2012年北京市高考数学(文科)试题及答案详解
2012年高考真题——文科数学(北京卷)解析版(2)
2012年普通高等学校招生全国统一考试数学(文)(北京卷)一 、选择题共8小题,每小题5分,共40分,在每小题给出的四个选项中,选出符合题目要求的一项。
1.已知集合A={x ∈R|3x+2>0} B={x ∈R|(x+1)(x-3)>0} 则A ∩B= A .(-∞,-1) B .(-1,-23) C .(-23,3) D . (3,+∞)【解析】和往年一样,依然的集合(交集)运算,本次考查的是一次和二次不等式的解法。
因为32}023|{->⇒>+∈=x x R x A ,利用二次不等式可得1|{-<=x x B 或}3>x 画出数轴易得:}3|{>=x x B A .故选D . 【答案】D2.在复平面内,复数103i i+对应的点的坐标为A . (1 ,3)B .(3,1)C .(-1,3)D .(3 ,-1)【解析】本题考查的是复数除法的化简运算以及复平面,实部虚部的概念。
i i ii i i i i i ii 3110301091030)3)(3()3(1031022+=+=--=-+-=+,实部为1,虚部为3,对应复平面上的点为(1,3),故选A . 【答案】A3.设不等式组⎩⎨⎧≤≤≤≤20,20y x ,表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是 (A )4π (B )22π- (C )6π(D )44π-【解析】题目中⎩⎨⎧≤≤≤≤2020y x 表示的区域如图正方形所示,而动点D可以存在的位置为正方形面积减去四分之一圆的面积部分,因此4422241222ππ-=⨯⋅-⨯=P ,故选D 。
【答案】D4.执行如图所示的程序框图,输出S值为(A )2 (B )4 (C )8 (D )16【解析】0=k ,11=⇒=k s ,21=⇒=k s ,22=⇒=k s ,8=s ,循环结束,输出的s 为8,故选C 。
【答案】C5.函数x x x f )21()(21-=的零点个数为(A )0 (B )1(C )2 (D )3【解析】x x x f )21()(21-=的零点,即令0)(=x f ,根据此题可得xx )21(21=,在平面直角坐标系中分别画出幂函数21x 和指数函数x)21(的图象,可得交点只有一个,所以零点只有一个,故选B 。
(2021年整理)2012北京卷高考数学(文科)试题及答案解析
(完整)2012北京卷高考数学(文科)试题及答案解析编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)2012北京卷高考数学(文科)试题及答案解析)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)2012北京卷高考数学(文科)试题及答案解析的全部内容。
数学(文)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一 、选择题共8小题,每小题5分,共40分,在每小题给出的四个选项中,选出符合题目要求的一项。
1、已知集合A={x ∈R|3x+2>0} B={x ∈R|(x+1)(x-3)>0} 则A ∩B=A (-∞,-1)B (-1,-23)C (—23,3)D (3,+∞)2 在复平面内,复数103ii+对应的点的坐标为A (1 ,3)B (3,1) C(—1,3) D (3 ,—1)(3)设不等式组,表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是 (A )4π (B )22π- (C )6π(D )44π-(4)执行如图所示的程序框图,输出S 值为 (A )2 (B)4 (C )8 (D )16(5)函数f(x)=x121x2⎛⎫- ⎪⎝⎭的零点个数为(A)0 (B)1(C)2 (D)3(6)已知为等比数列,下面结论种正确的是(A)a1+a3≥2a2(B)(C)若a1=a3,则a1=a2(D)若a3>a1,则a4>a2(7)某三棱锥的三视图如图所示,该三棱锥的表面积是(A)28+5B)30+65C)56+5)60+5(8)某棵果树前n年的总产量S n与n之间的关系如图所示,从目前记录的结果看,前m年的年平均产量最高,m的值为(A)5(B)7(C)9(D)11第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。
2012年全国高考文科数学试题及答案-北京卷
2012年全国各地高考数学试题汇编汇总数学(文)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一 、选择题共8小题,每小题5分,共40分,在每小题给出的四个选项中,选出符合题目要求的一项。
(1)已知集合{|320}A x R x =∈+>,{|(1)(3)0}B x R x x =∈+->,则A B = (A)(,1)-∞- (B)2(1,)3-- (C)2(,3)3- (D)(3,)+∞ (2)在复平面内,复数103ii+对应的点的坐标为 (A)(1,3) (B)(3,1) (C)(1,3)- (D)(3,1)- (3)设不等式组02,02x y ≤≤⎧⎨≤≤⎩表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是(A)4π (B)22π-(C)6π (D)44π-(4)执行如图所示的程序框图,输出的S 值为 (A)2 (B)4 (C)8 (D)16(5)函数121()()2xf x x =-的零点个数为(A)0 (B)1 (C)2 (D)3 (6)已知{}n a 为等比数列,下面结论中正确的是(A)1322a a a +≥ (B)2221322a a a +≥ (C)若13a a =,则12a a = (D)若31a a >,则42a a > (7)某三棱锥的三视图如图所示,该三棱锥的表面积是(A)28+ (B)30+(C)56+ (D)60+(8)某棵果树前n 年的总产量n S 与n 之间的关系如图所示,从目前记录的结果看,前m 年的年平均产量最高,m 的值为 (A)5 (B)7 (C)9 (D)11第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
(9)直线y x =被圆22(2)4x y +-=截得的弦长为__________。
2012年普通高等学校招生全国统一考试北京卷文科数学(2012年北京市高考文科数学)
2012年普通高等学校招生全国统一考试北京文科1.已知集合A ={x ∈R|3x +2>0},B ={x ∈R|(x +1)(x ﹣3)>0},则A ∩B =( ). A.(﹣∞,﹣1)B.21,-3⎛⎫- ⎪⎝⎭C.2,33⎛⎫- ⎪⎝⎭D.(3,+∞)D 由题意得,A =2|3x x ⎧⎫>-⎨⎬⎩⎭,B ={x |x <﹣1或x >3},所以A ∩B =(3,+∞).2.在复平面内,复数10i 3i+对应的点的坐标为( ).A.(1,3)B.(3,1)C.(﹣1,3)D.(3,﹣1)A ∵10i 3i +=10i(3i)(3i)(3i)-+-=1030i 10+=1+3i ,∴10i 3i+对应的点的坐标为(1,3).3.设不等式组02,02x y ≤≤⎧⎨≤≤⎩表示的平面区域为D .在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( ).A.π4B.π22-C.π6D.4π4-D 由题意知此概型为几何概型,设所求事件为A ,如图所示,边长为2的正方形区域为总度量μΩ,满足事件A 的是阴影部分区域μA ,故由几何概型的概率公式得P (A )=22212π242-⨯⨯=4π4-. 4.执行如图所示的程序框图,输出的S 值为( ).A.2B.4C.8D.16C 初始:k =0,S =1,第一次循环:由0<3,得S =1×20=1,k =1;第二次循环:由1<3得,S =1×21=2,k =2; 第三次循环:由2<3得,S =2×22=8,k =3. 经判断此时要跳出循环.因此输出的S 值为8. 5.函数f (x )=12x ﹣12x⎛⎫ ⎪⎝⎭的零点个数为( ).A.0B.1C.2D.3B 函数f (x )=12x ﹣12x⎛⎫ ⎪⎝⎭的零点个数即为方程12x =12x⎛⎫ ⎪⎝⎭的根的个数,因此可以利用数形结合,在同一坐标系内画出函数y =12x 和函数y =12x⎛⎫ ⎪⎝⎭的图象,两图象的交点个数即为f (x )=12x ﹣12x⎛⎫ ⎪⎝⎭的零点个数,如图所示,其零点个数为1.6.已知{a n }为等比数列.下面结论中正确的是( ). A.a 1+a 3≥2a 2B.21a +23a ≥222aC.若a 1=a 3,则a 1=a 2D.若a 3>a 1,则a 4>a 2B A 中当a 1,a 3为负数,a 2为正数时,a 1+a 3≥2a 2不成立;B 中根据等比数列的性质及均值不等式得,21a+23a ≥222a ;C 中取a 1=a 3=1,a 2=﹣1,显然a 1≠a 2;D 中取a 1=1,a 2=﹣2,a 3=4,a 4=﹣8,可知a 4>a 2不一定成立.综上可知仅有B 正确.7.某三棱锥的三视图如图所示,该三棱锥的表面积是( ).A.28+B.30+C.56+D.60+B 根据三棱锥的三视图可还原此几何体的直观图为:此几何体为一个底面为直角三角形,高为4的三棱锥,因此表面积为S =12×(2+3)×4+12×4×5+12×4×(2+3)+1230+8.某棵果树前n 年的总产量S n 与n 之间的关系如图所示.从目前记录的结果看,前m 年的年平均产量最高,m 的值为( ).A.5B.7C.9D.11C 结合S n 与n 的关系图象可知,前2年产量均为0,显然22S =0为最小,在第3年~第9年期间,S n 的增长呈现持续稳定性.但在第9年之后,S n 的增长骤然降低,因为当n =9时,99S 的值为最大,故m 的值为9.9.直线y =x 被圆x 2+(y ﹣2)2=4截得的弦长为__________.由题意得,圆x 2+(y ﹣2)2=4的圆心为(0,2),半径为2,圆心到直线x ﹣y =0的距离d.设截得的弦长为l ,则由22l ⎛⎫ ⎪⎝⎭+2=22,得l =10.已知{a n }为等差数列,S n 为其前n 项和,若a 1=12,S 2=a 3,则a 2=__________,S n =__________.1 14(n 2+n ) 由a 1=12,S 2=a 3得,a 1+a 2=a 3,即a 3﹣a 2=12,∴{a n }是一个以a 1=12为首项,以12为公差的等差数列.∴a n =12+(n ﹣1)×12=12n ,∴a 2=1,S n =11n 222n ⎛⎫+ ⎪⎝⎭=14n 2+14n =14(n 2+n ).11.在△ABC 中,若a =3,bA =π3,则∠C 的大小为__________.π2 由正弦定理得,sin a A ∠=sin b B ∠sin ∠B =12, ∴∠B =30°或∠B =150°.由a >b 可知∠B =150°不合题意,∴∠B =30°. ∴∠C =180°﹣60°﹣30°=90°.12.已知函数f (x )=lg x ,若f (ab )=1,则f (a 2)+f (b 2)=__________.2 由已知可得,lg(ab )=1,∴f (a 2)+f (b 2)=lg a 2+lg b 2=lg(a 2b 2)=2lg(ab )=2×1=2.13.已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE ·CB 的值为__________;DE ·DC 的最大值为__________.1 1 DE ·CB =(DA +AE )·CB=(CB +AE )·CB =|CB |2+AE ·CB , ∵AE CB ⊥, ∴AE ·CB =0.∴DE ·CB =12+0=1.DE ·DC =(DA +AE )·DC=DA ·DC +AE ·DC =λ|DC |2(0≤λ≤1), ∴DE ·DC 的最大值为1.14.已知f (x )=m (x ﹣2m )(x +m +3),g (x )=2x ﹣2.若∀x ∈R ,f (x )<0或g (x )<0,则m 的取值范围是__________. (﹣4,0) 由题意可知,m ≥0时不能保证对∀x ∈R ,f (x )<0或g (x )<0成立.(1)当m =﹣1时,f (x )=﹣(x +2)2,g (x )=2x ﹣2,画出图象①,显然满足条件;(2)当﹣1<m <0时,2m >﹣(m +3),要使其满足条件,则需10,21,m m -<<⎧⎨<⎩解得﹣1<m <0,如图②; (3)当m <﹣1时,﹣(m +3)>2m ,要使其满足条件,则需1,-(3)1,m m <-⎧⎨+<⎩解得﹣4<m <﹣1,如图②.图① 图②综上可知,m 的取值范围为(﹣4,0). 15.已知函数f (x )=(sin cos )sin2sin x x x x-.(1)求f (x )的定义域及最小正周期; (2)求f (x )的单调递减区间.解:(1)由sin x ≠0得x ≠k π(k ∈Z),故f (x )的定义域为{x ∈R|x ≠k π,k ∈Z}.因为f (x )=(sin cos )sin2sin x x x x-=2cos x (sin x ﹣cos x ) =sin2x ﹣cos2x ﹣1π24x⎛⎫-⎪⎝⎭﹣1,所以f(x)的最小正周期T=2π2=π.(2)函数y=sin x的单调递减区间为π3π2π,2kπ22k⎡⎤++⎢⎥⎣⎦(k∈Z).由2kπ+π2≤2x﹣π4≤2kπ+3π2,x≠kπ(k∈Z),得kπ+3π8≤x≤kπ+7π8(k∈Z).所以f(x)的单调递减区间为3π7ππ,kπ88k⎡⎤++⎢⎥⎣⎦(k∈Z).16.如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点.将△ADE 沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.图1图2解:(1)因为D,E分别为AC,AB的中点,所以DE∥BC.又因为DE⊄平面A1CB,所以DE∥平面A1CB.(2)由已知得AC⊥BC且DE∥BC,所以DE⊥AC.所以DE⊥A1D,DE⊥CD.所以DE⊥平面A1DC.而A1F⊂平面A1DC,所以DE⊥A1F.又因为A1F⊥CD,所以A1F⊥平面BCDE.所以A1F⊥BE.(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,则PQ∥BC.又因为DE∥BC,所以DE∥PQ.所以平面DEQ即为平面DEP.由(2)知,DE⊥平面A1DC,所以DE⊥A1C.又因为P是等腰三角形DA1C底边A1C的中点,所以A1C⊥DP.所以A1C⊥平面DEP.从而A1C⊥平面DEQ.故线段A1B上存在点Q,使得A1C⊥平面DEQ.17.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000(1)(2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a>0,a+b+c=600.当数据a,b,c的方差s2最大时,写出a,b,c的值(结论不要求证明),并求此时s2的值.(注:s2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2],其中x为数据x1,x2,…,x n的平均数)解:(1)厨余垃圾投放正确的概率约为“”厨余垃圾箱里厨余垃圾量厨余垃圾总量=400400100100++=23.(2)设生活垃圾投放错误为事件A,则事件A表示生活垃圾投放正确.事件A的概率约为“厨余垃圾”箱里厨余垃圾量、“可回收物”箱里可回收物量与“其他垃圾”箱里其他垃圾量的总和除以生活垃圾总量,即P(A)约为400240601?000++=0.7,所以P(A)约为1﹣0.7=0.3.(3)当a=600,b=c=0时,s2取得最大值.因为x=13(a+b+c)=200,所以s2=13×[(600﹣200)2+(0﹣200)2+(0﹣200)2]=80000.18.已知函数f(x)=ax2+1(a>0),g(x)=x3+bx.(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a,b的值;(2)当a=3,b=﹣9时,若函数f(x)+g(x)在区间[k,2]上的最大值为28,求k的取值范围.解:(1)f'(x)=2ax,g'(x)=3x2+b.因为曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,所以f(1)=g(1),且f'(1)=g'(1).即a+1=1+b,且2a=3+b.解得a=3,b=3.(2)记h(x)=f(x)+g(x),当a=3,b=﹣9时,h(x)=x3+3x2﹣9x+1,h'(x)=3x2+6x﹣9.令h'(x)=0,得x1=﹣3,x2=1.h(x)与h'(x)在(﹣∞,2]由此可知:当k≤﹣3时,函数h(x)在区间[k,2]上的最大值为h(﹣3)=28;当﹣3<k <2时,函数h (x )在区间[k ,2]上的最大值小于28. 因此,k 的取值范围是(﹣∞,﹣3].19.已知椭圆C :22x a+22y b =1(a >b >0)的一个顶点为A (2,0)直线y =k (x ﹣1)与椭圆C 交于不同的两点M ,N . (1)求椭圆C 的方程;(2)当△AMN时,求k 的值.解:(1)由题意得2222,,a c a a b c =⎧⎪⎪=⎨⎪=+⎪⎩解得b所以椭圆C 的方程为24x +22y =1. (2)由22(1),1,42y k x x y =-⎧⎪⎨+=⎪⎩得(1+2k 2)x 2﹣4k 2x +2k 2﹣4=0.设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2),则y 1=k (x 1﹣1),y 2=k (x 2﹣1),x 1+x 2=22412k k+,x 1x 2=222412k k -+. 所以|MN |又因为点A (2,0)到直线y =k (x ﹣1)的距离d所以△AMN 的面积为S =12|MN |·d,解得k =±1. 20.设A 是如下形式的2行3列的数表,满足性质P :a ,b ,c ,d ,e ,f ∈[﹣1,1],且a +b +c +d +e +f =0.记r i (A )为A 的第i 行各数之和(i =1,2),c j (A )为A 的第j 列各数之和(j =1,2,3);记k (A )为|r 1(A )|,|r 2(A )|,|c 1(A )|,|c 2(A )|,|c 3(A )|中的最小值. (1)对如下数表A ,求k (A)的值;(2)设数表A 形如其中﹣1≤d≤0.求k(A)的最大值;(3)对所有满足性质P的2行3列的数表A,求k(A)的最大值.解:(1)因为r1(A)=1.2,r2(A)=﹣1.2,c1(A)=1.1,c2(A)=0.7,c3(A)=﹣1.8,所以k(A)=0.7.(2)r1(A)=1﹣2d,r2(A)=﹣1+2d,c1(A)=c2(A)=1+d,c3(A)=﹣2﹣2d.因为﹣1≤d≤0,所以|r1(A)|=|r2(A)|≥1+d≥0,|c3(A)|≥1+d≥0.所以k(A)=1+d≤1.当d=0时,k(A)取得最大值1.(3)任给满足性质P的数表A(如下所示).任意改变A的行次序或列次序,或把A中的每个数换成它的相反数,所得数表A*仍满足性质P,并且k(A)=k(A*).因此,不妨设r1(A)≥0,c1(A)≥0,c2(A)≥0.由k(A)的定义知,k(A)≤r1(A),k(A)≤c1(A),k(A)≤c2(A).从而3k(A)≤r1(A)+c1(A)+c2(A)=(a+b+c)+(a+d)+(b+e)=(a+b+c+d+e+f)+(a+b﹣f)=a+b ﹣f≤3.所以k(A)≤1.由(2)知,存在满足性质P的数表A使k(A)=1.故k(A)的最大值为1.。
2012年北京市高考数学(文科)试题及标准答案详解
20 2 xy 2012年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一 、选择题共8小题,每题5分,共40分,在每小题给出的四个选项中,选出符合题目要求的一项。
1.已知集合{|320}A x R x =∈+>,{|(1)(3)0}B x R x x =∈+->,则A B =(A)(,1)-∞- (B)2(1,)3-- (C)2(,3)3-(D)(3,)+∞ 【解析】和往年一样,依然是集合(交集)运算,本次考察的是一次和二次不等式的解法。
利用一次、二次不等式的解法2{|}3A x x =>-,{|13}B x x x =<->或并画出数轴图易得答案:D2.在复平面内,复数103ii+对应的点的坐标为(A)(1,3) (B )(3,1) (C)(1,3)- (D )(3,1)-【解析】考查的是复数除法的化简运算以及复平面,实部虚部的概念。
因为10133ii i=++,实部为1,虚部为3,对应复平面上的点为(1,3) 答案:A 3.设不等式组02,02x y ≤≤⎧⎨≤≤⎩表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是(A)4π (B )22π- (C )6π(D )44π-【解析】一道微综合题,它涉及到的知识包括:线性规划,圆的概念和面积公式,几何概型。
题目中 表示的区域如右图正方形所示,而动点D可以存在的位置为正方型面积减去四分之一圆的面积部分,因此所求概率是44π- ,答案:D 4.执行如图所示的程序框图,输出的S 值为 (A)2 (B )4 (C)8 (D )16【解析】考查程序框图,涉及到判断循环结束的时刻,以及简单整数指数幂的计算。
当k=3时 ,循环结束,此时输出的S为8,答案:C5.函数的零点个数为(A )0 (B)1 (C)2 (D)3【解析】表面上考查的是零点问题,实质上是函数图象问题(单调性)的变种,该题所涉及到的图像为幂函数和指数函数混合运算后的零点,即令()0f x = 。
2012高考真题——文科数学(北京卷)解析版
2012年北京高考数学(文)逐题详解2012年的北京数学高考是高中新课改后的第三次高考,试卷延续了近几年高考数学命题的风格,题干大气,内容丰富,难度客观讲适中,和以往一样,其中8,14,20三个题技巧性较高,侧重考查学生的数学思维和探索精神。
一、试题体现数学的人文教育功能拿到试卷的第一感觉是亲切,大部分试题均注重考查基础知识、基本技能和基本方法,考查数学传统的主干知识,较好把握了传统知识的继承点和新增知识的起步点,但是有几个试题还是非常具有心意,难度不小,重点考察能力,给笔者留下了较深的印象:例如选择第3题,在不等式背景下考查了一个概率问题,还是非常具有综合性的。
选择第7题,常见的三视图问题,但是计算几何体的表面积,对空间想象力要求还是很高的。
填空题第13小题,难度虽然不大,但是综合性以及对于函数思想的要求都很高。
第16题,立体几何考查了一个折纸的问题,难度虽然不大,但是形式还是比较有亮点的,第三问又设计为探索型问题,体现了能力立意的考试要求,要求学生有较好的空间想象力和逻辑推理能力才能顺利解答. 再比如17题以生活背景为模型考查了一个概率统计的知识,题目难度仍然不大,但是第三问非常有创新思维的让学生大胆猜想方差最大的情况,还是非常考查能力的,另外,从生活的角度命题,让学生体验数学的建模思想和应用价值,激发学生学习数学的兴趣,拓展视野,开展研究性学习,实现数学的人文教育功能。
二、试题解析(一)、选择题:【解析】第(1)题和往年一样,依然是集合(交集)运算,本次考察的是一次和二次不等式的解法。
因为,利用二次不等式的解法可得,画出数轴图易得:,答案:D【解析】第(2)题考查的是复数除法的化简运算以及复平面,实部虚部的概念。
,实部为1,虚部为3,对应复平面上的点为,答案:A【解析】第(3)题是一道微综合题,它涉及到的知识包括:线性规划,圆的概念和面积公式,概率。
题目中表示的区域如右图正方形所示,而动点D可以存在的位置为正方型面积减去四分之一圆的面积部分,因此,答案:D【解析】第(4)题考查程序框图,涉及到判断循环结束的时刻,以及简单整数指数幂的计算。
2012年全国高考文科数学试题及答案-北京卷
2012年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一 、选择题共8小题,每小题5分,共40分,在每小题给出的四个选项中,选出符合题目要求的一项。
(1)已知集合{|320}A x R x =∈+>,{|(1)(3)0}B x R x x =∈+->,则A B = (A )(,1)-∞- (B )2(1,)3-- (C )2(,3)3- (D )(3,)+∞ (2)在复平面内,复数103ii+对应的点的坐标为 (A )(1,3) (B )(3,1) (C )(1,3)- (D )(3,1)-(3)设不等式组02,02x y ≤≤⎧⎨≤≤⎩表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是(A )4π(B )22π-(C )6π(D )44π-(4)执行如图所示的程序框图,输出的S 值为 (A )2 (B )4 (C )8 (D )16(5)函数121()()2xf x x =-的零点个数为(A )0 (B )1 (C )2 (D )3 (6)已知{}n a 为等比数列,下面结论中正确的是(A )1322a a a +≥ (B )2221322a a a +≥ (C )若13a a =,则12a a = (D )若31a a >,则42a a > (7)某三棱锥的三视图如图所示,该三棱锥的表面积是(A )28+ (B )30+(C )56+ (D )60+(8)某棵果树前n 年的总产量n S 与n 之间的关系如图所示,从目前记录的结果看,前m 年的年平均产量最高,m 的值为 (A )5 (B )7 (C )9 (D )11第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
2012年普通高等学校招生全国统一考试北京卷数学文科
2012年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一 、选择题共8小题,每小题5分,共40分,在每小题给出的四个选项中,选出符合题目要求的一项。
1、已知集合A={x ∈R|3x+2>0} B={x ∈R|(x+1)(x-3)>0} 则A ∩B=A (-∞,-1)B (-1,-23) C (-23,3)D (3,+∞) 2 在复平面内,复数103i i +对应的点的坐标为 A (1 ,3) B (3,1) C(-1,3) D (3 ,-1)(3)设不等式组,表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是(A )4π (B )22π- (C )6π (D )44π- (4)执行如图所示的程序框图,输出S 值为(A )2(B )4(C )8(D )16(5)函数f(x)=x121x2⎛⎫- ⎪⎝⎭的零点个数为(A)0 (B)1(C)2 (D)3(6)已知为等比数列,下面结论种正确的是(A)a1+a3≥2a2(B)(C)若a1=a3,则a1=a2(D)若a3>a1,则a4>a2(7)某三棱锥的三视图如图所示,该三棱锥的表面积是(A)28+B)30+C)56+D)60+(8)某棵果树前n年的总产量S n与n之间的关系如图所示,从目前记录的结果看,前m年的年平均产量最高,m的值为(A)5(B)7(C)9(D)11第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。
(9)直线y=x被圆x2+(y-2)2=4截得弦长为__________。
(10)已知{a n}为等差数列,S n为其前n项和,若a1= ,S2=a3,则a2=____________,S n=_________________。
(11)在△ABC中,若a=3,b=,,则的大小为_________。
2012年高考真题——文科数学(北京卷)解析版(2)
2012年普通高等学校招生全国统一考试数学(文)(北京卷)一 、选择题共8小题,每小题5分,共40分,在每小题给出的四个选项中,选出符合题目要求的一项。
1.已知集合A={x ∈R|3x+2>0} B={x ∈R|(x+1)(x-3)>0} 则A ∩B= A .(-∞,-1) B .(-1,-23) C .(-23,3) D . (3,+∞)【解析】和往年一样,依然的集合(交集)运算,本次考查的是一次和二次不等式的解法。
因为32}023|{->⇒>+∈=x x R x A ,利用二次不等式可得1|{-<=x x B 或}3>x 画出数轴易得:}3|{>=x x B A .故选D . 【答案】D2.在复平面内,复数103i i+对应的点的坐标为A . (1 ,3)B .(3,1)C .(-1,3)D .(3 ,-1)【解析】本题考查的是复数除法的化简运算以及复平面,实部虚部的概念。
i i ii i i i i i ii 3110301091030)3)(3()3(1031022+=+=--=-+-=+,实部为1,虚部为3,对应复平面上的点为(1,3),故选A . 【答案】A3.设不等式组⎩⎨⎧≤≤≤≤20,20y x ,表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是 (A )4π (B )22π- (C )6π(D )44π-【解析】题目中⎩⎨⎧≤≤≤≤2020y x 表示的区域如图正方形所示,而动点D可以存在的位置为正方形面积减去四分之一圆的面积部分,因此4422241222ππ-=⨯⋅-⨯=P ,故选D 。
【答案】D4.执行如图所示的程序框图,输出S 值为(A )2 (B )4 (C )8 (D )16【解析】0=k ,11=⇒=k s ,21=⇒=k s ,22=⇒=k s ,8=s ,循环结束,输出的s 为8,故选C 。
【答案】C5.函数x x x f )21()(21-=的零点个数为(A )0 (B )1(C )2 (D )3【解析】x x x f )21()(21-=的零点,即令0)(=x f ,根据此题可得xx )21(21=,在平面直角坐标系中分别画出幂函数21x 和指数函数x)21(的图象,可得交点只有一个,所以零点只有一个,故选B 。
北京高考数学文科word解析版2012
2012年普通高等学校招生全国统一考试数学(文)(北京卷)解析版一 、选择题共8小题,每小题5分,共40分,在每小题给出的四个选项中,选出符合题目要求的一项。
1.已知集合A={x ∈R|3x+2>0} B={x ∈R|(x+1)(x-3)>0} 则A∩B=( ) A .(-∞,-1) B .(-1,-23) C .(-23,3) D . (3,+∞)【考点】集合的运算 【难度】1 【答案】D 【解析】因为32}023|{->⇒>+∈=x x R x A , 利用二次不等式可得1|{-<=x x B 或}3>x 画出数轴易得:}3|{>=x x B A .故选D .2.在复平面内,复数103ii+对应的点的坐标为( ) A . (1 ,3) B .(3,1) C .(-1,3)D .(3 ,-1)【考点】复数综合运算 【难度】1 【答案】A 【解析】i ii i i i i i i i i 3110301091030)3)(3()3(1031022+=+=--=-+-=+, 实部为1,虚部为3,对应复平面上的点为(1,3),故选A . 3.设不等式组⎩⎨⎧≤≤≤≤20,20y x ,表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( ) (A )4π(B )22π- (C )6π(D )44π- 【考点】几何概型 【难度】1 【答案】D 【解析】题目中⎩⎨⎧≤≤≤≤2020y x 表示的区域如图正方形所示,而动点D可以存在的位置为正方形面积减去四分之一圆的面积部分,因此4422241222ππ-=⨯⋅-⨯=P,故选D。
4.执行如图所示的程序框图,输出S值为()(A)2 (B)4 (C)8 (D)16 【考点】算法和程序框图【难度】1【答案】C【解析】=k,11=⇒=ks,21=⇒=ks,22=⇒=ks,8=s,循环结束,输出的s为8,故选C。
2012学年高考文科数学年北京卷答案
数学试卷 第1页(共8页) 数学试卷 第2页(共8页)绝密★启用前江苏省苏州市2012年中考数学试卷数 学本试卷满分130分,考试时间120分钟.一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是正确的) 1.2的相反数是( )A .2-B .2C .12-D .122.,则x 的取值范围是 ( )A .2<xB .2≤xC .2>xD .2≥x3.一组数据2,4,5,5,6的众数是( )A .2B .4C .5D .74.如图,一个正六边形转盘被分成6个全等正三角形,任意转动这个转盘1次,当转盘停止时,指针指向阴影区域的概率是( )A .12B .13C .14D .165.如图,已知BD 是O 直径,点A ,C 在O 上,=AB BC ,60∠=AOB ,则∠BDC 的度数是( )A .20B .25C .30D .406.如图,矩形ABCD 的对角线AC ,BD ,相交于点O ,CE BD ∥,DE AC ∥若4=AC ,则四边形C O D E 的周长是 ( ) A .4 B .7 C .8D .107.若点(,)m n 在函数21=+y x 的图像上,则2-m n 的值是( )A .2B .-2C .1D .-1 8.若2139273⨯⨯=m m ,则m 的值是( )A .3B .4C .5D .79.如图,将AOB △绕点O 按逆时针方向旋转45后得到△''A OB ,若15∠=AOB ,则∠'AOB 的度数是 ( )A .25B .30C .35D .4010.已知在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点1B 在y 轴上,点1C ,1E ,2E ,2C ,3E ,4E ,3C 在x 轴上.若正方形1111A B C D 的边长为1,1160∠=B C O ,112233∥∥B C B C B C ,则点3A 到x 轴的距离是( )A.318B.118C.36D.16二、填空题(本大题共8小题,每小题3分,共24分.) 11.计算:32= .12.若2=a ,3+=a b ,则2+=a ab .13.已知太阳的半径约为696000000m ,696000000这个数用科学记数法可表示为 .14.已知扇形的圆心角为45,弧长等于π2,则该扇形的半径为 . 15.某初中学校共有学生720人,该校有关部门从全体学生中随机抽取了50人对其到校方式进行调查,并将调查结果制成了如图所示的条形统计图,由此可以估计全校坐公交车到校的学生有 人.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共8页) 数学试卷 第4页(共8页)16.已知点11(),A x y ,22(),B x y 在二次函数21()1y x =+-的图像上,若121>>x x ,则1y 2y (填“>”“<”“=”).17.如图,已知第一象限内的图像象是反比例函数1=y x 图像的一个分支,第二象限内的图像是反比例函数2=-y x图像的一个分支,在x 轴上方有一条平行于x 轴的直线l 与它们分别交于点A ,B ,过点A ,B 作x 轴的垂线,垂足分别为C ,D .若四边形ACBD 的周长为8且<AB AC ,则点A 的坐标是 .18.如图①,在梯形ABCD 中,∥AD BC ,60∠=A ,动点P 从点A 点出发,以1cm/s 的速度沿着→→→A B C D 的方向不停移动,直到点P 到达点D 后才停止.已知△PAD 的面积S (单位:2cm )与点P 移动的时间t (单位:s )的函数如图②所示,则点P 从开始移动到停止移动一共用了 s (结果保留根号).三、解答题(本大题共11小题,共76分.解答应写出必要的计算过程、推演步骤或文字说明) 19.(本题满5分)计算:01)|2|-+-.20.(本题满分5分)解不等式组:322,813(1).<≥-+⎧⎨--⎩-x x x x.21.(本题满分5分)先化简,再求值:222441112a a aa a a -+++---,其中1a .22.(本题满分6分)解分式方程:231422+=++x x x x.23.(本题满分6分)如图,在梯形ABCD 中,已知AD BC ∥,AB CD =,延长线段CB 到E ,使=BE AD ,连接AE ,AC . (1)求证:ABE CDA ≌△△; (2)若40∠=DAC,求∠EAC 的度数.数学试卷 第5页(共8页) 数学试卷 第6页(共8页)24.(本题满分6分)我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的15,中、美两国人均淡水资源占有量之和为313800m ,问中、美两国人均淡水资源占有量各为多少(单位:3m )?25.(本题满分8分)在33⨯的方格纸中,点A ,B ,C ,D ,E ,F 分别位于如图所示的小正方形的顶点上.(1)从A ,D ,E ,F 四个点中任意取一点,以所取的这一点及B ,C 为顶点画三角形,则所画三角形是等腰三角形的概率是 ;(2)从A ,D ,E ,F 四个点中先后任意取两个不同的点,以所取的这两点及B ,C 为顶点画四边形,求所画四边形是平行四边形的概率(用画树状图或列表法求解).26.(本题满分8分)如图,已知斜坡AB 长60m ,坡角(即∠BAC )为30,⊥BC AC ,现计划在斜坡中点D 处挖去部分坡体(用阴影表示)修建一个平行于水平线CA 的平台DE 和一条新的斜坡BE (请将下面2小题的结果都精确到0.1米,参考数据:1.732≈).(1)若修建的斜坡BE 的坡角(即∠BEF )不大于45,则平台DE 的长最多为 m ;(2)一座建筑物GH 距离坡角A 点27m (即27m =AG )远,小明在D 点测得建筑物顶部H 的仰角(即∠HDM )为30.点B ,C ,A ,G ,H 在同一个平面内,点C ,A ,G 在同一条直线上,且⊥HG CG ,问建筑物GH 高为多少米?27.(本题满分8分)如图,已知半径为2的O 与直线l 相切于点A ,点P 是直径AB 左侧半圆上的动点,过点P 作直线l 的垂线,垂足为C ,PC 与O 交于点D ,连接PA PB ,,设PC 的长为4(2)<<x x . (1)当52=x 时,求弦PA ,PB 的长度; (2)当x 为何值时,PD CD 的值最大?最大值是多少?-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共8页) 数学试卷 第8页(共8页)28.(本题满分9分)如图,正方形ABCD 的边AD 与矩形EFGH 的边FG 重合,将正方形ABCD 以1cm/s 的速度沿FG 方向移动,移动开始前点A 与点F 重合.在移动过程中,边AD 始终与边FG 重合,连接CG ,过点A 作CG 的平行线交线段GH 于点P ,连接PD .已知正方形ABCD 的边长为1cm ,矩形EFGH 的边FG ,GH 的长分别为4cm ,3cm .设正方形移动时间为(s)x ,线段GP 的长为(cm)y ,其中0 2.5≤≤x .(1)试求出y 关于x 的函数关系式,并求出3=y 时相应x 的值;(2)记DGP △的面积为1S ,△CDG 的面积为2S ,试说明12()-S S 是常数; (3)当线段PD 所在直线与正方形ABCD 的对角线AC 垂直时,求线段PD 的长.29.(本小题满分10分)如图,已知抛物线2(11144)4=-++by x b x (b 是实数且2>b )与x 轴的正半轴分别交于点A ,B (点A 位于点B 的左侧),与y 轴的正半轴交于点C . (1)点B 的坐标为是 ,点C 的坐标为是 (用含b 的代数式表示); (2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q ,使得QCO △,QOA △和QAB △中的任意两个三角形均相似(全等可作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
- 1 - 2
2 x y 2012年普通高等学校招生全国统一考试
数学(文)(北京卷)
本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)
一 、选择题共8小题,每题5分,共40分,在每小题给出的四个选项中,选出符合题目要求的一项。
1.已知集合{|320}A x R x =∈+>,{|(1)(3)0}B x R x x =∈+->,则A B =I
(A )(,1)-∞- (B )2(1,)3-- (C )2
(,3)3
- (D )(3,)+∞
【解析】和往年一样,依然是集合(交集)运算,本次考察的是一次和二次不等式的解法。
利用一次、二次不等式的解法2
{|}3
A x x =>-,{|13}
B x x x =<->或并画出数轴图易得 答案:D
2.在复平面内,复数
103i
i
+对应的点的坐标为 (A )(1,3) (B )(3,1) (C )(1,3)- (D )(3,1)-
【解析】考查的是复数除法的化简运算以及复平面,实部虚部的概念。
因为
10133i
i i
=++,实部为1,虚部为3,对应复平面上的点为(1,3) 答案:A 3.设不等式组02,
02x y ≤≤⎧⎨≤≤⎩表示的平面区域为D ,在区域D 内随机取一个
点,则此点到坐标原点的距离大于2的概率是
(A )
4π (B )22π- (C )6
π
(D )44π-
【解析】一道微综合题,它涉及到的知识包括:线性规划,圆的概念和面积公式,几何概型。
题目中 表示的区域如右图正方形所示,而动点D 可以存在的位置为正方型面积减去四分之一圆的面积部分,因此所求概率是
44
π
- ,答案:D 4.执行如图所示的程序框图,输出的S 值为 (A )2 (B )4 (C )8 (D )16
【解析】考查程序框图,涉及到判断循环结束的时刻,以及简单整数指数幂的计算。
当k=3时 ,循环结束,此时输出的S 为8,答案:C
5.函数的零点个数为
(A )0 (B )1 (C )2 (D )3
【解析】表面上考查的是零点问题,实质上是函数图象问题(单调性)的变种,该题所涉及到的图像为幂函数和指数函数混合运算后的零点,即令()0f x = 。
根据此题可得
1
2
1()2x x = ,在平面直角坐标系中分别画出幂函数1
2()f x x = 和指数函数 1()()2
x
f x =的图
像,可得交点只有一个,所以零点只有一个,答案:B 。
6.已知{}n a 为等比数列,下面结论中正确的是 (A )1322a a a +≥ (B )
222
132
2a a a +≥
(C )若13a a =,则12a a = (D )若31a a >,则42a a > 【解析】考查的是等比数列的基本概念,其中还涉及到了均值不
- 2 - 4
5
5
41
25
41
4
y x
o 等式的知识,如果对于等比数列基本概念(公比的符号问题)理解不清,也容易错选。
当然此题最好选择排除法来做,当10,0a q << 时,比如-1,2,-4…… ,所以A 选项错误;当
1q =-时,C 选项错误;当1q <- 时,比如1,-2,4,-8…… ,与D 选项矛盾,而B 选
项2
2
2
2
2
1313222a a a a a +≥⋅=因此描述均值定理的B 选项为正确答案,答案:B 。
7.某三棱锥的三视图如图所示,该三棱锥的表面积是 (A )2865+ (B )3065+ (C )56125+ (D )60125+
【解析】考查的是三棱锥的三视图问题,只不过与往年不同的是这题所求不是棱锥或棱柱的体积而是表面积,因此对于学生计算基本功以及空间想象的双能力都存在着综合性的考查。
从所给的三视图可以得到该几何体为三棱锥(已知也已说明),如右图所示。
图中蓝色数字所表示的为直接从题目所给三视图中读出的长度,黑色数字代表通过勾股定理的计算得到的边长。
本题所求表面积应为三棱锥四个面的面积之和。
利用垂直关系和三角形面积公式,可得:10,10,10,65 。
因此该几何体表面积3065+ ,答案:B
8.某棵果树前n 年的总产量n S 与n 之间的关系如图所示,从目前记录的结果看,前m 年的年平均产量最高,m 的值为 (A )5 (B )7 (C )9 (D )11
【解析】知识点考查很灵活,要根据图像识别看出变化趋势,利用变化速度可以用导数来解,但图像不连续,所以只能是
广义上的,因此对数学的理解很大程度上限制了考生的分数。
当然此题若利用数学估计过于复杂,最好从感觉出发。
由于目的是使平均产量最高,就需要随着n 增大, 变化超过平均值的加入,随着n 增大, 变化不足平均值的舍去。
由图可知6,7,8,9这几年增长最快,
超过平均值,所以应该加入,因此,答案:C
第二部分(非选择题 共110分)
二、填空题共6小题,每小题5分,共30分。
9.直线y x =被圆2
2
(2)4x y +-=截得的弦长为__________。
【解析】涉及到的是直线和圆的知识,由于北京的考卷多年没有涉及直线和圆,对于考生来说,可能有些陌生,直线和圆相交求弦长,利用直角三角形解题,也并非难题。
将题目所给的直线和圆图形化得到如右图所示的情况,
半弦长
2
l
,圆心到直线的距离d ,以及圆半径r 构成了一个直角三角形。
但是因为此题特殊,直线y=x 与圆心所在y 轴成夹角45o
,因此22
l r =⋅ ,所以
弦长22l = 。
答案:22
10.已知{}n a 为等差数列,n S 为其前n 项和,若11
2
a =
,23S a =,则2a =____________, n S =_________________。
【解析】考查的是等差数列的基本计算,技术难度并不高,通项公式和前n 项和的常规考法。
因为 1112a a d a d ++=+,且112a =所以1
2
d = ,所以答案:221,4n n n a S +==
11.在ABC ∆中,若3a =,3b =
,3
A π
∠=
,则C ∠的大小为_________。
【解析】考查的是解三角形,所用方法并不唯一,对于正弦定理和余弦定理此二者会其一
都可以得到最后的答案。
在 ABC ∆中,利用正弦定理
sin sin a b A B = ,可得6B π
∠= ,所以 。
再利用三角形内角和A B C π++= ,可得2C π∠= 。
答案:2
π
12.已知函数()lg f x x =,若()1f ab =,则2
2
()()f a f b +=_____________。
【解析】对数函数题,要求学生会利用对数的运算公式进行化简,同时也要求学生对于基础。