污水可生化性实验--syy
实验五废水可生化性
实验五废水可生化性一、实验目的工业废水中所含有的有机物,有的不容易被微生物所降解,有的则对微生物有毒害作用。
为了合理地选择废水处理方法,或是为了确定进入生化处理构筑物的有毒物质容许浓度,都要进行废水可生化性实验。
鉴定废水可生化性的方法很多,利用瓦勃氏呼吸仪(简称瓦呼仪)测定废水的生化呼吸线是一种较有效的方法之一。
本实验的目的主要在于:1.熟悉瓦呼仪的基本构造及操作方法;2.理解内源呼吸线及生化呼吸线的基本含义;3.分析不同浓度的含酚废水的生物降解性及生物毒性。
二、实验原理微生物处于内源呼吸阶段时,耗氧的速率基本上恒定不变。
微生物与有机物接触后,其呼吸耗氧的特性反映了有机物被氧化分解的规律,一般来说,耗氧量大,耗氧速率高,即说明该有机物易被微生物降解,反之亦然。
测定不同时间的内源呼吸耗氧量及与有机物接触后的生化呼吸耗氧量,可得内源呼吸线及生化呼吸线,通过比较即可判定废水的可生化性。
当生化呼吸线位于内源呼吸线之上时说明废水中的有机物一般是可被微生物氧化分解得;当生化呼吸线与内源呼吸线重合时,则说明有机物可能是不能被微生物降解的,但它对微生物的生命活动尚无抑制作用;当生化呼吸线位于内源呼吸线之下时,则说明有机物对微生物的生命活动产生了明显的抑制作用。
瓦呼仪的工作原理是,在恒温及不断搅拌的条件下,使一定量的菌种与废水在定容的反应瓶中接触反应,反应产生的 CO2用 KOH溶液吸收,因此,微生物的耗氧将使反应瓶中氧的分压降低,测定氧分压的变化,即可推算出消耗的氧量。
三、实验设备1.瓦呼仪一台;2.离心机一台;3.活性污泥培养及驯化装置一套;4.测酚装置一套。
四、实验步骤1.活性污泥的培养、驯化及预处理(1)取已建污水活性污泥或带菌土壤为菌种,在间竭式培养瓶中以含酚合成废水为营养、曝气或搅拌,以培养活性污泥。
(2)每天停止曝气一小时,沉淀后去除上清液,加入新鲜含酚合成为水,并逐步提高酚的浓度。
达到驯化活性污泥的目的。
废水可生化性实验
实验八废水可生化性实验一、实验目的1。
了解废水可生化性判别的原理和方法。
2.掌握废水可生化性生化呼吸线法测定过程。
3.掌握废水可生化性测定的应用。
二.实验原理及方案2.1实验原理1)废水生化处理的机理及要素:可生化废水生化处理主要是通过活性污泥微生物的新陈代谢作用实现的。
活性污泥中微生物是由细菌、真菌、原生动物、后生动物等组成的生态系。
细菌是这个生态系中最主要的组成部分。
利用微生物对废水中有机、有毒物质进行吸附和氧化分解。
其过程有物理化学作用和生物化学作用。
污水中有机物向活性污泥表面附聚。
由于活性污泥为松软的絮状体,表面积大,有较强的吸附力,所以活性污泥能对有机物或有毒物质进行吸附,其中可溶性有机物直接被细菌所吸附,而不溶性有机物通过细菌分泌的酸作用,将其降解为可溶性有机物后,再被细菌吸收,吸收到细菌体内的有机物,在有氧的条件下,将其中一部分有机物进行分解代谢,即氧化分解,以获得合成新细胞所需要的能量,并最终形成二氧化碳和水等稳定物质,再通过凝聚沉淀分离,使污水净化无害。
2)生化处理过程中保证微生物生命的基本要素:a)水温保持20~30℃最为适宜;b)pH值7~9:活性污泥中微生物适宜中性或偏碱性环境中;c)营养物质与活性污泥的结构、处理废水中的有机杂质等密切相关。
除以生物需氧量BOD表示的碳源外,还需要N、P和其它微量元素。
2.2实验方案1)本实验是通过测定活性污泥的呼吸速度来考察有机废水生物处理的可能性。
生物对氧的消耗称之为呼吸,通过连续测定活性污泥微生物的呼吸,即连续测定水样中溶解氧的变化,来研究活性污泥进行生化反应的可能性。
当活性污泥处于内呼吸阶段(微生物取得生命活动的能量,仅仅利用体内贮藏的物质),呼吸速度是恒定的,即耗氧量相对稳定,所以耗氧量与时间成一直线关系,此直线称为内呼吸线。
当活性污泥接触含有有机物或污水后,由于分解水中的有机物,其耗氧速度要加快,耗氧量随时间的变化是一条特征曲线,称之为生化呼吸曲线。
城市生活污水生化处理综合实验
实验十城市生活污水生化处理综合实验一、实验目的〔1〕通过观察推流式活性污泥法处理系统的运行,加深对其运行特点规律的认识。
〔2〕掌握活性污泥处理法中控制参数在实际设计运行中的作用与意义。
〔3〕进一步了解活性污泥生物处理原理、过程及影响因素。
二、实验原理活性污泥法是当前污水生物处理技术领域中应用最广泛的技术之一,自1914年在英国开创以来,已有90多年的历史。
它的主要原理就是采取必要的人工措施,创造适宜的条件,向反响器—曝气池中提供足够的溶解氧,满足活性污泥微生物生化作用的需要,并使得有机物、微生物、溶解氧三相充分混合,从而强化活性污泥微生物的新陈代谢作用,加速微生物对水中有机物的降解,以到达净化水体的目的。
1、活性污泥净化反响过程在活性污泥处理系统中,有机污染物被活性污泥微生物摄取、代谢、利用的过程,即经过了“活性污泥反响〞过程。
经过这一过程的结果就是污水得到净化,微生物获得能量而合成新细胞,使活性污泥得到增长。
主要包括两个阶段:(1)初期吸附作用:这是由于活性污泥有很强的吸附能力,可以在较短的时间内在物理吸附和生物吸附的共同作用下将污水中的有机物凝聚和吸附而得到去除。
(2)微生物代谢作用:在这一阶段中吸附在活性污泥中的有机物在一系列酶的作用下被微生物摄取,一方面有机物得到降解去除,另一方面。
微生物自身得到繁殖增长。
2、影响活性污泥净化反响的主要因素(1)营养物质为BOD:N:P=100:5:1;(2)溶解氧含量,通常在出口处溶解氧浓度不低于2mg/L;(3)pH值,通常最正确pH值范围介于之间;(4)水温,通常是15~35℃;(5)有毒物质影响。
3、活性污泥处理系统的运行方式以推流方式运行的活性污泥处理系统的曝气池呈矩形,废水由一端进入,推流式流过整个池子,从另一端流出。
其特点是污水净化过程的吸附和稳定阶段在同一池中完成,进口有机物浓度高,沿池长逐渐降低,需氧量也沿池长逐渐降低.最大优点是处理效率高,出水质好。
工业污水可生化性实验
广西民族大学水污染控制工程实验报告2013年5月24日e dtdO)(——微生物能内源呼吸需氧速率,min)./(L mg 。
这两部分氧化过程所需要的氧量可由下式计算:v r VX b QL a O ''+=式中:O ——混合液需氧量,d O kg /)2(;'a ——活性污泥微生物降解1kg 有机物的需氧量,)(/)2(5BOD kg O kg ;Q ——污水流量,d m /3;r L ——被活性污泥微生物降解的有机物浓度,3/m kg ;'b ——活性污泥微生物自身氧化需氧量,]).(/[)2(d MLSS kg O kg ; V ——曝气池水容积,3m ;v X ——挥发性污泥浓度(MLVSS ),3/m kg 。
式(9-2)中的系数'a 、'b 是活性污泥法处理系统的重要设计与运行参数。
对生活污水,'a 为0.42~0.53,'b 为0.188~0.11。
式(9-1)中e dt dO )(=-'b ,基本上为一常量;F dt dO )(=r N a ',r N 为有机负荷,这说明F dtdO)(不仅与微生物性能有关,还与有机负荷、有机物总量有关。
当污水中的底物主要为可生物降解的有机物时,微生物的氧吸收量累计值为一条犹如BOD 测定的耗氧过程线(下图中曲线1)。
溶解氧的吸收量(即消耗量)与污水中的有机物浓度有关。
实验开始时,间歇反应器中有机物浓度较高,微生物吸收氧的速率也较快,以后随着反应器中有机物浓度的减少,氧吸收速率也逐渐减慢,直至最后等于内源呼吸速率(下图中的曲线2)。
如污水中无底物,微生物直接进入内源呼吸,其氧吸收(累计)过程为一通过原点的直线(曲线3)。
如果污水中某一种或几种组分对微生物的生长有毒害抑制作用,那么氧的吸收将会受到毒物的限制,而低于内源呼吸量(曲线4)。
如果新投入微生物于废水中,则微生物需要一个驯化过程(曲线2)。
废水可生化性实验实验报告
废水可生化性实验
实验分析:
1. 由dO/dt —t 曲线可以看出,耗氧速率葡萄糖>内源呼吸>间甲酚,葡萄糖和间甲酚组实验的微生物耗氧速率均呈随时间的增加而逐渐减小的趋势,且葡萄糖的耗氧曲线下降程度更大。
这是因为微生物耗氧速率与底物浓度有关,随着呼吸作用进行,溶液中底物浓度逐渐降低;而间甲酚对微生物具有毒性,抑制其降解分解有机物的速率。
而内源呼吸组的耗氧速率并未呈理论的较恒定趋势,这可能是由于污水中还存在一些有机物可被生物降解,因此呈现耗氧速率减慢的趋势,也有可能是实验测量溶解氧误差导致。
2. 葡萄糖可为微生物提供生存所需能量,自然可被微生物降解,微生物快速分解有机物消耗水中溶解氧,因此其耗氧曲线应在内源呼吸线上方;而间甲酚对微生物具有毒性,抑制其降解分解有机物的速率,其耗氧曲线应在内源呼吸线之下。
实验结果基本符合此情况。
3. 溶解氧测量误差分析:
①实验中只有1台溶解氧测定仪,3组基质溶液分开进行溶解氧测定,每次实验之间存在测量误差、条件变化误差等。
②因为微生物呼吸作用一直在进行,溶解氧浓度测定过程中,仪器显示值总在不停波动,最后记录的溶解氧浓度数值与真实值有一定误差;
③溶解氧测定仪本身的准确度与灵敏度等导致的误差。
4. 根据实验结果,可得出结论:葡萄糖可进行生化降解,而间甲酚不能。
葡萄糖溶液 间甲酚溶液 内源呼吸线。
污水可生化性实验--syy
《环工综合实验(2)》(工业污水可生化性实验)实验报告专业环境工程班级环工0902姓名雨指导教师余阳成绩东华大学环境科学与工程学院实验中心二0一二年五月实验题目工业污水可生化性实验实验类别综合实验室2136 实验时间2012年 5 月 18 日 13:00时~ 16:20 时实验环境温度:25.4℃湿度: 39% 同组人数5人本实验报告由我独立完成,绝无抄袭!承诺人签名一、实验目的(1)理解源呼吸及生化呼吸的基本含义。
(2)分析含酚废水的生物降解及生物毒性。
(3)掌握快速判断污水可生化性的方法。
二、实验仪器及设备(一)设备溶解氧测定仪3台活性污泥培养及驯化装置一套(二)试剂苯酚硫酸铵磷酸氢二钾碳酸氢钠氯化铁葡萄糖等三、实验原理微生物处于源呼吸阶段时,耗氧的速率恒定不变。
微生物与有机物接触后,其耗氧的特性反应了有机物被氧化分解的规律。
一般来说,耗氧量大、耗氧速率高,即说明该有机物易被微生物降解,反之亦然。
测定不同时间的源呼吸耗氧量及有机物接触后的生物呼吸耗氧量,可得源呼吸线及生化呼吸线,通过比较即可判断废水的可生化性。
当生化呼吸线位于源呼吸线上时废水中有机物一般可被微生物氧化分解的;当生化呼吸线与源呼吸线重合时,有机物可能是不能被微生物降解的,但它对微生物的降解无拟制作用;当生化呼吸线位于源呼吸线下时,说明有机物对微生物的生命活动产生了明显的拟制作用。
相关问题:1、如何求好氧呼吸速率?如何求好氧呼吸氧吸收量累计值?答:每隔30min,取桶中废水于溶解氧测定仪的广口瓶中,每10s测一次溶解氧量,连续6min,可得到一组溶解氧值,并通过以时间为横坐标,溶解氧为纵坐标的直线,其斜率即为好氧呼吸速率。
测完180min后,可得到7组不同时段的溶解氧,即得到7个时间点的好氧呼吸速率,再根据下式求得某时间段的好氧呼吸氧吸收量累计值。
四、实验步骤1、分别取活性污泥2.5L与可生化实验装置的三个有机玻璃容器中,其中1号容器中加入15g葡萄糖、0.5g NH4Cl、0.13gKH2PO4,2号容器加入10ml苯酚,3号容器不加任何物质;实验情况如下图所示:2、给3个容器连续曝气10分钟,在一直曝气的条件下,每隔30min,用广口瓶分别取1、2、3容器污泥测定好氧呼吸速率,每10s测一次,连续6min,180min后实验结束。
污水可生化性评价方法
污水可生化性评价方法污水可生化性指的是污水中污染物被微生物降解的难易程度,即污水生物处理的难易程度。
污水的可生化性取决于污水的水质,即污水所含污染物的性质。
若污水的营养比例适合,污染物易被生物降解,有毒物质含量低,则污水的可生化性強,反之亦然。
适于微生物生长的污水,可生化性强,不适于微生物生长的污水可生化性差。
1、污水可生化性评价方法污水的可生化性常用BOD5或COD的比值来评价。
5日生化需氧量BOD5粗略代表可生物降解的还原性物质的含量(重要是有机物),化学需氧量COD粗略代表还原性物质(重要为有机物)的总量。
由BOD5/COD=1/m*CODB/COD(CODB为可生物降解的还原性物质含量)知,BOD5/COD为还原性物质中可生物降解部分所占的比例(CODB/COD)与生物降解速度(1/m)的乘积,能粗略代表还原性物质可生物降解的程度和速度,即污水的可生化性。
一般情况下,BOD5/COD值越大,污水的可生化性越强2、污水可生化性评价中的注意事项BOD5/COD只能貌似代表污水的可生化性,适用BOD5/COD评价污水的可生化性时应考虑以下方面的影响。
⑴固体有机物有些固体有机物可在COD测定中被重铬酸钾氧化,以COD的形式表现出来,但在BOD5测定时对BOD5的贡献很小,不能以BOD5的形式表现出来,致使此时污水的BOD5/COD虽小,但生物处理的效果却不差。
⑵无机还原性物质污水中的无机还原性物质在BOD5和COD的测定中也消耗溶解氧。
同一种无机还原性物质在两种测定中消耗的溶解氧量不同,指示BOD5/COD降低,但此时污水的可生化性不肯定差。
⑶特别有机物有些有机物比较特别,能被微生物部分氧化,却不能被K2Cr2O7氧化。
BOD5/COD虽大,但实际上污水的可生化性较差。
⑷BOD5/TODTOD比COD更能精准代表污水中有机物的含量,用BOD5/TOD评价污水的可生化性更加精准。
⑸接种微生物的驯化在测定BOD5时是否采纳经过驯化的菌种,对测定结果影响很大。
废水可生化性测定实验
实验报告课程名称: 水处理工程实验 指导老师: 胡宏 成绩:__________________ 实验名称: 废水可生化性测定实验 类型:________________同组学生姓名: 陈巧丽、林蓓 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得一、实验目的和要求根据微生物的降解性能,有机污染物可分为三种类型。
第一类是可生物降解的有机污染物,第二类是难生物降解的有机污染物,第三类是不可生物降解的有机污染物。
考虑到毒性,第一、第二类有机污染物又可分为四种类型:①能够为微生物所降解,而且对微生物的生理功能无抑制作用的有机污染物;②能够为微生物所降解,但对微生物有毒害作用的有机污染物;③难于为微生物所降解,但对微生物无毒害作用的有机污染物;④难于为微生物所降解,而且对微生物有毒害作用的有机污染物。
上述四种类型的有机污染物中,第一类适宜于采用生物处理技术进行处理。
第二类经过对微生物作一定时间的驯化,有可能采用生物处理技术进行处理。
第三类也有可能采用生物处理技术进行处理,但必须对微生物进行较长时间的诱导驯化。
第四类不宜采用生物处理技术进行处理。
本实验通过测定微生物的呼吸耗氧特性来确定某种废水是否具有进行生化处理的可能性。
二、实验内容和原理微生物降解有机污染物的物质代谢过程中所消耗的氧包括两部分:(1)氧化分解有机物,使其分解为CO 2、H 2O 、NH 3(存在含氮有机物时)等为合成新细胞提供能量;(2)供微生物进行内源呼吸,使细胞物质氧化分解。
下例可以说明物质代谢过程中的这一关系。
8CH 2O+3O 2+NH 3→C 5H 7NO 2+3CO 2+6H 2O3CH 2O+3O 2→3CO 2+3H 2O+能量 5CH 2O+NH 3→C 5H 7NO 2+3H 2O从上反应式可以看到:约1/3 的CH 2O (酪蛋白)被微生物氧化分解为CO 2、H 2O ,同时产生能量供微生物合成新的细胞,这一过程要消耗氧。
废水实验
环境综合实验之废水处理一、废水生化可降解性(一)实验目的和意义1.了解废水可生化性评价的方法;2.掌握COD、BOD5的测定方法;(二)实验原理工业废水中所含有的有机物,有的不容易被微生物所降解,有的则对微生物有毒害作用。
为了合理地选择废水处理方法,或是为了确定进入生化处理构筑物的有毒物质容许浓度,都要进行废水可生化性实验。
废水的可生化性是指废水中所含的污染物能被微生物降解的程度。
按此标准可将废水分为三类:①易生物降解废水,易于被微生物作为碳源和能源物质而利用;②可生物降解废水,能够逐步被微生物所利用;③难生物降解废水,降解速度很慢或根本不降解。
“难、易”是相对的,同一种化合物在不同种微生物的作用下,其降解情况也会有不同。
废水生物处理是以废水中所含污染物作为污染源,利用微生物的代谢作用使污染物被降解,废水得以净化。
显然如果废水中的污染物可被微生物降解,则在设计状态下废水可获得良好的处理效果。
因此,对废水进行可生化性评价是采用生物处理工艺设计的前提。
鉴定废水可生化性的方法很多,BOD5/COD比值是评价废水可生化性的一种常用方法。
BOD5和COD 都反映废水中有机物在氧化分解时所耗的氧量。
BOD5是有机物在微生物作用氧化分解所需的氧量,它代表废水中可生物降解的那部分有机物;COD是有机物在化学氧化剂作用下氧化分解所需的氧量,它代表废水中可被化学氧化剂分解的有机物,常采用重镕酸钾为氧化剂,一般可近似认为COD测定值代表废水中的全部有机物。
一般认为BOD5/COD比值大于0.45时,该废水适用于生物处理,如比值在0.2左右,说明这种废水中含有大量难降解的有机物,这种废水可否采用生物处理法处理,尚需看微生物驯化后,能否提高此比值才能判定。
此比值接近零时,采用生物处理法是比较困难的。
(三)实验仪器、材料实验仪器:COD测定仪,BOD测定仪,生化培养箱,酸式滴定管,锥形瓶,滴定台。
实验药品:重铬酸钾,硫酸铝钾,钼酸铵,试亚铁灵,硫酸亚铁铵,硫酸银,硫酸汞,浓硫酸,三氯化铁,硫酸镁,氯化钙,磷酸氢二钠,磷酸二氢钠,氢氧化钠。
工业污水可生化性实验实验报告
工业污水可生化性实验实验报告实验目的:了解工业污水处理前后的生化性质变化,探究工业污水的可生化性。
实验原理:工业污水中含有大量的有机物,这些有机物可作为微生物的营养物质,被生物降解利用。
因此,工业污水具有很高的可生化性。
实验材料及仪器:工业污水样品、pH计、试剂(NaOH、HCl、甲基橙指示剂、硝酸银溶液、氯化钡溶液、氯化铁溶液、硝酸汞溶液、氯化亚铁溶液、氯化银溶液)。
实验步骤:1. 取一定量的工业污水样品,用pH计测定其pH值。
2. 用甲基橙指示剂滴定污水样品,记录滴定体积,计算出pH值。
3. 测定工业污水中COD、BOD、SS、NH3-N、TP、TN的含量,记录数据。
4. 用硝酸银溶液滴定污水样品中的Cl-含量,计算出Cl-的含量。
5. 用氯化钡溶液滴定污水样品中的SO42-含量,计算出SO42-的含量。
6. 用氯化铁溶液滴定污水样品中的Fe2+含量,计算出Fe2+的含量。
7. 用硝酸汞溶液滴定污水样品中的Hg2+含量,计算出Hg2+的含量。
8. 用氯化亚铁溶液滴定污水样品中的Cr6+含量,计算出Cr6+的含量。
9. 用氯化银溶液滴定污水样品中的CN-含量,计算出CN-的含量。
10. 将测定结果填入实验报告中,并分析实验结果。
实验结果:1. 工业污水的pH值为6.5。
2. COD、BOD、SS、NH3-N、TP和TN的含量分别为100mg/L、30mg/L、50mg/L、10mg/L、5mg/L和20mg/L。
3. Cl-的含量为50mg/L,SO42-的含量为20mg/L,Fe2+的含量为0.5mg/L,Hg2+的含量为0.01mg/L,Cr6+的含量为0.05mg/L,CN-的含量为0.1mg/L。
实验分析:1. 工业污水的pH值处于中性偏酸性,适合细菌生长。
2. COD、BOD、SS、NH3-N、TP和TN的含量都比较高,说明工业污水中有大量的有机物和氮、磷等污染物。
3. Cl-、SO42-、Fe2+、Hg2+、Cr6+和CN-等物质的含量也比较高,说明工业污水中还存在一定的重金属和有毒物质。
污水处理实验
污水处理实验一、实验目的本实验旨在研究污水处理的基本原理和方法,探索不同处理工艺对污水的净化效果,并通过实验数据分析评价各种处理工艺的优劣。
二、实验原理1. 污水成份分析:通过对采集的污水样品进行化学分析,确定其主要成份和污染物含量。
2. 初级处理:采用物理方法,如格栅、沉砂池等,去除污水中的大颗粒杂质和悬浮物。
3. 生化处理:利用微生物的代谢活性,将有机物质降解为无机物质,采用活性污泥法或者固定化生物膜法进行处理。
4. 深度处理:采用化学方法,如氧化、沉淀等,去除残留的有机物质和微量污染物。
5. 净化处理:采用消毒方法,如紫外线照射或者加入消毒剂,杀灭残留的病原微生物。
三、实验步骤1. 采集污水样品:从生活污水排放口或者污水处理厂取得污水样品,注意采集时避免污染。
2. 污水成份分析:将污水样品送至实验室进行化学分析,测定其悬浮物、COD、BOD、氨氮等指标。
3. 初级处理:将污水样品通过格栅过滤,去除大颗粒杂质,然后进入沉砂池,使悬浮物沉淀。
4. 生化处理:将初级处理后的污水样品进入生化反应器,添加适量的活性污泥或者固定化生物膜,保持适宜的温度和通气条件,进行生化降解反应。
5. 深度处理:将生化处理后的污水样品进入深度处理装置,通过氧化、沉淀等方法去除残留的有机物质和微量污染物。
6. 净化处理:对深度处理后的污水样品进行消毒处理,可以选择紫外线照射或者加入适量的消毒剂。
7. 实验数据记录:记录每一个处理步骤的操作时间、处理效果、处理先后的污水指标数据等。
8. 数据分析与评价:根据实验数据,对不同处理工艺的净化效果进行分析和评价,比较各种工艺的优劣。
四、实验结果与讨论根据实验数据统计和分析,初级处理能有效去除污水中的大颗粒杂质和悬浮物,但对有机物质的去除效果有限;生化处理能有效降解有机物质,但对微量污染物的去除效果较差;深度处理通过化学方法能进一步去除有机物质和微量污染物,但操作复杂且成本较高;净化处理能有效杀灭残留的病原微生物,确保出水的安全性。
污水可生化性对污水处理效果分析论文[五篇范例]
污水可生化性对污水处理效果分析论文[五篇范例]第一篇:污水可生化性对污水处理效果分析论文摘要:随着社会经济水平的不断提高,随着工业发展速度的加快,水质污染问题也随之加重,加强污水处理,越来越受到社会关注。
通过采取各种办法,各种处理实验,不断提高污水处理水平,不断提高水质。
其中,污水可生化性对污水处理效果具有一定的影响,本文着重对此进行分析研究。
关键词:污水可生化性;污水处理效果;影响1前言由于工业废水和生活废水的排放量逐渐增多,水质中含有很多污染性或者毒性物质,危害着人们的生活、身体健康,对环境也具有一定的污染。
因此,提高污水处理效果,非常重要。
而污水的可生化性又与污水处理效果有着很大的关系,因此,需要采用科学的方法对污水可生化性进行分析研究,正确进一步提高污水处理水平。
2污水可生化性简述通常来讲,污水的可生化性,就是指污水中污染物可以被微生物降解的能力。
[1]废水中含有一定的有机物质,有的很容易被微生物分解,但也有一些不易被分解的,甚至阻碍微生物的生长。
废水中有机物质的生物降解性决定了有机物质存在的实际含量,也决定了水质的污染程度和处理污水的难易程度,更影响着污水处理的实际效果。
因此,在处理污水时,要根据污水的可生化性强弱,选择科学、合理,有针对性的处理办法,只有这样,才能真正达到污水处理的效果。
一般情况下,用B/C表示污水可生化性,对于污水中的有机物质,能够被微生物分解的部分,一般用BOD来表示,全部污染物则用COD来表示,B/C实际上就是能够被微生物分解的有机物质所占的实际比例,即为可生化的部分。
一般以0.3为衡量标准,B/C大于0.3的情况,就表明污水可生化性良好,有助于提高污水处理的能力。
3具体分析污水可生化性对污水处理效果影响正因为污水可生化性对污水处理具有一定的影响,因此,需要对污水可生化性程度进行科学判定,通常采用好氧呼吸参量法中的水质指标评价法,主要看B/C的比值,以0.3为界标,比值小于0.3,污水的生物降解难度较大,污水处理难度也加大。
污水可生化性对污水处理效果分析
污水可生化性对污水处理效果分析污水可生化性是指污水中的有机物质经过处理后能否被微生物所降解的能力。
这是衡量污水处理效果的一个重要指标,如果污水可生化性高,则处理效果会更好。
本文将对污水可生化性对污水处理效果的影响进行分析。
首先,污水可生化性高的污水处理更容易。
由于污水中的有机物质能够被微生物降解,因此污水处理过程中的生物处理环节更加顺畅。
生物处理的过程主要是利用微生物对有机物质的降解,而微生物的活动需要有机物质作为营养物质和能量源。
如果污水中有机物质含量较高,那么就能为微生物提供充足的营养物质和能量,让微生物更容易生长繁殖,从而更好地降解污水中的有机物质。
其次,污水可生化性高的污水处理效果更好。
污水处理的主要目的是去除其中的有机物质和其他污染物质,让污水达到环境要求的排放标准。
如果污水中的有机物质可生化性高,那么就能更好地降解有机物质,从而达到更好的去污效果。
此外,污水中的其他污染物质也可能会被微生物同化或吸附,从而降低污水的污染程度。
第三,污水可生化性可以用来评价污水处理工艺的优劣。
针对不同的污水处理工艺,其对污水可生化性的要求也不同。
例如,厌氧处理工艺更适用于污水有机物质含量较高的情况下,而好氧处理工艺更适合污水中有机物质含量较低的情况下。
通过评价污水的可生化性,就能更好地评估不同的污水处理工艺的优劣。
最后,污水可生化性还可以影响污泥处理的效果。
污泥是污水处理的一个重要副产品,需要进行进一步的处理和处置。
对于可生化性高的污泥,可以采用更为经济环保的处理方式,例如利用固化技术和热解技术进行臭氧化处理和焚烧处理。
这些处理方式不仅能够减少污泥处理的成本和污染物的排放,还能够回收污泥中的资源,如能源和肥料。
综合以上分析,可以得出结论:污水可生化性对污水处理效果有着重要的影响。
衡量污水的可生化性可以帮助我们更好地评估污水处理的效果和工艺的优劣。
提高污水的可生化性可以更好地降解污水中的有机物质,达到更好的去污效果。
污水可生化性的研究
污水可生化性的研究城市污水是指排入城市管网的生活污水及各种工业废水,此外还包括降雨、融雪以及夹杂的垃圾、废物等。
城市污水处理是环境保护的一项重要组成部分,对于保护当地的生态平衡以及改善自然条件,消除环境污染都是必不可少的,如果大量城市污水不加治理任意排放,会导致水体、土壤乃至空气的严重污染,进而会破坏人们正常的生产和生活,所以必须对城市污水进行处理控制,改善受污染水体的水质,使之能满足水体功能的要求。
2 污水处理方法污水处理实质上是采用各种手段和技术将污水中的污染物质分离出来,或将其转化为无害的物质,使之得到净化。
现在污水处理技术按作用原理可分为物理法、化学法和生物法。
物理法是利用重力分离的方法将污水中呈悬浮状态的固体物质分离出来;化学法是利用化学反应来分离、回收污水中各种形态的污染物;生物法即活性污泥法是利用微生物自身的各项生理活动来去处水中污染物。
3 污水可生化性在污水中,存在着各种有机物和无机物,大部分为有机物,部分为无机物,被微生物作为营养加以利用,使微生物获得需要的能量和合成新的细胞,这些被微生物利用的物质称为底物。
底物降解在污水处理中具有十分重要的意义,如果污水中的底物是可降解的,说明该污水采用生物处理法进行无害化处理是可行的。
生物处理法按净化原理可分为生物膜法和活性污泥法,由于活性污泥法研究十分充分,有大量的经验和数据,运行管理方便,亦较经济,因而在城市污水处理中普遍采用物理法与活性污泥法相结合的方法,故人们首先要考虑采用活性污泥法处理污水的可行性,简称污水的可生化性。
评价污水处理的可生化性有很多方法,最简单的方法是用BOD5、COD cr之间关系简单评价。
BOD5与COD cr是污水处理中最基本的指标,BOD简称生化需氧量,可间接地反映能为微生物分解的有机物的总量,BOD5为5天的生化需氧量;COD简称化学需氧量,它是在高温有机催化剂及强酸环境下,强氧化剂氧化有机物所消耗的氧的量,所用的氧化剂为重铬酸钾,记作COD cr由于这个反应不受有机物是否能为微生物分解的影响,能够氧化微生物无法分解氧化的有机物,所以COD cr比BOD5值高。
实验九 废水可生化性实验
实验九 工业污水可生化性实验一、实验目的对某些工业废水进行生物处理时,由于废水中含有生物难将解的有机物、抑制或毒害微生物生长的物质、或者缺少微生物所需要的营养物质和环境条件,使得生物处理不能正常进行。
因此需要通过实验来考察这些污水生物处理的可能性,研究某些组分可能产生的影响,确定进入生物处理设施的允许浓度。
通过本实验希望达到下述目的: 1. 理解废水可生化性的含义;2. 掌握测定废水可生化性实验的方法;3. 理解内源呼吸线及生化呼吸线的基本含义;二、实验原理微生物降解有机污染物的物质代谢过程中所消耗的氧包括两部分:①氧化分解有机污染物,使其分解为CO 2、H 2O 、NH 3(存在含氮有机物)等,为合成新细胞提供能量;②供微生物进行内源呼吸,使细胞物质氧化分解。
下列式子可说明物质代谢过程中的这一关系。
合成:223572228336CH O O NH C H NO CO H O++→++2222235722333333CH O O CO H O CH O NH C H NO H O +→++⎛⎫⎪+→+⎝⎭能量从上反应式可以看到约1/3的CH 2O(酪蛋白)被微生物氧化分解为CO 2、H 2O ,同时产生能量供微生物合成新细胞,这一过程要耗氧。
内源呼吸:5722223552C H NO O CO H O NH +→++微生物进行物质代谢过程的需氧速率可以用下式表示总的需氧速率=合成细胞的需氧速率+内源呼吸的需氧速率,即T F dO dO dO dt dt dt σ⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭式中:T dO dt ⎛⎫ ⎪⎝⎭为总的需氧速率,mg/(L·min);F dO dt ⎛⎫ ⎪⎝⎭为降解有机物,合成新细胞的耗氧速率,mg/(L·min); dO dt σ⎛⎫⎪⎝⎭为微生物内源呼吸需氧速率,mg/(L·min)。
活性污泥的耗氧速率(OUR )是评价污泥代谢活性的一个重要指标,它是指单位质量的活性污泥在单位时间内的耗氧量,其单位为 mg(O 2)/g(MLVSS)·h 。
污水生化实验报告(3篇)
第1篇一、实验目的和要求1. 掌握污水生化处理的基本原理和方法。
2. 熟悉不同类型污水的生化处理流程。
3. 了解生化处理设备的使用方法和操作规程。
4. 通过实验,验证生化处理技术在污水净化中的应用效果。
二、实验设备与材料1. 实验装置:生化反应器、回流污泥池、取样装置、pH计、浊度仪、溶解氧仪等。
2. 实验材料:污水样品、活性污泥、营养盐、微量元素、消毒剂等。
三、实验原理污水生化处理是利用微生物的代谢活动,将污水中的有机物分解为无害物质的过程。
主要分为厌氧处理、好氧处理和生物脱氮除磷三个阶段。
1. 厌氧处理:在无氧条件下,厌氧微生物将有机物分解为二氧化碳、水、甲烷等气体。
2. 好氧处理:在好氧条件下,好氧微生物将有机物分解为二氧化碳、水、硝酸盐、硫酸盐等。
3. 生物脱氮除磷:通过添加营养盐,促进微生物对氮、磷的吸收,使其在处理过程中去除。
四、实验步骤1. 实验准备(1)将污水样品进行预处理,去除悬浮物、油脂等杂质。
(2)调节pH值,使其在6.5-8.5之间。
(3)将活性污泥接种到反应器中,使其适应新的环境。
2. 厌氧处理(1)将预处理后的污水样品加入厌氧反应器中。
(2)调节温度,使其在35-45℃之间。
(3)观察并记录气体的产生情况。
3. 好氧处理(1)将厌氧处理后的污水样品加入好氧反应器中。
(2)调节温度,使其在20-30℃之间。
(3)观察并记录溶解氧的变化情况。
4. 生物脱氮除磷(1)向好氧处理后的污水样品中添加营养盐。
(2)观察并记录污泥的生长情况。
(3)检测出水中的氮、磷含量。
5. 实验结束(1)关闭反应器,收集出水。
(2)对实验数据进行整理和分析。
五、实验结果与分析1. 厌氧处理实验过程中,观察到厌氧反应器内产生大量气体,主要成分为甲烷。
说明厌氧处理对有机物的去除效果较好。
2. 好氧处理实验过程中,溶解氧逐渐下降,说明好氧处理对有机物的去除效果较好。
3. 生物脱氮除磷实验过程中,污泥生长良好,出水中的氮、磷含量明显降低,说明生物脱氮除磷效果较好。
废水的好氧生化处理实验报告
废水的好氧生化处理实验报告摘要:本实验采用好氧生化处理工艺对废水进行处理,通过调整操作条件、观察废水的各项指标变化,评价处理效果。
实验结果表明,好氧生化处理工艺能够有效降低废水的污染物浓度,且最佳操作条件为温度30℃,pH值为7.5,供氧量为2L/min。
1.引言废水是一种典型的污染源,其中含有大量的有机物、高浓度悬浮物等,对水体生态环境造成严重威胁。
好氧生化处理是一种常见的废水处理方法,通过有机物的降解和氧化,将有害物质转化为无害物质,从而达到净化水体的目的。
本实验旨在探讨好氧生化处理工艺对废水的处理效果及最佳操作条件。
2.实验材料与方法材料:废水样品、好氧生化反应器、pH计、溶氧仪等。
实验方法:(1)收集废水样品,并测量其初始pH值、溶氧量、COD浓度等参数。
(2)将废水样品加入好氧生化反应器中,调整好对应的操作条件。
(3)连续观测并记录废水的各项指标的变化,如pH值、溶氧量、COD浓度等。
(4)根据实验数据,分析处理效果,并找出最佳操作条件。
3.结果与分析(1)废水初始指标:pH值为6.5,溶氧量为3mg/L,COD浓度为200mg/L。
(2)改变温度的影响:将废水样品分别在不同温度下进行好氧处理,结果如表1所示。
温度(℃) , pH值,溶氧量 (mg/L) , COD浓度 (mg/L)----------,------,--------------,----------------20,7.2,4.2,15030,7.5,5.6,12040,7.1,4.8,130由表1可见,温度为30℃时,废水的溶氧量最高,且COD浓度最低,说明在此温度下,好氧生化处理工艺效果最好。
(3)改变pH值的影响:将废水样品分别在不同pH值下进行好氧处理,结果如表2所示。
pH值,温度(℃) ,溶氧量 (mg/L) , COD浓度 (mg/L)------,----------,--------------,----------------6.5,30,5.6,1207.0,30,5.8,1007.5,30,6.0,90由表2可见,pH值为7.5时,废水的溶氧量最高,且COD浓度最低,说明在此pH值下,好氧生化处理工艺效果最好。
废水可生化行实验
实验七 废水可生化实验一、实验目的由于生物处理方法较为经济,在研究废水的处理方案时,一般首先考虑采用生物处理的可能性。
但是,有些废水在进行生物处理时,因为含有难降解的有机污染物质而不能正常运行。
因此,在没有现成的科研成果或生产运行资料可以借鉴时,需要通过实验来考察这些废水生物处理的可能性,研究它们进入生物处理系统后可能产生的影响等。
通过本实验希望达到下述目的(1)理解废水可生化性的含义;(2)掌握测定废水可生化性实验的方法;(3)理解内源呼吸线及生化呼吸线的基本含义;二、实验原理微生物降解有机污染物的物质代谢过程中所消耗的氧包括两部分:①氧化分解有机污染物,使其分解为CO 2、H 2O 、NH 3(存在含氮有机物)等,为合成新细胞提供能量;②供微生物进行内源呼吸,使细胞物质氧化分解。
下列式子可说明物质代谢过程中的这一关系。
合成:223572228336CH O O NH C H NO CO H O ++→++2222235722333333CH O O CO H O CH O NH C H NO H O +→++⎛⎫ ⎪+→+⎝⎭能量 从上反应式可以看到约1/3的CH 2O(酪蛋白)被微生物氧化分解为CO 2、H 2O ,同时产生能量供微生物合成新细胞,这一过程要耗氧。
内源呼吸:5722223552C H NO O CO H O NH +→++微生物进行物质代谢过程的需氧速率可以用下式表示总的需氧速率=合成细胞的需氧速率+内源呼吸的需氧速率,即T F dO dO dO dt dt dt σ⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 式中:T dO dt ⎛⎫ ⎪⎝⎭为总的需氧速率,mg/(L ·min);FdO dt ⎛⎫ ⎪⎝⎭为降解有机物,合成新细胞的耗氧速率,mg/(L ·min); dO dt σ⎛⎫⎪⎝⎭为微生物内源呼吸需氧速率,mg/(L ·min)。
活性污泥的耗氧速率(OUR )是评价污泥代谢活性的一个重要指标,它是指单位质量的活性污泥在单位时间内的耗氧量,其单位为 mg(O 2)/g(MLVSS)·h 。
废水可生化性及毒性的测定
二、实验设备与材料 1、离心机一台 、 2、溶氧测定仪一台 、 3、电磁搅拌机台 、 4、活性污泥、饱和溶氧水 、活性污泥、 5、天平、量筒、试管、容量瓶、烧杯、玻璃棒 、天平、量筒、试管、容量瓶、烧杯、
三、实验原理 微生物处于内源呼吸阶段时, 微生物处于内源呼吸阶段时,耗氧的速率基本上 恒定不变,微生物与有机物接触后, 恒定不变,微生物与有机物接触后,其呼吸耗氧的特性 反映了有机物被氧化分解的规律,一般来说, 反映了有机物被氧化分解的规律,一般来说,耗氧量太 耗氧速率高,即说明有机物易被微生物降解, 大,耗氧速率高,即说明有机物易被微生物降解,反之 亦然。 亦然。 测定不同时间的内源呼吸耗氧量及与有机物接触 后的生化呼吸耗氧量,可得内源呼吸线及生化呼吸线, 后的生化呼吸耗氧量,可得内源呼吸线及生化呼吸线, 通过比较即可判断定废水的可生化性。 通过比较即可判断定废水的可生化性。 高生化呼吸线位于内源呼吸线之上时说明废水中 的有机物一般是可被微生物分解的。 的有机物一般是可被微生物分解的。高生人呼吸线与内 源呼吸线重合时, 源呼吸线重合时,则说明有机物可能是不能被微生物降 解的,但它对微生物的生命活动产生了明显的抑制作用。 解的,但它对微生物的生命活动产生了明显的抑制作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《环工综合实验(2)》(工业污水可生化性实验)
实验报告
专业环境工程
班级环工0902
姓名雨
指导教师余阳
成绩
东华大学环境科学与工程学院实验中心
二0一二年五月
实验题目工业污水可生化性实验实验类别综合
实验室2136 实验时间2012年 5 月18 日13:00时~ 16:20 时实验环境温度:25.4℃湿度: 39% 同组人数5人本实验报告由我独立完成,绝无抄袭!承诺人签名
一、实验目的
(1)理解源呼吸及生化呼吸的基本含义。
(2)分析含酚废水的生物降解及生物毒性。
(3)掌握快速判断污水可生化性的方法。
二、实验仪器及设备
(一)设备
溶解氧测定仪3台
活性污泥培养及驯化装置一套
(二)试剂
苯酚
硫酸铵
磷酸氢二钾
碳酸氢钠
氯化铁
葡萄糖等
三、实验原理
微生物处于源呼吸阶段时,耗氧的速率恒定不变。
微生物与有机物接触后,其耗氧的特性反应了有机物被氧化分解的规律。
一般来说,耗氧量大、耗氧速率高,即说明该有机物易被微生物降解,反之亦然。
测定不同时间的源呼吸耗氧量及有机物接触后的生物呼吸耗氧量,可得源呼吸线及生化呼吸线,通过比较即可判断废水的可生化性。
当生化呼吸线位于源呼吸线上时废水中有机物一般可被微生物氧化分解的;当生化呼吸线与源呼吸线重合时,有机物可能是不能被微生物降解的,但它对微生物的降解无拟制作用;当生化呼吸线位于源呼吸线下时,说明有机物对微生物的生命活动产生了明显的拟制作用。
相关问题:
1、如何求好氧呼吸速率?如何求好氧呼吸氧吸收量累计值?
答:每隔30min,取桶中废水于溶解氧测定仪的广口瓶中,每10s测一次溶解氧量,连续6min,可得到一组溶解氧值,并通过以时间为横坐标,溶解氧为纵坐标的直线,其斜率即为好氧呼吸速率。
测完180min后,可得到7组不同时段的溶解氧,即得到7个时间点的好氧呼吸速率,再根据下式求得某时间段的好氧呼吸氧吸收量累计值。
四、实验步骤
1、分别取活性污泥2.5L与可生化实验装置的三个有机玻璃容器中,其中1号容器中加入15g葡萄糖、0.5g NH4Cl、0.13gKH2PO4,2号容器加入10ml苯酚,3号容器不加任何物质;
实验情况如下图所示:
2、给3个容器连续曝气10分钟,在一直曝气的条件下,每隔30min,用广口瓶分别取1、2、3容器污泥测定好氧呼吸速率,每10s测一次,连续6min,180min后实验结束。
第一组:无添加任何物质第二组:加入苯酚第三组:加入营养
五、实验记录及原始数据
六、数据处理及结论
第一组:
在0时刻时,根据无添加物溶解氧的数据,以时间为x轴,溶解氧量为y轴,可得下图:
可知第一组0时刻的好氧呼吸速率为O0 = -0.003 mg/L·s
同理,根据余下各时刻的溶解氧量画图可得:
O30 = -0.0018 mg/L·s
O60 = -0.0016 mg/L·s
O90 = -0.003 mg/L·s O120 = -0.0054 mg/L·s O150 = -0.0045 mg/L·s O180 =-0.0048 mg/L·s
由上图曲线的位置关系可知:添加苯酚时会抑制微生物的好氧呼吸,而添加营养将会促进微生物的好氧呼吸。