约为_______m (结果精确的到0.01m ).(可用计算器求,也可用下列参考数据求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40°≈0.8391)10.如图,自动扶梯AB 段的长度为20米,倾斜角A 为α,高度BC 为___________米(结果用含α的三角比表示).(1) (2) 11.如图2所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,•这时测得大树在地面上的影子约为10米,则大树的高约为________米.(•保留两个有效数字,2≈1.41,3≈1.73)三、认真答一答1,计算:sin coscot tan tan 3060456030︒+︒-︒-︒⋅︒2计算:22459044211(cos sin )()()︒-︒+-︒+--π3 如图1,在∆ABC 中,AD 是BC 边上的高,tan cos B DAC =∠。

初中三角函数练习题及答案

初中三角函数练习题及答案

初中三角函数练习题及答案(一)精心选一选1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( ) A 、缩小2倍 B 、扩大2倍 C 、不变 D 、不能确定12、在Rt △ABC 中,∠C=900,BC=4,sinA=54,则AC=( )A 、3B 、4C 、5D 、63、若∠A 是锐角,且sinA=31,则( )A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600D 、600<∠A<9004、若cosA=31,则A A AA tan 2sin 4tan sin 3+-=( )A 、74B 、31C 、21D 、05、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=( )A 、1:1:2B 、1:1:2C 、1:1:3D 、1:1:226、在Rt △ABC 中,∠C=900,则下列式子成立的是( )A 、sinA=sinB B 、sinA=cosBC 、tanA=tanBD 、cosA=tanB 7.已知Rt △ABC 中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是( )A .sinB=23B .cosB=23C .tanB=23D .tanB=328.点(-sin60°,cos60°)关于y 轴对称的点的坐标是( )A .(2,12) B .(-2,12) C .(-2,-12) D .(-12,-32)9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.•某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,•若这位同学的目高1.6米,则旗杆的高度约为( )A .6.9米B .8.5米C .10.3米D .12.0米 10.王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )(A )350m(B )100 m(C )150m (D )3100m 11、如图1,在高楼前D 点测得楼顶的仰角为30︒,向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为( )A.82米B.163米C.52米D.70米12、一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西10º的方向行驶40海里到达C 地,则A 、C 两地相距( ).(A )30海里 (B )40海里 (C )50海里 (D )60海里 (二)细心填一填1.在Rt △ABC 中,∠C=90°,AB=5,AC=3,则sinB=_____. 2.在△ABC 中,若,,AC=3,则cosA=________. 3.在△ABC 中,AB=2,,∠B=30°,则∠BAC 的度数是______.4.如图,如果△APB 绕点B 按逆时针方向旋转30°后得到△A 'P 'B ,且BP=2,那么PP '的长为____________. (不取近似值. 以下数据供解题使用:sin15°=,图1cos15°=)5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.6.如图,机器人从A 点,沿着西南方向,行了个42单位,到达B 点后观察到原点O 在它的南偏东60°的方向上,则原来A 的坐标为___________结果保留根号).7.求值:sin 260°+cos 260°=___________.8.在直角三角形ABC 中,∠A=090,BC=13,AB=12,那么tan B =___________. 9.根据图中所给的数据,求得避雷针CD 的长约为_______m (结果精确的到0.01m ).(可用计算器求,也可用下列参考数据求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40°≈0.8391)10.如图,自动扶梯AB 段的长度为20米,倾斜角A 为α,高度BC 为___________第6题图第5题图第4题图米(结果用含α的三角比表示).(1) (2)11.如图2所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,•这时测得大树在地面上的影子约为10米,则大树的高约为________米.(•保留两个有效数字,≈1.41≈1.73)三、认真答一答1,计算:sin cos cot tan tan3060456030︒+︒-︒-︒⋅︒分析:可利用特殊角的三角函数值代入直接计算;A C第10题图A第9题图2计算:22459044211(cos sin )()()︒-︒+-︒+--π分析:利用特殊角的三角函数值和零指数及负整数次幂的知识求解。

初中三角函数练习题及答案

初中三角函数练习题及答案

初中三角函数练习题(一)精心选一选1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( )A 、缩小2倍B 、扩大2倍C 、不变D 、不能确定12、在△中,∠900,4,54,则( )A 、3B 、4C 、5D 、6 3、若∠A 是锐角,且31,则( )A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600D 、600<∠A<9004、若31,则A A AA tan 2sin 4tan sin 3+-=( )A 、74B 、31C 、21D 、05、在△中,∠A :∠B :∠1:1:2,则a :b :( )A 、1:1:2B 、1:1:2C 、1:1:3D 、1:1:226、在△中,∠900,则下列式子成立的是( ) A 、 B 、 C 、 D 、7.已知△中,∠90°,2,3,那么下列各式中,正确的是( )A .23B .23 C .23 D .328.点(60°,60°)关于y 轴对称的点的坐标是( )A.(2,12) B .(-2,12) C .(-2,-12)D .(-12,-32)9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.•某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,•若这位同学的目高1.6米,则旗杆的高度约为( )A .6.9米B .8.5米C .10.3米D .12.0米10.王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )(A )350m (B )100 m (C )150m (D )3100m11、如图1,在高楼前D 点测得楼顶的仰角为30︒,向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为( )A.82米B.163米C.52米D.70米 12、一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西10º的方向行驶40海里到达C 地,则A 、C 两地相距( ).(A )30海里 (B )40海里 (C )50海里 (D )60海里(二)细心填一填1.在△中,∠90°,5,3,则.2.在△中,若2,7,3,则.3.在△中,2,2,∠30°,则∠的度数是.4.如图,如果△绕点B 按逆时针方向旋转30°后得到△A 'P 'B ,且2,那么'的长为. (不取近似值. 以下数据供解题使用:15°=624-,15°=624+)5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西度.图145︒30︒BAD C第6题图xO AyB北甲北乙第5题图第4题6.如图,机器人从A 点,沿着西南方向,行了个4单位,到达B 点后观察到原点O 在它的南偏东60°的方向上,则原来A 的坐标为结果保留根号).7.求值:260°260°.8.在直角三角形中,∠090,13,12,那么tan B =.9.根据图中所给的数据,求得避雷针的长约为(结果精确的到也可用下列参考数据求:43°≈0.6802,40°≈0.6428,43°≈0.7341,40°≈0.7660,43°≈0.9325,40°≈0.8391)10.如图,自动扶梯段的长度为20米,倾斜角A 为α,高度为米(结果用含α的三角比表示).(1) (2)11.如图2所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,•这时测得大树在地面上的影子约为10米,则大树的高约为米.(•保留两个有效数字,2≈1.41,3≈1.73)三、认真答一答1,计算:sin cos cot tan tan 3060456030︒+︒-︒-︒⋅︒ 2计算:22459044211(cos sin )()()︒-︒+-︒+--π3 如图1,在∆ABC 中,是边上的高,tan cos B DAC =∠。

初中三角函数专项练习题及答案

初中三角函数专项练习题及答案

初中三角函数专项练习题及答案(一)精心选一选1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( )A 、缩小2倍B 、扩大2倍C 、不变D 、不能确定12、在Rt △ABC 中,∠C=90,BC=4,sinA=54,则AC=( )A 、3B 、4C 、5D 、63、若∠A 是锐角,且sinA=31,则( )A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600D 、600<∠A<9004、若cosA=31,则A A AA tan 2sin 4tan sin 3+-=( )A 、74B 、31C 、21D 、05、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=( ) A 、1:1:2 B 、1:1:2 C 、1:1:3 D 、1:1:226、在Rt △ABC 中,∠C=900,则下列式子成立的是( ) A 、sinA=sinB B 、sinA=cosB C 、tanA=tanB D 、cosA=tanB7.已知Rt △ABC 中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是( )A .sinB=23B .cosB=23C .tanB=23 D .tanB=328.点(-sin60°,cos60°)关于y 轴对称的点的坐标是( )A .(32,12)B .(-32,12)C .(-32,-12) D .(-12,-32)9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.•某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,•若这位同学的目高1.6米,则旗杆的高度约为( )A .6.9米B .8.5米C .10.3米D .12.0米10.王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )(A )350m (B )100 m(C )150m (D )3100m 11、如图1,在高楼前D 点测得楼顶的仰角为30︒,向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为( )A.82米B.163米C.52米D.70米12、一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西10º的方向行驶40海里到达C 地,则A 、C 两地相距( ).图145︒30︒BAD C(A )30海里 (B )40海里 (C )50海里 (D )60海里 (二)细心填一填1.在Rt △ABC 中,∠C=90°,AB=5,AC=3,则sinB=_____. 2.在△ABC 中,若BC=2,AB=7,AC=3,则cosA=________. 3.在△ABC 中,AB=2,AC=2,∠B=30°,则∠BAC 的度数是______. 4.如图,如果△APB 绕点B 按逆时针方向旋转30°后得到△A 'P 'B ,且BP=2,那么PP '的长为____________. (不取近似值. 以下数据供解题使用:sin15°=624-,cos15°=624+)5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.6.如图,机器人从A 点,沿着西南方向,行了个42单位,到达B 点后观察到原点O 在它的南偏东60°的方向上,则原来A 的坐标为___________结果保留根号).7.求值:sin 260°+cos 260°=___________.第6题图xOAy B北甲北乙第5题图第4题图8.在直角三角形ABC 中,∠A=090,BC=13,AB=12,那么tan B =___________.9.根据图中所给的数据,求得避雷针CD 的长约为_______m (结果精确的到0.01m ).(可用计算器求,也可用下列参考数据求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40°≈0.8391)10.如图,自动扶梯AB 段的长度为20米,倾斜角A 为α,高度BC 为___________米(结果用含α的三角比表示).(1) (2) 11.如图2所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,•这时测得大树在地面上的影子约为10米,则大树的高约为________米.(•保留两个有效数字,2≈1.41,3≈1.73) 三、认真答一答1,计算:sin cos cot tan tan 3060456030︒+︒-︒-︒⋅︒ 分析:可利用特殊角的三角函数值代入直接计算;αA C B第10题图A40°52mCD第9题图B432计算:22459044211(cos sin )()()︒-︒+-︒+--π分析:利用特殊角的三角函数值和零指数及负整数次幂的知识求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

----初中三角函数基础检测题山岳得分(一)精心选一选(共36分)1、在直角三角形中,各边都扩大2 倍,则锐角A的正弦值与余弦值都()、不变倍CD倍B、扩大2A 、缩小2、不能确定40,BC=4,sinA= ,则AC=()2、在Rt△ABC 中,∠C=905C、54D、6、A、3B13、若∠A 是锐角,且sinA= ,则()3 00000000A<60 45D< <∠A<45∠A 、0C <∠A<30、B 30、A<90<∠、6013 sin Atan A3= cosA=、若42 tan A 4 sin A(,则)141327、CB、A 、、0D)5、在△ABC中,∠A:∠B:∠C=1:1:2,则a:b:c=(23221:1:、1:、B 1:1:、1:D 2:、A 1:1C06、在Rt△ABC中,∠C=90,则下列式子成立的是()C 、tanA=tanB、sinA=sinBsinA=cosBD 、cosA=tanBA 、B7.已知Rt △ABC中,∠C=90°,AC=2,BC=3,则下列各式中,正确的是()22233332tanB= .tanB=...A sinB=cosB=DCB8.点(-sin60 °,)cos60°)关于y 轴对称的点的坐标是(---------3131311322222222),--)D.(,)C.(--,A.(,)B.(-9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.?某同学站在离旗杆12 米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,?若这位同学的目高 1.6 米,则旗杆的高度约为()A.6.9 米B.8.5米C.10.3米D.12.0米10.王英同学从 A 地沿北偏西60o 方向走100m到B 地,再从B 地向正南方向走200m到C 地,此时王英同学离A 地()A50 3m)(A(B)100 m100 3(C)150m m (D)304530DC B点测得楼顶的仰角为11、如图1,在高楼前D,C45图1,向高楼前进60 米到点,又测得仰角为则该高楼的高度大约为()C.52米D.70米A.82 米B.163米12、一艘轮船由海平面上A 地出发向南偏西40o 的方向行驶40 海里到达B地,再由 B 地向北偏西10o 的方向行驶40 海里到达 C 地,则A、C 两地相距().(A)30 )50海里海里((B)40海里C海里60 D()(二)细心填一填(共33分)1.在Rt△ABC中,∠C=90°,AB=5,AC=3,则sinB=_____.27.cosA=________ AB= ,AC=3,则BC= 2.在△ABC中,若,2 AB=中,.在△ABC3.______的度数是°,则∠,∠,AC=B=30BAC---------4.如图,如果△APB绕点B 按逆时针方向旋转30°后得到△A'P'B,且BP=2,那么PP'的长为____________.( 不取近似值 .以下数据供解题使用:626244)cos15sin15 °=°=,5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.北y A乙北B甲第 4 题图Ox题图5第第6题图6.如图,机器人从A 点,沿着西南方向,行了个42单位,到达 B 点后观察到原点O在它的南偏东60°的方向上,则原来A 的坐标为___________结果保留根号).2260°=___________ 60°+cos7.求值:sin .90tan B0,则BC=13,ABC中,∠A=AB=12,8.在直角三角形_________.9.根据图中所给的数据,求得避雷针CD的长约为_______m(结果精确的到0.01m).(可用计算器求,也可用下列参考数据求:sin43 °≈0.6802 ,sin40 °≈0.6428 ,cos43 °≈0.7341 ,cos40 °≈0.7660 ,tan43 °≈0.9325 ,tan40 °D)≈0.8391CB43A°40C BA题图10第52m第9题图---------10.如图,自动扶梯AB段的长度为20 米,倾斜角 A 为α,高度BC为___________米(结果用含α的三角比表示).11.如图,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,?10 这时测得大树在地面上的影子约为米,则大树的高约为________米。

23≈1.73 ≈1.41 ,)(保留两个有效数字,三、认真答一答(共51分)sin 30 cos60 cot 45 tan60 tan301计算:12 (2 cos45 sin 90 ) (4 4 ) ( 2 1)计算:23 如图,在中,AD是BC边上的高,。

DAC cos ABC tan B(1)求证:AC=BD12,BC12sin C(2)若,求AD的长。

13AC,Rt m,BAC中4 如图,已知,求的面积(用ABC ABC C表示)m的三角函数及---------5.甲、乙两楼相距45 米, 从甲楼顶部观测乙楼顶部的俯角为30°, 观测乙楼的底部的俯角为45°, 试求两楼的高 .A30045r EDCB6.从A 处观测铁塔顶部的仰角是30°, 向前走100 米到达B处, 观测铁塔的顶部的仰角是45 °, 求铁塔高 .D3045A C BABCDBC 2 : 3的坡度为、如图,一铁路路基横断面为等腰梯形,斜坡7,AE3CD12AB的宽。

m ,求路基顶宽路基高为m,底BAC DE8.九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度CD 3mBD 15m,人的眼睛与地面的高度,标杆与旗杆的水平距离1.6mCD的水平距离,人与标杆EF2 mAB的高度.,求旗杆A DFCH EB DF---------9如图,一条渔船某时刻在位置 A 观测灯塔B、C(灯塔B距离A处较近),两个灯塔恰好在北偏东65°45′的方向上,渔船向正东方向航行l 小时45 分钟之后到达 D 点,观测到灯塔 B 恰好在正北方向上,已知两个灯塔之间的距离是12 海里,渔船的速度是16 海里/时,又知在灯塔 C 周围18.6 海里内有暗礁,问这条渔船按原来的方向继续航行,有没有触礁的危险?北C BEDA东10、如图,千米处,以每小时300 A 城气象台测得台风中心在 A 城的正西方7千米的200 BF 60o 10 千米的速度向北偏东的方向移动,距台风中心范围内是受这次台风影响的区域。

城是否会受到这次台风的影响?为什么?(1)问A城遭受这次台风影A 城受到这次台风的影响,那么A (2)若响的时间有多长?---------11. 如图,山上有一座铁塔,山脚下有一矩形建筑物ABCD,且建筑物周围没有开阔平整地带,该建筑物顶端宽度AD和高度DC都可直接测得,从A、D、C三点可看到塔顶端H,可供使用的测量工具有皮尺、测倾器。

(1)请你根据现有条件,充分利用矩形建筑物,设计一个测量塔顶端到地面高度HG的方案。

具体要求如下:测量数据尽可能少,在所给图形上,画出你设计的测量平面图,并将应测数据标记在图形上(如果测A、D 间距离,用m表示;如果测D、C间距离,用n 表示;如果测角,用α、β、γ表示)。

(2)根据你测量的数据,计算塔顶端到地面的高度HG(用字母表示,测倾器高度忽略不计)。

13. 人民海关缉私巡逻艇在东海海域执行巡逻任务时,发现在其所处位置O点的正北方向10 海里处的A 点有一涉嫌走私船只正以24海里/ 小时的速度向正东方向航行。

为迅速实验检查,巡逻艇调整好航向,以26 海里/ 小时的速度追赶,在涉嫌船只不改变航向和航速的前提下,问(1)需要几小时才01.(精确到2)确定巡逻艇的追赶方向B 为追上时的位置)()能追上?(点参考数据:,0.9191cos668.0.3939sin 66.8,cos674.0.384609231.sin 67.4,cos684.0.36810.9298sin 68.4,cos706.sin 70.603322.---------0.9432---------QPN 30,点 A 处有一所中学,在点公路MN 和公路PQ P 处交汇,且14.AP=160m,一辆拖拉机以3.6km/h 的速度在公路MN上沿PN方向行驶,假设拖拉机行驶时,周围100m以内会受噪声影响,那么,学校是否会受到噪声影响?如果不受影响,请说明理由;如果受影响,会受影响几分钟?NPA Q M.15、如图,在某建筑物AC上,挂着“多彩云南”的宣传条幅BC,小明站在点 F30,再往条幅方向前行20 米到达点E 处,处,看条幅顶端B,测的仰角为60,求宣传条幅BC的长,(小明的身高不计,看到条幅顶端B,测的仰角为结果精确到0.1 米)16、一艘轮船自西向东航行,在A 处测得东偏北21.3 °方向有一座小岛C,继续向东航行60 海里到达 B 处,测得小岛C此时在轮船的东偏北63.5 °方向上.之后,轮船继续向东航行多少海里,距离小岛 C 最近?92951025°≈,tan63.5 °°≈sin21.3 (参考数据:°≈,tan21.3 sin63.5,)2≈北C东AB---------A4020B、如图,一条小船从港口17处,出发,沿北偏东方向航行海里后到达30C10A海里后到达处.问此时小船距港口然后又沿北偏西方向航行多少海里?(结果精确到海里)1sin 40 ≈0.6428 cos40≈0.7660 ,,友情提示:以下数据可以选用:北 1.7323 ≈0.8391≈Qtan 40.,P C30B40AOAC处处发射,当火箭到达点时,从地面18、如图10,一枚运载火箭从地面AC6km431sB点,此时.的距离是,仰角是的雷达站测得后,火箭到达BC 6.13km 45.54 ,解答下列问题:测得的距离是,仰角为BAB点时距离发射点有多远(精确到)火箭到达(10.01km)?OC图10BA点的平均速度是多少(精确到)火箭从(2 点到0.1km/s )?---------19、经过江汉平原的沪蓉( 上海—成都) 高速铁路即将动工 . 工程需要测量汉江某一段的宽度 . 如图①,一测量员在江岸边的 A 处测得对岸岸边的一根标杆 B 在它的正北方向,测量员从 A 点开始沿岸边向正东方向前进100 米到达点C ACB68处,测得.sin 68 0.93, cos68 0.37, tan682.48.1);()求所测之处江的宽度((2)除(1) 的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形 .图①图②20某学校体育场看台的侧面如图阴影部分所示,看台有四级高度相等的小台阶.已知看台高为l.6 米,现要做一个不锈钢的扶手AB及两根与FG垂直且长为l米的不锈钢架杆AD和BC(杆子的底端分别为D,C) ,且∠DAB=66.5°.(1)求点D与点C的高度差DH;l参.) ( ,结果精确到求所用不锈钢材料的总长度( 即AD+AB+BC 0.1 米(2) 2.30)tan66.5 0.40 cos66.5 0.92 sin66.5 考数据:°≈,°≈,°≈---------答案一、选择题CAADB——5、1BCABDAB 126 ——、二、填空题7335,构造直角三作C30,3,°(点拨:过点1,2 AB CE的垂线角形,利用勾股定理)CE62.4°,所PBP',因为∠⊥BDBPP(点拨:连结',过点作PP'=30264°=以∠°,利用PBD=15 sin15 '),乘以PD,先求出2即得PP---------5.48(点拨:根据两直线平行,内错角相等判断)4343,(0 6.,利用勾股定理或三角函数可分AO(点拨:过点 B 作BC⊥) 的长)OC别求得AC 与22+cos sin 7.1(点拨:根据公式)=15ACtan B AB12求出结果)8.(点拨:先根据勾股定理求得,再根据AC=59.4.86 (点拨:利用正切函数分别求了的长)BD,BCBC sinAB sin BCAB 20sin10)(点拨:根据.,求得11.35三,解答题可求得1.1;2.4AD,中,有Rt ADC 中,有3.解:(1)在tan BABD RtBDAD cos DAC ACtan BcosDACAD,故ACADBDACBD12;可设AD12x)由(2 ,ACBD13x sin CAD 13AC由勾股定理求得DC5x ,BC12BDDC18x 12 22AD812即x33---------BC.解:由4tanBAC AC BACBCAC tan BAC,mAC m tanBC11S12 tan m AC m m tanBC ABC222E于做D DE⊥AB5 解过°°∴∠ACB=45 MAC=45∵∠BC=45A30AB45 Rt在, 中ACB0tgACB BC rD E BC tg 45AB )米45(CB在Rt ADE中, ∠ADE=30°AE3AE DE tg 30 4515 3tgADE3DECD AB AE 45 15 3(米)答: 甲楼高45 米, 乙楼高45 15 3 米.6 解: 设CD=xBCD中,在Rt∴用表示BCBC=x( xBC)ctgDBC CDAC, ACD在Rt中ACCDctgDAC3x ctgDAC CD∵AC-BC=100 3x x 100 ( 3 1)x100---------x 50( 3 1)∴米.:答铁塔高50( 3 1)BF作7、解:过B F,垂足为CD BFAE中ABCD在等腰梯形AD=BC C D2 : 3iBCAE=3mDE=4.5m,AD=BC,90CFBCD DEA ADEBCFCF=DE=4.5mEF=3m90BFEAEFBF//CD为平行四边形四边形ABFEAB=EF=3m,8 ,解:FBCD⊥ABFB⊥AB∥CD A AHE∽△CGE △CD EFEG ,即:FDCG BDAHEHFDAH CH EB DF---------31.62,AH 11.92 15AH AB AH AH EF 11.9 1.6 13.5(m)HB9解:A、C、E 成一直线ABD 145 ,D55 ,BED 90DE ,中,在BED RtDEcosDBD cosDBD500 米,BD D 55米,500 cos55DEo 500cos55 的距离是离点D 所以E(海里),中,解:在Rt△ABD10 28 AD 167 4∠BAD=90°- 65°45′=24°15′.AD,∴∵cos24°15′=AB(海里). 30.71 28AD0.9118cos 24 15ABAC=AB+BC=30.71+12=42.71(海里).CE,′= °Rt△ACE中,sin24 15在AC∴CE=AC·sin24 °15′=42.71×0.4107=17.54( 海里).∵17.54 <18.6 ,∴有触礁危险。

相关文档
最新文档