初中应用题50道

合集下载

初中数学应用题

初中数学应用题

初中数学应用题1.某校师生到距学校20千米的公路旁植树,甲班师生骑自行车先走,45分钟后,乙班师生乘汽车出发,结果两班师生同时到达,已知汽车的速度是自行车速度的2.5倍,求两种车的速度各是多少?2.小明家、王老师家、学校在同一条路上,小明家到王老师家的路程为3千米,王老师家到学校的路程为0.5千米,由于小明的父母战斗在抗“非典”第一线,为了使他能按时到校,王老师每天骑自行车接小明上学,每天所用时间比他每天直接步行上班多用了20分钟,已知王老师骑自行车的速度是步行速度的3倍,问王老师的步行速度及骑自行车速度各是多少千米/时?3.甲乙两人两次到某粮店去买大米,两次的大米价格分别为a元和b元,且a不等于b,甲每次买100斤米。

乙每次买100元米,谁买的大米平均价格低?说明理由4。

每千克单价为a元的糖果m千克与单价为b元的糖果n千克,混合后糖果的单价为5.如图点E在正方形ABCD内,并且三角形ADE是直角三角形,ae=4,de=3,ad=5,三角形ABF旋转后与三角形ADE重和,求阴影部分面积6。

把含糖45%的饮料原汁50克,加多少克水稀释成含糖9%的一杯饮料?7. 农机厂职工到距工厂15千米的某地检修农机,一部分人骑自行车先走,过了40分钟,其余的人乘坐汽车出发,结果他们同时到达,已知汽车的速度是自行车的3倍,求两种车的速度?8。

一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x千米/时,则可列方程:9。

解方程4/(X2—1)+(X+2)/(1-X)=—110。

若一个长方形的周长是32,长为x,宽为y,且满足x3十x2y一xy2一y3=0,求这个长方形的面积11。

甲乙两个工程队共同完成一项工程乙队先单独做1天,再由两队合作2天就完成全部工程,已知甲队与乙队的工作效率之比3:2,求甲乙两队单独完成此项工作各多少天?12。

初中工程问题应用题

初中工程问题应用题

初中工程问题应用题1. 一根长为10米的木棍,要切成长度为1米的小段,需要切几刀?答:需要切9刀。

2. 一个长方形花坛,长为6米,宽为4米,要在里面种植小草,每平方米需要用1升水,花坛里需要多少升水?答:花坛的面积为6米×4米=24平方米,需要用24升水。

3. 一个水箱,长为2米,宽为1.5米,高为1米,里面有500升水,如果要把水箱倒空,需要多少时间?答:水箱的容积为2米×1.5米×1米=3立方米,即3000升。

倒空需要3000升/500升=6次,每次需要1分钟,所以需要6分钟。

4. 一根长为12米的绳子,要围成一个正方形,边长是多少?答:正方形的周长为12米,即4个边长的和,所以边长为3米。

5. 一个长方体水箱,长为2米,宽为1.5米,高为1米,里面有500升水,如果要把水箱倒空,需要多少时间?答:水箱的容积为2米×1.5米×1米=3立方米,即3000升。

倒空需要3000升/500升=6次,每次需要1分钟,所以需要6分钟。

6. 一个长方形花坛,长为6米,宽为4米,要在里面种植小草,每平方米需要用1升水,花坛里需要多少升水?答:花坛的面积为6米×4米=24平方米,需要用24升水。

7. 一根长为10米的木棍,要切成长度为1米的小段,需要切几刀?答:需要切9刀。

8. 一个正方形花坛,边长为5米,要在里面种植小草,每平方米需要用1升水,花坛里需要多少升水?答:花坛的面积为5米×5米=25平方米,需要用25升水。

9. 一个长方体水箱,长为2米,宽为1.5米,高为1米,里面有500升水,如果要把水箱倒空,需要多少时间?答:水箱的容积为2米×1.5米×1米=3立方米,即3000升。

倒空需要3000升/500升=6次,每次需要1分钟,所以需要6分钟。

10. 一个正方形花坛,边长为5米,要在里面种植小草,每平方米需要用1升水,花坛里需要多少升水?答:花坛的面积为5米×5米=25平方米,需要用25升水。

初中应用题大全及答案

初中应用题大全及答案

初中应用题大全及答案1. 应用题:小明的爸爸给他买了一辆自行车,原价为500元,现在打八折出售,请问小明的爸爸实际支付了多少钱?答案:原价为500元,打八折后的价格为500元× 0.8 = 400元。

所以小明的爸爸实际支付了400元。

2. 应用题:一个班级有40名学生,其中男生占60%,女生占40%,现在要选出10%的学生参加学校的运动会,请问需要选出多少名男生和女生?答案:班级总人数为40人,选出10%的学生参加运动会,即40人× 10% = 4人。

男生占60%,所以需要选出的男生人数为4人× 60% = 2.4人,取整数为2人。

女生占40%,所以需要选出的女生人数为4人× 40% = 1.6人,取整数为1人。

因此,需要选出2名男生和1名女生。

3. 应用题:一个长方体的长、宽、高分别是10厘米、8厘米和6厘米,求这个长方体的体积。

答案:长方体的体积可以通过长、宽、高的乘积来计算,即体积 = 长× 宽× 高 = 10厘米× 8厘米× 6厘米 = 480立方厘米。

4. 应用题:一个工厂生产了100个零件,其中有2%是次品,合格的零件有多少个?答案:次品占总零件数的2%,即100个零件× 2% = 2个。

所以合格的零件数为100个 - 2个 = 98个。

5. 应用题:一个水池,每小时流入4立方米的水,同时每小时流出3立方米的水,如果水池原本有20立方米的水,那么5小时后水池里有多少水?答案:每小时流入4立方米的水,流出3立方米的水,所以每小时净增加1立方米的水。

5小时后,水池净增加的水为5小时× 1立方米/小时 = 5立方米。

原本有20立方米的水,所以5小时后水池里的水量为20立方米 + 5立方米 = 25立方米。

6. 应用题:小华在书店买了3本书,每本书的价格是30元,书店正在进行满100元减20元的优惠活动,请问小华实际支付了多少钱?答案:3本书的总价为3本× 30元/本 = 90元,未达到满100元减20元的优惠条件,所以小华实际支付了90元。

七年级数学应用题大全

七年级数学应用题大全

七年级数学应用题(60题)1、运送吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为吨的货车运。

还要运几次才能完2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米3、某车间计划四月份生产零件5480个。

已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。

甲每小时行45千米,乙每小时行多少千米5、某校六年级有两个班,上学期级数学平均成绩是85分。

已知六(1)班40人,平均成绩为分;六(2)班有42人,平均成绩是多少分6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒7、四年级共有学生200人,课外活动时,80名女生都去跳绳。

男生分成5组去踢足球,平均每组多少人8、食堂运来150千克大米,比运来的面粉的3倍少30千克。

食堂运来面粉多少千克9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵。

平均每行梨树有多少棵10、一块三角形地的面积是840平方米,底是140米,高是多少米11、李师傅买来72米布,正好做20件大人衣服和16件儿童衣服。

每件大人衣服用米,每件儿童衣服用布多少米12、3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁13、一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车14、小东到水果店买了3千克的苹果和2千克的梨共付15元,1千克苹果比1千克梨贵元,苹果和梨每千克各多少元15、甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米,甲比乙早1小时到达中点。

甲几小时到达中点16、甲、乙两人分别从A、B两地同时出发,相向而行,2小时相遇。

如果甲从A地,乙从B 地同时出发,同向而行,那么4小时后甲追上乙。

已知甲速度是15千米/时,求乙的速度。

17.两根同样长的绳子,第一根剪去15米,第二根比第一根剩下的3倍还多3米。

初中数学应用题精选

初中数学应用题精选

初中数学应用题精选1. 题目:已知某班级共有40名学生,其中有20名男生和20名女生。

如果班级举行了一次数学测验,其中男生的平均分是78分,女生的平均分是85分。

请计算这次测验的班级平均分。

2. 题目:一个长方形的长是10厘米,宽是5厘米。

如果将这个长方形的周长减少10厘米,那么它的面积会增加多少平方厘米?3. 题目:一辆汽车以每小时60公里的速度行驶,行驶了4小时后,汽车行驶了多少公里?4. 题目:一个班级有50名学生,其中有30名女生和20名男生。

如果这个班级的学生参加了一次数学竞赛,其中女生平均分是80分,男生平均分是70分。

请计算这次竞赛的班级平均分。

5. 题目:一个圆的半径是5厘米,求这个圆的周长和面积。

6. 题目:一个长方体的长是8厘米,宽是4厘米,高是3厘米。

求这个长方体的体积和表面积。

7. 题目:一个班级有40名学生,其中有20名男生和20名女生。

如果这个班级的学生参加了一次数学竞赛,其中男生平均分是75分,女生平均分是85分。

请计算这次竞赛的班级平均分。

8. 题目:一个三角形的两边分别是6厘米和8厘米,第三边的长度是5厘米。

请判断这个三角形是直角三角形还是锐角三角形。

9. 题目:一个班级有30名学生,其中有15名男生和15名女生。

如果这个班级的学生参加了一次数学竞赛,其中男生平均分是80分,女生平均分是75分。

请计算这次竞赛的班级平均分。

10. 题目:一个正方形的边长是4厘米,求这个正方形的周长和面积。

11. 题目:一个长方形的长是12厘米,宽是4厘米。

如果将这个长方形的周长减少8厘米,那么它的面积会增加多少平方厘米?12. 题目:一辆汽车以每小时80公里的速度行驶,行驶了2小时后,汽车行驶了多少公里?13. 题目:一个班级有50名学生,其中有30名女生和20名男生。

如果这个班级的学生参加了一次数学竞赛,其中女生平均分是85分,男生平均分是75分。

请计算这次竞赛的班级平均分。

14. 题目:一个圆的半径是10厘米,求这个圆的周长和面积。

初中应用题大全

初中应用题大全

11. 小明与小凯进行投篮比赛,约定跨步上篮投中一个得3分,还可以在罚球线上罚球一次,投入再加1分。

而如果上篮未中,那么就要扣1分。

结果小明跨步上篮10次,得27分。

已知小明罚球得了5分。

问小明跨步上篮投中多少次12. (只列方程,不要求解题步骤)《鸡兔同笼》问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”13. 水源紧张,节约用水迫在眉睫。

针对用水浪费现象。

某城市制定了居民每月每用户用水标准8m3,超过部分加价收费,某用户居民连续两个月的用水和水费分别为12 m3,22元;10 m3,元。

试求该居民用户每月用水收费标准。

14. (只列方程,不要求解题步骤)甲、乙两人在400m的环行跑道上跑步,甲的速度比乙的速度快,当他们从某处同时出发并且同向跑出时,经过6min40s甲追上乙;背向跑出时,经过40s两人相遇。

求甲、乙两人跑步的速度各是多少15. 甲、乙两人从相距36km的两地相向而行。

如果甲比乙先走2h,那么他们在乙出发后相遇;如果乙比甲先走2 h,那么他们在甲出发3 h后相遇。

求甲、乙两人每小时各走多少千米16. 用含糖分别为35﹪和40﹪的两种糖水混合,配制成含糖为36﹪糖水50kg。

问每种糖水各需多少千克17. (只列方程,不要求解题步骤)某公司用30000元购进两种货物。

货物卖出后,一种货物的利润是10﹪,另一种货物的利润是11﹪,共获得利润3150元。

问两种货物各进货多少元18. 北京和上海都有某种仪器可供外地使用,其中北京可提供10台,上海可提供4台。

已知重庆需要8台,武汉需要6台,从北京、上海将仪器运往重庆、武汉的费用如下表所示。

有关部门计划用7600元运送这些仪器。

请你设计一种方案,使重庆、武汉能得到所需的仪器,而且运费正好够用。

运费表(单位:元/台)起点终点武汉重庆北京 400 800上海 300 50019. (只列方程,不要求解题步骤)某农场有300名职工耕种51公顷土地,计划种植水稻、棉花和蔬菜。

初中数学应用题试题

初中数学应用题试题

初中数学应用题试题题目1:购物计算小明去商场购买了一件T恤,原价为100元,商场正在进行九折促销活动。

同时,商场还提供了满200元减30元的优惠活动。

请帮助小明计算最终需要支付的金额。

解答:首先,计算T恤的九折价格:100元 × 0.9 = 90元。

然后,判断是否满足满减优惠条件。

由于小明购买的商品总价为90元,未满足满减条件,所以没有享受该优惠。

最终,小明需要支付的金额为90元。

题目2:旅行费用计算小红和小明要一起去旅行,他们计划乘坐火车和公交车到达目的地。

火车票价为20元,公交车票价为5元。

小红决定乘坐火车,而小明则选择乘坐公交车。

请帮助他们计算两人总共需要支付的费用。

解答:小红乘坐火车需要支付的费用为20元。

小明乘坐公交车需要支付的费用为5元。

总共需要支付的费用为20元 + 5元 = 25元。

题目3:运动会奖牌计算某校举行运动会,共有三个班级参加比赛。

每个班级按照接力赛、跳远赛和铅球赛三个项目进行比拼。

根据每个班级在各项目中获得的名次,决定最终的奖牌归属。

请根据以下表格帮助计算各个班级获得的金牌、银牌和铜牌的数量。

班级接力赛跳远赛铅球赛班级1 一等奖二等奖三等奖班级2 二等奖一等奖二等奖班级3 三等奖三等奖一等奖解答:班级1获得了一枚金牌(接力赛)、一枚银牌(跳远赛)、一枚铜牌(铅球赛)。

班级2获得了一枚金牌(跳远赛)、二枚银牌(接力赛和铅球赛)。

班级3获得了一枚金牌(铅球赛)、二枚银牌(接力赛和跳远赛)。

题目4:赛车比赛圈数计算一辆赛车参加了一场比赛,比赛规定赛车必须完成4圈才能计算成绩。

该赛车的速度稳定在每小时200公里,每圈的长度为2.5公里。

请帮助计算该赛车完成比赛所需的时间。

解答:该赛车每小时可行驶200公里,而每圈的长度为2.5公里。

因此,完成一圈所需的时间为2.5公里 / 200公里/小时 = 0.0125小时,换算为分钟为0.0125 × 60 = 0.75分钟。

初一方程应用题带答案大全

初一方程应用题带答案大全

初一方程应用题带答案大全
一、小明的身高问题
小明今年13岁,他的身高为x厘米。

一年后,他的身高将是他现在身高的1.1倍。

请问小明明年多高?
解答:小明明年身高为1.1x厘米。

二、小红的年龄问题
小红现在的年龄是x岁,三年前她的年龄是x - 3岁。

请问她3年后年龄是多少?
解答:小红3年后的年龄为x + 3岁。

三、小李的数学成绩
小李数学考试的分数是x分,如果他再多得10分,分数将是他现在的1.2倍。

请问小李这次数学考试得了多少分?
解答:小李这次数学考试得了x + 10分。

四、小张的大米问题
小张的家里有一袋大米,重x千克。

他领走了一半的大米,还剩下10千克。

请问小张领走了多少千克大米?
解答:小张领走了0.5x千克大米。

五、小王的钱袋问题
小王的钱袋里有x元钱,他花了一半的钱之后还剩下8元。

请问小王一共有多
少元钱?
解答:小王一共有2x元钱。

六、小刘的苹果问题
小刘一共有x个苹果,他卖掉一半的苹果之后还剩下6个。

请问小刘一共有多
少个苹果?
解答:小刘一共有2x个苹果。

以上为初一方程应用题带答案大全,希望对初中学生学习方程有所帮助。

初中折扣问题应用题

初中折扣问题应用题

初中折扣问题应用题一、题目1. 一件商品原价 200 元,打八折出售,现价是多少元?2. 一双鞋子原价 300 元,现打七五折销售,比原价便宜了多少元?3. 某商场进行促销活动,所有商品一律九折。

小明买了一个书包,原价 80 元,现在需要支付多少钱?4. 一件衣服标价 500 元,现按标价的六折出售,仍可获利20%,这件衣服的成本是多少元?5. 某品牌的手机原价 1500 元,“五一”期间打八折优惠,节后又涨价 20%,现在的售价是多少元?6. 一款手表原价 1200 元,现降价 20%出售,再打九折优惠,现在的价格是多少元?7. 某服装店所有服装均按七五折出售。

一件上衣原价 240 元,现在买这件上衣比原来便宜多少元?8. 一种电器原价 800 元,先提价 10%,再打八折出售,现价是多少元?9. 某商品进价为 200 元,按标价的八折出售仍可获利 40 元,求标价。

10. 一件商品打七五折后售价为 150 元,原价是多少元?11. 某商品原价 480 元,现在打六折出售,如果有会员卡还可以再打九折,用会员卡买这件商品需要多少钱?12. 一本书原价 30 元,现在打八折出售,小明买了 5 本,一共便宜了多少元?13. 一件商品按原价的九折出售,可获利 215 元,按原价的八折出售则亏损 125 元,这件商品的原价是多少元?14. 某商场促销,所有商品一律八五折,一台电视机原价 2800 元,现在购买需要多少钱?15. 一个书包原价 120 元,现在打七折出售,如果小明有优惠券还能再打八折,小明用优惠券买这个书包需要多少钱?16. 某商品进价 150 元,标价 225 元,因市场原因按标价的九折出售,该商品的利润率是多少?17. 一件衣服原价 360 元,现打八折出售,同时满 200 元减 20 元,购买这件衣服实际需要支付多少钱?18. 一双运动鞋原价 450 元,“双十一”期间打七折,在此基础上再打八折,“双十一”购买这双鞋需要多少钱?19. 某商品按 20%的利润定价,然后按八八折出售,共得利润 84 元,该商品的成本是多少元?20. 一件商品标价 300 元,打九折出售后仍获利 50%,该商品的成本是多少元?21. 某商品原价 600 元,先降价 10%,再打八折出售,现价是多少元?22. 一款手机按进价提高 30%后标价,然后打八折出售,每部手机仍可获利 100 元,该手机的进价是多少元?23. 某商场所有商品均打九折出售,一件羽绒服原价 850 元,现在购买比原来便宜多少元?24. 一种商品原价 500 元,先提价 20%,再打八折出售,现价与原价相比是涨了还是降了?25. 某商品进价 240 元,按标价的八折出售仍可获利 20%,求标价。

初中应用题大全

初中应用题大全

初中应用题大全 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】数字问题:1、一个两位数,十位上的数比个位上的数小1。

十位上的数与个位上的数的和是这个两位数的,求这个两位数。

2、一个两位数,个位上的数与十位上的数的和为7,如果把十位与个位的数对调。

那么所得的两位数比原两位数大9。

求原来的两位数。

3、一个两位数的十位上的数比个位上的数小1,如十位上的数扩大4倍,个位上的数减2,那么所得的两位数比原数大58,求原来的两位数,4、一个五位数,如果将第一位上的数移动到最后一位得到一个新的五位数(例如:此变换可以由4321得到3214),新的五位数比原来的数小11106,求原来的五位数。

5、某考生的准考证号码是一个四位数,它的千位数是一;如果把1移到个位上去,那么所得的新数比原数的5倍少49,这个考生的准考证号码是多少年龄问题:1、姐姐4年前的年龄是妹妹的2倍,今年年龄是妹妹的倍,求姐姐今年的年龄。

2、1992年,妈妈52岁,儿子25岁,哪一年妈妈的年龄是儿子的4倍.3、爸爸和女儿两人岁数加起来是91岁,当爸爸岁数是女儿现在岁数两倍的时候,女儿岁数是爸爸现在岁数的,那么爸爸现在的年龄是多少岁,女儿现在年龄是多少岁.4、甲、乙两人共63岁,当甲是乙现在年龄一半时,乙当时的年龄是甲现在的岁数,那么甲多少岁,乙多少岁.5、父亲与儿子的年龄和是66岁,父亲的年龄比儿子的年龄的3倍少10岁,那么多少年前父亲的年龄是儿子的5倍.等积问题1、现有一条直径为12厘米的圆柱形铅柱,若要铸造12只直径为12厘米的铅球,应截取多长的铅柱(损耗不计)(球的体积公式R2,R为球半径)2、直径为30厘米,高为50厘米的圆柱形瓶里存满了饮料,现把饮料倒入底面直径为10厘米的圆柱形小杯中,刚好倒满20杯,求小杯子的高。

3、用60米长的篱笆,围成一个长方形的花圃,若长比宽的2倍少3米,则长方形的面积是多少4、将一个长、宽、高分别为15厘米、12厘米和8厘米的长方体钢块,锻造成一个底面边长为12厘米的正方形的长方体零件钢坯。

初中应用题50道

初中应用题50道

初中应用题50道1. 某班有35名男生和40名女生,男生占全班人数的多少?答案:男生人数占全班总人数的35/(35+40) = 35/75 = 7/15,即男生占全班人数的7/15。

2. 请计算:(3/5) × (4/7)。

答案:(3/5) × (4/7) = 12/35,即结果为12/35。

3. 某商品原价为120元,现以打8折出售,打折后的价格是多少?答案:打8折即为原价的80%,所以打折后的价格为120 × 80% =96元。

4. 某汽车每小时行驶60公里,行驶8小时需要行驶多少公里?答案:每小时行驶60公里,行驶8小时即为60 × 8 = 480公里。

5. 某图书馆有5400本书,其中的3/4为外文书,求外文书的数量。

答案:外文书的数量为5400 × 3/4 = 4050本。

6. 某人从上午8点起床,到晚上10点就寝,一天共有多少小时?答案:从上午8点到晚上10点共有14小时。

7. 一块长方形花坛的长和宽分别为6米和3米,面积是多少平方米?答案:花坛的面积为6 × 3 = 18平方米。

8. 某班级共有48名学生,其中男生和女生的比例为2:3,男生有多少名?答案:男生人数为48 × 2/5 = 19.2名,约等于19名。

9. 甲车和乙车同时从A地出发,甲车以每小时80公里的速度行驶,乙车以每小时60公里的速度行驶,若甲车行驶4小时后,乙车已超过甲车多少公里?答案:甲车行驶4小时后行驶的距离为80 × 4 = 320公里,乙车行驶4小时后行驶的距离为60 × 4 = 240公里,所以乙车超过甲车的距离为320 - 240 = 80公里。

10. 某商店的电视原价是2800元,现在降价20%,降价后的价格是多少?答案:降价20%即为原价的80%,所以降价后的价格为2800 × 80% = 2240元。

初中应用题典型问题

初中应用题典型问题

初中应用题典型问题初中应用题是数学中非常重要的一部分,它们旨在帮助学生理解和应用数学概念于实际问题中。

以下是一些典型的初中应用题:1. 行程问题:这是最基础的应用题之一,涉及两个或多个对象(通常是人和/或车辆)在某个给定的时间内移动一定的距离。

示例:甲、乙两列火车同时从A、B两地相向而行,甲车平均每小时行驶120千米,乙车平均每小时行驶110千米。

3小时相遇。

求A、B两地的距离?2. 工程问题:涉及到完成一项工程所需的时间和人力。

示例:某工程若由A单独做可在规定时间内完成,若由B单独做,要比规定时间多用3天才能完成,若A、B合做,则可提前完成2天.求A单独完成这项工程所需的天数?3. 百分比问题:涉及到百分比的增减或比较。

示例:某商品按每个7元的利润卖出13个的总价,与按每个11元的利润卖出12个的总价相等,这种商品的成本是多少元?4. 溶液混合问题:涉及不同浓度的溶液混合后的浓度变化。

示例:现有浓度为20%的糖水20千克,要得到浓度为10%的糖水,需加水多少千克?5. 几何问题:涉及到面积、体积、周长等几何概念的运用。

示例:用一根长为60厘米的铁丝围成一个长方形,设长方形的长为x厘米,则宽为多少厘米?6. 线性方程组问题:涉及两个或多个方程组的解。

示例:现有含盐16%的盐水400克,为了使盐水的含量不高于10%,则应至少加____克水.7. 最大最小问题:涉及在给定条件下求某个量的最大值或最小值。

示例:一个长方形的周长是20厘米,长是a厘米,则宽是( )A. (20 - a)厘米B. (20 - 2a)厘米C. (10 - a)厘米D. 10 - a厘米8. 利润与折扣问题:涉及到商品的利润和折扣。

示例:某商品按每个7元的利润卖出13个的总价,与按每个11元的利润卖出12个的总价相等,这种商品的成本是多少元?9. 排列组合问题:涉及到不同选择的可能性。

示例:学校准备明天或后天举行运动会,根据天气预报可知,明天降水的概率为20%,后天降水的概率为60%,则学校在_______________举行运动会为佳.以上只是一些基本的例子,实际上应用题的范围非常广泛,可以涵盖生活的各个方面。

初中数学应用题

初中数学应用题

初中数学应用题应用题一:小明乘公交车上学小明每天乘坐公交车上学,公交车每隔20分钟一班,小明家离学校有7公里,他每小时步行4公里的速度。

如果他下午5点放学,问他能否赶上5点40分的公交车?解答:小明步行4公里每小时,那么他步行7公里需要多长时间?7公里 ÷ 4公里/小时 = 1.75小时小明放学后5点,他需要1.75小时才能到达公交车站。

而公交车每隔20分钟一班,5点40分就是40分钟后,共有40 ÷ 20 = 2班公交车经过。

由此可知,小明可以赶上5点40分的公交车。

应用题二:图书馆还书小华上图书馆借了一本书,借期为21天。

他决定在借期结束前的最后一天还书。

假设小华从借期的第2天开始每天读书8小时,那么借期结束前他一共读了多少小时?解答:借期为21天,借期的第一天小华没有读书。

所以小华从借期的第2天开始读书,可以读21 - 1 = 20天。

每天读书8小时,那么小华一共读了 20天 × 8小时/天 = 160小时。

借期结束前,小华一共读了160小时。

应用题三:水果比例在一个篮子里有3个苹果、5个梨和2个桃子。

如果从篮子中任意取出一个水果,求取到的是桃子的概率。

解答:篮子中共有10个水果(3个苹果 + 5个梨 + 2个桃子)。

取到桃子的可能性为取到桃子数(2个桃子)除以篮子中总水果数(10个水果)。

所以取到桃子的概率为2/10 = 1/5。

因此,取到的是桃子的概率为1/5。

应用题四:汽车行程小明驾驶一辆汽车从A市到B市,全程320公里,中间经过了2个加油站。

第一个加油站离出发地A市80公里,第二个加油站离出发地160公里。

小明的汽车油箱容量为40升。

假设汽车每升油可行驶8公里,问小明是否需要在第一个加油站加油?解答:全程320公里,小明的汽车油箱容量为40升,每升油可行驶8公里。

那么汽车一次加满油最多可行驶 40升 × 8公里/升 = 320公里。

第一个加油站离出发地80公里,小明到达第一个加油站时,已经行驶了80公里,剩下的行程为 320公里 - 80公里 = 240公里。

初中数学应用题试卷题库

初中数学应用题试卷题库

一、选择题1. 一个长方形的长是12cm,宽是8cm,它的周长是多少cm?A. 40cmB. 48cmC. 56cmD. 64cm2. 小明去图书馆借了5本书,每本书的价格是5元,他一共花了多少元?A. 15元B. 25元C. 30元D. 40元3. 一辆汽车从甲地到乙地,速度是60km/h,用了2小时到达。

甲地到乙地的距离是多少千米?A. 60kmB. 120kmC. 180kmD. 240km4. 一个梯形的上底是4cm,下底是6cm,高是3cm,它的面积是多少平方厘米?A. 12cm²B. 15cm²C. 18cm²D. 21cm²5. 一个正方形的边长是10cm,它的对角线长度是多少cm?A. 10cmB. 20cmC. 30cmD. 40cm二、填空题6. 一个等腰三角形的底边长是8cm,腰长是10cm,它的面积是多少平方厘米?7. 一辆自行车每分钟行驶300米,行驶了5分钟,它行驶了多少千米?8. 一个圆柱的高是10cm,底面半径是5cm,它的体积是多少立方厘米?9. 一个长方体的长是12cm,宽是8cm,高是6cm,它的体积是多少立方厘米?10. 一个圆的半径是7cm,它的面积是多少平方厘米?三、解答题11. 一辆汽车从甲地到乙地,速度是80km/h,用了3小时到达。

甲地到乙地的距离是多少千米?12. 一个梯形的上底是5cm,下底是10cm,高是6cm,它的面积是多少平方厘米?13. 一个圆锥的底面半径是3cm,高是4cm,它的体积是多少立方厘米?14. 一个长方体的长是15cm,宽是10cm,高是8cm,它的表面积是多少平方厘米?15. 一个圆的半径是5cm,它的周长是多少厘米?四、应用题16. 一块长方形的地,长是20米,宽是10米,围成这个长方形的篱笆长多少米?17. 小明骑自行车去图书馆,速度是每小时15km,他用了1小时到达。

图书馆距离小明家多少千米?18. 一个圆锥的底面半径是4cm,高是6cm,它的体积是多少立方厘米?19. 一个长方体的长是18cm,宽是12cm,高是8cm,它的体积是多少立方厘米?20. 一个圆的半径是8cm,它的面积是多少平方厘米?。

初中数学应用题集锦一

初中数学应用题集锦一

初中数学应用题集锦一一、应用题1、甲乙两个工程队合修一条公路,甲工程队比乙工程队每天多修50米,甲工程队修900米所用时间和乙工程队修600米所用时间相等,问甲乙两个工程队每天分别修多少米?2、甲乙两人加工同一种玩具,甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等,已知甲乙两人每天共加工35个玩具,求甲乙两人每天各加工多少个玩具?3、某农场原计划在若干天内播种2000亩小麦,但是在实际播种时,每天播种面积比原计划多30亩,从而在规定时间内不但完成了任务,还多播种了240亩小麦. 问原计划每天播种多少亩小麦?原计划播种多少天?4、甲、乙两人分别从相距36千米的A、B两地同时相向而行.甲从A地出发到1千米时发现有一物品遗忘在A地,立即返回,取过物品后又立即从A地向B地行进,这样两人恰好在A、B两地和中点处相遇,又知甲比乙每小时多走0.5千米,求甲、乙两人的速度.5、列车中途受阻,停车10min,再启动后速度提高到原来的1.5倍,这样行驶了50km,正好将耽误的时间补上,则列车原来的速度是多少?6、某公司在统计第一季度的营业额时,发现二月份比一月份增加90万元,三月份比二月份又增加135万元. 这样,该公司第一季度的营业额中,二、三月份的平均增长率相同. 求一月份的营业额是多少?平均增长率又是多少?7、2008年5月12日14时28分在我国四川省汶川地区发生了里氏8.0级强烈地震,灾情牵动全国人民的心,“一方有难,八方支援”.某厂计划加工1500顶帐篷支援灾区,在加工了300顶帐篷后,由于救灾需要工作效率提高到原来的1.5倍,结果提前4天完成了任务.求原来每天加工多少顶账篷?8、为帮助灾区人民重建家园,某校学生积极捐款.已知第一次捐款总额为9000元,第二次捐款总额为12000元,两次人均捐款额相等,但第二次捐款人数比第一次多50人.求该校第二次捐款的人数.9、在“5·12”汶川大地震的“抗震救灾”中,某部队接受了抢修映秀到汶川的“213”国道的任务.需要抢修的路段长为4800m,为了加快抢修进度,获得抢救伤员的时间,该部队实际工作效率比原计划提高了20%,结果提前2小时完成任务,求原计划每小时抢修的路线长度.10、华联商厦采购员在苏州发现一种应季衬衫,预测能畅销市场,就用80000元购进所有衬衫,还急需以上2倍数量的这种衬衫,经人介绍又在上海用176000元购进所需衬衫,只是单价比苏州贵4元,商厦按每件58元销售,销路很好,最后剩下的150件按八折销售,很快售完.问商厦这笔生意赢利多少元?11、某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?12、AB两地相距18km,甲步行从A到B,同时乙以甲两倍的速度骑自行车从B到A,求两人相遇处离A 地多少千米?参考答案1)、解:设乙工程队每天修x米,则甲工程队每天修(x+50)米.根据题意得.解得x=100.经检验x=100是原方程的解,x+100=150.答:乙工程队每天修100米,则甲工程队每天修150米.2)、设甲每天加工x个玩具,那么乙每天加工(35-x)个玩具,由题意得.解得x=15.经检验:x=15是原方程的根.则35-x=20.答:甲每天加工15个玩具,乙每天加工20个玩具.3)、【解答】解:设原计划每天播种x亩小麦,则实际每天播种(x+30)亩小麦.根据题意,得`(2000)/(x)=(2000+240)/(x+30).解这个方程,得x=250.经检验:x=250是所列方程的解.`(2000)/(x)=8.答:原计划每天播种250亩小麦,播种8天. 4)、设甲的速度为每小时x千米,乙的速度为每小时(x-0.5)千米.因为两人在中点处相遇,可知乙走了18千米,而甲由于在1千米处有一个往返,所以甲共走了18+2=20千米.则可列出方程为.20x-10=18x.解得x=5.经检验,x=5是符合条件的解.所以x-0.5=4.5. 答:甲每小时走5千米,而乙每小时走4.5千米.5)、设列车原来的速度是xkm/h,根据题意,得,解之,得x=100经检验可知,x=100既适合方程,又满足题意. 答:列车原来的速度是100km/h.6)、【解答】解:设该公司一月份的营业额为x万元,则二月份的营业额为(x+90)万元,三月份营业额为(x+90+135)万元.根据题意,得`(90)/(x)=(135)/(x+90).解这个方程,得x=180.经检验,x=180是所列方程的解且符合实际意义. `(90)/(x)·100%=50%.答:一月份的营业额是180万元,所求平均增长率为50%.7)、解:设该厂原来每天生产x顶帐篷,据题意得:,解这个方程得x=100.经检验,x=100是原分式方程的解.答:该厂原来每天生产100顶帐篷.8)、解:设第二次捐款人数为x人,则第一次捐款人数为(x-50)人.根据题意,得.解这个方程,得x=200.经检验,x=200是所列方程的解,也符合题意.答:该校第二次捐款人数为200人.9)、解:设原计划每小时抢修的路线长为xm,根据题意,得解之,得x=400.检验:x=400是原方程的解,且符合题的实际意义.答:原计划每小时抢修的路线长为400m.10)、设从苏州购进x件衬衫,∴x=2000,符合条件.这笔生意可赢利58×(2000+2×2000-150)+58×150×0.8-176000-80000= 90260.答:这笔生意赢利90260元.11)、【解答】(1)解:设今年三月份甲种电脑每台售价x元,,解得x=4000,经检验x=4000是原方程的根所以甲种电脑今年每台售价4000元.(2)设购进甲种电脑x台,48000≤3500x+3000(15-x)≤50000,解得6≤x≤10 因为x的正整数解为6,7,8,9,10,所以共有5种进货方案.(3)设总获利为W元,W=(4000-3500)x+(3800-3000-a)(15-x)=(a-300)x+12000-15a.当a=300时,(2)中所有方案获利相同此时,购买甲种电脑6台,乙种电脑9台时对公司更有利12)、【解答】1、设两人相遇处离Askm,甲的速度为xkm/h,则离B(18-s)km,乙的速度为2xkm/h,根据题意得:,即2s=18-s,所以s=6km. 将s=6代入原方程满足题意,所以相遇处离A地6km.。

初中应用题练习

初中应用题练习

初中应用题练习题目一:甲乙丙三人去旅行,用去的钱一共是400元,其中,甲比乙多花了32元,丙比乙多花了16元,问甲、乙、丙三人各自花了多少钱?解析:设甲、乙、丙三人各自花的钱分别为:x、y、z元。

根据题意可得以下三个方程:1) x + y + z = 400 ————(1)2) x - y = 32 ————(2)3) z - y = 16 ————(3)将方程(2)和方程(3)变形为:x = y + 32 和 z = y + 16将变形后的方程(2)和(3)的等式代入方程(1):(y + 32) + y + (y + 16) = 400合并同类项得:3y + 48 = 400移项得:3y = 352解得:y = 117.33因为钱数不能为小数,所以乙花了117元,甲比乙多32元,丙比乙多16元,所以甲花了117 + 32 = 149元,丙花了117 + 16 = 133元。

甲花了149元,乙花了117元,丙花了133元。

题目二:某超市举行促销活动,买5个相同的商品只需支付4个商品的价钱。

小明买了15个这种商品,他需要支付多少钱?解析:因为买5个相同商品只需支付4个商品的价钱,所以买15个商品只需支付多少钱可以用比例来表示。

设小明需要支付的金额为x元。

根据题意可得:5个商品的金额:4个商品的金额 = 15个商品的金额:x即:5/4 = 15/x将比例中的x移到等号左边,并将两边的分数倒置得:x = (4/5) *15计算得:x = 12答案:小明需要支付12元。

题目三:一个三位数的各位数字之和为16,将其个位数字与十位数字对调,得到一个新的三位数。

这个新的三位数比原来的三位数大27,那么原来的三位数是多少?将原来的三位数设为abc(百位数字为a,十位数字为b,个位数字为c)。

根据题意可得以下两个方程:1) a + b + c = 16 ————(1)2) (b * 10 + c * 1) - (a * 10 + b * 1) = 27 ————(2)将方程(2)化简:10b + c - 10a - b = 27合并同类项得:9b - 9a + c = 27移项得:9b - 9a = 27 - c将两边同时除以9得:b - a = 3 - (c/9)因为a、b、c都是整数,所以c必须为9的倍数。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运。

还要运几次才能完?还要运x次才能完29.5-3*4=2.5x17.5=2.5xx=7还要运7次才能完2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?它的高是x米x(7+11)=90*218x=180x=10它的高是10米3、某车间计划四月份生产零件5480个。

已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个?这9天中平均每天生产x个9x+908=54089x=4500x=500这9天中平均每天生产500个4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。

甲每小时行45千米,乙每小时行多少千米?乙每小时行x千米3(45+x)+17=2723(45+x)=25545+x=85x=40乙每小时行40千米5、某校六年级有两个班,上学期级数学平均成绩是85分。

已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分?平均成绩是x分40*87.1+42x=85*823484+42x=697042x=3486x=83平均成绩是83分6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒?平均每箱x盒10x=250+55010x=800x=80平均每箱80盒7、四年级共有学生200人,课外活动时,80名女生都去跳绳。

男生分成5组去踢足球,平均每组多少人?平均每组x人5x+80=2005x=160x=32平均每组32人8、食堂运来150千克大米,比运来的面粉的3倍少30千克。

食堂运来面粉多少千克?食堂运来面粉x千克3x-30=1503x=180x=60食堂运来面粉60千克9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵。

平均每行梨树有多少棵?平均每行梨树有x棵6x-52=206x=72x=12平均每行梨树有12棵10、一块三角形地的面积是840平方米,底是140米,高是多少米?高是x米140x=840*2140x=1680x=12高是12米11、李师傅买来72米布,正好做20件大人衣服和16件儿童衣服。

每件大人衣服用2.4米,每件儿童衣服用布多少米?每件儿童衣服用布x米16x+20*2.4=7216x=72-4816x=24x=1.5每件儿童衣服用布1.5米12、3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁?女儿今年x岁30=6(x-3)6x-18=306x=48x=8女儿今年8岁13、一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车?需要x时间50x=40x+8010x=80x=8需要8时间14、小东到水果店买了3千克的苹果和2千克的梨共付15元,1千克苹果比1千克梨贵0.5元,苹果和梨每千克各多少元?苹果x3x+2(x-0.5)=155x=16x=3.2苹果:3.2梨:2.715、甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米,甲比乙早1小时到达中点。

甲几小时到达中点?甲x小时到达中点50x=40(x+1)x=4甲4小时到达中点16、甲、乙两人分别从A、B两地同时出发,相向而行,2小时相遇。

如果甲从A地,乙从B地同时出发,同向而行,那么4小时后甲追上乙。

已知甲速度是15千米/时,求乙的速度。

乙的速度x2(x+15)+4x=602x+30+4x=606x=30x=5乙的速度517.两根同样长的绳子,第一根剪去15米,第二根比第一根剩下的3倍还多3米。

问原来两根绳子各长几米?原来两根绳子各长x米3(x-15)+3=x3x-45+3=xx=21原来两根绳子各长21米18.某校买来7只篮球和10只足球共付248元。

已知每只篮球与三只足球价钱相等,问每只篮球和足球各多少元?每只篮球x7x+10x/3=24821x+10x=74431x=744x=24每只篮球:24每只足球:819某中学组织初一学生进行春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满。

试问(1)初一年级人数是多少?原计划租用45座客车多少辆?解:租用45座客车x辆,租用60座客车(x-1)辆,45x+15=60(x-1) 解之得:x=5 45x+15=240(人)答:初一年级学生人数是240人,计划租用45座客车为5辆20.两根同样长的蜡烛,粗的可燃3小时,细的可燃8/3小时,停电时,同时点燃两根蜡烛,来电时同时吹灭,粗的是细的长度的2倍,求停电的时间.设停电的时间是X 设总长是单位1,那么粗的一时间燃1/3,细的是3/8X/3=2[1-3X/8] X=2。

4即停电了2。

4小时。

21若两列车相对行驶,从车头相遇到车尾离开共12秒;若同向行驶,从甲车头遇到乙车尾,到甲车尾超过乙车头需60秒,车的速度不变,求甲、乙两车的速度。

二车的速度和是:[180*2]/12=30米/秒设甲速度是X,则乙的速度是30-X180*2=60[X-(30-X)] X=18即甲车的速度是18米/秒,乙车的速度是:12米/秒22.一家商场将某种上衣按成本价提高50%后标价,又以八折优惠卖出,结果每件获利20元,成本价是多少元?1) x(1+50%)*80% = 20X=10023 两人水池共储存税40吨,甲池注进水4吨,乙池放水8吨,甲池中水的吨数就与乙池中水的吨数相等。

两个水池原来各有水多少吨?解设乙池原有X吨水,甲为(40-X)吨:X-8=(40-X)+4X=2640-26=14(吨)甲24某地下管道由甲工程队单独铺设需要12天,由乙工程队单独修设需要18天。

如果有由两个工程队从两端同时想象施工,要多少天可以铺好?解:设X天可以铺好1/18X+1/12X=12/36X+3/36X=15/36X=1X=1除以5/36X=1乘以36/5X=36/5即要36/5天25 将内径为200毫米的圆柱形水桶中的满桶水倒入一个内部长、宽、高分别为300毫米、300毫米、80毫米的长方形铁盒,正好倒满。

求圆柱形水桶的水高?(精确到毫米。

派取3.14)设水桶的高是X3。

14*100*100*X=300*300*80X=229即水桶的高是229毫米262 内径为90毫米的圆柱形长玻璃杯(已装满水)向一个地面直径为131*131平方毫米,内高为81毫米的长方形铁盒到水,当铁盒装满水时,玻璃杯中水的高度下降多少?设下降高度是X下降的水的体积等于铁盒中的水的体积。

3。

14*45*45*X=131*131*81X=218。

6水面下降218。

6毫米。

1.两车站相距275km,慢车以50km/一小时的速度从甲站开往乙站,1h时后,快车以每小时75km的速度从乙站开往甲站,那么慢车开出几小时后与快车相遇?设慢车开出a小时后与快车相遇50a+75(a-1)=27550a+75a-75=275125a=350a=2.8小时2.一辆汽车以每小时40km的速度由甲地开往乙地,车行3h后,因遇雨,平均速度被迫每小时减少10km,结果到乙地比预计的时间晚了45min,求甲乙两地距离。

设原定时间为a小时45分钟=3/4小时根据题意40a=40×3+(40-10)×(a-3+3/4)40a=120+30a-67.510a=52.5a=5.25=5又1/4小时=21/4小时所以甲乙距离40×21/4=210千米3、某车间的钳工班,分两队参见植树劳动,甲队人数是乙队人数的2倍,从甲队调16人到乙队,则甲队剩下的人数比乙队的人数的一半少3人,求甲乙两队原来的人数?解:设乙队原来有a人,甲队有2a人那么根据题意2a-16=1/2×(a+16)-34a-32=a+16-63a=42a=14那么乙队原来有14人,甲队原来有14×2=28人现在乙队有14+16=30人,甲队有28-16=12人4、已知某商店3月份的利润为10万元,5月份的利润为13.2万元,5月份月增长率比4月份增加了10个百分点.求3月份的月增长率。

解:设四月份的利润为x则x*(1+10%)=13.2所以x=12设3月份的增长率为y则10*(1+y)=xy=0.2=20%所以3月份的增长率为20%5、某校为寄宿学生安排宿舍,如果每间宿舍住7人,呢么有6人无法安排。

如果每间宿舍住8人,那么有一间只住了4人,且还空着5见宿舍。

求有多少人?解:设有a间,总人数7a+6人7a+6=8(a-5-1)+47a+6=8a-44a=50有人=7×50+6=356人6、一千克的花生可以炸0.56千克花生油,那么280千克可以炸几多花生油?按比例解决设可以炸a千克花生油1:0.56=280:aa=280×0.56=156.8千克完整算式:280÷1×0.56=156.8千克7、一批书本分给一班每人10本,分给二班每人15本,现均分给两个班,每人几本?解:设总的书有a本一班人数=a/10二班人数=a/15那么均分给2班,每人a/(a/10+a/15)=10×15/(10+15)=150/25=6本8、六一中队的植树小队去植树,如果每人植树5棵,还剩下14棵树苗,如果每人植树7棵,就少6棵树苗。

这个小队有多少人?一共有多少棵树苗?解:设有a人5a+14=7a-62a=20a=10一共有10人有树苗5×10+14=64棵9、一桶油连油带筒重50kg,第一次倒出豆油的的一半少四千克,第二次倒出余下的四分之三多二又三分之二kg,这时连油带桶共重三分之一kg,原来桶中有多少油?解:设油重a千克那么桶重50-a千克第一次倒出1/2a-4千克,还剩下1/2a+4千克第二次倒出3/4×(1/2a+4)+8/3=3/8a+17/3千克,还剩下1/2a+4-3/8a-17/3=1/8a-5/3千克油根据题意1/8a-5/3+50-a=1/348=7/8aa=384/7千克原来有油384/7千克10、用一捆96米的布为六年级某个班的学生做衣服,做15套用了33米布,照这样计算,这些布为哪个班做校服最合适?(1班42人,2班43人,3班45人)设96米为a个人做根据题意96:a=33:1533a=96×15a≈43.6所以为2班做合适,有富余,但是富余不多,为3班做就不够了11、一个分数,如果分子加上123,分母减去163,那么新分数约分后是3/4;如果分子加上73,分母加上37,那么新分数约分后是1/2,求原分数。

解:设原分数分子加上123,分母减去163后为3a/4a根据题意(3a-123+73)/(4a+163+37)=1/26a-100=4a+200a=150那么原分数=(3×150-123)/(4×150+163)=327/76312、水果店运进一批水果,第一天卖了60千克,正好是第二天卖的三分之二,两天共卖全部水果的四分之一,这批水果原有多少千克(用方程解)设水果原来有a千克60+60/(2/3)=1/4a60+90=1/4a1/4a=150a=600千克水果原来有600千克13、仓库有一批货物,运出五分之三后,这时仓库里又运进20吨,此时的货物正好是原来的二分之一,仓库原来有多少吨?(用方程解)设原来有a吨a×(1-3/5)+20=1/2a0.4a+20=0.5a0.1a=20原来有200吨14、王大叔用48米长的篱笆靠墙围一块长方形菜地。

相关文档
最新文档