排序算法总结

合集下载

十大经典排序算法总结

十大经典排序算法总结

⼗⼤经典排序算法总结最近⼏天在研究算法,将⼏种排序算法整理了⼀下,便于对这些排序算法进⾏⽐较,若有错误的地⽅,还请⼤家指正0、排序算法说明0.1 排序术语稳定:如果a=b,且a原本排在b前⾯,排序之后a仍排在b的前⾯不稳定:如果a=b,且a原本排在b前⾯,排序之后排在b的后⾯时间复杂度:⼀个算法执⾏所耗费的时间空间复杂度:⼀个算法执⾏完所需内存的⼤⼩内排序:所有排序操作都在内存中完成外排序:由于数据太⼤,因此把数据放在磁盘中,⽽排序通过磁盘和内存的数据传输才能进⾏0.2算法时间复杂度、空间复杂度⽐较0.3名词解释n:数据规模k:桶的个数In-place:占⽤常数内存,不占⽤额外内存Out-place:占⽤额外内存0.4算法分类1.冒泡排序冒泡排序是⼀种简单的排序算法。

它重复地⾛访过要排序的数列,⼀次⽐较两个元素,如果它们的顺序错误就把它们交换过来。

⾛访数列的⼯作是重复地进⾏直到没有再需要交换,也就是说该数列已经排序完成。

这个算法的名字由来是因为越⼩的元素会经由交换慢慢“浮”到数列的顶端1.1算法描述⽐较相邻的元素,如果前⼀个⽐后⼀个打,就交换对每⼀对相邻元素做同样的⼯作,从开始第⼀对到结尾最后⼀对,这样在最后的元素应该会是最⼤的数针对所有的元素重复以上的步骤,除了最后⼀个重复步骤1-3,知道排序完成1.2动图演⽰1.3代码实现public static int[] bubbleSort(int[] array) {if (array.length == 0)return array;for (int i = 0; i < array.length; i++)for (int j = 0; j < array.length - 1 - i; j++)if (array[j + 1] < array[j]) {int temp = array[j + 1];array[j + 1] = array[j];array[j] = temp;}return array;}1.4算法分析最佳情况:T(n) = O(n) 最差情况:T(n) = O(n2) 平均情况:T(n) = O(n2)2.选择排序表现简单直观的最稳定的排序算法之⼀,因为⽆论什么数据都是O(n2)的时间复杂度,⾸先在未排序序列中找到最⼩(⼤)元素,与数组中第⼀个元素交换位置,作为排序序列的起始位置,然后再从剩余未排序元素中继续寻找最⼩(⼤)的元素,与数组中的下⼀个元素交换位置,也就是放在已排序序列的末尾2.1算法描述1.初始状态:⽆序区为R[1..n],有序区为空2.第i躺排序开始时,当前有序区和⽆序区R[1..i-1]、R[i..n]3.n-1趟结束,数组有序化2.2动图演⽰2.3代码实现public static int[] selectionSort(int[] array) {if (array.length == 0)return array;for (int i = 0; i < array.length; i++) {int minIndex = i;for (int j = i; j < array.length; j++) {if (array[j] < array[minIndex]) //找到最⼩的数minIndex = j; //将最⼩数的索引保存}int temp = array[minIndex];array[minIndex] = array[i];array[i] = temp;}return array;}2.4算法分析最佳情况:T(n) = O(n2) 最差情况:T(n) = O(n2) 平均情况:T(n) = O(n2)3、插⼊排序是⼀种简单直观的排序算法,通过构建有序序列,对于未排序序列,在已排序序列中从后向前扫描,找到相应位置并插⼊,需要反复把已排序元素逐步向后挪位,为最新元素腾出插⼊空间3.1算法描述1.从第⼀个元素开始,该元素可以认为已经被排序2.取出下⼀个元素(h),在已排序的元素序列中从后往前扫描3.如果当前元素⼤于h,将当前元素移到下⼀位置4.重复步骤3,直到找到已排序的元素⼩于等于h的位置5.将h插⼊到该位置6.重复步骤2-53.2动图演⽰3.3代码实现public static int[] insertionSort(int[] array) {if (array.length == 0)return array;int current;for (int i = 0; i < array.length - 1; i++) {current = array[i + 1];int preIndex = i;while (preIndex >= 0 && current < array[preIndex]) {array[preIndex + 1] = array[preIndex];preIndex--;}array[preIndex + 1] = current;}return array;}3.4算法分析最佳情况:T(n) = O(n) 最坏情况:T(n) = O(n2) 平均情况:T(n) = O(n2)4、希尔排序是简单插⼊排序经过改进之后的⼀个更⾼效的版本,也称为缩⼩增量排序,同时该算法是冲破O(n2)的第⼀批算法之⼀。

10种常用典型算法

10种常用典型算法

10种常用典型算法1. 冒泡排序(Bubble Sort)冒泡排序是一种简单的排序算法。

它通过依次比较相邻的两个元素,如果顺序不对则交换位置。

这样,每一趟排序都会将最大的元素移动到末尾。

通过多次重复这个过程,直到所有元素按照升序排列为止。

2. 选择排序(Selection Sort)选择排序也是一种简单的排序算法。

它通过每次从未排序的部分中选出最小的元素,放到已排序部分的末尾。

通过多次重复这个过程,直到所有元素按照升序排列为止。

3. 插入排序(Insertion Sort)插入排序是一种简单且稳定的排序算法。

它通过将未排序的元素逐个插入到已排序部分的正确位置。

每次插入一个元素,已排序部分都是有序的。

通过多次重复这个过程,直到所有元素按照升序排列为止。

4. 快速排序(Quick Sort)快速排序是一种高效的排序算法。

它通过选择一个基准元素,将数组分成两部分,一部分元素小于基准,另一部分元素大于基准。

然后对这两部分递归地进行快速排序。

通过多次重复这个过程,直到所有元素按照升序排列为止。

5. 归并排序(Merge Sort)归并排序是一种稳定的排序算法。

它通过将数组递归地分成两半,分别对这两半进行归并排序,然后将排序好的两部分合并起来。

通过多次重复这个过程,直到所有元素按照升序排列为止。

6. 堆排序(Heap Sort)堆排序是一种高效的排序算法。

它利用堆的性质来进行排序,通过构建一个最大堆或最小堆,并不断地取出堆顶元素并调整堆。

通过多次重复这个过程,直到所有元素按照升序排列为止。

7. 计数排序(Counting Sort)计数排序是一种非比较性的整数排序算法。

它通过统计每个元素的个数来排序。

首先统计每个元素出现的次数,然后根据元素的大小顺序将其放入新的数组中。

通过多次重复这个过程,直到所有元素按照升序排列为止。

8. 桶排序(Bucket Sort)桶排序是一种非比较性的排序算法。

它通过将元素划分到不同的桶中,每个桶内再使用其他排序算法进行排序。

排列知识点归纳总结

排列知识点归纳总结

排列知识点归纳总结一、排列的定义排列是指将n个不同的元素从中选取r个元素进行排列的方式。

其表示形式为P(n, r),表示n个元素中选取r个元素进行排列的方式的个数。

排列的顺序很重要,不同的排列顺序会产生不同的排列组合。

例如,对于三个元素a、b、c,从中选取两个元素进行排列的方式有6种,分别为ab、ac、ba、bc、ca、cb。

二、排列的性质1. 排列的个数当从n个元素中选取r个元素进行排列时,排列的个数可以表示为:P(n, r) = n! / (n−r)!其中,“!”表示阶乘。

这个公式表示了从n个元素中选取r个元素进行排列的方式的个数。

2. 全排列当不限定选取元素的个数时,可以将所有的元素进行排列,这就是全排列。

全排列的个数为n!,其中n为元素的个数。

三、排列的计算方法在实际计算中,计算排列的个数常常涉及到阶乘的计算。

阶乘的计算可以通过递归或者循环的方法进行。

在计算排列的个数时,可以使用数学公式进行计算,也可以将问题转化为图形的排列方式进行计算。

四、常见问题1. 从n个元素中选取r个元素进行排列的方式的个数。

这是排列问题中最基本的问题之一,计算排列的个数可以通过公式进行计算。

2. 排列的性质排列的性质包括排列的定义、性质、计算方法以及常见问题等内容。

3. 复杂排列问题在实际问题中,涉及到排列的问题往往是复杂的,需要利用排列的性质和计算方法进行解答。

总结排列是一种重要的组合方式,它在数学中有着重要的应用,也是解决实际问题中的重要数学工具。

通过排列的定义、性质、计算方法以及常见问题的总结,我们可以更好地理解排列的概念,提高解决排列问题的能力。

希望本文所总结的内容能够对读者有所帮助。

各种排序算法的总结和比较

各种排序算法的总结和比较

各种排序算法的总结和比较1 快速排序(QuickSort )快速排序是一个就地排序,分而治之,大规模递归的算法。

从本质上来说,它是归并排序的就地版本。

快速排序可以由下面四步组成。

(1 )如果不多于1 个数据,直接返回。

(2 )一般选择序列最左边的值作为支点数据。

(3 )将序列分成2 部分,一部分都大于支点数据,另外一部分都小于支点数据。

(4 )对两边利用递归排序数列。

快速排序比大部分排序算法都要快。

尽管我们可以在某些特殊的情况下写出比快速排序快的算法,但是就通常情况而言,没有比它更快的了。

快速排序是递归的,对于内存非常有限的机器来说,它不是一个好的选择。

2 归并排序(MergeSort )归并排序先分解要排序的序列,从1 分成2 ,2 分成4 ,依次分解,当分解到只有1 个一组的时候,就可以排序这些分组,然后依次合并回原来的序列中,这样就可以排序所有数据。

合并排序比堆排序稍微快一点,但是需要比堆排序多一倍的内存空间,因为它需要一个额外的数组。

3 堆排序( HeapSort )堆排序适合于数据量非常大的场合(百万数据)。

堆排序不需要大量的递归或者多维的暂存数组。

这对于数据量非常巨大的序列是合适的。

比如超过数百万条记录,因为快速排序,归并排序都使用递归来设计算法,在数据量非常大的时候,可能会发生堆栈溢出错误。

堆排序会将所有的数据建成一个堆,最大的数据在堆顶,然后将堆顶数据和序列的最后一个数据交换。

接下来再次重建堆,交换数据,依次下去,就可以排序所有的数据。

4 Shell 排序( ShellSort )Shell 排序通过将数据分成不同的组,先对每一组进行排序,然后再对所有的元素进行一次插入排序,以减少数据交换和移动的次数。

平均效率是O(nlogn) 。

其中分组的合理性会对算法产生重要的影响。

现在多用D.E.Knuth 的分组方法。

Shell 排序比冒泡排序快5 倍,比插入排序大致快2 倍。

Shell 排序比起QuickSort ,MergeSort ,HeapSort 慢很多。

数学排序知识点总结

数学排序知识点总结

数学排序知识点总结一、排序算法的概念及分类1.1 排序算法的概念排序算法是一种用来对一组数据进行排序的算法。

它使得数据按照一定的顺序排列,方便我们进行查找、统计、分析等操作。

在实际应用中,排序算法扮演着非常重要的角色,例如在数据库检索、数据压缩、图像处理等领域都有着广泛的应用。

1.2 排序算法的分类排序算法一般可以分为两大类,即比较排序和非比较排序。

比较排序是指通过比较待排序元素之间的大小关系来进行排序的算法,其时间复杂度一般为O(nlogn),包括常见的快速排序、归并排序、堆排序等;非比较排序则是通过其他辅助信息来确定元素的顺序,其时间复杂度通常较低,包括计数排序、桶排序、基数排序等。

二、常见的排序算法及其应用2.1 快速排序快速排序是一种常用的比较排序算法,其基本思想是通过一次划分将待排序数组分成两个部分,使得左边的元素均小于右边的元素,然后再对左右部分递归进行排序。

快速排序的时间复杂度为O(nlogn),空间复杂度为O(logn)。

快速排序可以在很多实际应用中发挥作用,例如在数据库查询、数据压缩、图像处理等领域都有着广泛的应用。

2.2 归并排序归并排序也是一种常用的比较排序算法,其基本思想是将待排序数组分成两个部分,分别进行递归排序,然后再将两个有序的子数组合并成一个有序的数组。

归并排序的时间复杂度为O(nlogn),空间复杂度为O(n)。

归并排序可以在很多实际应用中发挥作用,例如在文件排序、数据库排序等领域都有着广泛的应用。

2.3 堆排序堆排序是一种利用堆这种数据结构进行排序的算法,其基本思想是通过建立一个大顶堆或小顶堆,然后将堆顶元素与最后一个元素交换,并调整堆,再将堆顶元素与倒数第二个元素交换,以此类推,直到所有元素都有序。

堆排序的时间复杂度为O(nlogn),空间复杂度为O(1)。

堆排序在优先队列、事件排序等领域有着广泛的应用。

2.4 计数排序计数排序是一种非比较排序算法,其基本思想是通过对待排序数组进行统计,然后根据统计信息将元素放置到正确的位置上。

各种排序方法总结

各种排序方法总结

选择排序、‎快速排序、‎希尔排序、‎堆排序不是‎稳定的排序‎算法,冒‎泡排序、插‎入排序、归‎并排序和基‎数排序是稳‎定的排序算‎法。

‎冒泡法‎:这‎是最原始,‎也是众所周‎知的最慢的‎算法了。

他‎的名字的由‎来因为它的‎工作看来象‎是冒泡:‎复杂度为‎O(n*n‎)。

当数据‎为正序,将‎不会有交换‎。

复杂度为‎O(0)。

‎直接插‎入排序:O‎(n*n)‎选择排‎序:O(n‎*n)‎快速排序:‎平均时间复‎杂度log‎2(n)*‎n,所有内‎部排序方法‎中最高好的‎,大多数情‎况下总是最‎好的。

‎归并排序:‎l og2(‎n)*n‎堆排序:‎l og2(‎n)*n‎希尔排序‎:算法的复‎杂度为n的‎1.2次幂‎‎这里我没‎有给出行为‎的分析,因‎为这个很简‎单,我们直‎接来分析算‎法:首‎先我们考虑‎最理想的情‎况1.‎数组的大小‎是2的幂,‎这样分下去‎始终可以被‎2整除。

假‎设为2的k‎次方,即k‎=log2‎(n)。

‎2.每次‎我们选择的‎值刚好是中‎间值,这样‎,数组才可‎以被等分。

‎第一层‎递归,循环‎n次,第二‎层循环2*‎(n/2)‎.....‎.所以‎共有n+2‎(n/2)‎+4(n/‎4)+..‎.+n*(‎n/n) ‎= n+n‎+n+..‎.+n=k‎*n=lo‎g2(n)‎*n所‎以算法复杂‎度为O(l‎o g2(n‎)*n) ‎其他的情‎况只会比这‎种情况差,‎最差的情况‎是每次选择‎到的mid‎d le都是‎最小值或最‎大值,那么‎他将变成交‎换法(由于‎使用了递归‎,情况更糟‎)。

但是你‎认为这种情‎况发生的几‎率有多大?‎?呵呵,你‎完全不必担‎心这个问题‎。

实践证明‎,大多数的‎情况,快速‎排序总是最‎好的。

‎如果你担心‎这个问题,‎你可以使用‎堆排序,这‎是一种稳定‎的O(lo‎g2(n)‎*n)算法‎,但是通常‎情况下速度‎要慢于快‎速排序(因‎为要重组堆‎)。

排序题方法总结

排序题方法总结

排序题方法总结
排序方法可以总结为以下几种:
1. 冒泡排序:重复比较相邻的两个元素,若顺序错误则交换位置,直至整个数组有序。

时间复杂度为O(n^2)。

2. 选择排序:每次从数组中选择最小(或最大)的元素,放到已排序的末尾,直至整个数组有序。

时间复杂度为O(n^2)。

3. 插入排序:将数组分为已排序和未排序两部分,每次从未排序部分中取出一个元素,并插入到已排序部分的适当位置,直至整个数组有序。

时间复杂度为O(n^2)。

4. 归并排序:将数组不断地分割成更小的子数组,然后再将子数组合并,直至整个数组有序。

时间复杂度为O(nlogn)。

5. 快速排序:选择一个基准元素,将数组分为小于和大于基准元素的两部分,再对两部分分别进行快速排序,直至整个数组有序。

时间复杂度为O(nlogn)。

6. 堆排序:将数组构建成大顶堆(或小顶堆),然后不断地将堆顶元素与最后一个元素交换,并重新调整堆,直至整个数组有序。

时间复杂度为O(nlogn)。

7. 计数排序:统计数组中每个元素出现的次数,然后根据计数从小到大将元素重新排列。

时间复杂度为O(n+k),其中k是值的范围。

8. 基数排序:按照位数从低到高的顺序,将数组分配到桶中,然后重组桶中的元素,直至整个数组有序。

时间复杂度为
O(d*(n+k)),其中d是最大位数,k是每个桶的大小。

以上是常见的排序算法,每种算法都有不同的适用场景和特点,需要根据实际问题选择合适的算法。

大学计算机科学算法知识点归纳总结

大学计算机科学算法知识点归纳总结

大学计算机科学算法知识点归纳总结计算机科学的一个重要分支就是算法,它是解决问题的具体步骤和方法的集合。

通过学习和掌握算法知识,我们可以更加高效地解决各种问题。

本文将对大学计算机科学中常见的算法知识点进行归纳总结。

一、排序算法排序算法是计算机科学中最基本也是最常用的算法之一。

它将一组元素按照特定的规则进行重新排列。

以下是几种常见的排序算法:1. 冒泡排序(Bubble Sort)冒泡排序通过相邻元素的比较和交换来实现排序,每一轮将最大的元素冒泡到末尾。

2. 插入排序(Insertion Sort)插入排序通过将元素逐个插入已经有序的部分来实现排序。

3. 快速排序(Quick Sort)快速排序是一种基于分治法的排序算法,通过选择一个基准元素和其它元素进行比较和交换来实现排序。

4. 归并排序(Merge Sort)归并排序是一种基于分治法的排序算法,将待排序序列分为若干个子序列,分别进行排序后再合并。

二、查找算法查找算法是在给定的数据集合中找到指定元素的算法。

以下是几种常见的查找算法:1. 顺序查找(Sequential Search)顺序查找是一种逐个比较的查找算法,从列表的开头依次比较每个元素,直到找到目标元素或遍历完整个列表。

2. 二分查找(Binary Search)二分查找是一种基于分治法的查找算法,通过将待查找的区间不断缩小,最终找到目标元素。

三、图算法图是由节点和边组成的一种数据结构,图算法是解决图相关问题的一种算法。

以下是几种常见的图算法:1. 深度优先搜索(Depth First Search)深度优先搜索是一种遍历和搜索图的算法,它以深度优先的方式访问节点。

2. 广度优先搜索(Breadth First Search)广度优先搜索是一种遍历和搜索图的算法,它以广度优先的方式访问节点。

3. 最小生成树(Minimum Spanning Tree)最小生成树是一个无环连通子图,它是图中边的一种子集,使得树上所有边的权值之和最小。

排序算法十大经典方法

排序算法十大经典方法

排序算法十大经典方法
排序算法是计算机科学中的经典问题之一,它们用于将一组元素按照一定规则排序。

以下是十大经典排序算法:
1. 冒泡排序:比较相邻元素并交换,每一轮将最大的元素移动到最后。

2. 选择排序:每一轮选出未排序部分中最小的元素,并将其放在已排序部分的末尾。

3. 插入排序:将未排序部分的第一个元素插入到已排序部分的合适位置。

4. 希尔排序:改进的插入排序,将数据分组排序,最终合并排序。

5. 归并排序:将序列拆分成子序列,分别排序后合并,递归完成。

6. 快速排序:选定一个基准值,将小于基准值的元素放在左边,大于基准值的元素放在右边,递归排序。

7. 堆排序:将序列构建成一个堆,然后一次将堆顶元素取出并调整堆。

8. 计数排序:统计每个元素出现的次数,再按照元素大小输出。

9. 桶排序:将数据分到一个或多个桶中,对每个桶进行排序,最后输出。

10. 基数排序:按照元素的位数从低到高进行排序,每次排序只考虑一位。

以上是十大经典排序算法,每个算法都有其优缺点和适用场景,选择合适的算法可以提高排序效率。

排序算法数学公式

排序算法数学公式

排序算法数学公式排序算法是计算机科学中非常重要的一项技术,用于对一组数据进行排序。

不同的排序算法有不同的实现方式和效率,并且在不同的应用场景下会有不同的选择。

本文将介绍几种常见的排序算法,并通过数学公式的方式进行解释,帮助读者理解和选择适合自己需求的排序算法。

1. 冒泡排序算法冒泡排序算法通过比较相邻的元素大小,依次将较大(或较小)的元素交换到右侧。

该过程类似于气泡从水底冒出来的过程,因此得名冒泡排序。

冒泡排序是一种简单但效率较低的排序算法,其时间复杂度为O(n^2)。

冒泡排序的数学公式为:```for i in range(n):for j in range(0, n-i-1):if arr[j] > arr[j+1]:arr[j], arr[j+1] = arr[j+1], arr[j]```2. 插入排序算法插入排序算法的基本思想是将一个元素插入到已排序好的序列中的适当位置,使得插入后的序列仍然有序。

插入排序的时间复杂度也是O(n^2),但相比冒泡排序,其效率要高一些。

插入排序的数学公式为:```for i in range(1, n):key = arr[i]j = i-1while j >= 0 and arr[j] > key:arr[j+1] = arr[j]j -= 1arr[j+1] = key```3. 选择排序算法选择排序算法每次从未排序的部分选择最小(或最大)的元素,然后将其放到已排序序列的末尾。

选择排序的时间复杂度也是O(n^2),但相比冒泡排序和插入排序,其交换次数较少,因此效率更高一些。

选择排序的数学公式为:```for i in range(n):min_idx = ifor j in range(i+1, n):if arr[j] < arr[min_idx]:min_idx = jarr[i], arr[min_idx] = arr[min_idx], arr[i]```4. 快速排序算法快速排序算法是一种分治的排序算法,通过选择一个元素作为基准值,将序列划分为左右两个子序列,并递归地对子序列进行排序。

【十大经典排序算法(动图演示)】 必学十大经典排序算法

【十大经典排序算法(动图演示)】 必学十大经典排序算法

【十大经典排序算法(动图演示)】必学十大经典排序算法0.1 算法分类十种常见排序算法可以分为两大类:比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此也称为非线性时间比较类排序。

非比较类排序:不通过比较来决定元素间的相对次序,它可以突破基于比较排序的时间下界,以线性时间运行,因此也称为线性时间非比较类排序。

0.2 算法复杂度0.3 相关概念稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面。

不稳定:如果a原本在b的前面,而a=b,排序之后a 可能会出现在b 的后面。

时间复杂度:对排序数据的总的操作次数。

反映当n变化时,操作次数呈现什么规律。

空间复杂度:是指算法在计算机内执行时所需存储空间的度量,它也是数据规模n的函数。

1、冒泡排序(Bubble Sort)冒泡排序是一种简单的排序算法。

它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。

走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。

这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。

1.1 算法描述比较相邻的元素。

如果第一个比第二个大,就交换它们两个;对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;针对所有的元素重复以上的步骤,除了最后一个;重复步骤1~3,直到排序完成。

1.2 动图演示1.3 代码实现1.unction bubbleSort(arr) {2. varlen = arr.length;3. for(vari = 0; i arr[j+1]) {// 相邻元素两两对比6. vartemp = arr[j+1];// 元素交换7. arr[j+1] = arr[j];8. arr[j] = temp;9. }10. }11. }12. returnarr;13.}2、选择排序(Selection Sort)选择排序(Selection-sort)是一种简单直观的排序算法。

十种排序方法

十种排序方法

十种排序方法排序是计算机科学中常见的操作,它将一组数据按照一定的规则进行重新排列,以便更方便地进行查找、比较和分析。

在本文中,我将介绍十种常见的排序方法,并对它们的原理和特点进行详细讲解。

一、冒泡排序冒泡排序是一种简单直观的排序算法,它重复地遍历待排序的元素,比较相邻的两个元素,并按照规定的顺序交换它们,直到整个序列有序为止。

冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1)。

二、选择排序选择排序是一种简单直观的排序算法,它每次从待排序的元素中选择最小(或最大)的元素,放到已排序序列的末尾,直到整个序列有序为止。

选择排序的时间复杂度为O(n^2),空间复杂度为O(1)。

三、插入排序插入排序是一种简单直观的排序算法,它将待排序的元素插入到已排序序列的合适位置,使得插入之后的序列仍然有序。

插入排序的时间复杂度为O(n^2),空间复杂度为O(1)。

四、希尔排序希尔排序是插入排序的一种改进算法,它通过将待排序的元素分组,分组进行插入排序,然后逐步缩小分组的间隔,直到间隔为1,最后进行一次完整的插入排序。

希尔排序的时间复杂度为O(nlogn),空间复杂度为O(1)。

五、归并排序归并排序是一种分治排序算法,它将待排序的序列分成两个子序列,分别进行排序,然后将已排序的子序列合并成一个有序序列。

归并排序的时间复杂度为O(nlogn),空间复杂度为O(n)。

六、快速排序快速排序是一种分治排序算法,它通过选择一个基准元素,将待排序的序列分成两个子序列,一边存放比基准元素小的元素,一边存放比基准元素大的元素,然后对两个子序列进行递归排序。

快速排序的时间复杂度为O(nlogn),空间复杂度为O(logn)。

七、堆排序堆排序是一种选择排序算法,它通过构建一个最大堆(或最小堆),将堆顶元素与堆的最后一个元素交换,并对剩余的元素进行调整,直到整个序列有序为止。

堆排序的时间复杂度为O(nlogn),空间复杂度为O(1)。

五种常用的排序算法详解

五种常用的排序算法详解

五种常用的排序算法详解排序算法是计算机科学中的一个重要分支,其主要目的是将一组无序的数据按照一定规律排列,以方便后续的处理和搜索。

常用的排序算法有很多种,本文将介绍五种最常用的排序算法,包括冒泡排序、选择排序、插入排序、快速排序和归并排序。

一、冒泡排序冒泡排序是最简单的排序算法之一,其基本思想是反复比较相邻的两个元素,如果顺序不对就交换位置,直至整个序列有序。

由于该算法的操作过程如同水中的气泡不断上浮,因此称之为“冒泡排序”。

冒泡排序的时间复杂度为O(n^2),属于较慢的排序算法,但由于其实现简单,所以在少量数据排序的场景中仍然有应用。

以下是冒泡排序的Python实现代码:```pythondef bubble_sort(arr):n = len(arr)for i in range(n-1):for j in range(n-i-1):if arr[j] > arr[j+1]:arr[j], arr[j+1] = arr[j+1], arr[j]return arr```二、选择排序选择排序也是一种基本的排序算法,其思想是每次从未排序的序列中选择最小数,然后放到已排序的序列末尾。

该算法的时间复杂度同样为O(n^2),但与冒泡排序相比,它不需要像冒泡排序一样每次交换相邻的元素,因此在数据交换次数上略有优势。

以下是选择排序的Python代码:```pythondef selection_sort(arr):n = len(arr)for i in range(n-1):min_idx = ifor j in range(i+1, n):if arr[j] < arr[min_idx]:min_idx = jarr[i], arr[min_idx] = arr[min_idx], arr[i]```三、插入排序插入排序是一种简单直观的排序算法,其基本思想是通过构建有序序列,对于未排序的数据,在已排序序列中从后向前扫描,找到相应位置并插入该元素。

最简单的排序

最简单的排序

最简单的排序在日常生活中,我们经常需要将一些事物按照一定的规则进行排序。

排序是一种常见的操作,它可以让事物更加有序,便于管理和查找。

下面将介绍一些最简单的排序方法。

1. 冒泡排序冒泡排序是最简单的排序算法之一。

它的基本思想是通过相邻元素之间的比较和交换,将较大的元素逐渐“冒泡”到数组的末尾。

具体步骤如下:- 从数组的第一个元素开始,依次比较相邻的元素,如果前一个元素大于后一个元素,则交换它们的位置。

- 继续比较下一个相邻的元素,直到最后一个元素。

- 重复上述步骤,直到整个数组排序完成。

2. 选择排序选择排序也是一种简单的排序算法。

它的基本思想是每次从未排序的部分选择最小(或最大)的元素,放到已排序部分的末尾。

具体步骤如下:- 在未排序部分中找到最小(或最大)的元素,将其与未排序部分的第一个元素交换位置。

- 将已排序部分的末尾指针向后移动一位。

- 重复上述步骤,直到整个数组排序完成。

3. 插入排序插入排序是一种简单而有效的排序算法。

它的基本思想是将未排序部分的元素逐个插入到已排序部分的合适位置。

具体步骤如下:- 从第一个元素开始,将其视为已排序部分。

- 从未排序部分选择一个元素,按照大小顺序插入到已排序部分的合适位置。

- 重复上述步骤,直到整个数组排序完成。

通过以上三种最简单的排序方法,我们可以对一组数据进行排序。

这些排序方法虽然简单,但在实际应用中仍然具有一定的效率。

然而,对于较大规模的数据排序,这些简单的排序方法可能会显得效率低下。

在实际应用中,我们常常使用更复杂的排序算法,如快速排序、归并排序等。

排序在日常生活中无处不在,它不仅可以应用于数字的排序,还可以应用于字符串、对象等的排序。

通过排序,我们可以使数据更加有序,便于查找和处理。

在编程中,排序是一个重要的基本操作,掌握了常用的排序方法,可以更好地解决实际问题。

冒泡排序、选择排序和插入排序是最简单的排序方法。

它们的基本思想简单易懂,通过比较和交换或插入操作,可以将一组数据按照一定的规则进行排序。

排序算法口诀

排序算法口诀

排序算法口诀排序算法是计算机科学中一个重要的概念,用于将一组元素按照特定的顺序排列。

不同的排序算法有不同的实现方式和性能特点。

以下是一些常见的排序算法口诀,帮助理解它们的工作原理和特点。

1. 冒泡排序冒泡排序是一种简单的排序算法,其基本思想是通过多次遍历数组,比较相邻元素的大小并交换。

口诀:前后比较不断扫,大的往后移小的往前。

2. 选择排序选择排序是一种不稳定的排序算法,每次从未排序的部分选择最小(或最大)的元素,与未排序部分的第一个元素交换。

口诀:遍历找最小换,往后缩一位,再继续找。

3. 插入排序插入排序是一种稳定的排序算法,通过构建有序序列,对未排序的数据逐个进行插入。

口诀:前面有序插后面,从后往前找合适的位置。

4. 希尔排序希尔排序是插入排序的改进版本,通过将待排序元素划分为若干个子序列,对子序列进行排序,最终完成整体排序。

口诀:分组插入一小步,不断缩小分组步。

5. 归并排序归并排序是一种分治策略的排序算法,通过将数组分为两半,分别排序,然后合并。

口诀:分成两半递归排,再将两半归并合。

6. 快速排序快速排序是一种分治策略的排序算法,通过选择一个基准元素,将数组划分为两部分,递归排序子数组。

口诀:选基准分左右,递归快速排。

7. 堆排序堆排序是一种选择排序的改进版本,通过建立一个最大堆(或最小堆),实现对堆顶元素的选择。

口诀:建堆选择一,交换再调整。

8. 计数排序计数排序是一种非比较性排序算法,通过统计数组中每个元素的出现次数,然后根据统计结果进行排序。

口诀:统计出现次,顺序输出来。

9. 桶排序桶排序是一种分布式排序算法,通过将待排序元素划分为若干个桶,对每个桶进行排序,最后将所有桶合并。

口诀:分桶排序,桶内再排。

10. 基数排序基数排序是一种非比较性排序算法,通过将数字按位数划分,按每个位数分别排序。

口诀:按位数排序,逐位来。

这些口诀旨在简要概括每种排序算法的核心思想,帮助记忆它们的运作方式。

排序算法总结

排序算法总结

排序算法总结【篇一:排序算法总结】1、稳定排序和非稳定排序简单地说就是所有相等的数经过某种排序方法后,仍能保持它们在排序之前的相对次序,我们就说这种排序方法是稳定的。

反之,就是非稳定的。

比如:一组数排序前是a1,a2,a3,a4,a5,其中a2=a4,经过某种排序后为a1,a2,a4,a3,a5,则我们说这种排序是稳定的,因为a2排序前在a4的前面,排序后它还是在a4的前面。

假如变成a1,a4,a2,a3,a5就不是稳定的了。

2、内排序和外排序在排序过程中,所有需要排序的数都在内存,并在内存中调整它们的存储顺序,称为内排序;在排序过程中,只有部分数被调入内存,并借助内存调整数在外存中的存放顺序排序方法称为外排序。

3、算法的时间复杂度和空间复杂度所谓算法的时间复杂度,是指执行算法所需要的计算工作量。

一个算法的空间复杂度,一般是指执行这个算法所需要的内存空间。

功能:选择排序输入:数组名称(也就是数组首地址)、数组中元素个数算法思想简单描述:在要排序的一组数中,选出最小的一个数与第一个位置的数交换;然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一个数比较为止。

选择排序是不稳定的。

【篇二:排序算法总结】在计算机科学所使用的排序算法通常被分类为:计算的复杂度(最差、平均、和最好性能),依据列表(list)的大小(n)。

一般而言,好的性能是O(nlogn),且坏的性能是O(n2)。

对于一个排序理想的性能是O(n)。

仅使用一个抽象关键比较运算的排序算法总平均上总是至少需要O(nlogn)。

内存使用量(以及其他电脑资源的使用)稳定度:稳定排序算法会依照相等的关键(换言之就是值)维持纪录的相对次序。

也就是一个排序算法是稳定的,就是当有两个有相等关键的纪录R和S,且在原本的列表中R出现在S之前,在排序过的列表中R也将会是在S之前。

一般的方法:插入、交换、选择、合并等等。

交换排序包含冒泡排序和快速排序。

八大排序详解

八大排序详解

八大排序详解八大排序算法包括插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序和基数排序。

1. 插入排序:这是一种简单直观的排序算法,其工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

在插入过程中,如果待插入的元素与有序序列中的某个元素相等,则将待插入元素插入到相等元素的后面,因此插入排序是稳定的。

2. 希尔排序:也称递减增量排序算法,是插入排序的一种更高效的改进版本。

3. 选择排序:它的工作原理是首先在未排序序列中找到最小(或最大)元素,存放到排序序列的起始位置,然后再从剩余未排序元素中继续寻找最小(或最大)元素,然后放到已排序序列的末尾。

以此类推,直到所有元素均排序完毕。

4. 冒泡排序:这种排序算法会重复地遍历待排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。

5. 归并排序:归并排序是一种采用分治法的排序算法。

它将待排序的序列分成若干个子序列,每个子序列单独进行排序,然后将已排序的子序列进行合并,得到最终的排序结果。

6. 快速排序:快速排序采用分治法进行排序。

在每一步中,它选择一个“基准”元素,并将数组分为两部分,其中一部分的所有元素都比基准元素小,另一部分的所有元素都比基准元素大。

然后,对这两部分独立地进行快速排序。

7. 堆排序:堆排序是一种树形选择排序,是对直接选择排序的有效改进。

堆是一种特殊的树形数据结构,它的每个父节点都大于或等于(小于或等于)其子节点(通常称为大顶堆或小顶堆)。

8. 基数排序:基数排序是一种非比较整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。

以上就是八大排序算法的详解,这些算法各有特点和使用场景,可以根据实际情况选择合适的算法。

排序的几种算法

排序的几种算法

排序的几种算法
一、冒泡排序
冒泡排序就是重复“从序列右边开始比较相邻两个数字的大小,再根据结果交换两个数字的位置”这一操作的算法。

在这个过程中,数字会像泡泡一样,慢慢从右往左“浮”到序列的顶端,所以这个算法才被称为“冒泡排序”。

二、选择排序
选择排序就是重复“从待排序的数据中寻找最小值,将其与序列最左边的数字进行交换”这一操作的算法。

在序列中寻找最小值时使用的是线性查找。

三、插入排序
插入排序是一种从序列左端开始依次对数据进行排序的算法。

在排序过程中,左侧的数据陆续归位,而右侧留下的就是还未被排序的数据。

插入排序的思路就是从右侧的未排序区域内取出一个数据,然后将它插入到已排序区域内合适的位置上。

四、堆排序
堆排序的特点是利用了数据结构中的堆。

五、归并排序
归并排序算法会把序列分成长度相同的两个子序列,当无法继续往下分时(也就是每个子序列中只有一个数据时),就对子序列进行归并。

归并指的是把两个排好序的子序列合并成一个有序序列。

该操作会一直重复执行,直到所有子序列都归并为一个整体为止。

总的运行时间为O,这与前面讲到的堆排序相同。

六年级排序知识点

六年级排序知识点

六年级排序知识点排序是数学中的一个重要概念,也是我们日常生活中经常会遇到的问题。

六年级是学习排序知识的关键时期,下面将介绍六年级学生需要掌握的排序知识点。

一、升序和降序排序升序排序是指将一组数或一组事物按照从小到大的顺序排列。

例如,我们可以将数字1、2、3、4、5按照升序排序为1、2、3、4、5。

降序排序则是将一组数或一组事物按照从大到小的顺序排列。

以同样的数字为例,降序排序就是将1、2、3、4、5按照从大到小的顺序排列为5、4、3、2、1。

二、数字排序1. 一位数的升序和降序排序对于一位数来说,升序和降序排序非常简单。

将数字按照从小到大的顺序排列,就是升序排序;反之,按照从大到小的顺序排列,就是降序排序。

例如,对于数字4、2、9、6、8进行升序排序,结果为2、4、6、8、9;进行降序排序,结果为9、8、6、4、2。

2. 两位数的升序和降序排序对于两位数,我们需要比较十位数和个位数的大小来确定大小关系。

例如,对于数字63、27、49、88、12进行升序排序,首先比较十位数,然后再比较个位数,结果为12、27、49、63、88;进行降序排序,结果为88、63、49、27、12。

三、字母排序字母的排序和数字类似,我们按照字母的顺序来进行排序。

字母排序时,一般按照字母表的先后顺序来排序。

例如,对于字母C、D、A、B、E进行升序排序,结果为A、B、C、D、E;进行降序排序,结果为E、D、C、B、A。

四、单词排序单词的排序是按照字母的先后顺序进行的,与字母排序类似。

不同之处在于,需要比较单词的第一个字母,若相同,则再比较第二个字母,依次类推。

例如,对于单词apple、ball、cat、dog、elephant进行升序排序,结果为apple、ball、cat、dog、elephant;进行降序排序,结果为elephant、dog、cat、ball、apple。

五、总结排序是一种重要的数学概念,也是我们日常生活中常用的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八大排序算法总结收藏插入排序1.直接插入排序原理:将数组分为无序区和有序区两个区,然后不断将无序区的第一个元素按大小顺序插入到有序区中去,最终将所有无序区元素都移动到有序区完成排序。

要点:设立哨兵,作为临时存储和判断数组边界之用。

实现:Void InsertSort(Node L[],int length){Int i,j;//分别为有序区和无序区指针for(i=1;i<length;i++)//逐步扩大有序区{j=i+1;if(L[j]<L[i]){L[0]=L[j];//存储待排序元素While(L[0]<L[i])//查找在有序区中的插入位置,同时移动元素{L[i+1]=L[i];//移动i--;//查找}L[i+1]=L[0];//将元素插入}i=j-1;//还原有序区指针}}2.希尔排序原理:又称增量缩小排序。

先将序列按增量划分为元素个数相同的若干组,使用直接插入排序法进行排序,然后不断缩小增量直至为1,最后使用直接插入排序完成排序。

要点:增量的选择以及排序最终以1为增量进行排序结束。

实现:Void shellSort(Node L[],int d){While(d>=1)//直到增量缩小为1{Shell(L,d);d=d/2;//缩小增量}}Void Shell(Node L[],int d){Int i,j;For(i=d+1;i<length;i++){if(L[i]<L[i-d]){L[0]=L[i];j=i-d;While(j>0&&L[j]>L[0]){L[j+d]=L[j];//移动j=j-d;//查找}L[j+d]=L[0];}}}交换排序1.冒泡排序原理:将序列划分为无序和有序区,不断通过交换较大元素至无序区尾完成排序。

要点:设计交换判断条件,提前结束以排好序的序列循环。

实现:Void BubbleSort(Node L[]){Int i ,j;Bool ischanged;//设计跳出条件For(j=n;j<0;j--){ischanged =false;For(i=0;i<j;i++){If(L[i]>L[i+1])//如果发现较重元素就向后移动{Int temp=L[i];L[i]=L[i+1];L[i+1]=temp;Ischanged =true;}}If(!ischanged)//若没有移动则说明序列已经有序,直接跳出Break;}}2.快速排序原理:不断寻找一个序列的中点,然后对中点左右的序列递归的进行排序,直至全部序列排序完成,使用了分治的思想。

要点:递归、分治实现:选择排序1.直接选择排序原理:将序列划分为无序和有序区,寻找无序区中的最小值和无序区的首元素交换,有序区扩大一个,循环最终完成全部排序。

要点:实现:Void SelectSort(Node L[]){Int i,j,k;//分别为有序区,无序区,无序区最小元素指针For(i=0;i<length;i++){k=i;For(j=i+1;j<length;j++){If(L[j]<L[k])k=j;}If(k!=i)//若发现最小元素,则移动到有序区{Int temp=L[k];L[k]=L[i];L[i]=L[temp];}}}2.堆排序原理:利用大根堆或小根堆思想,首先建立堆,然后将堆首与堆尾交换,堆尾之后为有序区。

要点:建堆、交换、调整堆实现:Void HeapSort(Node L[]){BuildingHeap(L);//建堆(大根堆)For(int i=n;i>0;i--)//交换{Int temp=L[i];L[i]=L[0];L[0]=temp;Heapify(L,0,i);//调整堆}}Void BuildingHeap(Node L[]){ For(i=length/2 -1;i>0;i--)Heapify(L,i,length);}归并排序原理:将原序列划分为有序的两个序列,然后利用归并算法进行合并,合并之后即为有序序列。

要点:归并、分治实现:Void MergeSort(Node L[],int m,int n){Int k;If(m<n){K=(m+n)/2;MergeSort(L,m,k);MergeSort(L,k+1,n);Merge(L,m,k,n);}}基数排序原理:将数字按位数划分出n个关键字,每次针对一个关键字进行排序,然后针对排序后的序列进行下一个关键字的排序,循环至所有关键字都使用过则排序完成。

要点:对关键字的选取,元素分配收集。

实现:Void RadixSort(Node L[],length,maxradix){Int m,n,k,lsp;k=1;m=1;Int temp[10][length-1];Empty(temp); //清空临时空间While(k<maxradix) //遍历所有关键字{For(int i=0;i<length;i++) //分配过程{If(L[i]<m)Temp[0][n]=L[i];ElseLsp=(L[i]/m)%10; //确定关键字Temp[lsp][n]=L[i];n++;}CollectElement(L,Temp); //收集n=0;m=m*10;k++;}}===================================================常见排序算法的实现(一)-插入排序做IT就要做精英,至少4000/月吧?JAVAV工程师权威认证[上海央邦]学一送一,超值!【安博亚威】CCIE考试通过率第一!定向委培RHCA,通过考试年薪10WWindows高级工程师的培训地C++博客那谁2009-5-27 保存本文推荐给好友收藏本页欢迎进入C/C++编程社区论坛,与200万技术人员互动交流 >>进入插入排序是最简单最直观的排序算法了,它的依据是:遍历到第N个元素的时候前面的N-1个元素已经是排序好的了,那么就查找前面的N-1个元素把这第N个元素放在合适的位置,如此下去直到遍历完序列的元素为止。

算法的复杂度也是简单的,排序第一个需要1的复杂度,排序第二个需要2的复杂度,因此整个的复杂度就是1 +2 +3 + …… + N = O(N ^ 2)的复杂度。

// 插入排序void InsertSort(int array[], int length){int i, j, key;for (i = 1; i < length; i++){key = array[i];// 把i之前大于array[i]的数据向后移动for (j = i - 1; j >= 0 && array[j] > key; j--){array[j + 1] = array[j];}// 在合适位置安放当前元素array[j + 1] = key;}}常见排序算法的实现(二)-shell排序做IT就要做精英,至少4000/月吧?JAVAV工程师权威认证[上海央邦]学一送一,超值!【安博亚威】CCIE考试通过率第一!定向委培RHCA,通过考试年薪10WWindows高级工程师的培训地C++博客那谁2009-5-27 保存本文推荐给好友收藏本页欢迎进入C/C++编程社区论坛,与200万技术人员互动交流 >>进入shell排序是对插入排序的一个改装,它每次排序把序列的元素按照某个增量分成几个子序列,对这几个子序列进行插入排序,然后不断的缩小增量扩大每个子序列的元素数量,直到增量为一的时候子序列就和原先的待排列序列一样了,此时只需要做少量的比较和移动就可以完成对序列的排序了。

// shell排序void ShellSort(int array[], int length){int temp;// 增量从数组长度的一半开始,每次减小一倍for (int increment = length / 2; increment > 0; increment /= 2)for (int i = increment; i < length; ++i){temp = array[i];// 对一组增量为increment的元素进行插入排序for (int j = i; j >= increment; j -= increment){// 把i之前大于array[i]的数据向后移动if (temp < array[j - increment]){array[j] = array[j - increment];}else{break;}}// 在合适位置安放当前元素array[j] = temp;}}动画演示:http://202.113.89.254/DataStructure/DS/web/flashhtml/shell.htm常见排序算法的实现(三)-堆排序做IT就要做精英,至少4000/月吧?JAVAV工程师权威认证[上海央邦]学一送一,超值!【安博亚威】CCIE考试通过率第一!定向委培RHCA,通过考试年薪10WWindows高级工程师的培训地C++博客那谁2009-5-27 保存本文推荐给好友收藏本页欢迎进入C/C++编程社区论坛,与200万技术人员互动交流 >>进入堆的定义:n个关键字序列Kl,K2,…,Kn称为堆,当且仅当该序列满足如下性质(简称为堆性质):(1)ki≤K2i且ki≤K2i+1 或(2)Ki≥K2i且ki≥K2i+1(1≤i≤)若将此序列所存储的向量R[1……n]看做是一棵完全二叉树的存储结构,则堆实质上是满足如下性质的完全二叉树:树中任一非叶结点的关键字均不大于(或不小于)其左右孩子(若存在)结点的关键字。

堆的这个性质使得可以迅速定位在一个序列之中的最小(大)的元素。

堆排序算法的过程如下:1)得到当前序列的最小(大)的元素 2)把这个元素和最后一个元素进行交换,这样当前的最小(大)的元素就放在了序列的最后,而原先的最后一个元素放到了序列的最前面 3)的交换可能会破坏堆序列的性质(注意此时的序列是除去已经放在最后面的元素),因此需要对序列进行调整,使之满足于上面堆的性质。

重复上面的过程,直到序列调整完毕为止。

// array是待调整的堆数组,i是待调整的数组元素的位置,length是数组的长度void HeapAdjust(int array[], int i, int nLength){int nChild, nTemp;for (nTemp = array[i]; 2 * i + 1 < nLength; i = nChild){// 子结点的位置是父结点位置* 2 + 1nChild = 2 * i + 1;// 得到子结点中较大的结点if (nChild != nLength - 1 && array[nChild + 1] > array[nChild])++nChild;// 如果较大的子结点大于父结点那么把较大的子结点往上移动,替换它的父结点if (nTemp < array[nChild]){array[i] = array[nChild];}else// 否则退出循环{break;}}// 最后把需要调整的元素值放到合适的位置array[i] = nTemp;}// 堆排序算法void HeapSort(int array[], int length){// 调整序列的前半部分元素,调整完之后第一个元素是序列的最大的元素for (int i = length / 2 - 1; i >= 0; --i){HeapAdjust(array, i, length);}// 从最后一个元素开始对序列进行调整,不断的缩小调整的范围直到第一个元素for (int i = length - 1; i > 0; --i){// 把第一个元素和当前的最后一个元素交换,// 保证当前的最后一个位置的元素都是在现在的这个序列之中最大的Swap(&array[0], &array[i]);// 不断缩小调整heap的范围,每一次调整完毕保证第一个元素是当前序列的最大值HeapAdjust(array, 0, i);}}一个测试及输出的结果,在每次HeapAdjust之后显示出来当前数组的情况before Heap sort:71 18 151 138 160 63 174 169 79 78// 开始调整前半段数组元素71 18 151 138 160 63 174 169 79 7871 18 151 169 160 63 174 138 79 7871 18 174 169 160 63 151 138 79 7871 169 174 138 160 63 151 18 79 78174 169 151 138 160 63 71 18 79 78// 开始进行全局的调整169 160 151 138 78 63 71 18 79 174160 138 151 79 78 63 71 18 169 174151 138 71 79 78 63 18 160 169 174138 79 71 18 78 63 151 160 169 17479 78 71 18 63 138 151 160 169 17478 63 71 18 79 138 151 160 169 17471 63 18 78 79 138 151 160 169 17463 18 71 78 79 138 151 160 169 17418 63 71 78 79 138 151 160 169 174动画演示:http://202.113.89.254/DataStructure/DS/web/flashhtml/duipaixu.htm常见排序算法的实现(四)-冒泡排序做IT就要做精英,至少4000/月吧?JAVAV工程师权威认证[上海央邦]学一送一,超值!【安博亚威】CCIE考试通过率第一!定向委培RHCA,通过考试年薪10WWindows高级工程师的培训地C++博客那谁2009-5-27 保存本文推荐给好友收藏本页欢迎进入C/C++编程社区论坛,与200万技术人员互动交流 >>进入冒泡排序算法的思想:很简单,每次遍历完序列都把最大(小)的元素放在最前面,然后再对剩下的序列从父前面的一个过程,每次遍历完之后待排序序列就少一个元素,当待排序序列减小为只有一个元素的时候排序就结束了。

相关文档
最新文档