第05章刚体力学基础学习知识补充

合集下载

第四角动量守恒五章刚体力学

第四角动量守恒五章刚体力学

例1 :一质量为m,长为L的匀质细杆,在水平面内绕端点O的铅直
轴 为转μ。动求,(如1图)所细示杆,所若受初的始摩角擦速力度矩为Mf;o,(杆2)与若水细平杆面只的受摩此擦摩系擦数
T1
2m2m1 g m1 m1 m2
Mf R
a
(m1
m2 )g
Mf R
m1 m2
T2
2m1m2 g m2 m1 m2
Mf R
若 M f 0, m 0, 则有:
a m1 m2 g m1 m2
T1
T2
2m1m2 m1 m2
g
例 题5 : 一质量为 m半径为R的匀质圆盘,以角速度 0绕垂直于盘 面的中心轴旋转,如图所示。今将该圆盘置于水平面上,其间的
摩擦系数为 ,问圆盘转动多长时间停止。
解: 设 0 的方向为正
0
前面例题已求出圆盘所受的的摩擦力矩:
Mf
2 mgR
3
mO R
由转动定律 M J 得:
M f 2 m g R 1m R 2 4 g
J
3
2
3R
∴ 是匀变速转动, 由 0 t , 令 0 得:
t 0
0 3R0 4 g / 3R 4 g
当 0 时, 2
由 M J 得:
⑵ 由 M J 得:
t
k
0J
dt
0
Mf
k ( 0
2
)2
,
k ( 0 )2 J ,
2
k 2
J
J
d
d 2
,
k
dt
t
(
J
1
k
2 0
4J
1 ),
0
J0 , 令 0得:

第五章_刚体力学_习题解答

第五章_刚体力学_习题解答

5.1、一长为l 的棒AB ,靠在半径为r 的半圆形柱面上,如图所示。

今A 点以恒定速度0v沿水平线运动。

试求:(i)B 点的速度B v;(ii)画出棒的瞬时转动中心的位置。

解:如图,建立动直角系A xyz -,取A 点为原点。

B A AB v v r ω=+⨯ ,关键是求ω法1(基点法):取A 点为基点,sin C A AC A CO A A v v r v v v v ωθ=+⨯=+=+即sin AC A r v ωθ⨯=,AC r ω⊥ ,化成标量为ω在直角三角形OCA ∆中,AC r rctg θ=所以200sin sin sin cos A AC v v v r rctg r θθθωθθ===即20sin cos v k r θωθ=取A 点为基点,那么B 点的速度为:2002300sin [(cos )sin ]cos sin sin (1)cos B A AB v v v r v i k l i l j r v l l v i jr rθωθθθθθθ=+⨯=+⨯-+=--法2(瞬心法):如图,因棒上C 点靠在半圆上,所以C 点的速度沿切线方向,故延长OC ,使其和垂直于A 点速度线交于P 点,那么P 点为瞬心。

在直角三角形OCA ∆中,sin OA r r θ=在直角三角形OPA ∆中,2cos sin AP OA r r r ctg θθθ==02cos ()sin A PA PA PA r v r k r j r i i v i θωωωωθ=⨯=⨯-===,即20sin cos v r θωθ= 取A 点为基点,那么B 点的速度为:2002300sin [(cos )sin ]cos sin sin (1)cos B A AB v v v r v i k l i l j r v l l v i jr rθωθθθθθθ=+⨯=+⨯-+=--5.2、一轮的半径为r ,竖直放置于水平面上作无滑动地滚动,轮心以恒定速度0v前进。

理论力学05点的运动学和刚体的基本运动

理论力学05点的运动学和刚体的基本运动

例 5.7 如图圆盘 C 以匀角速度ω 绕倾斜轴 OB 转动,盘面与 转轴垂直,圆盘的半径为 r; 设 OB 轴在 平面Oyz内,盘面与 平面Oyz的交线为 CD,点A 为圆盘边缘上一个固连点。 求: CA 与CD 为任意角φ时
A 点的速度和加速度矢量。
解:以矢量思路考虑,有
vA w OA OB方向单位矢 :
引言
5-1 运动学的基本概念
①运动学 是研究物体在空间位置随时间变化的几何性质的科学。 (包括:轨迹,速度,加速度等)不考虑运动的原因。
②运动学研究的对象 ①建立机械运动的描述方法 ②建立运动量之间的关系
③运动学学习目的 为后续课打基础及直接运用于工程实际。
பைடு நூலகம்
④运动是相对的 ( relativity ):参考体(物);参考系;静系;动系。
arctg |a |
an
11
例 5.1 一绳AMC的一端系于固定点A,绳子穿过 滑块M上的小孔。绳的另一端系于滑块C上。滑块 M以已知等速v0运动。绳长为l,AE的距离为a且 垂直于DE。求滑块C的速度与距离AM = x之间的 关系。又当滑块M经过E点时,滑块C的速度为何 值?
vc v0
12
曲率半径与法 向加速度有关 先求速度和法 向加速度
(否则△ t 时间后,该直线将被弯曲或伸缩,这对刚体是不容许的)。
同理AB 线上各点的速度也必须是直线分布, 因为与 矢端的连线不平行于π平面,这条矢端连线一定会与π 平面相交,设交点为 C,其速度必为零,所以 OC 线上所有点 的速度为零(OC 线上所有点的速度也必须直线分布)
一.弧坐标,自然轴系
1.弧坐标的运动方程S=f (t)
补充:极坐标法(对平面曲线运动时可用) 同理可导出柱坐标下的点的运动方程

大学物理 第五章 刚体力学基础

大学物理 第五章 刚体力学基础
刚体对z 轴的动量矩
v i ri
ri
mi
Lz Liz mi vi ri ( mi ri 2 ) J z
Lz J z
说明
动量矩与质点动量 P mv 对比, Jz — m, — v
三、 刚体定轴转动的动量矩定理 dLO 质点系角动量定理 MO dt
mg T ma
Tr J a r
r
O
T
21.8
F
mg
例 均匀细直棒m 、l ,可绕轴 O 在竖直平面内转动,初始时 它在水平位置 m l O 求 它由此下摆 角时的 m 解 dm dx dm 质元 l x dM gdm x cos dm 重力矩 gdm 1 M dM 2 mgl cos 重力对棒的合力矩等于重力全部集中于质心所产生的力矩 M 转动定律 3 g cos J 3g cos 1 2 2l J ml d 2l d d d 3 0 0 dt d 2 3g sin / l
1 1 2 2 mgh mv J 2 2 1 2 J mr 2
O
v r
mgh v 2 M 2m
mg

例 均匀细直棒m 、l ,可绕轴 O 在竖直平面内转动,初始时 它在水平位置 m l O 求 它由此下摆 角时的 。

解一 机械能守恒( 以初始位置为0势能点)
h
1 2 J mgh 2 l 3g sin 1 2 2 h sin J ml 2 l 3 解二 定轴转动动能定理 m 动能的增量等于重力做的功 1 2 0 Md 2 J 0 3 g sin 2 1 l 重力矩 M mgl cos 2

第五章 刚体力学基础

第五章 刚体力学基础

1 2 的转动惯量也是 J mR 2
大学物理 第三次修订本
27
第5章 刚体力学基础 动量矩
例3: 求质量为m、半径为R 的均匀圆环的转动惯量。轴与圆
环平面垂直并通过圆心。 解:
J R dm
2
2 πR
O
dm
R
R
2
dl
0
mR
2
J 是可加的,若为薄圆筒(不计厚度)结果相同。
大学物理 第三次修订本

J z M z
k
d Mz 或 Jz dt
刚体绕定轴转动时,刚体对该轴的转动惯量与角加速度 的乘积等于作用在刚体上所有外力对该轴力矩的代数和。 刚体定轴转动的角加速度与它所受的合外力矩成正比, 与刚体的转动惯量成反比。
— 刚体绕定轴转动微分方程,或转动定律。
大学物理 第三次修订本
17
第5章 刚体力学基础 动量矩
圆环质量: 圆盘密度:
h
dm 2πrdr h m 2
J dJ
R
R
.
r
圆环转动惯量: 圆盘转动惯量:
πR h 2 3 dJ r dm 2πhr dr
0
1 2 J mR 2
1 4 2πhr dr πR h 2
3
转动惯量与 h无关. 实心圆柱对其轴
Δω< 0
加速转动
α< 0 减速转动
9
大学物理 第三次修订本
第5章 刚体力学基础 动量矩
例1一飞轮的半径为 0.2m, 转速为150转/分 , 经30s均匀减速 后停止。求: (1)角加速度和飞轮转的圈数 (2) t = 6s时的角速 度;飞轮边缘上一点的线速度、切向加速度和法向加速度。

大学物理上册课件:第五章刚体力学基础

大学物理上册课件:第五章刚体力学基础
所以,刚体定轴转动用角量描述比较方便。
5.1.2、刚体定轴转动的角量描述 定轴转动只有两个转动方向。 规定 ox 轴逆时针转动为正方向,反之为负方向。
角位置: (t) 刚体定轴转动的运动学方程。
角位移: 2 1
平均角速度: =
t
角速度: (矢量)
=d
dt
y
rP•
•P
A
O S A
x
角加速度: (矢量)
z
o
ri
i 1
mi
则:
Ek转
1 2
J 2
o
注意:转动动能实质与平动动能相同,表达式不
Ek转
1 2
m vc2
1 2
J 2
5.2.2、转动惯量的计算:描述刚体转动惯性大小的物理量。
1、定义:刚体对转轴的转动惯量:
n
J miri 2 i 1
J r 2 d m V
SI单位:kg . m
大 小 :M Z rF sin Fd Ft r
d=rsinθ 称为力F 对转轴的力臂。
方向: 由右手螺旋定则确定。
Mr FZ有o两个方向,可用正o负表Fr示。
MZ 0
MZ 0
MZ
z
o rp
F
d

o
z
r
Ft P
F
d

Fn
2、F不在转轴平面内
把F 分解为径向Fr 、横向Ft ①Fr 对转轴的力矩为零;
5.2定轴转动刚体的功和能
5.2.1、刚体的动能
平动动能 : Ek平 转动动能 : Ek转
i i
1 2
mi v i2
1 2
mi
v
i

5第五章-刚体力学基础

5第五章-刚体力学基础
三个要素:
①总质量; ②质量分布; ③转轴位置。
上页 下页 返回 退出
2. 转动惯量J
(1)质点 J mr2
r1
m1 O
(2)质点系 J miri2
i
例:J m1r12 +m2r22
r2
m2
(3)刚体 dJ dm r2
J dJ
r dm
上页 下页 返回 退出
dl
dm
dS
dV
线分布 面分布 体分布
一、力矩的功 M 1 2
dA F dr Fdscos Fdssin F sin rd Md
d
r
dr
F
A dA 2 Md 1
功率 P dA Md M
dt dt
上页 下页 返回 退出
二、 刚体的转动动能
第i个质点
Ek
1 2
J2
Eki
1 2
mi vi 2
1 2
mi
ri
2
2
上页 下页 返回 退出
三、 动量矩守恒定律的应用
当 M合外 0 时,L 恒量
讨论:
(1)动量矩守恒条件:
M外 0 或 M内 M外
(2)也适用于非刚体,是自然界最普遍规律之一
J 恒量 J , J ,
上页 下页 返回 退出
上页 下页 返回 退出
上页 下页 返回 退出
z
F
M rF 0
上页 下页 返回 退出
§1、2 刚体的转动定律
一、刚体和刚体的运动
1. 刚体: 形状、大小不变的理想模型。 2. 刚体的运动: (1)平动。 看作质点。
上页 下页 返回 退出
(2)转动。 定轴; 非定轴(瞬时轴)。

第5章刚体力学基础

第5章刚体力学基础

i
1 刚体为分裂的不连续结构 J
mi ri2
i
2 刚体为连续体 J r 2dm
J与质量,质量分布有关,与转轴有关
单位: SI kg m2
例: 均质棒:m, l 求它对通过中心与棒垂直 的转轴的转动惯量。
解: dm m dx l
J x2dm
dm
o dx
x
l 2
m x2dx
1
ml2
l
mvRcos J o
y
m(黏土块)
(2)
J 1 MR2 mR2 2mR2
(3)
2
h
由 (1)(2)(3) 得:
o
2gh cos
2R
(4)
对 m+M+地球系统,只有重力做功,
E 守恒.
P
M
R

光滑轴
x
(水平)
令 P、x 重合时 E =0。
则:mgR
sin
1 2
P
J
2 o
1 2
J 2
(5)
3 平面平行运动:刚体上每一质元的运动都 平行于某一固定平面
可以分解为刚体随质心的平移(2)和绕 质心垂直于运动平面的定轴转动(1)
i3
如:车轮滚动 i 11
4 刚体的一般运动可以分解为随质心的平移 和绕质心的定点转动
i 33
二 、定轴转动的描述 角量
p点:角位置 角位移
转动平面 p
d
dt
Li
ri
vi
mi
Ri
由于 oo vi 垂直于z轴
o
y
Liz ri mivi mi ri2 x
Lz Liz ri mivi

大学物理刚体力学

大学物理刚体力学

大学物理刚体力学标题:大学物理中的刚体力学在物理学的研究中,大学物理是引领我们探索自然界规律的重要途径。

而在大学物理中,刚体力学是一个相对独特的领域,它专注于研究物体在受到外力作用时的质点运动规律。

本文将探讨大学物理中的刚体力学。

一、刚体概念及特性刚体是指物体内部各质点之间没有相对位移,形状和体积不发生变化的理想化物体。

在刚体力学中,我们通常将刚体视为一个整体,研究其宏观运动规律。

刚体具有以下特性:1、内部质点无相对位移。

2、刚体不发生形变,形状和体积保持不变。

3、刚体在运动过程中,内部任意两质点间的距离保持不变。

二、刚体力学的基础知识1、刚体的运动形式刚体的运动形式包括平动、转动和振动。

平动是指刚体沿直线作均匀速度的运动;转动是指刚体绕某轴线作角速度变化的运动;振动是指刚体在平衡位置附近作往复运动的周期性运动。

2、刚体的动力学基础动力学是研究物体运动状态变化的原因和规律的科学。

在刚体力学中,动力学的基本方程包括牛顿第二定律、动量定理和动能定理等。

这些方程为我们提供了分析刚体运动状态变化的基本工具。

三、刚体的转动惯量转动惯量是描述刚体转动惯性大小的物理量。

它与刚体的质量、形状和大小有关。

在物理学中,转动惯量是研究刚体转动规律的重要参数。

通过计算转动惯量,我们可以了解刚体在受到外力矩作用时角速度变化的规律。

四、刚体的角动量角动量是描述物体绕某轴线旋转的物理量,与物体的质量、速度和半径有关。

在刚体力学中,角动量是一个非常重要的概念。

它可以帮助我们理解刚体在受到外力矩作用时的角速度变化规律。

同时,角动量守恒定律也是刚体力学中的一个重要定律。

在已知刚体的质量、转动惯量和角动量的基础上,我们可以建立刚体的动力学方程。

动力学方程可以帮助我们分析刚体在受到外力作用时的运动状态变化规律。

对于复杂的动力学问题,我们通常需要借助数学软件进行数值模拟和分析。

六、总结在大学物理中,刚体力学是一个相对独立且具有重要应用价值的领域。

5《学习指南 试题精解》 第五章 刚体力学

5《学习指南 试题精解》  第五章  刚体力学

第5章 刚体力学5.1 本章要求:1、通过质点在平面内的运动情况理解角动量、动量矩和角动量守恒定律,了解转动惯量的概念;2、理解刚体的定轴转动的转动定律和刚体在定轴转动情况下的角动量定理和角动量守恒定律;3、能应用角动量定理和角动量守恒定律解简单的刚体运动的力学问题。

5.2 内容提要1、质点的角动量v r m P r L ⨯=⨯=;2、质点的角动量定理作用于质点的冲量矩等于质点的角动量的增量。

积分形式00L L d dt LL tt -==⎰⎰ ,微分形式dtd M =外 3、角动量守恒定律如果某一固定点,质点所受合外力矩为零,则此质点对该固定点的角动量矢量保持不变。

则0=dtLd , ∑=ii L L = 常矢量 4、刚体物体内任意两点间的距离在外力作用下始终保持不变,从而其大小和形状都保持不变的物体,称为刚体。

刚体也是物体的一种理想模型。

5、平动 刚体运动时,连接刚体中任意两点的直线始终保持它的方位不变。

这种运动称为刚体的平动或平移。

6、转动刚体运动时,如果刚体内各点都绕同一直线作圆周运动,这种运动称为刚体的转动;这一直线称为转轴。

如果转轴相对于所取的参考系是固定不动的,就称为定轴转动。

如果转轴上一点静止于参考系,而转动的方位在变动,这种转动称为定点转动。

刚体的一般运动,可以看作平动和转动所合成。

7、质心质心是与质点系的质量分布有关的一个代表点,它的位置在平均意义上代表着质点分布的中心。

对于有许多质点组成的系统,如果用i m 和i r 表示第i 个质点的质量和位矢,用c r 表示质心的位矢,则有Mrm r iii c ∑=,式中∑=ii m M 为质点系的总质量。

质心位置的坐标为:Mzm z M ym y M xm x iii c iii c iii c ∑∑∑===,,。

对于质量连续性分布的物体,质心的位矢为⎰=Mrdmr c其坐标为⎰⎰⎰===zdm Mz ydm M y xdm M x c c c 1,1,1。

大学物理:第 05 章 刚体力学基础

大学物理:第 05 章  刚体力学基础

j
i
设作用在质元Dmi上的外力
位于转动平面内。
z
合外力对刚体做的元功: P
力矩的功:
功率:
三、刚体定轴转动的动能定理
合外力矩对刚体所作的功等于刚体转动动能的增量。
四、刚体的重力势能
以地面为势能零点,刚体和地球 系统的重力势能:
z
i O
五、 刚体定轴转动的功能原理
将重力矩作的功用重力势能差表示:
如:直立旋转陀螺不倒。
o
此时,即使撤去轴承的支撑作用, 刚体仍将作 定轴转动——定向回转仪—— 可以作定向装置。
二、非刚体( J 可变)的角动量守恒
当 J 增大, 就减小,当 J 减小, 就增大。
如:芭蕾舞,花样滑冰中的转动, 恒星塌缩 (R0,0) (R,) 中子星 的形成等。
[例5-11] 水平转台(m1 、 R ) 可绕竖直的中心轴转动,初角 速度0,一人(m2 )立在台中心,相对转台以恒定速度u沿 半径向边缘走去,计算经时间 t,台转过了多少角度。 解:人与转台组成的系统对竖直 轴的角动量守恒:
(2)
(3) (4)
[例5-16] 细杆A : (m , L)可绕轴转动,水平处静止释放, 在竖直位置与静止物块B : (m) 发生弹性碰撞,求碰后: (1)物块B的速度 vB ,(2)细杆A 的角速度2 , (3)细杆A 转过的最大角度 θmax 。 解: B
A
碰后反方向转动。
A
B
[例5-17] 圆锥体R,h,J,表面有浅槽,令以ω0转动, 小滑块m 由静止从顶端下滑,不计摩擦,求滑到底部滑 块相对圆锥体的速度、圆锥体角速度。
是关于刚体定轴转动的动力学方程。 (与 F = ma 比较) 推广到 J 可变情形: ——刚体定轴转动的角动量定理

第五章 刚体力学基础

第五章  刚体力学基础

第五章 刚体力学基础一、选择题1 甲乙两人造卫星质量相同,分别沿着各自的圆形轨道绕地球运行,甲的轨道半径较小,则与乙相比,甲的:(A)动能较大,势能较小,总能量较大; (B)动能较小,势能较大,总能量较大; (C)动能较大,势能较小,总能量较小;(D)动能较小,势能较小,总能量较小;[ C ]难度:易2 一滑冰者,以某一角速度开始转动,当他向内收缩双臂时,则: (A)角速度增大,动能减小; (B)角速度增大,动能增大; (C)角速度增大,但动能不变;(D)角速度减小,动能减小。

[ B ]难度:易3 两人各持一均匀直棒的一端,棒重W ,一人突然放手,在此瞬间,另一个人感到手上承受的力变为:(A)3w ; (B) 2w (C) 43w; (D) 4w 。

[ D ]难度:难4 长为L 、质量为M 的匀质细杆OA 如图悬挂.O 为水平光滑固定转轴,平衡时杆竖直下垂,一质量为m 的子弹以水平速度0v 击中杆的A端并嵌入其内。

那么碰撞后A 端的速度大小: (A)M m mv +12120; (B) Mm mv +330;(C) Mm mv +0; (D) M m mv +330。

[ B ]难度:中5 一根质量为m 、长为l 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒竖直地立起,如让它掉下来,则棒将以角速度ω撞击地板。

如图将同样的棒截成长为2l的一段,初始条件不变,则它撞击地板时的角速度最接近于:(A)ω2; (B)ω2; (C) ω; (D) 2ω。

[ A ]难度:难6 如图:A 与B 是两个质量相同的小球,A 球用一根不能伸长的绳子拴着,B 球用橡皮拴着,把它们拉到水平位置,放手后两小球到达竖直位置时绳长相等,则此时两球L的线速度:(A)B A v v = (B) B A v v <(C) B A v v > (D)无法判断。

[ C ]难度:中7 水平圆转台上距转轴R 处有一质量为m 的物体随转台作匀速圆周运动。

第五章刚体力学-副本

第五章刚体力学-副本

第五章 刚体力学5-1 作定轴转动的刚体上各点的法向加速度,既可写为2n va R=,这表示法向加速度的大小与刚体上各点到转轴的距离R 成反比;也可以写为2n a R ω=,这表示法向加速度的大小与刚体上各点到转轴的距离R 成正比。

这两者是否有矛盾?为什么?解: 没有矛盾。

根据公式 2n va R=,说法向加速度的大小与刚体上各点到转轴的距离R 成反比,是有条件的,这个条件就是保持v 不变;根据公式2n a R ω=,说法向加速度的大小与刚体上各点到转轴的距离R 成正比,也是有条件的,条件就是保持ω不变。

5-2一个圆盘绕通过其中心并与盘面相垂直的轴作定轴转动,当圆盘分别在恒定角速度和恒定角加速度两种情况下转动时,圆盘边缘上的点是否都具有法向加速度和切向加速度?数值是恒定的还是变化的? 解:设圆盘的角速度为ω,角加速度为α,则:(1)圆盘以恒定角速度转动时:()20n a R d R dv a dt dt τωω⎧=⎪⎨===⎪⎩0a τ=、n a 数值均是恒定的。

(2)圆盘以恒定角加速度转动时:00tdt t ωωαωα=+=+⎰ (其中0ω为0t =时圆盘转动的角速度)()()220n a R t R d R dv a R dt dt τωωαωα⎧==+⎪∴⎨===⎪⎩n a 数值是变化的、而a τ数值均是恒定的。

5-3 原来静止的电机皮带轮在接通电源后作匀变速转动,30 s 后转速达到1152rad s -⋅ 。

求:(1)在这30 s 内电机皮带轮转过的转数;(2)接通电源后20 s 时皮带轮的角速度;(3)接通电源后20 s 时皮带轮边缘上一点的线速度、切向加速度和法向加速度,已知皮带轮的半径为5.0 cm 。

解:电机作匀速转动,所以角加速度α为常量()00ω=d dt ωα=0t d t t ωαα∴==⎰ 故:21525.0730rad s t ωα-===⋅而:d dt θω= 20012t t dt tdt t θωαα∴===⎰⎰(1) 2211152302280362.92230t rad θα==⨯⨯= 转(2)'15.0720101.3t rad s ωα-==⨯⋅ (3)''15.07v R m s ω-==⋅225.075100.254a R m s τα--==⨯⨯=⋅ 2'2222101.3510513.1n va R m s Rω--===⨯⨯=⋅ 5-4 一飞轮的转速为1250rad s -⋅ ,开始制动后作匀变速转动,经过90 s 停止。

第五章 刚体力学参考答案

第五章  刚体力学参考答案

一、选择题[ C ]1、如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而 且F =Mg .设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦,则有(A) βA =βB . (B) βA >βB .(C) βA <βB . (D) 开始时βA =βB ,以后βA <βB .图5-18参考答案:设定滑轮半径为R,转动惯量为J ,如图所示,据刚体定轴转动定律M=Jβ有: 对B :FR=MgR= J βB .对A :Mg-T=Ma TR=J βA, a=R βA, 可推出:βA <βB[ D ]2、如图5-8所示,一质量为m 的匀质细杆AB ,A 端靠在粗糙的竖直墙壁上,B 端置于粗糙水平地面上而静止.杆身与竖直方向成θ角,则A 端对墙壁的压力大小(A) 为 41mg cos θ. (B)为21mg tg θ.(C) 为 mg sin θ. (D) 不能唯一确定.[ C ]3、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图5-11射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω (A) 增大. (B) 不变. (C) 减小. (D) 不能确定.图5-8mm图5-11参考答案:把三者看作同一系统时,系统所受合外力矩为零, 系统角动量守恒。

设L 为每一子弹相对固定轴O 的角动量大小.故由角动量守恒定律得: J ω0+L-L=(J+J 子弹) ω ω <ω0[ A ]4、质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为 (A) ⎪⎭⎫⎝⎛=RJ mR v 2ω,顺时针. (B) ⎪⎭⎫⎝⎛=RJ mR v2ω,逆时针. (C) ⎪⎭⎫⎝⎛+=R mRJ mRv 22ω,顺时针. (D) ⎪⎭⎫⎝⎛+=R mR J mR v 22ω,逆时针.参考答案:视小孩与平台为一个系统,该系统所受的外力矩为零,系统角动量守恒: 0=Rmv-J ω 可得结论。

大学物理第五章刚体力学1

大学物理第五章刚体力学1
详细描述
机械能守恒定律是物理学中的基本定律之一,对于刚体而言同样适用。如果一个刚体在 运动过程中不受外力矩作用,则其动能和势能之和保持不变。这意味着,如果刚体的动
能增加,则其势能必定减少,反之亦然。
05
刚体的振动和波动
简谐振动
简谐振动定义
物体在平衡位置附近做周期性往复运动的现象。
简谐振动方程
x=A*sin(ωt+φ),其中A为振幅,ω为角频率,φ为初相角。
THANK YOU
感谢聆听
转动惯量的计算
对于细长均匀杆,转动惯量I=mr^2/2;对于质量均匀分布的圆盘, I=mr^2/4。
03
刚体的角动量守恒定律
角动量守恒定律
角动量守恒定律
一个不受外力矩作用或者所受 外力矩的矢量和为零的刚体, 其角动量保持不变。
角动量
刚体绕某一定点的转动惯量与 刚体相对该点的角速度的乘积 。
角动量守恒的条件
刚体定义与特性
80%
刚体定义
刚体是一个理想化的物理模型, 在实际中并不存在。
100%
刚体特性
刚体具有不变形、不可压缩、无 摩擦等特性。
80%
刚体运动
刚体的运动可以用质点和刚体的 运动学来描述,其动力学则由牛 顿第二定律和转动定律来描述。
02
刚体的转动定律
刚体的角速度和角动量
角速度
描述刚体绕固定点转动的速度,用矢 量表示,单位为弧度/秒。
总结词
刚体的动能在数值上等于刚体 转动惯量与刚体角速度平方乘 积的一半。
详细描述
除了平动运动外,刚体还可以 进行转动运动。在转动运动中 ,刚体的动能等于刚体的转动 惯量与刚体角速度平方乘积的 一半。
刚体的势能

第05章__刚体力学基础

第05章__刚体力学基础

第五章 刚体力学基础一、选择题1、一刚体以每分钟60转绕z 轴做匀速转动(ω沿z 轴正方向).设某时刻刚体上一点P 的位置矢量为k j i r 5 4 3++=,其单位为“10-2 m ”,若以“10-2 m ·s -1”为速度单位,则该时刻P 点的速度为:(A) k j i157.0 125.6 94.2++=v(B) j i8.18 1.25+-=v(C) j i8.18 1.25--=v(D) k4.31=v [ B ]2、如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦,则有(A) βA =βB . (B) βA >βB .<βB . (D) 开始时βA =βB ,以后βA <βB . [ C ]3、几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体(A) 转速必然改变. (B) 转速必然不变.(C)必然不会转动. (D) 转速可能不变,也可能改变. [ D ] 4、一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω按图示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度ω(A) 增大. (B) 减少.(C) 不会改变.(D) 如何变化,不能确定. [ A ] 5、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A) 角速度从小到大,角加速度从大到小. (B) 角速度从小到大,角加速度从小到大. (C) 角速度从大到小,角加速度从大到小. (D) 角速度从大到小,角加速度从小到大. [ A ]6、关于刚体对轴的转动惯量,下列说法中正确的是 (A )只取决于刚体的质量,与质量的空间分布和轴的位置无关. (B )取决于刚体的质量和质量的空间分布,与轴的位置无关. (C )取决于刚体的质量、质量的空间分布和轴的位置. (D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关. [ C ]7、一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力(A) 处处相等. (B) 左边大于右边.(C) 右边大于左边. (D) 哪边大无法判断. [ C ]8、一轻绳绕在有水平轴的定滑轮上,滑轮的转动惯量为J ,绳下端挂一物体.物体所受重力为P ,滑轮的角加速度为β.若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将(A) 不变. (B) 变小.(C) 变大. (D) 如何变化无法判断. [ C ]9、如图所示,一质量为m 的匀质细杆AB ,A 端靠在光滑的竖直墙壁上,B 端置于粗糙水平地面上而静止.杆身与竖直方向成θ角,则A 端对墙壁的压力大小(A) 为41mg cos θ. (B) 为21mg tg θ(C) 为mg sin θ. (D) 不能唯一确定. [ B ]10、两个匀质圆盘A 和B 的密度分别为A ρ和B ρ,若ρA >ρB ,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为J A 和J B ,则 (A) J A >J B . (B) J B >J A .(C) J A =J B . (D) J A 、J B 哪个大,不能确定. [ B ]11、有两个半径相同,质量相等的细圆环A 和B .A 环的质量分布均匀,B 环的质量分布不均匀.它们对通过环心并与环面垂直的轴的转动惯量分别为J A 和J B ,则 (A) J A >J B . (B) J A <J B .(C) J A = J B . (D) 不能确定J A 、J B 哪个大. [ C ] 12、有两个力作用在一个有固定转轴的刚体上:(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零; (2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零; (3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零; (4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零. 在上述说法中, (A) 只有(1)是正确的. (B) (1) 、(2)正确,(3) 、(4) 错误. (C) (1)、(2) 、(3) 都正确,(4)错误.(D) (1) 、(2) 、(3) 、(4)都正确. [ B ]13、将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为β.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将 (A) 小于β. (B) 大于β,小于2 β.(C) 大于2 β. (D) 等于2 β. [ C ]14、花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为(A)31ω0. (B) ()3/1 ω0. (C)3 ω0. (D) 3 ω0. [ D ]15、光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O 自由转动,其转动惯量为31mL 2,起初杆静止.桌面上有两个质量均为m 的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同速率v 相向运动,如图所示.当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为(A) L 32v . (B) L 712v(C) L 76v . (D) L98v.[ C ]16、如图所示,一静止的均匀细棒,长为L 、质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为231ML .一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为v 21,则此时棒的角速度应为(A) ML m v. (B)ML m 23v. (C) MLm 35v. (D)MLm 47v . [ B ]17、光滑的水平桌面上有长为2l 、质量为m 的匀质细杆,可绕通过其中点O 且垂直于桌面的竖直固定轴自由转动,转动惯量为231ml ,起初杆静止.有一质量为m 的小球在桌面上正对着杆的一端,在垂直于杆长的方向上,以速率v 运动,如图所示.当小球与杆端发生碰撞后,就与杆粘在一起随杆转动.则这一系统碰撞后的转动角速度是(A)12v l . (B) l 32v . (C) l 43v . (D) lv3. [ C ]18、一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人.把人和圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系统(A) 动量守恒. (B) 机械能守恒. (C) 对转轴的角动量守恒. (D) 动量、机械能和角动量都不守恒.[ C ]O v俯视图俯视图19、质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为(A) ⎪⎭⎫⎝⎛=R JmR v 2ω,顺时针. (B) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,逆时针. (C) ⎪⎭⎫⎝⎛+=R mR J mR v 22ω,顺时针. (D) ⎪⎭⎫⎝⎛+=R mR J mR v 22ω,逆时针. [ A ]20、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω(A) 增大. (B) 减小.(C)不变. (D) 不能确定. [ B ]21、如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统(A) 机械能守恒. (B) 动量守恒.(C) 只有对转轴O 的角动量守恒.(D) 机械能、动量和角动量均守恒. [ C ]22、刚体角动量守恒的充分而必要的条件是(A) 刚体不受外力矩的作用. (B) 刚体所受合外力矩为零. (C) 刚体所受的合外力和合外力矩均为零.(D) 刚体的转动惯量和角速度均保持不变. [ B ]23、一块方板,可以绕通过其一个水平边的光滑固定轴自由转动.最初板自由下垂.今有一小团粘土,垂直板面撞击方板,并粘在板上.对粘土和方板系统,如果忽略空气阻力,在碰撞中守恒的量是(A) 动能. (B) 绕木板转轴的角动量.(C) 机械能. (D) 动量. [ B ]24、如图所示,一水平刚性轻杆,质量不计,杆长l =20 cm ,其上穿有两个小球.初始时,两小球相对杆中心O 对称放置,与O 的距离d =5 cm ,二者之间用细线拉紧.现在让细杆绕通过中心O 的竖直固定轴作匀角速的转动,转速为ω 0,再烧断细线让两球向杆的两端滑(A) 2ω 0. (B)ω 0. (C) 21 ω 0. (D)041ω. [ D ]m m25、一个物体正在绕固定光滑轴自由转动,(A) 它受热膨胀或遇冷收缩时,角速度不变.(B) 它受热时角速度变大,遇冷时角速度变小.(C) 它受热或遇冷时,角速度均变大.(D) 它受热时角速度变小,遇冷时角速度变大.[ D ]二、填空题1、一个以恒定角加速度转动的圆盘,如果在某一时刻的角速度为ω1=20πrad/s,再转60转后角速度为ω2=30π rad /s,则角加速度β=_____________ rad/s2.答案:6.542、一个以恒定角加速度转动的圆盘,如果在某一时刻的角速度为ω1=20πrad/s,再转60转后角速度为ω2=30π rad /s,则转过上述60转所需的时间Δt=_____________ s.答案:4.83、利用皮带传动,用电动机拖动一个真空泵.电动机上装一半径为0.1m的轮子,真空泵上装一半径为0.29m的轮子,如图所示.如果电动机的转速为1450 rev/min,则真空泵上的轮子的边缘上一点的线速度为v≈________ m/s .答案:15.24、利用皮带传动,用电动机拖动一个真空泵.电动机上装一半径为0.1m的轮子,真空泵上装一半径为0.29m的轮子,如图所示.如果电动机的转速为1450 rev/min,则真空泵的转速为n2=_________ rev /min.答案:5005、半径为r=1.5 m的飞轮,初角速度ω 0=10 rad·s-1,角加速度β=-5 rad·s-2,则在t=___________ s时角位移为零.答案:46、半径为r=1.5 m的飞轮,初角速度ω 0=10 rad·s-1,角加速度β=-5 rad·s-2,则此时边缘上点的线速度v=___________ m·s-1.答案:-157、可绕水平轴转动的飞轮,直径为1.0 m,一条绳子绕在飞轮的外周边缘上.如果飞轮从静止开始做匀角加速运动且在4 s内绳被展开10 m,则飞轮的角加速度为__________ rad / s2.答案:2.58、绕定轴转动的飞轮均匀地减速,t=0时角速度为ω 0=5 rad / s,t=20 s时角速度为ω = 0.8ω 0,则飞轮的角加速度β =______________ rad·s-2.答案:-0.059、绕定轴转动的飞轮均匀地减速,t=0时角速度为ω 0=5 rad / s,t=20 s时角速度为ω = 0.8ω 0,则t=0到t=100 s时间内飞轮所转过的角度θ =______________ rad.答案:25010、一个匀质圆盘由静止开始以恒定角加速度绕通过中心且垂直于盘面的轴转动.在某一时刻转速为10 rev/s,再转60圈后转速变为15 rev/s.则由静止达到10 rev/s所需时间t= s.答案:9.6111、一个匀质圆盘由静止开始以恒定角加速度绕通过中心且垂直于盘面的轴转动.在某一时刻转速为10 rev/s,再转60圈后转速变为15 rev/s.则由静止到10 rev/s时圆盘所转的圈数N=________ rev.答案:4812、半径为30 cm的飞轮,从静止开始以0.50 rad·s-2的匀角加速度转动,则飞轮边缘上一点在飞轮转过240°时的切向加速度a t=________ m·s-2.答案:0.1513、半径为30 cm的飞轮,从静止开始以0.50 rad·s-2的匀角加速度转动,则飞轮边缘上一点在飞轮转过240°时的法向加速度a n=_______________ m·s-2.答案:1.2614、半径为20 cm的主动轮,通过皮带拖动半径为50 cm的被动轮转动,皮带与轮之间无相对滑动.主动轮从静止开始作匀角加速转动.在4 s内被动轮的角速度达到8πrad·s-1,则主动轮在这段时间内转过了________圈.答案:2015、决定刚体转动惯量的因素是刚体的质量和质量分布以及____________________.答案:转轴的位置20、一飞轮以600 rev/min的转速旋转,转动惯量为2.5 kg·m2,现加一恒定的制动力矩使飞轮在1 s内停止转动,则该恒定制动力矩的大小M=_________ N·m.答案:15723、一个能绕固定轴转动的轮子,除受到轴承的恒定摩擦力矩M r外,还受到恒定外力矩M 的作用.若M=20 N·m,轮子对固定轴的转动惯量为J=15 kg·m2.在t=10 s内,轮子的角速度由ω =0增大到ω=10 rad/s,则M r=__________ N·m。

第五章 刚体力学参考答案(修改稿)

第五章 刚体力学参考答案(修改稿)

一、 选择题【 B 】1、[基础训练1] 一刚体以60r/min 绕z 轴做匀速转动(ω沿z 轴正方向).设某时刻刚体上一点P 的位置矢量为k j i r 5 4 3++=,其单位为“10-2 m ”,若以“10-2 m ·s -1”为速度单位,则该时刻P 点的速度为:(A) k j i157.0 125.6 94.2++=v (B) j i 8.18 1.25+-=v(C) j i8.18 1.25--=v (D) k 4.31=v [ ]【提示】:k nπω2= 由 86V r i j ωππ=⨯=-+【 B 】2、[基础训练5 ]如图5-9所示,一静止的均匀细棒,长为L 、质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为231ML .一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为v 21,则此时棒的角速度应为 (A)ML m v . (B) ML m 23v . (C) MLm 35v . (D) ML m 47v. [ ]【提示】:把质点与子弹看作一个系统,该系统所受合外力矩为零,系统角动量守恒有:21123L mv L m v ML ω⋅=⋅+⋅ 由此可得出答案。

图5-9【 C 】3、[基础训练7]一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图5-11射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度(A) 增大. (B) 不变. (C) 减小. (D) 不能确定. [ ]【提示】:把三者看作同一系统时,系统所受合外力矩为零,系统角动量守恒。

设L 为每一子弹相对与O 点的角动量大小,ω0为子弹射入前圆盘的角速度,ω为子弹射入后的瞬间与圆盘共同的角速度,J 为圆盘的转动惯量,J 子弹为子弹转动惯量,据角动量守恒定律有:00()J L L J J J J J ωωωωω+-=+=<+子弹子弹【 D 】4、[自测提高2]图5-21(a)为一绳长为l 、质量为m 的单摆.图5-21(b)为一长度为l 、质量为m 能绕水平固定轴O 自由转动的匀质细棒.现将单摆和细棒同时从与竖直线成θ 角度的位置由静止释放,若运动到竖直位置时,单摆、细棒角速度分别以ω 1、ω 2表示.则: (A) 2121ωω=. (B) ω 1 = ω 2.m图5-11 v21v俯视图(C) 2132ωω=. (D) 213/2ωω=.【提示】: 单摆和细棒同时从与竖直线成θ 角度的位置由静止 释放运动到竖直位置时,系统只有保守内力(重力)做功, 故满足机械能守恒条件,则对单摆和细棒分别有:图5-21 221221(cos )21(cos )222mg l l m l l l mg J θωθω⎧-=⎪⎪⎨⎪-=⎪⎩(1)(2)(1) 式以单摆运动到竖直位置时为重力势能的零势点,(2)式以匀质细棒质心运动到竖直位置时为零势点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 刚体力学基础一、选择题1 甲乙两人造卫星质量相同,分别沿着各自的圆形轨道绕地球运行,甲的轨道半径较小,则与乙相比,甲的:(A)动能较大,势能较小,总能量较大; (B)动能较小,势能较大,总能量较大; (C)动能较大,势能较小,总能量较小;(D)动能较小,势能较小,总能量较小;[ C ]难度:易2 一滑冰者,以某一角速度开始转动,当他向内收缩双臂时,则: (A)角速度增大,动能减小; (B)角速度增大,动能增大; (C)角速度增大,但动能不变;(D)角速度减小,动能减小。

[ B ]难度:易3 两人各持一均匀直棒的一端,棒重W ,一人突然放手,在此瞬间,另一个人感到手上承受的力变为:(A)3w ; (B) 2w (C) 43w; (D) 4w 。

[ D ]难度:难4 长为L 、质量为M 的匀质细杆OA 如图悬挂.O 为水平光滑固定转轴,平衡时杆竖直下垂,一质量为m 的子弹以水平速度0v 击中杆的A 端并嵌入其内。

那么碰撞后A 端的速度大小:(A)M m mv +12120; (B) Mm mv +330;(C) Mm mv +0; (D) M m mv +330。

[ B ]难度:中L5 一根质量为m 、长为l 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒竖直地立起,如让它掉下来,则棒将以角速度ω撞击地板。

如图将同样的棒截成长为2l的一段,初始条件不变,则它撞击地板时的角速度最接近于:(A)ω2; (B)ω2; (C) ω; (D) 2ω。

[ A ]难度:难6 如图:A 与B 是两个质量相同的小球,A 球用一根不能伸长的绳子拴着,B 球用橡皮拴着,把它们拉到水平位置,放手后两小球到达竖直位置时绳长相等,则此时两球的线速度:(A)B A v v = (B) B A v v < (C) B A v v > (D)无法判断。

[ C ]难度:中7 水平圆转台上距转轴R 处有一质量为m 的物体随转台作匀速圆周运动。

已知物体与转台间的静摩擦因数为μ,若物体与转台间无相对滑动,则物体的转动动能为: (A)mgR E k μ41≤(B) mgR E k μ21≤ (C) mgR E k μ≤ (D) mgR E k μ2≤ [ B ]难度:中8 一匀质细杆长为l ,质量为m 。

杆两端用线吊起,保持水平,现有一条线突然断开,如图所示,则断开瞬间另一条绳的张力为: (A)mg 43 (B) mg 41 (C) mg 21(D) mg [ B ]难度:难9 一根均匀棒AB ,长为l ,质量为m ,可绕通过A 端且与其垂直的固定轴在竖直面内自由摆动,已知转动惯量为231mgl .开始时棒静止在水平位置,当它自由下摆到θ角时,B 端速度的大小为: (A)θsin gl (B) θsin 6gl(C)θsin 3gl (D) θsin 2gl[ C ]难度:中10 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度0转动,此时有一质量为m 的人站在转台中心.随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为(A) 02ωmR J J+. (B) ()02ωR m J J +. (C) 02ωmRJ. (D) 0ω. [ A ]难度:中11 一质量为M 、半径为r 的均匀圆环挂在一光滑得的钉子上,以钉子为轴在自身平面内作幅度很小的简谐振动.已知圆环对轴的转动惯量22Mr J =,若测得其振动周期为π21s ,则r 的值为 (A) g /32. (B) 216g .(C)16/2g . (D) g /4.[A ]难度:中12、质量和长度都相同的均匀铝细圆棒A 和铁细圆棒B ,它们对穿过各自中心且垂直于棒的轴的转动惯量各为J A 和J B ,则(A) J A >J B . (B) J B >J A .(C) J A =J B . (D) J A 、J B 哪个大,不能确定.[ C ]难度:易13、两个质量和厚度相等的均匀木质圆盘A 和均匀铁质圆盘B ,设两盘对通过盘心垂直于盘面轴的转动惯量各为J A 和J B ,则 (A) J A >J B . (B) J B >J A .(C) J A =J B . (D) J A 、J B 哪个大,不能确定.[ A ]难度:易木木钢钢AB FF14、两根细棒的质量、长度均相同,且都半截木质、半截钢质,一根的转动轴木质端,另一根的转动轴在钢质端。

今在棒的另一端施相同的力F ,两细棒得到的角加速度满足:(A) βA >βB . (B) βB >βA .(C) βA =βB . (D) 无法确定.[B ]难度:易15、一质量均匀分布的圆盘,质量为M ,半径为R ,放在一粗糙水平面上,圆盘与水平面之间的摩擦系数为μ,圆盘可绕通过其中心的竖直固定光滑轴转动.开始时,圆盘的角速度为0ω,当圆盘角速度变为20ω所需时间为(SI 制):(A)g R μω0. (B) gRμω20. (C)g R μω830. (D) gRμω40. [C ]难度:中16、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,开始时自然悬挂于竖直位置若给棒一水平冲力,则棒在绕轴转动过程中: (A) 角速度逐渐增大,角加速度逐渐减小; (B) 角速度和角加速度都逐渐增大; (C) 角速度和角加速度都逐渐减小;(D) 角速度逐渐减小,角加速度逐渐增大。

[ D ]难度:易17、一个转动惯量为J 的圆盘绕一固定轴转动,起初角速度为0.设它所受阻力矩与转动角速度成正比,即M =-k (k 为正的常数),则圆盘的角速度从0变为021ω时所需的时间(SI 制):(A)21. (B) k J. (C) k J 2ln . (D) k 21.[C ]难度:中18、一个转动惯量为J 的圆盘绕一固定轴转动,起初角速度为0.设它所受阻力矩与转动角速度成正比,即M =-k (k 为正的常数),则圆盘的角速度从0变为021ω时,阻力距所作的功(SI 制):(A) 420ωJ . (B) 8320ωJ -.(C) 420ωJ -. (D) 82ωJ .[B ]难度:中19、一花样滑冰运动员绕通过自身的竖直轴转动,开始时以转动动能220ωJ 旋转,当他向内收缩双臂时,他的转动惯量减少为31J .这时他转动动能变为:(A) 220ωJ . (B) 620ωJ .(C) 2320ωJ . (D) 2920ωJ .[ C ]难度:中20、一人双手握着重物伸开双臂站在可绕中心轴无摩擦转动的平台上,系统的转动惯量为J ,角速度为.当此人突然将两臂收回,使系统的转动惯量减少为31J 0.则该系统: (A) 机械能和角动量守恒,动量不守恒. (B) 机械能守恒,动量和角动量不守恒. (C) 动量和机械能不守恒.角动量守恒. (D) 机械能不守恒.动量和角动量守恒.[ C ]难度:易21、一质量为M 的水平匀质圆盘可绕通过其中心的固定竖直轴转动,圆盘边缘站着一个质量为m 的人.把人和圆盘取作系统,开始时,该系统的角速度为0,接着此人沿着半径走到圆盘中心,在走动过程中(忽略轴的摩擦),此系统的(A) 转动惯量不变;(B) 角速度减小; (C) 机械能不变; (D)角动量不变。

[ D ]难度:易22、一质量为M 的水平匀质圆盘可绕通过其中心的固定竖直轴转动,圆盘边缘站着一个质量为m 的人.把人和圆盘取作系统,开始时,该系统的角速度为0,接着此人沿着半径走到圆盘中心,此系统的角速度将为:(A)02ωMm; (B) 0)21(ωM m+;(C) 0)21(ωM m+;(D) 02ωMm。

[ B ]难度:中23、一飞轮从静止开始作均加速转动,飞轮边上一点的法向加速度n a 和切向加速度t a 值的变化为:(A) n a 不变,t a 为零; (B) n a 不变,t a 不变; (C) n a 增大,t a 为零; (D) n a 增大,t a 不变;。

[ D ]难度:中24、一根均匀棒,长为l ,质量为m ,一端固定,由水平位置可绕通过其固定端且与其垂直的固定轴在竖直面内自由摆动.则在水平位置时其质心C 的加速度为(已知均匀棒对于通过其一端垂直于棒的轴的转动惯量为231ml ) :(A)g . (B)0. (C) g 43. (D) g 21. [C ]难度:中25、一根长为l 、质量为m 的均匀细直棒在地上竖立着,如果让其以下端与地的接触处为轴自由倒下,当上端到达地面时,上端的速率为(已知均匀棒对于通过其一端垂直于棒的轴的转动惯量为231ml ) :(A)gl 6. (B)gl 3.(C) gl 2. (D)23gl. [B ]难度:中26、一根长为l 、质量为m 的的杆如图悬挂.O 为水平光滑固定转轴,平衡时杆竖直下垂,一质量为m 、速度为0v 的子弹从与水平方向成角处飞来,击中杆的中点且留在杆中,则杆的中点C 的速度为:(A) 20v.(B) ϕcos 730v .(C) ϕcos 430v .(D) ϕsin 730v . [B ]难度:中27、在经典力学中,下列哪个说法是错误的:(A) 质点的位置、速度、加速度都是矢量. (B) 刚体定轴转动的转动惯量是标量. (C) 质点运动的总机械能是标量. (D) 刚体转动的角速度是标量.[ D ]难度:易1 一飞轮以角速度0绕光滑固定轴旋转,飞轮对轴的转动惯量为J 1;另一静止飞轮突然和上述转动的飞轮啮合,绕同一转轴转动,该飞轮对轴的转动惯量为前者的二倍.啮合后整个系统的角速度为,则0ωω=__________________. 答案:31 难度:中2 一电唱机的转盘以n = 78 rev/min 的转速匀速转动,则转盘上与转轴相距r = 15 cm 的一点P 的线速度v =__________________. 答案:8.17srad难度:中3 一电唱机的转盘以n = 78 rev/min 的转速匀速转动,则转盘上与转轴相距r = 15 cm 的一点P 的法向加速度a n =__________________. 答案:102s m 难度:中4 一电唱机的转盘开始以n = 78 rev/min 的转速匀速转动,在电动机断电后,转盘在恒定O M Cφ的阻力矩作用下减速,并在t = 15 s 内停止转动,则转盘在停止转动前的角加速度=__________________. 答案:-0.5452s rad难度:中5 一电唱机的转盘开始以n = 78 rev/min 的转速匀速转动,在电动机断电后,转盘在恒定的阻力矩作用下减速,并在t = 15 s 内停止转动,则转盘在停止转动前转过的圈数N =__________________. 答案:9.75rev 难度:难6 如图所示,半径为r 1=0.3 m 的A 轮通过皮带被半径为r 2=0.75 m 的B 轮带动,B 轮以匀角加速度 rad /s 2由静止起动,轮与皮带间无滑动发生.则A 轮达到转速3000 rev/min 所需要的时间t =__________________s . 答案:40 难度:中7、圆柱体以80srad的角速度绕中心轴转动,对该轴转动惯量为42m kg ⋅,由于恒力矩的作用,在10s 内其角速度变为40srad ,则力矩的大小为__________________m N ⋅。

相关文档
最新文档