交大出版社 统计学PPT课件(08)第8章 假设检验
合集下载
统计学-第八章 假设检验
验和单侧检验。以总体均值μ 的检验为例:
假设 原假设
双侧检验
单侧检验
左侧检验 右侧检验
H0 : m =m0 H0 : m m0 H0 : m m0
备择假设 H1 : m ≠m0 H1 : m <m0 H1 : m >m0
三、假设检验的程序---
4.例题分析
[例8.1] 某品牌洗衣粉在它的产品说明书中声称:平 均净含量不少于1250克。从消费者的利益出发,有关研 究人员要通过抽检其中的一批产品来验证该产品制造商 的说明是否属实。试写出用于检验的原假设与备择假设。
2.接受域:概率P>的区域,为大概率区域,称之 为原假设的接受区域。
3.拒绝域:概率P≤的区域,为小概率区域,称之 为原假设的拒绝区域。
三、假设检验的程序---
1.拒绝原假设H1 原则:临界值
2.接受原假设H0 原则:临界值
检验统计值的绝 对值大于临界值;
检验统计值的绝 对值小于临界值;
假设 H0为真实 H0为不真实
接受H0 判断正确
采伪错误()
拒绝H0 弃真错误()
判断正确
四、假设检验中的两类错误
第I类()错误和第II类()错误的关系
和的关系就像 翘翘板,小就 大, 大就小。
你要同时减少两类 错误的惟一办法是 增加样本容量!
关乎决策:三个与其
与其,人为地把显著性水平固定按某一水平上,不 如干脆选取检验统计量的P值;
第二节 一个正态总体的假设检验
二、均值m的假设检验
3.给出显著性水平(0.01、0.05或0.1)
4.确定接受域和拒绝域(以双侧检验为例)
2已知:当Z Z 2
,则拒绝原假设,反之则接受H0;
假设 原假设
双侧检验
单侧检验
左侧检验 右侧检验
H0 : m =m0 H0 : m m0 H0 : m m0
备择假设 H1 : m ≠m0 H1 : m <m0 H1 : m >m0
三、假设检验的程序---
4.例题分析
[例8.1] 某品牌洗衣粉在它的产品说明书中声称:平 均净含量不少于1250克。从消费者的利益出发,有关研 究人员要通过抽检其中的一批产品来验证该产品制造商 的说明是否属实。试写出用于检验的原假设与备择假设。
2.接受域:概率P>的区域,为大概率区域,称之 为原假设的接受区域。
3.拒绝域:概率P≤的区域,为小概率区域,称之 为原假设的拒绝区域。
三、假设检验的程序---
1.拒绝原假设H1 原则:临界值
2.接受原假设H0 原则:临界值
检验统计值的绝 对值大于临界值;
检验统计值的绝 对值小于临界值;
假设 H0为真实 H0为不真实
接受H0 判断正确
采伪错误()
拒绝H0 弃真错误()
判断正确
四、假设检验中的两类错误
第I类()错误和第II类()错误的关系
和的关系就像 翘翘板,小就 大, 大就小。
你要同时减少两类 错误的惟一办法是 增加样本容量!
关乎决策:三个与其
与其,人为地把显著性水平固定按某一水平上,不 如干脆选取检验统计量的P值;
第二节 一个正态总体的假设检验
二、均值m的假设检验
3.给出显著性水平(0.01、0.05或0.1)
4.确定接受域和拒绝域(以双侧检验为例)
2已知:当Z Z 2
,则拒绝原假设,反之则接受H0;
《假设检验检验》课件
《假设检验检验》PPT课 件
数据分析中的假设检验
什么是假设检验
假设检验是一种统计方法,用于通过样本数据来推断总体参数的性质。它可以帮助我们判断一个观察结 果是由偶然因素引起的,还是真实存在的差异。
假设检验的步骤
1
2. 选择检验统计量
2
选择适合问题的检验统计量,如t值、
z值等。
3
4. 计算统计量
4
利用样本数据计算检验统计量的值。
5
6. 得出结论
6
根据决策,得出关于总体参数的结论。
1. 建立假设
确定原始假设和备择假设,描述总体 参数的状态。
3. 设定显著性水平
选择显著性水平,决定拒绝原始假设 的界限。
5. 做出决策
根据检验统计量的值和显著性水平, 决定是否拒绝原始假设。
常用的假设检验方法
单样本t检验
结论的解释
根据结果的解释,得出关于总体参数的结论,并提供相应的推论。
实例演示及应用场景
通过具体的实例演示,展示假设检验在各个领域的应用,如医学、市场研究、环境保护等。
总结与展望
假设检验是数据分析中重要的工具之一,它可以帮助我们做出科学的决策, 并推动各个领域的发展。未来,我们可以进一步研究和改进假设检验方法, 提高其效能和适用性。
用于比较一个样本的平均值 与已知值或者另一个样本的 平均值。
独立样本t检验
用于比较两个独立样本的平 均值是否存在显著差异。
相关样本t检验
用于比较两个相关样本的平 均值是否存在显著差异。
如何解读假设检验结果
拒绝原始假设
如
接受原始假设
如果检验结果的p值大于等于显著性水平,我们接受原始假设。
数据分析中的假设检验
什么是假设检验
假设检验是一种统计方法,用于通过样本数据来推断总体参数的性质。它可以帮助我们判断一个观察结 果是由偶然因素引起的,还是真实存在的差异。
假设检验的步骤
1
2. 选择检验统计量
2
选择适合问题的检验统计量,如t值、
z值等。
3
4. 计算统计量
4
利用样本数据计算检验统计量的值。
5
6. 得出结论
6
根据决策,得出关于总体参数的结论。
1. 建立假设
确定原始假设和备择假设,描述总体 参数的状态。
3. 设定显著性水平
选择显著性水平,决定拒绝原始假设 的界限。
5. 做出决策
根据检验统计量的值和显著性水平, 决定是否拒绝原始假设。
常用的假设检验方法
单样本t检验
结论的解释
根据结果的解释,得出关于总体参数的结论,并提供相应的推论。
实例演示及应用场景
通过具体的实例演示,展示假设检验在各个领域的应用,如医学、市场研究、环境保护等。
总结与展望
假设检验是数据分析中重要的工具之一,它可以帮助我们做出科学的决策, 并推动各个领域的发展。未来,我们可以进一步研究和改进假设检验方法, 提高其效能和适用性。
用于比较一个样本的平均值 与已知值或者另一个样本的 平均值。
独立样本t检验
用于比较两个独立样本的平 均值是否存在显著差异。
相关样本t检验
用于比较两个相关样本的平 均值是否存在显著差异。
如何解读假设检验结果
拒绝原始假设
如
接受原始假设
如果检验结果的p值大于等于显著性水平,我们接受原始假设。
第八章----假设检验课件PPT
第八章 假设检验
假设检验的基本问题 一个总体参数的检验 两个总体参数的检验
1
学习目标
假设检验的基本思想和原理 假设检验的步骤 一个总体参数的检验 两个总体参数的检验 P值的计算与应用 用Excel进行检验
2
正常人的平均体温是37oC吗?
37.1 36.9 36.9 37.1 36.4
在一次试验中小概率事件一旦发生,我们就有理 由拒绝原假设
8
原假设
(null hypothesis)
1. 又称“0假设”,研究者想收集证据予以反对的假 设,用H0表示
2. 所表达的含义总是指参数没有变化或变量之间没 有关系
3. 最初被假设是成立的,之后根据样本数据确定是否 有足够的证据拒绝它
4. 总是有符号 , 或
原假设为真时拒绝原假设 会产生一系列后果 第一类错误的概率为
❖被称为显著性水平
❖ 2.第二类错误(取伪错误)
原假设为假时接受原假设 第二类错误的概率为(Beta)
12
两类错误的控制
❖ 一般来说,对于一个给定的样本,如果犯第Ι 类错误的代价比犯第Ⅱ类错误的代价相对较 高,则将犯第Ⅰ类错误的概率定得低些较为 合理;反之,如果犯第Ι类错误的代价比犯第 Ⅱ类错误的代价相对较低,则将犯第Ⅰ类错 误的概率定得高些
H0 : = 某一数值 H0 : 某一数值 H0 : 某一数值
例如, H0 : 10cm
9
备择假设
(alternative hypothesis)
1. 也称“研究假设”,研究者想收集证据予以支持的 假设(期望出现的结论作为备选假设),用H1或Ha表 示
2. 所表达的含义是总体参数发生了变化或变量之间 有某种关系
➢ 我们应该放弃“正常人的平均体温是37oC”这个 共识吗?本章的内容就将提供一套标准统计程序 来检验这样的观点
假设检验的基本问题 一个总体参数的检验 两个总体参数的检验
1
学习目标
假设检验的基本思想和原理 假设检验的步骤 一个总体参数的检验 两个总体参数的检验 P值的计算与应用 用Excel进行检验
2
正常人的平均体温是37oC吗?
37.1 36.9 36.9 37.1 36.4
在一次试验中小概率事件一旦发生,我们就有理 由拒绝原假设
8
原假设
(null hypothesis)
1. 又称“0假设”,研究者想收集证据予以反对的假 设,用H0表示
2. 所表达的含义总是指参数没有变化或变量之间没 有关系
3. 最初被假设是成立的,之后根据样本数据确定是否 有足够的证据拒绝它
4. 总是有符号 , 或
原假设为真时拒绝原假设 会产生一系列后果 第一类错误的概率为
❖被称为显著性水平
❖ 2.第二类错误(取伪错误)
原假设为假时接受原假设 第二类错误的概率为(Beta)
12
两类错误的控制
❖ 一般来说,对于一个给定的样本,如果犯第Ι 类错误的代价比犯第Ⅱ类错误的代价相对较 高,则将犯第Ⅰ类错误的概率定得低些较为 合理;反之,如果犯第Ι类错误的代价比犯第 Ⅱ类错误的代价相对较低,则将犯第Ⅰ类错 误的概率定得高些
H0 : = 某一数值 H0 : 某一数值 H0 : 某一数值
例如, H0 : 10cm
9
备择假设
(alternative hypothesis)
1. 也称“研究假设”,研究者想收集证据予以支持的 假设(期望出现的结论作为备选假设),用H1或Ha表 示
2. 所表达的含义是总体参数发生了变化或变量之间 有某种关系
➢ 我们应该放弃“正常人的平均体温是37oC”这个 共识吗?本章的内容就将提供一套标准统计程序 来检验这样的观点
第八章 假设检验 (《统计学》PPT课件)
与其,为选取“适当的”的而苦恼,不如干脆 把真正的(P值)算出来。
第二节 一个正态总体的假设检验
一、正态总体
设总体X ~ N(m, 2),抽取容量为n的样本 x1, x2, xn
样本均值 X 与方差S2 计算公式分别为:
2
1 n 1
n i1
(xi
X)
我们将利用上述信息,来检验关于未知参数均值 和方差的假设。
总体参数
均值
方差
总体方差已知
z 检验
(单尾和双尾)
总体方差已知
t 检验
(单尾和双尾)
2 检验
(单尾和双尾)
第二节 一个正态总体的假设检验
二、均值m的假设检验
1.H0:m=m0
2.选择检验统计量:
2已知: Z X m0 ~ N(0,1)
/ n
2未知:
小样本: t X m0 ~ t(n 1)
这个值不像我 们应该得到的 样本均值 ...
...因此我们拒绝 原假设μ=50
... 如果这是总 体的假设均值
60
μ=80
H0
样本均值
第一节 假设检验概述
三、假设检验的程序
一个完整的假设检验过程,通常包括以下几个步骤:
首先,设立原假设H0与备选假设H1; 第二步,构造检验统计量,并根据样本观察数据
小样本:当 t t
2
,则拒绝原假设,反之则接受H0;
5.得出结论。
二、均值m的假设检验
6.例题分析
[例8.3] 某广告公司在广播电台做流行歌曲磁带广告 ,它的插播广告是针对平均年龄为21岁的年轻人的,标 准差为16。这家广告公司经理想了解其节目是否为目标 听众所接受。假定听众的年龄服从正态分布,现随机抽 取400多位听众进行调查,得出的样本结果为x 25 岁S2,18 。以0.05的显著水平判断广告公司的广告策划是否符合 实际?
第二节 一个正态总体的假设检验
一、正态总体
设总体X ~ N(m, 2),抽取容量为n的样本 x1, x2, xn
样本均值 X 与方差S2 计算公式分别为:
2
1 n 1
n i1
(xi
X)
我们将利用上述信息,来检验关于未知参数均值 和方差的假设。
总体参数
均值
方差
总体方差已知
z 检验
(单尾和双尾)
总体方差已知
t 检验
(单尾和双尾)
2 检验
(单尾和双尾)
第二节 一个正态总体的假设检验
二、均值m的假设检验
1.H0:m=m0
2.选择检验统计量:
2已知: Z X m0 ~ N(0,1)
/ n
2未知:
小样本: t X m0 ~ t(n 1)
这个值不像我 们应该得到的 样本均值 ...
...因此我们拒绝 原假设μ=50
... 如果这是总 体的假设均值
60
μ=80
H0
样本均值
第一节 假设检验概述
三、假设检验的程序
一个完整的假设检验过程,通常包括以下几个步骤:
首先,设立原假设H0与备选假设H1; 第二步,构造检验统计量,并根据样本观察数据
小样本:当 t t
2
,则拒绝原假设,反之则接受H0;
5.得出结论。
二、均值m的假设检验
6.例题分析
[例8.3] 某广告公司在广播电台做流行歌曲磁带广告 ,它的插播广告是针对平均年龄为21岁的年轻人的,标 准差为16。这家广告公司经理想了解其节目是否为目标 听众所接受。假定听众的年龄服从正态分布,现随机抽 取400多位听众进行调查,得出的样本结果为x 25 岁S2,18 。以0.05的显著水平判断广告公司的广告策划是否符合 实际?
统计学 第8章 假设检验 教学课件ppt
2. 一般来说,发生哪一类错误的后果更为严重,就应 该首要控制哪类错误发生的概率。但由于犯第Ι类错 误的概率是可以由研究者控制的,因此在假设检验 中,人们往往先控制第Ι类错误的发生概率
确定适当的检验统计量
什么是检验统计量?
1. 用于假设检验决策的统计量
原假设H0为真 点估计量的抽样分布 (样本均值、样本方差)
比较 3. 作出决策
双侧检验:I统计量I > 临界值,拒绝H0 左侧检验:统计量 < -临界值,拒绝H0 右侧检验:统计量 > 临界值,拒绝H0
利用 P 值 进行决策
什么是P 值?
(P-value)
P值告诉我们: 如果原假设是正确的话,我们得到得到样本观察 结果或更极端结果出现的可能性有多大,如果这 个可能性很小,就应该拒绝原假设
因此,如果在一次抽样中竟然出现了满足
X 0 / n
ห้องสมุดไป่ตู้
的 u /2
X
那么我们就有理由怀疑原假设H0的正确性了,因此会拒
绝H0 。
由于 | U |
X 0 / n
u 2
是一个小概率事件.
故我们可以取拒绝域为:
W: | U | u 2
如果由样本值算得该统计量的实测值落入区域 W,则拒绝H0 ;否则,不能拒绝H0 .
1、生产已不正常
2、生产正常:但属于小概率事件,一次抽样中几乎 不可能发生
因此:在原假设成立(生产正常)的情况下, 若发生小概率事件,则我们有充分的理由怀 疑原假设已不成立。
因此若H0为真,即 0 时,
X
0
/ n
u /2
是一个小概率事件:1%、5%、10%
而小概率事件在一次试验中基本上不应该发生 。
确定适当的检验统计量
什么是检验统计量?
1. 用于假设检验决策的统计量
原假设H0为真 点估计量的抽样分布 (样本均值、样本方差)
比较 3. 作出决策
双侧检验:I统计量I > 临界值,拒绝H0 左侧检验:统计量 < -临界值,拒绝H0 右侧检验:统计量 > 临界值,拒绝H0
利用 P 值 进行决策
什么是P 值?
(P-value)
P值告诉我们: 如果原假设是正确的话,我们得到得到样本观察 结果或更极端结果出现的可能性有多大,如果这 个可能性很小,就应该拒绝原假设
因此,如果在一次抽样中竟然出现了满足
X 0 / n
ห้องสมุดไป่ตู้
的 u /2
X
那么我们就有理由怀疑原假设H0的正确性了,因此会拒
绝H0 。
由于 | U |
X 0 / n
u 2
是一个小概率事件.
故我们可以取拒绝域为:
W: | U | u 2
如果由样本值算得该统计量的实测值落入区域 W,则拒绝H0 ;否则,不能拒绝H0 .
1、生产已不正常
2、生产正常:但属于小概率事件,一次抽样中几乎 不可能发生
因此:在原假设成立(生产正常)的情况下, 若发生小概率事件,则我们有充分的理由怀 疑原假设已不成立。
因此若H0为真,即 0 时,
X
0
/ n
u /2
是一个小概率事件:1%、5%、10%
而小概率事件在一次试验中基本上不应该发生 。
统计学第8章假设检验
市场调查中常用的假设检验方法包括T检验、Z检验和卡方 检验等。选择合适的检验方法需要考虑数据的类型、分布 和调查目的。例如,对于连续变量,T检验更为适用;对于 分类变量,卡方检验更为合适。
医学研究中假设检验的应用
临床试验
在医学研究中,假设检验被广泛应用于临床试验。研究 人员通过设立对照组和实验组,对不同组别的患者进行 不同的治疗,然后收集数据并使用假设检验来分析不同 治疗方法的疗效。
03 假设检验的统计方法
z检验
总结词
z检验是一种常用的参数检验方法,用于检验总体均值的假设。
详细描述
z检验基于正态分布理论,通过计算z分数对总体均值进行检验。它适用于大样本 数据,要求数据服从正态分布。z检验的优点是简单易懂,计算方便,但前提假 设较为严格。
t检验
总结词
t检验是一种常用的参数检验方法,用于检验两组数据之间的差异。
卡方检验
总结词
卡方检验是一种非参数检验方法,用于 比较实际观测频数与期望频数之间的差 异。
VS
详细描述
卡方检验通过计算卡方统计量来比较实际 观测频数与期望频数之间的差异程度。它 适用于分类数据的比较,可以检验不同分 类之间的关联性。卡方检验的优点是不需 要严格的假设前提,但结果解释需谨慎。
04 假设检验的解读与报告
详细描述
t检验分为独立样本t检验和配对样本t检验,分别用于比较两组独立数据和同一组数据在不同条件下的 差异。t检验的前提假设是小样本数据近似服从正态分布。t检验的优点是简单易行,但前提假设需满 足。
方差分析
总结词
方差分析是一种统计方法,用于比较两个或多个总体的差异。
详细描述
方差分析通过分析不同组数据的方差来比较各组之间的差异。它适用于多组数据的比较,可以检验不同因素对总 体均值的影响。方差分析的前提假设是各组数据服从正态分布,且方差齐性。
假设检验详细知识PPT课件
解: 用t检验法.
检验假设 H0:112.6(0) H1:112.6(0) Q0.05,n7
t(n1)t0.025(6)2.4469
2
23
返回
第八章 假设检验
概率统计
Q x 1 1 2 .8 ,s7 27 1 1i 7 1(x i 1 1 2 .8 )2 (1 .1 3 6 )2
t x112.6 0.4659 s7 / 7
0.511 0.520 0.515 0.512
问机器是否正常?
7
返回
第八章 假设检验
概率统计
分析:用 和 分别表示这一天袋装糖重总体 X
的均值和标准差.则 X~N (,0.01 2)其 5 , 中 未.知
问题:根据样本值判断 0还 .5 是 0..5
提出两个对立假设 H 0 : 0 0 . 5 和 H 1 : 0 .
返回
第八章 假设检验
(2)检验假设 H 0:0,H 1:0
概率统计
选择统 U计 X/n量 ~N(0,1)
当H
成立时,
0
P( X u0
/ n
u )
P(Xuuu0
/ n
u)
P(X/unu0/unu)
Xu P(
/ n
u)
对于给定的检验水平 01
得拒绝域为 (3)检验假设
W{uu}
其中u X 0 / n
不拒绝H0同样要承担风险,这时,可能将错误的 假设误认为是正确的,这种“以假为真”的错误称 为第二类错误(取伪), 犯第二类错误的概率是:
β=P{当H0不真时 , 不拒绝H0}.
13
返回
第八章 假设检验
概率统计
三、假设检验的基本步骤
第8章 平均数的假设检验
• 常用的检验统计量共同的特征是:检验统计量= (样本统计量-相应参数)/样本统计量的标准误差。
重点
• 根据样本平均数的抽样分布,可以对总体 平均数进行差异显著性检验,需考虑总体 方差是否已知,总体是否服从正态分布, 是大样本还是小样本等问题。
• 根据两个独立样本平均数之差的抽样分布, 可以检验两个总体的平均数有无显著差异, 需考虑两总体的方差是否已知,两总体是 否服从正态分布,方差是否齐性,是大样 本还是小样本等问题。
• 显著性水平和可靠性程度(置信水平)之间 的关系是:两者之和为1。
双侧检验与单侧检验
• 双侧检验(two-tailed test,twosided test):将α等分为左右两个部分,
左右两边各设置一个拒绝域,中间是接受域。 每个拒绝域相应的概率为α/2. 零假设为无显著 差异的情况;
• 单侧检验(one-tailed test):要么将与α
– 备择假设(alternative hypothesis,或称 研究假设、对立假设),用H1表示。
假设检验是从零假设出发,视其被拒绝的概 率,从而得出决断。
假设检验的步骤
• 2.确定适当的检验统计量并计算其值
• 确定检验统计量时,要根据抽样分布做出 选择。不同类型的问题涉及到的抽样分布 不同,要选择不同的检验统计量。
假设检验的基本思想
设(X1,X2,…,Xn)
是抽自正态分布总体 X~N(μ, σ2)的一个容 量为n的简单随机样 本,则其样本均值也 是一个正态分布随机 变量,且有
E(X) X
D(
X
)
2 X
2
n
X ~ N(, 2 )
n
Z X ~ N (0,12 ) / n
假设检验
重点
• 根据样本平均数的抽样分布,可以对总体 平均数进行差异显著性检验,需考虑总体 方差是否已知,总体是否服从正态分布, 是大样本还是小样本等问题。
• 根据两个独立样本平均数之差的抽样分布, 可以检验两个总体的平均数有无显著差异, 需考虑两总体的方差是否已知,两总体是 否服从正态分布,方差是否齐性,是大样 本还是小样本等问题。
• 显著性水平和可靠性程度(置信水平)之间 的关系是:两者之和为1。
双侧检验与单侧检验
• 双侧检验(two-tailed test,twosided test):将α等分为左右两个部分,
左右两边各设置一个拒绝域,中间是接受域。 每个拒绝域相应的概率为α/2. 零假设为无显著 差异的情况;
• 单侧检验(one-tailed test):要么将与α
– 备择假设(alternative hypothesis,或称 研究假设、对立假设),用H1表示。
假设检验是从零假设出发,视其被拒绝的概 率,从而得出决断。
假设检验的步骤
• 2.确定适当的检验统计量并计算其值
• 确定检验统计量时,要根据抽样分布做出 选择。不同类型的问题涉及到的抽样分布 不同,要选择不同的检验统计量。
假设检验的基本思想
设(X1,X2,…,Xn)
是抽自正态分布总体 X~N(μ, σ2)的一个容 量为n的简单随机样 本,则其样本均值也 是一个正态分布随机 变量,且有
E(X) X
D(
X
)
2 X
2
n
X ~ N(, 2 )
n
Z X ~ N (0,12 ) / n
假设检验
第8章假设检验
是正确的,也可以是不正确的
定义8.1.1:所谓假设检验,是先对总体的分布函数 形式或分布的某些参数作出某些可能的假设,然后 根据所得的样本数据,对假设的正确性作出判断
假
§8.1 基本概念
设
检
例8.1.1:检验一批产品的废品率是否超过0.03, 验
把“ p 0.03 ”作为一个假设,从这批产品中抽取
若干个样品,记其中所含废品数为 X
➢ 当 X 较小时,认为假设正确,或“接受”假设
➢ 当 X 较大时,则认为假设是不正确,“拒绝”
或“否定”假设
假
§8.1 基本概念
设
检
例8.1.2:判断一个硬币是否均匀,即投掷时出现 验
正面的概率是否为
1
2,
把“ p
1 2
”作为一个假设,
将硬币投掷100次,以 X 记正面出现的次数
原假设,而将新方法优于原方法取为对立假设
假
§8.1 基本概念
设
检
➢ 或者说对立假设可能是我们真正感兴趣的,接受 验
对立假设可能意味着得到某种有特别意义的结论,
或意味着采取某种重要决断
➢ 因此对统计假设作判断前,在处理原假设时总是 偏于保守,在没有充分证据时,不应轻易拒绝原假 设,或者说在没有充分的证据时不能轻易接受对立 假设
➢
例8.1.2的统计假设为:H0
:
p
1 2
H1
:
p
1 2
假
§8.1 基本概念
设
检
注:当根据抽样结果接受或拒绝一个假设时,只 验
是表明我们的一种判断;由于样本的随机性,这
样作出的判断就有可能犯错误
➢ 例如:一批产品的废品率只有0.01,因为0.01<
第8章-假设检验PPT课件
2021/3/12
6
假设检验的特点
采用逻辑上的反证法
——先认为假设为真,观察在此前提下 所抽到样本的出现是否合理。若合理 则判断假设可接受,反之拒绝假设。
判断是否合理的依据统计上的小概 率原理(即这里的反证法是基于一 定概率的反证法)。
2021/3/12
7
什么是假设?(hypothesis)
统计学 第 8 章 假设检验
2021/3/12
1
假设检验在统计方法中的地位
统计方法
描述统计
推断统计
2021/3/12
参数估计
假设检验
2
第 8 章 假设检验
8.1 假设检验的基本问题 8.2 一个总体参数的检验 8.3 两个总体参数的检验 8.4 假设检验中的其他问题
我认为该企业生产的零件 的平均长度为4厘米!
样本。 第3步:构造检验统计量。确定一个适当的检验统计
量,并利用样本数据算出其具体数值。
第4步:确定显著性水平a。计算出其临界值,指定拒
绝域。 第5步:做出统计决策。将统计量的值与临界值进行
比较,若统计量的值落在拒绝域内,拒绝原假设H0, 否则不拒绝原假设H0。(也可以利用P值做出决策)
2021/3/12
逻辑上合理吗?
假设检验的理论基础:A断言正确,与这一断言 相反的事件称为小概率事件,在一次试验中,小 概率事件不可能发生。但是如果不可能发生的结 果却出现了,那么就可以把这个结果作为推翻 (否定)“A断言”的证据。
基于这一次试验,我的判断会不会有误呢?
2021/3/12
5
假设检验中的小概率原理
小概率? 概率是从0到1之间的一个数,因此小概率就应
500g 15
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拒绝 H0
结论:
说明该机器的性能不好
-2.262
0
2.262
t
2 未知小样本均值的检验
(P 值的计算与应用)
第 1步:进入 Excel 表格界面,选择“插入”下拉 菜单 第 2 步:选择“函数”点击,并在函数分类中点 击“统 计” ,然后,在函数名的菜单中选择字 符 “TDIST”,确定 第3步:在弹出的X栏中录入计算出的t值3.16 在自由度(Deg-freedom)栏中录入9 在Tails栏中录入2,表明是双侧检验(单测 检验则在该栏内录入1)
拒绝 H0
.025
结论:
有证据表明新机床加工的零件 的椭圆度与以前有显著差异
-1.96
0
1.96
Z
2 已知均值的检验
(P 值的计算与应用)
第 1步:进入 Excel 表格界面,选择“插入”下拉 菜单 第2步:选择“函数”点击 第 3 步:在函数分类中点击“统计”,在函数名 的菜 单下选择字符“NORMSDIST”然后确定 第4步:将Z的绝对值2.83录入,得到的函数值为 0.997672537 P值=2(1-0.997672537)=0.004654 P值远远小于/2,故拒绝H0
和的关系就像 翘翘板,小就 大, 大就小
你不能同时减 少两类错误!
假设检验的流程
提出假设 确定适当的检验统计量 规定显著性水平 计算检验统计量的值 作出统计决策
确定适当的检验统计量
什么是检验统计量?
1. 用于假设检验决策的统计量 2. 选择统计量的方法与参数估计相同,需考 虑
4.
建立的原假设与备择假设应为 H0: 10 H1: 10
双侧检验
(显著性水平与拒绝域 )
抽样分布
拒绝域 /2 1- 置信水平 拒绝域 /2
临界值
H0值
临界值
样本统计量
单侧检验
(显著性水平与拒绝域)
抽样分布
拒绝域 置信水平
1-
临界值
H0值
样本统计量
8.2 一个总体参数的检验
总体参数包括总体均值、 比例、方差等 分析之前必需陈述
什么是假设检验?
(hypothesis testing)
1.
2.
3.
事先对总体参数或分布形式作出某种假设, 然后利用样本信息来判断原假设是否成立 有参数假设检验和非参数假设检验 采用逻辑上的反证法,依据统计上的小概 率原理
提出原假设和备择假设
双侧检验
2 未知小样本均值的检验
(例题分析)
H0: = 5 H1: 5 = 0.05 df = 10 - 1 = 9 临界值(s):
拒绝 H0
.025 .025
检验统计量:
x 0 5.3 5 t 3.16 s n 0.3 10
决策:
在 = 0.05的水平上拒绝H0
否
小 样本量n
用样本标 准差S代替
大
z 检验
z 检验
t 检验
Z
X 0
n
Z
X 0 S n
t
X 0 S n
总体均值的检验
(2 已知或2未知大样本)
1. 假定条件
总体服从正态分布 若不服从正态分布, 可用正态分布来近似(n30)
2.
使用Z-统计量
2 已知: 2 未知:
单侧检验!
均值的单尾 t 检验
(计算结果)
H0: 40000 H1: < 40000 = 0.05 df = 20 - 1 = 19 临界值(s):
拒绝域 .05
检验统计量:
t x 0 s n 41000 40000 5000 20
0.894
决策:
1.
单侧检验
若p-值 ,不拒绝 H0 若p-值 < , 拒绝 H0 若p-值 /2, 不拒绝 H0 若p-值 < /2, 拒绝 H0
2.
双侧检验
双侧检验和单侧检验
双侧检验与单侧检验
(假设的形式)
研究的问题
假设 双侧检验
H0 H1
左侧检验
右侧检验
= 0 ≠0
1. 2.
是一个概率值 如果原假设为真,P-值是抽样分布中大于 或小于样本统计量的概率
左侧检验时,P-值为曲线上方小于等于检验 统计量部分的面积 右侧检验时,P-值为曲线上方大于等于检验 统计量部分的面积
H0 能被拒绝的最小值
3.
被称为观察到的(或实测的)显著性水平
双侧检验的P 值
/ 2 / 2 拒绝
是大样本还是小样本
总体方差已知还是未知
3.
检验统计量的基本形式为 X 0 Z n
规定显著性水平
(significant level)
什么是显著性水平? 1. 是一个概率值
2. 原假设为真时,拒绝原假设的概率
被称为抽样分布的拒绝域 常用的 值有0.01, 0.05, 0.10
2 未知小样本均值的检验
(例题分析)
【例】一个汽车轮胎制造商声
称,某一等级的轮胎的平均寿 命在一定的汽车重量和正常行 驶条件下大于 40000公里,对一 个由 20 个轮胎组成的随机样本 作了试验,测得平均值为 41000 公里,标准差为 5000 公里。已 知轮胎寿命的公里数服从正态 分布,我们能否根据这些数据 作出结论,该制造商的产品同 他所说的标准相符?( = 0.05)
Z Z
X 0
X 0 S n
n
~ N (0,1) ~ N (0,1)
2 已知均值的检验
(例题分析)
【例】某机床厂加工一种零件, 根据经验知道,该厂加工零件的 椭圆度近似服从正态分布,其总 体均值为 0=0.081mm ,总体标准 差为= 0.025 。今换一种新机床进 行加工,抽取 n=200个零件进行检 验,得到的椭圆度为 0.076mm。试 问新机床加工零件的椭圆度的均 值与以前有无显著差异 ?( = 0.05)
8.1 假设检验的基本
问题
8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 假设问题的提出 假设的表达式 两类错误 假设检验的流程 利用P值进行决策 单侧检验
假设问题的提出
什么是假设?
(hypothesis)
对总体参数的的数值 所作的一种陈述
我认为该地区新生婴儿 的平均体重为3190克!
双侧检验
2 已知均值的检验
(例题分析)
H0: = 0.081 H1: 0.081 = 0.05 n = 200
检验统计量:
z
x 0
n
0.076 0.081 0.025 200
2.83
临界值(s):
拒绝 H0
.025
决策:
在 = 0.05的水平上拒绝H0
假设检验中的两类错误
(决策风险)
假设检验中的两类错误
1. 第一类错误(弃真错误)
原假设为真时拒绝原假设 会产生一系列后果 第一类错误的概率为 被称为显著性水平 原假设为假时接受原假设 第二类错误的概率为(Beta)
2.第二类错误(取伪错误)
错误和 错误的关系
8.2.1 8.2.2 8.2.3 8.2.4 检验统计量的确定 总体均值的检验 总体比例的检验 总体方差的检验
一个总体参数的检验
一个总体
均值
比例
方差
Z 检验
(单尾和双尾)
t 检验
(单尾和双尾)
Z 检验
(单尾和双尾)
2检验
(单尾和双尾)
总体均值检验
总体均值的检验
(检验统计量)
是
总体 是否已知 ?
单侧检验
2 已知均值的检验
(小样本例题分析)
H0: 1020 H1: > 1020 = 0.05 n = 16 临界值(s):
拒绝域 0.05
检验统计量:
x 0 1080 1020 z 2.4 n 100 16
决策:
在 = 0.05的水平上拒绝H0
3. 表示为 (alpha)
4. 由研究者事先确定
作出统计决策
1. 2.
3.
4.
计算检验的统计量 根据给定的显著性水平,查表得出相应 的临界值z或z/2, t或t/2 将检验统计量的值与 水平的临界值进 行比较 得出拒绝或不拒绝原假设的结论
利用P值进行决策
什么是P 值?
(P-value)
1. 2.
什么是原假设?(null hypothesis) 待检验的假设,又称“0假设” 研究者想收集证据予以反对的假设 3. 总是有等号 , 或 4. 表示为 H0
H0: 某一数值 指定为 = 号,即 或 例如, H0: 3190(克)
提出原假设和备择假设
0 < 0
0 > 0
双侧检验
(原假设与备择假设的确定)
1.
2.
3.
属于决策中的假设检验 不论是拒绝H0还是不拒绝H0,都必需采取相 应的行动措施 例如,某种零件的尺寸,要求其平均长度为 10cm,大于或小于10cm均属于不合格
我们想要证明 ( 检验 ) 大于或小于这两种可能性 中的任何一种是否成立