广铁二中2013学年初一数学(上)整式的加减单元测试题

合集下载

七年级上册数学《整式的加减》检测题

七年级上册数学《整式的加减》检测题

《整式的加减》检测题一、选择题(每小题4分,共32分)1、单项式5y x 323-的系数和次数分别是( ) A 、53-,3 B 、53,3 C 、53-,5 D 、53,5 2、-2x-3x 合并同类项得( )A 、-5xB 、-xC 、-2x 2D 、-53、多项式7mn 3mn 432+-中,次数最高项的次数和系数分别为( )A 、2和4B 、3和4C 、3和3D 、4和-34、下列说法正确的是( )A 、32和24不是同类项B 、x ya 25是三次单项式C 、y 的次数是0D 、n 的系数是05、)()(32a 3221a --+的结果是( ) A 、31a 7+- B 、31a 5+- C 、611a 5+- D 、611a 5-- 6、某商品先降价20%,再提价20%后的售价为a 元,则原价是( ) A 、0.96a 元 B 、a 元 C 、0.96a 元 D 、以上都不对 7、化简]b -a []b a [)()(-+-+---等于( )A 、2aB 、2bC 、2a-2bD 、-2a-28、电影院有a 排座位,后面每排都比前一排多一个座位,则第n 排座位数是( )A 、a+(n-1)B 、n+1C 、a+11D 、a+(n+1)二、填空题(每题4分,共24分)9、c b a 23π-的系数是__,次数是___。

10、一本书的原价是x 元,打七五折后,这本书的价格为___元。

11、1x 6x 5x y 34-+-是__次__项式。

12、单项式y x 32,y x 2-,y x 432的和是____。

13、七年级一班有2a-b 个男生和3a+b 个女生,则男生比女生少___人。

14、某同学把一个整式减去多项式xy-5yz+3xz 误认为是加上这个多项式,结果答案是5yz-3xz-2xy ,则原题的正确答案为________。

三、解答题(共44分)15、(每小题5分,共10分)化简(1)222x 3x 2x ---(2))()(222a 2a 21a 23-+--16、(每小题6分,共12分)化简求值(1)61m 32311m 221--+--)()(,其中m=-2(2)))(()(2222y 7x y 12x 7y 5x y 12x 9++-+-,其中x=21,y=21-17、(8分)已知A=1x 5x 32+-,B=5x 3x 22-+,求A-B 的值,18、(14分)某移动通讯公司开设了两种通讯业务:“全球通”使用者缴50元月租费,然后每通话1分钟再付花费0.4元;“快捷通”不交月租费,每通话1分钟付话费0.6元(本题的通话均指市内通话)。

学年七年级(上)数学 整式的加减 单元测试卷(含答案)

学年七年级(上)数学 整式的加减 单元测试卷(含答案)

学年七年级(上)数学整式的加减单元测试卷(含答案)学年七年级(上)数学整式的加减单元测试卷(含答案)学年七年级(上)数学整式的加减单元测试卷考生注意:1.考试时间90分钟.2. 全卷共三大题,满分120分.如果3x2y3与xm+1yn-1的和仍是单项式,则(n-3m)的值为________.已知多项式x|m|+(m-2)x+8(m为常数)是二次三项式,则m3=________.一个三位数,个位数字为a,十位数字比个位数字少2,百位数字比个位数字多1,那么这个三位数为________________.在等式的括号内填上恰当的项,x2-y2+8y-4=x2-().在多项式3x2+πxy2+9中,次数最高的项的系数是.已知P=2xy-5x+3,Q=x-3xy-2且3P+2Q=5恒成立,则x= .如果多项式x4-(a-1)x3+3x2-(b+1)x-1中不含x3和x项,则a=____,b =____.下列图形都是按照一定规律组成,第一个图形中共有2个三角形,第二个图形中共有8个三角形,第三个图形中共有14个三角形,…,依此规律,第五个图形中三角形的个数是、选择题(本大题共10小题,共30分)a的20%与18的和可表示为( )A.B.C.D.为节约用水,某市规定三口之家每月标准用水量为15立方米,超过部分加价收费,假设不超过部分水费为1.5元/立方米,超过部分水费为3元/立方米.若某户居民某月用水30立方米,则该月应交水费( )元.A.22.5 B.45 C.67.5 D.90随着计算机技术的迅猛发展,电脑价格不断降低,某品牌电脑按原售价降低m元后,又降低20%,现售价为n元,那么该电脑的原售价为( )A.B.C.(5m+n)元D.(5n+m)元一列长为160米的匀速行驶的火车用25秒的时间通过了某隧道(即从车头进入入口到车尾离开出口),若火车的速度为a米/秒,则该隧道的长度是( )A.(25a-160)米B.25a米C.(160+25a)米D.(160-25a)米已知长方形的周长是45cm,一边长为acm,则这个长方形的面积是( )cm2.A.B.C.D.某同学计算一多项式加上时,误认为减去此式,计算出错误结果为,则正确答案是( )A.B.C.D.-[x-(y-z)]去括号后应得()A.-x+y-z B.-x-y+z C.-x-y-z D.-x+y+z已知一个单项式的系数是2,次数是3,则这个单项式可以是()A.-2xy2 B.3x2 C.2xy3 D.2x3当1 aa-2|+|1-a|的值是()A.-1 B.1 C.3 D.-3下面计算正确的是()A.6a-5a=1 B.a+2a2=3a2C.-(a-b)=-a+b D.2(a+b)=2a+b三、解答题(共60分)21.(5分)计算:(1)3ab-4ab-(-2ab);(2)3x2+x3-(2x2-2x)+(3x-x2).22.(6分)先化简,再求值(1)2(a2b+ab2)-2(a2b-1)-3(ab2+1),其中a=-2,b=2.(2)(3)当x=-,y=时,求+的值;23.(6分)已知多项式7xm+kx2-(3n+1)x+5是关于x的三次三项式,并且一次项系数为-7,求m+n-k的值.24.(7小明误把“2A+B”看成“A+2B”,求得的结果为5x2-2x+3,请求出2A+B的正确结果.25.(8分)学校多功能报告厅共有20排座位,其中第一排有a个座位,后面每排比前一排多2个座位。

七年级上册整式的加减单元测试题和答案

七年级上册整式的加减单元测试题和答案

- 10
五、 31、x=5 y=2 m=0
-47
32

2
x
7 xy
2
16 y
33、略
3 4、 原式 2a 4 8a 2b2 6ab5 ab 3 5b4 1 5ab a=- 2、 b=-1 值为 80
30、 2( ab2 2a 2b) 3(ab 2 a2b) (2ab 2 2a 2b) 其中: a 2, b 1
五、 解答题( 31、 32 题各 6 分, 33、 34 题各 7 分,共 20 分)
31.
2a2b y 1与7b3a 2 是同类项,求代数式
: 2x 2
6y2
m( xy
9
2
y
)
(3x2
21、已知 a2 2ab 8,b2 2ab 14,则a2 4ab b2
; a 2 b2

22、多项式 3x 2 2x 7 x3 1 是

项式,最高次项是
, 常数项


三、化简下列各题(每题 3 分,共 18 分)
a1
23、 5 6( 2a
)
3
1 25、- 3 (2x y) 2(4x y) 2009
D 、次数不低于 4 次的整式
9、已知 2 m6 n与 5x m 2x n y 是同类项,则(
A 、 x 2, y 1
B 、 x 3, y 1
10、下列计算中正确的是(


3 C、 x , y 1
2
D、 x 3, y 0
A 、 6a 5a 1
B 、 5x 6x 11x C、 m 2 m m D 、 x3 6x 3 7 x3
2b D 、 2(a b)2的意义是 a与 b 的和的平方的 2 倍

七年级上册整式的加减单元测试题及答案

七年级上册整式的加减单元测试题及答案

班级: 姓名:一、选择题(每题3分,共30分) 1、下列等式中正确的是( )A 、)25(52x x --=-B 、)3(737+=+a aC 、-)(b a b a --=-D 、)52(52--=-x x 2、下面的叙述错误的是( )A 、倍的和的平方的与的意义是2)2(2b a b a +。

B 、222b a b a 与的意义是+的2倍的和C 、3)2(ba 的意义是a 的立方除以2b 的商 D 、b a b a 与的意义是2)(2+的和的平方的2倍 3、下列代数式书写正确的是( )A 、48aB 、y x ÷C 、)(y x a +D 、211abc4、-)(c b a +-变形后的结果是( )A 、-c b a ++B 、-c b a -+C 、-c b a +-D 、-c b a -- 5、下列说法正确的是( )A 、0不是单项式B 、x 没有系数C 、37x x+是多项式 D 、5xy -是单项式6、下列各式中,去括号或添括号正确的是( ) A 、c b a a c b a a +--=+--2)2(22B 、)123(123-+-+=-+-y x a y x aC 、1253)]12(5[3+--=---x x x x x xD 、-)1()2(12-+--=+--a y x a y x7、代数式,21aa + 43,21,2009,,3,42mn bc a ab a xy -+中单项式的个数是( ) A 、3 B 、4 C 、5 D 、68、若A 和B 都是4次多项式,则A+B 一定是( )A 、8次多项式B 、4次多项式C 、次数不高于4次的整式D 、次数不低于4次的整式 9、已知y x x n m n m 2652与-是同类项,则( ) A 、1,2==y x B 、1,3==y x C 、1,23==y x D 、0,3==y x 10、下列计算中正确的是( )A 、156=-a aB 、x x x 1165=-C 、m m m =-2D 、33376x x x =+ 二、填空题(每题3分,共36分)11、单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为 , 化简后的结果是 。

七年级上册整式地加减单元测试题和答案

七年级上册整式地加减单元测试题和答案

七年级上册整式的加减单元测试题和答案一、选择题(每题 3 分,共 30 分)1、下列等式中正确的是()A 、 2x 5 (5 2x) B、 7a 3 7(a 3)C、-a b (a b) D、 2x 5 (2x 5)2、下面的叙述错误的是()A 、 ( a 2b)2的意义是 a与 b的2倍的和的平方。

B 、 a 2b2的意义是 a与 b2的 2倍的和C、 ( a )3的意义是 a 的立方除以 2 b 的商2bD 、2(a b)2的意义是 a与 b 的和的平方的 2 倍3、下列代数式书写正确的是()A 、a48 B 、 x y C、 a( x y) D、 1 1 abc24、- (a b c) 变形后的结果是()A 、- a b c B、- a b c C、- a b c D 、- a b c5、下列说法正确的是()A 、 0 不是单项式 B 、 x 没有系数C、7 x3是多项式D 、 xy 5是单项式x6、下列各式中 ,去括号或添括号正确的是()A 、a2(2a b c) a22a b cB 、 a 3x 2 y 1 a ( 3x 2 y 1)C、3x [5x (2x 1)]3x 5x 2x 1D 、- 2x y a 1 (2x y) ( a 1)7、代数式 a 1 , 4xy, a b , a,2009, 1 a2bc,3mn中单项式的个数是()2a 3 2 4A 、 3 B、 4 C、 5 D、 61 / 5七年级上册整式的加减单元测试题和答案8、若 A 和 B 都是 4 次多项式,则 A+B 一定是()A 、 8 次多项式B 、4 次多项式C 、次数不高于 4 次的整式D 、次数不低于 4 次的整式9、已知 2m 6 n 与 5x m 2x n y 是同类项,则( )A 、 x 2, y 1B 、 x 3, y 1C 、 x3, y 1 D 、 x 3, y 0210、下列计算中正确的是( )A 、 6a 5a 1B 、 5x 6x11x C 、 m 2 mm D 、 x 3 6x 3 7 x 3 二、填空题(每题 3 分,共 36 分)11 、单 项式 3x 2 减去单项式 4x 2 y, 5x 2 ,2x 2 y 的和,列算式为 , 化简后的结果是。

七年级数学上整式的加减测试题及答案

七年级数学上整式的加减测试题及答案

七年级数学(上)《整式的加减》测试题一、选择题1.下列说法中正确的是( ).A .单项式223x y -的系数是-2,次数是2 B .单项式a 的系数是0,次数也是0 C .532ab c 的系数是1,次数是10 D .单项式27a b -的系数是17-,次数是3 2.如果长方形周长为4a ,一边长为a +b,,则另一边长为( ).A .3a -bB .2a -2bC .a -bD .a -3b3.一个两位数,十位数字是a ,个位数字是b ,则这个两位数可表示为( ).A .abB .10a +bC .10b +aD .a +b4.观察右图给出的四个点阵,s 表示每个点阵中的点的个数,按照图形中的点的个数变化规律,猜想第n 个点阵中的点的个数s 为( ).( ).A .3n -2B .3n -1C .4n +1D .4n -35. 长方形的一边长为2a+b,另一边比它大a -b ,则周长为( )A.10a+2bB.5a+bC.7a+bD.10a -b6. 两个同类项的和是( )A.单项式B.多项式C.可能是单项式也可能是多项式D.以上都不对7、如果A 是3次多项式,B 也是3次多项式, 那么A +B 一定是( )(A )6次多项式。

(B )次数不低于3次的多项式。

(C )3次多项式。

(D )次数不高于3次的整式。

二、填空题8.2a 4+a 3b 2-5a 2b 3+a -1是____次____项式.它的第三项是_________.把它按a 的升幂排列是____________________________.9.如下图是小明用火柴搭的1条、2条、3条“金鱼”……,则搭n 条“金鱼”需要火柴 ______根.(用含n 的式子表示)……10. 观察下列等式9-1=8,16-4=12,25-9=16,36-16=20……这些等式反映自然数间的某种规律,设n (n ≥1)表示自然数,用关于n 的等式表示这个规律为_______________________________.11.若23n a b 与45m a b 所得的差是单项式,则m= ______ n= ______.12.当k=______时,多项式22x -7kxy+23y +7xy+5y 中不含xy 项. (第7题)1条 2条 3条三、解答题1.先化简再求值(1)9y -{159-[4y -(11x -2y )-10x ]+2y },其中x =-3,y =2.(2) 2222222(23)(2)x y y x y x -+--+,其中1-=x ,2=y2.若多项式24x -6xy+2x-3y 与2ax +bxy+3ax-2by 的和不含二次项,求a 、b 的值。

七年级数学上册第二章 整式的加减 单元测试卷(含答案)

七年级数学上册第二章 整式的加减 单元测试卷(含答案)

整式的加减单元测试(时间:45分钟 满分:100分) 班级: 姓名:题号 一 二 三 总分 合分人 复分人 得分一、选择题(每小题3分,共24分)1.(广东中考)计算3a -2a 的结果正确的是( )A .1B .aC .-aD .-5a2.列式表示“比m 的平方的3倍大1的数”是( )A .(3m )2+1B .3m 2+1C .3(m +1)2D .(3m +1)2 3.下列各组单项式中,不是同类项的是( )A .12a 3y与2ya 33 B .6a 2mb 与-a 2bm C .23与32 D.12x 3y 与-12xy 34.下列各项中,去括号正确的是( )A .x 2-2(2x -y +2)=x 2-4x -2y +4B .-3(m +n )-mn =-3m +3n -mnC .-(5x -3y )+4(2xy -y 2)=-5x +3y +8xy -4y 2;D .ab -5(-a +3)=ab +5a -35.(海南中考)某企业今年1月份产值为x 万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是( )A .(1-10%)(1+15%)x 万元B .(1-10%+15%)x 万元C .(x -10%)(x +15%)万元D .(1+10%-15%)x 万元6.如图,阴影部分的面积是( )A .112xy B.132xyC .6xyD .3xy7.一个多项式A 与多项式B =2x 2-3xy -y 2的和是多项式C =x 2+xy +y 2,则A 等于( )A .x 2-4xy -2y 2B .-x 2+4xy +2y 2C .3x 2-2xy -2y 2D .3x 2-2xy 8.(十堰中考)当x =1时,ax +b +1的值为-2,则(a +b -1)(1-a -b )的值为( )A .-16B .-8C .8D .16二、填空题(每小题4分,共24分)9.请你结合生活实际,设计具体情境,解释下列式子30a的意义:__________________________.10.请你写出一个单项式,使它的系数为-1,次数为3:________________.11.多项式5x2-7x2y-6x2y2+6是________次________项式.12.若2x2y m与-3x n y3能合并,则m+n=________.13.学校餐厅有10a桶花生油,周一用去1.5a桶,周二用去3.5a桶,周三运进7a桶,现在还有________桶花生油.14.(赤峰中考)平移小菱形◇可以得到美丽的“中国结”图案,下面四个图案是由◇平移后得到的类似“中国结”的图案,按图中规律,第20个图案中,小菱形的个数是________.三、解答题(共52分)15.(6分)合并下列同类项:(1)4a2-3b2+2ab-4a2-3b2+5ba;(2)5xy+3y2-3x2-xy+4xy+2x2-x2+3y2.16.(6分)化简:(1)(5a-3a2+1)-(4a3-3a2);(2)-2(ab-3a2)-[2b2-(5ab+a2)+2ab].17.(8分)先化简,再求值:3(2x2-3xy-5x-1)+6(-x2+xy-1),其中x、y满足(x+2)2+|y-23|=0.18.(10分)已知多项式2x2+my-12与多项式nx2-3y+6的差中不含有x,y,求m+n+mn的值.19.(10分)魔术师为大家表演魔术.他请观众想一个数,然后将这个数按以下步骤操作:魔术师立刻说出观众想的那个数.(1)如果小明想的数是-1,那么他告诉魔术师的结果应该是________;(2)如果小聪想了一个数并告诉魔术师结果为93,那么魔术师立刻说出小聪想的那个数是________;(3)观众又进行了几次尝试,魔术师都能立刻说出他们想的那个数,请你说出其中的奥妙.20.(12分)用火柴棒按下列方式搭建三角形:…(1)填表:三角形个数 1 2 3 4 …火柴棒根数…(2)当三角形的个数为n时,火柴棒的根数是多少?(3)求当n=1 000时,火柴棒的根数是多少.参考答案1.B 2.B 3.D 4.C 5.A 6.A 7.B 8.A9.某班级有a 名学生参加考试,30名学生成绩合格,则合格人数占总人数的30a 10.-x 3(答案不唯一)11.四 四 12.5 13.12a 14.80015.(1)原式=-6b 2+7a b.(2)原式=8xy +6y 2-2x 2.16.(1)原式=5a -3a 2+1-4a 3+3a 2=-4a 3+5a +1.(2)原式=-2ab +6a 2-2b 2+5ab +a 2-2ab =7a 2+ab -2b 2. 17.原式=6x 2-9xy -15x -3-6x 2+6xy -6=-3xy -15x -9.由(x +2)2+|y -23|=0,得x =-2,y =23.当x =-2,y =23时,原式=-3×(-2)×23-15×(-2)-9=4+30-9=25.18.(2x 2+my -12)-(nx 2-3y +6)=(2-n )x 2+(m +3)y -18,因为差中不含有x 、y ,所以2-n =0,m +3=0.所以n =2,m =-3.故m +n +mn =-3+2+(-3)×2=-7.19.(1)4 (2)88 (3)设观众想的数为a ,则3a -63+7=a +5.因此,魔术师只要将最终结果减去5,就能得到观众想的数了. 20.(1)3 5 7 9 (2)2n +1.(3)2 001.。

七年级上册《整式的加减》单元测试题_含答案

七年级上册《整式的加减》单元测试题_含答案

《整式的加减》复习测试班级:姓名:选择题答案填写一、选择题(每小题2分,共20分)1.单项式−3πxy2z3的系数和次数分别是()A. −3π,7B.-3,6C. −3π,6D.-3,72.在式子-2xy,−a2,x+y,a2-b2,0,13a2bc3中,单项式共有()A.2个B. 3个C.4个D. 5个3.如果−2x 2y2n−13是五次单项式,则n的值为()A.4B.3C.2D.14.若3a与2a+5互为相反数,则a等于()A.-1B.5C.1D.-55.减去-3m等于5m2-3m-5的式子是()A.5(m2-1)B.5m2-6m-5C.5(m2+1)D.-(5m2+6m-5)6.下列说法正确的是()A.a2+2b-3c是二次三项式 B.x2-2x-3的常数项是3C.x3−2x3y+3y3的三次项是x3D.-y3-1的三次项的系数是-17.计算m-[n-2m-(m-n)]等于()A.-2nB. 2mC. 4m-2nD.2n-2m8.多项式2x3-8x2+x-1与多项式3x3+2mx2+5x+3的和不含二次项,则m等于()A.2B.-2C.4D.-49.已知2x3y2和−x3m y2是同类项,则多项式4m-24的值是()A.20B.-20C.28D.-2810若A=x2-5x+2,B=x2-5x-6,则A与B的大小关系是()A.A>BB.A=BC.A<BD.无法确定二、填空题(每小题2分,共20分)1.单项式−ab 32的系数是 ,次数是 .2.若已知单项式3a m b2与-12a4b n−1-1的和是单项式,那么m= , n= .3.多项式−3+2x2y−13πx3y2的次数是 ,它的最高项的系数是 .4把多项式5xy+3x3y2−5+x2y3按字母y的指数从大到小排列是 .5.代数式a2-2ab与3a2+ab的和是 .6.若(a2−3a−1)+A=与a2−a+4则A= .7.一个多项式加上-2+x-x2得到x2-1,则这个多项式是 .8.若代数式2x2+3y+7的值为8,那么代数式6x2+9y+8的值为 .9.规定一种新运算:a△b=a·b-a-b+1,如3△4=3×4-3-4+1,请比较大小(-3)△44△(-3)(填“<”、“=”或“>”)10.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n= (用含n的代数式表)第10图三、解答题(每小题5分,共10分)1.计算:(3a-2)-2(-a+5);2.化简2a2−[12(ab−a2)+8ab]−12ab.四、先化简,再求值(每小题6分,共12分)1.32m−(52m−1)+3(4−m),其中m=−3.2.−12a−2(a−12b2)−(−32a+13b2),其中a=−2,b=32.五、(每小题6分,共18分)1.已知A=x3-5x2,B=x2-11x+6,求:(1)A-2B;(2)当x=-1时,求A+5B的值.2.若(a+2)2+|b+1|=0求5ab2−{2a2b−[3ab2−(4ab2−2a2b)]}的值3.小明在实践课中做了一个长方形模型,模型边长为3a+2b,另边比它小a-b,则长方形模型周长为多少? 六、(第1、2题各6分,第3题8分,共20分)1某位同学做一道题:已知两个多项式A、B,求A-2B的值.他误将A-2B看成2A-B,求得结果为3x2-3x+5,已知B=x2-x-1,求正确答案.2.一列火车上原有(6a-6b)人,中途下车一半,又上车若干人,现车上共有乘客(10a-6b)人.问上车的乘客是多少人?当a=200,b=100时,上车的乘客是多少人?3.某地通讯公司开设了两种通讯业务:“全球通”使用者每月缴纳50元月租费,然后每通话一分钟,再付话费0.35元;“快捷通”不缴纳月租费,每通话一分钟,付话费0.60元(话费均指市内通话).(1)若一个月内通话x分钟,则两种方式的费用y1、y2分别是多少元?这两种收费相差多少?(2)若小王估计一个月内通话500分钟,则他选择哪种通讯业务合算?若小李估计一个月内通话180分钟,则他又应该选择哪种通讯业务合算?第Ⅱ卷[实践操作卷」一、仔细观察,用心猜猜(10分)下列图案是晋商大院窗格的一部分,其中“O”代表窗纸上所贴的剪纸:(1)第1个图中所贴剪纸“○”的个数为 ,第2个图中所贴剪纸“○”的个数为第3个图中所贴剪纸“○”的个数为 .(2)用代数式表示第n个图中所贴剪纸“○”的个数,并求当n=100时,所贴剪纸“○”的个数.二、用心想想,巧妙求解(10分)课堂上杨老师给出了一道整式求值的题目,杨老师把要求的整式(7a3-6a3b+3a2b)-(-3a3-6a3b+3a2b+10a3-3)写完后,让小王同学顺便给出组a、b的值,老师自己说答案,当小王说完:“a=65,b=-2014”后,杨老师不假思索,立刻就说出了答案.同学们莫名其妙,觉得不可思议,但杨老师用坚定的口吻说:“这个答案准确无误”,亲爱的同学你相信吗?你能说出其中的道理吗?《整式的加减》复习测试答案班级:姓名:选择题答案填写一、选择题(每小题2分,共20分)1.单项式−3πxy2z3的系数和次数分别是( C )A. −3π,7B.-3,6C. −3π,6D.-3,72.在式子-2xy,−a2,x+y,a2-b2,0,13a2bc3中,单项式共有( D )A.2个B. 3个C.4个D. 5个3.如果−2x 2y2n−13是五次单项式,则n的值为( C )A.4B.3C.2D.14.若3a与2a+5互为相反数,则a等于( A )A.-1B.5C.1D.-55.减去-3m等于5m2-3m-5的式子是( B )A.5(m2-1)B.5m2-6m-5C.5(m2+1)D.-(5m2+6m-5)6.下列说法正确的是( D )A.a2+2b-3c是二次三项式 B.x2-2x-3的常数项是3C.x3−2x3y+3y3的三次项是x3D.-y3-1的三次项的系数是-17.计算m-[n-2m-(m-n)]等于( C )A.-2nB. 2mC. 4m-2nD.2n-2m8.多项式2x3-8x2+x-1与多项式3x3+2mx2+5x+3的和不含二次项,则m等于( C )A.2B.-2C.4D.-49.已知2x3y2和−x3m y2是同类项,则多项式4m-24的值是( B )A.20B.-20C.28D.-2810若A=x2-5x+2,B=x2-5x-6,则A与B的大小关系是( A )A.A>BB.A=BC.A<BD.无法确定二、填空题(每小题2分,共20分)1.单项式−ab 32的系数是 -1/2 ,次数是 4 .2.若已知单项式3a m b2与-12a4b n−1-1的和是单项式,那么m= 4 , n= 3 .3.多项式−3+2x2y−13πx3y2的次数是 5 ,它的最高项的系数是 -1π/3 .4把多项式5xy+3x3y2−5+x2y3按字母y的指数从大到小排列是x2y3+x3y2+5xy−5 .5.代数式a2-2ab与3a2+ab的和是4a2-ab .6.若(a2−3a−1)+A=与a2−a+4则A= 2a+5 .7.一个多项式加上-2+x-x2得到x2-1,则这个多项式是2x2−x+1 .8.若代数式2x2+3y+7的值为8,那么代数式6x2+9y+8的值为 11 .9.规定一种新运算:a△b=a·b-a-b+1,如3△4=3×4-3-4+1,请比较大小(-3)△4 = 4△(-3)(填“<”、“=”或“>”)10.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n= 3n+1 (用含n的代数式表)第10图三、解答题(每小题5分,共10分)1.计算:(3a-2)-2(-a+5);解:原式=3a-2+2a-10=(3a+2a)+(-2-10)=5a-122.化简2a2−[12(ab−a2)+8ab]−12ab.解:原式=2a2−[12ab−12a2+8ab]−12ab=2a2−12ab+12a2−8ab−12ab=(2a2+12a2)+(12ab−8ab−12ab)=52a2−9ab四、先化简,再求值(每小题6分,共12分)1.32m−(52m−1)+3(4−m),其中m=−3.解:原式=32m−52m−1+12−3m=(32m−52m−3m)+(12−1)=-4m+13当m=−3时带入原式得-4×(-3)+13=25.2.−12a−2(a−12b2)−(−32a+13b2),其中a=−2,b=32.解:原式=−12a−2a+b2+32a−13b2=(−12a−2a+32a)+(b2−13b2)=23b2−a当a=−2,b=32时,将a,b的值带入原式得2 3b2−a=23×(32)2−(−2)=72五、(每小题6分,共18分)1.已知A=x3-5x2,B=x2−11x+6,求:(1)A-2B;(2)当x=-1时,求A+5B的值.解:(1)A-2B=(x3−5x2)−2(x2−11x+6)=x3−5x2−2x2+22x−12=x3−7x2+22x−12(2)A+5B=(x3−5x2)+5(x2−11x+6)=x3−5x2+5x2−55x+30=x3−55x+30当x=-1时,带入原式得(−1)3−55×(−1)+30=842.若(a+2)2+|b+1|=0求5ab2−{2a2b−[3ab2−(4ab2−2a2b)]}的值解:5ab2−{2a2b−[3ab2−(4ab2−2a2b)]}=5ab2−{2a2b−[3ab2−4ab2+2a2b]}=5ab2−{2a2b−3ab2+4ab2−2a2b}=5ab2−2a2b+3ab2−4ab2+2a2b=(5ab2−4ab2+3ab2)+(−2a2b+2a2b)=4ab2……①∵(a+2)2+|b+1|=0∴a+2=0,b+1=0∴a=-2,b=-1.将a,b的值带入①式得4ab2=4×(−2)×(−1)2=−8.3.小明在实践课中做了一个长方形模型,模型边长为3a+2b,另边比它小a-b,则长方形模型周长为多少?解:∵一边长为3a+2b,根据题意另一边长为3a+2b-(a+b)=2a+3b.∴长方形的边长为:2(3a+2b)+2(2a+3b)=6a+4b+4a+6b=10a+10b六、(第1、2题各6分,第3题8分,共20分)1.某位同学做一道题:已知两个多项式A、B,求A-2B的值.他误将A-2B看成2A-B,求得结果为3x2-3x+5,已知B=x2-x-1,求正确答案.解:根据题意得:∵2A-B=2A-(x2-x-1)∴2A-(x2-x-1)= 3x2-3x+52A-x2+x+1=3x2-3x+52A=4x2-4x+4A=2x2-2x+2∴A-2B=(2x2-2x+2)-2(x2-x-1)=2x2-2x+2-2x2+2x+2=(2x2-2x2)+(-2x+2x)+(2+2)=4∴正确答案为4.2.一列火车上原有(6a-6b)人,中途下车一半,又上车若干人,现车上共有乘客(10a-6b)人.问上车的乘客是多少人?当a=200,b=100时,上车的乘客是多少人?解:根据题意得∵中途下车一半后车上剩余的人数为6a−6b2,上车后总人数为(10a-6b)人.∴中途上车的乘客为:(10a-6b)-6a−6b2=10a-6b-3a+3b=7a-3b……①当a=200,b=100,带入①式得7a-3b=7×200-3×100=1100(人)∴上车的乘客是1100人.3.某地通讯公司开设了两种通讯业务:“全球通”使用者每月缴纳50元月租费,然后每通话一分钟,再付话费0.35元;“快捷通”不缴纳月租费,每通话一分钟,付话费0.60元(话费均指市内通话).(1)若一个月内通话x分钟,则两种方式的费用y1、y2分别是多少元?这两种收费相差多少?(2)若小王估计一个月内通话500分钟,则他选择哪种通讯业务合算?若小李估计一个月内通话180分钟,则他又应该选择哪种通讯业务合算?解:(1)根据题意y1=0.35x+50,y2=0.6xy1-y2=(50+0.35x)-0.6x=-0.25x+50∴y1收费(0.35x+50)元, y2收费0.6x元,这两种收费相差(-0.25x+50)元.(2)当x=500时y1=0.35×500+50=255y2=0.6×500=300y1<y2∴他选用全球通讯业务合算.当x=180时y1=0.35×180+50=113y2=0.6×180=108y1>y2∴他选用快捷通讯业务合算. 第Ⅱ卷[实践操作卷」一、仔细观察,用心猜猜(10分)下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸:(1)第1个图中所贴剪纸“○”的个数为 5 ,第2个图中所贴剪纸“○”的个数为 8 第3个图中所贴剪纸“○”的个数为 11 .(2)用代数式表示第n个图中所贴剪纸“○”的个数,并求当n=100时,所贴剪纸“○”的个数.解:方法一:分析我们看到的小圆的个数5,5+3,5+6,5+9……∴5+3(n-1)=5+3n-3=3n+2方法二:这样看规律第一个图所贴剪纸“○”的个数为左边3个乘1加上右侧2个等于5个,表示为 3×1+2=5;第二个图所贴剪纸“○”的个数为左边3个乘2加上右侧2个等于8个,表示为 3×2+2=8;第三个图所贴剪纸“○”的个数为左边3个乘3加上右侧2个等于11个,表示为 3×3+2=11;……第n个图所贴剪纸“○”的个数为左边3个乘n加上右侧2个等于3n+2个,表示为3×n+2=3n+2;(2) 3n+2当n=100时, 3n+2=3×100+2=302.二、用心想想,巧妙求解(10分)课堂上杨老师给出了一道整式求值的题目,杨老师把要求的整式(7a3-6a3b+3a2b)-(-3a3-6a3b+3a2b+10a3-3)写完后,让小王同学顺便给出组a、b的值,老师自己说答案,当小王说完:“a=65,b=-2014”后,杨老师不假思索,立刻就说出了答案.同学们莫名其妙,觉得不可思议,但杨老师用坚定的口吻说:“这个答案准确无误”,亲爱的同学你相信吗?你能说出其中的道理吗?解:(7a3-6a3b+3a2b)-(-3a3-6a3b+3a2b+10a3-3)=7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3+3=(7a3+3a3-10a3)+(-6a3b+6a3b)+(3a2b-3a2b)+3=3答:我相信老师能一口说出答案,因为无论a,b取何值,整式的结果都为3.。

七年级上册整式地加减单元测试题和答案

七年级上册整式地加减单元测试题和答案

七年级上册整式的加减单元测试题和答案一、选择题(每题 3 分,共 30 分)1、下列等式中正确的是()A 、 2x 5 (5 2x) B、 7a 3 7(a 3)C、- a b (a b)D、 2x 5 (2x 5)2、下面的叙述错误的是()A 、( a 2b)2的意义是 a与 b的2倍的和的平方。

B 、 a 2b2的意义是 a与 b2的 2倍的和C、 ( a )3的意义是 a 的立方除以 2 b 的商2bD 、2(a b)2的意义是 a与 b 的和的平方的 2 倍3、下列代数式书写正确的是()A 、 a48B 、 x y C、a( x y) D、 1 1 abc24、- (a b c) 变形后的结果是()A 、- a b c B、- a b c C、- a b c D 、- a b c5、下列说法正确的是()A 、 0 不是单项式 B 、 x 没有系数C、7 x3是多项式D 、 xy 5是单项式x 6、下列各式中 ,去括号或添括号正确的是()A 、a2(2a b c) a22a b cB 、 a 3x 2 y 1 a ( 3x 2 y 1)C、 3x [5x (2x 1)]3x 5x 2x 1D 、- 2x y a 1 (2x y) ( a 1)7、代数式 a 1 , 4xy, a b , a,2009, 1 a2bc,3mn中单项式的个数是()2a 3 2 4A 、 3 B、 4 C、 5 D、 61 / 5七年级上册整式的加减单元测试题和答案8、若 A 和 B 都是 4 次多项式,则 A+B 一定是( )A 、 8 次多项式B 、4 次多项式C 、次数不高于 4 次的整式D 、次数不低于 4 次的整式9、已知 2m 6 n 与 5x m 2x n y 是同类项,则( )A 、 x 2, y 1B 、 x 3, y 1C 、 x3, y 1 D 、 x 3, y 0 210、下列计算中正确的是( )A 、 6a 5a 1B 、 5x 6x 11xC 、 m 2m m D 、 x 3 6x 3 7 x 3二、填空题(每题 3 分,共 36 分)11 、单 项式 3x 2减去单项式 4x 2 y, 5x 2 ,2x 2 y 的和,列算式为 , 化简后的结果是。

七年级上册整式的加减单元测试题和答案

七年级上册整式的加减单元测试题和答案

一、选择题(每题3分,共30分)1、下列等式中正确的是( )A 、)25(52x x --=-B 、)3(737+=+a aC 、-)(b a b a --=-D 、)52(52--=-x x2、下面的叙述错误的是( )A 、倍的和的平方的与的意义是2)2(2b a b a +。

B 、222b a b a 与的意义是+的2倍的和C 、3)2(ba 的意义是a 的立方除以2b 的商 D 、b a b a 与的意义是2)(2+的和的平方的2倍3、下列代数式书写正确的是( )A 、48aB 、y x ÷C 、)(y x a +D 、211abc 4、-)(c b a +-变形后的结果是( )A 、-c b a ++B 、-c b a -+C 、-c b a +-D 、-c b a --5、下列说法正确的是( )A 、0不是单项式B 、x 没有系数C 、37x x+是多项式 D 、5xy -是单项式 6、下列各式中,去括号或添括号正确的是( )A 、c b a a c b a a +--=+--2)2(22B 、)123(123-+-+=-+-y x a y x aC 、1253)]12(5[3+--=---x x x x x xD 、-)1()2(12-+--=+--a y x a y x7、代数式,21a a + 43,21,2009,,3,42mn bc a a b a xy -+中单项式的个数是( ) A 、3 B 、4 C 、5 D 、68、若A 和B 都是4次多项式,则A+B 一定是( )A 、8次多项式B 、4次多项式C 、次数不高于4次的整式D 、次数不低于4次的整式9、已知y x x n m n m 2652与-是同类项,则( )A 、1,2==y xB 、1,3==y xC 、1,23==y xD 、0,3==y x 10、下列计算中正确的是( ) A 、156=-a a B 、x x x 1165=- C 、m m m =-2 D 、33376x x x =+二、填空题(每题3分,共36分)11、单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为 , 化简后的结果是 。

七年级数学(上)《整式的加减》测试题及答案

七年级数学(上)《整式的加减》测试题及答案

1 / 2七年级数学(上)《整式的加减》测试题一、选择题(20分)1 .下列说法中正确的是(2x 2 y )• A 单项式 的系数是一2,次数是23B .单项式a 的系数是0,次数也是0 5 3C . 2 ab c 的系数是1,次数是10 _a 2b 1---- 的系数是「-,次数是 37 7a 4b^m1 与-2a m2b m 7 D .单项式2 .若单项式 A . 4 C.7a+b D.10a — bA.10a+2bB.5a+b9.两个同类项的和是( )A.单项式C.可能是单项式也可能是多项式 B 也是3次多项式,那么A +B - —定是 (B )次数不低于3次的多项式。

(D )次数不高于3次的整式。

10、如果A 是3次多项式, (A ) 6次多项式。

(C ) 3次多项式。

二、填空题(32分)23单项式的系数是5 B.多项式 D.以上都不对 ,次数是是同类项,贝U m 的值为( D . — 2 ).D . a 2 + a +6).). B .2 或— 2 C . 2 3.计算(3a ? — 2a + 1) — ( 2a ?+ 3a — 5)的结果是( B . 7a ? — 5a — 4 C . a ?+ a — 4 代数式2[3(2b -a ) -1] a 的值为 A . a 2— 5a + 6 4.当 a / b=3时, 2 B .3. 2 . a ,b = 3 - A . 6 95 .如果长方形周长为B . 2a — 2bC . a — b 是a ,个位数字是b , B . 10a +b C . s 表示 按照图形中 猜想第n 个点 ). B . 3n — 1 D . 4n — 3 2a+b,另一边 ( )A . 3a — b6. 一个两位数,十位数字A . ab7. 观察右图给出的四个点阵,每个点阵中的点的个数, 的点的个数变化规律, 阵中的点的个数s 为( A . 3n — 2 C . 4n + 1 8. 长方形的一边长为 比它大a — b ,则周长为2a 4+ a 3b 2— 5a 2b 3+ a — 1是 _ 次 ____ 项式.它的第三项是 ___把它按a 的升幕排列是 ________________________________ . 计算 5ab — 4a 2b 2 — (8a 2b 2 +3ab )的结果为 ____________ . 一个三角形的第一条边长为(a + b ) cm,第二条边比第一条边的 倍长bcm •则第三条边x 的取值范围是__________________ . 如下图是小明用火柴搭的 1条、2条、3条“金鱼”……,则搭条“金鱼”需要火柴根.(用含n 的式子表示)D . 13 111 34a ,一边长为a + b,,则另一边长为(D . a — 3b 则这个两位数为 D . C . 12| 10b +a 策[个 产1 ). ().a +b 6.观察下列 这些等式反 n f 1 1条然数间的某种规律, 的等式表示这个规律条为7.如下图,阴影部分的面积用整式表示为策4彳 5=13第?个(第 7 题)策2个 *6 = 20…… 然数,用关于3条表x x - y2 58. 若:一2a b 与5a b 的和 仍是单项式,则x y = 9. 若3a 2b n 与5a m b 4所得的差是 单项式,贝U m= ________ n=1 .答:一ab c,—ab c , —abc , —a b c,—a bc , —a be .10.当k= _____ 时,多项式2x2-7kxy+ 3y2+7xy+5y 中不含xy 项.三、解答题 (48分)2 2 2 2(3)x y -3xy 2yx -y x(4)( 4) 5a2b-[2ab2-3(ab2-a2b)](5)-2(2ab-a2) 3(2a2-ab)-4(3a2-2ab)3 •先化简再求值(10分)(1)9y-{159-[ 4y-(11 x-2 y)-10 x]+2 y},其中x= -3 , y= 2 •(2)2x2 -y2亠(2y2 -3x2)…(2y2亠x2),其中X = -1 , y = 2 .4•一个四边形的周长是48厘米,已知第一条边长a厘米,第二条边比第一条边的2倍长3厘米,第三条边等于第一、二两条边的和,写出表示第四条边长的整式. (6分)5 •大客车上原有(3a—b)人,中途下去一半人,又上车若干人,使车上共有乘客(8a—5b)人,问中途上车乘客是多少人?当a= 10, b=8时,上车乘客是多少人?( 6分)6.若多项式4x2-6xy+2x-3y 与ax2+bxy+3ax-2by的和不含二次项,求a、b的值。

七年级数学上册《整式的加减》单元测试卷及答案

七年级数学上册《整式的加减》单元测试卷及答案

人教新版七年级上册《第2章整式的加减》单元测试(1)一.选择题(共13小题)1.下列各式﹣mn,m,8,,x2+2x+6,,,中,整式有()A.3个B.4个C.6个D.7个2.单项式的系数与次数分别为()A.,7B.π,6C.4π,6D.π,4 3.﹣2x﹣2x合并同类项得()A.﹣4x2B.﹣4x C.0D.﹣44.下列各选项中是同类项的是()A.﹣a2b和ab2B.a2和22C.﹣ab2和2b2a D.2ab和2xy5.若﹣3a2b x与﹣3a y b是同类项,则y x的值是()A.1B.2C.3D.46.若﹣2a m b2m+n与5a n+2b2m+n可以合并成一项,则m﹣n的值是()A.2B.0C.﹣1D.17.如果M=x2+6x+22,N=﹣x2+6x﹣3,那么M与N的大小关系是()A.M>N B.M<N C.M=N D.无法确定8.已知2a+3b=4,则整式﹣4a﹣6b+1的值是()A.5B.3C.﹣7D.﹣109.按如图所示的运算程序,能使输出y值为1的是()A.m=﹣1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=1 10.若多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,则m的值()A.2或﹣2B.2C.﹣2D.﹣411.把多项式1﹣5ab2﹣7b3+6a2b按字母b的降幂排列正确的是()A.1﹣7b3﹣5ab2+6a2b B.6a2b﹣5ab2﹣7b3+1C.﹣7b3﹣5ab2+1+6a2b D.﹣7b3﹣5ab2+6a2b+112.设A=x2﹣3x﹣2,B=2x2﹣3x﹣1,若x取任意有理数.则A与B的大小关系为()A.A<B B.A=B C.A>B D.无法比较13.关于多项式26﹣3x5+x4+x3+x2+x的说法正确的是()A.是六次六项式B.是五次六项式C.是六次五项式D.是五次五项式二.填空题(共6小题)14.若x2y3﹣0.1x4y n+xy5是关于x,y的六次多项式,则正整数n的值为.15.当k=时,关于x、y的多项式x2+kxy﹣2xy﹣6中不含xy项.16.单项式2x m y3与﹣3xy3n是同类项,则m+n=.17.已知a2+a﹣3=0,则2024﹣a2﹣a=.18.x2﹣2x+y=x2﹣().19.已知x+y=3,xy=1,则代数式(5x+2)﹣(3xy﹣5y)的值.三.解答题(共5小题)20.化简:3x2+2xy﹣4y2﹣3xy+4y2﹣3x2.21.先化简,再求值:3(4a2+2a)﹣(2a2+3a﹣5),其中a=﹣2.22.化简与求值:(1)化简(5a+4c+7b)+(5c﹣3b﹣6a);(2)化简(2a2b﹣ab2)﹣2(ab2+3a2b);(3)化简,求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=1,y=﹣2.(4)化简,求值:已知A=4x2y﹣5xy2,B=3x2y﹣4y2,当x=﹣2,y=1时,求2A﹣B 的值.23.请回答下列问题:(1)若多项式mx2+3xy﹣2y2﹣x2+nxy﹣2y+6的值与x的取值无关,求(m+n)3的值.(2)若关于x、y的多项式6mx2+4nxy+2x+2xy﹣x2+y+4不含二次项,m﹣n的值.(3)若2x|k|+1y2+(k﹣1)x2y+1是关于x、y的四次三项式,求k值.24.某工厂第一车间有x人,第二车间人数比第一车间人数的少20人,第三车间人数是第二车间人数的多10人.(1)求第三车间有多少人?(用含x的代数式表示)(2)求三个车间共有多少人?(用含x的代数式表示)(3)如果从第二车间调出10人到第一车间,原第三车间人数比调动后的第一车间人数少多少人?人教新版七年级上册《第2章整式的加减》单元测试卷(1)参考答案与试题解析一.选择题(共13小题)1.下列各式﹣mn,m,8,,x2+2x+6,,,中,整式有()A.3个B.4个C.6个D.7个【考点】整式.【分析】根据整式的定义,结合题意即可得出答案.【解答】解:整式有﹣mn,m,8,x2+2x+6,,,故选:C.2.单项式的系数与次数分别为()A.,7B.π,6C.4π,6D.π,4【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:单项式的系数与次数分别为,4,故选:D.3.﹣2x﹣2x合并同类项得()A.﹣4x2B.﹣4x C.0D.﹣4【考点】合并同类项.【分析】根据合并同类项的法则判断即可得结论.【解答】解:﹣2x﹣2x=(﹣2﹣2)x=﹣4x.故选:B.4.下列各选项中是同类项的是()A.﹣a2b和ab2B.a2和22C.﹣ab2和2b2a D.2ab和2xy【考点】同类项.【分析】根据同类项的概念逐一判断即可得.【解答】解:A.﹣a2b和ab2相同字母的指数不相同,不是同类项;B.a2和22所含字母不相同,不是同类项;C.﹣ab2和2b2a所含字母相同,且相同字母的指数也相同,是同类项;D.2ab与2xy所含字母不相同,不是同类项;故选:C.5.若﹣3a2b x与﹣3a y b是同类项,则y x的值是()A.1B.2C.3D.4【考点】同类项.【分析】根据同类项的概念求出x、y的值,再代入所求式子计算即可.【解答】解:∵﹣3a2b x与﹣3a y b是同类项,∴x=1,y=2,∴y x=21=2.故选:B.6.若﹣2a m b2m+n与5a n+2b2m+n可以合并成一项,则m﹣n的值是()A.2B.0C.﹣1D.1【考点】合并同类项.【分析】直接利用两式可以合并进而得出m=n+2,即可得出答案.【解答】解:∵﹣2a m b2m+n与5a n+2b2m+n可以合并成一项,∴m=n+2,则m﹣n=2.故选:A.7.如果M=x2+6x+22,N=﹣x2+6x﹣3,那么M与N的大小关系是()A.M>N B.M<N C.M=N D.无法确定【考点】整式的加减.【分析】直接利用整式的加减运算法则计算进而得出答案.【解答】解:∵M=x2+6x+22,N=﹣x2+6x﹣3,∴M﹣N=x2+6x+22﹣(﹣x2+6x﹣3)=x2+6x+22+x2﹣6x+3=2x2+25,∵x2≥0,∴2x2+25>0,∴M>N.故选:A.8.已知2a+3b=4,则整式﹣4a﹣6b+1的值是()A.5B.3C.﹣7D.﹣10【考点】代数式求值.【分析】根据相反数的定义得:﹣2a﹣3b=﹣4,首先化简﹣4a﹣6b+1,然后把﹣2a﹣3b =﹣4代入化简后的算式,求出算式的值是多少即可.【解答】解:∵2a+3b=4,∴﹣2a﹣3b=﹣4,∴﹣4a﹣6b+1=2(﹣2a﹣3b)+1=﹣8+1=﹣7,故选:C.9.按如图所示的运算程序,能使输出y值为1的是()A.m=﹣1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=1【考点】代数式求值;有理数的混合运算.【分析】根据题意一一计算即可判断.【解答】解:当m=﹣1,n=1时,y=2m﹣n+1=2×(﹣1)﹣1+1=﹣2,不合题意;当m=1,n=0时,y=2m+n=2×1+0=2,不合题意;当m=1,n=2时,y=2m﹣n+1=2×1﹣2+1=1,符合题意;当m=2,n=1时,y=2m+n=2×2+1=5,不合题意;故选:C.10.若多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,则m的值()A.2或﹣2B.2C.﹣2D.﹣4【考点】多项式.【分析】根据多项式的定义即可求解.【解答】解:因为多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,所以|m|=2,且m﹣2≠0,解得m=±2,且m≠2,则m的值为﹣2.故选:C.11.把多项式1﹣5ab2﹣7b3+6a2b按字母b的降幂排列正确的是()A.1﹣7b3﹣5ab2+6a2b B.6a2b﹣5ab2﹣7b3+1C.﹣7b3﹣5ab2+1+6a2b D.﹣7b3﹣5ab2+6a2b+1【考点】多项式.【分析】字母b的最高次数为3,然后按照字母b的指数从高到低进行排列即可.【解答】解:1﹣5ab2﹣7b3+6a2b按字母b的降幂排列为﹣7b3﹣5ab2+6a2b+1.故选:D.12.设A=x2﹣3x﹣2,B=2x2﹣3x﹣1,若x取任意有理数.则A与B的大小关系为()A.A<B B.A=B C.A>B D.无法比较【考点】整式的加减.【分析】首先计算两个整式的差,再通过分析差的正负性可得答案.【解答】解:∵A=x2﹣3x﹣2,B=2x2﹣3x﹣1,∴B﹣A=(2x2﹣3x﹣1)﹣(x2﹣3x﹣2)=2x2﹣3x﹣1﹣x2+3x+2=x2+1,∵x2≥0,∴B﹣A>0,则B>A,故选:A.13.关于多项式26﹣3x5+x4+x3+x2+x的说法正确的是()A.是六次六项式B.是五次六项式C.是六次五项式D.是五次五项式【考点】多项式.【分析】根据多项式次数的定义知,该多项式的次数是5次,又因为次多项式有6个单项式组成,所以是五次六项式.【解答】解:多项式26﹣3x5+x4+x3+x2+x次数最高的项的次数是5,且有6个单项式组成,所以是五次六项式.故选:B.二.填空题(共6小题)14.若x2y3﹣0.1x4y n+xy5是关于x,y的六次多项式,则正整数n的值为2或1.【考点】多项式.【分析】根据多项式的次数定义和n是正整数得出4+n=6或4+n=5,求出n的值即可.【解答】解:∵x2y3﹣0.1x4y n+xy5是关于x,y的六次多项式,又∵n是正整数,∴4+n=6或4+n=5,∴n=2或n=1;故答案为:2或1.15.当k=2时,关于x、y的多项式x2+kxy﹣2xy﹣6中不含xy项.【考点】合并同类项;多项式.【分析】根据多项式的概念即可求出答案.【解答】解:∵多项式x2+kxy﹣2xy﹣6中不含xy项,∴原式=x2+(k﹣2)xy﹣6令k﹣2=0,∴k=2故答案为:2.16.单项式2x m y3与﹣3xy3n是同类项,则m+n=2.【考点】同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)求出n,m的值,再代入代数式计算即可.【解答】解:由单项式2x m y3与﹣3xy3n是同类项,得m=1,3n=3,解得m=1,n=1.∴m+n=1+1=2.故答案为:2.17.已知a2+a﹣3=0,则2024﹣a2﹣a=2021.【考点】代数式求值.【分析】由a2+a﹣3=0可得a2+a=3,再将a2+a=3整体代入要求的式子即可.【解答】解:∵a2+a﹣3=0,∴a2+a=3,∴2024﹣a2﹣a=2024﹣(a2+a)=2024﹣3=2021,故答案为:2021.18.x2﹣2x+y=x2﹣(2x﹣y).【考点】去括号与添括号.【分析】本题添了1个括号,且所添的括号前为负号,括号内各项改变符号.【解答】解:根据添括号的法则可知,x2﹣2x+y=x2﹣(2x﹣y),故答案为:2x﹣y.19.已知x+y=3,xy=1,则代数式(5x+2)﹣(3xy﹣5y)的值14.【考点】整式的加减.【分析】先将代数式(5x+2)﹣(3xy﹣5y)化简为:5(x+y)﹣3xy+2,然后把x+y=3,xy=1代入求解即可.【解答】解:∵x+y=3,xy=1,∴(5x+2)﹣(3xy﹣5y)=5x+2﹣3xy+5y=5(x+y)﹣3xy+2=5×3﹣3×1+2=14.故答案为:14.三.解答题(共5小题)20.化简:3x2+2xy﹣4y2﹣3xy+4y2﹣3x2.【考点】合并同类项.【分析】这个式子的运算是合并同类项的问题.根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变.【解答】解:原式=(3x2﹣3x2)+(2xy﹣3xy)+(4y2﹣4y2)=﹣xy.21.先化简,再求值:3(4a2+2a)﹣(2a2+3a﹣5),其中a=﹣2.【考点】整式的加减—化简求值.【分析】先去括号,再合并同类项,最后代入求值.【解答】解:原式=12a2+6a﹣2a2﹣3a+5=10a2+3a+5.当a=﹣2时,原式=10×(﹣2)2+3×(﹣2)+5=40﹣6+5=39.22.化简与求值:(1)化简(5a+4c+7b)+(5c﹣3b﹣6a);(2)化简(2a2b﹣ab2)﹣2(ab2+3a2b);(3)化简,求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=1,y=﹣2.(4)化简,求值:已知A=4x2y﹣5xy2,B=3x2y﹣4y2,当x=﹣2,y=1时,求2A﹣B 的值.【考点】整式的加减—化简求值.【分析】(1)先去掉括号,再合并同类项即可得出答案;(2)先去掉括号,再合并同类项即可;(3)先把给出的式子进行化简,再代入x,y的值进行计算即可;(4)根据题意先列出算式,再合并同类项,最后把x,y的值进行计算即可.【解答】解:(1)(5a+4c+7b)+(5c﹣3b﹣6a)=5a+4c+7b+5c﹣3b﹣6a=5a﹣6a+7b﹣3b+4c+5c=﹣a+4b+9c;(2)(2a2b﹣ab2)﹣2(ab2+3a2b)=2a2b﹣ab2﹣2ab2﹣6a2b=2a2b﹣6a2b﹣ab2﹣2ab2=﹣4a2b﹣3ab2;(3)4xy﹣(2x2+5xy﹣y2)+2(x2+3xy)=4xy﹣2x2﹣5xy+y2+2x2+6xy=y2+5xy,当x=1,y=﹣2时原式=(﹣2)2+5×1×(﹣2)=4﹣10=﹣6;(4)2A﹣B=2(4x2y﹣5xy2)﹣(3x2y﹣4y2)=8x2y﹣10xy2﹣3x2y+4y2=5x2y﹣10xy2+4y2当x=﹣2,y=1时,原式=5×(﹣2)2×1﹣10×(﹣2)×12+4×12=5×4×1﹣(﹣20)×1+4=20+20+4=44.23.请回答下列问题:(1)若多项式mx2+3xy﹣2y2﹣x2+nxy﹣2y+6的值与x的取值无关,求(m+n)3的值.(2)若关于x、y的多项式6mx2+4nxy+2x+2xy﹣x2+y+4不含二次项,m﹣n的值.(3)若2x|k|+1y2+(k﹣1)x2y+1是关于x、y的四次三项式,求k值.【考点】合并同类项;多项式;绝对值;代数式求值.【分析】(1)先把多项式合并同类项,再令含x项的系数等于0,求出m、n的值即可;(2)先把多项式合并同类项,然后根据多项式不含二次项,得到关于m、n的一次方程,求出m、n的值,再代入计算即可.(3)根据四次三项式的概念,得关于k的方程,求解即可.【解答】解:(1)原式=(m﹣1)x2+(3+n)xy﹣2y2﹣2y+6.∵原式的值与x的值无关,∴m﹣1=0,3+n=0,∴m=1,n=﹣3,∴(m+n)3=(1﹣3)3=﹣8,(2)原式=(6m﹣1)x2+(4n+2)xy+2x+y+4,∵多项式不含二次项,∴6m﹣1=0,4n+2=0.∴.∴.(3)由题意得:|k|+1+2=4,∴k=±1.又∵k﹣1≠0,∴k≠1.∴k=﹣1.24.某工厂第一车间有x人,第二车间人数比第一车间人数的少20人,第三车间人数是第二车间人数的多10人.(1)求第三车间有多少人?(用含x的代数式表示)(2)求三个车间共有多少人?(用含x的代数式表示)(3)如果从第二车间调出10人到第一车间,原第三车间人数比调动后的第一车间人数少多少人?【考点】列代数式.【分析】(1)先表示出第二车间的人数,再表示出第三车间的人数即可;(2)把表示三个车间的人数的代数式相加即可得到答案;(3)先表示出调动后第一车间的人数,再用调动后第一车间的人数减去第三车间的人数即可.【解答】解:(1)∵第二车间的人数比第一车间人数的少20人,即人,而第三车间人数是第二车间人数的多10人,∴第三车间的人数为:人;(2)三个车间共有:人;(3)(x+10)﹣(x﹣15)=25(人),答:原第三车间人数比调动后的第一车间人数少25人.。

七年级数学(上)《整式的加减》单元试题(1)

七年级数学(上)《整式的加减》单元试题(1)

七年级数学(上)《整式的加减》单元试题(1)一、选择题(共10小题)1.的系数与次数分别为()A.,7B.,6C.4π,6D.,42.已知a2﹣2a+1=0,则代数式2a2﹣4a+5的值为()A.﹣3B.7C.﹣7D.33.已知a+b=5,ab=4,则代数式(3ab+5a+8b)+(3a﹣4ab)的值为()A.36B.40C.44D.464.下列代数式,其中整式有()A.1个B.2个C.3个D.4个5.点O,A,B,C在数轴上的位置如图所示,其中O为原点,BC=2,OA=OB,若C点所表示的数为x,则A点所表示的数为()A.﹣x+2B.﹣x﹣2C.x+2D.﹣26.若a是有理数,那么在①a+1,②|a+1|,③|a|+1,④a2+1中,一定是正数的有()A.1个B.2个C.3个D.4个7.下列运算正确的是()A.5xy﹣4xy=1B.3x2+2x3=5x5C.x2﹣x=x D.3x2+2x2=5x28.下列各式由等号左边变到右边变错的有()①a﹣(b﹣c)=a﹣b﹣c②(x2+y)﹣2(x﹣y2)=x2+y﹣2x+y2③﹣(a+b)﹣(﹣x+y)=﹣a+b+x﹣y④﹣3(x﹣y)+(a﹣b)=﹣3x﹣3y+a﹣b.A.1个B.2个C.3个D.4个9.对整式a2进行如下操作:将a2与另一个整式x1相加,使得a2与x1的和等于(a+1)2,表示为m1=a2+x1=(a+1)2,称为第一次操作;将第一次操作的结果m1与另一个整式y1相减,使得m1与y1的差等于a2﹣1,表示为m2=m1﹣y1=a2﹣1,称为第二次操作;将第二次的操作结果m2与另一个整式x2相加,使得m2与x2的和等于(a+2)2,表示为m3=m2+x2=(a+2)2,称为第三次操作;将第三次操作的结果m3与另一个整式y2相减,使得m3与y2的差等于a2﹣22,表示为m4=m3﹣y2=a2﹣22,称为第四次操作,以此类推,下列四种说法:①x2=6a+13;②y5+y7﹣x5﹣x7=20;③x2022﹣y2021=2a+4045;④当n为奇数时,第n次操作结果m n=(a+)2;当n为偶数时,第n次操作结果m n=a2﹣()2;四个结论中正确的有()A.1个B.2个C.3个D.4个10.在多项式a+b﹣m﹣n﹣e中,除首尾项a、﹣e外,其余各项都可闪退,闪退项的前面部分和其后面部分都加上绝对值,并用减号连接,则称此为“闪减操作”.每种“闪减操作”可以闪退的项数分别为一项,两项,三项.“闪减操作”只针对多项式a+b﹣m﹣n ﹣e进行.例如:+b“闪减操作”为|a|﹣|﹣m﹣n﹣e|,﹣m与﹣n同时“闪减操作”为|a+b|﹣|﹣e|,…,下列说法:①存在对两种不同的“闪减操作”后的式子作差,结果不含与e相关的项;②若每种操作只闪退一项,则对三种不同“闪减操作”的结果进行去绝对值,共有8种不同的结果;③若可以闪退的三项+b,﹣m,﹣n满足:(|+b|+|+b+2|)(|﹣m+1|+|﹣m+4|)(|﹣n+1|+|﹣n﹣6|)=42,则2b+m+n的最小值为﹣9.其中正确的个数是()A.0B.1C.2D.3二、填空题(共10小题)11.若3a2﹣m b n与﹣a4b5为同类项,则m﹣n的值为.12.若是五次多项式,则k=.13.如果与x5y5n﹣7是同类项,那么m﹣3n的值是.14.若14x5y n和﹣31x3m y12的和是单项式,则式子12m﹣2n的值是.15.若a、b互为相反数,c、d互为倒数,m的绝对值是2,则a+b+m2﹣cd的值为.16.a的两倍与b的和,用代数式表示:.17.5x3y4的系数是.18.若A=x2+3xy+y2,B=x2﹣3xy+y2,则A﹣[B+2B﹣(A+B)]化简后的结果为(用含x、y的代数式表示).19.下列各式:①1x;②2•3;③20%x;④a﹣b÷c;⑤;⑥x﹣5;其中,不符合代数式书写要求的有(填写序号)20.如图,已知正五角星的面积为5,正方形的边长为2,图中对应阴影部分的面积分别是S1、S2,则S1﹣S2的值为.三、解答题(共10小题)21.化简求值:3a2b﹣2ab2﹣2ab﹣1.5a2b+2ab,其中a,b满足|a+3b+1|+(2a﹣4)2=0.22.已知有下列两个代数式:①a2﹣b2;②(a+b)(a﹣b).(1)当a=5,b=3时,代数式①的值是,代数式②的值是.(2)当a=﹣2,b=1时,代数式①的值是;代数式②的值是.(3)观察(1)和(2)中代数式的值,你发现代数式a2﹣b2和(a+b)(a﹣b)的关系为(用式子表示).(4)利用你发现的规律,求20232﹣20222.23.计算:(1)﹣3a+4b+(2a﹣3b);(2)5(a2b3+ab2)﹣(2ab2+a2b3).24.【知识回顾】七年级学习代数式求值时,遇到这样一类题“代数式ax﹣y+6+3x﹣5y﹣1的值与x的取值无关,求a的值”,通常的解题方法是:把x、y看作字母,a看作系数合并同类项,因为代数式的值与x的取值无关,所以含x项的系数为0,即原式=(a+3)x﹣6y+5,所以a+3=0,则a=﹣3.(1)若关于x的多项式(2x﹣3)m+m2﹣3x的值与x无关,求m的值【能力提升】(2)7张如图1的小长方形,长为a,宽为b,按照图2方式不重叠地放在大长方形ABCD 内,大长方形中未被覆盖的两个部分(图中阴影部分),设右上角的面积为S1,左下角的面积为S2,当AB的长变化时,S1﹣S2的值始终保持不变,求a与b的等量关系.25.小明同学在一周内统计通过某高速公路路口的汽车数量(单位:万辆),如下表(“+”表示当天通过的车辆比前一天多,“﹣”表示当天通过的车辆比前一天少):时间周一周二周三周四周五周六周日车辆+0.5﹣2.1+0.7﹣0.4+1.3+1.0﹣0.1(1)本周内哪天通过该高速公路路口的车辆最多?并说明理由.(2)若上周日该高速路路口通过的车辆为3.9万辆,则本周日通过该路路口的车辆数是多少?(3)若上周日该高速路路口通过的车辆为a万辆,则本周每日通过该路路口的平均车辆为多少万辆?26.我们知道,|a|表示数a到原点的距离.进一步地,数轴上P、Q两点所对应的数分别是m、n,那么P、Q两点之间的距离PQ=|m﹣n|.已知代数式ax3﹣2x2﹣2x+10x2+6x3+5是关于x的二次多项式,且二次项的系数为b,数轴上A,B两点所对应的数分别是a,b.(1)a=,b=,AB两点之间的距离为(只填结果,不用写出解答过程);(2)有一动点P从点B出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度;在此位置第三次运动,向左运动3个单位长度…按照此规律不断地左右运动,当运动到2022次时,求P点在数轴上所对应的有理数.(3)在(2)的条件下,点P会不会在某次运动后恰好到达某一位置,使点P到点A的距离是点P到点B的距离的3倍?若可能,求出此时点P的位置,并直接指出是第几次运动后,若不可能,请说明理由.27.已知多项式的次数是a,单项式﹣2x3y b与单项式是同类项.(1)将多项式按y的降幂排列.(2)求代数式c2﹣4ab的值.28.先阅读材料,再回答问题:因为一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a≥0时|a|=a,如|2|=2,|2﹣1|=2﹣1=1;当a≤0时,|a|=﹣a,如|﹣2|=2,|1﹣2|=﹣(1﹣2)=2﹣1=1.根据以上信息完成下列问题:(1)|5﹣2|=;|3﹣6|=;(2)|π﹣3.14|=;(3)计算:29.已知如图,在数轴上点A,B所对应的数是﹣4,4.对于关于x的代数式N,我们规定:当有理数x在数轴上所对应的点为AB之间(包括点A,B)的任意一点时,代数式N取得所有值的最大值小于等于4,最小值大于等于﹣4,则称代数式N,是线段AB的吉祥式.例如,对于关于x的代数式|x|,当x=±4时,代数式|x|取得最大值是4;当x=0时,代数式|x|取得最小值是0,所以代数式|x|是线段AB的吉祥式.问题:(1)关于x代数式|x﹣1|,当有理数x在数轴上所对应的点为AB之间(包括点A,B)的任意一点时,取得的最大值是,取得的最小值是;所以代数式|x﹣1|(填是或不是)线段AB的吉祥式.(2)以下关于x的代数式:①x2+1;②|x+2|﹣|x﹣1|﹣1,是线段AB的吉祥式的是.(填序号)(3)关于x的代数式|x+1|+2a是线段AB的吉祥式,请求出有理数a的最大值和最小值.30.按照规律填上所缺的单项式并回答问题:(1)a、﹣2a2、3a3、﹣4a4,;(2)试写出第2008个单项式;(3)试写出第n个单项式.。

(必考题)初中数学七年级数学上册第二单元《整式的加减》检测(含答案解析)(3)

(必考题)初中数学七年级数学上册第二单元《整式的加减》检测(含答案解析)(3)

一、选择题1.下列方程变形中,正确的是( )A .方程3221x x -=+,移项,得3212x x -=-+B .方程()3251x x -=--,去括号,得3251x x -=--C .方程2332t =,系数化为1,得1t = D .方程110.20.5x x--=,整理得36x = 2.下列各等式的变形中,等式的性质运用正确的是( ) A .由02x=,得2x = B .由14x -=,得5x = C .由23a =,得23a =D .由a b =,得a b c c= 3.某地为了打造千年古镇旅游景点,将修建一条长为3600m 的旅游大道.此项工程由A 、B 两个工程队接力完成,共用时20天.若A 、B 两个工程队每天分别能修建240m 、160m ,设A 工程队修建此项工程xm ,则可列方程为( )A .360020240160x x -+=B .360020160240x x -+=C .360020160240x x +-=D .360020160240x x--= 4.如图,相同形状的物体的重量是相等的,其中最左边天平是平衡的,则右边三个天平中仍然平衡的是( )A .①②③B .①③C .①②D .②③ 5.一元一次方程的解是( )A .B .C .D .6.下列解方程的过程中,移项正确的是( )A .由,得B .由,得C .由,得D .由,得7.若“△”是新规定的某种运算符号,设x △y=xy+x+y ,则2△m=﹣16中,m 的值为( )A .8B .﹣8C .6D .﹣68.如图,正方ABCD 形的边长是2个单位,一只乌龟从A 点出发以2个单位/秒的速度顺时针绕正方形运动,另有一只兔子也从A 点出发以6个单位/秒的速度逆时针绕正方形运动,则第2020次相遇在( )A .点AB .点BC .点CD .点D9.在解分式方程31x -+21x x+-=2时,去分母后变形正确的是( ) A .()()3221x x -+=- B .()3221x x -+=- C .()322x -+= D .()()3221x x ++=-10.把方程112x =变形为2x =,其依据是( ) A .等式的性质1B .等式的性质2C .乘法结合律D .乘法分配律11.书架上,第一层书的数量是第二层书的数量的2倍,从第一层抽8本书到第二层,这时第一层剩下的书的数量恰好比第二层书的数量的一半多3本.设第二层原有x 本书,则可列方程为( ) A .2x -8=12(x +8)+3 B .2x =12(x +8)+3 C .2x -8=12x +3 D .2x =12x +3 12.若代数式的值为,则的值为( ) A .B .C .D .二、填空题13.若关于x 的方程2mx+3m=-1与3x+6x=-3的解相同,则m 的值为_____.14.如图,折线AC -CB 是一条公路的示意图,8km AC =,甲骑摩托车从A 地沿这条公路到B 地,速度为40km/h ,乙骑自行车从C 地沿这条公路到B 地,速度为10km/h ,两人同时出发,结果甲比乙早到6分钟.则这条公路的长为________.15.所谓方程的解就是使方程中等号左右两边相等的未知数的值。

七年级上册整式的加减单元测试题及答案

七年级上册整式的加减单元测试题及答案

七年级上册整式的加减单元测试题及答案百度文库- 让每个人平等地提升自我七年级上册整式的加减单元测试题班级:______ 姓名:______一、选择题(每题3分,共30分)1、下列等式中正确的是()A、2x-5=-(5-2x)B、7a+3=7(a+3)C、-a-b=-(a-b)D、2x-5=-(2x-5)2、下面的叙述错误的是()A、(a+2b)的意义是a与b的2倍的和的平方。

B、a+2b的意义是a与b的2倍的和C、(22a3)的意义是a的立方除以2b的商D、2(a+b)的意义是a与b的和的平方的2倍3、下列代数式书写正确的是()A、a4 8B、x÷yC、a(x+y)D、1abc24、-(a-b+c)变形后的结果是()A、-a+b+cB、-a+b-cC、-a-b+cD、-a-b-c5、下列说法正确的是()A、不是单项式B、x没有系数C、1abc2+ x3是多项式D、-xy5是单项式6、下列各式中,去括号或添括号正确的是()A、a-(2a-b+c)=a-2a-b+cB、a-3x+2y-1=a+(-3x+2y-1)C、3x-[5x-(2x-1)]=3x-5x-2x+1D、-2x-y-a+1=-(2x-y)+(a-1)7、代数式a+12a+b13mn中单项式的个数是()A、3B、4C、5D、68、若A和B都是4次多项式,则A+B一定是()A、8次多项式B、4次多项式C、次数不高于4次的整式D、次数不低于4次的整式9、已知-2mn与5mn是同类项,则()A、x=2,y=1B、x=3,y=1C、x=22,y=1D、x=32,y=110、下列计算中正确的是()A、6a-5a=aB、5x-6x=-xC、m-m=0D、x+6x=7x二、填空题(每题3分,共36分)11、单项式-3x减去单项式-4xy-5x+2xy的和,列算式为6x-2xy-5x=1x-2xy。

12、当x=-2时,代数式-x+2x-1=-1,x-2x+1=-1.13、写出一个关于x的二次三项式,使得它的二次项系数为-5,则这个二次三项式为-5x²+ax+b。

2013年七年级数学上册整式的加减单元检测试题

2013年七年级数学上册整式的加减单元检测试题

2013年七年级数学上册整式的加减单元检测试题整式的加减单元测试题一、填空题(每题2分,本题共26分)1.长为a,宽为b的长方形周长是.2.教室里有x人,走了y人,此时教室里有人.3.三个连续的自然数,中间的一个为n,则第一个为,第三个为.4.细胞在分裂过程中,一个细胞第一次分裂成两个,第二次分裂成4个,第三次分裂成8个,那么第n次时细胞分裂的个数为个.5.代数式中共有项,的系数是,的系数是,的系数是.6.在代数式中,和是同类项,和是同类项,和也是同类项,合并后是.7.去括号:;.8.的相反数是.9.一个学生由于粗心,在计算时,误将“+”看成“-”,结果得12,则的值应为.10.若与是同类项,则,.11.把多项式按字母的升幂排列是_________.12.若,则.13.一个多项式加上得到,则这个多项式是.二、选择题(每题2分,本题共24分)1.下列代数式中,不是整式的是()A.B.C.0D.2.下列各组单项式中,是同类项的是()A.与B.与C.与1D.与3.下列计算正确的是()A.B.C.D.4.下列说法正确的是()A.的系数是0B.与4不是同类项C.的次数是0D.是三次单项式5.下列各组代数式(1)与;(2)与;(3)与;(4)与中,互为相反数的有()A.(1)(2)(4)B.(2)与(4)C.⑴与(3)D.(3)与(4)6.化简:的结果是()A.B.C.D.7.当分别等于和时,多项式的值是()A.互为相反数B.互为倒数C.相等D.异号8.若是一个七次多项式,也是一个七次多项式,则一定是()A.十四次多项式B.七次多项式C.不高于七次多项式或单项式D.六次多项式9.单项式的和是()A.五次三项式B.五次四项式C.三次多项式D.四次多项式10.,则等于()A.B.C.D.11.去括号得()A.B.C.D.12.下列各等式中,成立的是()A.B.C.D.三、解答题(共70分)21.(15分)化简:(1);(2);(3);22.(10分)化简求值(1)其中.(2)其中.23.(6分)已知,,求.24.(6分)如图所示,一扇窗户的上部是由4个扇形组成的半圆形,下部是边长相同的4个小正方形,请计算这扇窗户的面积和窗框的总长. 25(7分)有这样一道题“当时,求多项式的值”,马小虎做题时把错抄成,王小真没抄错题,但他们做出的结果却都一样,你知道这是怎么回事吗?说明理由.26.(6分)某商店有两个进价不同的计算器都卖了元,其中一个盈利60%,另一个亏本20%,在这次买卖中,这家商店是赚了,还是赔了?赚了或赔了多少?27.(10分)试至少写两个只含有字母、的多项式,且满足下列条件:(1)六次三项式;(2)每一项的系数均为1或-1;(3)不含常数项;(4)每一项必须同时含字母、,但不能含有其他字母.28.(10分)某农户2007年承包荒山若干亩,投资7800•元改造后,种果树2000棵.今年水果总产量为18000千克,此水果在市场上每千克售a 元,在果园每千克售b元(b<a).该农户将水果拉到市场出售平均每天出售1000千克,需8•人帮忙,每人每天付工资25元,农用车运费及其他各项税费平均每天100元.(1)分别用a,b表示两种方式出售水果的收入?(2)若a=1.3元,b=1.1元,且两种出售水果方式都在相同的时间内售完全部水果,请你通过计算说明选择哪种出售方式较好.(3)该农户加强果园管理,力争到明年纯收入达到15000元,那么纯收入增长率是多少(纯收入=总收入-总支出),该农户采用了(2)中较好的出售方式出售)?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广铁二中2013学年初一数学(上)整式的加减单元测试题
(满分:120分;考试时间:45分钟)
班级:__________ 姓名:__________分数:__________
一、选择题(本题共有8小题,每小题3分,共24分)
1. 在代数式25x +,1-,232x x -+,π,5x ,21
1x x ++中,整式有( * ). A.3个 B.4个 C.5个 D.6个 2.多项式21
12x x --- 的各项分别是( * ). A.21,,12x x - B.21,,12x x --- C.21,,12x x D.21,,12
x x -- 3. 下面计算正确的事( * ) A.2233x x -= B.32a +23a =55a
C.3+x =3x D.-0.25ab +4
1ba =0 4. 买个一足球需m 元,买一个篮球需n 元,则买4个足球、7个篮球共需要( * )元.
A. 47m n +
B. 28mn
C. 74m n +
D. 11m n ++
5.下列去括号正确的是( * )
A.()5252+-=+-x x
B.()22242
1+-=--x x C.()n m n m +=-323231 D.x m x m 232232+-=⎪⎭
⎫ ⎝⎛-- 6.若一个两位数的个位上的数是a ,十位上的数是b ,则列式表示这个两位数为( ).
A.ab
B.b a +
C.b a +10
D.b a +100
7.如图,为做一个试管架,在a cm 长的木条上钻了4个圆孔,每个孔直径2cm ,则x 等于( * ).
A.58+a cm
B.516-a cm
C.54-a cm
D.5
8-a cm 8.一个多项式与2x -2x +1的和是3x -2,则这个多项式为( * )
A.2x -5x +3 B.-2x +x -1 C.-2x +5x -3 D.2
x -5x -13
二、填空题(本题共有6小题,每小题3分,共18分) 9.单项式单项式256
x y -的系数是 * . 10.多项式52533
23+-+-y x y x xy ,常数项是 * .
11.计算:26ab ab ab -- = * .
12.一个长方形的长是a ,宽是(2)a b -,则长方形的周长是 * .
13.按下列程序输入一个数x
若输入的数1x =-,则输出结果为 * .
14.已知单项式43m a b 与3123
n a b --是同类项,那么m n -= * .
二、填空题(本题共有6小题,每小题3分,共18分)
三、解答题(要写出必要的解答过程,共78分)
15. (18分)化简: (1) ()a b a b ++- (2) (32)(5)x x ---
(3) 22
(31)2(41)x x x x -+++-+-
16.(12分)先化简,再求值:2232(47)x x x x x ⎡⎤-+--+-⎣⎦,其中1x =-.
17.(12分)已知2321A a a =-+,2
2B a a =-+,求B A 32-.
18. (12分)已知轮船在静水中航行的速度是m 千米/时,水流的速度是a 千米/时.
(1)若轮船顺水航行2小时,逆水航行3小时,则轮船共航行多少千米?
(2)若轮船在静水中航行的速度是60千米/时,水流的速度是2千米/时,则轮船共航行多少千米?
19.(12分)某校七年级三个班级的学生在植树节这天参加义务植树。

一班植树x 棵,二班植树的棵数比一班的2倍少40棵,三班的植树棵数比二班的一半多30棵。

(1)用含x 的式子表示三个班共植树多少棵;
(2)当60x =时,求三个班共植树多少棵。

20.(12分)有这样一道题“当2,2-==b a 时,求多项式
⎪⎭⎫ ⎝⎛---+-2233233414213b b a b a b b a b a ⎪⎭
⎫ ⎝⎛++b a b a 23341 322+-b 的值”,马小虎做题时把2=a 错抄成2-=a ,王小真没抄错题,但他们做出的结果却都一样,你知道这是怎么回事吗?说明理由.
四.附加题:(共20分)
21. 代数式2231a a ++的值是6,那么代数式 2
695a a ++的值是__________.(4分)
22. 若2(1)20a b -+-=,那么代数式2013()a b -的值是______________.(4分) 23. 如图,是按规律摆放在墙角的一些小正方体,从上往下分别记为第一层,第二层,第三层……第n 层……
⑴第五层有 个小正方体。

⑵第n 层有 个小正方体。

(3)若每个小正方体边长为1分米,共摆放了八层,现要将靠墙及地面的部分涂上防锈漆,
则防锈漆的总面积为 分米2.。

相关文档
最新文档