有理数拓展_延伸_提高测试题[1]

合集下载

专题120 有理数的除法(拓展提高)(解析版)

专题120 有理数的除法(拓展提高)(解析版)

专题1.20 有理数的除法(拓展提高)一、单选题1.21÷(-7)的结果是()A.3 B.-3 C.13D.13【答案】B【分析】直接根据有理数的除法法则进行求解即可;【详解】21÷(-7)=-3,故选:B.【点睛】本题考查了有理数的计算,正确掌握计算方法是解题的关键;2.已知数a,b在数轴上对应点的位置如图所示,则下列结论不正确的是()A.a+b<0 B.a﹣b>0 C.b<﹣a<a<﹣b D.ba>0【答案】D【分析】根据数轴上a、b的位置结合有理数的运算法则即可判断.【详解】解:由数轴可知:b<0<a,|b|>|a|,∴﹣b>a,∴a+b<0,a﹣b>0,ba<0,b<﹣a<0<a<﹣b.故选:D.【点睛】本题考查数轴的定义,解题的关键是正确理解数轴与有理数之间的关系,本题属于基础题型.3.某药店经营的抗病毒药品,在市场紧缺的情况下提价100%,物价部门查处后,限定其提价的幅度只能是原价的20%,则该药品现在应降价的幅度是()A.40% B.45% C.50% D.80%【答案】A【分析】根据“在市场紧缺的情况下提价100%”,是把原价看作单位“1”,提价100%后的价钱是原价的:1+100%=200%,限定其提价的幅度:(1+20%)=120%,求该药品现在降价的幅度就是求降低的价格是市场紧缺时价格的百分之几,用降低的价格除以市场紧缺时的价格.【详解】[(1+100%)−(1+20%)]÷(1+100%)=0.8÷2=0.4 =40%, 故选:A .【点睛】此题考查除法应用题,求一个数是另一个数的百分之几,用一个数除以另一个数. 4.已知,a b 为实数,下列说法:①若,a b 互为相反数,则1ab=-;②若0a b a b -+-=,则b a >;③若0a b +<,0ab >,则33a b a b +=--;④若a b >,则()()0a b a b +⨯->;⑤若,0a b ab ><且22a b -<-,则4a b +>,其中正确的是( ).A .①②B .②③C .③④D .④⑤【答案】C【分析】①除0外,互为相反数的商为-1,可作判断;②由a-b 的绝对值等于它的相反数,得到a-b 为非正数,得到a 与b 的大小,即可作出判断;③由两数之和小于0,两数之积大于0,得到a 与b 都为负数,即2a+3b 小于0,利用负数的绝对值等于它的相反数化简得到结果,即可作出判断;④由a 绝对值大于b 绝对值,分情况讨论,即可作出判断;⑤分情况可作判断. 【详解】解:①若ab≠0,且a ,b 互为相反数,则1ab=-,故不正确; ②∵|a-b|+a-b=0,即|a-b|=-(a-b),∴a-b≤0,即a≤b ,故不正确;③若ab >0,则a 与b 同号,由a+b <0,则a <0,b <0,则|a+3b|=-a-3b ,正确; ④若|a|>|b|,当a >0,b >0时,可得a >b ,即a-b >0,a+b >0,所以(a+b)•(a-b )为正数; 当a >0,b <0时,a-b >0,a+b >0,所以(a+b)• (a -b)为正数; 当a <0,b >0时,a-b <0,a+b <0,所以(a+b)• (a -b)为正数; 当a <0,b <0时,a-b <0,a+b <0,所以(a+b)• (a -b)为正数,正确; ⑤∵,0a b ab ><, ∴a>0,b<0, 当0<a <2时, ∵22a b -<-, ∴2-a <2-b ,∴a-b<0,不符合题意; 所以a≥2,∵|a-2|<|b-2|, ∴a-2<2-b ,则a+b<4,故不正确; 则其中正确的有③④. 故选C .【点睛】此题考查了相反数,绝对值和有理数的运算法则,熟练掌握各种运算法则是解本题的关键. 5.有两个正数a ,b ,且a b <,把大于等于a 且小于等于b 的所有数记作[],a b .例如,大于等于1且小于等于4的所有数记作[]1,4.若整数m 在[]5,15内,整数n 在[]30,20--内,那么nm的一切值中属于整数的个数为( ) A .5个 B .4个C .3个D .2个【答案】A【分析】先根据题意确定m 、n 的范围,然后用列举法即可解答. 【详解】解:∵整数m 在[]5,15内,整数n 在[]30,20--内 ∴5≤m≤15,-30≤n≤-20∴3020515m n --≤≤,即463m n -≤≤- ∴nm的一切值中属于整数有-2、-3、-4、-5、-6. 故答案为A .【点睛】本题主要考查了有理数的除法,根据题意确定m 、n 的取值范围是解答本题的关键.6.将一列有理数-1,2,-3,4,-5,6,……,如图所示有序排列.根据图中的排列规律可知,“峰1”中峰顶的位置(C 的位置)是有理数4,那么,“峰6”中C 的位置是有理数 ,2008应排在A 、B 、C 、D 、E 中 的位置.其中两个填空依次为( )A .-28 ,CB .-29 , BC .-30,D D .-31 ,E【答案】B【分析】观察发现规律:每个峰排列5个数,并且“峰n”的D 位置是(﹣1)n ·5n ,奇数是负数,偶数是正数,根据规律解答即可.【详解】解:观察发现:每个峰排列5个数,并且“峰n”的D 位置是(﹣1)n ·5n ,奇数是负数,偶数是正数,则“峰6”中D 的位置是有理数为5×6=30, ∴“峰6”中C 的位置是有理数为﹣29, ∵2008÷5=401 (3)∴2008应排在“峰402”的第2个数,在B 位置, 故选:B .【点睛】本题考查了数字的变化规律探究,观察出每个峰有5个数,并且“峰n”的D 位置是(﹣1)n ·5n 是解答的关键.二、填空题7.定义一种新的运算:x *y =2x y x +,如:3*1=3213+⨯=53,则2*3=__________. 【答案】4【分析】把原式利用题中的新定义计算转换为有理数运算,即可得到结果. 【详解】解:根据题中的新定义得:2232*342+⨯==, 故答案为:4【点睛】此题考查了新定义运算和有理数的混合运算,弄清题中的新定义是解本题的关键. 8.已知:2|2|(1)a b +++取最小值,则aab b+=________. 【答案】4【分析】先根据绝对值的非负性、偶次方的非负性求出a 、b 的值,再代入求值即可得. 【详解】20a +≥,2(1)0b +≥,2120()b a +∴++≥,∴当2120,0()b a ++==时,212()b a +++取得最小值0,20,10a b ∴+=+=,解得2,1a b =-=-, 则()2122214a ab b +=-⨯-+=+-=-, 故答案为:4.【点睛】本题考查了绝对值的非负性、偶次方的非负性、有理数的乘除法与加法,熟练掌握绝对值与偶次方的非负性是解题关键.9.有时两数的和恰等于这两数的商,如()4242-+=-÷,42423333+=÷等.试写出另外1个这样的等式______. 【答案】993322-+=-÷. 【分析】根据两数的和恰等于这两数的商的要求,举出实例即可.【详解】解:993322-+=-÷,()()11-1-122+=÷. 故答案为:993322-+=-÷.【点睛】本题考查生活经验的积累问题,掌握两数的和恰等于这两数的商是解题关键.10.已知m 、n 为有理数,那么m n -可看成数轴上表示数m 和数n 的两点之间的距离.若有理数x 在数轴上的位置如图所示,则22x x +-型的值为________.【答案】1【分析】由数轴上表示x 的点的位置,得到x 小于-2,可得出x+2都小于0,利用绝对值的代数意义:负数的绝对值等于它的相反数化简,去括号合并即可得到结果. 【详解】解:由数轴上表示x 的点的位置,得到x<-2, ∴x+2<0, ∴22x x +-=22x x ----=1,故答案为1.【点睛】本题考查了数轴,绝对值,熟练掌握绝对值的化简是解本题的关键.11.对于任意有理数a ,b ,c ,d ,规定一种运算:a a c db b dc =-,例如5(3)51231217⨯--⨯=-=-.那么3234--=_________.【答案】6【分析】根据规定的运算进行列式,再根据有理数的运算法则进行计算即可.【详解】()()323423126634-=⨯--⨯-=-=-. 故答案为:6.【点睛】本题考查了新定义运算及有理数的混合运算,理解题意,掌握运算法则是解题的关键. 12.如图,有理数a 、b 、c 在数轴上的对应点的位置如图所示: 则下列结论:①a+b-c >0:②b-a <0:③bc-a <0:④|a|b |c|-+=1a |b|c.其中正确的是_______.【答案】②③.【分析】根据数轴,得到11b a c <-<<<,然后绝对值的意义进行化简,即可得到答案. 【详解】解:根据题意,则11b a c <-<<<,∴0a b c +-<,故①错误;0b a -<,故②正确; 0bc a -<,故③正确;1(1)13a cb ab c-+=--+=,故④错误; 故答案为:②③.【点睛】本题考查了数轴的定义,绝对值的意义,解题的关键是掌握数轴的定义,正确得到11b a c <-<<<.13.一天,甲乙两人利用温差测试测量山峰的高度,甲在山顶测得的温度是-4℃,乙此时在山脚测得的温度是8℃.已知在该地区高度每增加100米,气温大约降低0.6℃,则这个山峰的高度大约是__________米. 【答案】2000【分析】先根据题意列出运算式子,再计算有理数的加减乘除运算即可得. 【详解】由题意得:()()840.6100840.6100--÷⨯=+÷⨯⎡⎤⎣⎦,120.6100=÷⨯, 20100=⨯,2000=(米), 故答案为:2000.【点睛】本题考查了有理数加减乘除运算的实际应用,依据题意,正确列出运算式子是解题关键. 14.1930年,德国汉堡大学的学生考拉兹,曾经提出过这样一个数学猜想:对于每一个正整数,如果它是奇数,则对它乘3再加1;如果它是偶数,则对它除以2.如此循环,最终都能够得到1.这一猜想后来成为著名的“考拉兹猜想”,又称“奇偶归一猜想”.虽然这个结论在数学上还没有得到证明,但举例验证都是正确的,例如:取正整数5,最少经过下面5步运算可得1,即:如果正整数m 最少经过6步运算可得到1,则m 的值为__. 【答案】10或64【分析】根据得数为1,可倒推出第5次计算后得数一定是2,第4次计算后得4,依此类推,直至倒退到第1次前的数即可.【详解】解:如图,利用倒推法可得:由第6次计算后得1,可得第5次计算后的得数一定是2, 由第5次计算后得2,可得第4次计算后的得数一定是4,由第4次计算后得4,可得第3次计算后的得数是1或8,其中1不合题意,因此第3次计算后一定得8 由第3次计算后得8,可得第2次计算后的得数一定是16, 由第2次计算后得16,可得第1次计算后的得数是5或32, 由第1次计算后得5,可得原数为10, 由第1次计算后32,可得原数为64,故答案为:10或64.【点睛】考查有理数的运算,掌握计算法则是正确计算的前提,理解题意是重中之重.三、解答题 15.计算 (1)77()8181-+-= (2)()015-- = (3)( 2.25)(80)-⨯+= (4)3217⎛⎫÷-⎪⎝⎭= 【答案】(1)0;(2)15;(3)-180;(4)-49【分析】(1)先化简绝对值,再根据有理数加法法则计算; (2)先将减法化为加法再计算; (3)根据乘法法则计算;(4)将除法化为乘法,再根据乘法法则计算. 【详解】(1)77()8181-+-=77()8181-+=0; (2)()015-- =0+15=15; (3)( 2.25)(80)-⨯+=-180; (4)3217⎛⎫÷-⎪⎝⎭=721()3⨯-=-49. 【点睛】此题考查有理数的加法法则、减法法则、乘法法则、除法法则,熟练掌握各计算法则是解题的关键.16.如图A 在数轴上所对应的数为2-.(1)点B 在点A 右边距A 点4个单位长度,求点B 所对应的数;(2)在(1)的条件下,点A 以每秒2个单位长度沿数轴向左运动,点B 以每秒3个单位长度沿数轴向右所在的点处时,求,A B两点间距离.运动,当点A运动到6【答案】(1)2;(2)14个单位长度【分析】(1)根据左减右加可求点B所对应的数;(2)先根据时间=路程÷速度,求出运动时间,再根据列出=速度×时间求解即可.【详解】解:(1)-2+4=2.故点B所对应的数是2;(2)(-2+6)÷2=2(秒),2+2+(2+3)×2=14(个单位长度).答:A,B两点间距离是14个单位长度.【点睛】本题考查了数轴,有理数的混合运算,解题的关键是理解题意,列出算式.17.某集团公司对所属甲.乙两分厂下半年经营情况记录(其中“+”表示盈利,“﹣”表示亏损,单位:亿元)如下表.(1)计算八月份乙厂比甲厂多亏损多少亿元?(2)分别计算下半年甲、乙两个工厂平均每月盈利或亏损多少亿元?【答案】(1)0.3亿元,(2)甲平均每月盈利0.4亿元,乙平均每月亏0.2亿元.【分析】(1)由表可得出乙厂亏0.7亿元,甲厂亏0.4亿元,由此可得出结果.(2)将甲乙两厂每个月的盈利相加即可得出结果.【详解】解:(1)由图可得出乙厂亏0.7亿元,甲厂亏0.4亿元,0.7-0.4=0.3(亿元)∴可得出乙比甲多亏0.3亿元.(2)甲:﹣0.2﹣0.4+0.5+0+1.2+1.3=2.4亿元,2.4÷6=0.4(亿元);乙:1.0﹣0.7﹣1.5+1.8﹣1.8+0=﹣1.2亿元,-1.2÷6=-0.2(亿元).∴甲平均每月盈利0.4亿元,乙平均每月亏0.2亿元.答:八月份乙厂比甲厂多亏损0.3亿元;甲平均每月盈利0.4亿元,乙平均每月亏0.2亿元【点睛】本题考查了正负数的意义和有理数的加减法,解题关键正确理解正负数的意义,准确进行计算.18.请你先认真阅读材料: 计算12112()()3031065-÷-+- 解:原式的倒数是21121-+()3106530⎛⎫-÷-⎪⎝⎭=2112()(30)31065-+-⨯-=23×(﹣30)﹣110×(﹣30)+16×(﹣30)﹣25×(﹣30)=﹣20﹣(﹣3)+(﹣5)﹣(﹣12) =﹣20+3﹣5+12 =﹣10 故原式等于﹣110再根据你对所提供材料的理解,选择合适的方法计算:11322()()4261437-÷-+-. 【答案】114-. 【分析】根据题意,先计算出113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭的倒数132216143742⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭的结果,再算出原式结果即可.【详解】解:原式的倒数是:132216143742⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭()132********⎛⎫=-+-⨯- ⎪⎝⎭13224242424261437⎛⎫=-⨯-⨯+⨯-⨯ ⎪⎝⎭()792812=--+-14=-,故原式114=-. 【点睛】本题主要考查了有理数的除法,读懂题意,并能根据题意解答题目是解决问题的关键.19.设0a >,x ,y 为有理数,定义新运算:||a x a x =⨯※.如323|2|6=⨯=※,()414|1|a a -=⨯-※.(1)计算20210※和()20212-※的值. (2)若0y <,化简()23y -※.(3)请直接写出一组,,a x y 的具体值,说明()a x y a x a y +=+※※※不成立.【答案】(1)0;4042;(2)6y -;(3)1a =,2x =,3y =-(答案不唯一)【分析】(1)根据题意※表示前面的数与后面数的绝对值的积,直接代入数据求解计算;(2)有y<0,得到y 为负数,进而得到-3y 为正数,去绝对值后等于本身-3y ,再代入数据求解即可;(3)按照题意要求写一组具体的,,a x y 的值再验算即可.【详解】解:(1)根据题意得:202102021|0|0=⨯=※; ()202122021|2|4042-=⨯-=※;(2)因为0y <,所以30y ->,所以()()232|3|236y y y y -=⨯-=⨯-=-※;(3)由题意,当,,a x y 分别取1a =,2x =,3y =-时,此时()2311※※(-1)=1-=,而11※2※(-3)=2+3=5+,所以,()a x y a x a y +=+※※※不成立.【点睛】本题是新定义题型,按照题目中给定的运算要求和顺序进行求解即可.20.我们知道,正整数按照能否被2整除可以分成两类:正奇数和正偶数,小浩受此启发,按照一个正整数被3除的余数把正整数分成了三类:如果一个正整数被3除余数为1,则这个正整数属于A 类,例如1,4,7等;如果一个正整数被3除余数为2,则这个正整数属于B 类,例如2,5,8等;如果一个正整数被3整除,则这个正整数属于C 类,例如3,6,9等.(1)2020属于 类(填A ,B 或C );(2)①从A 类数中任取两个数,则它们的和属于 类(填A ,B 或C );②从A 类数中任意取出15个数,从B 类数中任意取出16个数,从C 类数中任意取出17个数,把它们都加起来,则最后的结果属于 类(填A ,B 或C );(3)从A 类数中任意取出m 个数,从B 类数中任意取出n 个数,把它们都加起来,若最后的结果属于C 类,则下列关于m ,n 的叙述中正确的是 (填序号).①m+2n属于C类;②|m﹣n|属于B类;③m属于A类,n属于C类;④m,n属于同一类.【答案】(1)A;(2)①B;②B;(3)①④【分析】(1)计算2020÷3,根据计算结果即可求解;(2)①从A类数中任取两个数进行计算,即可求解;②从A类数中任意取出15个数,从B类数中任意取出16个数,从C类数中任意取出17个数,把它们的余数相加,再除以3,根据余数判断即可求解;(3)根据m,n的余数之和,举例,观察即可判断.【详解】解:(1)2020÷3=673…1,所以2020被3除余数为1,属于A类;故答案为:A;(2)①从A类数中任取两个数,如:(1+4)÷3=1…2,(4+7)÷3=3…2,被3除余数为2,则它们的和属于B类;②从A类数中任意取出15个数,从B类数中任意取出16个数,从C类数中任意取出17个数,把它们的余数相加,得(15×1+16×2+17×0)=47÷3=15…2,∴余数为2,属于B类;故答案为:①B;②B;(3)从A类数中任意取出m个数,从B类数中任意取出n个数,余数之和为:m×1+n×2=m+2n,∵最后的结果属于C类,∴m+2n能被3整除,即m+2n属于C类,①正确;②若m=1,n=1,则|m﹣n|=0,不属于B类,②错误;③若m=1,n=1,③错误;④观察可发现若m+2n属于C类,m,n必须是同一类,④正确;综上,①④正确.故答案为:①④.【点睛】本题考查了新定义的应用和有理数的除法,解题的关键是熟练掌握新定义进行解答.。

初一有理数拓展测试题

初一有理数拓展测试题

基础篇一、 填空题:1、绝对值最小的数是 .2、51-的倒数是 . 3、b a +的相反数是 .4、数轴上的点A 所对应的数是322-,那么与点A 相距2个单位长度的点所表示的数是 .5、()()()()10910812111110109----Λ= .6、若0>a ,0<b ,则11---+-a b b a 的值为 .7、()210y x +-的最大值是 .8、如果()0322=-++b a ,则()2004b a += .二.解答题9、()()345265194.72.9-+-+⎪⎭⎫⎝⎛-++--- 10、()⎪⎭⎫⎝⎛-⨯-⨯⎪⎭⎫ ⎝⎛-⨯735.25422.111、有理数a 、b 、c 在数轴上对应的点分别为A 、B 、C ,其位置如图1所示,试化简:a b c a b c c ++-++- .图112.一个数的绝对值是另一个数的绝对值的2倍,且这两个数在数轴上对应两点间的距离是6,求这两个数.拓展篇一.选择题. 1.a 是有理数,则112000a +的值不可能是( ).A .1 B.-1 C.0 D.-20002.当x=-2时, 37ax bx +-的值为9,则当x=2时,37ax bx +-的值是( ) A 、-23B 、-17C 、23D 、173.255,344,533,622这四个数中最小的数是 ( )A. 255B. 344C. 533D. 6224.若14+x 表示一个整数,则整数x 可取值共有( ). A.3个 B. 4个 C. 5个 D. 65.某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20%,另一台亏本20%,则本次出售中商场( )A . 不赔不赚B . 赚160元 C. 赚80元 D. 赔80元 6.若a =19991998,b =20001999,c =20012000则下列不等关系中正确的是( )A. a <b <cB. a <c <bC. b <c <aD. c <b <a7.若0<x <1,则1x、x 、x 2的大小关系是( )A :1x <x <x 2B :x 2<1x <xC : x <x 2 < 1x D : x 2<x <1x8.近似数5.0的准确值x 的取值范围是 ( )A :4.5<x <5.4B :4.95≤x ≤5.05C :4.95≤x <5.05D :4.95<x <5.05二.填空题.9.a >0时,|2a|=________;当a ﹤1时,|a-1|=________;10. 如果a>0,b<0,b a <,则a ,b ,—a ,—b 这4个数从小到大的顺序是______________________(用大于号连接起来)11.若12.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561…请你推测320的个位数是 。

有理数--拓展提高难题及答案

有理数--拓展提高难题及答案

初一数学《有理数》拓展提高试题友情提醒:试卷较难,请耐心想一想一、 选择题(每小题3分,共30分)1、设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,则a-b+c•的值为( )A.-1B.0C.1D.22、有理数a 等于它的倒数,则a 2004是----------------------------------------------------( )A.最大的负数 B.最小的非负数 C.绝对值最小的整数 D.最小的正整数3、若0ab ≠,则a b a b+的取值不可能是-----------------------------------------------( ) A .0 B.1 C.2 D.-24、当x=-2时, 37ax bx +-的值为9,则当x=2时,37ax bx +-的值是( )A 、-23B 、-17C 、23D 、175、如果有2005名学生排成一列,按1、2、3、4、3、2、1、2、3、4、3、2、1……的规律报数,那么第2005名学生所报的数是……………………… ( )A 、1B 、2C 、3D 、46、若|a|=4,|b|=2,且|a+b|=a+b, 那么a-b 的值只能是( ).A.2B. -2C. 6D.2或67、 x 是任意有理数,则2|x |+x 的值( ).A.大于零B. 不大于零C. 小于零D.不小于零8、观察这一列数:34-,57, 910-, 1713,3316-,依此规律下一个数是( ) A.4521 B.4519 C.6521 D.65199、若14+x 表示一个整数,则整数x 可取值共有( ). A.3个 B.4个 C.5个 D.6个10、3028864215144321-+⋅⋅⋅-+-+-+-⋅⋅⋅+-+-等于( ) A .41 B .41- C .21 D .21- 二、填空题(每小题4分,共32分)11.请将3,4,-6,10这四个数用加减乘除四则运算以及括号组成结果为24的算式(每个数有且只能用一次)_______________ ______ ; 12. (-3)2013×( -31)2014= ; 13.若|x-y+3|+()22013y x -+=0,则yx x 2-= . 14.北京到兰州的铁路之间有25个站台(含北京和兰州),设制 种票才能满足票务需求.15.设c b a ,,为有理数,则由cc b b a a ++ 构成的各种数值是 16.设有理数a ,b ,c 在数轴上的对应点如图所示,则 │b-a │+│a+c │+│c-b•│=__ _ ;17.根据规律填上合适的数: 1,8,27,64, ,216;18、 读一读:式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和,由于上述式子比较长,书写也不方便,为了简便起见,我们可将“1+2+3+4+5+…+100”表示为1001n n =∑,这里“∑”是求和符号,例如“1+3+5+7+9+…+99”(即从1开始的100以内的连续奇数的和)可表示为501(21);n n =-∑又如“333333333312345678910+++++++++”可表示为1031n n =∑,同学们,通过以上材料的阅读,请解答下列问题:(1)2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符号可表示为 ;(2)计算:521(1)n n =-∑= (填写最后的计算结果)。

初中数学《有理数》课外拓展训练题附参考答案

初中数学《有理数》课外拓展训练题附参考答案

《有理数》课外拓展训练题一、选择题1.四个同学每两个人握一次手,一共握手( )A.8次B.4次C.6次D.10次2.一种电视机原价1200元,现在每台只卖960元。

降价了()A. 25%B. 20%C. 50%D. 15%3.某工人原计划10小时完成的工作,8小时就全部完成了,他的工作效率比原计划提高了( )A. 20%B. 120%C. 25%D. 80%4.对于3个连续的自然数a、b、c来说,下面的数量关系正确的是()A. b=c−aB. a−b=c−bC. b=(a+c)÷2D. a=b+c5.蜗牛爬井,井高12米,蜗牛白天爬3米,晚上掉下2米,问蜗牛几天可以爬出井去?( )A. 30B. 20C. 10D. 56.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差( )A. 0.8kgB. 0.6kgC. 0.5kgD. 0.4kg7.如图1,圆的周长为4个单位。

在该圆的4等分点处分别标上字母m、n、p、q.如图2,先将圆周上表示p的点与数轴原点重合,然后将该圆沿着数轴的负方向滚动,则数轴上表示−2013的点与圆周上重合的点对应的字母是( )A. mB. nC. pD. q二、填空题8.某种药品的说明书上贴有如图所示的标签,则一次服用这种药品的剂量范围9.观察下面一列数:−1,2,−3,4,−5,6,−7,…,将这列数排成下列形式:按照上述规律排下去,那么第10行从左边数第9个数是______,数−201是从左边数起第______个数。

10.如图所示,在直线l上有若干个点A1、A2、…、A n,每相邻两点之间的距离都为1,点P是线段A1A n上的一个动点。

(1)当n=3时,则点P分别到点A1、A2、A3的距离之和的最小值是___;(2)当n=13时,则当点P在点___的位置时,点P分别到点A1、A2、…、A13的距离之和有最小值,且最小值是_ __.11.如图,方格表中的格子填上了数,每一行每一列及两条对角线中所填数的和均相等,则x的值___ ___.12..一质点P从距原点1个单位的A点处向原点方向跳动,第一次跳动到OA的中点A1处,第二次从A1点跳动到OA1的中点A2处,第三次从A2点跳动到OA2的中点A3处,如此不断跳动下去,则第5次跳动后,该质点到原点O的距离为__ _.13.在奥运五环图案内,分别填写五个数a ,b,c,d,e,如图,,其中a,b,c是三个连续偶数 (a<b<c),d,e是两个连续奇数(d<e),且满足a+b+c=d+e,例如:。

word完整版有理数测试题培优提高版

word完整版有理数测试题培优提高版

2015年人教版数学七年级上册“单元精品卷”(含精析)第一章有理数(培优提高卷)题型选择题填空题解答题总分得「分一、选择题。

(本题有10个小题,每小题3分,共30分)1 •在实数0,—「3 , - , | 2中,最小的数是()3A .2B . 0C .3D . I 22•如图所示,有理数 a 、b 在数轴上的位置如下图,则下列说法错误的是( )b -2-1A 、b<aB 、a+b <0C 、ab<0D 、b- a>04 •已知有理数a ,b 所对应的点在数轴上如图所示,则有 ( )【0: 21 • 2. 1 •网】卜六进制 01 23•6 78 9 AC D E F十进制12] 3 4567910 11 12 13 1415)3 .观察下面一组数: -1,2-5,6, -7,….,将这组数排成如图的形式,按照如图规律排下去,则第10行中从左边数第9个数是()21*5y*3算一行 第二行 童三行 sra 行A 、-902-3 4■5 (5 ・7 8 /10 -11 12 43 14 15 16B 、90C 、-91D 、91 A . — a v 0v b B .— b v a v 0 C . a v 0v — bD . 0 v b v — a5 .计算机中常用的十六进制是逢16进I 的计数制,采用数字0〜9和字母A 〜F 共16个计6 .若a b,则下列各式一定成立的是(7.下列算式中,积为负数的是(法表示为()二、填空题。

(本题有6个小题,每小题4分,共24分)2 a+b11.若a、b互为相反数,c、d互为倒数,m的绝对值为2,则m -cd+ 的值是_m12 .北京的水资源非常匮乏,为促进市民节水,从阶梯水价,实施细则如下表:B. 6E .C. . 5FD. B0 .A. a b 0B. a b 0 C .ab D. ab 0A. 0 ( 5) 0.5) 10)C . ( 1.5) ( 2)D . ( 2)(11)(2)8.生物学家发现了一种病毒的长度约为0 . 00000432毫米.数据0 . 00000432用科学记数A 0 432 XI0-5B . 4 . 32 X 10-6C 4 32 X0-7D 43 2 X10-79.下列各组的两个数中,运算后的结果相等的是(A . 23和3233和( 3)3 C . 22和( 2)2 D . -和—3 310 . 一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式拼接.)张?1=1 1=1 1=^□ 1=1A . 15B . 16C . 21 D. 222014年5月1日起北京市居民用水实行)若用餐的人数有90人,则这样的餐桌需要(1=1 l=ZI1匕京市居民用水阶梯水价隼1单位:元,立方米分栏水嚣户年用水量(立万米)水价其中自来水费水资源费污水处理费第一阶梯0-1S0 (含》 1. 07第二阶梯181-260 ⑻7, 004・071・571・36第三阶梯260凯上P. (K) 6. 07某户居民从2015年1月1日至4月30日,累积用水190立方米,则这户居民4个月共需缴纳水费___________ 元.15•如果互为a,b相反数,x,y互为倒数,则2014 a b 2015x y的值是__________________________ 。

七年级数学上册有理数拓展提升练习试题

七年级数学上册有理数拓展提升练习试题

七年级数学上册有理数拓展提升练习试题一、 选择题(每小题3分,共30分)1、设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,则a-b+c•的值为( )A.-1B.0C.1D.22、有理数a 等于它的倒数,则a 2020是----------------------------------------------------( )A.最大的负数 B.最小的非负数 C.绝对值最小的整数 D.最小的正整数3、若0ab ≠,则ab a b+的取值不可能是-----------------------------------------------( ) A .0 B.1 C.2 D.-24、当x=-2时, 37ax bx +-的值为9,则当x=2时,37ax bx +-的值是( )A 、-23B 、-17C 、23D 、175、如果有2005名学生排成一列,按1、2、3、4、3、2、1、2、3、4、3、2、1……的规律报数,那么第2005名学生所报的数是……………………… ( )A 、1B 、2C 、3D 、46、若|a|=4,|b|=2,且|a+b|=a+b, 那么a-b 的值只能是( ).A.2B. -2C. 6D.2或67、 x 是任意有理数,则2|x |+x 的值( ).A.大于零B. 不大于零C. 小于零D.不小于零8、观察这一列数:34-,57, 910-, 1713,3316-,依此规律下一个数是( ) A.4521 B.4519 C.6521 D.65199、若14+x 表示一个整数,则整数x 可取值共有( ). A.3个 B.4个 C.5个 D.6个10、3028864215144321-+⋅⋅⋅-+-+-+-⋅⋅⋅+-+-等于( ) A .41 B .41- C .21 D .21-二、填空题(每小题4分,共32分)11.请将3,4,-6,10这四个数用加减乘除四则运算以及括号组成结果为24的算式(每个数有且只能用一次)_______________ ______ ;12. (-3)2013×( -31)2014= ; 13.若|x-y+3|+()22013y x -+=0,则yx x 2-= . 14.北京到兰州的铁路之间有25个站台(含北京和兰州),设制 种票才能满足票务需求.15.设c b a ,,为有理数,则由cc b b a a ++ 构成的各种数值是 16.设有理数a ,b ,c 在数轴上的对应点如图所示,则 │b -a│+│a+c│+│c -b │=____ _ ___;17.根据规律填上合适的数: 1,8,27,64, ,216;18、 读一读:式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和,由于上述式子比较长,书写也不方便,为了简便起见,我们可将“1+2+3+4+5+…+100”表示为1001n n =∑,这里“∑”是求和符号,例如“1+3+5+7+9+…+99”(即从1开始的100以内的连续奇数的和)可表示为501(21);n n =-∑又如“333333333312345678910+++++++++”可表示为1031n n =∑,同学们,通过以上材料的阅读,请解答下列问题:(1)2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符号可表示为 ;(2)计算:521(1)n n =-∑= (填写最后的计算结果)。

专题212 有理数的加法(拓展提高)(解析版)

专题212 有理数的加法(拓展提高)(解析版)

专题2.12 有理数的加法(拓展提高)一、单选题1.实数a 在数轴上的对应点的位置如图所示,若实数b 满足0a b +>,则b 的值可以是( )A .1-B .0C .1D .2【答案】D【分析】根据0a b +>确定出0b >且b a >,进而确定出b 的范围,判断即可. 【详解】解:∵0a b +>,21a -<<-, ∴0b >,而且1b a >>, ∴1b a >->, 符合条件是D ,b =2. 故选:D .【点睛】本题考查了有理数加法的运算法则和数轴上的点和有理数的对应关系.解决本题的关键是根据加法的符号规律确定b 的取值范围.2.有理数m ,n ,k 在数轴上的对应点的位置如图所示,若m +n <0,n +k >0,则A ,B ,C ,D 四个点中可能是原点的是( )A .A 点B .B 点C .C 点D .D 点【答案】B【分析】分四种情况讨论,利用数形结合思想可解决问题.【详解】解:若点A 为原点,可得0<m <n <k ,则m +n >0,与题意不符合,故选项A 不符合题意; 若点B 为原点,可得m <0<n <k ,且|m |>n ,则m +n <0,n +k >0,符合题意,故选项B 符合题意; 若点C 为原点,可得m <n <0<k ,且|n |>|k |,则n +k <0,与题意不符合,故选项C 不符合题意; 若点D 为原点,可得m <n <k <0,则n +k <0,与题意不符合,故选项D 不符合题意; 故选:B .【点睛】本题主要考查了与数轴有关的计算,数形结合进行判断是解题的关键.3.已知a ,b ,c 为非零有理数,则a b ca b c++的结果可能值的个数为( ) A .2 B .3C .4D .5【答案】C【分析】由绝对值的性质可知a a ,b b ,cc这三个式子的值是±1,分情况讨论求出结果即可. 【详解】解:∵a ,b ,c 为非零有理数,∴它们的绝对值可能是自己本身,也可能是自己的相反数, ∴1aa=±, 同理1b b =±,1c c=±, ∴1113a ca b cb ++=++=, 1113a b ca b c++=---=-, 1111a b ca b c++=--=-, 1111a b ca b c++=+-=, 一共有4种结果. 故选:C .【点睛】本题考查绝对值的性质,解题的关键是掌握绝对值的性质. 4.如果0a b +<,且0b >,那么a b a -、、、b -的大小关系是( )A .a b a b <<-<-B .a b b a <-<<-C .a b a b <-<-<D .b a a b -<<-< 【答案】B【分析】根据题目条件分析出a 是负数,且a 的绝对值大于b 的绝对值,即可比较大小. 【详解】解:∵0a b +<,且0b >, ∴0a <,且a b >, ∴a b b a <-<<-. 故选:B .【点睛】本题考查有理数加法的运算法则和有理数的大小比较,解题的关键是掌握有理数的加法运算法则. 5.如图,有理数a ,b ,c ,d 在数轴上的对应点分别是A ,B ,C ,D ,若5b d +=,则a c +( )A .大于5B .小于5C .等于5D .不能确定【答案】A【分析】根据数轴,判断出数轴上的点表示的数的大小,进而可得结论 【详解】解:由数轴可得,a >d ,c >b , ∴a+c >b+d ∵b+d=5 ∴a+c >5 故选:A【点睛】本题考查数轴、有理数加法法则以及有理数的大小比较,属于中等题型. 6.把所有正整数从小到大排列,并按如下规律分组:(1),(2, 3, 4),(5,6,7,8,9),(10, 11,12, 13, 14, 15, 16),…,现用等式 A M =(i ,j)表示正整数 M 是第i 组第 j 个数(从左往右数),如A 8=(3,4),则A 2020=( ) A .(44,81) B .(44,82)C .(45,83)D .(45,84)【答案】D【分析】根据排列规律,先判断2020在第几组,再判断是这一组的第几个数即可求解; 【详解】设2020在第n 组,组与组之间的数字个数规律可以表示为:2n-1 则1+3+5+7+⋅⋅⋅+(2n-1)=12×2n×n=2n , 当n=44时,21936n = , 当n=45时,22025n =,∴ 2020在第45组,且2020-1936=84,即2020为第45组的第84个数; 故选:D .【点睛】本题考查数字类的规律探究、有理数的加法运算,善用联想探究数字规律是解决此类问题的常用方法;二、填空题7.绝对值大于﹣12且小于13的所有整数的和是_______. 【答案】0.【分析】首先根据有理数大小比较的方法,可得:绝对值大于-12且小于13的所有整数有:±12、±11、±10、±9、±8、±7、±6、±5、±4、±3、±2、±1、0,求它们的和即可.【详解】解:∵绝对值大于-12且小于13的所有整数有:±12、±11、±10、±9、±8、±7、±6、±5、±4、±3、±2、±1、0,因为互为相反数的两个数的和是0,所以绝对值大于﹣12且小于13的所有整数的和是0. 故答案为:0.【点睛】本题考查了绝对值和有理数的加法,解题关键是理解绝对值的意义,知道互为相反数的两个数和为0.8.如果0ab >,那么a abb ab ab++=________. 【答案】3或−1.【分析】由ab >0,则a 、b 同号,再根据绝对值的性质计算即可. 【详解】∵ab >0, ∴a 、b 同号, 当a >0,b >0时,a ab b a b ab++=1+1+1=3; 当a <0,b <0时,a ab b ab ab++=−1−1+1=−1; 故答案为:3或−1.【点睛】本题考查化简绝对值,熟练掌握有理数绝对值的性质是解题的关键. 9.绝对值不大于100的所有整数的和是_____________. 【答案】0【分析】找出所有绝对值不大于100的数,再将它们相加即可解答.【详解】解:绝对值不大于100的所有整数有-100、-99、-98…-1、0、1、2、3、…99、100, ∴和为:-100+(-99)+(-98)+…+(-1)+0+1+2+3+…+99+100=(-100+100)+(-99+99)+…+(-1+1)+0=0.故答案为0.【点睛】本题考查了绝对值和有理数的运算,解题的关键是找出所有绝对值不大于100的数.10.计算:|12-1|+|13-12|+|14-13|+…+|199-198|+|1100-199|=___________.【答案】99 100【分析】先根据绝对值的性质化简,再从第二项开始依次相加即可得出结果.【详解】解:原式=111111111 1...22334989999100 -+-+-++-+-=1 1100 -=99 100,故答案为:99 100.【点睛】本题考查化简绝对值,有理数的加法.在本题中应先化简,再计算.11.如图,是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票数分别为1,3,5,6.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲购买1号座位的票,乙购买2,4,6号座位的票,丙购买3,5,7,9,11号座位的票,丁无法购买到第一排座位的票.若让丙第一购票,要使其他三人都能购买到第一排座位的票,写出满足条件的丁所选的座位号之和为____________.【答案】66.【分析】根据甲、乙、丙、丁四人购票,所购票数量分别为1,3,5,6可得若丙第一购票,要使其他三人都能购买到第一排座位的票,那么丙选座要尽可能得小,因此丙先选择:1,2,3,4,5.丁所购票数最多,即可得出丁应该为6,8,10,12,14,16,再将所有数相加即可.【详解】解:甲、乙、丙、丁四人购票,所购票数分别为1,3,5,6.∴丙选座要尽可能得小,选择:1,2,3,4,5.此时左边剩余5个座位,右边剩余6个座位,∴丁选:6,8,10,12,14,16.∴丁所选的座位号之和为681012141666+++++=;故答案为:66.【点睛】本题考查有理数的加法,认真审题,理解题意是解题的关键.12.我国古代的“河图”是由3×3的方格构成的,每个格内均有不同数目的数,每一行、每一列以及对角线上的三个数之和均相等.如图,给出了“河图”的部分数,则方格中左下角“△”代表的数是_____;方格中九个数的和是_____.【答案】-4 -27【分析】根据“河图”的特征可得:每一条对角线上的三个数的和等于第三行的各个数的和,求出△的值即可. 【详解】解:根据题意得:+(5)(3)(6)∆-=-+- 解得:=4∆-设与△和-3在同一条对角线上另一个数为y ,则有:(6)(5)(3)y +-=-+- ∴2y =-∴对角线上三个数的和为:(4)(3)(2)9-+-+-=-,即每一行,每一列以及线上三个数的和都等于-9, ∴方格中九个数的和是(9)(9)(9)27-+-+-=-, 故答案为:-4;-27【点睛】此题主要考查有理数的加法,图形的变化规律,学习过程中注意培养自己的观察、分析能力. 13.小颖同学做这样一道题“计算|5|-+∆”,其中“∆”是被墨水污染看不清的一个数,她翻开后面的答案,得知该题的计算结果是3,那么“∆”表示的数是_________. 【答案】2或8【分析】根据有理数的加法法则以及绝对值的性质解答即可; 【详解】∵53-+=△, ∴ 53-+=△或53-+=-△, 解得:=8或2, 故答案为:8或2.【点睛】本题考查了有理数的加法和绝对值的意义,熟记绝对值的意义是解答本题的关键;14.对于正数x 规定()1xf x x =+,例如133113(3),11343413f f ⎛⎫==== ⎪+⎝⎭+,计算1120152014f f ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭111(1)(2)(3)(2013)(2014)(2015)201332f f f f f f f f f ⎛⎫⎛⎫⎛⎫++++++++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭__________.【答案】120142【分析】根据规定式子可得1111(),(1)1121111x f f x x x====+++,从而可得11()()111x f x f x x x+=+=++,由此即可得.【详解】因为对于正数x 规定()1xf x x=+,所以1111(),(1)1121111x f f x x x ====+++,所以11()()111x f x f x x x+=+=++, 则原式111(2015)(2014)(2)(1)201520142f f f f f f f ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=+++++++⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦, 1120142=⨯+, 120142=,故答案为:120142. 【点睛】本题考查了有理数加法运算的规律型问题,根据规定的运算式子,找出规律是解题关键.三、解答题15.10袋小麦称重后记录如图所示(单位:千克).10袋小麦一共多少千克?如果每袋小麦以90千克为标准,10袋小麦总计超过多少千克或不足多少千克?【答案】10袋小麦一共905.4千克;10袋小麦总计超过5.4千克. 【分析】先求出10袋小麦90千克的增减量,然后相加即可得解.【详解】解:91+91+91.5+89+91.5+91.3+88.7+88.8+91.8+91.1=905.4(千克) 以90千克为标准,10袋小麦的记录如下:+1、+1、+1.5、-1、+1.2、+1.3、-1.3、-1.2、+1.8、+1.1,(+1)+(+1)+(+1.5)+(-1)+(+1.2)+(+1.3)+(-1.3)+(-1.2)+(+1.8)+(+1.1) =(+1)+(-1)+(+1.2)+(-1.2)+(+1.3)+(-1.3)+(+1)+(+1.5)+(+1.8)+(+1.1) =5.4千克.答:10袋小麦一共905.4千克;10袋小麦总计超过5.4千克.【点睛】本题考查了正负数的意义,读懂题目信息,写出90千克的增减量是解题的关键.16.某一出租车一天下午以鼓楼为出发地在东四方向营运,向东为正,向西为负,行车里程(单位:km )依先后次序记录如下:9+,3-,8-,6+,6-,4-,10+.(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向? (2)若每千米的价格为2.4元,司机一个下午的营运额是多少? 【答案】(1)离鼓楼出发点为4km ,在鼓楼东;(2)110.4元【分析】(1)根据正数和负数意义,将所有的数相加所得结果即可得出答案;(2)根据绝对值的意义,将所有的数的绝对值相加即可得出总的路程,即可得出答案. 【详解】解:(1)由题意可得,+9+(-3)+(-8)+6+(-6)+(-4)+10=+4, 因为向东为正,向西为负,所以出租车离鼓楼出发点为4km ,在鼓楼东; (2)由题意可得,出租车营运的总路程为,|+9|+|-3|+|-8|+|6|+|-6|+|-4|+|10|=46(km ), 营运额为:46×2.4=110.4(元).【点睛】本题主要考查正负数的运算和绝对值的意义,根据题意列式计算是解决本题的关键.17.某食品厂计划平均每天生产200袋食品,但是由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超过计划量记为正):(1)根据记录的数据,求产量最多的一天比产量最少的一天多生产食品多少袋? (2)根据记录的数据,求该厂本周实际共生产食品多少袋? 【答案】(1)20;(2)1410.【分析】(1)根据题意和表格可以求得该厂产量最多的一天的产量和产量最少一天的产量,从而可以解答本题;(2)根据表格求出本周一共比计划多生产10袋,可求得该厂本周实际共生产食品多少袋. 【详解】解:(1)最多的一天为星期四:20011211+=(袋), 最少的一天为星期五:2009191-=(袋),21119120-=(袋),产量最多的一天比产量最少的一天多生产食品多20袋;(2)5171195610+--+-++=(袋) 2007101410⨯+=(袋) 答:该厂本周实际共生产食品1410袋.【点睛】本题考查正数和负数的意义和有理数加法,解题的关键是明确题意,准确列式计算.18.某公路检修小组早上从A 地出发,沿东西方向的公路上检修路面,晚上到达B 地,如果规定向东行驶为正,向西行驶为负,一天行驶记录如下(单位:千米):﹣5,﹣3,+6,﹣7,+9,+8,+4,﹣2. (1)请你确定B 地位于A 地的什么方向,距离A 地多少千米? (2)距A 地最远的距离是多少千米?(3)若每千米耗油0.2升,问这个小组从出发到收工共耗油多少升?【答案】(1)B 地在A 地的东边10千米;(2)最远处离出发点12千米;(3)8.8升【分析】(1)计算这些有理数的和,即可知道收工时,B 地位于A 地的什么方向,距A 地多远, (2)逐次计算结果,当达到绝对值最大时即可, (3)求出各个数的绝对值的和,进而求出用汽油的升数. 【详解】解:(1)∵﹣5﹣3+6﹣7+9+8+4﹣2=10, 答:B 地在A 地的东边10千米;(2)∵路程记录中各点离出发点的距离分别为: |﹣5|=5(千米);|﹣5﹣3|=8(千米);|﹣5﹣3+6|=2(千米);|﹣5﹣3+6﹣7|=9(千米);|﹣5﹣3+6﹣7+9|=0(千米);|﹣5﹣3+6﹣7+9+8|=8(千米);|﹣5﹣3+6﹣7+9+8+4|=12(千米);|﹣5﹣3+6﹣7+9+8+4﹣2|=10(千米);12>10>9>8>5>2>0,∴最远处离出发点12千米;(3)这一天走的总路程为:|﹣5|+|﹣3|+|+6|+|﹣7|+|+9|+|+8|+|+4|+|﹣2|=44(千米),应耗油44×0.2=8.8(升),答:问这个小组从出发到收工共耗油8.8升.【点睛】本题考查有理数的加法、绝对值的意义,理解有理数和绝对值的意义是正确解答的关键.19.如果自然数m使得作竖式加法m+(m+1)+(m+2)时对应的每一位都不产生进位现象,则称m为“三生三世数”,例如:12,321都是“三生三世数”,理由是12+13+14及321+322+323分别都不产生进位现象;50,123都不是“三生三世数“,理由是50+51+52及123+124+125分别产生了进位现象(1)分别判断42和3210是不是“三生三世数”,并说明理由;(2)求三位数中小于200且是3的倍数的“三生三世数”.【答案】(1)42不是“三生三世数”,3210是“三生三世数”,理由见解析;(2)102,111,120,132【分析】(1)根据“三生三世数”的定义进行判断便可;(2)先根据“三生三世数”定义求出三位数中小于200的“三生三世数”,再求得其中是3的倍数的数便可.【详解】解:(1)∵42+43+44计算时会产生进位现象,∴42不是“三生三世数”,∵3210+3211+3212计算时不会产生进位现象,∴3210是“三生三世数”,(2)根据“三生三世数”的定义知,小于200的三位数中的“三生三世数”有:100,101,102,110,111,112,120,121,122,130,131,132,∵102,111,120,132能被3整除,∴三位数中小于200且是3的倍数的“三生三世数”有:102,111,120,132.【点睛】本题考查了有理数的加法、新定义,解题的关键是明确题意,利用题干中的新定义解答. 20.从数轴上看: a 表示数a 的点到原点之间的距离,类似地4a -表示数a 的点到表示数4的点之间的距离.一般地a b -表示数a 的点到表示数b 的点之间的距离.(1)在数轴上,若表示数x 的点与表示数2-的点之间的距离为5个单位长度,则 x =________;. (2)对于任何有理数x ,式子 16x x ++- 有最_____(大或小)值,该值为________.(3)利用数轴,求方程 549x x -++= 的所有整数解的和.【答案】(1)3或-7;(2)小,7;(3)5【分析】(1)根据两点间的距离公式即可求解;(2)先得到16x x ++-的意义,再判断取值;(3)先得到549x x -++=的意义,从而得到相应的x 的范围,得到整数取值,最后相加.【详解】解:(1)∵表示数x 的点与表示数-2的点之间的距离为5个单位长度, ∴25x +=,解得:x =3或-7;(2)16x x ++-表示数轴上到-1和6的距离之和,∴有最小值,当x 在-1和6之间(包含-1和6)时,该值最小,且为7;(3)549x x -++=表示数轴上表示x 的数到-4和5的距离之和为9,则当x <-4或x >5时,549x x -++>,当-4≤x ≤5时,满足条件,此时x 的整数值为:-4,-3,-2,-1,0,1,2,3,4,5,∴所有整数解的和为-4-3-2-1+0+1+2+3+4+5=5.【点睛】本题考查了数轴,绝对值的性质,读懂题目信息,理解数轴上两点间的距离的表示是解题的关键.。

专题118 有理数的乘法(拓展提高)(原卷版)

专题118 有理数的乘法(拓展提高)(原卷版)

专题1.18 有理数的乘法(拓展提高)一、单选题1.﹣34是下列各算式中( )的积. A .﹣312×(﹣314) B .34×(﹣56) C .(﹣112)×49 D .45×(﹣1516) 2.有理数ɑ、b 在数轴上位置如图,则下式成立的( ).A .0a b +>B .()b a a -⨯>0C .()b a a -⨯<0D .0b a -<3.如图,数轴上的点P 表示的有理数为a ,则表示有理数“2a -”的点是( )A .点AB .点BC .点CD .点D4.已知|x|=2,|y|=3,且x·y >0,则x -y 的值等于( )A .5或-5B .-5或-1C .5或1D .1或-15.法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算78⨯和89⨯的两个示例.若用法国的“小九九”计算79⨯,左、右手依次伸出手指的个数是( )A .2,3B .3,3C .2,4D .3,46.下表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6、10,15,…,我们把第一个数记为1a ,第二个数记为2a ,第三个数记为3a ,…,第n 个数记为n a ,则6199+a a 的值为( )A .19900B .19915C .19921D .19934二、填空题7.12021-的倒数的相反数是________. 8.乘积为240-的不同五个整数的平均值最大是__________.9.规定*是一种运算符号,且*2a b ab a =-,则计算()4*2*3-=_______.10.已知21x y -=-,且,a b 互为倒数,那么620132x aby y -+-=______.11.若a 与b 互为相反数,c 与d 互为倒数,e 是绝对值最小的数,则()325a b cd e +-+=______. 12.若定义一种新的运算“*”,规定有理数a*b =3ab ,如2*(﹣4)=3×2×(﹣4)=﹣24.则16*(﹣2*5)=_____.13.某班级课后延时活动,组织全班50名同学进行报数游戏,规则如下:从第1位同学开始,序号为奇数的同学报自己序号的倒数加1,序号为偶数的同学报自己序号的倒数加1的和的相反数.如第1位同学报(111+),第2位同学报1(1)2-+,第3位同学报1(1)3+……这样得到的50个数的乘积为_______. 14.已知a 是不等于1-的数,我们把11a +称为a 的和倒数.如:2的和倒数为11123=+,已知211,a a =是1a 的和倒数,3a 是2a 的和倒数,4a 是3a 的和倒数,…,依此类推,则31212a a a a ⋅⋯⋅=______.三、解答题15.计算(1)5116()()()6767+-+-+-;(2)(﹣20)﹣(﹣18)+(﹣14)﹣13;(3)111(8)()842-⨯-+; (4)(﹣8)×(﹣43)×(﹣0.125)×54. 16.若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值是2,求a 234b m cd m ++-的值. 17.已知x ,y 为有理数,现规定一种新运算“*”,满足x *y =xy ﹣5例如:1*2=1×2﹣5=﹣3 (1)请仿照上面的例题计算下列各题:①2*(﹣3);②(4*5)*(﹣16); (2)任意选择两个有理数,分别填入下列□和〇中,并比较它们的运算结果;多次重复以上过程,你发现:□*〇 〇*□(用“>”“<”或“=”填空).18.利用运算律计算有时可以简便例1:256172651782214-+-+=--++=-+=;例2:()99999910019900999801⨯=-=-=.请你参考黑板中老师的讲解,用运算律简便计算.(1)1112322+--; (2)计算:()221546463737-⨯-⨯+⨯--⨯. 19.小明家想要从某商场购买洗衣机和烘干机各一台,现在分别从,A B 两个品牌中各选中一款洗衣机和一款烘干机,它们的单价如表1所示.目前该商场有促销活动,促销方案如表2所示.表1:洗衣机和烘干机单价表表2:商场促销方案你认为有哪几种购买方案?请通过计算为小明家选择支付总费用最低的购买方案.20.学习有理数的乘法后,老师给同学们这样一道题目:计算:2449(5)25⨯-,看谁算的又快又对,有两位同学的解法如下:小明:原式=1249124945249 2555 -⨯=-=-;小军:原式=24244 (49)(5)49(5)(5)24925255+⨯-=⨯-+⨯-=-;(1)对于以上两种解法,你认为谁的解法较好?(2)受上面解法对你的启发,你认为还有更好的方法吗?如果有,请把它写出来;(3)用你认为最合适的方法计算:1599(8)16⨯-.。

专题116 有理数的减法(拓展提高)(解析版)

专题116 有理数的减法(拓展提高)(解析版)

专题1.16 有理数的减法(拓展提高)一、单选题1.若m 为有理数,则m m +的结果必是( )A .正数B .负数C .非正数D .非负数 【答案】D【分析】根据绝对值的性质:正数的绝对值是它本身、负数的绝对值是它的相反数、0的绝对值是0,可根据m 是正数、负数和0三种情况讨论.【详解】解:①当m >0时,原式=m+m=2m >0;②当m=0时,原式=0+0=0;③当m <0时,原式= m-m =0. ∴m m +的值大于等于0,即为非负数,故选:D .【点睛】本题主要考查绝对值的性质,能够通过讨论去掉绝对值符号是解决本题的关键,难度不大. 2.若||5m =,||2n =.且mn 异号,则||m n -的值为( )A .7B .3或3-C .3D .7或3 【答案】A【分析】先求出m 、n 的值,再将其代入计算m n -的值.【详解】解:∵|m|=5,|n|=2,∴m=±5,n=±2.∵m n 、异号,∴m=-5,n=2或m=5,n=-2. ∴527m n -=--=或()527m n -=--=.故答案为:A .【点睛】本题主要考查了绝对值的定义及有理数的减法运算:正数的绝对值是它本身,负数是它的相反数,零的绝对值是零.3.有理数a b c 、、在数轴上的位置如图所示,则在式子1,a,c b,c a a---+中,值最大的是( )A .a -B .c b -C .c a +D .1a - 【答案】D【分析】根据数轴可得1a 0b c 1-<<<<<,且a c =,然后分别求得1a-,c a +,a -,c b -的取值范围即可.【详解】由数轴可得,1a 0b c 1-<<<<<,且a c =, 0c b 1∴<-<,c a 0+=,01a <-<,11a ->, ∴最大的数为1a-. 故选D . 【点睛】本题考查了数轴,有理数的大小比较,根据数轴判断出a 、b ,c 的正负情况以及绝对值的大小是解题的关键.4.已知7x =,5y =,且0x y +>,那么x y -的值是( )A .2或12B .2或12-C .2-或12D .2-或1- 【答案】A【分析】先根据绝对值运算求出x 、y 的值,再根据0x y +>可得两组x 、y 的值,然后分别代入计算有理数的减法即可得. 【详解】57,x y ==,7,5x y ∴=±=±,又0x y +>,75x y =⎧∴⎨=⎩或75x y =⎧⎨=-⎩, 则752x y -=-=或()757512x y -=--=+=,故选:A .【点睛】本题考查了绝对值、有理数加减法的应用,熟练掌握各运算法则是解题关键.5.若有理数x 、y 满足条件:10=x ,2y =,x y y x -=-,那么2x y -的值是( ) A .-14或-6B .-14或6C .-12或-8D .-14 【答案】A【分析】根据绝对值的定义可得10x =±,2y =±,x y <,所以可能的取值情况只有10x =-,2y =-或10x =-,2y =,再求出2x y -的值.【详解】解:∵10=x ,∴10x =±, ∵2y =,∴2y =±, ∵x y y x -=-,∴x y <,若10x =-,2y =-,则21046x y -=-+=-,若10x =-,2y =,则210414x y -=--=-.故答案是:A .【点睛】本题考查绝对值的性质和有理数的减法运算,解题的关键是掌握绝对值的性质和有理数的减法运算法则.6.陆上最高处是珠穆朗玛峰,峰顶高于海平面约8844米,最低处位于亚洲西部名为死海的湖,死海的水面低于海平面415米,两处高度相差( )A .9259米B .9159米C .8429米D .﹣8429米【答案】A【分析】用珠穆朗玛峰的峰顶高度减去死海最低高度,再根据有理数减法法则进行计算即可.【详解】若海平面以上记为正,则海平面以下记为负,∴珠穆朗玛峰峰顶高约+8844米,死海的水面高为-415米,∴两处高度相差8844-(-415)=8844+415=9259(米),故选:A.【点睛】此题考查有理数的减法计算法则,正确理解题意是解题的关键.二、填空题7.已知A,B,C是数轴上的三个点,且C在B的左侧.点A,B表示的数分别是1,3,如图所示,若BC=2AB,则点C表示的数是___________________.【答案】-1【分析】先利用点A、B表示的数计算出AB,再计算出BC,然后计算点C到原点的距离即可得到C点表示的数.【详解】解:∵点A,B表示的数分别是1,3,∴AB=3-1=2,∵BC=2AB=4,∴OC=BC-OB=4-3=1,∵C在B的左侧,∴点C表示的数是-1.故答案为:-1.【点睛】本题考查了数轴:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)8.计算:111111 201820172017201620182016-+---=______.【答案】0【分析】原式利用绝对值的代数意义化简,计算即可求出值.【详解】解:111111 201820172017201620182016 -+---111111 201720182016201720162018 =-+--+0=.故答案为:0.【点睛】此题考察了绝对值的化简,熟练掌握运算法则是解本题的关键.9.已知|x |=1,|y |=3,若||x y x y +=+,则x -y =____【答案】-2或-4【分析】已知绝对值的意义和加法的符号规律,求得x =1,y =3或x =-1,y =3,再代入求值即可.【详解】∵|x |=1,|y |=3,∴x =±1,y =±3, ∵x y x y +=+,∴x +y >0,又∵|x |<|y |,∴x =1,y =3或x =-1,y =3,当x =1,y =3时,x -y =1-3=-2;当x =-1,y =3时,x -y =-1-3=-4.综上,当|x |=1,|y |=3,而且x y x y +=+时, x -y =-2或-4.故答案为:-2或-4.【点睛】本题考查了绝对值的性质和意义及有理数的加减法,根据绝对值的意义和性质和有理数加法的符号规律求得x =1,y =3或x =-1,y =3是解决问题的关键.10.东京与北京的时差为1+,巴黎与北京的时差为7-.假如现在是北京时间7:00,那么东京时间是______,巴黎时间是________.【答案】8:00 0:00.【分析】由于带正号的数表示同一时刻比北京时间早的时数,那么用北京时间+时差=东京时间,用北京时间-时差=巴黎时间.【详解】解:7+1=8,所以东京时间为上午8:00.7-7=0,所以巴黎时间为凌晨0:00.故答案为:8:00;0:00.【点睛】此题主要考查了有理数加减法在实际生活中的应用,在学习这一部分内容时一定要联系实际.11.两个小朋友玩跳棋游戏,游戏的规则是:先画一根数轴,棋子落在数轴上0K 点,第一步从0K 点向左跳1个单位到1K ,第二步从1K 向右跳2个单位到2K ,第三步从2K 向左跳3个单位到3K ,第四步从3K ,向右跳4个单位到4K ,…,如此跳20步,棋子落在数轴的20K 点,若20K 表示的数是16,则2019K 的值为_______.【答案】-1004【分析】根据向左减向右加可知每两步跳动向右1个单位,根据20K 表示的数是16,可得0K ,然后先得出2018K 的值,进而得出2019K 的值.【详解】解:由题意得,第一步、第二步后向右跳动1个单位,跳20步后向右20÷2=10个单位, 则K 0的值是16-10=6,因为2019÷2=1009…1,所以跳2018步时,所对应的数是1009+6=1015,跳2019步时,所对应的数是1015-2019=-1004,故答案为:-1004.【点睛】本题考查数轴上动点问题,有理数的减法的应用.解决此题的关键是理解可知每两步跳动向右1个单位.12.如图,是北京S1线地铁的分布示意图,其中桥户营、四道桥、金安桥、苹果园四站在同一条直线上.如果在图中以正东为正方向建立数轴,桥户营站、苹果园站表示的数分别是4-,2,那么金安桥站表示的数是___________.【答案】0【分析】由桥户营站、苹果园站表示的数分别是4-,2,计算出两点之间的距离为6,求出一个单位长度表示的数是2,即可得到答案.【详解】∵桥户营站、苹果园站表示的数分别是4-,2,∴桥户营站与苹果园站的距离是2-(-4)=6,∵桥户营站与苹果园站之间共有三个单位长度,∴每个单位长度表示632÷=,∴金安桥表示的数是2-2=0,故答案为:0.【点睛】此题考查数轴上两点之间的距离,数轴上点的平移规律,有理数的加减法计算,掌握数轴上两点之间的距离公式是解题的关键.13.已知数轴上A 、B 两点所对应的数分别是1和3,P 为数轴上任意一点,对应的数为x .(1)则A 、B 两点之间的距离为________;(2)式子|1||3||2017||2019|x x x x -+-++-+-的最小值为________.【答案】2; 510050.【分析】(1)根据两点间的距离公式解题即可;(2)由绝对值的几何意义,||x a -表示数x 到数a 的距离,要使式子取得最小值,则应找到与最小数和最大数距离相等的x 的值,即可解题.【详解】(1)A 、B 两点之间的距离为3-1=2,故答案为:2;(2)由已知条件可知,||x a -表示数x 到数a 的距离,只有当x 到1的距离等于x 到2019的距离时,式子即可取最小值, ∴当1201910102x +==时,|1||3||2017||2019|x x x x -+-++-+-取最小值,最小值为:|10101||10103||10102017||10102019|-+-++-+-=1009+1007+1005+1+1++1005+1007+1009=2(1009+1007+1005+1)⨯(10091)505=22+⨯⨯ 510050=【点睛】本题考查数轴、绝对值、两点间的距离等知识,是重要考点,难度一般,掌握相关知识是解题关键.14.在日常生活中,“八点五十八”通常可以说成“九点差二分”,有时这样表达更清楚,受此启发,我们设计了一种新的加减计数法.例如:6写成14,141046=-=;191写成209,2092009191=-=.按这个方法请计算:2020=______.【答案】1980【分析】观察例子找到规律,根据有理数的减法法则计算得出答案. 【详解】由例题可得2020=2000-20=1980,故答案为:1980.【点睛】此题考查有理数运算的规律,有理数的减法计算法则,读懂例题的计算方法并应用解决问题是解题的关键.三、解答题15.已知6x =,3y =(1)若x 、y 异号,直接写出x 和y 的差为_____(2)若x y <,直接写出x 与y 的和为_____【答案】(1)9±;(2)3-或9-【分析】(1)先根据绝对值的性质求出x 、y 的值,再由x 、y 异号,分类讨论x y -的值;(2)由x y <,得6x ≠,再分类讨论当=6x -时y 的值;算出+x y .【详解】解:(1)∵6x =,3y =,∴6x =±,3=±y ,∵x 、y 异号,∴ 当=6x 时,3y =-,()=63639x y ---=+=,当6x =-时,3y =,639x y -=--=-,∴9x y -=±;故答案为:9±(2)∵ x y <,∴当=6x 时,x 不可能小于y ,不成立,当6x =-时,3y =时,+6+33x y =-=-,当6x =-时,3y =-时,+639x y =--=-,∴+x y 的值为3-或9-故答案为:3-或9-【点睛】本题考查绝对值的性质和有理数的加减运算,解题的关键是掌握绝对值的性质和有理数加减运算法则.16.某路公交车从起点经过A ,B ,C ,D 站到达终点,各站上下乘客的人数如下(上车为正,下车为负):起点(20,0),(12,4),(8,9),(6,4),(2,7)A B C D ----,终点()0,____.(1)在横线上填写适当的数,并说明该数的实际意义;(2)行驶在哪两站之间时,车上的乘客最多?(3)若乘坐该车的票价为每人2元,则这一趟公交车能收入多少钱?【答案】(1)−24;(2)公交车行驶在C 站和D 站之间车上的乘客最多;(3)96【分析】(1)根据正负数的意义,利用有理数的加法法则计算即可;(2)根据(1)的计算解答即可;(3)根据各站之间的人数,乘以票价2,然后计算即可得解.【详解】解:(1)起点到A 站,车上人数:20,A 站到B 站,车上人数:20+12−4=28,B 站到C 站,车上人数,28+8−9=27,C 站到D 站,车上人数,27+6−4=29,D 站到终点,29+2−7=24,所以,到终点下车还有24人;故答案为:−24;(2)由(1)的计算可知,公交车行驶在C 站和D 站之间车上的乘客最多,为29人;(3)(20+12+8+6+2)×2=96(元).答:这趟出车能收入96元.【点睛】本题考查了正数和负数,有理数的混合运算,读懂图表信息,求出各站点上的人数是解题的关键.17.国内汽油价格每月会有两次调整,如果以今年6月底的油价为基准,涨价记为正方向,7月至10月的油价调整情况记录如下(单位:元/吨):(1)7月至10月之间,今年_______(填时间)的调价令油价与基准价格相差最大.(2)到10月底,油价能否回到基准价格?请说明理由.【答案】(1)8月下旬;(2)不能,理由见解析【分析】(1)计算出每个时间段与基准价格的差,即可得解;(2)将表格中的数据相加,根据结果判断即可.【详解】解:(1)7月上旬与基准价格相差:+100,7月下旬与基准价格相差:+100, 8月上旬与基准价格相差:+100,8月下旬与基准价格相差:+100+85=185,9月上旬与基准价格相差:185,9月下旬与基准价格相差:185-315=-130, 10月上旬与基准价格相差:-130,10月下旬与基准价格相差:-130+70=-60,∴8月下旬的调价令油价与基准价格相差最大;(2)由题意可得: 100+0+0+85+0-315+0+70=-60,∴到10月底,油价不能回到基准价格.【点睛】本题考查的是正数与负数的定义,有理数的加法的实际应用,解答此题的关键是熟知用正负数表示两种具有相反意义的量.具有相反意义的量都是互相依存的两个量,它包含两个要素,一是它们的意义相反,二是它们都是数量.18.(1)填空:①正数:35+= ,8= ; ②负数:0.7-= ,12-= ;③零:0= ;(2)根据(1)中的规律可以发现:无论什么数,它们的绝对值一定是 数,即0a ≥(3)请认真阅读下列材料,求2x +的最小值解:0x ≥,∴当0x =,即0x =时,2x +的最小值是2解答下列问题 ①求2020x +的最小值;②255a --有最大值还是最小值,求出这个值,并求出a 的值【答案】(1)①35,8;②0.7,12;③0;(2)非负;(3)①2020;②最大值25,a =5 【分析】(1)根据绝对值的意义即可得出答案;(2)分析(1)中的结论,即可得到(2)中的答案;(3)①要使2020x +有最小值,则需使x 最小,结合(2)中结论有0x ≥,可得出0,x =时,2020x +最小,即可得出答案; ②由50a -≥,得出当50a -=时,原式有最大值,求出a 的值,代入即可得出答案.【详解】解:(1)①正数:35+=35,8=8; ②负数:0.7-=0.7,12-=12; ③零:0=0;(2)根据(1)中的规律可以发现:无论什么数,它们的绝对值一定是非负数,即0a ≥;(3)①0x ≥ ∴当0,x =即0x =时∴2020x +有最小值是2020②255a --有最大值. 50a -≥∴当50a -=,即50,a -=5a =时255a --有最大值25,此时a =5.【点睛】本题考查了绝对值的相关知识,在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.19.学校为了备战校园足球联赛,利用体育课让学生进行足球训练,为了训练学生快速抢断转身,体育老师设计了折返跑训练.老师在东西方向的足球场上画了一条直线插上不同的折返旗帜,如果约定向西为正,向东为负,练习一组的行驶记录如下(单位:米):+40,﹣30,+45,﹣25,+25,﹣35,+15,﹣28,+16,﹣18.(1)学生最后到达的地方在出发点的哪个方向?距出发点多远?(2)学生训练过程中,最远处离出发点多远?(3)学生在一组练习过程中,跑了多少米?【答案】(1)在出发点的正西方向,距出发点5米;(2)最远处离出发点55米;(3)跑了277米【分析】(1)根据加法法则,将正数与正数相加,负数与负数相加,进而得出计算得结果;(2)求出每一段到出发点的距离,即可判断出结果;(3)利用绝对值的性质以及有理数加法法则求出即可.【详解】解:(1)(+40)+(﹣30)+(+45)+(﹣25)+(+25)+(﹣35)+(+15)+(﹣28)+(+16)+(﹣18)=+5(米).答:学生最后到达的地方在出发点的正西方向,距出发点5米;(2)第一段,40米,第二段,40﹣30=10(米),第三段,10+45=55(米),第四段,55﹣25=30(米),第五段,30+25=55(米),第六段,55﹣35=20(米),第七段,20+15=35(米),第八段,35﹣28=7(米),第九段,7+16=23(米),第十段,23﹣18=5(米),故最远处离出发点55米;(3)|+40|+|﹣30|+|+45|+|﹣25|+|+25|+|﹣35|+|+15|+|﹣28|+|+16|+|﹣18|=277(米).答:学生在一组练习过程中,跑了277米.【点睛】此题考查有理数的加减法的实际应用,绝对值的性质,正确理解题意列式进行计算是解题的关键.20.在2020年抗洪抢险中,解放军战士的冲锋舟加满汽油后沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+15,﹣8,+9,﹣6,+14,﹣5,+13,﹣10.(1)B地位于A地的什么方向?距离A地多少千米?(2)若冲锋舟每千米耗油0.6升,油箱容量为30升,求冲锋舟当天救灾过程中至少还需补充多少升油?(3)救灾过程中,冲锋舟离出发点A最远时,距A地多少千米?【答案】(1)B地在A地的东边22千米;(2)还需补充18升汽油;(3)距A地32千米【分析】(1)把题目中所给数值相加,若结果为正数,则B地在A地的东方,若结果为负数,则B地在A 地的西方;(2)先求出这一天航行的总路程,再计算出一共所需油量,减去油箱容量即可求出途中还需补充的油量;(3)分别计算出各点离出发点的距离,取数值较大的点即可.【详解】解:(1)∵15﹣8+9﹣6+14﹣5+13﹣10=22,∴B地在A地的东边22千米;(2)这一天走的总路程为:15+|﹣8|+9+|﹣6|+14+|﹣5|+13|+|﹣10|=80千米,应耗油80×0.6=48(升),故还需补充的油量为:48﹣30=18(升),答:冲锋舟当天救灾过程中至少还需补充18升油;(3)∵路程记录中各点离出发点的距离分别为:15千米;15﹣8=7千米;7+9=16千米;16﹣6=10千米;10+14=24千米;24﹣5=19千米;19+13=32千米;32﹣10=22千米.∴冲锋舟离出发点A最远时,距A地32千米.【点睛】本题考查的是正数与负数的定义,解答此题的关键是熟知用正负数表示两种具有相反意义的量,注意所走总路程一定是绝对值的和.。

专题216 有理数的乘法(拓展提高)(解析版)

专题216 有理数的乘法(拓展提高)(解析版)

专题2.16 有理数的乘法(拓展提高)一、单选题1.若a ,b 在数轴上的位置如图所示,则下列选项不正确的是( )A .ab <0B .|a |>|b |C .a +b >0D .a <﹣b <b <﹣a【答案】C【分析】根据数轴上数的位置,确定数的正负与绝对值大小即可.【详解】解:由数轴可得,a <0<b ,|a|>|b|,则ab <0,|a|>|b|,a+b <0,a <﹣b <b <﹣a ,错误的是C .故选:C .【点睛】本题考查了数轴上的数和有理数运算法则,解题关键是根据数轴判断a ,b 的符号合绝对值大小,再根据有理数运算法则判断式子是否正确.2.如果两个有理数的和等于零,那么这两个有理数的积是( )A .负数B .正数C .非负数D .非正数 【答案】D【分析】根据有理数的加法法则可得这两个数为一正一负,或同为0,再根据乘法法则得到这两个有理数的积是负数或0.【详解】如果两个有理数的和等于零,那么这两个有理数互为相反数,故这两个数为一正一负,或同为0,则这两个有理数的积是负数或0,故选:D .【点睛】此题考查有理数的加法法则和乘法法则,熟记法则是解题的关键.3.对于任意有理数,a b ,定义一种新运算“⊕”,规则如下:a b ab a b ⊕=+-.例如:525252⊕=⨯+-,则3(2)⊕-的计算结果等于()A .-7B .-1C .-11D .-5 【答案】B【分析】根据新运算法则解答即可.【详解】解:()()3(2)32326321⊕-=⨯-+--=-++=-.故选:B .【点睛】本题考查了有理数的运算,正确理解新运算法则、明确求解的方法是解题的关键.4.在整数集合{3,2,1,0,1,2,3,4,5,6}---中选取两个整数填入“6⨯=”的○内,使等式成立则正确选取后不同填入....的方法有( ) A .2种B .4种C .6种D .8种 【答案】C【分析】计算积为6的数,每个式子为两种.【详解】解:-3×(-2)=6,:-2×(-3)=6;2×3=6,3×2=6;1×6=6,6×1=6,共有6种,故选:C .【点睛】本题考查了有理数的乘法,属于基础题,注意3个式子,6种方法5.若234a b ==,,且0ab <,那么+a b 的值为( )A .5或1B .-5或-1C .5或-5D .1或-1【答案】D【分析】先根据题意确定a ,b 的所有可能取值,然后代入求值即可.【详解】解:∵234a b ==,∴a 3b 2=±=±,∵0ab <∴a 、b 异号当a=3,b=-2时 3-21a b +==当a=-3,b=2时321a b +=-+=-故选:D .【点睛】此题主要考查求代数式的值,解题的关键是正确根据题意确定a ,b 的值.6.王叔叔将“绿色出行,从我做起”化为实际行动,坚持每天步行上下班,他以10000步为标准,超过的记作正数,不足的记作负数,记录了一周上下班的步数情况如下表,若王叔叔平均每步0.75米,请你计算本周(星期一至星期五)王叔叔上下班共步行了多少米( )A .2500B .10500C .52500D .39375【答案】D【分析】先根据题意和表格数字列出运算式子,再计算有理数的乘法与加减法即可得.【详解】由题意得:()1000051200800160050000.75⨯+-+++⨯⎡⎤⎣⎦, ()5000025000.75=+⨯,525000.75=⨯,39375=(米),即本周(星期一至星期五)王叔叔上下班共步行了39375米,故选:D .【点睛】本题考查了正负数在实际生活中的应用、有理数乘法与加减法的应用,依据题意,正确列出运算式子是解题关键.二、填空题7.12021-的倒数的相反数是________. 【答案】2021【分析】直接利用倒数、互为相反数的定义分析得出答案.【详解】解:12021-的倒数为:-2021,则-2021的相反数是:2021. 故答案为:2021.【点睛】此题主要考查了倒数、相反数,正确把握相关定义是解题关键.8.乘积为240-的不同五个整数的平均值最大是__________.【答案】9【分析】显然是要使得负因数的绝对值尽量小,且正因数尽量大,符合的负因数只能为-1,然后正因数为1,2,3,40,再根据平均数的求法求出五个整数的平均值.【详解】解:∵要求乘积为-240的不同五个整数的最大平均值,又∵-1×1×2×3×40=-240, ∴平均值最大的五个因数为-1,1,2,3,40,∴五个整数的平均值为(-1+1+2+3+40)÷5=9.故答案为:9.【点睛】本题考查了有理数的乘法,本题确定负因数为-1是解题的关键.9.规定*是一种运算符号,且*2a b ab a =-,则计算()4*2*3-=_______.【答案】-16.【分析】按照新定义转化算式,然后计算即可.【详解】根据题意,2*3232(2)-=-⨯-⨯-=64-+=-2,()4*2*3-=()4*24(2)24-=⨯--⨯=88--=-16故答案为:-16.【点睛】本题考查了新定义运算,解题关键是把新定义运算转化为有理数计算,并准确计算.10.已知21x y -=-,且,a b 互为倒数,那么620132x aby y -+-=______.【答案】2010【分析】利用倒数的性质得到ab =1,代入原式计算后,提取公因式变形,将2x−y =−1代入计算即可求出值.【详解】由题意得:2x−y =−1,ab =1,则原式=6x−2y−y +2013=3(2x−y )+2013=−3+2013=2010.故答案为:2010.【点睛】此题考查了代数式求值,倒数,熟练掌握倒数的性质是解本题的关键.11.若a 与b 互为相反数,c 与d 互为倒数,e 是绝对值最小的数,则()325a b cd e +-+=______.【答案】-2【分析】根据已知求出a+b、cd、e的值,代入代数式即可求出答案.【详解】解:∵a与b互为相反数,c与d互为倒数,e为绝对值最小的数,∴a+b=0,cd=1,e=0,∴3(a+b)-2cd+5e=3×0-2+5×0=-2.故答案为:-2.【点睛】本题考查了有理数的混合运算,代数式求值,相反数,绝对值,倒数等知识点,解此题的关键是求出a+b、cd、e的值,此题是一道容易出错的题目,但题型较好.12.若定义一种新的运算“*”,规定有理数a*b=3ab,如2*(﹣4)=3×2×(﹣4)=﹣24.则16*(﹣2*5)=_____.【答案】﹣15【分析】根据a*b=3ab,可以求得所求式子的值.【详解】解:∵a*b=3ab,∴16*(﹣2*5)=16*[3×(﹣2)×5]=16*(﹣30)=3×16×(﹣30)=﹣15,故答案为:﹣15.【点睛】本题考查有理数的混合运算、新运算,解答本题的关键是明确有理数混合运算的计算方法.13.某班级课后延时活动,组织全班50名同学进行报数游戏,规则如下:从第1位同学开始,序号为奇数的同学报自己序号的倒数加1,序号为偶数的同学报自己序号的倒数加1的和的相反数.如第1位同学报(111+),第2位同学报1(1)2-+,第3位同学报1(1)3+……这样得到的50个数的乘积为_______.【答案】-51【分析】先确定每位同学所报之数,再列算式,确定积的符号为负,再算积即可.【详解】解:第1位同学报(111+),第2位同学报1(1)2-+,第3位同学报1(1)3+,第4位同学报1(1)4-+,…,第49位同学报1(1)49+,第50位同学报1(1)50-+,列式得(111+)1(1)2⎡⎤⨯-+⎢⎥⎣⎦1(1)3⨯+1(1)4⎡⎤⨯-+⨯⨯⎢⎥⎣⎦1(1)49+1(1)50⎡⎤⨯-+⎢⎥⎣⎦, =21-32⨯43⨯54⨯⨯⨯50495150⨯, =51-.故答案为:-51.【点睛】本题考查有理数乘法与加法混合运算,掌握有理数混合运算法则,特别是负号的确定,多个有理数相乘,积的符号由负因数的个数决定,负因数有奇数个时,积为负,负因数有偶数个时,积为正是解题关键.14.已知a 是不等于1-的数,我们把11a +称为a 的和倒数.如:2的和倒数为11123=+,已知211,a a =是1a 的和倒数,3a 是2a 的和倒数,4a 是3a 的和倒数,…,依此类推,则31212a a a a ⋅⋯⋅=______. 【答案】1233【分析】根据和倒数的定义分别计算出a 1、a 2、a 3、…a 12的值,代入计算即可求解.【详解】解:a 1=1,a 211112==+,a 3121312==+,413a 2513==+,515a 3815==+,618a 51318==+,7113a 821113==+,8121a 1334121==+,9134a 2155134==+,10155a 3489155==+,11189a 55144189==+,121144a 892331144==+, 则a 1•a 2•a 3…a 12=1123581321345589144123581321345589144233233⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=. 故答案为:1233【点睛】本题为新定义问题,理解和倒数的定义,并根据定义依次计算出a 1,a 2,a 3,a 4,a 5…a 12的值是解题关键.三、解答题15.计算(1)5116()()()6767+-+-+-; (2)(﹣20)﹣(﹣18)+(﹣14)﹣13;(3)111(8)()842-⨯-+; (4)(﹣8)×(﹣43)×(﹣0.125)×54. 【答案】(1)﹣13;(2)﹣29;(3)﹣3;(4)﹣53 【分析】(1)原式化简后,相加即可求出值;(2)原式利用减法法则变形,计算即可求出值;(3)原式利用乘法分配律计算即可求出值;(4)原式结合后,相乘即可求出值.【详解】解:(1)原式=56﹣16﹣17﹣67=23﹣1 =﹣13; (2)原式=﹣20+18﹣14﹣13=﹣47+18=﹣29;(3)原式=﹣8×18﹣8×(﹣14)﹣8×12 =﹣1+2﹣4=﹣3;(4)原式=﹣8×0.125×43×54 =﹣53. 【点睛】本题考查了有理数的混合运算,解题关键是熟练运用有理数运算法则和运算律进行计算. 16.若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值是2,求a 234b m cd m++-的值. 【答案】1或-7【分析】根据a ,b 互为相反数,c ,d 互为倒数,m 的绝对值是2,可以求得a +b 、cd 、m 的值,从而可以求得所求式子的值.【详解】解:因为a ,b 互为相反数,c ,d 互为倒数,m 的绝对值是3,所以a +b =0,cd =1,m =±2.当m=2时,a234bm cdm++-=223142+⨯-⨯⨯=0+4﹣3=1;当m=﹣2时,a234bm cdm++-=()223142+⨯--⨯⨯=0﹣4﹣3=﹣7.所以a234bm cdm++-的值是1或-7.【点睛】本题考查了相反数的意义、倒数的意义、绝对值的意义、有理数的混合运算,明确相反数、倒数、绝对值的意义是解题关键.17.已知x,y为有理数,现规定一种新运算“*”,满足x*y=xy﹣5例如:1*2=1×2﹣5=﹣3(1)请仿照上面的例题计算下列各题:①2*(﹣3);②(4*5)*(﹣16);(2)任意选择两个有理数,分别填入下列□和〇中,并比较它们的运算结果;多次重复以上过程,你发现:□*〇〇*□(用“>”“<”或“=”填空).【答案】(1)①﹣11;②﹣152;(2)=【分析】(1)①利用题中的新定义计算即可求出值;②利用题中的新定义计算即可求出值,先计算括号里面的再计算;(2)设□和〇的数字分别为有理数a,b,利用新定义,分别计算□*〇与〇*□,再比较大小即可.【详解】解:(1)①根据题中的新定义得:原式=2×(﹣3)﹣5=﹣6﹣5=﹣11;②根据题中的新定义得:原式=(4×5﹣5)*(﹣16)=15*(﹣16)=15×(﹣16)﹣5=﹣52﹣5=﹣152;(2)设□和〇的数字分别为有理数a ,b ,根据题意得:a*b =ab ﹣5,b*a =ab ﹣5,即a*b =b*a ,则□*〇=〇*□.故答案为:=.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.利用运算律计算有时可以简便例1:256172651782214-+-+=--++=-+=;例2:()99999910019900999801⨯=-=-=.请你参考黑板中老师的讲解,用运算律简便计算.(1)1112322+--; (2)计算:()221546463737-⨯-⨯+⨯--⨯. 【答案】(1)-3;(2)-10【分析】(1)根据加法交换律与加法结合律计算;(2)根据乘法分配律、加法交换律与加法结合律计算 . 【详解】(1)原式1113252322=--+=-+=- (2)()221546463737-⨯-⨯+⨯--⨯. ()212544663377=-⨯+⨯--⨯-⨯ 2125463377⎛⎫⎛⎫=-⨯+-⨯+ ⎪ ⎪⎝⎭⎝⎭4610=--=-【点睛】本题考查有理数的简便运算,熟练掌握有理数的运算律是解题关键.19.小明家想要从某商场购买洗衣机和烘干机各一台,现在分别从,A B 两个品牌中各选中一款洗衣机和一款烘干机,它们的单价如表1所示.目前该商场有促销活动,促销方案如表2所示.表1:洗衣机和烘干机单价表表2:商场促销方案你认为有哪几种购买方案?请通过计算为小明家选择支付总费用最低的购买方案.【答案】①购买A 品牌的洗衣机与烘干机各一台;②购买B 品牌的洗衣机与烘干机各一台;③购买A 品牌的洗衣机一台,购买B 品牌的烘干机一台;④购买A 品牌的烘干机一台;购买B 品牌的洗衣机一台;方案①的总费用为13272元,方案②的总费用为12820元,方案③的总费用为12872元,方案④的总费用为14020元,总费用最低的方案为方案②.【分析】由表1可得购买方案有四种,再根据表2的优惠方案分别计算四种方案的购买费用,通过比较从而可得答案.【详解】解:由题意可得购买方案为:①购买A 品牌的洗衣机与烘干机各一台;②购买B 品牌的洗衣机与烘干机各一台;③购买A 品牌的洗衣机一台,购买B 品牌的烘干机一台;④购买A 品牌的烘干机一台;购买B 品牌的洗衣机一台;所以一共有四种方案.方案①:()70000.8113%110000.8400⨯⨯-+⨯-4872880040013272=+-=(元)方案②:()75000.8113%100000.8400⨯⨯-+⨯-5220800040012820=+-=(元)方案③:()70000.8113%100000.8⨯⨯-+⨯4872800012872=+=(元)方案④:()75000.8113%110000.8⨯⨯-+⨯5220880014020=+=(元)由12820<12872<13272<14020,所以选择方案②购买B 品牌的洗衣机与烘干机各一台总费用最低.【点睛】本题考查的是有理数的混合运算的实际应用,数学分类思想的应用,掌握分类讨论数学思想是解题的关键.20.学习有理数的乘法后,老师给同学们这样一道题目:计算:2449(5)25⨯-,看谁算的又快又对,有两位同学的解法如下: 小明:原式=12491249452492555-⨯=-=-; 小军:原式=24244(49)(5)49(5)(5)24925255+⨯-=⨯-+⨯-=-; (1)对于以上两种解法,你认为谁的解法较好?(2)受上面解法对你的启发,你认为还有更好的方法吗?如果有,请把它写出来;(3)用你认为最合适的方法计算:1599(8)16⨯-. 【答案】(1)小军的解法较好;(2)还有更好的解法;解法见详解;(3)见详解;【分析】(1)根据计算判断小军的解法较好;(2)把244925写成15025⎛⎫- ⎪⎝⎭,然后利用乘法分配律进行计算即可得解; (3)把151916写成12016⎛⎫- ⎪⎝⎭,然后利用乘法分配律进行计算即可得解; 【详解】(1)小军的解法相对来说更简便一些,所以小军的解法较好;(2)还有更好的解法,()()()()241114495=505=5055=250=24925252555⎛⎫⨯--⨯-⨯--⨯--+- ⎪⎝⎭ ; (3)()()()()151111198=208=2088=160=159********⎛⎫⨯--⨯-⨯--⨯--+- ⎪⎝⎭ ; 【点睛】本题考查了有理数的乘法,主要是对乘法分配律的应用,把带分数进行适当的转化是解题的关键 ;。

人教版数学七年级上册第1章:有理数 综合拓展训练(一)

人教版数学七年级上册第1章:有理数  综合拓展训练(一)

七年级上册第1章综合拓展训练(一)一.选择题1.(﹣1)2020等于()A.1B.﹣2020C.2020D.﹣12.如果温度上升3℃,记作+3℃,那么温度下降2℃记作()A.﹣2℃B.+2℃C.+3℃D.﹣3℃3.已知:,且abc>0,a+b+c=0.则m共有x个不同的值,若在这些不同的m值中,最大的值为y,则x+y=()A.4B.3C.2D.14.计算4+(﹣8)÷(﹣4)﹣(﹣1)的结果是()A.2B.3C.7D.5.如图,数轴上A,B,C,D,E五个点表示连续的五个整数a,b,c,d,e,且a+e=0,则下列说法:①点C表示的数字是0;②b+d=0;③e=﹣2;④a+b+c+d+e=0.正确的有()A.都正确B.只有①③正确C.只有①②③正确D.只有③不正确6.定义运算a★b=|ab﹣2a﹣b|,如1★3=|1×3﹣2×1﹣3|=2.若a=2,且a★b=3,则b的值为()A.7B.1C.1或7D.3或﹣37.在数轴上,点A,B在原点O的两侧,分别表示数a和3,将点A向左平移1个单位长度,得到点C.若OC=OB,则a的值为()A.﹣3B.﹣2C.﹣1D.28.已知a,b,c,d为非零实数,则的可能值的个数为()A.3B.4C.5D.69.下列各式x、x2、、x2+2、|x+2|中,值一定是正数的有()A.1个B.2个C.3个D.4个10.若a=﹣2018,则式子|a2+2017a+1|+|a2+2019a﹣1|的值为()A.4034B.4036C.4037D.4038二.填空题11.计算:0﹣(﹣6)=.12.﹣1的倒数是,绝对值等于10的数是,平方等于4的数是.13.对于有理数a、b,定义一种新运算,规定a☆b=a2﹣|b|,则3☆(﹣2)=.14.计算:(﹣4)2017×(﹣0.25)2019=;(﹣2)200+(﹣2)201=.15.若x4=81,则x的值是.三.解答题16.把下列各数填在相应的集合内:6,﹣3,2.5,0,﹣1,﹣|﹣9|,﹣(﹣3.15).(1)整数集合{…};(2)分数集合{…};(3)非负数集合{…};(4)正数集合{…}.17.计算:(1)(﹣+﹣)×(﹣24)(2)﹣23﹣|﹣3|+4﹣(﹣)×(﹣3)18.有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:与标准质量的差值(单位:千克)﹣3﹣2﹣1.501 2.5筐数242336(1)20筐白菜中,最重的一筐比最轻的一筐多重多少千克?(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价1.6元,则出售这20筐白菜可卖多少元?(结果保留整数)19.计算:已知|x﹣1|=3,|y|=2,(1)当xy<0时,求x+y的值;(2)求x﹣y的最大值.20.阅读下列材料:计算:÷(﹣+).解法一:原式=÷﹣÷+÷=×3﹣×4+×12=.解法二:原式=÷(﹣+)=÷=×6=.解法三:原式的倒数=(﹣+)÷=(﹣+)×24=×24﹣×24+×24=4.所以,原式=.(1)上述得到的结果不同,你认为解法是错误的;(2)请你选择合适的解法计算:(﹣)÷(+﹣﹣).参考答案一.选择题1.解:(﹣1)2020=1,故选:A.2.解:“正”和“负”相对,如果温度上升3℃,记作+3℃,温度下降2℃记作﹣2℃.故选:A.3.解:∵abc>0,a+b+c=0,∴a、b、c为两个负数,一个正数,a+b=﹣c,b+c=﹣a,c+a=﹣b,m=++∴分三种情况说明:当a<0,b<0,c>0时,m=﹣1﹣2+3=0,当a<0,c<0,b>0时,m=﹣1+2﹣3=﹣2,当a>0,b<0,c<0时,m=1﹣2﹣3=﹣4,∴m共有3个不同的值,﹣4,﹣2,0.最大的值为0.∴x=3,y=0,∴x+y=3.故选:B.4.解:原式=4+2+1=7,故选:C.5.解:∵a,b,c,d,e表示连续的五个整数,且a+e=0,∴a=﹣2,b=﹣1,c=0,d=1,e=2,于是①②④正确,而③不正确,故选:D.6.解:∵a★b=3,且a=2,∴|2b﹣4﹣b|=3,∴2b﹣4﹣b=3或2b﹣4﹣b=﹣3,解得b=7或b=1,故选:C.7.解:由题意知:A点表示的数为a,B点表示的数为3,C点表示的数为a﹣1.因为CO=BO,所以|a﹣1|=3,解得a=﹣2或4∵a<0,∴a=﹣2.故选:B.8.解:①a,b,c,d四个数都是正数时,原式=1+1+1+1+1=5;②a,b,c,d中有a,b,c三个正数时,原式=1+1﹣1﹣1﹣1=﹣1;③a,b,c,d中有a,b或a,c两个正数时,原式=1﹣1+1﹣1+1=1或原式=﹣1﹣1﹣1﹣1+1=﹣3;④a,b,c,d中有a一个正数时,原式=﹣1+1+1﹣1﹣1=﹣1;⑤a,b,c,d都是负数时,原式=1+1+1+1+1=5.综上所述,的可能值的个数为4.故选:B.9.解:x不一定是正数;x2不一定是正数;一定是正数;x2+2一定是正数;|x+2|不一定是正数;所以值一定是正数的有2个,故选:B.10.解:∵a=﹣2018,∴|a2+2017a+1|+|a2+2019a﹣1|=|20182﹣2017×2018+1|+|20182﹣2019×2018﹣1|=|2018×(2018﹣2017)+1|+|2018×(2018﹣2019)﹣1|=|2018+1|+|﹣2018﹣1|=2019+2019=4038,故选:D.二.填空题11.解:原式=0+6=6.故答案为:6.12.解:﹣1的倒数是1÷(﹣1)=﹣,∵|±10|=10∴绝对值等于10的数是±10,∵(±2)2=4,∴平方等于4的数是±2,故答案为:;±10;±2.13.解:3☆(﹣2)=32﹣|﹣2|=9﹣2=7,故答案为:7.14.解:(﹣4)2017×(﹣0.25)2019=(﹣4)2017×(﹣0.25)2017×(﹣0.25)2=[﹣4×(﹣0.25)]2017×(﹣0.25)2===;(﹣2)200+(﹣2)201=(﹣2)200+(﹣2)200×(﹣2)=﹣(﹣2)200=﹣2200.故答案为:;﹣2200.15.解:因为(±3)4=81,所以x=±3.故答案为:±3.三.解答题16.解:由题可得:(1)整数集合{ 6,﹣3,0,﹣1,﹣|﹣9|…};(2)分数集合{ 2.5,﹣(﹣3.15)…};(3)非负数集合{ 6,2.5,0,﹣(﹣3.15)…};(4)正数集合{ 6,2.5,﹣(﹣3.15)…}.故答案为:(1)6,﹣3,0,﹣1,﹣|﹣9|;(2)2.5,﹣(﹣3.15);(3)6,2.5,0,﹣(﹣3.15);(4)6,2.5,﹣(﹣3.15).17.解:(1)(﹣+﹣)×(﹣24)=18﹣14+15=19;(2)﹣23﹣|﹣3|+4﹣(﹣)×(﹣3)=﹣8﹣3+4﹣=﹣8.18.解:(1)最重的一筐比最轻的一筐多重2.5﹣(﹣3)=2.5+3=5.5(千克),答:20筐白菜中,最重的一筐比最轻的一筐多重5.5千克;(2)﹣3×2+(﹣2)×4+(﹣1.5)×2+0×3+1×3+2.5×6=1(千克),答:20筐白菜总计超过1千克;(3)(25×20+1)×1.6=501×1.6≈802(元),答:白菜每千克售价1.6元,则出售这20筐白菜可卖802元.19.解:(1)∵|x﹣1|=3,|y|=2,∴x=4或﹣2,y=2或﹣2,∵xy<0,∴x=4,y=﹣2或x=﹣2,y=2,∴x+y=2或0;(2)∵|x﹣1|=3,|y|=2,∴x=4或﹣2,y=2或﹣2,∴x﹣y的最大值为4﹣(﹣2)=6.20.解:(1)根据题目中的解答方法,可知解法一是错误的,故答案为:一;(2)原式的倒数=(+﹣﹣)÷(﹣)=(+﹣﹣)×(﹣210)=×(﹣210)+×(﹣210)﹣×(﹣210)﹣×(﹣210)=(﹣90)+(﹣28)+63+50=﹣5,故(﹣)÷(+﹣﹣)=.11 / 11。

专题218 有理数的除法(拓展提高)(原卷版)

专题218 有理数的除法(拓展提高)(原卷版)

专题2.18 有理数的除法(拓展提高)一、单选题1.下列计算中,正确的是( )A .1515-=-B .4.5 1.7 2.5 1.8 5.5--+=C .()22--=D .()1313-÷-= 2.在数轴上有a 、b 两个有理数的对应点,则下列结论中,正确的是( )A .0a b +>B .0ab >C .0a b -<D .0a b> 3.已知数a b c ,,的大小关系如图所示,下列选项中正确的有( )个①0abc > ②0a b c +-> ③||1||||a b c a b c++= ④||||||2a b c a b c a --++-=-A .0B .1C .2D .3 4.下列说法正确的是( )5.有一列数1a ,2a ,3a ,,n a ,从第二个数开始,每个数都等于1与它前面那个数的倒数的差,若14a =,则2020a 为( )A .2-B .4C .34D .13- 6.a 是有理数,我们把22a-称为a 的“哈利数”.如:3的“哈利数”是223=-2-,2-的“哈利数”是212(2)2=--,已知13a =,2a 是1a 的“哈利数”,3a 是2a 的“哈利数”,4a 是3a 的“哈利数”,...,依此类推,则2010a =( )A .12 B .2- C .3 D .43二、填空题7.定义一种新的运算:x *y =2x y x +,如:3*1=3213+⨯=53,则2*3=__________. 8.已知:2|2|(1)a b +++取最小值,则a ab b+=________. 9.有时两数的和恰等于这两数的商,如()4242-+=-÷,42423333+=÷等.试写出另外1个这样的等式______.10.已知m 、n 为有理数,那么m n -可看成数轴上表示数m 和数n 的两点之间的距离.若有理数x 在数轴上的位置如图所示,则22x x +-型的值为________.11.对于任意有理数a ,b ,c ,d ,规定一种运算:a a c d b b d c =-,例如5(3)51231217⨯--⨯=-=-.那么3234--=_________.12.如图,有理数a 、b 、c 在数轴上的对应点的位置如图所示:则下列结论:①a+b-c >0:②b-a <0:③bc-a <0:④|a|b |c|-+=1a |b|c.其中正确的是_______.13.一天,甲乙两人利用温差测试测量山峰的高度,甲在山顶测得的温度是-4℃,乙此时在山脚测得的温度是8℃.已知在该地区高度每增加100米,气温大约降低0.6℃,则这个山峰的高度大约是__________米. 14.1930年,德国汉堡大学的学生考拉兹,曾经提出过这样一个数学猜想:对于每一个正整数,如果它是奇数,则对它乘3再加1;如果它是偶数,则对它除以2.如此循环,最终都能够得到1.这一猜想后来成为著名的“考拉兹猜想”,又称“奇偶归一猜想”.虽然这个结论在数学上还没有得到证明,但举例验证都是正确的,例如:取正整数5,最少经过下面5步运算可得1,即:如果正整数m 最少经过6步运算可得到1,则m 的值为__.三、解答题15.计算(1)77()8181-+-= (2)()015-- =(3)( 2.25)(80)-⨯+=(4)3217⎛⎫÷- ⎪⎝⎭= 16.如图A 在数轴上所对应的数为2-.(1)点B 在点A 右边距A 点4个单位长度,求点B 所对应的数;(2)在(1)的条件下,点A 以每秒2个单位长度沿数轴向左运动,点B 以每秒3个单位长度沿数轴向右运动,当点A 运动到6-所在的点处时,求,A B 两点间距离.17.某集团公司对所属甲.乙两分厂下半年经营情况记录(其中“+”表示盈利,“﹣”表示亏损,单位:亿元)如下表. 月份七月份 八月份 九月份 十月份 十一月份 十二月份 甲厂-0.2 -0.4 +0.5 0 +1.2 +1.3 乙厂 +1.0 -0.7 -1.5 +1.8 -1.8 0(1)计算八月份乙厂比甲厂多亏损多少亿元?(2)分别计算下半年甲、乙两个工厂平均每月盈利或亏损多少亿元?18.请你先认真阅读材料:计算12112()()3031065-÷-+- 解:原式的倒数是21121-+()3106530⎛⎫-÷- ⎪⎝⎭=2112()(30)31065-+-⨯- =23×(﹣30)﹣110×(﹣30)+16×(﹣30)﹣25×(﹣30)=﹣20﹣(﹣3)+(﹣5)﹣(﹣12)=﹣20+3﹣5+12=﹣10 故原式等于﹣110再根据你对所提供材料的理解,选择合适的方法计算:11322()()4261437-÷-+-. 19.设0a >,x ,y 为有理数,定义新运算:||a x a x =⨯※.如323|2|6=⨯=※,()414|1|a a -=⨯-※.(1)计算20210※和()20212-※的值. (2)若0y <,化简()23y -※.(3)请直接写出一组,,a x y 的具体值,说明()a x y a x a y +=+※※※不成立.20.我们知道,正整数按照能否被2整除可以分成两类:正奇数和正偶数,小浩受此启发,按照一个正整数被3除的余数把正整数分成了三类:如果一个正整数被3除余数为1,则这个正整数属于A 类,例如1,4,7等;如果一个正整数被3除余数为2,则这个正整数属于B 类,例如2,5,8等;如果一个正整数被3整除,则这个正整数属于C 类,例如3,6,9等.(1)2020属于 类(填A ,B 或C );(2)①从A 类数中任取两个数,则它们的和属于 类(填A ,B 或C );②从A 类数中任意取出15个数,从B 类数中任意取出16个数,从C 类数中任意取出17个数,把它们都加起来,则最后的结果属于 类(填A ,B 或C );(3)从A 类数中任意取出m 个数,从B 类数中任意取出n 个数,把它们都加起来,若最后的结果属于C 类,则下列关于m ,n 的叙述中正确的是 (填序号).①m +2n 属于C 类;②|m ﹣n |属于B 类;③m 属于A 类,n 属于C 类;④m ,n 属于同一类.。

初一数学 有理数拓展提高

初一数学 有理数拓展提高

初一数学有理数拓展提高1.将下列各数填入相应的集合圈内:,﹣7,+2.6,﹣100,,9.2,0,1,0..2.将下列各数填入适当的括号内:π,5,﹣3,,8.9,,﹣3.14,﹣9,0,.(1)正数集合:{…}.(2)负数集合:{…}.(3)整数集合:{…}.(4)分数集合:{…}.(5)正整数集合:{…}.(6)负整数集合:{…}.3.计算:(1);(2);(简便运算)(3)2×(﹣6)﹣(﹣30)÷(﹣5);(4).4.小明与小红两位同学计算的过程如下:小明:原式=(第一步)=(第二步)=(第三步)小红:原式=(第一步)=(第二步)=16÷1(第三步)=16(第四步)(1)小明与小红在计算中均出现了错误,请指出小红出错的步骤;(2)写出正确的解答过程.5.小丽同学做一道计算题的解题过程如下:解:原式=第一步=第二步=﹣1+12﹣18第三步=﹣7第四步根据小丽的计算过程,回答下列问题:(1)她在计算中出现了错误,其中你认为在第步开始出错了;(2)请你给出正确的解答过程.6.根据绝对值的概念,我们在一些情况下,不需要计算出结果也能把绝对值符号去掉,例如:|6+7|=6+7;|6﹣7|=7﹣6;|7﹣6|=7﹣6;|﹣6﹣7|=6+7.请根据以上规律解答:(1)比较大小:;(填“>”“<”或“=”)(2)填空:=;(3)计算:.7.若a、b互为相反数,c、d互为倒数,m的绝对值为2,则的值为多少?8.对于有理数a、b,定义运算:a※b=a×b﹣a﹣b(1)分别计算(﹣2)※2与2※(﹣2)的值;(2)填空:5※(﹣3)(﹣3)※5(填“>”或“=”或“<”).9.规定[a]表示不超过有理数a的最大整数,例如:[1.2]=1,[﹣1.8]=﹣2.(1)填空:[3.7]=,=;(2)比大小:[0.8]+[﹣4.2][0.8﹣4.2];(填“>”“<”或“=”)(3)计算:.10.对于有理数x,y,定义新运算“※”,规定:x※y=x2﹣2xy,如:2※1=22﹣2×2×1=0.(1)求2※(﹣3)的值;(2)求(﹣5)※(3※2)的值.11.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.【阅读】|3﹣1|表示3与1差的绝对值,也可理解为3与1两数在数轴上所对应的两点之间的距离;|3+1|可以看作|3﹣(﹣1)|,表示3与﹣1的差的绝对值,也可理解为3与﹣1两数在数轴上所对应的两点之间的距离.【探索】(1)|4﹣(﹣3)|=.(2)利用数轴,解决下列问题:①若|x﹣(﹣1)|=2,则x=.②|x﹣1|=|x+3|,则x=.③若|x﹣2|+|x+5|=7,所有符合条件的整数x的和为.12.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起一一对应的关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.【阅读】|3﹣1|表示3与1的差的绝对值,也可理解为3与1两数在数轴上所对应的两点之间的距离;|3+1|可以看作|3﹣(﹣1)|,表示3与﹣1的差的绝对值,也可理解为3与﹣1两数在数轴上所对应的两点之间的距离.【探索】(1)数轴上表示5与﹣1的两点之间的距离是;(2)①若|x﹣(﹣1)|=2,则x=;②若使x所表示的点到表示2和﹣3的点的距离之和为5,所有符合条件的整数的和为;【动手折一折】小明在草稿纸上画了一条数轴进行操作探究:(3)折叠纸面,若1表示的点和﹣1表示的点重合,则4表示的点和表示的点重合;(4)折叠纸面,若3表示的点和﹣5表示的点重合,①则10表示的点和表示的点重合;②这时如果A,B(A在B的左侧)两点之间的距离为2022,且A,B两点经折叠后重合,则点A表示的数是,点B表示的数是;【拓展】(5)若|x+2|+|x﹣3|=8,则x=.。

专题112 有理数大小的比较(拓展提高)(解析版)

专题112 有理数大小的比较(拓展提高)(解析版)

专题1.12 有理数大小的比较(拓展提高)一、单选题1.已知0a <,0ab <,且a b >,那么将a ,b ,a -,b -按照由大到小的顺序排列正确的是( ) A .a b b a ->->> B .b a a b >>->- C .b a a b >->>- D .a b b a ->>->【答案】D【分析】根据条件设出符合条件的具体数值,根据负数小于一切正数,两个负数比较大小,两个负数绝对值大的反而小即可解答. 【详解】解:∵a <0,ab <0, ∴b >0, 又∵|a |>|b |,∴设a =-2,b =1,则-a =2,-b =-1 则-2<-1<1<2. 故-a >b >-b >a . 故选:D .【点睛】此题主要考查了实数的大小的比较,比较简单,解答此题的关键是根据条件设出符合条件的数值,再比较大小.2.下列各数中最小非负数是( ) A .-2 B .-1 C .0 D .1【答案】C【分析】根据非负数的意义和有理数的大小比较求解. 【详解】解:∵-2、-1是负数,0、1是非负数,且0<1, ∴题中最小非负数是0, 故选C .【点睛】本题考查非负数的应用和有理数的大小比较,熟练掌握非负数的意义是解题关键. 3.一个大于1的正整数a ,与其倒数1a,相反数-a 比较,大小关系正确的是( ) A .-a <1a≤a B .-a <1a<a C .1a>a >-a D .-a ≤a ≤1a【答案】B【分析】先根据倒数、相反数的定义可得101,0a a<<-<,再根据有理数的大小比较法则即可得. 【详解】因为1a >,且为正整数,所以101,0a a <<-<, 所以1a a a-<<,故选:B .【点睛】本题考查了相反数、倒数、有理数的大小比较法则,熟练掌握倒数与相反数的定义是解题关键. 4.已知正整数n 小于100,并且满足等式236n n n n ⎡⎤⎡⎤⎡⎤++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,其中[]x 表示不超过x 的最大整数,则这样的正整数n 有( ) A .6个 B .10个 C .16个 D .20个【答案】C【分析】由236n n n n ⎡⎤⎡⎤⎡⎤++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,以及若x 不是整数,则[]x <x 知,,223366n n n n n n⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即n 是6的倍数,得到n 的值.【详解】∵236n n n n ⎡⎤⎡⎤⎡⎤++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,若x 不是整数,则[]x <x ,∴,,223366n n n n n n⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即n 是6的倍数, ∴n 的值为:6、12、18、24、30、36、42、48、54、60、66、72、78、84、90、96,共16个, 故选:C.【点睛】此题考查有理数的大小比较,取整计算,解题的关键是正确理解[]x 表示不超过x 的最大整数,得到,,223366n n n n n n⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即n 是6的倍数,由此解决问题. 5.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的数,则bc a-=( ) A .1 B .1-C .0D .2-【答案】B【分析】根据有理数的大小及绝对值的意义求解.【详解】∵a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的数, ∴1a =,1b =-,0c,∴1011b c a --=-=-, 故选B .【点睛】本题考查有理数的应用,熟练掌握有理数大小比较的方法及绝对值的意义是解题关键. 6.按如图所示的运算程序,能使输出的m 的值为1的是( ).A .1x =,1y =B .2x =,1y =-C .2x =-,3y =-D .1x =-,3y =【答案】C【分析】将各项代入运算程序中,逐一计算即可求解.【详解】解:A .输入1x =,1y =,即x y =,故0m x y =-=,该项不符合题意; B .输入2x =,1y =-,即x y >,故3m x y =-=,该项不符合题意; C .输入2x =-,3y =-,即x y >,故1m x y =-=,该项符合题意; D .输入1x =-,3y =,即x y <,故25m x y =-+=,该项不符合题意; 故选:C .【点睛】本题考查了代数式求值,读懂程序框图中的运算规则是解题的关键.二、填空题7.比较大小(填写“>”或“<”): -2________-3 ;78-________89-;3()4--________4[()]5-+-【答案】> > <【分析】根据有理数的大小比较方法作答. 【详解】解:∵|-2|<|-3|, ∴-2>-3,∵763864872972-=-=,, ∴7889-<-, ∴7889->-, ∵31544164205520⎡⎤⎛⎫⎛⎫⎛⎫--=-+-=--= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,, ∴3445⎡⎤⎛⎫⎛⎫--<-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 故答案为>;>;<.【点睛】本题考查有理数的大小比较,熟练掌握两个负数比较大小的方法、分数比较大小的方法及多重符号的化简是解题关键 . 8.用“>”.“<”.“=”号填空:(1)0.02-____1; (2)3()4--____](0.75)⎡-+-⎣;(3)227-_______ 3.14-. 【答案】< = <【分析】根据有理数的大小比较法则,即可得出. 【详解】(1)0.02-<1; (2)3()4--=34=0.75,](0.75)⎡-+-⎣=0.75, ∴3()4--=](0.75)⎡-+-⎣(3)227-< 3.14-.【点睛】本题主要考查有理数的大小比较法则,注意去符号时的变号和分数化小数时的计算. 9.已知0a <,0b >,并且a b >,那么a b a b --、、、按照由小到大的顺序排列是__________. 【答案】a b b a <-<<【分析】根据绝对值的意义可得a b ->,b a ->,根据有理数的大小比较法则即可得答案. 【详解】解:∵0a <,0b >,并且a b >, ∴a b ->,b a ->, ∴a b b a <-<<-,故答案为:a b b a <-<<-【点睛】本题主要考查了比较有理数的大小以及绝对值的意义,正数大于负数,两正数比较绝对值大的数大,两负数比较绝对值大的反而小;熟练掌握绝对值的定义是解答本题的关键.10.在-1.0426中用数字3替换其中的一个非零数字后,使所得的数最大,则被替换的数字是________. 【答案】4【分析】根据两个负数,绝对值大的其值反而小比较被替换的数的绝对值的大小,得到答案. 【详解】解:被替换的数是-3.0426,-1.0326,-1.0436,-1.0423, |-1.0326|<|-1.0423|<|-1.0436|<|-3.0426|, ∴最大的数是-1.0326,∴使所得的数最大,则被替换的数字是4, 故答案为:4.【点睛】本题考查的是有理数的大小比较,掌握有理数的大小比较法则:正数都大于0; 负数都小于0; 正数大于一切负数,两个负数,绝对值大的其值反而小是解题的关键. 11.把下列各数:87.5%、0.88、421、522按从小到大的顺序排列:________. 【答案】4587.5%0.882122<<< 【分析】把各数化成用小数形式表示的准确数或近似数,再根据小数比较大小的方法即可得到答案. 【详解】解:4587.5%0.8754210.1905220.2272122==÷≈=÷≈,,,又0.1900.2270.8750.88<<<, ∴原来各数按从小到大的顺序排列为:4587.5%0.882122<<<, 故答案 为:4587.5%0.882122<<<. 【点睛】本题考查数的大小比较,把各数化成相同的形式再作比较是解题关键 . 12.已知a =1,b =2,c =4,且a b c >>,则a b c -+=________. 【答案】1-或3-【分析】因为a b c >>,所以根据题意应该分为两种情况,为1a =±, 2b =-, 4c =-,然后带入原式即可求解.【详解】由题意得:1a =±, 2b =-, 4c =-, 当a =1-,2b =-, 4c =-时a b c -+=3-; 当a =1,2b =-, 4c =-时,a b c -+=1-;故答案为:1-或3-.【点睛】本题考查了绝对值的化简,和有理数大小的比较,根据题意确定a 的取值分为两种情况是本题的易错点,注意不要丢项落项. 13.如果4231=,5374A B C D ⨯⨯=⨯=⨯则,,,A B C D 中最大的是__________,最小的是____________. 【答案】D A【分析】令4231=125374A B C D ⨯⨯=⨯=⨯=,分别计算出A 、B 、C 、D 的值进行比较即可. 【详解】令4231=125374A B C D ⨯⨯=⨯=⨯=可得15,18,28,48A B C D ==== ∴D C B A >>>则,,,A B C D 中最大的是D ,最小的是A 故答案为:D ,A .【点睛】本题考查了实数的大小比较问题,掌握实数大小比较的方法是解题的关键. 14.下列四组有理数的比较大小:①﹣1<﹣2;②﹣(﹣1)>﹣(﹣2);③+(﹣56)<﹣|﹣67|;④|﹣56|<|﹣67|,正确的序号是__. 【答案】④【分析】按有理数大小比较法则,两两比较,然后进行判断.【详解】①两个负数,绝对值大的反而小,所以-1>-2,故原比较错误; ②因为-(-1)=1,-(-2)=2,所以-(-1)<-(-2),故原比较错误;③因为+(﹣56)=﹣56,﹣|﹣67|=-67,而535636642742=<=,所以+(﹣56)>﹣|﹣67|,故原比较错误;④因为|﹣56|=56,|﹣67|=67而535636642742=<=,所以+(﹣56)<﹣|﹣67|,故原比较正确;正确的是④. 故答案为:④.【点睛】本题主要考查了有理数大小的比较.解题的关键是掌握有理数大小的比较方法,要注意:正数都大于0,负数都小于0,正数大于负数;两个负数,绝对值大的反而小.三、解答题15.将下列各数在数轴上表示出来,并比较它们的大小(用“<”连接).()4--, 3.5--,112⎛⎫+- ⎪⎝⎭,0,()2.5++【答案】见解析,()()13.510 2.542⎛⎫--<+-<<++<-- ⎪⎝⎭【分析】首先在数轴上确定表示各数的点的位置,再用“<”连接即可. 【详解】解:()4--=4, 3.5--=3.5,112⎛⎫+- ⎪⎝⎭=-112, ()2.5++=2.5 如图所示:则()()13.510 2.542⎛⎫--<+-<<++<-- ⎪⎝⎭.【点睛】此题主要考查了数轴,有理数比较大小,关键是在数轴上正确确定表示各数的点的位置. 16.画一条数轴,把1-12,0,3各数和它们的相反数在数轴上表示出来,并比较它们的大小,用“<”号连接.【答案】数轴表示见解析;-3<112-<0<112<3. 【分析】先画出数轴,把各数依次表示出来,从左到右用“<”把各数连接起来即可. 【详解】解:112-的相反数是112,0的相反数是0,3的相反数是-3,在数轴上的表示如图所示:从左到右用“<”连接为:-3<112-<0<112<3. 故答案为:-3<112-<0<112<3. 【点睛】本题考查的是数轴的特点、相反数的定义及有理数的大小比较,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.17.(1)在数轴把下列各数表示出来,并比较它们的相反数的大小:-3,0,-13,52,0.25(2)比较下列各组数的大小①35与34- ②| 5.8|--与( 5.8)--【答案】(1)数轴见详解;10.2503523-<-<<<;(2)①3354->-;② 5.8(5.8)--<--【分析】(1)由数轴的定义画出数轴并标出各数,然后写出它们的相反数并比较大小; (2)由比较大小的法则进行比较,即可得到答案. 【详解】解:(1)数轴如图所示:由题意,3-的相反数是3;0的相反数是0;13-的相反数是13;52的相反数是52-;0.25的相反数是0.25-; ∴10.2503523-<-<<<; (2)①∵3354<,∴3354->-;②| 5.8| 5.8--=-,( 5.8) 5.8--=, ∴ 5.8( 5.8)--<--;【点睛】本题考查了数轴的定义,相反数的定义,比较有理数的大小,解题的关键是熟练掌握所学的知识,正确的进行解题.18.已知下列三个有理数a ,b ,c ,其中132a ⎛⎫=-- ⎪⎝⎭,b 是4-的相反数,c 是在1713-与263-之间的整数.请你解答下列问题: (1)这三个数分别是多少? (2)将这三个数用“>”号连接起来.(3)这三个数中,哪一个数在数轴上表示的点离原点的距离最近? 【答案】(1)132a =;4b =;7c =-;(2)b a c >>;(3)a 【分析】(1)根据相反数的知识直接写出答案;(2)比较出三个数的大小,用“>”号连接起来即可;(3)利用数轴的知识直接写出答案.【详解】解:(1)这三个数分别是:113322a⎛⎫=--=⎪⎝⎭,()44 b=--=,7c=-.(2)∵14372 >>-∴b a c>>;(3)∵11|||3|322a⎛⎫=--=⎪⎝⎭,|||4|4b==,|||7|7c=-=,且17432>>∴在数轴上a这个数表示的点离原点的距离最近.【点睛】本题主要考查有理数大小比较的知识点,涉及的知识点有数轴以及相反数,此题基础题,比较简单.19.某工厂生产一种螺丝帽,要求是∶螺丝帽内径可有0.02毫米的误差,先抽查6个螺丝帽,检查结果如下∶请问∶(1)这6个螺丝帽中符合要求的有几个?分别是哪几个?(2)将这些数按照从小到大的顺序用“<”连接起来.【答案】(1)符合要求的有3个,分别是第2,4,6个;(2)-0.021<-0.019<-0.017<+0.013<+0.023<+0.031 【分析】(1)根据螺丝帽内径可有0.02毫米的误差,可以通过表格判断哪些螺丝合格,哪些不合格,从而可以解答本题.(2)根据有理数的大小比较法则比较即可.【详解】解:(1)∵螺丝帽内径可有0.02毫米的误差,∴表格中第1个+0.031>0.02,故第1个不符合要求;表格中第2个|-0.017|<0.02,故第2个符合要求;表格中第3个+0.023>0.02,故第3个不符合要求;表格中第4个+0.013<0.02,故第4个符合要求;表格中第5个|-0.021|>0.02,故第5个不符合要求; 表格中第6个|-0.019|<0.02,故第6个符合要求; 故符合要求的有3个,分别是第2,4,6个; (2)由题意可得:-0.021<-0.019<-0.017<+0.013<+0.023<+0.031.【点睛】本题考查正数和负数,有理数的大小比较,解题的关键是明确正数和负数在题目中的具体含义. 20.已知0,0aab c<>,且||||||c b a >>,数轴上a ,b ,c 对应的点是A ,B ,C .(1)若||a a =-时,请在数轴上标出A ,B ,C 的大致位置,并判断a ,b ,c 的大小; (2)在(1)的条件下,化简||||a b b c ---. 【答案】(1)数轴见解析,c <a <b ;(2)c-a【分析】由题意知a ,b 异号,a ,c 同号,且a ,b ,c 点离原点距离已知,(1)根据|a|=-a 可知a 为负值,所以可判断b 为正,c 为负,从而可标示出点A 、B 、C 在数轴上的大概位置;(2)根据数轴上标出的点的位置得到a-b 和b-c 的符号,再去绝对值化简即可. 【详解】解:根据ab <0,ac>0,可知a ,b 异号,a ,c 同号. (1)∵|a|=-a , ∴a <0, ∴b >0,c <0,∵|c|>|b|>|a|,所以A 、B 、C 在数轴上的大致位置如下图:a ,b ,c 的大小关系为:c <a <b ; (2)由(1)可得:a-b <0,b-c >0, 原式=-a+b-(b-c ) =-a+b-b+c =c-a【点睛】本题考查正负数在数轴上的对应关系,关键是根据点所表示数的绝对值判断点在数轴上离原点的距离,也就是绝对值的几何意义.。

七年级有理数培优拓展题

七年级有理数培优拓展题

七年级有理数培优拓展题一、有理数培优拓展题。

1. 若a - 2+(b + 3)^2 = 0,求a + b的值。

- 解析:因为绝对值是非负的,一个数的平方也是非负的。

要使a - 2+(b + 3)^2 = 0成立,则a-2 = 0且(b + 3)^2=0。

- 由a - 2 = 0可得a=2;由(b + 3)^2 = 0可得b=-3。

- 所以a + b=2+(-3)=-1。

2. 计算(-1)+2+(-3)+4+·s+(-99)+100。

- 解析:可以将相邻的两项看作一组,即(-1 + 2)+(-3 + 4)+·s+(-99+100)。

- 每一组的结果都是1,一共有100÷2 = 50组。

- 所以原式的结果为50×1 = 50。

3. 已知a、b互为相反数,c、d互为倒数,m的绝对值是2,求(a + b)/(m)+m - cd 的值。

- 解析:因为a、b互为相反数,所以a + b = 0;因为c、d互为倒数,所以cd = 1;m的绝对值是2,则m=±2。

- 当m = 2时,(a + b)/(m)+m - cd=(0)/(2)+2 - 1=1;- 当m=-2时,(a + b)/(m)+m - cd=(0)/(-2)-2 - 1=-3。

4. 比较-(5)/(6)与-(4)/(5)的大小。

- 解析:先求出它们的绝对值,|-(5)/(6)|=(5)/(6)=(25)/(30),|-(4)/(5)|=(4)/(5)=(24)/(30)。

- 因为(25)/(30)>(24)/(30),根据两个负数比较大小,绝对值大的反而小,所以-(5)/(6)<-(4)/(5)。

5. 计算(-2)^3×(-(1)/(2))^2。

- 解析:先计算指数运算,(-2)^3=-8,(-(1)/(2))^2=(1)/(4)。

- 则(-2)^3×(-(1)/(2))^2=-8×(1)/(4)=-2。

有理数的加法和减法(拓展题)练习含答案解析

有理数的加法和减法(拓展题)练习含答案解析

有理数加法和减法提高题1、一跳蚤在一直线上从O点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,…,依此规律跳下去,当它跳第100次落下时,落点处离O点的距离是50个单位.【分析】设向右为正,向左为负.根据正负数的意义列出式子计算即可.【解答】解:设向右为正,向左为负.1+(﹣2)+3+(﹣4)+.+(﹣100)=[1+(﹣2)]+[3+(﹣4)]+.+[99+(﹣100)]=﹣50.∴落点处离O点的距离是50个单位.故答案为50.【点评】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.变式:如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它2、从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)A→C( +3, +4),B→D( +3,﹣2);(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程;(3)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出依次行走停点E、F、M、N的位置.【分析】(1)根据第一个数表示左右方向,第二个数表示上下方向结合图形写出即可;(2)根据行走路线列出算式计算即可得解;(3)根据方格和标记方法作出线路图即可得解.【解答】解:(1)由向上向右走为正,向下向左走为负可得A→C(+3,+4),B→D(+3,﹣2);故答案为:+3,+4,+3,﹣2.(2)甲虫走过的路程为:1+4+2+1+2=10,(3)如图,甲虫从A 处去甲虫P 处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),在图中标出依次行走停点E 、F 、M 、N 的位置.【点评】本题考查了坐标确定位置,读懂题目信息,理解行走路线的记录方法是解题的关键.3.淮海中学图书馆上周借书记录如下:(超过100册记为正,少于100册记为负).(1)上星期五借出多少册书? (2)上星期四比上星期三多借出几册? (3)上周平均每天借出几册?【分析】(1)根据题意得出算式100+(﹣12),求出即可; (2)求出(+6)﹣(﹣17)的值即可;(3)求出+23、0、﹣17、+6、﹣12的平均数,再加上100即可. 【解答】解:(1)100+(﹣12)=88(册), 答:上星期五借出88册书;(2)[100+(+6)]﹣[100+(﹣17)]=23(册), 答:上星期四比上星期三多借出23册;(3)100+[(+23)+0+(﹣17)+(+6)+(﹣12)]÷5=100(册), 答:上周平均每天借出100册.【点评】本题考查了有理数的混合运算和正数、负数等知识点,解此题的关键是根据题意列出算式,题目比较典型.4、张华记录了今年雨季钱塘江一周内水位变化的情况如下表(正号表示比前一天高,负号表示比前一天低):(1)本周星期二水位最高,星期一水位最低.(2)与上周末相比,本周日的水位是上升了还是下降了?(写出计算过程)【分析】(1)设上周日的水位是a,分别求出星期一、二、三、四、五、六、日的水位,比较即可;(2)这周星期日和上周星期日的水位相减即可.【解答】解:(1)设上周日的水位是a,星期一:a+0.25;星期二:a+0.80+0.25=a+1.05;星期三:a+1.05+(﹣0.40)=a+0.65;星期四:a+0.65+(+0.03)=a+0.68;星期五:a+0.68+(+0.28)=a+0.96;星期六:a+0.96+(﹣0.36)=a+0.60;星期日:a+0.60+(﹣0.04)=a+0.56;∴星期二水位最高;星期一水位最低,故答案为:二,一.解:(2)上周日的水位是a,则这周末的水位是a+0.56,∴(a+0.56)﹣a=0.56>0,即本周日的水位是上升了.【点评】本题考查了有理数的混合运算、正数和负数等知识点的应用,解此题的关键是关键题意列出算式,题型较好,难度适中,用的数学思想是转化思想,即把实际问题转化成数学问题.5、一辆货车从超市出发,向东走了1千米,到达小明家,继续向东走了3千米到达小兵家,然后西走了10千米,到达小华家,最后又向东走了6千米结束行程.(1)如果以超市为原点,以向东为正方向,用1个单位长度表示1千米,请你在下面的数轴上表示出小明家、小兵家和小华家的具体位置.(2)请你通过计算说明货车最后回到什么地方?(3)如果货车行驶1千米的用油量为0.25升,请你计算货车从出发到结束行程共耗油多少升?【分析】(1)根据已知,以超市为原点,以向东为正方向,用1个单位长度表示1千米一辆货车从超市出发,向东走了1千米,到达小明家,继续向东走了3千米到达小兵家,然后西走了10千米,到达小华家,最后又向东走了6千米结束行程,则小明家、小兵家和小华家在数轴上的位置如上所示.(2)这辆巡逻车一共行走的路程,实际上就是1+3+10+6=20(千米),货车从出发到结束行程共耗油量=货车行驶每千米耗油量×货车行驶所走的总路程.【解答】解:(1)(2)由题意得(+1)+(+3)+(﹣10)+(+6)=0,因而回到了超市.(3)由题意得1+3+10+6=20,货车从出发到结束行程共耗油0.25×20=5.答:(1)参见上图;(2)货车最后回到了超市;(3)货车从出发到结束行程共耗油5升.【点评】本题是一道典型的有理数混合运算的应用题,同学们一定要掌握能够将应用问题转化为有理数的混合运算的能力,数轴正是表示这一问题的最好工具.如工程问题、行程问题等都是这类.6、2013年国庆,全国从1日到7日放假七天,高速公路免费通行,各地景区游人如织.其中,闻名于世的福州三坊七巷,在9月30日的游客人数为0.9万人,接下来的七天中,每天的游客人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数).(1)10月3日的人数为5.2万人.(2)七天假期里,游客人数最多的是10月2日,达到5.78万人.游客人数最少的是10月7日,达到0.65万人.(3)请问黄山风景区在这八天内一共接待了多少游客?(结果精确到万位)(4)如果你也打算在下一个国庆节出游福州三坊七巷,对出行的日期有何建议?【分析】(1)根据题意计算出10月2日的人数再加上﹣0.58即可;(2)分别计算出每天的人数,即可作出判断;(3)根据(2)把8天的人数相加即可;(4)答案不唯一,只要合理即可.【解答】解:(1)1日的人数为:0.9+3.1=4万人,2日的人数为:4+1.78=5.78万人,3日的人数为:5.78﹣0.58=5.2万人.答:10月3日的人数是5.2万人;(2)4日的人数为:5.2﹣0.8=4.4万人,5日的人数为:4.4﹣1=3.4万人,6日的人数为:3.4﹣1.6=1.8万人,7日的人数为:1.8﹣1.15=0.65万人,所以七天假期里,游客人数最多的是10月2日,达到5.78 万人.游客人数最少的是10月7日,达到0.65万人.(3)0.9+4+5.78+5.2+4.4+3.4+1.8+1.65≈23万人所以黄山风景区在这八天内大约一共接待了23万游客.(4)为了安全,尽量把出行时间推后.故答案为:5.2;2,5.78,7,0.65.【点评】此题考查的知识点是正数和负数及有理数的运算,关键是正确理解表中数据的含义,正确计算出每天的人数.7.随着科学技术的进步,太阳能这种洁净环保的能源已日益得到普及应用.已知燃烧1千克煤只能释放3.35×104千焦的热量,1平方米的面积一年内从太阳得到的能量约有4.355×106千焦,那么1个长2米、宽1米的太阳能集热器每年得到的能量相当于燃烧多少千克煤?【分析】利用长2米、宽1米的太阳能集热器每年得到的能量除以燃烧1千克煤释放的热量求解即可.【解答】解:1个长2米、宽1米的太阳能集热器每年得到的能量相当于燃烧的煤的千克数是2×4.355×106÷(3.35×104)=260千克.【点评】本题主要考查了列代数式及幂的运算,解题的关键是正确的列出算式.。

专题1.4 有理数(拓展提高)(解析版)

专题1.4 有理数(拓展提高)(解析版)

专题1.4 有理数(拓展提高)一、单选题1.下列说法正确的是()A.整数分为正整数和负整数B.正分数、负分数统称有理数C.零既可以是正整数,也可以是负分数D.所有的分数都是有理数【答案】D【分析】按有理数的分类解答即可.【详解】解:A、正整数、0、负整数统称为整数,故本选项错误;B、正分数、负分数统称为分数,故本选项错误;C、零既不是正数也不是负数,故本选项错误;D、所有的分数都是有理数,故本选项正确;故选:D.【点睛】此题考查了有理数,掌握有理数的分类是本题的关键,是一道基础题.2.下面的说法中,正确的个数是()①0是整数;②2-是负分数;③3.2不是正数;④自然数一定是非负数;⑤负数一定是负有理数.A.1个B.2个C.3个D.4个【答案】B【分析】根据有理数的定义与分类进行解答便可.【详解】解:①因为0是整数,故①正确;②因为2-是负整数,故②错误;③因为3.2是正数,故③错误;④因为0,1,2,3,是自然数,所以自然数一定是非负数,故④正确;⑤负数包括负有理数和负无理数,所以⑤错误.综上所述,正确的说法有①④,共2个,故选:B.【点睛】本题考查了对有理数的定义与分类,解题的关键是正确掌握有理数的有关概念与分类方法.3.下列结论正确的是()A.0既是正数,又是负数B.0是最小的正数C.0是最小的整数D.0既不是正数也不是负数【答案】D【分析】根据0的概念逐项判断即可得.【详解】A、0既不是正数,也不是负数,则此项错误;B、0不是正数,则此项错误;C、整数包括负整数、0和正整数,且没有最小的整数,则此项错误;D、0既不是正数也不是负数,则此项正确;故选:D.【点睛】本题考查了0的概念,掌握理解0的概念是解题关键.4.在下列各数:56,+1,6.7,-(-3),0,722,-5,25%中,属于整数的有()A.2个B.3个C.4个D.5个【答案】C【分析】按照有理数的分类判断即可.【详解】解:∵-(-3)=3,∴在以上各数中,整数有:+1、-(-3)、0、-5,共有4个.故选:C.【点睛】本题考查了有理数的分类.注意整数和正数的区别,注意0是整数,但不是正数.5.在3.14159,4,1.1010010001…,4.21,π,132中,有理数有()A.1个B.2个C.3个D.4个【答案】D【分析】有理数是整数与分数的统称,或者说有理数是有限小数或无限循环小数,可得答案.【详解】3.14159,4,4.21,132是有理数,共4个,故选:D.【点睛】本题考查了有理数的定义,其中整数和分数统称为有理数.由于整数可以用分数表示,分数又可以化成小数或无限循环小数,因此有时也称有理数为有限小数和无限循环小数.6.有两个正数a,b,且a b,把大于等于a且小于等于b所有数记作[a,b],例如大于等于1且小于等于4的所有数记作[1,4] .如果m在[5,15]内,n在[20,30]内,那么nm的一切值中属于整数的有()A.1,2,3,4,5 B.2,3,4,5,6 C.2,3,4 D.4,5,6 【答案】B【分析】根据m 在[5,15]内,n 在[20,30]内,可得n m 的一切值中属于整数的有2010,248,205,255,305,依此即可求解.【详解】∵m 在[5,15]内,n 在[20,30]内,∴5≤m≤15,20≤n≤30, ∴n m 的一切值中属于整数的有20210=,2438=,2045=,2555=,3065=, 综上,那么n m 的一切值中属于整数的有2,3,4,5,6. 故选:B .【点睛】本题考查了有理数、整数,关键是得到5≤m≤15,20≤n≤30.二、填空题7.在有理数3-,7,2,123,43-,0,0.01-,10.1%-中,属于非负数的有________个. 【答案】4【分析】根据大于或等于零的数是非负数,可得答案.【详解】解:7,2,123,0,是非负数,共4个,故答案为:4.【点睛】本题考查了非负数,大于或等于零的数是非负数.8.有六个数:5,0,132,0.3-,14-,π-,其中分数有a 个,非负整数有b 个,有理数有c 个,则a b c +-=______.【答案】0【分析】根据分数、非负整数和有理数的定义得到a ,b ,c 的值,即可求解. 【详解】解:分数有132,0.3-,14-,∴3a =, 非负整数有0,5,∴2b =,有理数有5,0,132,0.3-,14-,∴5c =, ∴3250a b c +-=+-=,故答案为:0.【点睛】本题考查有理数的定义,掌握分数、非负整数和有理数的定义是解题的关键.9.若三个互不相等的有理数,既可以表示为3,a b +,b 的形式,也可以表示为0,3a b ,a 的形式,则4a b -的值________.【答案】15【分析】根据分母不等于0,可得b≠0,进而推得a+b=0,再求出3a b=-3,解得b=-3.a=3,然后代入4a b -进行计算即可. 【详解】解:∵三个互不相等的有理数,既可以表示为3、a b +、b 的形式,也可以表示为0、3a b 、a 的形式∴0b ≠,∴a b +=0, ∴3a 3b=-, ∴b =3-,a =3,∴4a b -=123+=15.故答案为15.【点睛】题考查了代数式求值及其有理数的相关概念,根据题意推得b≠0、 a+b=0、3a b=-3是解答本题的关键.10.(1)、字母a 没有“-”号,所以a 是正数.(_______)(2)、任何一个有理数都可以在数轴上表示出来.(_______)(3)一个数的绝对值必是正数.(_______)(4)符号不同的两个数互为相反数.(_______)(5)有理数就是自然数和负数的统称.(_______)【答案】(1)错, (2)对, (3)错, (4)错, (5)错.【分析】(1)根据0既不是正数,也不是负数,可得凡是前面没有“-”号的数不一定都是正数,据此判断即可;(2)所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数可得答案;(3)根据绝对值的定义进行判断即可;(4)符号不同、且绝对值相等的两个数互为相反数;(5)根据有理数的定义、分类进行判断求解.【详解】解:(1)错误,比如:a=0,或a=-3时;(2)任何一个有理数都可以在数轴上找到对应的点,所以说法正确;(3)根据正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值还是0,可得绝对值是非负数≥0,故错误;(4)只有符合不同的两个数互为相反数,故原题错误;(5)有理数就是正有理数、负有理数和零的统称,故原题错误.【点睛】本题考查有理数分类、相反数,绝对值的定义,只有符号不同的两个数互为相反数,0的相反数是0;一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.11.把下列各数填在相应的大括号内:-5,34-,-12,0,0.12..,-3.14,+1.99,+6,227.(1)正数集合:{ …};(2)负数集合:{ …};(3)分数集合:{ …};(4)非负整数集合:{ …}.【答案】(1)0.12..,+1.99,+6,227;(2)-5,34-,-12,-3.14;(3)34-,0.12..,-3.14,+1.99,227;(4)0,+6【分析】利用正数,负数,非负整数,以及分数的定义判断即可.【详解】解:(1)正数集合:{ 0.12..,+1.99,+6,227…};(2)负数集合:{ -5,34-,-12,-3.14 …};(3)分数集合:{34-,0.12..,-3.14,+1.99,227…};(4)非负整数集合:{ 0,+6 …}.【点睛】此题考查了正数,负数,非负整数,以及分数的定义,弄清各自的定义是解本题的关键.12.将下列各数填入相应的括号内:﹣2.5,152,0,8,﹣2,2π,﹣1.121121112……正数集合:{};负数集合:{};整数集合:{ }; 无理数集合:{ };【答案】正数集合:{152,8,2π};负数集合:{﹣2.5,﹣2,﹣1.121121112……};整数集合:{0,8,﹣2};无理数集合:{2π,﹣1.121121112……}; 【分析】直接利用正数、负数、整数、无理数的定义分别分析得出答案.【详解】﹣2.5,152,0,8,﹣2,2π,﹣1.121121112…… 正数集合:{152,8,2π}; 负数集合:{﹣2.5,﹣2,﹣1.121121112……};整数集合:{0,8,﹣2};无理数集合:{2π,﹣1.121121112……}. 故答案为:152,8,2π;﹣2.5,﹣2,﹣1.121121112……;0,8,﹣2;2π,﹣1.121121112……. 【点睛】本题考查了实数的分类,正确掌握相关定义是解题的关键.13.观察下面一列数:—1,2,—3,4,—5,6,—7,…,将这列数排成下列形式.按照上述规律排下去,那么第10行从左边数第9个数是______;数—201是第______行从左边数第______个数【答案】90, 15, 5.【分析】根据数的排列,每一行的最后一个数的绝对值等于行数的平方,并且奇数都是负数,偶数都是正数,求出第9行的最后一个数的绝对值,然后加上9即为第10行从左边数第9个数;求出与201最接近平方数为196,即可得解.【详解】∵第9行的最后一个数的绝对值为92=81,∴第10行从左边数第9个数的绝对值是81+9=90,∵90是偶数,∴第10行从左边数第9个数是正数,为90,∵142=196,201-196=5,∴数-201是第15行从左边数起第5个数.故答案为90,15,5.【点睛】本题是对数字变化规律的考查,观察出每一行的最后一个数的绝对值等于行数的平方是解题的关键.14. 将一列有理数﹣1,2,﹣3,4,﹣5,6…如图所示有序排列,4所在位置为峰1,﹣9所在位置为峰2….(1)处在峰5位置的有理数是_____;(2)2022应排在A ,B ,C ,D ,E 中_____的位置上.【答案】24 A【分析】根据图示信息找出A ,B ,C ,D ,E 各个位置数据的表达式,代入即可【详解】解:(1)观察发现:峰n 中,A 位置的绝对值可以表示为:5n ﹣3;B 位置的绝对值可以表示为:5n ﹣2;C 位置(峰顶)的绝对值可以表示为:5n ﹣1;D 位置的绝对值可以表示为:5n ;E 位置的绝对值可以表示为:5n+1;∴处在峰5位置的有理数是5×5﹣1=24;(2)根据规律,∵2022=5×405﹣3, ∴2022应排在A 的位置.故答案为:(1)24;(2)A .【点睛】此题属于找规律题,考查提取信息和总结的能力.三、解答题15.下列各数填入它所在的数集中:18-,227,3.1416,0,2001,35,0.142-,95%,π. 正数集:{ …};整数集:{ …};自然数集:{ …};分数集:{ …}.【答案】见解析【分析】根据有理数的分类即可求出答案.【详解】解:正数集:{ 227,3.1416,2001,95%,π}整数集:{-18,0,2001 }分数集:{ 227,3.1416,35,-0.142,95% }非负整数集:{0,2001}【点睛】本题考查有理数的分类,解题的关键是熟练运用有理数的分类,本题属于基础题型,注意:π不是有理数.16.将下列各数填入它所属于的集合的圈内:20,-0.08,-213,4.5,3.14,-1,+43,+5.【答案】见解析【分析】分别判断题干中的8个数字是否符合四个圆圈的内容,相应填入数字即可【详解】负整数,即既是负数,也是整数;正整数,即既是正数,也是整数;负分数,即既是负数,也是分数;正分数,即既是正数,也是分数;故负整数集合为:-1;正整数集合:20、+5;负分数集合为:-0.08、1 23正分数集合为:4.5、3.14、﹢4 3【点睛】本题考查有理数的分类,解题的关键是细心,切勿遗漏或重复填写数字17.把下列各数填入相应的大括号内(将各数用逗号分开)6,-3,2.4,34,0,-3.14,29,+2,-312,-1.414,-17,23.正数:{ …}非负整数:{ …}整数:{ …}负分数:{ …}【答案】6,2.4,29,+2,23;6,0,+2;6,-3,0,+2,-17;-34,-3.14,-312,-1.414.【分析】根据大于零的数是正数,可得正数集合;根据大或等于零的整数是非负整数,可的非负整数集合;根据分母为1的数是整数,可得整数集合;根据小于零的分数是负分数,可得负分数集合.【详解】正数:{6,2.4,29,+2,23…}非负整数:{6,0,+2 …}整数:{6,-3,0,+2,-17 …}负分数:{-34,-3.14,-312,-1.414 …}【点睛】本题考查了有理数,熟练掌握有理数的分类是解本题的关键.注意整数和正数的区别,注意0是整数,但不是正数.18.把下列各数填入相应的数集中:+125、-5%、200、-3、6.8、0、-215、0.12003407、1、-43.555、77%、-334(1)非负数集合:______________________(2)负有理数集合:________________________ (3)正整数集合:______________________(4)负分数集合:___________________________【答案】(1)+125、200、6.8、0、0.12003407、1、77%;(2)-5%、-3、-215、-43.555、-334;(3)200、1;(4)-5%、-215、-43.555、-334.【分析】根据有理数的分类,可得答案【详解】解:(1)非负数集合:+125、200、6.8、0、0.12003407、1、77%; (2)负有理数集合:-5%、-3、-215、-43.555、-334; (3)正整数集合:200、1;(4)负分数集合:-5%、-215、-43.555、-334. 【点睛】本题考查了有理数,熟知有理数的分类是解题关键.19.把下列各数填在相应的横线处:115 , 0.81 -3 25% -3.1 -4 , 171 , 0 , 3.142,,,,, 正数集合:_____;负数集合:_____;整数集合:_____;负分数集合:_____;有理数集合:_____.【答案】见解析【分析】根据有理数的分类进行填空即可. 【详解】解:正数集合:115 0.81 25% 171 , 3.142,,,,; 负数集合:-3,-3.1,-4;整数集合:15,-3,-4,171,0;负分数集合:-3.1; 有理数集合:1115 0.81 -3 -3.1 -4 171 , 0 3.1424,,,,,,,,. 【点睛】本题考查了有理数的分类.掌握有理数的分类是解题的关键.20.任何一个有理数都能写成分数的形式(整数可以看作是分母为1的分数).我们知道:0.12可以写成123,0.12310025=可以写成1231000,因此,有限小数是有理数.那么无限循环小数是有理数吗?下面以循环小数2.615454542.6154••=为例,进行探索: 设 2.6154x ••=,①两边同乘以100得: 100261.54x ••=,② ②-①得:99261.54 2.61258.93x =-= 25893287799001100x ∴== 因此,••261.54是有理数.(1)直接用分数表示循环小数1.5•= (2)试说明3.1415••是一个有理数,即能用一个分数表示.【答案】(1)149;(2)见解析 【分析】(1)设 1.5x •=,两边乘10,仿照例题可解;(2)设 3.1415x ••=,两边乘100,仿照例题可化简求解.【详解】解:(1)设 1.5x •=,① 两边乘10得:1015.5x •=,② ②-①得:914x =, ∴149x =, ∴141.59•=; (2)设 3.1415x ••=,① 两边同乘以100得:••100314.15x =,② ②-①得:314.15 3.1499311.1105x ••••=-= 311011036799003300x ∴==, 因此3.1415••是有理数【点睛】本题需理解题中的例子,将一个循环小数化为分数的方法,需要学生有很好的分析理解能力.。

第2章+有理数专项拓展训练(一)+2023-2024学年华东师大版数学七年级上册

第2章+有理数专项拓展训练(一)+2023-2024学年华东师大版数学七年级上册

《第2章有理数》专项拓展训练(一)专项一正数和负数1.在数0.25,-12,7,0,-3,100中,不是负数的个数是()A.1B.2C.3D.42.在体育课的立定跳远测试中,以2.00 m为标准,若小明跳出了2.35 m,可记作+0.35 m,则小亮跳出了1.85 m ,应记作 ()A.+0.15 mB.-0.15 mC.+0.35 mD.-0.35 m3.一个文具店、一个书店和一个玩具店依次坐落在某条东西走向的大街上,文具店位于书店西边20 m处,玩具店位于书店东边100 m处,小明从书店出发沿街向东走了40 m,接着又向东走了-60 m,此时小明的位置在()A.文具店B.玩具店C.文具店西边20 m处D.玩具店西边60 m处4.观察下面一列数,按规律在横线上填写适当的数:12,-36,512,-720,,.5.小明和小聪坐公交车从学校去体育馆参加运动会,他们从学校门口的公交车站上车,上车后发现加上他们俩共13人,经过A,B 2个站点小明观察到上下车情况如下(记上车为正,下车为负):A(+4,-2),B(+6,-5).经过A,B这两站点后,车上还有人.6.悉尼、洛杉矶与北京的时差如表所示(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数).若你在北京时间18时,想要与这两地的亲人通话,则与的亲人通话比较合适.(填“悉尼”或“洛杉矶”)7.小明现有300元钱,若规定现在的钱数为0元,花去25元,记为+25元,则小明有多少钱时记为-20元呢?8.如图所示,将1,-2,3,-4,5,-6,…排成两行,并用箭头指明依次数下去的顺序,请根据观察到的规律,回答下列问题.(1)在A 处的数是正数还是负数? (2)负数排在A ,B ,C ,D 中的什么位置?(3)第2 021个数是 (填“正数”或“负数”),排在A ,B ,C ,D 中的 的位置.专项二 有理数1.给出下列六个数:①-5,②227,③1.3,④ 0,⑤π6,⑥-23.其中是分数的是( ) A.①④⑤ B.②④⑥ C.②③⑥ D.②③⑤ 2.在有理数中,不存在( ) A.既是整数又是负数的数 B.既不是正数也不是负数的数 C.既是正数又是负数的数 D .既是分数又是负数的数3.在-2.5,+710,-3,2,0,4,5,-1 中,既不属于正数集合又不属于分数集合的数有( ) A.1个 B.2个 C.3个 D.0个4.如图所示的圈分别表示负数集、整数集和正数集,其中有甲、乙、丙三个部分,关于这三部分的数的个数,下列说法正确的是 ( )A.甲、丙两部分有无数个,乙部分只有一个且是0B.甲、乙、丙三部分都有无数个C.甲、乙、丙三部分都只有一个D.甲部分只有一个,乙、丙两部分有无数个5.下列说法正确的有 ()①正有理数是正整数和正分数的统称;②整数是正整数和负整数的统称;③有理数是正整数、负整数、正分数、负分数的统称;④ 0是偶数,但不是自然数;⑤偶数包括正偶数、负偶数和零.A.1个B.2个C.3个D.4个6.在-8,2 021,327,0,-5,+13,14,-6.9中,正整数有m个,负数有n个,则m+n的值为.7.某综艺节目中有一个环节是竞猜游戏:两人搭档,一人用语言描述,一人回答.要求描述者不能说出答案中的字或数.若现在给你的答案是0,则你给搭档的描述是.8.在下表适当的空格里画上“√”.9.把-6,0.3,15,9,-65分成两类,使两类数具有不同的特征,写出你的分法.参考答案专项一 正数和负数1.D 【解析】 在数0.25,-12,7,0,-3,100中,不是负数的有0.25,7,0,100,共4个.故选D . 2.B 3.A4.930-1142【解析】 先不考虑数的符号,因为从所给数的分子可以看出,它们分别是1,3,5,7,…,是连续的奇数,所以第五个数的分子是9,第六个数的分子是11;因为从分母可以看出2与6相差4,6与12相差6,12与20相差8,所以分别相差4,6,8,10,12,…,可以得出第五个数的分母是30,第六个数的分母是42,又从所给数的符号可以看出,奇数位置的数是正数,偶数位置的数是负数,所以第五个数是930,第六个数是-1142.5.16 【解析】 由题意知,在A 站点上车4人,下车2人,在B 站点上车6人,下车5人,所以经过A ,B 这两站点后,车上还有13+4-2+6-5=16(人).6.悉尼 【解析】 根据题意,得此时悉尼的时间为20时,洛杉矶的时间是3时,因此与悉尼的亲人通话比较合适.7.【解析】 小明有320元时记为-20元.8.【解析】 (1)A 是向右箭头的右方对应的数,与5或9的符号相同,所以在A 处的数是正数.(2)向下箭头的下方对应的数是负数,上方对应的数是正数,向上箭头的下方对应的数是正数,上方对应的数是负数,所以B 和D 的位置是负数. (3)正数 A因为2 021÷4=505……1,所以第2 021个数是正数,排在A ,B ,C ,D 中的A 的位置. 专项二 有理数1.C 【解析】 题中所给的六个数中,只有227,1.3,-23是分数.故选C .2.C 【解析】 在有理数中,存在既是整数又是负数的数,如-1;既不是正数也不是负数的数是0;不存在既是正数又是负数的数;存在既是分数又是负数的数,如-12.故选C .3.C 【解析】 在-2.5,+710,-3,2,0,4,5,-1 中,不属于正数集合的数是-2.5,-3,0,-1,不属于分数集合的数是-3,2,0,4,5,-1,所以符合题意的数是-3,0,-1,共3个.故选C.4.A【解析】由题意知乙部分只有一个且是0,由于正整数和负整数均有无数个,所以甲、丙两部分都有无数个.故选A.5.B【解析】正有理数是正整数和正分数的统称,整数是正整数、0和负整数的统称,有理数是正整数、0、负整数、正分数、负分数的统称,0是偶数,也是自然数,偶数包括正偶数、负偶数和零.故说法正确的有①⑤,共2个.故选B.6.5【解析】题中所给的数中,正整数有2 021,+13,共2个;负数有-8,-5,-6.9,共3个.所以m=2,n=3,所以m+n=2+3=5.7.既不是正数也不是负数的数(答案不唯一)8.【解析】9.【解析】解法一可分为整数和分数两类,其中-6,9属于整数,0.3,15,-65属于分数.解法二可分为正数和负数两类,其中0.3,15,9属于正数,-6,-65属于负数.(答案不唯一,其他分法合理均可)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章有理数测试 姓名_________
一、选择题:(每小题3分,共30分)
1、设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,则a-b+c•的值为( )
A.-1
B.0
C.1
D.2
2、下列说法中正确的是( )
A.两个负数相减,等于绝对值相减;
B.两个负数的差一定大于零
C.负数减去正数,等于两个负数相加;
D.正数减去负数,等于两个正数相减
3、计算: 123456789100.10.20.30.40.50.60.70.80.9
-+-+-+-+-++++++++的结果为( ) A.91 B.911 C.9
1- D.911- 4、若三个不等的有理数的代数和为0,则下面结论正确的是( )
A.3个加数全为0
B.最少有2个加数是负数
C.至少有1个加数是负数
D.最少有2个加数是正数
5、以下命题正确的是( ).
(A )如果
那么a 、b 都为零 (B )如果 ,那么a 、b 不都为零 (C )如果 ,那么a 、b 都为零 (D )如果 ,那么a 、b 均不为零
6、若23(2)0m n -++=,则2m n +的值为( )
A .4-
B .1-
C .0
D .4
7、绝对值大于 1 小于 4 的整数的和是( )
A 、0
B 、5
C 、-5
D 、10
8、a,b 互为相反数,下列各数中,互为相反数的一组为( )
A.a 2与b 2
B. a 3与b 3
C. a 2n 与b 2n (n 为正整数)
D. a 2n+1与b 2n+1(n 为正整数)
9、若a 2003·(-b)2004<0,则下列结论正确的是( )
A .a>0,b>0 B.a<0,b>0 C.a<0,b<0 D.a<0,b ≠0。

10、 2008年5月5日,奥运火炬手携带着象征“和平、友谊、进步”的奥运圣火火种,离开海拔5200米的“珠峰大本营”,向山顶攀登.他们在海拔每上升100米,气温就下降0.6°C 的低温和缺氧的情况下,于5月8日9时17分,成功登上海拔8844.43米的地球最高点.而此时“珠峰大本营”的温度为-4°C ,峰顶的温度为(结果保留整数) ( )
A .-26°C
B .-22°C
C .-18°C
D .22°C
二、填空题(每空2分,共30分)
11、已知P 是数轴上的一个点。

把P 向左移动3个单位后,再向右移动一个单位,这时它到原点的距离 是4个单位,则P 点表示的数是______。

12、数轴上哪个数与-24和40的距离相等_____,与数轴上数a 和b 距离相等的点表示的数是_______。

13、若 n 为自然数,那么(-1)2n +(-1)2n +1=____。

14、定义2*1a b a b =+-,则(8)*17-=___________.
15、有一个运算程序,可以使:a ⊕b = n (n 为常数)时,得(a +1)⊕b = n +1, a ⊕(b +1)= n -2 现在已知1⊕1 = 2,那么2008⊕2008 = .
16、已知3a =,且0a a +=,则321a a a +++=___________.
17、若a+2b+3c=10,且4a+3b+2c=15,则a+b+c= .
18、(a —1)2+2+b =0,则(a+b)2003的值是_____。

19、若a<0,且ab<0,化简|b-a+4|-|a-b-7|=___________.
20、 有一种“二十四点”的游戏,其游戏规则是:任取1至13之间的自然数四个,将这个四个数(每
个数用且只用一次)进行加减乘除四则运算,使其结果等于2 4.例如:对1,2,3,4,可作运算:(1+2+3)×4=24.(注意上述运算与4 ×(2+3+1)应视作相同方法的运算.现有四个数3,6,7,-13,可通过运算式:_____________________ ,使其结果等于24.
三、解答题(共36分)
21、已知│x-1│=3,求 -3│1+x │-│x │+5的值.(4分)
22、()()的值。

求且若b a c c b a a -⋅=-=++-32
,21,0212(4分)
23、(1)已知 与2互为相反数, 互为倒数,试求代数式 的值.(3分)
(2)、若,a b 互为相反数,,c d 互为倒数,x 的绝对值是1,求
a b x cd x
+++的值(3分)
24、若用A 、B 、C 、D 分别表示有理数a 、b 、c,0为原点如图2-6-1所示.已知a<c<0,b>0. (6分)
(1)化简a c b a c a -+---; (2)a b c b a c -+---+-+
(2)化简2c+│a+b │+│c-b │-│c-a │.
C B A
O
25、规定图形表示运算a-b+c,图形表示运算x+z—y—w.则+=_______(5分)
(要求写出计算过程)
26、某一出租车一天下午以鼓楼为出发地在东西方向营运,向东为正,向西为负,行车里程(单位:km)依先后次序记录如下:+9、-3、-5、 +4、-8、 +6、-3、-6、-4、 +10。

(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向?
(2)若每千米的价格为2.4元,司机一个下午的营业额是多少?(8分)
27.(6分) 按图所示程序进行计算,并把各次结果填入表内:。

相关文档
最新文档