第16讲,直线与圆的方程

合集下载

解析几何中的直线与圆的方程与关系

解析几何中的直线与圆的方程与关系

解析几何中的直线与圆的方程与关系直线与圆是解析几何中最基本的几何图形之一,它们在数学和物理学中有广泛的应用。

本文将讨论直线与圆的方程及它们之间的关系。

一、直线的方程直线的方程有多种表示方法,其中最常用的是一般式和点斜式。

1. 一般式方程直线的一般式方程表示为Ax + By + C = 0,其中A、B、C为常数,且A与B不全为零。

这种形式的方程可以描述任意一条直线,但不唯一。

例如,直线L1过点(2,3)和(4,5),我们可以通过以下步骤得到其一般式方程:1) 计算斜率k = (5 - 3) / (4 - 2) = 1;2) 代入其中一点的坐标(2,3),得到 2A + 3B + C = 0;3) 代入另一点的坐标(4,5),得到 4A + 5B + C = 0。

因此,直线L1的一般式方程为2A + 3B + C = 0或4A + 5B + C = 0。

2. 点斜式方程直线的点斜式方程表示为y - y1 = k(x - x1),其中(x1,y1)为已知点,k为斜率。

这种形式的方程描述了一条直线及其斜率,方便进行几何推导。

例如,直线L2过点(2,3)且斜率为2,我们可以得到其点斜式方程为y - 3 = 2(x - 2)。

二、圆的方程圆的方程有多种表示方法,最常见的是标准式和一般式。

1. 标准式方程圆的标准式方程表示为(x - h)² + (y - k)² = r²,其中(h,k)为圆心坐标,r为半径长度。

标准式方程可以直接表达圆的几何特征。

例如,圆C1的圆心为(2,3),半径为4,它的标准式方程为(x - 2)² + (y - 3)² = 16。

2. 一般式方程圆的一般式方程表示为x² + y² + Dx + Ey + F = 0,其中D、E、F为常数。

这种形式的方程也可用于描述圆。

例如,圆C2的圆心为(-3,4),半径为5,我们可以通过以下步骤得到其一般式方程:1) 将圆心代入方程中,得到(-3)² + 4² + D(-3) + E(4) + F = 0;2) 代入半径的平方值,得到9 + 16 - 3D + 4E + F = 25。

第二章 直线和圆的方程(单元解读)高二数学(人教A版2019选择性必修第一册)

第二章 直线和圆的方程(单元解读)高二数学(人教A版2019选择性必修第一册)
也可以综合运用几何方法和代数方法,这种综合是充 分借助图形的几何性质,一定程度上简化代数运算,最后 得到图形之间的位置关系.
本章选学内容
本章还安排了 1. “方向向量与直线的参数方程” 2. “笛卡儿与解析几何” 3. “坐标法与数学机械化”等选学内容,
目的是拓展学生的知识面,让学生从多种角度 认识直线方程的表示形式,了解解析几何产生的过 程,以及我国数学家吴文俊先生运用坐标法进行几 何定理机器证明的杰出贡献.
1. 用向量方法推导点到直线的距离公式, 2. 以及对直线与直线的方程, 3. 圆与圆的方程之间关系的认识,
坐标法是解析几何最基本的研究方法
• 本章研究直线、圆及其相关问题,用的是坐标法. • 坐标法是解析几何最基本的研究方法, • 它建立了几何与代数之间的联系,体现了数形结 合的思想.
七、本章学业要求
准方程. • 把圆的标准方程展开,得到圆的一般方程. • 圆的标准方程和一般方程是圆的方程的两种形式,它们
各有自己的特点,而且两者之间可以互化.
第5节是“直线与圆、圆与圆的位置关系”.
综合运用直线和圆的方程研究直线与圆、圆与圆的位 置关系,以及一些简单的数学问题和实际问题.
图形之间的位置关系,既可以直观定性描述,也可以 严格定量刻画.定量刻画的方法既可以完全运用代数的方法, 通过运算求解,得到图形之间的位置关系;
第1节“直线的倾斜角与斜率”,
• 通过一点和一个方向确定一条直线,引入直线倾斜角刻画 直线的倾斜程度(方向);
• 然后通过具体实例,由具体到一般,通过向量法,用直线 上两点的坐标刻画倾斜角;
• 把倾斜角的正切值表示为这两点纵坐标的差与横坐标的 差的商,进而引出直线斜率的概念;
• 建立过两点的直线斜率公式,以及直线的斜率与其方向向 量的关系.由于两条直线平行或垂直取决于它们的方向,所以 由它们斜率的关系可以判断两条直线平行或垂直的位置关系. ’

高三数学直线和圆的方程——直线与圆、圆与圆的位置关系苏教版知识精讲

高三数学直线和圆的方程——直线与圆、圆与圆的位置关系苏教版知识精讲

高三数学直线和圆的方程——直线与圆、圆与圆的位置关系苏教版【本讲教育信息】一. 教学内容:直线和圆的方程——直线与圆、圆与圆的位置关系二. 本周教学目标:1. 掌握直线和圆的位置关系、圆与圆的位置关系等知识,能够从代数特征(解或讨论方程组)或几何性质去考虑2. 会运用半径长、半径、弦心距构成的直角三角形减少运算量三. 本周知识要点:1. 研究圆与直线的位置关系最常用的方法:①判别式法;②考查圆心到直线的距离与半径的大小关系。

直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种,若22BA CBb Aa d +++=,则0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d2. 两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21 ①条公切线外离421⇔⇔+>r r d ②条公切线外切321⇔⇔+=r r d③条公切线相交22121⇔⇔+<<-r r d r r ④条公切线内切121⇔⇔-=r r d ⑤无公切线内含⇔⇔-<<210r r d3. 直线和圆相切:这类问题主要是求圆的切线方程求圆的切线方程主要可分为已知斜率k 或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况。

①过圆上一点的切线方程:圆),(00222y x P r y x 的以=+为切点的切线方程是200r y y x x =+。

当点00(,)P x y 在圆外时,200r y y x x =+表示切点弦的方程。

一般地,曲线)(00022y x P F Ey Dx Cy Ax ,的以点=++-+为切点的切线方程是:0220000=++⋅++⋅-+F y y E x x D y Cy x Ax 。

当点00(,)P x y 在圆外时,0220000=++⋅++⋅-+F y y E x x D y Cy x Ax 表示切点弦的方程。

直线与圆的方程

直线与圆的方程

直线和圆的方程 知识要点一、直线方程.1. 直线方程的几种形式:点斜式、截距式、两点式、斜切式.特别地,当直线经过两点),0(),0,(b a ,即直线在x 轴,y 轴上的截距分别为)0,0(,≠≠b a b a 时,直线方程是:1=+bya x . 附:直线系:对于直线的斜截式方程b kx y +=,当b k ,均为确定的数时,它表示一条确定的直线,如果b k ,变化时,对应的直线也会变化.①当b 为定植,k 变化时,它们表示过定点(0,b )的直线束.②当k 为定值,b 变化时,它们表示一组平行直线. 3. ⑴两条直线平行:1l ∥212k k l =⇔两条直线平行的条件是:①1l 和2l 是两条不重合的直线. ②在1l 和2l 的斜率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误. 推论:如果两条直线21,l l 的倾斜角为21,αα则1l ∥212αα=⇔l . ⑵两条直线垂直:两条直线垂直的条件:①设两条直线1l 和2l 的斜率分别为1k 和2k ,则有12121-=⇔⊥k k l l 这里的前提是21,l l 的斜率都存在. ②0121=⇔⊥k l l ,且2l 的斜率不存在或02=k ,且1l 的斜率不存在. (即01221=+B A B A 是垂直的充要条件) 4. 直线的交角:⑴直线1l 到2l 的角(方向角);直线1l 到2l 的角,是指直线1l 绕交点依逆时针方向旋转到与2l 重合时所转动的角θ,它的范围是),0(π,当 90≠θ时21121tan k k k k +-=θ.⑵两条相交直线1l 与2l 的夹角:两条相交直线1l 与2l 的夹角,是指由1l 与2l 相交所成的四个角中最小的正角θ,又称为1l 和2l 所成的角,它的取值范围是 ⎝⎛⎥⎦⎤2,0π,当90≠θ,则有21121tan k k k k +-=θ.5. 点到直线的距离:⑴点到直线的距离公式:设点),(00y x P ,直线P C By Ax l ,0:=++到l 的距离为d ,则有2200BA C By Ax d +++=.注:1. 两点P 1(x 1,y 1)、P 2(x 2,y 2)的距离公式:21221221)()(||y y x x P P -+-=. 特例:点P(x,y)到原点O 的距离:22||OP x y =+ 2. 定比分点坐标分式。

【高中数学】秒杀秘诀---直线系和圆系方程

【高中数学】秒杀秘诀---直线系和圆系方程

直线系和圆系方程定义:如果两条曲线方程是f 1(x ,y)=0和f 2(x ,y)=0,它们的交点是P (x 0,y 0),方程f 1(x ,y)+λf 2(x ,y )=0的曲线也经过点P (λ是任意常数)。

由此结论可得出:经过两曲线f 1(x ,y)=0和f 2(x ,y )=0交点的曲线系方程为:f 1(x ,y )+λf 2(x ,y )=0。

利用此结论可得出相关曲线系方程。

一.直线系概念:具有某种共同属性的一类直线的集合,称为直线系。

它的方程称直线系方程。

几种常见的直线系方程:(1)过已知点P (x 0,y 0)的直线系方程y -y 0=k (x -x 0)(k 为参数)(2)斜率为k 的直线系方程y =kx +b (b 是参数)(3)与已知直线Ax +By +C =0平行的直线系方程Ax +By +λ=0(λ为参数)(4)与已知直线Ax +By +C =0垂直的直线系方程Bx -Ay +λ=0(λ为参数)(5)过直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0的交点的直线系方程:A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ为参数)例1:已知直线l 1:x +y +2=0与l 2:2x -3y -3=0,求经过的交点且与已知直线3x +y -1=0平行的直线分析:不论m 为何实数时,直线恒过定点,因此,这个定点就一定是直线系中任意两直线的交点。

解:由原方程得m(x +2y -1)-(x +y -5)=0,①即⎩⎨⎧-==⎩⎨⎧=-+=-+4y 9x 05y x 01y 2x 解得,∴直线过定点P (9,-4)例3:求过直线:210x y ++=与直线:210x y -+=的交点且在两坐标轴上截距相等的直线方程.概念:具有某种共同属性的圆的集合,称为圆系。

几种常见的圆系方程:(1)同心圆系:(x -x 0)2+(y -y 0)2=r 2,x 0、y 0为常数,r 为参数。

直线系与圆系方程

直线系与圆系方程
2、 过 两 圆Ci : x 2 y2 Di x Ei y Fi 0 ( i 1,2 ) 交点的圆系方程
x2 y2 D1 x E1 y F1 ( x2 y2 D2 x E2 y F2 ) 0 ( 1 )
圆系方程
常见的圆系方程:
3、 过 直 线 与 圆 的 交 点 的圆 系 方 程 直线 l : Ax By C 0 圆 C : x2 y2 Dx Ey F 0
(3) 过两圆交点的圆系:若两圆 x 2 + y 2 + D1x + E1y + F1 = 0 和 x 2 + y 2 + D2x + E2y + F2 = 0 相 交,则过这两圆交点的圆系方程为
_x_2___y_2___D__x____E__y___F_____(_x__2 __y__2 __D__x____E y F ) 0
此方程不包括直线 l2 m( A1 x B1 y C1 ) n( A2 x B2 y C2 ) 0
此方程包括所有过两直线交点的直线。
【典型例题】
1.已知直线 l :(1 m)x (2 m) y (1 m) 0 , 求证:无论m取何实数,直线l 恒过定点,并求出定点坐标。
解: 整理该方程得: (x 2y 1) m(x y 1) 0
o
x
过定点的直线系方程
• 如何表示经过两条相交直线交点的直线系方程?
已知直线 l1 : A1x B1y C1 0 ( A12 B12 0) 和直线 l2 : A2x B2 y C2 0 (A22 B22 0) 相交,则过该交点的 直线系方程:
( A1 x B1 y C1 ) ( A2 x B2 y C2 ) 0
x2 y2 Dx Ey F+ ( Ax By C ) 0

直线与圆的方程教学目标

直线与圆的方程教学目标

直线与圆的方程教学目标一、知识目标1.了解直线的定义与基本性质,掌握直线的一般方程和截距式方程的概念及转化方法;2.理解圆的定义与基本性质,掌握圆的标准方程的概念及转化方法;3.掌握直线与圆的交点的求解方法。

二、能力目标1.能够根据给定条件,写出直线的一般方程和截距式方程;2.能够根据给定条件,写出圆的标准方程;3.能够解决直线与圆的交点问题。

三、情感态度与价值观目标1.培养学生对数学的兴趣与热爱,增强数学学习的主动性;2.培养学生观察问题、分析问题和解决问题的能力;3.培养学生的逻辑思维和抽象思维能力。

四、教学重点与难点1.教学重点:直线的一般方程和截距式方程的概念及转化方法,圆的标准方程的概念及转化方法;2.教学难点:直线与圆的交点问题的解决方法。

五、教学内容1. 直线的方程(1)直线的定义与基本性质直线是两点之间的最短路径,具有长度无穷长、宽度无穷窄的特点。

直线有无数条,可以用不同的方程表示。

(2)直线的一般方程直线的一般方程是形如Ax + By + C = 0的方程,其中 A、B、C 是常数且不完全为零。

(3)直线的截距式方程直线的截距式方程是形如x/a + y/b = 1的方程,其中 a、b 是常数,表示 x 轴、y 轴上的截距。

(4)转化方法根据直线的一般方程和截距式方程的定义,我们可以相互转化,例如通过两点求直线的方程等方法。

2. 圆的方程(1)圆的定义与基本性质圆是平面上离定点距离相等的点构成的集合,其中定点称为圆心,距离称为半径。

圆的性质包括圆心、半径、直径、弧、弦等。

(2)圆的标准方程圆的标准方程是形如(x-a)² + (y-b)² = r²的方程,其中 (a, b) 表示圆心的坐标,r 表示半径的长度。

(3)转化方法根据圆的标准方程的定义,我们可以通过已知圆心和半径的长度来写出圆的标准方程。

3. 直线与圆的交点直线与圆的交点就是同时满足直线方程和圆方程的点,交点的数量可以是0 个、1 个或2 个。

《直线和圆的方程》教学分析和教学建议

《直线和圆的方程》教学分析和教学建议
本单元是解析几何的开篇,承担着从宏观上明确研究对象、构建研究框架、形成 研究路径等任务.解析几何是方法论,解析几何课程的核心任务是使学生学会用代数 方法研究几何问题.,所以在开篇伊始就注重解析几何基本思想、用坐标法解决问题的 基本思路的渗透.
本章教学建议
(三)教法、学法建议 1.抓住一切机会渗透解析几何的基本思想.
章节的地位与作用
解析几何是17世纪法国数学家笛卡尔和费马创立的,它的基本内 涵和方法是:通过坐标系,把几何的基本元素——点和代数的基本对 象——数(有序数对或数组)对应起来,在此基础上建立曲线的方程(点 的轨迹方程),从而把几何问题转化为代数问题,再通过代数方法研究 几何图形的性质.解析几何的创立是数学发展史上的一个里程碑,数学 从此进入变量数学时期,它为微积分的创建奠定了基础.
本章教学建议
(三)教法、学法建议
3.注重“曲线和方程”的内在逻辑关联,帮助学生在一般观念引领下构建和 把握曲线方程的整体结构.
曲线与方程之间一一对应的关系是解析几何的基石.虽然教科书正文中没有明确 提出曲线与方程的关系,但是两者的对应关系在直线的点斜式方程、圆的标准方 程的建立过程中有所体现. 从大的范围看,曲线与方程之间的一一对应反映了数量关 系与空间形式之间的关系.有了这种关系,就可以用方程表示曲线,对曲线进行“ 运算”;建立方程的几何直观表达,把方程“形象化”,进一步体会数形结合的 思想.
(2)求圆心在直线3x - y 0上,与x轴相切,且被直线x y 0截得的弦长为2 7的圆 的方程. 变式2: 求圆心在直线x y 4 0上,并且经过圆x2 y2 6x 4 0与圆x2 y2 6 y - 28 0 的交点的圆的方程.
本章教学建议
(三)教法、学法建议
9. 设计专题训练,结合解题过程,加强方法的总结,落实解题技能.

两圆方程作差所得方程对应的直线与两圆的位置关系

两圆方程作差所得方程对应的直线与两圆的位置关系

两圆方程作差所得方程对应的直线与两圆的位置关系简介:对于两个非同心圆的一般方程,若把它们作差,消去二次项后会得到一个二元一次方程,即得到一条直线的方程。

所得直线l 在两圆的5种位置关系下的几何意义以及l 已知两圆1C 、2C 的位置关系如何?笔者针对以上问题探讨如下: 一、预备知识:圆幂定理:二、预备知识:定义点到圆的幂与两圆的根轴 三、定理:根轴与两圆连心线垂直四、两圆相交根轴的几何意义就是公共弦所在直线 五、两圆相切(内切或外切)根轴的几何意义就是公切线 六、两圆相离根轴的几何意义与位置 七、两圆内含根轴的几何意义与位置 八、结论:正文对于两个非同心圆的一般方程,若把它们作差,消去二次项后会得到一个二元一次方程,即得到一条直线的方程。

设两圆0:111221=++++F y E x D y x C ,0:222222=++++F y E x D y x C ,把这两个圆的方程作差,消去二次项后,得到的一条直线方程为0)()()(:212121=-+-+-F F y E E x D D l 。

现在我想探讨的问题是:所得直线l 在两圆的5种位置关系下的几何意义以及l 已知两圆1C 、2C 的位置关系如何?笔者针对以上问题探讨如下:一、预备知识:圆幂定理:1.相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。

2.切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

3.割线定理:从圆外一点P 引两条割线与圆分别交于A 、B ;C 、D ,则有 PA·PB=PC·PD。

统一归纳为圆幂定理:过任意不在圆上的一点P 引两条直线L1、L2,L1与圆交于A 、B (可重合,即切线),L2与圆交于C 、D (可重合),则有PA·PB=PC·PD。

4.圆幂定理推论:设圆半径为r ,圆心为O , 若P 在圆外,则()()()22222PA PB PC PD PO r PO r PO r PO r ==+-=-=-=切线长;若P 在圆内,()()2222PA PB PC PD r PO r PO r PO PO r ==--=-=-。

第二章直线与圆的方程教材分析及教学建议课件-高二数学人教A版(2019)选择性必修第一册

第二章直线与圆的方程教材分析及教学建议课件-高二数学人教A版(2019)选择性必修第一册

约2课时
2.5直线与圆、圆与圆的位置关系 约3课时
小结与复习
约2课时
三.新、旧教材的内容变化
3.1 内容安排的变化
《新大纲》的选择性必修一第二章将《原大纲》直线部分的有向线段、 两点间距离公式、线段定比分点等内容移至必修二第六章“平面向量”, 将《原大纲》选学内容直线参数方程移到本章第68页中探究与发现,圆 的参数方程移到本章第89页拓广探索第10题。
①通过“对于直角坐标系内的直线,它的位置由哪些条件确定?”引 导学生思考:平面几何中是“两点确定一条直线”,有了坐标系作为参 照系,这种条件可以有哪些变化。
②在学生认识到可以用直线与坐标轴的位置关系来确定后,再引入倾 斜角概念。在此基础上再讨论如何用代数方法表示直线的“倾斜程度”, 由此引入斜率概念。
问题一:已知实数 x, y 满足3x 4y 10 ,求 x2 y2 的最小值.
问题二:已知实数 x, y 满足 x2 y2 1,求 y 的取值范围.
x2
问题三:已知方程组
y y
kx x2
1
.
试讨论 k 的取值范围,使得该方程组分别有一解、二解和无解.
(3) 重视分类思想在教学中的渗透。例如:直线倾斜角的定义、直 线斜率的定义、如何用直线的点斜式和斜截式设直线方程、过圆外一 点求圆的切线方程时要注意什么、设直线的截距式方程时又要注意什 么等。
3.4思想方法呈现的变化
③通过引导语:“在直角坐标系中,给定一点P0(x0,y0)和斜率k,
就能唯一确定一条直线,即平面直角坐标系中的点在不在这条直线上,
完全由点P0(x0,y0)和斜率k确定。也就是说,直线上任意一点P(x, y)的坐标完全由P0的坐标x0,y0和k确定。那么这种关系的代数表达式

直线与圆及圆与圆的位置关系

直线与圆及圆与圆的位置关系

直线与圆及圆与圆的位置关系【本讲教育信息】⼀. 教学内容:直线与圆及圆与圆的位置关系⼆. 学习⽬标:1、能根据给出的直线和圆的⽅程,判断直线与圆、圆与圆的位置关系;2、在学习过程中,进⼀步体会⽤代数⽅法处理⼏何问题的思想;3、进⼀步体会转化、数形结合等数学思想和⽅法。

三. 知识要点:1、直线和圆的位置关系设△是联⽴直线⽅程与圆的⽅程后得到的判别式,dO-L是圆⼼O到直线L的距离,则有:直线与圆相交:有两个公共点——△>0——dO-L∈[0,R];直线与圆相切:有⼀个公共点——△=0——dO-L=R;直线与圆相离:⽆公共点——△<0——dO-L>R.2、圆与圆的位置关系两圆相交:有两个公共点——△>0——dO-O’∈[|R-r|,R+r];两圆外切:有⼀个公共点——△=0——dO-O’=R+r;两圆内切:有⼀个公共点——△=0——dO-O’=|R-r|;④两圆相离:⽆公共点——△<0——dO-O’>R+r;⑤两圆内含:⽆公共点——△<0——dO-O’<|R-r|.【典型例题】考点⼀ 研究直线与圆的位置关系例1 已知直线L过点(-2,0),当直线L与圆x2+y2=2x有两个不同交点时,求斜率k的取值范围。

法⼀:设直线L的⽅程为:y=k(x+2),与圆的⽅程联⽴,代⼊圆的⽅程令△>0可得:。

法⼀:法⼆:设直线L的⽅程为:y=k(x+2),利⽤圆⼼到直线的距离dO-L∈[0,R]可解得:。

法⼆:考点⼆ 研究圆的切线例2 直线y=x+b与曲线有且仅有⼀个公共点,求b的取值范围。

分析:作出图形后进⾏观察,以找到解决问题的思路。

分析:解:曲线即x2+y2=1(x≥0),当直线y=x+b解:与之相切时,满⾜:由观察图形可知:当或时,它们有且仅有⼀个公共点。

例3 过点P(1,2)作圆x2+y2=5的切线L,求切线L的⽅程。

解:因P点在圆上,故可求切线L的⽅程为x+2y=5。

高三数学第一轮复习:圆的方程及直线与圆的位置关系知识精讲

高三数学第一轮复习:圆的方程及直线与圆的位置关系知识精讲

高三数学第一轮复习:圆的方程及直线与圆的位置关系知识精讲【本讲主要内容】圆的方程及直线与圆的位置关系圆的标准方程、圆的一般方程、圆的参数方程、直线和圆的位置关系【知识掌握】 【知识点精析】1. 圆的标准方程:()()222x a y b r -+-=,方程表示圆心为(),C a b ,半径为r 的圆。

2. 圆的一般方程:022=++++F Ey Dx y x⑴当0422>-+F E D 时,表示圆心为,22D E ⎛⎫-- ⎪⎝⎭,的圆; ⑵当2240D E F +-=时,表示一个点,22D E ⎛⎫-- ⎪⎝⎭; ⑶当0422<-+F E D 时,它不表示任何图形。

3. 圆的标准方程与一般方程的比较:圆的标准方程的优点在于它明确地指出了圆心和半径,而一般方程突出了方程形式上的特点:①2x 和2y 的系数相同,都不等于0;②没有xy 这样的二次项。

二元二次方程220Ax Bxy Cy Dx Ey F +++++=表示圆的充要条件是:①2x 和2y 的系数相等且不为零,即0A C =≠;②没有xy 项,即0B =;③0422>-+F E D ,其中①、②是二元二次方程表示圆的必要条件,但不是充分条件。

说明:圆的标准方程和一般方程均含有三个参变量,因此必须有三个独立条件才能确定一个圆;求圆的方程的主要方法为待定系数法。

4. 圆的参数方程:在取定的坐标系中,如果曲线上任意一点的坐标,x y 都是某个变数t 的函数,即()()x f t y g t =⎧⎪⎨=⎪⎩()*,并且对于t 的每一个允许值,由方程组()*所确定的点(),M x y 都在这条曲线上,那么方程组()*就叫做这条曲线的参数方程,联系,x y 之间关系的变数叫做参变数,简称参数。

cos sin x a r y b r θθ=+⎧⎨=+⎩()θ为参数表示圆心为()a ,b ,半径为r 的圆。

5. 直线与圆的位置关系: ⑴点与圆的位置关系:若圆()()222x a y b r -+-=,那么点()000,P x y 在⎪⎪⎩⎪⎪⎨⎧>-+-⇔<-+-⇔=-+-⇔220202202022020)()()()()()(r b y a x r b y a x r b y a x 圆外圆内圆上⑵直线与圆的位置关系:直线与圆的位置关系有三种:相离、相切、相交。

必修2:直线与圆的方程

必修2:直线与圆的方程

42
2
又令 y 0 ,得 x 10 3
故直线的截距式方程 x y 1 10 5
32
点评:直线方程的四种特殊形式之间存在着内在的联系,它是直线在不同条件下的不同
表现形式,要掌握好它们之间的互化。在解具体问题时,要根据问题的条件、结论,灵活恰
当地选用公式,使问题解得简捷、明了。
例 5.直线 l 经过点 P(-5,-4),且与两坐标轴围成的三角形面积为 5,求直线 l 的方
直线、圆的方程
一.【课标要求】
1.直线与方程 (1)在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素; (2)理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过 两点的直线斜率的计算公式; (3)根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点 式及一般式),体会斜截式与一次函数的关系; 2.圆与方程 回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程与一般方程。
0 2 1,选 B。 2
【答案】B
【点评】:此题重点考察圆的标准方程和点到直线的距离;
【突破】:数形结合,使用点 C 到直线 l 的距离距离公式
例 6. (天津文,14)若圆 x2 y 2 4 与圆 x2 y2 2ay 6 0(a 0) 的公共弦长为 2 3 ,
则 a=________.

3
【解】:∵直线 y 3x 绕原点逆时针旋转 900 的直线为 y 1 x ,从而淘汰(C),(D) 3
又∵将 y 1 x 向右平移1个单位得 y 1 x 1 ,即 y 1 x 1
3
3
33
【点评】:此题重点考察互相垂直的直线关系,以及直线平移问题;
故选 A;

第七章《直线和圆的方程》教材分析及教学建议

第七章《直线和圆的方程》教材分析及教学建议
ⅲ. 对于 z=∣x+2y-#43;2y-4=0 距离的 5 倍;
y2 ⅳ. 对于 z= x 1 ,z 可看作是点(x,y)与点(1,2)连
线的斜率.
(5)在讲解“曲线和方程”的概念时, 要让学生深刻认识和理解定义:
①曲线上的点的坐标都是这个方程的解:
②以这个方程的解为坐标的点都是曲线 上的点.
四、 内容分析: §7.1直线的倾斜角和斜率 重点:直线倾斜角和斜率概念。 难点:斜率概念的学习和过两点直线的斜率公式 的建立。直线方程和方程的直线的概念;
倾斜角分两种情况: a. 当直线和 x 轴平行或重合,规定为 ; b. 当直线与 x 轴相交时,规定把 x 轴绕交点按逆时针 方向旋转到和直线重合时所转过的最小正角。 斜率与斜率公式: a. 倾斜角不为 的正切值叫做直线的斜率; b. 倾斜角为 的直线斜率不存在; c. 斜率公式的推导,直线的方向向量。
问题四:已知直线过点(2,3)且在两坐标 上的截距相等,求直线的方程.
问题五:过圆(x-1)2+y2=1外一点(2,4) 作圆的切线,求所作切线的方程.
(4)在进行线性规划内容的教学时,要注意数形 结合思想方法的渗透,通过对目标函数的几何意义 的提炼,找到合理、简捷的解题方法。
问题六 已知 x、y 满足条件 x+2y-2≤0, x≥0,y≥0.
求 x 2 y 2 的最小值. 问题二:已知实数 x,y 满足 x2+y2=1,求
x
y
2
的取值范围.
y=kx,
问题三:已知方程组 y= . x2 1 试讨
论 k 的取值范围,使得该方程组分别有一解、
二解和无解.
(3) 重视分类思想在教学中的渗透。例如: 直线倾斜角的定义、直线斜率的定义、如何用 直线的点斜式和斜截式设直线方程、过圆外一 点求圆的切线方程时要注意什么、设直线的截 距式方程时又要注意什么等。

高考数学复习第16讲 与圆相关的定点、定值问题

高考数学复习第16讲  与圆相关的定点、定值问题

微专题17 与圆相关的定点、定值问题圆的综合问题还可能会考查与圆有关的定点、定值问题,这类问题的解决往往先从特例题:已知圆O :x 2+y 2=9.点A (-5,0),在x 轴上存在定点B (不同于点A ),满足:对于圆O 上任一点P ,都有PBP A为一常数,试求所有满足条件的点B 的坐标.变式1已知圆O 的方程为x 2+y 2=1,直线l 1过点A(3,0),且与圆O 相切.(1)求直线l 1的方程;(2)设圆O 与x 轴交于P ,Q 两点,M 是圆O 上异于P ,Q 的任意一点,过点A 且与x 轴垂直的直线为l 2,直线PM 交直线l 2于点P′,直线QM 交直线l 2于点Q′.求证:以P′Q′为直径的圆C 总过定点,并求出定点坐标.变式2已知过点A(0,1),且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1相交于M ,N 两点.求证:AM →·AN →为定值7.串讲1如图,已知以点A(-1,2)为圆心的圆与直线l 1:x +2y +7=0相切.过点B(-2,0)的动直线l 与圆A 相交于M ,N 两点,Q 是MN 的中点,直线l 与l 1相交于点P.BQ →·BP →是否为定值?如果是,求出其定值;如果不是,请说明理由.串讲2设O 为坐标原点,F(1,0),M 是l :x =2上的点,过点F 作OM 的垂线与以OM 为直径的圆D 交于P ,Q 两点.(1)若PQ =6,求圆D 的方程;(2)若M 是l 上的动点,求证点P 在定圆上,并求该定圆的方程.(2018·江苏模拟卷)如图,在平面直角坐标系xOy 中,A ,B 是圆O :x 2+y 2=1与x 轴的两个交点(点B 在点A 右侧),点Q(-2,0),x 轴上方的动点P 使直线PA ,PQ ,PB 的斜率存在且依次成等差数列.(1)求证:动点P 的横坐标为定值;(2)设直线PA ,PB 与圆O 的另一个交点分别为S ,T ,求证:点Q ,S ,T 三点共线.(2017·江苏模拟卷)在平面直角坐标系xOy 中,已知定点A(-4,0),B(0,-2),半径为r 的圆M 的圆心M 在线段AB 的垂直平分线上,且在y 轴右侧,圆M 被y 轴截得的弦长为3r.(1)若r =2,求圆M 的方程; (2)当r 变化时,是否存在定直线与圆相切?如果存在,求出定直线的方程;如果不存在,请说明理由.答案:(1)(x -1)2+(y -5)2=4;(2)存在两条直线y =3和4x +3y -9=0与圆相切.解析:(1)设圆心M(m ,n),由题意可知⎩⎪⎨⎪⎧⎝⎛⎭⎫32r 2+m 2=r 2,m >0,(m +4)2+n 2=m 2+(n +2)2,解得⎩⎪⎨⎪⎧m =12r ,n =r +3,4分∴圆M 的方程为(x -1)2+(y -5)2=4.5分(2)设直线l :y =kx +b ,则⎪⎪⎪⎪k·r 2-r -3+b 1+k 2=r 对任意r >0恒成立,7分由⎪⎪⎪⎪⎝⎛⎭⎫k 2-1r +b -3=r 1+k 2,得⎝⎛⎭⎫k 2-12r 2+(k -2)(b -3)r +(b -3)2 =r 2(1+k 2),9分∴⎩⎪⎨⎪⎧⎝⎛⎭⎫k 2-12=1+k 2,(k -2)(b -3)=0,(b -3)2=0,计算得出⎩⎪⎨⎪⎧k =0,b =3或⎩⎪⎨⎪⎧k =-43,b =3,13分 ∴存在两条直线y =3和4x +3y -9=0与圆相切.14分微专题17 与圆相关的定点、定值问题巩固练习1.圆C :x 2+y 2-2tx -2t 2y +4t -4=0,则圆过定点________.2.已知以曲线y =2x 上任意点C 为圆心的圆与x 轴交于点O ,A ,与y 轴交于点O ,B ,其中O 为原点,则△AOB 的面积为________.3.已知直线l :mx -y +m =0,圆C :(x -a)2+y 2=4.若对任意a ∈[1,+∞),存在l 被C 截得弦长为2,则实数m 的取值范围是________.4.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则2P A +PB 的最大值是________.5.在平面直角坐标系xOy 中,已知圆C :x 2+y 2-(6-2m)x -4my +5m 2-6m =0,直线l 经过点(-1,1).若对任意的实数m ,定直线l 被圆C 截得的弦长为定值,则直线l 的方程为________.6.在平面直角坐标系xOy 中,圆C 的方程为(x -1)2+y 2=4,P 为圆C 上一点.若存在一个定圆M ,过P 作圆M 的两条切线PA ,PB ,切点分别为A ,B ,当P 在圆C 上运动时,使得∠APB 恒为60°,则圆M 的方程为________.7.已知圆C 的方程为(x +4)2+y 2=16,直线l 过圆心且垂直于x 轴,其中G 点在圆上,F 点坐标为(-6,0).(1)若直线FG 与直线l 交于点T ,且G 为线段FT 的中点,求直线FG 被圆C 所截得的弦长;(2)在平面上是否存在定点P ,使得对圆C 上任意的点G 有GF GP =12?若存在,求出点P 的坐标;若不存在,请说明理由.8.如图,在平面直角坐标系xOy 中,已知F 1(-4,0),F 2(4,0),A(0,8),直线y =t(0<t <8)与线段AF 1,AF 2分别交于点P ,Q ,过点Q 作直线QR ∥AF 1交F 1F 2于点R ,记△PRF 1的外接圆为圆C.(1)求证:圆心C 在定直线7x +4y +8=0上;(2)圆C 是否恒过异于点F 1的一个定点?若过,求出该点的坐标;若不过,请说明理由.微专题17参考答案例题答案:B ⎝⎛⎭⎫-95,0. 解法1如图,假设存在这样的点B(t ,0),当P 为圆O 与x 轴左交点(-3,0)时,PB PA =|t +3|2;当P 为圆O 与x 轴右交点(3,0)时,PB PA =|t -3|8,依题意,|t +3|2=|t -3|8,解得,t =-5(舍去),或t =-95.下面证明:点B ⎝⎛⎭⎫-95,0对于圆O 上任一点P ,都有PBPA为一常数. 设P(x ,y),则y 2=9-x 2,所以PB 2PA 2=⎝⎛⎭⎫x +952+y 2(x +5)2+y 2=x 2+185x +8125+9-x 2x 2+10x +25+9-x 2=1825(5x +17)2(5x +17)=925,从而PB PA =35为常数.解法2假设存在这样的点B(t ,0),使得PBPA 为常数λ,则PB 2=λ2PA 2,所以(x -t)2+y 2=λ2[(x +5)2+y 2],将y 2=9-x 2代入得,x 2-2xt +t 2+9-x 2=λ2(x 2+10x +25+9-x 2),即2(5λ2+t)x +34λ2-t 2-9=0对x ∈[-3,3]恒成立,所以⎩⎨⎧5λ2+t =0,34λ2-t 2-9=0,解得⎩⎨⎧λ=35,t =-95,或⎩⎨⎧λ=1,t =-5,(舍去),所以存在点B ⎝⎛⎭⎫-95,0对于圆O 上任一点P ,都有PB PA 为常数35. 变式联想变式1 答案:(1)y =±24(x -3);(2)(3±22,0). 解析:(1)因为直线l 1过点A(3,0),且与圆O :x 2+y 2=1相切,设直线l 1的方程为y =k(x -3),即kx -y -3k =0,则圆心O(0,0)到直线l 1的距离为d =|3k|k 2+1=1,解得k =±24,所以直线l 1的方程为y=±24(x -3). (2)对于圆方程x 2+y 2=1,令y =0,得x =±1,即P(-1,0),Q(1,0), 又直线l 2过点A 且与x 轴垂直,所以直线l 2方程为x =3,设M(s ,t),则直线PM 的方程为y =ts +1(x +1).解方程组⎩⎪⎨⎪⎧x =3,y =t s +1(x +1), 得P′⎝⎛⎭⎫3,4t s +1同理可得,Q ′⎝⎛⎭⎫3,2t s -1.所以以P′Q′为直径的圆C 的方程为(x -3)(x -3)+⎝⎛⎭⎫y -4t s +1⎝⎛⎭⎫y -2ts -1=0,又s 2+t 2=1,所以整理得x 2+y 2-6x +1+6x -2t y =0,若圆C 经过定点,只需令y =0,从而有x 2-6x +1=0,解得x =3±22,所以,圆C 总经过定点坐标为(3±22,0).变式2证法1设M(x 1,y 1),N(x 2,y 2),联立⎩⎨⎧y =kx +1,(x -2)2+(y -3)2=1,得(k 2+1)x 2-4(k +1)x +7=0,所以⎩⎪⎨⎪⎧x 1+x 2=4(k +1)k 2+1,x 1x 2=7k 2+1.因为AM →=(x 1,y 1-1),AN →=(x 2,y 2-1),所以AM →·AN →=x 1x 2+(y 1-1)(y 2-1)=x 1x 2+k 2x 1x 2=(1+k 2)x 1x 2=(1+k 2)x 1x 2=(1+k 2)71+k 2=7.所以AM →·AN →为定值7.证法2由于M ,N 共线,所以AM →·AN →=AM·AN =(AC -1)(AC +1)=AC 2-1=7.串讲激活串讲1答案:BQ →·BP →=-5.解析:因为AQ ⊥BP ,所以AQ →·BP →=0,所以BQ →·BP →=(BA →+AQ →)·BP →=BA →·BP →+AQ →·BP →=BA →·BP →.当直线l 与x 轴垂直时,得P ⎝⎛⎭⎫-2,-52.则BP →=⎝⎛⎭⎫0,-52, 又BA →=(1,2),所以BQ →·BP →=BA →·BP →=-5.当直线l 的斜率存在时,设直线l 的方程为y =k(x +2).由⎩⎨⎧y =k (x +2),x +2y +7=0,解得P ⎝ ⎛⎭⎪⎫-4k -71+2k ,-5k 1+2k .所以BP →=⎝ ⎛⎭⎪⎫-51+2k ,-5k 1+2k .所以BQ →·BP →=-51+2k -10k 1+2k =-5.综上所述,BQ →·BP →是定值,且BQ →·BP →=-5.串讲2答案:(1)圆D 的方程:(x -1)2+(y -1)2=2或(x -1)2+(y +1)2=2; (2)点P 在定圆x 2+y 2=2上. 解析:(1)设M(2,t),则圆D的方程:(x -1)2+⎝⎛⎭⎫y -t 22=1+t 24, 直线PQ 的方程:2x +ty -2=0,由PQ =6, 2⎝⎛⎭⎫1+t 24-⎝⎛⎭⎪⎪⎫⎪⎪⎪⎪2+t 22-24+t 22=6,解得t =±2. 所以圆D 的方程为(x -1)2+(y -1)2=2或(x -1)2+(y +1)2=2.(2)解法1设P(x 0,y 0),由(1)知⎩⎪⎨⎪⎧(x 0-1)2+⎝⎛⎭⎫y 0-t 22=1+t 24,2x 0+ty 0-2=0,即⎩⎨⎧x 02+y 02-2x 0-ty 0=0,2x 0+ty 0-2=0,消去t 得x 02+y 02=2.所以点P 在定圆x 2+y 2=2上.解法2设P(x 0,y 0),则直线FP 的斜率为k FP =y 0x 0-1,因为FP ⊥OM ,所以直线OM 的斜率为k OM =-x 0-1y 0,所以直线OM 的方程为y =-x 0-1y 0x.点M 坐标为⎝⎛⎭⎫2,-2(x 0-1)y 0.因为MP ⊥OP ,所以OP →·MP →=0,所以x 0(x 0-2)+y 0⎣⎡⎦⎤y 0+2(x 0-1)y 0=0,所以x 02+y 02=2,所以点P在定圆x 2+y 2=2上.解法3设直线PQ 与OM 交于点H ,A(2,0),由射影定理知OP 2=OH·OM ,由此知,OH ·OM =OF·OA =2,所以OP 2=2,所以点P 在定圆x 2+y 2=2上.新题在线证明:(1)由题设知A(-1,0),B(1,0). 设P(x 0,y 0)(y 0>0),则k PQ =y 0x 0+2,k PA =y 0x 0+1,k PB =y 0x 0-1. 因为直线PA ,PQ ,PB 的斜率存在且依次成等差数列,所以2k PQ =k PA +k PB ,即2y 0x 0+2=y 0x 0+1+y 0x 0-1,解得x 0=-12,即动点P 的横坐标为定值.(2)由(1)知P ⎝⎛⎭⎫-12,y 0,k PA =2y 0,k PB =-23y 0,直线PA 的方程为y =2y 0(x +1),代入x 2+y 2=1得(x +1)[(1+4y 02)x -(1-4y 02)]=0,所以点S 的横坐标x S =1-4y 021+4y 02,从而y S =4y 01+4y 02. 同理:x T =-9+4y 029+4y 02,y T=12y 09+4y 02, 所以k QS =4y 01+4y 021-4y 021+4y 02+2=4y 03+4y 02,k QT =12y 09+4y 02-9+4y 029+4y 02+2=4y 03+4y 02,所以k QS=k QT,所以点Q,S,T三点共线.微专题17巩固练习参考答案1.答案:(2,0). 解析:圆C 的方程可以改写为(x -2)(x +2-2t )+y (y -2t 2)=0,表示以(2,0),(2t -2,2t 2)为直径的圆. 2.答案:4.解析:设C ⎝⎛⎭⎫t ,2t (t ∈R ,t ≠0),由题意知,圆C 的方程为(x -t )2+⎝⎛⎭⎫y -2t 2=t 2+4t 2,化简得x 2-2tx +y 2-4t y =0,当y =0时,x =0或2t ,则A (2t ,0);当x =0时,y =0或4t ,则B ⎝⎛⎭⎫0,4t ,所以S △AOB =12OA ·OB =12|2t |·⎪⎪⎪⎪4t =4. 3.答案:[-3,0)∪(0,3]. 解法1由题意可得,圆心C 到l 的距离d =22-⎝⎛⎭⎫222=3,即|am +m |m 2+1=3,所以m 2=3(a +1)2-3,又因为a ≥1,所以0<m 2≤3,-3≤m <0或0<m ≤ 3.解法2由题意可得,圆心C 到l 的距离d =22-⎝⎛⎭⎫222=3,又l :mx -y +m =0恒过定点A (-1,0),a ≥1,所以AC ≥2,另设直线l 的倾斜角为θ,所以sin θ=3AC ∈⎝⎛⎦⎤0,32,所以l 的斜率m =tan θ∈[-3,0)∪(0,3].4.答案:5 2.解析:由条件知定点A (0,0),B (1,3),且P A ⊥PB ,所以P A 2+PB 2=10(定值),所以(2P A +PB )2≤(P A 2+PB 2)(22+12)=50,即2P A +PB ≤5 2.5.答案:2x +y +1=0.解析:由条件知圆心C (3-m ,2m )在直线2x +y -6=0上,若对任意的实数m ,定直线l 被圆C 截得的弦长都是定值,则直线l 与圆心所在直线平行,再代入点(-1,1)得直线l 的方程为2x +y +1=0.6.答案:(x -1)2+y 2=1.解析:设定圆圆心M (a ,b ),半径为r ,动点P (x ,y ),由题意知MP =2r ,即(x -a )2+(y -b )2=4r 2,由于点P 在圆C :(x -1)2+y 2=4上,所以(2-2a )x -2by +a 2+b 2-4r 2+3=0,对任意x ,y 都成立,所以a =1,b =0,r 2=1,所求圆方程为(x -1)2+y 2=1.7.答案:(1)直线FG 被圆C 截得的弦长为7;(2)平面上存在定点P (-12,0),使得结论成立. 解析:(1)由题意,设G (-5,y G ),代入(x +4)2+y 2=16,得y G =±15,所以FG 的斜率为k =±15,FG 的方程为y =±15(x +6).设圆心C (-4,0)到FG 的距离为d ,由点到直线的距离公式得d =|±215|15+1=152.则直线FG 被圆C 截得的弦长为26-⎝⎛⎭⎫1522=7.故直线FG 被圆C 截得的弦长为7. (2)设P (s ,t ),G (x 0,y 0),则由GF GP =12,得(x 0+6)2+y 02(x 0-s )2+(y 0-t )2=12,整理得3(x 02+y 02)+(48+2s )x 0+2ty 0+144-s 2-t 2=0.① 又G (x 0,y 0)在圆C :(x +4)2+y 2=16上,所以x 02+y 02+8x 0=0.②将②代入①,得(2s +24)x 0+2ty 0+144-s 2-t 2=0.又由G (x 0,y 0)为圆C 上任意一点可知,11 / 11 ⎩⎪⎨⎪⎧2s +24=0,2t =0,144-s 2-t 2=0.解得s =-12,t =0.所以在平面上存在定点P (-12,0),使得结论成立. 8.答案:(1)略;(2)圆C 恒过异于点F 1的一定点,该点坐标为⎝⎛⎭⎫413,3213.解析:(1)解法1:易得直线AF 1:y =2x +8;AF 2:y =-2x +8,所以P ⎝⎛⎭⎫t -82,t ,Q ⎝⎛⎭⎫8-t 2,t ,再由QR ∥AF 1,得R (4-t ,0),则线段F 1R 的中垂线方程为x =-t 2,线段PF 1的中垂线方程为y =-12x +5t -168,由⎩⎨⎧y =-12x +5t -168,x =-t 2,得△PRF 1的外接圆的圆心坐标为⎝⎛⎭⎫-t 2,7t 8-2, 经验证,该圆心在定直线7x +4y +8=0上.解法2:易得直线AF 1:y =2x +8;AF 2:y =-2x +8,所以P ⎝⎛⎭⎫t -82,t ,Q ⎝⎛⎭⎫8-t 2,t ,再由QR ∥AF 1,得R (4-t ,0),设△PRF 1的外接圆C 的方程为x 2+y 2+Dx +Ey +F =0,则⎩⎪⎨⎪⎧(4-t )2+(4-t )D +F =0,(-4)2-4D +F =0,⎝⎛⎭⎫t -822+t 2+t -82D +tE +F =0, 解得⎩⎪⎨⎪⎧D =t ,E =4-74t ,F =4t -16,所以圆心坐标为⎝⎛⎭⎫-t 2,7t 8-2,经验证,该圆心在定直线7x +4y +8=0上. (2)由(1)可得圆C 的方程为x 2+y 2+tx +⎝⎛⎭⎫4-74t y +4t -16=0,该方程可整理为(x 2+y 2+2y -16)+t ⎝⎛⎭⎫x -74y +4=0,则由⎩⎪⎨⎪⎧x 2+y 2+4y -16=0,x -74y +4=0,解得⎩⎨⎧x =413,y =3213,或⎩⎨⎧x =-4,y =0,所以圆恒过异于点F 1的一个定点,该点坐标为⎝⎛⎭⎫413,3213.。

直线和圆的参数方程重要知识

直线和圆的参数方程重要知识
【基础知识梳理】
1.直线的参数方程
(1)过点 M0(x0,y0),倾斜角为 α 的直线 l 的参数方程为
x=x0+tcos α y=y0+t sin α
(t 为参数)
.
重点辅导
1
2 参数的几何意义 直线的参数方程中参数 t 的几何意义是:
直线上动点M到定点M0(x0,y0)的距离就是参数t的绝对值
M• 450 P x
O
的坐标为x, y,根据条件知
台风中心M移动形成的直线
图2 15
l 的方程为
x 300 40t cos1350 ,
y 40t sin1350 ,
t 为参数,t 0
x 300 20 2t ,
即 y 20 2t ,
t 为参数,t 0
重点辅导
18
当点M 300 20 2t,20 2t 在圆O内或在圆O上时,有
t为参数

思考 由M 0M te,你能得到直线l的参数 方 程②中 参 数t 的 几 何 意 义 吗?
重点辅导
4
因为e cos,sin ,所以| e | 1.由 M0M
te,得到| M0M || t | .所以,直线上的动点M 到定点M0的距离,等于② 中参数t 的绝对值.
当 0 时,sin 0,所以,直线l的单位
(2)设l与圆 x 2 y2 =4相交于两点A,B,求点P
到A,B两点的距离之积.
解:(1)直线的参数方程是
x=1+
3 2t
y=1+12t
(t 是参数).
重点辅导
7
(2)因为点 A,B 都在直线 l 上,所以可设它们对应的参数为 t1 和 t2,则点 A,B 的坐标分别为 A1+ 23t1,1+12t1,B1+ 23t2,1+21t2. 以直线 l 的参数方程代入圆的方程 x2+y2=4, 整理得到 t2+( 3+1)t-2=0.① 因为 t1 和 t2 是方程①的解,从而 t1t2=-2. 所以|PA|·|PB|=|t1t2|=|-2|=2.

高考数学考点归纳之 直线与圆、圆与圆的位置关系

高考数学考点归纳之  直线与圆、圆与圆的位置关系

高考数学考点归纳之 直线与圆、圆与圆的位置关系一、基础知识1.直线与圆的位置关系(半径为r ,圆心到直线的距离为d )Δ<0 Δ=0 Δ>0 2.圆与圆的位置关系(两圆半径为r 1,r 2,d =|O 1O 2|)|r -r |<d <二、常用结论(1)圆的切线方程常用结论①过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.②过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.③过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2.(2)直线被圆截得的弦长弦心距d 、弦长l 的一半12l 及圆的半径r 构成一直角三角形,且有r 2=d 2+⎝⎛⎭⎫12l 2. 考点一 直线与圆的位置关系考法(一) 直线与圆的位置关系的判断[典例] 直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( ) A .相交B .相切C .相离D .不确定[解析] 法一:由⎩⎪⎨⎪⎧mx -y +1-m =0,x 2+(y -1)2=5, 消去y ,整理得(1+m 2)x 2-2m 2x +m 2-5=0, 因为Δ=16m 2+20>0, 所以直线l 与圆相交.法二:由题意知,圆心(0,1)到直线l 的距离d =|m |m 2+1<1<5,故直线l 与圆相交. 法三:直线l :mx -y +1-m =0过定点(1,1),因为点(1,1)在圆x 2+(y -1)2=5的内部,所以直线l 与圆相交.[答案] A[解题技法] 判断直线与圆的位置关系的常见方法 (1)几何法:利用d 与r 的关系.(2)代数法:联立方程组,消元得一元二次方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. [提醒] 上述方法中最常用的是几何法. 考法(二) 直线与圆相切的问题[典例] (1)过点P (2,4)作圆(x -1)2+(y -1)2=1的切线,则切线方程为( ) A .3x +4y -4=0 B .4x -3y +4=0 C .x =2或4x -3y +4=0 D .y =4或3x +4y -4=0(2)(2019·成都摸底)已知圆C :x 2+y 2-2x -4y +1=0上存在两点关于直线l :x +my +1=0对称,经过点M (m ,m )作圆C 的切线,切点为P ,则|MP |=________.[解析] (1)当斜率不存在时,x =2与圆相切;当斜率存在时,设切线方程为y -4=k (x -2),即kx -y +4-2k =0,则|k -1+4-2k |k 2+1=1,解得k =43,则切线方程为4x -3y +4=0,故切线方程为x =2或4x -3y +4=0.(2)圆C :x 2+y 2-2x -4y +1=0的圆心为C (1,2),半径为2.因为圆上存在两点关于直线l :x +my +1=0对称,所以直线l :x +my +1=0过点(1,2),所以1+2m +1=0,解得m =-1,所以|MC |2=13,|MP |=13-4=3.[答案] (1)C (2)3 考法(三) 弦长问题[典例] (1)若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为( )A.12 B .1 C.22D.2(2)(2019·海口一中模拟)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为( )A .4πB .2πC .9πD .22π[解析] (1)因为圆心(0,0)到直线ax +by +c =0的距离d =|c |a 2+b 2=|c |2|c |=22,因此根据直角三角形的关系,弦长的一半就等于1-⎝⎛⎭⎫222=22,所以弦长为 2. (2)易知圆C :x 2+y 2-2ay -2=0的圆心为(0,a ),半径为a 2+2.圆心(0,a )到直线y =x +2a 的距离d =|a |2,由直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,|AB |=23,可得a 22+3=a 2+2,解得a 2=2,故圆C 的半径为2,所以圆C 的面积为4π,故选A.[答案] (1)D (2)A[题组训练]1.已知圆的方程是x 2+y 2=1,则经过圆上一点M ⎝⎛⎭⎫22,22的切线方程是________. 解析:因为M ⎝⎛⎭⎫22,22是圆x 2+y 2=1上的点,所以圆的切线的斜率为-1,则设切线方程为x +y +a =0,所以22+22+a =0,得a =-2,故切线方程为x +y -2=0. 答案:x +y -2=02.若直线kx -y +2=0与圆x 2+y 2-2x -3=0没有公共点,则实数k 的取值范围是________.解析:由题知,圆x 2+y 2-2x -3=0可写成(x -1)2+y 2=4,圆心(1,0)到直线kx -y +2=0的距离d >2,即|k +2|k 2+1>2,解得0<k <43.答案:⎝⎛⎭⎫0,43 3.设直线y =kx +1与圆x 2+y 2+2x -my =0相交于A ,B 两点,若点A ,B 关于直线l :x +y =0对称,则|AB |=________.解析:因为点A ,B 关于直线l :x +y =0对称,所以直线y =kx +1的斜率k =1,即y =x +1.又圆心⎝⎛⎭⎫-1,m2在直线l :x +y =0上,所以m =2,则圆心的坐标为(-1,1),半径r =2,所以圆心到直线y =x +1的距离d =22,所以|AB |=2r 2-d 2= 6. 答案:6考点二 圆与圆的位置关系[典例] (2016·山东高考)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离[解析] 法一:由⎩⎪⎨⎪⎧x 2+y 2-2ay =0,x +y =0,得两交点为(0,0),(-a ,a ). ∵圆M 截直线所得线段长度为22, ∴a 2+(-a )2=2 2.又a >0,∴a =2.∴圆M 的方程为x 2+y 2-4y =0, 即x 2+(y -2)2=4,圆心M (0,2),半径r 1=2.又圆N :(x -1)2+(y -1)2=1,圆心N (1,1),半径r 2=1, ∴|MN |=(0-1)2+(2-1)2= 2. ∵r 1-r 2=1,r 1+r 2=3,1<|MN |<3, ∴两圆相交.法二:由题知圆M :x 2+(y -a )2=a 2(a >0),圆心(0,a )到直线x +y =0的距离d =a2,所以2a 2-a 22=22,解得a =2.圆M ,圆N 的圆心距|MN |=2,两圆半径之差为1,两圆半径之和为3,故两圆相交.[答案] B [变透练清]1.(2019·太原模拟)若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =( )A .21B .19C .9D .-11解析:选C 圆C 1的圆心为C 1(0,0),半径r 1=1,因为圆C 2的方程可化为(x -3)2+(y -4)2=25-m ,所以圆C 2的圆心为C 2(3,4),半径r 2=25-m (m <25).从而|C 1C 2|=32+42=5.由两圆外切得|C 1C 2|=r 1+r 2,即1+25-m =5,解得m =9,故选C.2.(变结论)若本例两圆的方程不变,则两圆的公共弦长为________.解析:联立两圆方程⎩⎪⎨⎪⎧x 2+y 2-4y =0,(x -1)2+(y -1)2=1,两式相减得,2x -2y -1=0,因为N (1,1),r =1,则点N 到直线2x -2y -1=0的距离d =|-1|22=24,故公共弦长为21-⎝⎛⎭⎫242=142.答案:142[解题技法]几何法判断圆与圆的位置关系的3步骤(1)确定两圆的圆心坐标和半径长;(2)利用平面内两点间的距离公式求出圆心距d ,求r 1+r 2,|r 1-r 2|; (3)比较d ,r 1+r 2,|r 1-r 2|的大小,写出结论.[课时跟踪检测]A 级1.若直线2x +y +a =0与圆x 2+y 2+2x -4y =0相切,则a 的值为( ) A .±5 B .±5 C .3D .±3解析:选B 圆的方程可化为(x +1)2+(y -2)2=5,因为直线与圆相切,所以有|a |5=5,即a =±5.故选B.2.与圆C 1:x 2+y 2-6x +4y +12=0,C 2:x 2+y 2-14x -2y +14=0都相切的直线有( )A .1条B .2条C .3条D .4条解析:选A 两圆分别化为标准形式为C 1:(x -3)2+(y +2)2=1,C 2:(x -7)2+(y -1)2=36,则两圆圆心距|C 1C 2|=(7-3)2+[1-(-2)]2=5,等于两圆半径差,故两圆内切.所以它们只有一条公切线.故选A.3.(2019·南宁、梧州联考)直线y =kx +3被圆(x -2)2+(y -3)2=4截得的弦长为23,则直线的倾斜角为( )A.π6或5π6 B .-π3或π3C .-π6或π6D.π6解析:选A 由题知,圆心(2,3),半径为2,所以圆心到直线的距离为d =22-(3)2=1.即d =|2k |1+k 2=1,所以k =±33,由k =tan α,得α=π6或5π6.故选A.4.过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( ) A .2x +y -5=0 B .2x +y -7=0 C .x -2y -5=0D .x -2y -7=0解析:选B 由题意知点(3,1)在圆上,代入圆的方程可得r 2=5,圆的方程为(x -1)2+y 2=5,则过点(3,1)的切线方程为(x -1)·(3-1)+y (1-0)=5,即2x +y -7=0.故选B.5.(2019·重庆一中模拟)若圆x 2+y 2+2x -6y +6=0上有且仅有三个点到直线x +ay +1=0的距离为1,则实数a 的值为( )A .±1B .±24 C .± 2D .±32解析:选B 由题知圆的圆心坐标为(-1,3),半径为2,由于圆上有且仅有三个点到直线的距离为1,故圆心(-1,3)到直线x +ay +1=0的距离为1,即|-1+3a +1|1+a 2=1,解得a =±24. 6.(2018·嘉定二模)过点P (1,-2)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为( )A .y =-34B .y =-12C .y =-32D .y =-14解析:选B 圆(x -1)2+y 2=1的圆心为C (1,0),半径为1,以|PC |=(1-1)2+(-2-0)2=2为直径的圆的方程为(x -1)2+(y +1)2=1,将两圆的方程相减得AB 所在直线的方程为2y +1=0,即y =-12.故选B.7.在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________.解析:易知圆心(2,-1),半径r =2,故圆心到直线的距离d =|2+2×(-1)-3|12+22=355,弦长为2r 2-d 2=2555. 答案:25558.若P (2,1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程为________. 解析:因为圆(x -1)2+y 2=25的圆心为(1,0),所以直线AB 的斜率等于-11-02-1=-1,由点斜式得直线AB 的方程为y -1=-(x -2),即x +y -3=0.答案:x +y -3=09.过点P (-3,1),Q (a,0)的光线经x 轴反射后与圆x 2+y 2=1相切,则a 的值为________. 解析:因为P (-3,1)关于x 轴的对称点的坐标为P ′(-3,-1), 所以直线P ′Q 的方程为y =-1-3-a (x -a ),即x -(3+a )y -a =0, 圆心(0,0)到直线的距离d =|-a |1+(3+a )2=1,所以a =-53.答案:-5310.点P 在圆C 1:x 2+y 2-8x -4y +11=0上,点Q 在圆C 2:x 2+y 2+4x +2y +1=0上,则|P Q |的最小值是________.解析:把圆C 1、圆C 2的方程都化成标准形式,得(x -4)2+(y -2)2=9,(x +2)2+(y +1)2=4.圆C 1的圆心坐标是(4,2),半径长是3; 圆C 2的圆心坐标是(-2,-1),半径是2.圆心距d =(4+2)2+(2+1)2=35>5.故圆C 1与圆C 2相离, 所以|P Q |的最小值是35-5.答案:35-511.已知圆C 1:x 2+y 2-2x -6y -1=0和圆C 2:x 2+y 2-10x -12y +45=0. (1)求证:圆C 1和圆C 2相交;(2)求圆C 1和圆C 2的公共弦所在直线的方程和公共弦长. 解:(1)证明:圆C 1的圆心C 1(1,3),半径r 1=11, 圆C 2的圆心C 2(5,6),半径r 2=4,两圆圆心距d =|C 1C 2|=5,r 1+r 2=11+4, |r 1-r 2|=4-11,∴|r 1-r 2|<d <r 1+r 2,∴圆C 1和圆C 2相交. (2)圆C 1和圆C 2的方程相减,得4x +3y -23=0, ∴两圆的公共弦所在直线的方程为4x +3y -23=0.圆心C 2(5,6)到直线4x +3y -23=0的距离d =|20+18-23|16+9=3,故公共弦长为216-9=27.12.已知圆C 经过点A (2,-1),和直线x +y =1相切,且圆心在直线y =-2x 上. (1)求圆C 的方程;(2)已知直线l 经过原点,并且被圆C 截得的弦长为2,求直线l 的方程. 解:(1)设圆心的坐标为C (a ,-2a ), 则(a -2)2+(-2a +1)2=|a -2a -1|2.化简,得a 2-2a +1=0,解得a =1.∴C (1,-2),半径r =|AC |=(1-2)2+(-2+1)2= 2. ∴圆C 的方程为(x -1)2+(y +2)2=2.(2)①当直线l 的斜率不存在时,直线l 的方程为x =0,此时直线l 被圆C 截得的弦长为2,满足条件.②当直线l 的斜率存在时,设直线l 的方程为y =kx , 由题意得|k +2|1+k 2=1,解得k =-34,∴直线l 的方程为y =-34x ,即3x +4y =0.综上所述,直线l 的方程为x =0或3x +4y =0.B 级1.过圆x 2+y 2=1上一点作圆的切线,与x 轴、y 轴的正半轴相交于A ,B 两点,则|AB |的最小值为( )A. 2B.3 C .2D .3解析:选C 设圆上的点为(x 0,y 0),其中x 0>0,y 0>0,则有x 20+y 20=1,且切线方程为x 0x +y 0y =1.分别令y =0,x =0得A ⎝⎛⎭⎫1x 0,0,B ⎝⎛⎭⎫0,1y 0,则|AB |=⎝⎛⎭⎫1x 02+⎝⎛⎭⎫1y 02=1x 0y 0≥1x 20+y 202=2,当且仅当x 0=y 0时,等号成立.2.(2018·江苏高考)在平面直角坐标系xOy 中,A 为直线l :y =2x 上在第一象限内的点,B (5,0),以AB 为直径的圆C 与直线l 交于另一点D .若AB ―→·CD ―→=0,则点A 的横坐标为________.解析:因为AB ―→·CD ―→=0,所以AB ⊥CD ,又点C 为AB 的中点,所以∠BAD =π4,设直线l 的倾斜角为θ,直线AB 的斜率为k ,则tan θ=2,k =tan ⎝⎛⎭⎫θ+π4=-3.又B (5,0),所以 直线AB 的方程为y =-3(x -5),又A 为直线l :y =2x 上在第一象限内的点,联立直线AB 与直线l 的方程,得⎩⎪⎨⎪⎧ y =-3(x -5),y =2x ,解得⎩⎪⎨⎪⎧x =3,y =6,所以点A 的横坐标为3. 答案:33.(2018·安顺摸底)已知圆C :x 2+(y -a )2=4,点A (1,0). (1)当过点A 的圆C 的切线存在时,求实数a 的取值范围; (2)设AM ,AN 为圆C 的两条切线,M ,N 为切点,当|MN |=455时,求MN 所在直线的方程.解:(1)过点A 的切线存在,即点A 在圆外或圆上, ∴1+a 2≥4,∴a ≥3或a ≤- 3.(2)设MN 与AC 交于点D ,O 为坐标原点. ∵|MN |=455,∴|DM |=255.又|MC |=2,∴|CD |=4-2025=45, ∴cos ∠MCA =452=25,|AC |=|MC |cos ∠MCA =225=5,∴|OC|=2,|AM|=1,∴MN是以点A为圆心,1为半径的圆A与圆C的公共弦,圆A的方程为(x-1)2+y2=1,圆C的方程为x2+(y-2)2=4或x2+(y+2)2=4,∴MN所在直线的方程为(x-1)2+y2-1-x2-(y-2)2+4=0,即x-2y=0或(x-1)2+y2-1-x2-(y+2)2+4=0,即x+2y=0,因此MN所在直线的方程为x-2y=0或x+2y=0.。

直线与圆的方程复习重点

直线与圆的方程复习重点

直线与圆的方程 复习重点一、重点知识结构一、重点知识结构本章以直线和圆为载体,揭示了解析几何的基本概念和方法。

直线的倾斜角、斜率的概念及公式、直线方程的五种形式是本章的重点之一,而点斜式又是其它形式的基础;一,而点斜式又是其它形式的基础;两条直线平行和垂直的充要条件、两条直线平行和垂直的充要条件、直线直线l 1到l 2的角以及两直线的夹角、的角以及两直线的夹角、点点到直线的距离公式也是重点内容;到直线的距离公式也是重点内容;用不等式(组)表示平面区域和线性规划作为新增内容,需要引起一定的注意;注意;曲线与方程的关系体现了坐标法的基本思想,是解决解析几何两个基本问题的依据;题的依据;圆的方程、直线(圆)与圆的位置关系、圆的切线问题和弦长问题等,因其易与平面几何知识结合,题目解法灵活,因而是一个不可忽视的要点。

二、高考要求二、高考要求1、掌握两条直线平行和垂直的条件,掌握两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系; 3、会用二元一次不等式表示平面区域;、会用二元一次不等式表示平面区域;4、了解简单的线性规划问题,了解线性规划的意义,并会简单的应用;5、了解解析几何的基本思想,了解用坐标法研究几何问题的方法;6、掌握圆的标准方程和一般方程,掌握圆的标准方程和一般方程,了解参数方程的概念,了解参数方程的概念,理解圆的参数方程的概念。

程的概念。

三、热点分析三、热点分析在近几年的高考试题中,两点间的距离公式,中点坐标公式,直线方程的点斜式、斜率公式及两条直线的位置关系是考查的热点。

但由于知识的相互渗透,综合考查直线与圆锥曲线的关系一直是高考命题的大热门,应当引起特别注意,本章的线性规划内容是新教材中增加的新内容,在高考中极有可能涉及,但难度不会大。

但难度不会大。

四、复习建议四、复习建议本章的复习首先要注重基础,对基本知识、基本题型要掌握好;求直线的C| = 292929292134-n n 666633 OCOD12甲乙丙维生素A(单位/千克)600 700 400 维生素B(单位/千克)800 400 500 成本(元/千克)千克) 11 9 4 yp 13131+-kk ,xy3x-y=1304x+6y=320Mïmkbm m k 1)1()12(2+++-+的坐标为(a ,yxMABCO23+-a b OMMA OM322222232131313或221313且与2PBA On n+1 2)322(1)2||(||2222--523||||2222--55或5555,即4)2(222=+×-+(161)4=-}{++=21,23p1=\2121)()(++=-+-\两边平方,化简得1214)(++=-, 即212214)(++=-. 01>>+, \112++=-, 1112()++Þ-=Î.∴ 数列þýüîíì1是等差数列.是等差数列. (2) 由题设,11=,∴1212)1(111-=Þ×-+=, 4422)12(-====pppp, +×××++=21úûùêëé-++++=222)12(151311p £úûùêëé-×-++×+×+)12()32(15313111p=þýüîíìúûùêëé---++-+-+)121321()5131()311(211p =úûùêëé--+)1211(211p23)12(223p pp <--=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 M 是线段 AB 上的一点,且 AM MB ,则点 M 的 3
轨迹方程是
1 解:设 M ( x, y ), A( x1 , y1 ) .∵ AM MB , 3 1 ∴ ( x x1 , y y1 ) (3 x, y) , 3 1 4 x x1 3 (3 x) x1 3 x 1 ∴ ,∴ . y y 1 y y 4 y 1 1 3 3
故所求的 直线方程为:x+4y-4=0
∴B(4,0)
例 2 已知直线 l 过 P(2,1)点,与 x,y 轴正半轴交与 A,B 两点, 求满足下列条件的直线方程
4 (1) 倾斜角的正弦值为 ; 5
(2) 与坐标轴围成的三角形面积为 4; (3) ABC 面积取最小值时;
解析:
4 4 (1)由 sin , ( , ) k tan 5 2 3
4 故所求直线方程为 y-1= ( x 2) 3
2 1 a 4 x y 1 (1) 设所求直线方程为: 1, 由 a b 得 a b ab 8 b 2
故所求直线方程为 x+2y-8=0
(3) 法一:设直线方程为 y-1=k(x-2),(k<0),A(2 ,0) ,B(0,1-2k)
7 7 ∴ xA+ xB= 2xM 即 3k 1 k 2 0
k2
解得 k
1 4
故所求的 直线方程为:x+4y-4=0
例3:过点M(0,1)作直线,使它被已知直线
l1 : x 3 y 10 0,
l2 : 2x y 8 0
所截得线段恰好被M平分,求此直线的方程.
的图形是圆 (1)求 t 的取值范围;
2
(2)若点 P(3,4t ) 在所给圆外,求 t 的取值范围
(3)求证:所给圆的圆心在抛物线上
解:(1)将所给方程配方得:
( x t 3) 2 ( y 1 4t 2 ) 2 7t 2 6t 1
由题设知:
1 7t 6t 1 0 t 1 7
x 0 4 两方程联立得: ,|PA|= 10 y 0 5 ∴ 圆标准方程为(x-4)2+(y-5)2=10
若选用一般式:设圆方程 x +y +Dx+Ey+F=0, D E 则圆心( , ) 2 2
2 5 2 2 5D 2E F 0 2 ∴ 3 2 2 3D 2E F 0 D E 2 ( ) ( ) 3 0 2 2


2 a
1 1, a 0, b 0 b
2 1 1 2 1 2 2 ab 8 即 S ABC 最小值为 4,当且仅当 时 a b 2 a b ab
即 a=4,b=2 时取“=”,此时,直线方程为 x+2y-4=0
例 3 已知方程
2 2 2 4
x y 2(t 3) x 2(1 4t ) y 16t 9 0(t R)
的中点得 A 点的坐标为(-a,2a-6),又 A 在直线 l1 上, 所以-a-3(2a-6)+10=0,解得 a=4,故 B(4,0). 直线 l 的方程为 x+4y-4=0.
例 1.如图,矩形 ABCD 的两条对角线相交于点 M (2, , 0)
AB 边所在直线的方程为 x 3 y 6 0 ,点 T (11) 在 AD ,
3x y 2 0 .
x 3 y 6 0, (II)由 解得点 A 的坐标为 (0, 2) , 3 x y 2 = 0
因为矩形 ABCD 两条对角线的交点为 M (2, . 0) 所以 M 为矩形 ABCD 外接圆的圆心.
AM (2 0) 2 (0 2) 2 2 2 . 又
k存在 且k 0
k存在且 0 且不过原点
斜截式 在y轴上的截距为b, 斜率为k 两点式 过P1(x1, y1), P2(x2, y2)
y kx b
y y1 x x1 y2 y1 x2 x1
截距式 在y轴上的截距为b, 在x轴上的截距为a 一般式
x y 1. a b
已知直线 l 过点 P(0,1)并与直线 l1:x-3y+10=0 和直线 l2:2x+y-8=0 分别交于 A、B 两点(如图) , 若线段 AB 被点 P 平分,则直线 l 的方程为
l2 y l1 A P O l B
x+4y-4=0 .
x
解:点 B 在直线 l2 上,设 B(a,8-2a),由 P 是 AB
D 8 解之得: E 10 F 31
2
2
法二:从形的角度 AB 为圆的弦,由平几知识知,圆心 P 应在 AB 中垂线
2 x y 3 0 x=4 上,则由 得圆心 P(4,5) x 4
∴ 半径 r=|PA|= 10 显然,充分利用平几知识明显降低了计算量
2a 2
2
2
a 3
2
(3a 1) 2 ∴ R 2 2
∴ a=-7 或 a=-3
当 a=-7 时,R= 52 ;当 a=-3 时,R= 244 ∴ 所求圆方程为(x-6)2+(y+3)2=52 或(x-14)2+(y+7)2=244
B(3,0) ,点 A 在圆 x2 y 2 1 上运动, 变式 2:已知定点
2 2 3、设直线 ax y 3 0 与圆 ( x 1) ( y 2) 4 相交于 A 、 B
两点,且弦 AB 的长为 2 3 ,则 a ____________. 4、若直线 y x m 与曲线 y 实数 m 的取值范围 是 .
4 x 2 有且只有一个公共点,则
ABCD 外接圆的方程为 ( x 2) 2 y 2 8 从而矩形
例2:过点M(0,1)作直线,使它被已知直线
l1 : x 3 y 10 0,
l2 : 2x y 8 0
所截得线段恰好被M平分,求此直线的方程.
方法一:过点M且与x轴垂直的直线显然不合题意,故可设所 l 求直线方程为y=kx+1,与已知两直线 l1 、2 分别交于A、B 两点,联立方程组: y kx 1 y kx 1 (1) (2) x 3 y 10 0 2 x y 8 0 7 7 xA 由(1) 解得: 3k 1 由(2) 解得:x B ∵点M平分线段A 1 4t 3t 0 t 或t 0 4 1 3 结合(1)得:t 的范围为 ( ,0) ( ,1) 7 4
2 2 2
(1) 设圆心坐标为(x,y),则有
x t 3 y 4 x 2 24x 35 命题得证 y 4t 2 1
一、知识框架
直线与直线方程
直线的倾斜角和斜率 直线的方程 两直线的位置关系
直 线 与 圆 的 方 程
线性规划及应用 求曲线方程 圆的标准方程 圆与圆方程 圆的一般方程 圆的参数方程
直线与圆、圆与圆的位置关系
1、直线的倾斜角 倾斜角的取值范围是
0 180 .

2、直线的斜率
k tan , ( 90 )
∵点 A 在圆 x2 y 2 1 上运动,∴ x12 y12 1 ,
4 4 2 2 ∴ ( x 1) ( y ) 1 ,即 ( x 3 )2 y 2 9 , 3 3 4 16
3 2 9 2 ∴点 M 的轨迹方程是 ( x ) y . 4 16
例 2. (1)求经过点 A(5,2) ,B(3,2) ,圆心在直线 2x-y-3=0 上圆方程; (2)设圆上的点 A(2,3)关于直线 x+2y=0 的对称点仍在这 个圆上,且与直线 x-y+1=0 相交的弦长为 2 2 ,求圆方程。
例 2、 (I)法一:从数的角度 若选用标准式:设圆心 P(x,y) ,则由|PA|=|PB|得: 2 2 2 2 (x0-5) +(y0-2) =(x0-3) +(y0-2) 又 2x0-y0-3=0
意义:斜率表示倾斜角不等于90 0的直线对于x轴的 倾斜程度。 直线的斜率计算公式:即 k
y y x x
2 2
1
1
若直线l的斜率存在, 则方向向量为(1, k )
直线方程的形式:
形式 条件 方程 应用范围
点斜式
过点( x0,y0), 斜率为k
y y0 k ( x x0 )
k存在 k存在
l 方法二:设所求直线与 l1 、 2分别交于A、B两点
∵ 点B在直线 l2 : 2 x
y 8 0 上,故可设B(t,8-2t),
M(0,1)是AB的中点,由中点坐标公式得A(-t,2t-6), ∵ A点在直线 l1 : x 3 y 10 0 上
∴ (-t)-3(2t-6)+10=0,解得: t=4
(II)设 A 关于直线 x+2y=0 的对称点为 A’ 由已知 AA’为圆的弦∴ AA’对称轴 x+2y=0 过圆心 设圆心 P(-2a,a) ,半径为 R 则 R=|PA|= 又弦长 2 2 2 R 2 d 2 , d
(3a 1) 2 ∴ 4(a+1)2+(a-3)2=2+ , 2 | 2a a 1 | 2
S ABC 1 1 1 1 1 1 (1 2k )(2 ) (4 4k ) (4 2 ( 4k )( ) ) 4 , 2 k 2 k 2 k
1 即k k 1 k
当且仅当 4k
1 ,其方程为 x+2y-4=0 2
相关文档
最新文档