2.4 弦切角的性质 课件(人教A选修4-1)(2)
合集下载
2.4 弦切角的性质 教学课件(人教A版选修4-1)
知能达标演练
课后习题解答
【考题2】 (2012·辽宁高考)如图,⊙O和⊙O′相交于A,B两点, 过A作两圆的切线分别交两圆于 C, D两点,连结 DB并延长交 ⊙O于点E.
证明
(1)AC·BD=AD·AB; (2)AC=AE.
课前探究学习
课堂讲练互动
知能达标演练
课后习题解答
证明
(1)由 AC 与圆 O′相切于点 A, 得∠CAB=∠ADB;
课前探究学习 课堂讲练互动 知能达标演练 课后习题解答
反思感悟
(1)弦切角是很重要的与圆相交的角.其主要功能是协
调与圆相关的各种角,如圆心角、圆周角等,是连接圆与三角形
全等、三角形相似及与圆相关的各种直线位置关系的桥梁.
(2)弦切角定理经常作为工具,进行三角形相似的证明,然后利用 三角形相似进一步确定相应边之间的关系,在圆中证明比例式或 等积式,常常需要借助于三角形相似处理. (3)弦切角定理有时还与圆周角定理等知识综合运用,它们不但在
课前探究学习
课堂讲练互动
知能达标演练
课后习题解答
解
如图所示,连接 BD.
∵AC 为⊙O 的切线,∴∠ADE=∠ABD. ∵∠A=∠A,∴△ADE∽△ABD, AD BD BD 2 DE 1 ∴ AE =DE,即DE=1,∴BD=2. DE 1 ∵BE 为⊙O 的直径,∴∠BDE=90° ,∴tan∠ABD=BD=2. ∵∠F+∠BEF=90° ,∠ABD+∠BEF=90° , 1 ∴∠ABD=∠F,∴tan∠F=tan∠ABD= . 2
②一边和圆相切(一边所在直线为圆的切线);
③一边和圆相交(一边为圆的过切点的弦). 三者缺一不可,例如图中,∠CAD很像弦切角,但它不是弦切 角,因为 AD 与圆相交, ∠ BAE 也不一定是弦切角,只有已知 AE切圆于点A,才能确定它是弦切角.
2017-2018学年高中数学选修4-1课件人教A版2.4弦切角的性质(共30张PPT)
������������ ∥ ������������⇒∠������������������ = ∠������������������ ������������切☉������于点������⇒∠������������������ = ∠������
探究一
探究二
探究三
思维辨析
当堂检测
反思感悟比例式(或乘积式)的证明方法 1.证明乘积式成立,往往与相似三角形有关.若存在切线,常要寻 找弦切角,确定三角形相似的条件,有时需要添加辅助线创造条件. 2.直接证明比例式或乘积式有困难时,可考虑把它分解成两个比 例式的形式.
解析:∵PA是圆O的切线,∴∠BAP=∠BCA.
������������ 又∠BAC=∠APB,∴△BAP∽△BCA,∴������������
=
∴AB2=PB· CB=7×5=35,故 AB=√35.
答案:√35
������������ , ������������
探究一
探究二
探究三
思维辨析
当堂检测
2.与弦切角定理有关的结论 (1)弦切角的度数等于它所夹的弧的度数的一半. (2)弦切角的度数等于它所夹的弧所对的圆心角度数的一半. (3)如果两个弦切角所夹的弧相等,那么这两个弦切角也相等.
【做一做2】 如图,正三角形ABC内接于圆O,CP是圆O的切线,则 ∠ACP=( )
A.90° B.30°C.60° D.75° 解析:因为△ABC是正三角形,所以∠B=60°.又因为CP是圆O的切 线,所以∠ACP=∠B=60°. 答案:C
四
弦切角的性质
学 习 目 标 1.理解弦切角的概念. 2.掌握弦切角定理,并能运 用定理解决问题.
思 维 脉 络 弦切角的性质 概念 弦切角定理—应用
2016-2017学年高中数学人教A版选修4-1课件:2.4 弦切角的性质
→
Rt△CAE∽Rt△CBD Rt△CBF∽Rt△CAD
→
CCDE=CCDF
→
结论
第十四页,编辑于星期五:十六点 四十六分。
【自主解答】 连接 CA,CB. ∵PA,PB 是⊙O 的切线. ∴∠CAP=∠CBA,∠CBP=∠CA B. 又 CD⊥AB,CE⊥PA, CF⊥PB, ∴Rt△CAE∽Rt△CBD, Rt△CBF∽Rt△CAD, ∴CCAB=CCDE,CCBA=CCDF, ∴CCDE=CCDF,即 CD2=CE·CF.
识,进行角度的等量替换.
第八页,编辑于星期五:十六点 四十六分。
【自主解答】 连接 AC,BE,在 DC 延长线上取一点 F,因为 AB 是半圆 O 的直径,C 为圆周上一点,
所以∠ACB=90°,即∠BCF+∠ACD=90°. 又因为 AD⊥l,所以∠DAC+∠ACD=90°, 所以∠BCF=∠DAC. 又因为直线 l 是圆 O 的切线,所以∠CEB=∠BCF, 又∠DAC=∠CBE,所以∠CBE=∠CEB,∴CB=CE. 则∠CEB=∠DAC,由圆周角定理知∠DAC=∠CBE,∴∠CBE=∠CEB, ∴CB=CE.
D.125°
【解析】 连接 AC,构造出夹圆周角∠ADC 所对弧的
弦切角,即∠PCA,而∠PCA 显然等于∠PCB 加上一个直
角,由此即得结果. 【答案】 B
图 2-4-7
第二十一页,编辑于星期五:十六点 四十六分。
2.如图 2-4-8,四边形 ABCD 是圆的内接四边形,AB
是直径,MN 是切圆于 C 点的切线,若∠BCM=38°,则
第十五页,编辑于星期五:十六点 四十六分。
1.解答本题的难点在于乘积式中的线段不在两个相似三角 形中,需用中间量过渡.
人教A版 高中数学选修4-1 第二讲 四 弦切角的性质 课件(共25张PPT)
通过对弦切角定理的探究,应用弦切角定理 解决几何问题过程,使学生体会和掌握“分 类”、“特殊化”、“化归”数学思想在几何 证明中的作用,培养学生的发散思维和严谨的 逻辑思维.
情感态度与价值观
提高学生学习数学的积极性,培养他们勤于思 考,敢于探索的思维习惯,使学生体会到数学的 逻辑严谨的特征.
教学重难点
旧知回顾
切线的性质定理? 圆的切线垂直于经过切点的.
知识复习
切线的判定定理?
经过半径的外端并且垂直于这 条半径的直线是圆的切线.
两个条件 缺一不可!
课题导入
圆内接四边形的性质?
D
圆的内接四边形的对角互补 .
∴∠BCE= ∠A.
A
C
B
E
探究
以点D为中心旋转直线DE,同时保证BC和DE得
交点落在圆周上,当DE变为圆的切线时:
C
互补来证明BC∥EF.
ED F
证明: 由弦切角定理,得 ∠ADF=ABC+∠2.
又因为 ∠AGC=∠ABC+∠1 ∠1=∠2,
所以 ∠ADF=∠AGC
因此 BC∥EF
A
12
BG
C
ED F
3.已知: 如图,PA,PB分别与⊙O相切于点A和 B,AC是⊙O的直径. 求证: ∠APB=2∠BAC
证明: 连接BC
重点
掌握弦切角的定理,并在几何中应用.
难点
弦切角定理的探究过程及其在几何中 应用.
探究
D
A
C
B
E
∠BCE= ∠A
D (C) E
A B
∠BCE = ∠A
如图,已知△ABC是圆O的内接三角形, CE是圆O的切线,
求证:∠BCE= ∠A.
情感态度与价值观
提高学生学习数学的积极性,培养他们勤于思 考,敢于探索的思维习惯,使学生体会到数学的 逻辑严谨的特征.
教学重难点
旧知回顾
切线的性质定理? 圆的切线垂直于经过切点的.
知识复习
切线的判定定理?
经过半径的外端并且垂直于这 条半径的直线是圆的切线.
两个条件 缺一不可!
课题导入
圆内接四边形的性质?
D
圆的内接四边形的对角互补 .
∴∠BCE= ∠A.
A
C
B
E
探究
以点D为中心旋转直线DE,同时保证BC和DE得
交点落在圆周上,当DE变为圆的切线时:
C
互补来证明BC∥EF.
ED F
证明: 由弦切角定理,得 ∠ADF=ABC+∠2.
又因为 ∠AGC=∠ABC+∠1 ∠1=∠2,
所以 ∠ADF=∠AGC
因此 BC∥EF
A
12
BG
C
ED F
3.已知: 如图,PA,PB分别与⊙O相切于点A和 B,AC是⊙O的直径. 求证: ∠APB=2∠BAC
证明: 连接BC
重点
掌握弦切角的定理,并在几何中应用.
难点
弦切角定理的探究过程及其在几何中 应用.
探究
D
A
C
B
E
∠BCE= ∠A
D (C) E
A B
∠BCE = ∠A
如图,已知△ABC是圆O的内接三角形, CE是圆O的切线,
求证:∠BCE= ∠A.
2.4 弦切角的性质 课件(人教A选修4-1)(2)
[读教材·填要点] 1.弦切角 顶点在圆上,一边和圆 相交 ,另一边和圆 相切 的角叫
弦切角.
2.弦切角定理 弦切角等于 它所夹的弧所对的圆周角 .
[小问题·大思维] 1.一边和圆相交,另一边和圆相切的角是弦切角吗? 提示:不一定.弦切角必须同时具备三点: ①顶点在圆上;②一边和圆相交;③一边和圆相切. 2.弦切角与它所夹的弧所对的圆心角之间有什么关系?
∴∠DAC=∠CAB.
法二: 如图, 延长 BO 交⊙O 于 E, 连接 AE,则∠CAE=90° . 又∵AD⊥CE,∴∠DAC=∠E. ∵AB 是⊙O 的切线, ∴∠CAB=∠E. ∴∠DAC=∠CAB.
法三:如图,连接OA. ∵AB切⊙O于A,∴OA⊥AB.
∴∠CAB与∠OAC互余.
又∵AD⊥OB, ∴∠DAC与∠ACO互余. ∵OA=OC,∴∠OAC=∠ACO. ∴∠DAC=∠CAB.
[考题印证] (2012· 辽宁高考)如图,⊙O和⊙O′相交于A,B两点, 过A作两圆的切线分别交两圆于C,D两点,连结DB并延长
交⊙O于点E.证明:
(1)AC· BD=AD· AB; (2)AC=AE.
[命题立意]
本题主要考查弦切角定理,考查学生综合
运用所学知识,分析问题并解决问题的能力.
证明:(1)由 AC 与⊙O′相切于 A, 得∠CAB=∠ADB, 同理∠ACB=∠DAB, 所以△ACB∽△DAB. AC AB 从而AD=BD, 即 AC· BD=AD· AB. (2)由 AD 与⊙O 相切于 A,得∠AED=∠BAD, 又∠ADE=∠BDA,得 AE AD △EAD∽△ABD.从而AB=BD, 即 AE· BD=AD· AB. 结合(1)的结论,AC=AE.
解决此类问题的关键是把握弦切角的三个要素:
弦切角.
2.弦切角定理 弦切角等于 它所夹的弧所对的圆周角 .
[小问题·大思维] 1.一边和圆相交,另一边和圆相切的角是弦切角吗? 提示:不一定.弦切角必须同时具备三点: ①顶点在圆上;②一边和圆相交;③一边和圆相切. 2.弦切角与它所夹的弧所对的圆心角之间有什么关系?
∴∠DAC=∠CAB.
法二: 如图, 延长 BO 交⊙O 于 E, 连接 AE,则∠CAE=90° . 又∵AD⊥CE,∴∠DAC=∠E. ∵AB 是⊙O 的切线, ∴∠CAB=∠E. ∴∠DAC=∠CAB.
法三:如图,连接OA. ∵AB切⊙O于A,∴OA⊥AB.
∴∠CAB与∠OAC互余.
又∵AD⊥OB, ∴∠DAC与∠ACO互余. ∵OA=OC,∴∠OAC=∠ACO. ∴∠DAC=∠CAB.
[考题印证] (2012· 辽宁高考)如图,⊙O和⊙O′相交于A,B两点, 过A作两圆的切线分别交两圆于C,D两点,连结DB并延长
交⊙O于点E.证明:
(1)AC· BD=AD· AB; (2)AC=AE.
[命题立意]
本题主要考查弦切角定理,考查学生综合
运用所学知识,分析问题并解决问题的能力.
证明:(1)由 AC 与⊙O′相切于 A, 得∠CAB=∠ADB, 同理∠ACB=∠DAB, 所以△ACB∽△DAB. AC AB 从而AD=BD, 即 AC· BD=AD· AB. (2)由 AD 与⊙O 相切于 A,得∠AED=∠BAD, 又∠ADE=∠BDA,得 AE AD △EAD∽△ABD.从而AB=BD, 即 AE· BD=AD· AB. 结合(1)的结论,AC=AE.
解决此类问题的关键是把握弦切角的三个要素:
《2.4弦切角的性质》课件1-优质公开课-人教A版选修4-1精品
第二讲
直线与圆的位置关系
2.4 弦切角的性质
1.理解弦切角的定义. 2.掌握弦切角的性质定理,并能应用它们进行简 单的计算和证明.
相交 、另一边和 1.弦切角的定义:顶点在圆上,一边和圆__________ 相切 的角叫做弦切角. 圆________
2.弦切角的性质定理: _______________________________________________________. 弦切角等于它所夹的弧所对的圆周角 3. 在⊙O 的直径 CB 延长线上取一点 A,AP 与⊙O 相切于点 P,
例3
证明:如图,连接 BD.
►变式训练
答案:∠C=∠CAB
1.直线与圆相切是一种重要的、特殊的位置关系,在与弦切角 相关的证明题目中,重点是用好弦切角的定义和定理. 2.同学们要能在图形中准确地识别弦切角,并能正确应用弦切 角定理及其推论. 它给我们提供了证明角相等的又一个重要依据, 常 常与圆周角、圆心角性质联合应用来证明、求解. 3.利用弦切角性质来证明两个角相等,再利用三角形相似证比 例中项,是一种较常见的题型.
⇒△ACE∽△ABC⇒ ∠CAE=∠CAB
⇒∠ACD=∠B
AC AE 2 = ⇒ AC =AB· AE. AB AC 点评: 此题主要是利用弦切角的性质去证明两个角相等, 再利用 三角形相似证比例中项,这样的类型题较常见.
►变式训练
1. PC 与⊙O 相切于 C 点, 割线 PAB 过圆心 O, 则 PC2 是 PA· PB 的________倍.
3 , 且∠APB=30° ,AP= 3,则 CP=________.
题型1
比例式证明
例1 已知 MN 是⊙O 的切线,点 A 为切点,MN 平行于弦 CD,弦
直线与圆的位置关系
2.4 弦切角的性质
1.理解弦切角的定义. 2.掌握弦切角的性质定理,并能应用它们进行简 单的计算和证明.
相交 、另一边和 1.弦切角的定义:顶点在圆上,一边和圆__________ 相切 的角叫做弦切角. 圆________
2.弦切角的性质定理: _______________________________________________________. 弦切角等于它所夹的弧所对的圆周角 3. 在⊙O 的直径 CB 延长线上取一点 A,AP 与⊙O 相切于点 P,
例3
证明:如图,连接 BD.
►变式训练
答案:∠C=∠CAB
1.直线与圆相切是一种重要的、特殊的位置关系,在与弦切角 相关的证明题目中,重点是用好弦切角的定义和定理. 2.同学们要能在图形中准确地识别弦切角,并能正确应用弦切 角定理及其推论. 它给我们提供了证明角相等的又一个重要依据, 常 常与圆周角、圆心角性质联合应用来证明、求解. 3.利用弦切角性质来证明两个角相等,再利用三角形相似证比 例中项,是一种较常见的题型.
⇒△ACE∽△ABC⇒ ∠CAE=∠CAB
⇒∠ACD=∠B
AC AE 2 = ⇒ AC =AB· AE. AB AC 点评: 此题主要是利用弦切角的性质去证明两个角相等, 再利用 三角形相似证比例中项,这样的类型题较常见.
►变式训练
1. PC 与⊙O 相切于 C 点, 割线 PAB 过圆心 O, 则 PC2 是 PA· PB 的________倍.
3 , 且∠APB=30° ,AP= 3,则 CP=________.
题型1
比例式证明
例1 已知 MN 是⊙O 的切线,点 A 为切点,MN 平行于弦 CD,弦
2016-2017学年高中数学人教A版选修4-1课件:2.4 弦切角的性质
题型一 题型二 题型三
M 目标导航 UBIAODAOHANG
Z重难聚焦 HONGNAN JVJIAO
D典例透析 IANLI TOUXI
证明:连接BD,如图.
∵AD是∠BAC的平分线, ∴∠BAD=∠CAD.
又∠BCD=∠BAD, ∠CBD=∠CAD,
∴∠BCD=∠CBD. ∴BD=CD.
-8-
四 弦切角的性质
答案:52° 反思在利用弦切角定理解决问题时,要注意所涉及的角是不是弦 切角,即弦切角的三个条件缺一不可.
-12-
四 弦切角的性质
-1-
四 弦切角的性质
M 目标导航 UBIAODAOHANG
Z重难聚焦 HONGNAN JVJIAO
D典例透析 IANLI TOUXI
1.理解弦切角的概念,会判断弦切角. 2.掌握弦切角定理的内容,并能利用定理解决有关问题.
-2-
四 弦切角的性质
M 目标导航 UBIAODAOHANG
关系证明两条直线平行:①内错角相等,两条直线平行;②同位角相 等,两条直线平行;③同旁内角互补,两条直线平行等.证明时可以根
据图形与已知条件合理地选择.
-5-
四 弦切角的性质
题型一 题型二 题型三
M 目标导航 UBIAODAOHANG
Z重难聚焦 HONGNAN JVJIAO
D典例透析 IANLI TOUXI
分析:连接DF,于是∠FDC=∠DAC,根据AD是∠BAC的平分线,有 ∠BAD=∠DAC,而∠BAD与∠EFD对着同一段弧,由此得到∠EFD 与∠FDC的相等关系,根据内错角相等,可以断定两条直线平行.
-4-
四 弦切角的性质
M 目标导航 UBIAODAOHANG
M 目标导航 UBIAODAOHANG
Z重难聚焦 HONGNAN JVJIAO
D典例透析 IANLI TOUXI
证明:连接BD,如图.
∵AD是∠BAC的平分线, ∴∠BAD=∠CAD.
又∠BCD=∠BAD, ∠CBD=∠CAD,
∴∠BCD=∠CBD. ∴BD=CD.
-8-
四 弦切角的性质
答案:52° 反思在利用弦切角定理解决问题时,要注意所涉及的角是不是弦 切角,即弦切角的三个条件缺一不可.
-12-
四 弦切角的性质
-1-
四 弦切角的性质
M 目标导航 UBIAODAOHANG
Z重难聚焦 HONGNAN JVJIAO
D典例透析 IANLI TOUXI
1.理解弦切角的概念,会判断弦切角. 2.掌握弦切角定理的内容,并能利用定理解决有关问题.
-2-
四 弦切角的性质
M 目标导航 UBIAODAOHANG
关系证明两条直线平行:①内错角相等,两条直线平行;②同位角相 等,两条直线平行;③同旁内角互补,两条直线平行等.证明时可以根
据图形与已知条件合理地选择.
-5-
四 弦切角的性质
题型一 题型二 题型三
M 目标导航 UBIAODAOHANG
Z重难聚焦 HONGNAN JVJIAO
D典例透析 IANLI TOUXI
分析:连接DF,于是∠FDC=∠DAC,根据AD是∠BAC的平分线,有 ∠BAD=∠DAC,而∠BAD与∠EFD对着同一段弧,由此得到∠EFD 与∠FDC的相等关系,根据内错角相等,可以断定两条直线平行.
-4-
四 弦切角的性质
M 目标导航 UBIAODAOHANG
2.4 弦切角的性质 课件(人教A选修4-1)
证明乘积式成立,往往与相似三角形有关,若
存在切线,常要寻找弦切角,确定三角形相似的条
件,有时需要添加辅助线创造条件.
4.如图,已知MN是⊙O的切线,A为切点,MN平行于弦 CD,弦AB交CD于E.求证:AC2=AE· AB.
证明:连接BC. MN∥CD⇒∠MAC=∠ACD MN切⊙O于A⇒∠MAC=∠B ⇒∠ACD=∠B ⇒△ACE∽△ABC ∠CAE=∠CAB AC AE ⇒AB=AC⇒AC2=AB· AE.
(1)如果AB∥CD,那么AM=MB;
(2)如果AM=BM,那么AB∥CD. 证明:(1)∵CD切⊙O于M点, ∴∠DMB=∠A,∠CMA=∠B. ∵AB∥CD,∴∠CMA=∠A.
∴∠A=∠B,故AM=MB.
(2)∵AM=BM,∴∠A=∠B. ∵CD切⊙O于M点,∠CMA=∠B, ∴∠CMA=∠A.∴AB∥CD.
(2)连接DE, ∵⊙O切BC于D, ∴∠BAD=∠BDE. 由(1)可得∠BDE=∠FAD, 又∵⊙O内接四边形AEDF, ∴∠BED=∠DFA. ∴△BED∽△DFA. DE BE ∴AF =DF. 又∵∠BAD=∠CAD, ∴DE=DF.∴DF2=AF· BE.
点击下图进入应用创新演练
BD ,过 C 点的圆的切线与 BA 的延长线交于 E 点,证明:
(1)∠ACE=∠BCD; (2)BC2=BE· CD. [思路点拨] 利用弦切角定理.
[证明]
AC (1)因为 = BD ,
所以∠BCD=∠ABC. 又因为 EC 与圆相切于点 C, 故∠ACE=∠ABC, 所以∠ACE=∠BCD. (2)因为∠ECB=∠CDB,∠EBC=∠BCD, 所以△BDC∽△ECB. BC CD 故BE= BC, 即 BC2=BE· CD.
高中数学 第二讲 四 弦切角的性质课件 新人教A版选修4-1
利用弦切角定理进行计算、证明时,要特别注意弦切 角所夹弧所对的圆周角,有时与圆的直径所对的圆周角结 合运用,同时要注意根据题目的需要添加辅助线构造所需 要的弦切角.
1.如图,CD是⊙O的切线,T为切点,A是 TB 上的一点,若
∠TAB=100°,则∠BTD的度数为
()
A.20° B.40° C.60 ° D.80°
证明:(1)∠ACE=∠BCD; (2)BC2=BE·CD. [思路点拨] 利用弦切角定理.
[证明] (1)因为 AC = BD, 所以∠BCD=∠ABC. 又因为EC与圆相切于点C, 所以∠ACE=∠ABC. 所以∠ACE=∠BCD. (2)因为∠ECB=∠CDB,∠EBC=∠BCD, 所以△BDC∽△ECB. 故BBCE=CBDC, 即BC2=BE·CD.
证明乘积式成立,往往与相似三角形有关,若存在 切线,常要寻找弦切角,确定三角形相似的条件,有时 需要添加辅助线创造条件.
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
四
弦切角的性质
弦切角定理
(1)文字语言叙述: 弦切角等于它 所夹的弧 所对的圆周角.
(2)图形语言叙述: 如图,AB与⊙O切于A点,则∠BAC= ∠D .
[说明] 弦切角的度数等于它所夹弧度数的一半,圆 周角的度数等于它所对的弧的度数的一半,圆心角的度数 等于它所对弧的度数.
弦切角定理 [例1] 如图,已知圆上的 AC = BD ,过C点的圆的切线与 BA的延长线交于E点.
(2)∵AM=BM, ∴∠A=∠B. ∵CD切⊙O于M点,∠CMA=∠B, ∴∠CMA=∠A. ∴AB∥CD.
3.如图,已知AB是⊙O的直径,直线CD与⊙O相切 于点C,AC平分∠DAB. (1)求证:AD⊥CD; (2)若AD=2,AC= 5,求AB的长. 解:(1)证明:如图,连接BC. ∵直线CD与⊙O相切于点C, ∴∠DCA=∠B. ∵AC平分∠DAB, ∴∠DAC=∠CAB. ∴∠ADC=∠ACB.
2016-2017学年高中数学人教A版选修4-1课件:第二讲 四 弦切角的性质
解:(1)证明:如图,连接BC. ∵直线CD与⊙O相切于点C, ∴∠DCA=∠B. ∵AC平分∠DAB, ∴∠DAC=∠CAB. ∴∠ADC=∠ACB.
∵AB为⊙O的直径, ∴∠ACB=90°. ∴∠ADC=90°,即AD⊥CD. (2)∵∠DCA=∠B,∠DAC=∠CAB, ∴△ADC∽△ACB. AD AC ∴ AC=AB, ∴AC2=AD· AB. ∵AD=2,AC= 5, 5 ∴AB=2.
5.如图,AD是△ABC的角平分线,经过点 A,D的⊙O和BC切于点D,且AB,AC 与⊙O相交于点E,F,连接DF,EF. 求证:(1)EF∥BC; (2)DF2=AF· BE. 证明:(1)∵⊙O切BC于点D,
∴∠CAD=∠CDF. ∵AD是△ABC的角平分线, ∴∠BAD=∠CAD. 又∵∠BAD=∠EFD, ∴∠EFD=∠CDF. ∴EF∥BC.
四
弦切角的性质
弦切角定理 (1)文字语言叙述: 弦切角等于它 所夹的弧 所对的圆周角. (2)图形语言叙述: 如图,AB与⊙O切于A点,则∠BAC= ∠D .
[说明]
弦切角的度数等于它所夹弧度数的一半,圆
周角的度数等于它所对的弧的度数的一半,圆心角的度数 等于它所对弧的度数.
弦切角定理
[例1]
» ,过C点的圆的切线与 AC = BD 如图,已知圆上的 ¼
CE CD → CD= CF → 结论
[证明]
连接CA,CB.
∵PA,PB是⊙O的切线, ∴∠CAP=∠CBA,∠CBP=∠CAB. 又CD⊥AB,CE⊥PA,CF⊥PB, ∴Rt△CAE∽Rt△CBD, Rt△CBF∽Rt△CAD, CA CE CB CF ∴CB=CD,CA=CD. CE CD ∴CD= CF, 即CD2=CE· CF.
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
法四:如图,过C作⊙O的切线交AB于G
∵AB是⊙O的切线, ∠CAG=∠ACG, 又∵OC⊥CG,AD⊥OB, ∴CG∥AD.
∴∠ACG=∠DAC,即∠DAC=∠CAB.
[悟一法] (1)由弦切角定理可直接得到角相等,在与弦切角
有关的几何问题中,往往还需要借助其它几何知识来
综合解答,由弦切角得到的角相等只是推理论证中的 一个条件. (2)借助弦切角定理和圆的其他性质(如等弧所对的 弦相等)以及三角形有关知识我们可以得到特殊三角形
[研一题]
[例3] 如图,梯形ABCD内接于
⊙O,DC∥AB,AB=ACD· EC. 分析:本题考查弦切角定理,圆内接四边形、相似三 角形等知识的综合应用,解答本题可转化为证明△EAD∽ △ECA.
证明:AE切⊙O于点A, ∴∠EAC=∠B(弦切角定理), ∵AB=AC,∴∠ACB=∠B, ∴∠EAC=∠ACB, ∴AE∥BC,又∵DC∥AB, ∴四边形ABCE是平形四边形,∴∠E=∠B. ∵梯形ABCD内接于⊙O, ∴∠ADE=∠B,∴∠ADE=∠E, ∴AD=AE. ∵EA切⊙O于A,∴∠EAD=∠ACE, 又∵∠E=∠E,∴△EDA∽△EAC, ∴EA2=ED· EC, ∴AD2=ED· EC.
所以∠DCE=∠CBE.
所以∠CBE=∠CEB. 所以CE=CB.
法二:连接AC、BE,在DC延长线上取一点F. 因为AB是半圆O的直径,C为圆周上一点, 所以∠ACB=90°,即∠BCF+∠ACD=90°. 又因为AD⊥l,所以∠DAC+∠ACD=90°.
所以∠BCF=∠DAC.
又因为直线l是圆O的切线,所以∠CEB=∠BCF. 又∠DAC=∠CBE,所以∠CBE=∠CEB. 所以CE=CB.
点击下图进入“创新演练”
解决此类问题的关键是把握弦切角的三个要素:
(1)顶点在圆上(顶点为圆切线的切点);
(2)一边和圆相切(一边所在直线为圆的切线);
(3)一边和圆相交(一边为圆的过切点的弦).
三者缺一不可,例如上图中,∠CAD很像弦切角, 但它不是弦切角,因为AD与圆相交,∠BAE也不一定是 弦切角,只有已知AE切圆于点A,才能确定它是弦切角.
或全等三角形,从而证得线段相等.
[通一类] 2.如图,AB是半圆O的直径,C是圆 周上一点(异于A、B),过C作圆O 的切线l,过A作直线l的垂线AD, 垂足为D,AD交半圆于点E.求证:
CB=CE.
证明:法一:连接BE.
因为AB是半圆O的直径,E为圆周上一点, 所以∠AEB=90°, 即BE⊥AD. 又因为AD⊥l,所以BE∥l. 所以∠DCE=∠CEB. 因为直线l是圆O的切线,
[读教材·填要点] 1.弦切角 顶点在圆上,一边和圆 相交 ,另一边和圆 相切 的角叫
弦切角.
2.弦切角定理 弦切角等于 它所夹的弧所对的圆周角 .
[小问题·大思维] 1.一边和圆相交,另一边和圆相切的角是弦切角吗? 提示:不一定.弦切角必须同时具备三点: ①顶点在圆上;②一边和圆相交;③一边和圆相切. 2.弦切角与它所夹的弧所对的圆心角之间有什么关系?
[通一类] 1.如图,NA与⊙O切于点A,AB和AD是 ⊙O的弦,AC为直径,试指出图中有 哪几个弦切角?
解:弦切角分三类:如题图:
(1)圆心在角的外部; (2)圆心在角的一边上; (3)圆心在角的内部. 即∠BAN、∠CAN、∠DAN为弦切角.
[研一题] [例2] 已知:AB切⊙O于A,OB交⊙O于C,AD⊥
OB于D.求证:∠DAC=∠CAB. 分析:本题考查弦切角定理的应用.解答本题需要
根据题意画出图形,然后利用相关定理解决.
证明:法一:如图,延长 AD 交⊙O 于 E,AB 切⊙O 于 A, ∵CD⊥AE, ∴ = CE . AC
又∵∠DAC 的度数等于 CE 度数的一
半,
AC ∠CAB 的度数等于 度数的一半,
提示:弦切角等于它所夹的弧所对的圆心角的一半.
[研一题] [例1] 如图,AB、CB分别切⊙O于D、
E,试写出图中所有的弦切角. 分析:本题考查弦切角的定义.解答本 题需要明确构成弦切角的三个条件,然后依
据定义作出判断.
解:由弦切角的定义可知, ∠ADE、∠BDE、∠BED、∠CED都是弦切角.
[悟一法]
[悟一法]
充分利用圆周角定理、圆内接四边形的性质、平行 四边形性质定理、弦切角定理等结论,架设与三角形有 关问题的桥梁,证明三角形相似是解决此类问题的有效
途径.
[通一类] 3.AB是圆O的直径,过A、B作两弦AC和BD相交于E,求 证:AB2=AE· AC+BE· BD. 证明:如图,AB是圆的直径. AC与BD相交于E,作EF⊥AB,F为垂足.
∴∠DAC=∠CAB.
法二: 如图, 延长 BO 交⊙O 于 E, 连接 AE,则∠CAE=90° . 又∵AD⊥CE,∴∠DAC=∠E. ∵AB 是⊙O 的切线, ∴∠CAB=∠E. ∴∠DAC=∠CAB.
法三:如图,连接OA. ∵AB切⊙O于A,∴OA⊥AB.
∴∠CAB与∠OAC互余.
又∵AD⊥OB, ∴∠DAC与∠ACO互余. ∵OA=OC,∴∠OAC=∠ACO. ∴∠DAC=∠CAB.
∴∠EFB=90°.
连接BC,则∠ECB=90°, ∴E、F、B、C四点共圆.
∴AE· AC=AF· AB.①
同理A、D、E、F四点共圆. ∴BE· BD=BF· AB.②
将①、②两式相加得
AF· AB+BF· AB=AE· AC+BE· BD=AB2.
弦切角定理在几何证明中有广泛的应用,高考中 常与三角形相似、圆的切线等问题结合考查.2012年辽 宁高考以解答题的形式将弦切角定理与相似三角形的 判定及应用相结合考查,是高考命题的一个新亮点.
[考题印证] (2012· 辽宁高考)如图,⊙O和⊙O′相交于A,B两点, 过A作两圆的切线分别交两圆于C,D两点,连结DB并延长
交⊙O于点E.证明:
(1)AC· BD=AD· AB; (2)AC=AE.
[命题立意]
本题主要考查弦切角定理,考查学生综合
运用所学知识,分析问题并解决问题的能力.
证明:(1)由 AC 与⊙O′相切于 A, 得∠CAB=∠ADB, 同理∠ACB=∠DAB, 所以△ACB∽△DAB. AC AB 从而AD=BD, 即 AC· BD=AD· AB. (2)由 AD 与⊙O 相切于 A,得∠AED=∠BAD, 又∠ADE=∠BDA,得 AE AD △EAD∽△ABD.从而AB=BD, 即 AE· BD=AD· AB. 结合(1)的结论,AC=AE.