香港科大信号系统英文课件Key Points in Signals and Systems-Chapters 7,9

合集下载

信号与系统第三章PPT课件

信号与系统第三章PPT课件
③ 在任何单个周期内,只有有限个第一类间断点, 且在间断点上的函数值为有限值。
.
它们都是傅里叶级数收敛的充分条件。相当广泛的 信号都能满足Dirichlet条件,因而用傅里叶级数表 示周期信号具有相当的普遍适用性。
几个不满足Dirichlet条件的信号
.
三.Gibbs现象 满足 Dirichlet 条件的信号,其傅里叶级数是如
• “非周期信号都可以用正弦信号的加权积分来 表示”——傅里叶的第二个主要论点
.
傅立叶分析方法的历史
古巴比伦人 “三角函数和” 描述周期性过程、预测天体运

1748年 欧拉 振动弦的形状是振荡模的线性组合
1753年 D·伯努利 弦的实际运动可用标准振荡模的线性组合来表示
1759年 拉格朗日 不能用三角级数来表示具有间断点的函数
x[k]h[nk]
x[k]h[n k]
k
.
对时域的任何一个信号 x ( t ) 或者 x ( n ) ,若能将其
表示为下列形式: x(t) a 1 es1 t a 2 es2 t a 3 es3 t
由于 es1t H(s1)es1t
es2t H(s2)es2t
es3t H(s3)es3t
利用齐次性与可加性,有
k
例: y(t)x(t3) ❖ 系统输入为 x(t) ej2t
系统 H(s) ? y(t) ?
H(s) h(t)estdt
❖ 系统输入为 x(t)cos(4t)cos(7t)
系统 y(t) ?
.
*问题:究竟有多大范围的信号可以用复指数信号的 线性组合来表示?
.
3.3 连续时间周期信号的傅里叶级数表示
第k次谐波 e jk 0t 的周期为

HongKongUniversityofScience&TechnologyLibrary课件.ppt

HongKongUniversityofScience&TechnologyLibrary课件.ppt

13
3.3 Harvesting and Promotion
Within HKUST:
1st Stage : Prototype 105 Computer Science Technical Reports
2nd Stage: Target Group: Faculty who already posted their publications on the Web
HKUST Library
18
3.4 Work Teams – Subject Librarians
1 Liaison With Faculty
2. Check Faculty’s Publication Lists
6. Do Indexing
3. Harvest Documents
5. Verify Document Versions
HKUST Library
16
3.3 Harvesting and Promotion
Planned: Will harvest conference proceedings held at
HKUST and published by HKUST Will cover PhD theses with signed permissions Will contact departments for preprints, working
papers, technical reports, etc. Will contact faculty whose publications have not
been posted Departmental visits
HKUST Library

电子科大信号系统英文版课件Chapter4 FourierTransform-B

电子科大信号系统英文版课件Chapter4 FourierTransform-B

4 The continuous time Fourier transform
(2) Fourier transform representation of Aperiodic
signal
For periodic signal ~x(t) :
~x(t)
ak e jkω0t
a
k
k
1 ~x(t)e jkω0tdt TT
4.2 The Fourier Transform for Periodic Signal
Periodic signal:
x(t)
a e jkω0t k
k
ejkω0t F 2π δ(ω kω0 )
thus x(t) akejkω0t F X(jω ) ak 2π δ(ω kω0 )
k
(Periodic signal) (Aperiodic signal)
4 The continuous time Fourier transform
4 The continuous time Fourier transform
4.1.2 Convergence of Fourier transform
4.3.6 Duality
If
x(t)F X(jω )
then X(jt) F2π x(ω )
Proof : x(t) 1
X(jω
)e

t dω

exchange t and ω :
x(ω ) 1
X(jt)e

t dt

2π x(ω)
X(jt)e

t dt
X(jt) F 2π x(ω)
XR (jω ) jX I (jω ) Xe (jω ) Xo (jω )

英文版《信号与系统》第9章讲义

英文版《信号与系统》第9章讲义
• Apply Signals and Systems in Engineering Applications: By the end of this chapter, students will have a good understanding of how signals and systems are applied in various engineering fields such as audio processing, image processing, and communication systems.
03
Fourier transform decomposition: Express a nonperiodic signal as an integral of sine and cosine waves of all frequencies.
05
Reconstruct a periodic signal from its Fourier series coefficients.
03
Chapter 9 Key Points and Difficulties
Decomposition and synthesis of signals
01
Decomposition of signals
04
Synthesis of signals
02
Fourier series decomposition: Express a periodic signal as an infinite sum of sine and cosine waves of different frequencies.
02
Nyquist stability criterion: Analyze the stability based on the Nyquist plot of the system.

信号与系统课件(英文)讲解

信号与系统课件(英文)讲解
balance --- y[n] net deposit --- x[n] interest --- 1% so y[n]=y[n-1]+1%y[n-1]+x[n] or y[n]-1.01y[n-1]=x[n]
x[n] Balance in bank y[n]
(sytem
x(t)
t1 y(t)
t2
1 Signal and System
1.6.4 Stability
x[n]
Discrete-time y[n]
System
SISO system
MIMO system?
1 Signal and System
1.5.1 Simple Example of systems
Example 1.8:
RC Circuit in Figure 1.1 : Vc(t) Vs(t)
Memoryless system: It’s output is dependent only on the input at the same time. Features: No capacitor, no conductor, no delayer.
Examples of memoryless system: y(t) = C x(t) or y[n] = C x[n]
Representation of System: (1) Relation by the notation
x(t) L y(t)
x[n] L y[n]
1 Signal and System
(2) Pictorial Representation
x(t) Continous-time
System

电子科大_信号与系统课件chap2

电子科大_信号与系统课件chap2

y
t


t
0
t d
1 t2 2
t 2T t 2T t 0
t
③ t T
ht
t 2T 0
T t 2T
1
yt


T
0
t d
Tt 1 T 2 2
t 2T
0
T
x
T17 t
Chapter 2
LTI Systems
Chapter 2 Linear Time-invariant Systems
1
Chapter 2
LTI Systems
Consider a linear time-invariant system
fi t yi t
i 1,2, , n
n
f t
ai fi t ti

yt
n

ai yi t ti
i 1
i 1
Example 1 an LTI system
f1 t
1
y1 t
L
1
0
2t
f2t f1t f1t 2
1
L
0 1 2t
y2t y1t y1t 2
1
0
2
4
t
0
2
1
-1
4t
2
Chapter 2
2 t 5t 2 xt
6 5t 24t 2 13t 3 22t 4 10t 5 6 2t 8t 2 4t 3
3t 16t 2 9t 3 22t 4 3t t 2 4t 3 2t 4

信号与系统SignalsandSystemsppt课件

信号与系统SignalsandSystemsppt课件

0.5
0.4
0.3
0.2
0.1
0
0
1
2
3
4
5
6
7
8
9
10
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0
1
2
3
4
5
6
7
8
9
10
一、基本信号的MATLAB表示
% rectpuls
t=0:0.001:4; T=1; ft=rectpuls(t-2*T,T); plot(t,ft) axis([0,4,-0.5,1.5])
rand
产生(0,1)均匀分布随机数矩阵
randn 产生正态分布随机数矩阵
四、数组
2. 数组的运算
数组和一个标量相加或相乘 例 y=x-1 z=3*x
2个数组的对应元素相乘除 .* ./ 例 z=x.*y
确定数组大小的函数 size(A) 返回值数组A的行数和列数(二维) length(B) 确定数组B的元素个数(一维)
0.3
0.2
0.1
function [f,k]=impseq(k0,k1,k2) 0
-50 -40 -30 -20 -10
0
10 20 30 40 50
%产生 f[k]=delta(k-k0);k1<=k<=k2
k=[k1:k2];f=[(k-k0)==0];
k0=0;k1=-50;k2=50;
[f,k]=impseq(k0,k1,k2);
已知三角波f(t),用MATLAB画出的f(2t)和f(2-2t) 波形

科技英语第9讲SignalConversion-PPT文档资料

科技英语第9讲SignalConversion-PPT文档资料
译文:声卡是一块印刷电路板,它能把上的槽内,而且通常连接一对喇叭。
(比较:声卡是一块能把数字信息译为声音,也能把声音变 为数字信息,插在母板(计算机主电路板)上的槽内,而且 通常连接一对喇叭的印刷电路板。)
Special English
Special English
§18.3 New Words & Expressions
18.3.1. News Words In the Text(2)
7 sample-and-hold 采样保持 8 handshake 握手信号 9 bit 比特 10 serial-parallel 串行-并行 11 comparator 比较器 12 linearity 直线性 13 gain 增益 14 stepwise 逐步的 15 circuitry 电路系统,电路
Special English
§18.1.1 Examples(1)
例1. A computer is an electronic device that can receive a set of instructions, or program, and then carry out this program by performing calculations on numerical data or by compiling and correlating other forms of information. 译文:计算机是一种电子装置,它能接受一套指令或程序, 并通过数据运算,或收集和联系其他形式的信息来执行该 程序。
§18.2 复杂定语从句的翻译技巧之 二 先述后提法
此译法是“先提后述法”的倒置。也就是 先叙述中心词(组)的修饰内容,最后用“这样 的”、“这一切”、“这种”、“这些”等词 语予以呼应。

信号与系统双语课件chapter2.2

信号与系统双语课件chapter2.2
solution:



h( ) d

0
1 a e d e a
a
0
当 a<0 时,



1 h( ) d a
stable
当 a0 时,



h( ) d
x(t ) x(t ) h(t ) h1 (t )
We know that
x(t ) x(t ) (t )
So the unit impulse of its inverse system should satisfy
h(t ) h1 (t ) (t )
Similarly ,in discrete time, the impulse response h1[n] of the inverse system for an LTI system with impulse response h[n] must satisfy:
y[n]
k
x[k ]h[n k ] x[n] h[n]

That require the impulse response of a causal discrete-time LTI system satisfy the condition:
h[n] 0 for n 0
y1 (t ) x(t ) h1 (t ) y2 (t ) x(t ) h2 (t ) y(t ) y1 (t ) y2 (t ) x(t ) h1 (t ) x(t ) h2 (t )
The output is :
y(t ) x(t ) [h1 (t ) h2 (t )]

ch1-Signals and Systems-lec[1-1](1)

ch1-Signals and Systems-lec[1-1](1)

Total energy over a finite time interval
2


The Signals and Systems Abstraction
Describe a system (physical, mathematical, or computational) by the way it transforms an input signal into an output signal.
[Chap. 1] 2. Continuous‐Time & Discrete‐Time Signals
11
Discrete Time (DT) Signals
Signals from computation systems are often functions of discrete “time”.
Signal in
System
Signal out
信号与系统课程组©2014
[Chap. 1] 1. Introduction
4
Example: Automobile Suspension System
suspension system
信号与系统课程组©2014
[Chap. 1] 1. Introduction
ADC
D‐ T signal DSP
DAC
Transmitter
信号与系统课程组©2014
[Chap. 1] 2. Continuous‐Time & Discrete‐Time Signals
Where are the CT and DT signals ?
Modern systems generally… • get a CT signal from a sensor • a CT system modifies the signal • an “analog‐to‐digital converter” (ADC) sample the signal to create a DT signal … a “stream of numbers” • A DT system to do the processing • and then (if desired) convert the DT signal back to a CT one by a DAC

《信号与系统》课程教学大纲(英文)

《信号与系统》课程教学大纲(英文)

“Signal and Systems” Course OutlineCourses Name: Signals and SystemsCategories of Courses: Basic CourseCourse Number: 071210T107Course Ownership: School of Electronic Science & Information Technology Revised: August 2006一、The Responsibility and Character of the Course1、The Responsibility、Character and Goal of the CourseThis course is an important basal and professional class for the communication professional engineering. It focused on the characteristics of signal, the characteristics of the linear time-invariant system, the basic analysis for the signal through linear systems. From time domain to transform domain, from continuous-time to discrete-time, from the description of the input and output to state description.Through this course, students can master the methods of signal analysis and the basic theory of linear systems, cultivate the students’thinking , reasoning and analyzing abilities. This is the foundation to study digital signal processing, communications theory, signal and information processing, signal detection and etc.2、Basic Requirements of the CourseThe course can enable students to master the signal and linear system's basic theory, basic analysis, This is the foundation to study the following courses and the research in the future actual work.3、Suitable Professions、Teaching Hours and CreditSuitable professions: Communication Engineering, Network Engineering and etc.Teaching hours:54 hours(42 for the theory and 12 for the experiments).Credit: 34、Pre-CoursesHigher Mathematics, Complex Function, Basal Circuit Analysis5、Reference Books◆Signals and Systems (Second Edition) , Alan S.Willsky Publishing House ofElectronics Industry 2006◆Signals and Systems(Second Edition), Zheng,Junli Publishing House ofthe High Education 20006、Teaching MethodsTeaching ways: classroom teaching and experimentScores: total=paper examination(70%)+ usual scores(10%)+ experiment scores(20%)。

信号与系统新课件

信号与系统新课件
50年代 *傅里叶变换;*拉普拉斯变换 60年代 伺服系统:灵敏度与*稳定性 70年代 *时域分析; *离散系统与系统 80年代 *数字信号处理;时间序列分析; 90年代 神经网络;小波变换 00年代 希尔伯特-黄变换;复杂性度量(广义信息
理论)

信号与系统相关技术 已渗透到所有现代自然科学和社会科学领域
傅里叶:所有的函数都可以分解为不同频率三角函 数的叠加。

波形(Waveforms)

函数的单变量变换(Transformation of independent variable)
•1. 反转(反褶)f(-t):信号f(t)与f(-t)以纵轴镜像对称
•1

•-2
•0 •1
•t
•1 •-1 •0

信号的表现形式 (Representation)
时间上:时间的函数f(t) (本课程中信号=函 数) (Signal=Function)
空间上:(时域)波形( Waveform over Time domain)
频域中:频谱 (Frequency spectrum over frequency domain)
•1
•-1 0
•右移 •1
2t
•0

•1.2 连续时间信号的基本运算与波形变换
•方法二、先平移后反转(注意:是对t 的变换!)
•左移
•1
•-2
01 t
•1 •右移
1 •反转 1
20
20
•1

•例:已知f(5-2t)的波形如图所示,试画出f(t)的 波形。
•t
•解:(1)时移
•以 •而求得-2t,即f(5-2t)左移

电子科大信号系统英文课件Chapter1 SignalandSystem-B

电子科大信号系统英文课件Chapter1 SignalandSystem-B
1 Signal and System
1. Signals and Systems 1.1 Continuous-time and discrete-time signals 1.1.1 Examples and Mathematical Representation
A. Examples (1) A simple RC circuit
(3) A Speech Signal
1 Signal and System
(4) A Picture
1 Signal and System
(5) Vertical Wind Profile
1 Signal and System
B. Types of Signals (1) Continuous-time Signal
1 Signal and System
Energy over t1 t t2:
t2p(t)dt t2v2 (t)dt t2x2 (t)dt
t1
t1
t1
Total Energy:
lim E T
t2x2 (t)dt
t1
lim Average Power:
P
T
1 2T
T x2 (t)dt
Right shift : x(t-t0) x[n-n0]
Left shift : x(t+t0) x[n+n0]
(Delay) (Advance)
1 Signal and System Examples
1 Signal and System
B. Time Reversal x(-t) or x[-n] : Reflection of x(t) or x[n]

信号与系统课件(英文)

信号与系统课件(英文)

or
{ak }
x(t ) ak
are called Fourier Series coefficients or spectral coefficients of .
FS
x(t )
3 Fourier Series Representation of Periodic Signals 1 (t ) Note:About orthogonality
e
e
j 0t
,e
j 0t
: Fundamental components
j 20t
,e
j 20t
: Second harmonic components
e
jN0t
,e
jN 0t : Nth harmonic components
So, arbitrary periodic signal can be represented as ( Fourier series )
e
jk 0T1
]
3 Fourier Series Representation of Periodic Signals
sin k0T1 sin k0T1 ak 2 k0T k
(3.44)
0T 2
1 a0 T
2T1 dt T T1
T1
So,Fourier Series Representation of
Discrete time LTI system:
x[n] ak zk
k 1
N
n
y[n] ak H ( zk ) zk
k 1
N
n
H ( z)
3 Fourier Series Representation of Periodic Signals Example 3.1

英文版《信号与系统》第678章讲义

英文版《信号与系统》第678章讲义

Frequency-Domain:
X j
H j
ht
yt Y j
Y j X j H j §6.1 The Magnitude-Phase Representation ( 幅度-相位) of the Fourier Transform
xt
Sampling
xt
x p t
pt
n
t nT

x0 xT x2T
-3T -2T
-T
0
T
2T
3T
4T
12
t
Chapter 7 Sampling Theorem:
Sampling
Let xt be a band-limited signal with X j 0 , M Then xt is uniquely determined by its samples xnT , n 0,1, 2 if where s s 2 M T
to obtain a signal g t with Fourier transform G j . Determine the maximum value of 0 for which it is guaranteed that


y t cos t / 3 1/ 3 cos t 1 cos
3t 3 y t cos t 1 / 3 cos t 1 cos 3 t 1
4
Chapter 6 2. Nonlinear Phase
§6.2 The Magnitude-Phase Representation of the Frequency Response of LTI Systems

信号与系统(Signals and Systems)

信号与系统(Signals and Systems)

信号与系统(Signals and Systems)信号与系统(Signals and Systems)是电子信息工程领域中非常重要的一门课程。

它是研究信号在各种系统中传输、变换和处理的学科,通常需要一些微积分和线性代数的基础知识。

信号和系统理论不仅应用于工程中,也广泛出现在生物医学、电力系统、通信系统中。

总的来说,信号与系统可以分为三个部分:信号、系统和信号处理。

下面我将分别介绍这三个方面的内容。

一、信号信号是代表某种信息的物理量,可以是电信号、光信号、声波等。

常见的信号包括连续信号和离散信号。

连续信号指的是在一段时间内连续地变化的信号,可以用函数f(t) 来表示。

离散信号则是在特定的时间点(离散时间)上产生的信号,表示为序列{xn}。

无论是连续信号还是离散信号,它们都遵循一些基本的信号特性,比如幅度、频率、相位、周期和能量等。

二、系统系统是用于处理信号的工具,可以是电路、滤波器、放大器或者是数字信号处理器。

在信号和系统领域,系统可以被分为连续系统和离散系统。

连续系统指的是输入和输出都是连续信号的系统,比如电路。

离散系统则是输入和输出都是离散信号的系统,比如数字滤波器。

系统通常被描述为输入到输出之间的关系,这个关系可以用一个函数 h(t) 或者 h[n] 来表示。

一个系统可以具有不同的特性,比如时域特性、频域特性、稳定性、因果性、线性性和时变性等。

学习系统理论可以帮助我们更好地了解各种信号和系统的行为特点,从而选择合适的系统来处理不同类型的信号。

三、信号处理信号处理指的是对信号进行分析、处理或者变换的过程,可以是模拟信号处理或数字信号处理。

在信号处理领域,我们经常遇到需要从原始信号中提取特定信息的问题,比如噪声消除、滤波、增强等。

常见的信号处理方法包括傅里叶变换、卷积、差分方程、滤波等。

这些方法可以在时域或者频域中对信号进行变换,得到更有用的信息。

总结信号与系统是一门重要的学科,它主要研究信号在不同系统中传输、变换和处理的过程。

信号与系统英文课件

信号与系统英文课件
y(t ) cos[4(t 3)] cos[7(t 3)]
3.2 The Response of LTI Systems to Complex Exponentials
From this example, we see that if an input applied to an LTI system is a linear combination of complex exponentials, then the corresponding output response is also a linear combination of the same complex exponentials. sk t y(t ) ak H (sk )e sk t x(t ) ak e
k k
x[n] ak zk
k
n
y[n] ak H ( zk ) zk
k
n
3.2 The Response of LTI Systems to Complex Exponentials
If the input is a linear combination of sinusoids, then the output response is also a combination of the same sinusoids.
Conclusion: for an LTI system, if the input signal is a complex exponential, then the output response is the same complex exponential modified by H(s).
Compare it with y (t ) e H ( s)

信号与系统绪论(英文)

信号与系统绪论(英文)
P 1 t2 x(t) 2 dt
t2 t1 t1
The total energy over time interval in [n1, n2] a DT signal is Defined as :
n2
E
x(n) 2
nn1
The average power over this time interval is:
x(t) P
lim 1 T 2T
T T
2
dt
1 N
P
lim
N
2N
1
N
x(n) 2
Three classes of signals:
1. Energy signals: signals with finite total energy
E , P 0
2. Power signals: signals with finite average power。
P 1
n2 x(n) 2
n2 n1 1 nn1
Energy over an infinite time interval:
E
T
lim T T
x(t)
2
dt
x(t)
2
dt
N
E
lim
N
N
x(n) 2
x(n) 2
Average power over an infinite time interval:
algebraic A a bj
a is real part,b imaginary part
exponential A | A | e j
|A| is modulus ,| A | a2 b2
Sinusoidal A | A | (cos j sin ) θ is phase angle,tan b a | A | cos,b | A | sin a
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Key Points in Signals and Systems4. Sampling Theorem4.1 Sampling Theorem: A band-limited signal x (t ) with bandwidth (unilateral) M ωrad/sec can be uniquely recovered from its samples x (nT ) if the sampling interval T is sufficiently small: M T ωπ/<. It is easier to think in terms of ordinary frequencies: the sampling frequency must be greater than two times the unilateral bandwidth. That is:πωM M s f T f =>=21. 4.2 Spectrum of sampled impulse train is a Poisson sum of original spectrum:))2((1)()()()()()(∑∑∞-∞=∞-∞=-=⇒-==k p n p T k j X T j X nT t nT x t p t x t x πωωδ If T is sufficiently small, there is no aliasing and Tj X T j X p πωωω<=||for )(1)(, so low-pass filtering of )(ωj X p (and scale by T ) reproduces )(ωj X .4.3 Generalizing 4.2, multiplying x (t ) with any T -periodic signal q (t ) gives:))2(()()()()(∑∞-∞=-=⇒=k k q q T k j X c j X t q t x t x πωωwhere k c are the FS coefficients of q (t ) So low-pass filtering )(t x q reproduces c 0x (t ) if period T is small enough to avoid aliasing.4.4 Spectrum of DT sampled signal is a frequency-scaled version of )(ωj X p)()()()(][Ω=Ω=⇒=Ωs p p j d d jf X TjX e X nT x n x Frequency range of a DT signal is ππ≤Ω<-, but the actual frequency represented is scaled by the (ordinary) sampling frequency: Ω=s f ω. So if the sampling frequency is 1 MHz, the actual frequency represented in the DT signal is from -0.5 MHz to 0.5 MHz.4.4 Discrete Approximation of Signals and SystemsIf signal x (t ) and system h (t ) are band-limited, )(t Tx p produces same output as x (t ) because )()()()2((1)()(ωωωπωωωj H j X j H T k j X T T j H j TX k p =⎪⎭⎫ ⎝⎛-=∑∞-∞= Likewise, if signal to be processed and system are band-limited, we can approximate impulse response h (t ) by a discrete version ∑∞-∞=-=n p nT t p t Th t Th )()()(. The SAW filter (serviceacoustic wave filter) in our cell phone is based on this principle.4.5 Understanding Aliasing in real-life: When sampled at T f s /1= Hz, complex sinusoids that rotate at f Hz and at f mf s +Hz are identical: nT f mf j fnT j s e e )(22+≡ππ because ππ22mn nT mf s =. So in a movie shown at 30 frames/sec, a wagon wheel turning at 31 Hz will appear as turning at 1 Hz. A wheel turning at 29 Hz will appear as turning backward at 1 Hz.When sampled at T f s /1= Hz, real sinusoids that rotate at f Hz and at f mf s ±Hz are identical: nT f mf fnT s )(2cos 2cos ±≡ππbecause )cos(cos θθ-=. Sampling rate in the telephony networkis 8,000 Hz. Therefore, inputs at 7,000Hz, 9,000 Hz and 15,000 Hz will all appear as 1,000 Hz.Moire effect in images. Examples of Anti-Aliasing Filters.5. Differential Equations as LTI Systems5.1 Frequency response of ODE as LTI is of rational form5.2 Determine impulse response by factorizing )(ωj D followed by partial fraction expansion toexpress )(ωj H in partial fraction form )()()(11t u e t h j c j H n k n k k k k ∑∑===⇒-=ααωω.5.3 Roots of )(ωj D , the s k 'α, characterize the system. Any k αhas positive real part, system is unstable. Any k αhas imaginary part, system is oscillatory. Also, for real system,k α’s and k c ’s must come in conjugate pairs.5.4 2nd order system is stable only if all coefficients of denominator are all the same sign. Also, we can alternatively express the denominator polynomial of a 2nd order system in terms of itsnatural frequency n ωand parameter ς:22012)(2)()()()(n n j j a j a j j D ωωςωωωωω++=++=.1≅ς system critically damped;1>>ς system over-damped;+→0ςsystem under-damped;10<<ς system oscillatory;0<ς system unstable.∑∑∑∑=-=-====⇒=N k k k N k k k k k k N k k k k N k j a j b j D j N j H dt t x d b dt t y d a 010100)()()()()()()(ωωωωω6. Laplace Transform6.1 Two ways to look at relationship between FT and LT:-ωωj s s X j X ==)()(: FT is one cross-section of LT. FT exists only if signal/system is stable-})({)(t e t x FT j s X σωσ-=+=: LTat ωσj s += is FT of signal first multiplied by t e σ-6.2 ROC of LT in rational form is either the whole s -plane, a RHP, a LHP, or a vertical strip on the s -plane. ROC is bounded by poles.6.3 For LT in rational form, we take right-sided or left-sided inverse transform for each partial fraction term depending on whether the ROC is to the right or to the left of the corresponding pole:For each term, take right sided inverse FT if ROC is to the right of k αand vice versa6.4 Signal/system is stable if ROC contains ωj -axis (FT exists). Signal/system is causal iff rational LT has ROC that is a RHP. Stable causal system must have all poles left of ωj -axis. 6.5 Differentiation property )()(s sX t x dt d L −→←. We can re-express LTI ODE in terms of Laplace Transform 6.6 Geometric Evaluation and Filter design by pole placement)(k j αω-and )(i j βω-can all be viewed as 2-D vectors on the s -plane. To make |)(|ωj H large around 1ω, we place pole(s) near 1ωj so ||k j αω- in the denominator becomes small. Real-part of pole determines half-power width.6.7 Butterworth FilterLower-pass filter: distribute N poles evenly along left semi-circle with radius c ωcentered at the origin. Large N for fast roll-off from pass-band to stop-band.Band-pass filter: distribute N Poles evenly along left semi-circle with radius c ωcentered at the intended pass-band center frequency on ωj -axis.6.8 Block Diagram Implementation of rational/differential equation systems- Simple feedback circuit for 1st order prototypical system- Numerator polynomial as purely feed-forward system- Higher order system in direct, product, and parallel forms. ∑=-----=+++++++=n k k k n n n n n s c a s a s a s b s b s b s X 101110111........)(α∑∑∑∑=-=-====⇒=N k k k N k k k k k k N k k k k N k s a s b s D s N s H dt t x d b dt t y d a 010100)()()()()(∏∏∏∏=-==-=------=⇒--=+++++++=n k k n i i n k k n i i n n n n n j j M j H s s M a s a s a s b s b s b s H 11111101110111|||||)(|)()(........)(αωβωωαβ。

相关文档
最新文档