2020年高考物理一轮复习专题4.5 卫星与航天(精讲)(解析版)

合集下载

2019年高考物理一轮复习精品资料专题4.5 卫星与航天(教学案) 含解析

2019年高考物理一轮复习精品资料专题4.5 卫星与航天(教学案) 含解析

2019年高考物理一轮复习精品资料1.掌握万有引力定律的内容、公式及应用.2.理解环绕速度的含义并会求解.3.了解第二和第三宇宙速度.一、近地卫星、赤道上物体及同步卫星的运行问题近地卫星、同步卫星和赤道上随地球自转的物体的三种匀速圆周运动的比较1.轨道半径:近地卫星与赤道上物体的轨道半径相同,同步卫星的轨道半径较大,即r 同>r 近=r 物。

2.运行周期:同步卫星与赤道上物体的运行周期相同。

由T =2πr 3GM可知,近地卫星的周期要小于同步卫星的周期,即T 近<T 同=T 物。

3.向心加速度:由G Mm r2=ma 知,同步卫星的加速度小于近地卫星的加速度。

由a =r ω2=r ⎝ ⎛⎭⎪⎫2πT 2知,同步卫星的加速度大于赤道上物体的加速度,即a 近>a 同>a 物。

4.动力学规律(1)近地卫星和同步卫星满足GMm r 2=m v 2r=m ω2r =ma 。

(2)赤道上的物体不满足万有引力充当向心力即GMm r 2≠m v 2r。

二、卫星的变轨问题 1.卫星变轨的原因 (1)由于对接引起的变轨 (2)由于空气阻力引起的变轨 2.卫星变轨的实质(1)当卫星的速度突然增加时,G Mm r 2<m v 2r,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,当卫星进入新的轨道稳定运行时由v =GMr可知其运行速率比原轨道时减小。

(2)当卫星的速率突然减小时,G Mm r 2>m v 2r,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小,当卫星进入新的轨道稳定运行时由v =GMr可知其运行速率比原轨道时增大。

卫星的发射和回收就是利用这一原理。

三、天体运动中的能量问题1.卫星(或航天器)在同一圆形轨道上运动时,机械能不变。

2.航天器在不同轨道上运行时机械能不同,轨道半径越大,机械能越大。

卫星速率增大(发动机做正功)会做离心运动,轨道半径增大,万有引力做负功,卫星动能减小,由于变轨时遵从能量守恒,稳定在圆轨道上时需满足G Mm r 2=m v 2r,致使卫星在较高轨道上的运行速率小于在较低轨道上的运行速率,但机械能增大;相反,卫星由于速率减小(发动机做负功)会做向心运动,轨道半径减小,万有引力做正功,卫星动能增大,同样原因致使卫星在较低轨道上的运行速率大于在较高轨道上的运行速率,但机械能减小。

高考物理一轮复习精讲精练 第5章 万有引力与宇宙航行 第二讲 人造卫星与宇宙航行

高考物理一轮复习精讲精练 第5章 万有引力与宇宙航行 第二讲 人造卫星与宇宙航行

第二讲 人造卫星与宇宙航行➢ 知识梳理1.天体(卫星)运行问题分析将天体或卫星的运动看成匀速圆周运动,其所需向心力由万有引力提供. 2.物理量随轨道半径变化的规律G Mmr 2=⎩⎪⎨⎪⎧ma →a =GM r 2→a ∝1r2m v 2r →v =GM r →v ∝1r mω2r →ω=GM r 3→ω∝1r3m 4π2T 2r →T =4π2r3GM→T ∝r 3即r 越大,v 、ω、a 越小,T 越大.(越高越慢) 3.人造卫星卫星运行的轨道平面一定通过地心,一般分为赤道轨道、极地轨道和其他轨道,同步卫星的轨道是赤道轨道.(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖. (2)同步卫星①轨道平面与赤道平面共面,且与地球自转的方向相同. ②周期与地球自转周期相等,T =24 h. ③高度固定不变,h =3.6×107 m. ④运行速率均为v =3.1 km/s.(3)近地卫星:轨道在地球表面附近的卫星,其轨道半径r =R (地球半径),运行速度等于第一宇宙速度v =7.9 km/s(人造地球卫星的最大圆轨道运行速度),T =85 min(人造地球卫星的最小周期).注意:近地卫星可能为极地卫星,也可能为赤道卫星. 4.宇宙速度 (1)第一宇宙速度①第一宇宙速度又叫环绕速度,其数值为7.9 km/s 。

②第一宇宙速度是物体在地球附近绕地球做匀速圆周运动时的速度。

③第一宇宙速度是人造卫星的最小发射速度,也是人造卫星的最大环绕速度。

④第一宇宙速度的计算方法 由G Mm R 2=m v 2R得v =GMR; 由mg =m v 2R得v =gR .(2)第二宇宙速度:使物体挣脱地球引力束缚的最小发射速度,其数值为11.2 km/s . (3)第三宇宙速度:使物体挣脱太阳引力束缚的最小发射速度,其数值为16.7 km/s . 考点一、卫星运行参量的分析1.公式中r 指轨道半径,是卫星到中心天体球心的距离,R 通常指中心天体的半径,有r =R +h . 2.同一中心天体,各行星v 、ω、a 、T 等物理量只与r 有关;不同中心天体,各行星v 、ω、a 、T 等物理量与中心天体质量M 和r 有关. 3.地球同步卫星的特点4.卫星的各物理量随轨道半径变化的规律例1、如图所示,a 为地球赤道上的物体,b 为沿地球表面附近做匀速圆周运动的人造卫星,c 为地球同步卫星。

2020高考物理卫星变轨与航天器对接问题(解析版)

2020高考物理卫星变轨与航天器对接问题(解析版)

2020年高考物理备考微专题精准突破专题2.8 卫星变轨与航天器对接问题【专题诠释】人造地球卫星的发射过程要经过多次变轨,如图所示,我们从以下几个方面讨论.1.变轨原理及过程(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上.(2)在A点点火加速,由于速度变大,万有引力不足以提供在轨道Ⅰ上做圆周运动的向心力,卫星做离心运动进入椭圆轨道Ⅱ.(3)在B点(远地点)再次点火加速进入圆形轨道Ⅲ.2.物理量的定性分析(1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v1、v3,在轨道Ⅱ上过A点和B点时速率分别为v A、v B.因在A点加速,则v A>v1,因在B点加速,则v3>v B,又因v1>v3,故有v A>v1>v3>v B.(2)加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A点,卫星的加速度都相同.同理,从轨道Ⅱ和轨道Ⅲ上经过B点时加速度也相同.(3)周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律a3T2=k可知T1<T2<T3.(4)机械能:在一个确定的圆(椭圆)轨道上机械能守恒.若卫星在Ⅰ、Ⅱ、Ⅲ轨道的机械能分别为E1、E2、E3,则E1<E2<E3.【高考领航】【2019·江苏高考】1970年成功发射的“东方红一号”是我国第一颗人造地球卫星,该卫星至今仍沿椭圆轨道绕地球运动。

如图所示,设卫星在近地点、远地点的速度分别为v1、v2,近地点到地心的距离为r,地球质量为M,引力常量为G。

则()A .v 1>v 2,v 1=GM r B .v 1>v 2,v 1> GM r C .v 1<v 2,v 1=GM r D .v 1<v 2,v 1> GM r【答案】 B 【解析】 卫星绕地球运动,由开普勒第二定律知,近地点的速度大于远地点的速度,即v 1>v 2。

高考物理一轮复习专题4.5 卫星与航天(精讲)(解析版)

高考物理一轮复习专题4.5 卫星与航天(精讲)(解析版)

专题4.5卫星与航天1.掌握宇宙速度及卫星运行参数。

2.理解双星模型和多星模型。

3.理解同步卫星问题和变轨问题。

知识点一宇宙速度及卫星运行参数1.三种宇宙速度比较宇宙速度数值(km/s)意义第一宇宙速度7.9地球卫星最小发射速度(环绕速度)第二宇宙速度11.2物体挣脱地球引力束缚的最小发射速度(脱离速度)第三宇宙速度16.7物体挣脱太阳引力束缚的最小发射速度(逃逸速度)2.第一宇宙速度的计算方法(1)由GMm R 2=m v 2R得v =GMR。

(2)由mg =mv 2R得v =gR 。

3.物理量随轨道半径变化的规律G Mm r2=r =R 地+h m v 2r→v =GMr →v ∝1r 2r →ω=GMr 3→ωm 4π2T 2r →T =4π2r 3GM→T →a =GM r 2→a ∝1r 2=GMm R 2地近地时→GM =gR 2地4.同步卫星的六个“一定”知识点二双星模型和多星模型1.双星模型(1)定义:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图所示。

(2)特点:①各自所需的向心力由彼此间的万有引力相互提供,即Gm 1m 2L 2=m 1ω21r 1=m 14π2T 21r 1,Gm 1m 2L 2=m 2ω22r 2=m 24π2T 22r 2。

②两颗星的周期及角速度都相同,即T 1=T 2,ω1=ω2。

③两颗星的半径与它们之间的距离关系为:r 1+r 2=L 。

(3)两颗星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2r 1。

2.多星模型(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同。

(2)三星模型①如图所示,三颗质量相等的行星,一颗行星位于中心位置不动,另外两颗行星围绕它做圆周运动。

这三颗行星始终位于同一直线上,中心行星受力平衡。

运转的行星由其余两颗行星的引力提供向心力:Gm 2r 2+Gm 22r 2=ma 向。

2020版物理新增分大一轮新高考(京津鲁琼)讲义:第四章 曲线运动 万有引力与航天 第1讲 含解析

2020版物理新增分大一轮新高考(京津鲁琼)讲义:第四章 曲线运动 万有引力与航天 第1讲 含解析

内容与要求 1.通过观察实验,了解曲线运动,知道物体做曲线运动的条件.2.通过实验,探究并认识平抛运动的规律.会用运动合成与分解的方法分析平抛运动.体会将复杂运动分解为简单运动的物理思想.能分析日常生活中的抛体运动.3.会用线速度、角速度、周期描述匀速圆周运动.知道匀速圆周运动向心加速度的大小和方向.4.探究影响向心力大小的因素.能用牛顿第二定律分析匀速圆周运动的向心力.5.了解生产生活中的离心现象及其产生的原因.6.通过史实,了解万有引力定律的发现过程.知道万有引力定律.认识发现万有引力定律的重要意义.认识科学定律对人类探索未知世界的作用.7.会计算人造卫星的环绕速度.知道第二宇宙速度和第三宇宙速度.第1讲曲线运动运动的合成与分解一、曲线运动1.速度的方向:质点在某一点的速度方向,沿曲线在这一点的切线方向.2.运动的性质:做曲线运动的物体,速度的方向时刻在改变,所以曲线运动一定是变速运动.3.运动的条件:物体所受合外力的方向跟它的速度方向不在同一条直线上或它的加速度方向与速度方向不在同一条直线上.4.合外力方向与轨迹的关系物体做曲线运动的轨迹一定夹在合外力方向与速度方向之间,速度方向与轨迹相切,合外力方向指向轨迹的“凹”侧.自测1(多选)一质点做曲线运动,它的速度方向和加速度方向的关系是()A .质点速度方向时刻在改变B .质点加速度方向时刻在改变C .质点速度方向一定与加速度方向相同D .质点速度方向一定沿曲线的切线方向 答案 AD自测2 (2018·河北省定州中学承智班月考)关于力和运动,下列说法中正确的是( ) A .物体在恒力作用下可能做曲线运动 B .物体在变力作用下不可能做直线运动 C .物体在恒力作用下不可能做曲线运动 D .物体在变力作用下不可能保持速率不变 答案 A解析 平抛运动就是在恒力作用下的曲线运动.只要变力与速度方向共线,就会做直线运动,所以A 正确,B 、C 错误.匀速圆周运动就是在变力作用下保持速率不变的运动,D 错误. 二、运动的合成与分解 1.遵循的法则位移、速度、加速度都是矢量,故它们的合成与分解都遵循平行四边形定则. 2.合运动与分运动的关系(1)等时性:合运动和分运动经历的时间相等,即同时开始、同时进行、同时停止. (2)独立性:一个物体同时参与几个分运动,各分运动独立进行,不受其他运动的影响. (3)等效性:各分运动的规律叠加起来与合运动的规律有完全相同的效果. 3.运动性质的判断⎩⎨⎧加速度(或合外力)⎩⎪⎨⎪⎧ 变化:非匀变速运动不变:匀变速运动加速度(或合外力)方向与速度方向⎩⎪⎨⎪⎧共线:直线运动不共线:曲线运动4.两个直线运动的合运动性质的判断标准:看合初速度方向与合加速度方向是否共线.自测3 (2018·河南省驻马店市第二次质检)如图1所示,在灭火抢救过程中,消防队员有时要借助消防车上的梯子爬到高处进行救人或灭火作业.为了节省救援时间,消防队员沿梯子匀加速向上运动的同时消防车匀速后退,则关于消防队员的运动,下列说法正确的是( )图1A .消防队员做匀加速直线运动B .消防队员做匀变速曲线运动C .消防队员做变加速曲线运动D .消防队员水平方向的速度保持不变 答案 B解析 根据运动的合成,知合速度的方向与合加速度的方向不在同一条直线上,其合加速度的方向、大小不变,所以消防队员做匀变速曲线运动,故A 、C 错误,B 正确.将消防队员的运动分解为水平方向和竖直方向,知水平方向上的最终的速度为匀速后退的速度和沿梯子方向速度在水平方向上的分速度的合速度,因为沿梯子方向的速度在水平方向上的分速度在变,所以消防队员水平方向的速度在变,故D 错误.命题点一 曲线运动的条件和特征1.条件物体受到的合外力方向与速度方向始终不共线.2.特征(1)运动学特征:做曲线运动的物体的速度方向时刻发生变化,即曲线运动一定为变速运动.(2)动力学特征:由于做曲线运动的物体所受合外力一定不为零且和速度方向始终不在同一条直线上(做曲线运动的条件).合外力在垂直于速度方向上的分力改变物体速度的方向,合外力在沿速度方向上的分力改变物体速度的大小.(3)轨迹特征:曲线运动的轨迹始终夹在合外力的方向与速度的方向之间,而且向合外力的一侧弯曲.(4)能量特征:如果物体所受的合外力始终和物体的速度垂直,则合外力对物体不做功,物体的动能不变;若合外力不与物体的速度方向垂直,则合外力对物体做功,物体的动能发生变化.例1(2018·山东省泰安市上学期期中) 一质点做匀速直线运动,现对其施加一恒力,且原来作用在质点上的力不发生改变.则该质点()A.不可能做匀变速运动B.速度的大小保持不变C.速度的方向总是与该恒力的方向垂直D.任意相等时间内速度的变化量总相同答案 D解析施加的恒力即为质点的合力,所以做匀变速运动,若该恒力的方向与速度方向的夹角不为90°,则速度大小一定变化,A、B错误;速度的方向与恒力的方向的夹角多样化,不一定总垂直,C错误;由于做匀变速运动,即加速度恒定,所以根据Δv=a·Δt可知任意相等时间内速度的变化量总相同,D正确.变式1(2019·山东省德州市期中)如图2,一圆盘可绕一通过圆心且垂直于盘面的竖直轴转动,在圆盘上放一块橡皮,橡皮块随圆盘一起转动(俯视为逆时针).某段时间圆盘转速不断增大,但橡皮块仍相对圆盘静止,在这段时间内,关于橡皮块所受合力F的方向的四种表示(俯视图)中,正确的是()图2答案 C变式2(2018·湖北省黄冈市质检)如图3是码头的旋臂式起重机,当起重机旋臂水平向右保持静止时,吊着货物的天车沿旋臂向右匀速行驶,同时天车又使货物沿竖直方向先做匀加速运动,后做匀减速运动.该过程中货物的运动轨迹可能是下图中的()图3答案 C解析货物在水平方向上做匀速直线运动,在竖直方向上先做匀加速运动,后做匀减速运动,根据平行四边形定则,知合速度的方向与合加速度的方向不在同一条直线上,轨迹为曲线,货物的加速度先向上后向下,因为加速度的方向大致指向轨迹的凹侧,故C正确.命题点二运动的合成与分解1.分析运动的合成与分解问题时,一般情况下按运动效果进行分解.2.要注意分析物体在两个方向上的受力及运动规律,分别在两个方向上列式求解.3.两个方向上的分运动具有等时性,这常是处理运动分解问题的关键点.例2(多选)(2018·广东省韶关市月考)如图4甲所示,在杂技表演中,猴子沿竖直杆向上运动,其v-t图象如图乙所示,同时人顶着杆沿水平地面运动的x-t图象如图丙所示.若以地面为参考系,下列说法正确的是()图4A.猴子的运动轨迹为直线B.猴子在2 s内做匀变速曲线运动C.t=0时猴子的速度大小为8 m/sD.猴子在2 s内的加速度大小为4 m/s2答案BD解析若以地面为参考系,则猴子在竖直方向做初速度为8 m/s、加速度为4 m/s2的匀减速直线运动,水平方向做速度大小为4 m/s的匀速直线运动,其合运动为曲线运动,故猴子在2 s内做匀变速曲线运动,选项A错误,B正确;t=0时猴子的速度大小为v0=v02x+v02y=42+82m/s=4 5 m/s,选项C错误;猴子在2 s内的加速度大小为4 m/s2,选项D正确.变式3如图5所示,帆板在海面上以速度v朝正西方向运动,帆船以速度v朝正北方向航行,以帆板为参照物()图5A.帆船朝正东方向航行,速度大小为vB.帆船朝正西方向航行,速度大小为vC.帆船朝南偏东45°方向航行,速度大小为2vD.帆船朝北偏东45°方向航行,速度大小为2v答案 D解析 以帆板为参照物,帆船具有正东方向的速度v 和正北方向的速度v ,所以帆船相对帆板的速度v 相对=2v ,方向为北偏东45°,D 正确.命题点三 小船渡河模型1.船的实际运动:是水流的运动和船相对静水的运动的合运动. 2.三种速度:船在静水中的速度v 船、水的流速v 水、船的实际速度v . 3.两类问题、三种情景4.分析思路例3 (多选)(2018·四川省德阳市高考一诊)甲、乙两船在同一河流中同时开始渡河,河水流速为v 0,船在静水中的速率均为v ,甲、乙两船船头均与河岸成θ角,如图6所示,已知甲船恰能垂直到达河正对岸的A 点,乙船到达河对岸的B 点,A 、B 之间的距离为L ,则下列判断正确的是( )图6A.乙船先到达对岸B.若仅是河水流速v0增大,则两船的渡河时间都不变C.不论河水流速v0如何改变,只要适当改变θ角,甲船总能到达正对岸的A点D.若仅是河水流速v0增大,则两船到达对岸时,两船之间的距离仍然为L答案BD解析将小船的运动分解为平行于河岸和垂直于河岸两个方向,抓住分运动和合运动具有等时性,知甲、乙两船到达对岸的时间相等,渡河的时间t=dv sin θ,故A错误;若仅是河水流速v0增大,渡河的时间t=dv sin θ,则两船的渡河时间都不变,故B正确;只有甲船速度大于水流速度时,不论河水流速v0如何改变,甲船总能到达河的正对岸A 点,故C错误;若仅是河水流速v0增大,则两船到达对岸时间不变,根据速度的分解,船在水平方向相对于静水的分速度仍不变,则两船之间的距离仍然为L,故D正确.变式4(2018·湖南省衡阳市第二次联考)一只小船渡过两岸平行的河流,河中水流速度各处相同且恒定不变,方向平行于河岸.小船的初速度均相同,且船头方向始终垂直于河岸,小船相对于水分别做匀加速、匀减速和匀速直线运动,其运动轨迹如图7所示.下列说法错误的是()图7A.沿AC和AD轨迹小船都是做匀变速运动B.AD是匀减速运动的轨迹C.沿AC轨迹渡河所用时间最短D.小船沿AD轨迹渡河,船靠岸时速度最大答案 D解析船沿着船头指向方向做匀加速直线运动的同时还要随着水流一起匀速运动,曲线运动的加速度指向轨迹的内侧,故AC轨迹船相对于静水沿垂直于河岸方向做匀加速运动,同理可知,AB轨迹船相对于静水沿垂直于河岸方向做匀速运动,AD轨迹船相对于静水沿垂直于河岸方向做匀减速运动,沿AD轨迹,船是匀减速运动,则船到达对岸的速度最小,故A、B正确,D错误;船相对于水的初速度大小均相同,方向垂直于岸边,由于AC轨迹船相对于静水沿垂直于河岸方向做匀加速运动,AB轨迹船相对于静水沿垂直于河岸方向做匀速运动,AD轨迹船相对于静水沿垂直于河岸方向做匀减速运动,故沿三条不同路径渡河的时间不同,沿AC 轨迹渡河所用的时间最短,故C 正确.命题点四 绳(杆)端速度分解模型1.模型特点沿绳(杆)方向的速度分量大小相等. 2.思路与方法合速度→绳(杆)拉物体的实际运动速度v分速度→⎩⎪⎨⎪⎧其一:沿绳(杆)的速度v 1其二:与绳(杆)垂直的分速度v 2方法:v 1与v 2的合成遵循平行四边形定则. 3.解题的原则把物体的实际速度分解为垂直于绳(杆)和平行于绳(杆)两个分量,根据沿绳(杆)方向的分速度大小相等求解.常见的模型如图8所示.图8例4 (2019·广东省惠州市调研)质量为m 的物体P 置于倾角为θ1的固定光滑斜面上,轻细绳跨过光滑定滑轮分别连接着P 与小车,P 与滑轮间的细绳平行于斜面,小车以速率v 水平向右做匀速直线运动.当小车与滑轮间的细绳和水平方向成夹角θ2时(如图9),下列判断正确的是( )图9A .P 的速率为vB .P 的速率为v cos θ2C .绳的拉力等于mg sin θ1D .绳的拉力小于mg sin θ1答案 B解析 将小车速度沿绳子和垂直绳子方向分解为v 1、v 2,P 的速率等于v 1=v cos θ2,A 错误,B 正确;小车向右做匀速直线运动,θ2减小,P 的速率增大,绳的拉力大于mg sin θ1,C 、D 错误.变式5 两根光滑的杆互相垂直地固定在一起,上面分别穿有两个小球a 和b ,小球a 、b 间用一细直棒相连,如图10所示.当细直棒与竖直杆夹角为θ时,求小球a 、b 实际速度大小之比.图10答案 tan θ解析 根据速度的分解特点,可作出两小球的速度关系如图所示.由图中几何关系可得,a 、b 沿棒方向的分速度分别为v a cos θ和v b sin θ,根据“关联速度”的特点可知,两小球沿棒的分速度大小相等,即有v a cos θ=v b sin θ,解得:v av b =tan θ.1.(2018·甘肃省兰州一中模拟)下列说法中正确的是( ) A .曲线运动不可能是匀变速运动 B .曲线运动一定是变速运动 C .恒力作用下的物体一定做直线运动 D .变力作用下的物体一定做曲线运动 答案 B解析 做曲线运动的物体的加速度不一定变化,如平抛运动,重力加速度是不变的,故A 错误;曲线运动的速度的方向是不断改变的,所以曲线运动一定是变速运动,故B 正确;在恒力作用下,物体可以做曲线运动,如平抛运动,故C 错误;物体在变力的作用下也可能做直线运动,如变加速直线运动,故D 错误. 2.(2018·江西省赣州市十四县市期中)下列关于力与运动的叙述中正确的是( ) A .物体所受合力方向与运动方向有夹角时,该物体速度一定变化,加速度也变化 B .物体做圆周运动,所受的合力一定指向圆心C.物体运动的速率在增加,所受合力方向与运动方向夹角小于90°D.物体在变力作用下有可能做曲线运动,做曲线运动物体一定受到变力作用答案 C解析物体所受合力方向与运动方向有夹角时,该物体速度一定变化,但加速度不一定变化,如平抛运动,A错误;若物体做变速圆周运动,则存在一个切向加速度,合力不指向圆心,B错误;合力方向与运动方向夹角小于90°时合力做正功,速度增大,C正确;如果变力与速度方向不共线,则做曲线运动,但做曲线运动的物体受到的合力可以为恒力,如平抛运动,D错误.3.一个物体在光滑水平面上沿曲线MN运动,如图1所示,其中A点是曲线上的一点,虚线1、2分别是过A点的切线和法线,已知该过程中物体所受的合外力是恒力,曲线MN关于虚线2对称,则当物体运动到A点时,合外力的方向可能是()图1A.沿F1或F5的方向B.沿F3或F4的方向C.沿F2的方向D.不在MN曲线所确定的水平面内答案 C4.如图所示,“嫦娥号”探月卫星在由地球飞向月球时,沿曲线从M点向N点飞行的过程中,速度逐渐减小,在此过程中探月卫星所受合力方向可能是下列图中的()答案 C5.(2018·山东省青岛市模拟)如图2所示,光滑水平面内的xOy直角坐标系中,一质量为1 kg的小球沿x轴正方向匀速运动,速度大小为1 m/s,经过坐标原点O时,小球受到的一沿y轴负方向、大小为1 N的恒力F突然撤去,其他力不变,则关于小球的运动,下列说法正确的是()图2A .做变加速曲线运动B .任意两段时间内速度变化大小都相等C .经过x 、y 坐标相等的位置时所用时间为1 sD .1 s 末速度大小为 2 m/s 答案 D6.如图3所示,人沿平直的河岸以速度v 行走,且通过不可伸长的绳拖船,船沿绳的方向行进,此过程中绳始终与水面平行.当绳与河岸的夹角为α时,船的速率为( )图3A .v sin α B.v sin α C .v cos α D.v cos α答案 C解析 将人的运动分解为沿绳方向的分运动(分速度为v 1)和与绳垂直方向的分运动(分速度为v 2),如图所示.船的速率等于沿绳方向的分速度v 1=v cos α,选项C 正确.7.(2019·湖北省荆州市模拟)帆船船头指向正东以速度v (静水中速度)航行,海面正刮着南风,风速为3v ,以海岸为参考系,不计阻力.关于帆船的实际航行方向和速度大小,下列说法中正确的是( ) A .帆船沿北偏东30°方向航行,速度大小为2v B .帆船沿东偏北60°方向航行,速度大小为2v C .帆船沿东偏北30°方向航行,速度大小为2v D .帆船沿东偏南60°方向航行,速度大小为2v 答案 A解析 由于帆船的船头指向正东,并以相对静水中的速度v 航行,南风以3v 的风速向北吹来,当以海岸为参考系时,实际速度v 实=v 2+(3v )2=2v ,设帆船实际航行方向与正北方向夹角为α,则sin α=v 2v =12,α=30°,即帆船沿北偏东30°方向航行,选项A 正确.8.(2018·山西省孝义市质量检测三)一个质量为2 kg的物体,在三个共点力作用下处于平衡状态.现同时撤去大小分别为6 N和10 N的两个力,另一个力保持不变,此后该物体的运动()A.可能做匀变速直线运动,加速度大小可能等于1.5 m/s2B.可能做类平抛运动,加速度大小可能等于12 m/s2C.可能做匀速圆周运动,向心加速度大小可能等于3 m/s2D.—定做匀变速运动,加速度大小可能等于6 m/s2答案 D9.(多选)(2018·安徽省蚌埠市一质检)运动轨迹既不是抛物线也不是圆周的曲线运动,称为一般的曲线运动,研究一般的曲线运动,可以把曲线分隔成许多小段,分析质点在每一小段的运动时,下列方法错误的是()A.每一小段的运动可以看成直线运动B.每一小段运动中物体受到的合力为零C.每一小段运动中物体受到恒力的作用D.每一小段运动可以看成圆周运动的一部分答案ABC解析把曲线分隔成许多小段,每一小段的运动可以看成圆周运动的一部分,故D项正确,A项错误.做圆周运动的物体受到的力为变力且不为零,故B、C项错误.10.(2018·甘肃省平凉市质检)如图4所示,水平面上固定一个与水平面夹角为θ的斜杆A,另一竖直杆B以速度v 水平向左做匀速直线运动,则从两杆开始相交到最后分离的过程中,两杆交点P的速度方向和大小分别为()图4A.水平向左,大小为vB.竖直向上,大小为v tan θC.沿A杆斜向上,大小为v cos θD.沿A杆斜向上,大小为v cos θ答案 C11.如图5所示,河水由西向东流,河宽为800 m,河中各点的水流速度大小为v水,各点到较近河岸的距离为x,v水与x的关系为v水=3400x(m/s)(x的单位为m),让小船船头垂直河岸由南向北渡河,小船划水速度大小恒为v船=4 m/s,则下列说法中正确的是( )图5A .小船渡河的轨迹为直线B .小船在河水中的最大速度是5 m/sC .小船在距南岸200 m 处的速度小于在距北岸200 m 处的速度D .小船渡河的时间是160 s 答案 B解析 小船在南北方向上为匀速直线运动,在东西方向上先加速,到达河中间后再减速,速度与加速度不共线,小船的合运动是曲线运动,A 错.当小船运动到河中间时,东西方向上的分速度最大,为3 m/s ,此时小船的合速度最大,最大值v m =5 m/s ,B 对.小船在距南岸200 m 处的速度等于在距北岸200 m 处的速度,C 错.小船的渡河时间t =800 m 4 m/s=200 s ,D 错. 12.在一光滑的水平面上建立xOy 平面坐标系,一质点在水平面上从坐标原点开始运动,沿x 方向和y 方向的x -t 图象和v y -t 图象分别如图6甲、乙所示,求:图6(1)运动后4 s 内质点的最大速度; (2)4 s 末质点离坐标原点的距离. 答案 (1)2 5 m/s (2)8 m解析 (1)由题图可知,质点沿x 轴正方向做匀速直线运动,速度大小为v x =xt 1=2 m/s ,在运动后4 s 内,沿y 轴方向运动的最大速度为4 m/s ,则运动后4 s 内质点运动的最大速度为v m =v x 2+v y 2=2 5 m/s.(2)0~2 s 内质点沿y 轴正方向做匀加速直线运动,2~4 s 内先沿y 轴正方向做匀减速直线运动,再沿y 轴负方向做初速度为零的匀加速直线运动,此过程加速度大小为 a =Δv Δt =62m/s 2=3 m/s 2则质点沿y 轴正方向做匀减速运动的时间t 2=v a =23 s则运动后的4 s 内沿y 轴方向的位移 y =12×2×⎝⎛⎭⎫2+23 m -12×4×43m =0 因此4 s 末质点离坐标原点的距离等于沿x 轴方向的位移 由题图甲可知,4 s 末质点离坐标原点的距离s =x =8 m13.(2019·云南省保山市模拟)如图7所示,一艘轮船正在以4 m/s 的速度沿垂直于河岸方向匀速渡河,河中各处水流速度都相同,其大小为v 1=3 m/s ,行驶中,轮船发动机的牵引力与船头朝向的方向相同.某时刻发动机突然熄火,轮船牵引力随之消失,轮船相对于水的速度逐渐减小,但船头方向始终未发生变化.求:图7(1)发动机未熄火时,轮船相对于静水行驶的速度大小. (2)发动机熄火后,轮船相对于河岸速度的最小值. 答案 (1)5 m/s (2)2.4 m/s解析 (1)发动机未熄火时,轮船运动速度v 与水流速度v 1方向垂直,如图所示.故此时轮船相对于静水的速度v 2的大小为 v 2=v 2+v 12=42+32 m/s =5 m/s.(2)熄火前,设v 与v 2的夹角为θ,则cos θ=vv 2=0.8,轮船的牵引力沿v 2的方向,水的作用力方向与v 2的方向相反,熄火后,牵引力消失,在水的作用力作用下,v 2逐渐减小,但其方向不变,当v 2与v 1的矢量和与v 2垂直时,轮船的合速度最小,α=θ,则v min =v 1cos α=3× 0.8 m/s =2.4 m/s.。

2020高考物理一轮复习第四章第4讲万有引力与航天课件

2020高考物理一轮复习第四章第4讲万有引力与航天课件

03 Gmr1m2 2 ,其中 G 为万有引力常量,G=6.67×10-11
N·m2/kg2,其值由卡文迪许通过扭秤实验测得。公式中的 r 是两个物体之间
的 □04 距离 。
3.适用条件:适用于两个 □05 质点 或均匀球体;r 为两质点或均匀球
体球心间的距离。
知识点
环绕速度 Ⅱ
1.第一宇宙速度又叫 □01 环绕 速度,其数值为 □02 7.9 km/s。
2.(人教版必修 2·P48·T3 改编)火星的质量和半径分别约为地球的110和12, 地球的第一宇宙速度为 v,则火星的第一宇宙速度约为( )
A. 55v B. 5v C. 2v D. 22v
答案 A
解析







GMm R2

mv2 R



v

GM R


v火 v

M火 M
·RR火=
15,所以 v 火= 55v,故 A 正确。
2.行星绕太阳的运动通常按匀速圆周运动处理。 3.开普勒行星运动定律也适用于其他天体,例如月球、卫星绕地球的运 动。 4.开普勒第三定律Ta32=k 中,k 值只与中心天体的质量有关,不同的中 心天体 k 值不同,故该定律只能用在同一中心天体的两星体之间。
答案 2062 年
答案
解析 设地球绕太阳公转的轨道半径为 R0,周期为 T0,哈雷彗星绕太阳 公转的轨道半长轴为 a,周期为 T,根据开普勒第三定律Ta32=k,有Ta32=RT2030, 则哈雷彗星的公转周期 T= Ra330T0≈76.4 年,所以它下次飞近地球大约将在 1986+76.4≈2062 年。

高考物理一轮复习讲义第四章_曲线运动万有引力与航天_专题强化五_word版有答案

高考物理一轮复习讲义第四章_曲线运动万有引力与航天_专题强化五_word版有答案

专题强化五地球同步卫星双星或多星模型专题解读 1.本专题是万有引力定律在天体运行中的特殊运用,同步卫星是与地球(中心)相对静止的卫星;而双星或多星模型有可能没有中心天体,近年来常以选择题形式在高考题中出现.2.学好本专题有助于学生加深万有引力定律的灵活应用,加深力和运动关系的理解.3.需要用到的知识:牛顿第二定律、万有引力定律、圆周运动规律等.命题点一地球同步卫星1.定义:相对于地面静止且与地球自转具有相同周期的卫星叫地球同步卫星.2.“七个一定”的特点(1)轨道平面一定:轨道平面与赤道平面共面.(2)周期一定:与地球自转周期相同,即T=24 h.(3)角速度一定:与地球自转的角速度相同.(4)高度一定:由GMm(R+h)2=m4π2T2(R+h)得地球同步卫星离地面的高度h=3.6×107 m.(5)速率一定:v=GMR+h=3.1×103 m/s.(6)向心加速度一定:由GMm(R+h)2=ma得a=GM(R+h)2=g h=0.23 m/s2,即同步卫星的向心加速度等于轨道处的重力加速度.(7)绕行方向一定:运行方向与地球自转方向相同.例1利用三颗位置适当的地球同步卫星,可使地球赤道上任意两点之间保持无线电通讯.目前,地球同步卫星的轨道半径约为地球半径的6.6倍.假设地球的自转周期变小,若仍仅用三颗同步卫星来实现上述目的,则地球自转周期的最小值约为()A.1 h B.4 h C.8 h D.16 h答案 B解析地球自转周期变小,卫星要与地球保持同步,则卫星的公转周期也应随之变小,由开普勒第三定律r3T2=k可知卫星离地球的高度应变小,要实现三颗卫星覆盖全球的目的,则卫星周期最小时,由数学几何关系可作出它们间的位置关系如图所示.卫星的轨道半径为r=Rsin 30°=2R由r31T21=r32T22得(6.6R)3 242=(2R)3 T22.解得T2≈4 h.解决同步卫星问题的“四点”注意1.基本关系:要抓住:G Mmr2=ma=mv2r=mrω2=m4π2T2r.2.重要手段:构建物理模型,绘制草图辅助分析.3.物理规律(1)不快不慢:具有特定的运行线速度、角速度和周期.(2)不高不低:具有特定的位置高度和轨道半径.(3)不偏不倚:同步卫星的运行轨道平面必须处于地球赤道平面上,只能静止在赤道上方的特定的点上.4.重要条件(1)地球的公转周期为1年,其自转周期为1天(24小时),地球的表面半径约为6.4×103km,表面重力加速度g 约为9.8 m/s2.(2)月球的公转周期约27.3天,在一般估算中常取27天.(3)人造地球卫星的运行半径最小为r=6.4×103 km,运行周期最小为T=84.8 min,运行速度最大为v=7.9 km/s .1.国务院批复,自2016年起将4月24日设立为“中国航天日”.如图1所示,1970年4月24日我国首次成功发射的人造卫星东方红一号,目前仍然在椭圆轨道上运行,其轨道近地点高度约为440 km,远地点高度约为2 060 km;1984年4月8日成功发射的东方红二号卫星运行在赤道上空35 786 km的地球同步轨道上.设东方红一号在远地点的加速度为a1,东方红二号的加速度为a2,固定在地球赤道上的物体随地球自转的加速度为a3,则a1、a2、a3的大小关系为()图1A.a2>a1>a3B.a3>a2>a1C.a3>a1>a2D.a1>a2>a3答案 D解析 由于东方红二号卫星是同步卫星,则其角速度和赤道上的物体角速度相等,根据a =ω2r ,r 2>r 3,则a 2>a 3;由万有引力定律和牛顿第二定律得,G Mmr 2=ma ,由题目中数据可以得出,r 1<r 2,则a 2<a 1;综合以上分析有,a 1>a 2>a 3,选项D 正确.2.研究表明,地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时.假设这种趋势会持续下去,地球的其他条件都不变,未来人类发射的地球同步卫星与现在的相比( ) A .距地面的高度变大 B .向心加速度变大 C .线速度变大 D .角速度变大 答案 A解析 地球的自转周期变大,则地球同步卫星的公转周期变大.由GMm (R +h )2=m 4π2T 2(R +h ),得h =3GMT 24π2-R ,T 变大,h 变大,A 正确. 由GMm r 2=ma ,得a =GMr2,r 增大,a 减小,B 错误. 由GMm r 2=m v 2r ,得v =GMr,r 增大,v 减小,C 错误. 由ω=2πT可知,角速度减小,D 错误. 3.(多选)地球同步卫星离地心的距离为r ,运行速率为v 1,加速度为a 1,地球赤道上的物体随地球自转的向心加速度为a 2,地球的第一宇宙速度为v 2,半径为R ,则下列比例关系中正确的是( ) A.a 1a 2=r R B.a 1a 2=(r R )2 C.v 1v 2=r R D.v 1v 2=R r答案 AD解析 设地球的质量为M ,同步卫星的质量为m 1,在地球表面绕地球做匀速圆周运动的物体的质量为m 2,根据向心加速度和角速度的关系有a 1=ω21r ,a 2=ω22R ,又ω1=ω2,故a 1a 2=r R ,选项A 正确;由万有引力定律和牛顿第二定律得G Mm 1r 2=m 1v 21r ,G Mm 2R 2=m 2v 22R ,解得v 1v 2=Rr,选项D 正确. 命题点二 双星或多星模型 1.双星模型(1)定义:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图2所示.图2(2)特点:①各自所需的向心力由彼此间的万有引力相互提供,即 Gm 1m 2L 2=m 1ω 21r 1,Gm 1m 2L 2=m 2ω 22r 2 ②两颗星的周期及角速度都相同,即 T 1=T 2,ω1=ω2③两颗星的半径与它们之间的距离关系为:r 1+r 2=L (3)两颗星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2r 1. 2.多星模型(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.(2)三星模型:①三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R 的圆形轨道上运行(如图3甲所示). ②三颗质量均为m 的星体位于等边三角形的三个顶点上(如图乙所示).图3(3)四星模型:①其中一种是四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙所示).②另一种是三颗恒星始终位于正三角形的三个顶点上,另一颗位于中心O ,外围三颗星绕O 做匀速圆周运动(如图丁所示).例2 由三颗星体构成的系统,忽略其他星体对它们的作用,存在着一种运动形式,三颗星体在相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O 在三角形所在的平面内做相同角速度的圆周运动(图4为A 、B 、C 三颗星体质量不相同时的一般情况).若A 星体质量为2m 、B 、C 两星体的质量均为m ,三角形的边长为a ,求:图4(1)A 星体所受合力大小F A ; (2)B 星体所受合力大小F B ; (3)C 星体的轨道半径R C ; (4)三星体做圆周运动的周期T .答案 (1)23G m 2a 2 (2)7G m 2a 2 (3)74a (4)πa 3Gm解析 (1)由万有引力定律,A 星体所受B 、C 星体引力大小为F BA =G m A m B r 2=G 2m 2a 2=F CA方向如图所示则合力大小为F A =F BA ·cos 30°+F CA ·cos 30°=23G m 2a 2(2)同上,B 星体所受A 、C 星体引力大小分别为 F AB =G m A m B r 2=G 2m 2a 2F CB =G m C m B r 2=G m 2a 2方向如图所示, 由余弦定理得合力为: F B =F 2AB +F 2CB -2F AB ·F CB ·cos 120°=7G m 2a2 (3)由于m A =2m ,m B =m C =m通过分析可知,圆心O 在BC 的中垂线AD 的中点 则R C =⎝⎛⎭⎫34a 2+⎝⎛⎭⎫12a 2=74a (4)三星体运动周期相同,对C 星体,由F C =F B =7G m 2a 2=m (2πT)2R C ,可得T =πa 3Gm.4.双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T,经过一段时间演化后,两星总质量变为原来的k倍,两星之间的距离变为原来的n倍,则此时圆周运动的周期为()A.n3k2T B.n3k TC.n2k T D.nk T答案 B解析设两恒星的质量分别为m1、m2,距离为L,双星靠彼此的引力提供向心力,则有G m1m2L2=m1r14π2T2G m1m2L2=m2r24π2T2并且r1+r2=L解得T=2πL3G(m1+m2)当两星总质量变为原来的k倍,两星之间距离变为原来的n倍时T′=2πn3L3Gk(m1+m2)=n3k·T故选项B正确.5.银河系的恒星中大约四分之一是双星.如图5所示,某双星由质量不等的星体S1和S2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点O做匀速圆周运动.由天文观察测得它们的运动周期为T,若已知S1和S2的距离为r,引力常量为G,求两星的总质量M.图5答案4π2r3 GT2解析设星体S1、S2的质量分别为m1、m2,运动的轨道半径分别为R1、R2,则运动的角速度为ω=2πT根据万有引力定律和向心力公式有G m1m2r2=m1ω2R1=m2ω2R2又R1+R2=r联立解得两星的总质量为M=m1+m2=ω2r2R2G+ω2r2R1G=ω2r3G=4π2r3GT2.一、近地卫星、同步卫星和赤道上随地球自转的物体的比较如图6所示,a为近地卫星,半径为r1;b为同步卫星,半径为r2;c为赤道上随地球自转的物体,半径为r3.图6二、卫星追及相遇问题典例(多选)如图7所示,三个质点a、b、c的质量分别为m1、m2、M(M远大于m1及m2),在c的万有引力作用下,a、b在同一平面内绕c沿逆时针方向做匀速圆周运动,已知轨道半径之比为r a∶r b=1∶4,则下列说法中正确的有()图7A.a、b运动的周期之比为T a∶T b=1∶8B.a、b运动的周期之比为T a∶T b=1∶4C.从图示位置开始,在b转动一周的过程中,a、b、c共线12次D.从图示位置开始,在b转动一周的过程中,a、b、c共线14次点评某星体的两颗卫星之间的距离有最近和最远之分,但它们都处在同一条直线上,由于它们的轨道不是重合的,因此在最近和最远的相遇问题上不能通过位移或弧长相等来处理,而是通过卫星运动的圆心角来衡量,若它们初始位置在同一直线上,实际上内轨道所转过的圆心角与外轨道所转过的圆心角之差为π的整数倍时就是出现最近或最远的时刻,而本题中a、b、c三个质点初始位置不在一条直线上,故在列式时要注意初始角度差.答案AD解析根据开普勒第三定律:周期的平方与半径的三次方成正比,则周期之比为1∶8,A对;设图示位置夹角为θ<π2,b转动一周(圆心角为2π)的时间为t=T b,则a、b相距最远时:2πT a T b-2πT b T b=(π-θ)+n·2π(n=0,1,2,3,…),可知n<6.75,n可取7个值;a、b相距最近时:2πT a T b-2πT b T b=(2π-θ)+m·2π(m=0,1,2,3,…),可知m<6.25,m可取7个值,故在b转动一周的过程中,a、b、c共线14次,D对.题组1同步卫星1.(多选)据报道,北斗卫星导航系统利用其定位、导航等功能加入到马航MH370失联客机搜救工作,为指挥中心调度部署人力、物力提供决策依据,保证了搜救船只准确抵达相关海域,帮助搜救船只规划搜救航线,避免搜救出现遗漏海域,目前北斗卫星导航定位系统由高度均约为36 000 km的5颗静止轨道卫星和5颗倾斜地球同步轨道卫星以及高度约为21 500 km的4颗中轨道卫星组网运行,下列说法正确的是()A.中轨道卫星的周期比同步卫星的周期大B.所有卫星均位于以地心为中心的圆形轨道上C.同步卫星和中轨道卫星的线速度均小于第一宇宙速度D.赤道上随地球自转的物体的向心加速度比同步卫星的向心加速度大答案BC解析由开普勒第三定律可知,轨道半径较小的中轨道卫星的周期比同步卫星的周期小,A项错;由题意知,北斗导航系统的卫星轨道高度一定,因此卫星均位于以地心为中心的圆形轨道上,B项正确;第一宇宙速度是卫星绕地球的最大运行速度,C项正确;赤道上物体与同步卫星的角速度相同,由a=ω2r可知,同步卫星的向心加速度较大,D项错.2.如图1所示,轨道Ⅰ是近地气象卫星轨道,轨道Ⅱ是地球同步卫星轨道,设卫星在轨道Ⅰ和轨道Ⅱ上都绕地心做匀速圆周运动,运行的速度大小分别是v1和v2,加速度大小分别是a1和a2,则()图1A .v 1>v 2 a 1<a 2B .v 1>v 2 a 1>a 2C .v 1<v 2 a 1<a 2D .v 1<v 2 a 1>a 2 答案 B解析 根据G Mmr 2=m v 2r=ma ,可知v =GM r ,a =GMr2,所以v 1>v 2,a 1>a 2.选项B 正确. 3.设地球的质量为M ,半径为R ,自转周期为T ,引力常量为G .“神舟九号”绕地球运行时离地面的高度为h ,则“神舟九号”与“同步卫星”各自所在轨道处的重力加速度的比值为( )A.423223(2)()()R h GMT π+ B.22343()()(2π)GM R h T +C.223423()(2π)()GMT R h + D.43223(2π)()()T GM R h +答案 C解析 设“神舟九号”与“同步卫星”各自所在轨道处的重力加速度分别为g 神九、g 同步,则m 神九g 神九=G Mm 神九(R +h )2,m 同步g 同步=G Mm 同步r 2同步=4π2m 同步r 同步T 2,联立可得g 神九g 同步=(GMT 2)23(2π)43(R +h )2,故C 正确. 4.“神舟八号”飞船绕地球做匀速圆周运动时,飞行轨道在地球表面的投影如图2所示,图中标明了飞船相继飞临赤道上空所对应的地面的经度.设“神舟八号”飞船绕地球飞行的轨道半径为r 1,地球同步卫星飞行轨道半径为r 2.则r 31∶r 32等于( )图2A .1∶24B .1∶156C .1∶210D .1∶256答案 D解析 从图象中可以看出,飞船每运行一周,地球自转22.5°,故飞船的周期为T 1=22.5°360°×24 h =1.5 h ,同步卫星的周期为24 h ,由开普勒第三定律可得r 31r 32=T 21T 22=(1.524)2=1256,故选D.题组2 双星、多星模型5.(多选)宇宙间存在一些离其他恒星较远的三星系统,其中有一种三星系统如图3所示,三颗质量均为m 的星位于等边三角形的三个顶点,三角形边长为R ,忽略其他星体对它们的引力作用,三星在同一平面内绕三角形中心O 做匀速圆周运动,万有引力常量为G ,则()图3A .每颗星做圆周运动的线速度为 Gm RB .每颗星做圆周运动的角速度为 3GmR 3 C .每颗星做圆周运动的周期为2πR 33GmD .每颗星做圆周运动的加速度与三星的质量无关 答案 ABC解析 由图可知,每颗星做匀速圆周运动的半径r =R 2cos 30°=33R .由牛顿第二定律得Gm 2R 2·2cos 30°=m v 2r =mω2r=m 4π2T2r =ma ,可解得v =GmR,ω= 3GmR 3,T =2πR 33Gm ,a =3GmR2,故A 、B 、C 均正确,D 错误. 6.2016年2月11日,美国科学家宣布探测到引力波的存在,引力波的发现将为人类探索宇宙提供新视角,这是一个划时代的发现.在如图4所示的双星系统中,A 、B 两个恒星靠着相互之间的引力正在做匀速圆周运动,已知恒星A 的质量为太阳质量的29倍,恒星B 的质量为太阳质量的36倍,两星之间的距离L =2×105 m ,太阳质量M =2×1030 kg ,引力常量G =6.67×10-11N·m 2/kg 2,π2=10.若两星在环绕过程中会辐射出引力波,该引力波的频率与两星做圆周运动的频率具有相同的数量级,则根据题目所给信息估算该引力波频率的数量级是( )图4A .102 HzB .104 HzC .106 HzD .108 Hz 答案 A解析 A 、B 的周期相同,角速度相等,靠相互之间的引力提供向心力, 有G M A M B L 2=M A r A 4π2T 2①G M A M B L 2=M B r B 4π2T 2②有M A r A =M B r B ,r A +r B =L , 解得r A =M B M A +M B L =3629+36L =3665L .由①得T = 4π2L 3×3665GM B ,则f =1T=GM B 4π2L 3×3665=6.67×10-11×36×2×10304×10×(2×105)3×3665Hz ≈1.6×102 Hz.第11页 共11页 7.经过用天文望远镜长期观测,人们在宇宙中已经发现了许多双星系统,通过对它们的研究,使我们对宇宙中物质的存在形式和分布情况有了较深刻的认识,双星系统由两个星体组成,其中每个星体的线度都远小于两星体之间的距离,一般双星系统距离其他星体很远,可以当成孤立系统来处理.现根据对某一双星系统的测量确定,该双星系统中每个星体的质量都是M ,两者相距L ,它们正围绕两者连线的中点做圆周运动.(1)计算出该双星系统的运动周期T ;(2)若该实验中观测到的运动周期为T 观测,且T 观测∶T =1∶N (N >1).为了理解T 观测与T 的不同,目前有一种流行的理论认为,在宇宙中可能存在一种望远镜观测不到的暗物质.作为一种简化模型,我们假定在以这两个星体连线为直径的球体内均匀分布这种暗物质.若不考虑其他暗物质的影响,根据这一模型和上述观测结果确定该星系间这种暗物质的密度.答案 (1)πL 2L GM (2)3(N -1)M 2πL 3解析 (1)双星均绕它们连线的中点做圆周运动,万有引力提供向心力,则G M 2L 2=M ⎝⎛⎭⎫2πT 2·L 2,解得T =πL 2L GM . (2)N >1,根据观测结果,星体的运动周期为T 观测=1NT <T ,这是由于双星系统内(类似一个球体)均匀分布的暗物质引起的,均匀分布在双星系统内的暗物质对双星系统的作用与一个质点(质点的质量等于球内暗物质的总质量M ′且位于中点O 处)的作用等效,考虑暗物质作用后双星系统的运动周期,即 G M 2L 2+G MM ′(L 2)2=M ⎝⎛⎭⎫2πT 观测2·L 2, 代入T =πL 2L GM 并整理得M ′=N -14M . 故所求的暗物质密度为ρ=M ′43π(L 2)3=3(N -1)M 2πL 3.。

山东专用2020版高考物理一轮复习第四章第4节万有引力与航天练习含解析新人教版

山东专用2020版高考物理一轮复习第四章第4节万有引力与航天练习含解析新人教版

第4节 万有引力与航天1.假设有一星球的密度与地球相同,但它表面处的重力加速度是地球表面重力加速度的4倍,则该星球的质量是地球质量的( D )A. B.4倍 C.16倍 D.64倍解析:由=mg得M=,所以ρ===,ρ=ρ地,即=,得R=4R地,故=·=64.选项D正确.2.火星成为我国深空探测的第二颗星球,假设火星探测器在着陆前,绕火星表面匀速飞行(不计周围其他天体的影响),宇航员测出飞行N圈用时t,已知地球质量为M,地球半径为R,火星半径为r,地球表面重力加速度为g.则( B )A.火星探测器匀速飞行的速度约为B.火星探测器匀速飞行的向心加速度约为C.火星探测器的质量为D.火星的平均密度为解析:火星探测器匀速飞行的速度约为v=,向心加速度约为a==,A错误,B正确;火星探测器匀速飞行,G=,对于地球,g=,两式结合,得到M火=,火星的平均密度为ρ==,故D错误;火星探测器的质量不能计算出来,故C错误.3.登上火星是人类的梦想,“嫦娥之父”欧阳自远透露:中国计划于2020年登陆火星.地球和火星公转视为匀速圆周运动,忽略行星自转影响.根据下表,火星和地球相比( B )行星半径/m质量/kg轨道半径/m地球 6.4×106 6.0×1024 1.5×1011火星 3.4×106 6.4×1023 2.3×1011A.火星的公转周期较小B.火星做圆周运动的加速度较小C.火星表面的重力加速度较大D.火星的第一宇宙速度较大解析:由G=m r=ma知,T=2π,a=,轨道半径越大,公转周期越大,加速度越小,由于r火>r地,故选项A错误,B正确;由G=mg得g=G,=·()2=2.6,火星表面的重力加速度较小,C错误;由G=m得v=,==,火星的第一宇宙速度较小,D错误.4. 中国北斗卫星导航系统(BDS)是中国自行研制的全球卫星导航系统,是继美国全球定位系统(GPS)、俄罗斯格洛纳斯卫星导航系统(GLONASS)之后第三个成熟的卫星导航系统.预计2020年左右,北斗卫星导航系统将形成全球覆盖能力.如图所示是北斗导航系统中部分卫星的轨道示意图,已知a,b,c三颗卫星均做圆周运动,a是地球同步卫星,则( A )A.卫星a的角速度小于c的角速度B.卫星a的加速度大于b的加速度C.卫星a的运行速度大于第一宇宙速度D.卫星b的周期大于24 h解析:a的轨道半径大于c的轨道半径,因此卫星a的角速度小于c的角速度,选项A正确;a 的轨道半径与b的轨道半径相等,因此卫星a的加速度等于b的加速度,选项B错误;a的轨道半径大于地球半径,因此卫星a的运行速度小于第一宇宙速度,选项C错误;a的轨道半径与b的轨道半径相等,卫星b的周期等于a的周期,为24 h,选项D错误.5.(2019·江西南昌模拟)2016年10月17日,“神舟十一号”载人飞船发射升空,搭载宇航员景海鹏、陈冬前往“天宫二号”空间实验室,宇航员在“天宫二号”驻留30天进行了空间地球系统科学、空间应用新技术和航天医学等领域的应用和实验.“神舟十一号”与“天宫二号”的对接变轨过程如图所示,AC是椭圆轨道Ⅱ的长轴.“神舟十一号”从圆轨道Ⅰ先变轨到椭圆轨道Ⅱ,再变轨到圆轨道Ⅲ,与在圆轨道Ⅲ运行的“天宫二号”实施对接.下列描述正确的是( C )A.“神舟十一号”在变轨过程中机械能不变B.可让“神舟十一号”先进入圆轨道Ⅲ,然后加速追赶“天宫二号”实现对接C.“神舟十一号”从A到C的动量逐渐变小D.“神舟十一号”在椭圆轨道上运动的周期与“天宫二号”运行周期相等解析:“神舟十一号”飞船变轨过程中轨道升高,机械能增加,A选项错误;若飞船在进入圆轨道Ⅲ后再加速,则将进入更高的轨道飞行,不能实现对接,选项B错误;由开普勒第二定律可知,飞船沿轨道Ⅱ由A到C速度减小,则动量逐渐减小,选项C正确;由开普勒第三定律可知,在椭圆轨道Ⅱ上的运行周期与在圆轨道Ⅲ上的运行周期不相等,D项错误.6.(2017·海南卷,5)已知地球质量为月球质量的81倍,地球半径约为月球半径的4倍.若在月球和地球表面同样高度处,以相同的初速度水平抛出物体,抛出点与落地点间的水平距离分别为s月和s地,则s月∶s地约为( A )A.9∶4B.6∶1C.3∶2D.1∶1解析:设月球质量为M′,半径为R′,地球质量为M,半径为R.已知=81,=4,根据在星球表面万有引力等于重力得=mg则有g=,因此=由题意从同样高度抛出,h=gt2=g′t′2,联立解得t′=t,在地球上的水平位移s地=v0t,在月球上的水平位移s月=v0t′;因此s月∶s地=9∶4,故A正确,B,C,D错误.7.(2017·全国Ⅲ卷,14)2017年4月,我国成功发射的天舟一号货运飞船与天宫二号空间实验室完成了首次交会对接,对接形成的组合体仍沿天宫二号原来的轨道(可视为圆轨道)运行.与天宫二号单独运行时相比,组合体运行的( C )A.周期变大B.速率变大C.动能变大D.向心加速度变大解析:设地球质量为M,对天宫二号,由万有引力提供向心力可得T=2π,v=,a=,而对接后组合体轨道半径r不变,则T,v,a均不变,但质量变大,由E k=mv2知E k变大,选项C正确.8. (2019·山西大学附中模拟)如图是两颗仅在地球引力作用下绕地球运动的人造卫星轨道示意图,Ⅰ是半径为R的圆轨道,Ⅱ为椭圆轨道,AB为椭圆的长轴且AB=2R,两轨道和地心在同一平面内,C,D为两轨道的交点.已知轨道Ⅱ上的卫星运动到C点时速度方向与AB平行,下列说法正确的是( A )A.两个轨道上的卫星在C点时的加速度相同B.Ⅱ轨道上的卫星在B点时的速度可能大于Ⅰ轨道上的卫星的速度C.Ⅱ轨道上卫星的周期大于Ⅰ轨道上卫星的周期D.Ⅱ轨道上卫星从C经B运动到D的时间与从D经A运动到C的时间相等解析:根据牛顿第二定律得a==,两轨道上的卫星在C点距离地心的距离相等,则加速度相同,选项A正确;Ⅱ轨道上的卫星经B点时需要加速可进入过B点的圆轨道,此圆轨道与Ⅰ轨道相比,卫星运动速度一定小,由此可知,选项B错误;根据开普勒第三定律知=k,椭圆的半长轴与圆轨道的半径相等,则Ⅱ轨道上卫星的周期等于Ⅰ轨道上卫星的周期,选项C错误;Ⅱ轨道上卫星从C经B运动到D的时间大于从D经A到C的时间,选项D错误.9.双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T,经过一段时间演化后,两星总质量变为原来的k倍,两星之间的距离变为原来的n倍,则此时圆周运动的周期为( B )A.TB.TC.TD.T解析:由万有引力提供向心力有G=m1r1()2,G=m2r2()2,又L=r1+r2,M=m1+m2,联立以上各式可得T2=,故当两恒星总质量变为kM,两星间距离变为nL时,圆周运动的周期T′变为T,选项B正确.10.(2019·山东泰安质检)(多选)“嫦娥四号”是嫦娥探月工程计划中嫦娥系列的第四颗人造探月卫星,主要任务是更深层次、更加全面地科学探测月球地貌、资源等方面的信息,完善月球档案资料.已知月球的半径为R,月球表面的重力加速度为g月,引力常量为G,嫦娥四号离月球中心的距离为r,绕月周期为T.根据以上信息可求出( BD )A.“嫦娥四号”绕月运行的速度为B.“嫦娥四号”绕月运行的速度为C.月球的平均密度为D.月球的平均密度为解析:“嫦娥四号”绕月运行时,万有引力提供向心力,G=m,解得v=,则GM=R2g月,联立解得v=,故选项A错误,B正确;G=m r,解得M=,月球的平均密度为ρ==,故选项C错误,D正确.11. 假设在轨运行的“高分一号”卫星、同步卫星和月球都绕地球做匀速圆周运动,它们在空间的位置示意图如图所示.下列有关“高分一号”卫星的说法正确的是( C )A.其发射速度可能小于7.9 km/sB.绕地球运行的角速度比月球绕地球运行的角速度小C.绕地球运行的周期比同步卫星绕地球运行的周期小D.在运行轨道上完全失重,重力加速度为0解析:因7.9 km/s是最小发射速度,所以“高分一号”卫星的发射速度一定大于7.9 km/s,选项A错误;由G=mω2r=m()2r得ω=,T=2π,又r高<r同<r月,所以ω高>ω同>ω,T高<T同<T月,故选项B错误,C正确;在运行轨道上,万有引力提供向心力,处于完全失重状月态,但重力加速度不为0,选项D错误.12.(多选)我国计划在2020年实现火星的着陆巡视,假设探测器飞抵火星着陆前,沿火星近表面做匀速圆周运动,运动的周期为T,线速度为v,已知引力常量为G,火星可视为质量均匀的球体,则下列说法正确的是( BCD )A.火星的质量为B.火星的平均密度为C.火星表面的重力加速度大小为D.探测器的向心加速度大小为解析:因探测器沿火星近表面做匀速圆周运动,故可认为轨道半径等于火星的半径,设探测器绕火星运行的轨道半径为r,根据v=可得r=,又=m,得M=,选项A错误;火星的平均密度ρ===,选项B正确;火星表面的重力加速度大小g火===,选项C正确;探测器的向心加速度大小为a==,选项D正确.13.(2017·天津卷,9)我国自主研制的首艘货运飞船“天舟一号”发射升空后,与已经在轨运行的“天宫二号”成功对接形成组合体.假设组合体在距地面高为h的圆形轨道上绕地球做匀速圆周运动,已知地球的半径为R,地球表面处重力加速度为g,且不考虑地球自转的影响.则组合体运动的线速度大小为 ,向心加速度大小为 .解析:设组合体环绕地球的线速度为v,由G=m得v=,又因为G=mg,所以v=R,向心加速度a==g.答案:R g14. 发射地球同步卫星时,先将卫星发射到距地面高度为h1的近地圆轨道上,在卫星经过A点时点火实施变轨进入椭圆轨道,最后在椭圆轨道的远地点B再次点火将卫星送入同步轨道,如图所示.已知同步卫星的运行周期为T,地球的半径为R,地球表面重力加速度为g,忽略地球自转的影响.求:(1)卫星在近地点A的加速度大小;(2)远地点B距地面的高度.解析:(1)设地球质量为M,卫星质量为m,引力常量为G,卫星在A点的加速度为a,根据牛顿第二定律有G=ma.设质量为m′的物体在地球赤道表面上受到的万有引力等于重力,有G=m′g.由以上两式得a=.(2)设远地点B距地面的高度为h2,由于B点处在卫星的同步轨道,对同步卫星有G=m(R+h2),解得h2=-R.答案:(1) (2)-R。

2020版高考物理一轮复习第四章曲线运动万有引力与航天第5节天体运动与人造卫星

2020版高考物理一轮复习第四章曲线运动万有引力与航天第5节天体运动与人造卫星

第5节天体运动与人造卫星(1)同步卫星可以定点在北京市的正上方。

(×)(2)不同的同步卫星的质量不同,但离地面的高度是相同的。

(√) (3)第一宇宙速度是卫星绕地球做匀速圆周运动的最小速度。

(×)(4)第一宇宙速度的大小与地球质量有关。

(√) (5)月球的第一宇宙速度也是7.9 km/s 。

(×)(6)同步卫星的运行速度一定小于地球第一宇宙速度。

(√)(7)若物体的速度大于第二宇宙速度而小于第三宇宙速度,则物体可绕太阳运行。

(√)突破点(一) 宇宙速度的理解与计算1.第一宇宙速度的推导 方法一:由G Mm R2=m v12R得v 1=GMR = 6.67×10-11×5.98×10246.4×106m/s=7.9×103m/s 。

方法二:由mg =m v12R得v 1=gR =9.8×6.4×106 m/s =7.9×103 m/s 。

第一宇宙速度是发射人造卫星的最小速度,也是人造卫星的最大环绕速度,此时它的运行周期最短,T min =2πRg=5 075 s≈85 min。

2.宇宙速度与运动轨迹的关系(1)v 发=7.9 km/s 时,卫星绕地球做匀速圆周运动。

(2)7.9 km/s <v 发<11.2 km/s ,卫星绕地球运动的轨迹为椭圆。

(3)11.2 km/s ≤v 发<16.7 km/s ,卫星绕太阳做椭圆运动。

(4)v 发≥16.7 km/s,卫星将挣脱太阳引力的束缚,飞到太阳系以外的空间。

[多角练通]1.(2014·江苏高考)已知地球的质量约为火星质量的10倍,地球的半径约为火星半径的2倍,则航天器在火星表面附近绕火星做匀速圆周运动的速率约为( ) A .3.5 km/s B .5.0 km/s C .17.7 km/s D .35.2 km/s解析:选A 根据题设条件可知:M 地=10 M 火,R 地=2R 火,由万有引力提供向心力GMm R2=m v2R,可得v = GM R ,即v 火v 地= M 火R 地M 地R 火=15,因为地球的第一宇宙速度为v 地=7.9 km/s ,所以航天器在火星表面附近绕火星做匀速圆周运动的速率v 火≈3.5 km/s ,选项A 正确。

2020年高考物理新课标第一轮总复习讲义:第四章 第五讲 万有引力与航天 含答案

2020年高考物理新课标第一轮总复习讲义:第四章 第五讲 万有引力与航天 含答案

基础复习课第五讲 万有引力与航天[小题快练]1.判断题(1)行星在椭圆轨道上运行速率是变化的,离太阳越远,运行速率越大.( × ) (2)只要知道两个物体的质量和两个物体之间的距离,就可以由F =G m 1m 2r 2计算物体间的万有引力.( × )(3)两物体间的距离趋近于零时,万有引力趋近于无穷大.( × ) (4)不同的同步卫星的质量不同,但离地面的高度是相同的.( √ ) (5)第一宇宙速度是卫星绕地球做匀速圆周运动的最小速度.( × ) (6)同步卫星的运行速度一定小于地球第一宇宙速度.( √ )(7)若物体的速度大于第二宇宙速度而小于第三宇宙速度,则物体可绕太阳运行.( √ ) 2.火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知( C ) A .太阳位于木星运行轨道的中心B .火星和木星绕太阳运行速度的大小始终相等C .火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D .相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积3.关于地球的第一宇宙速度,下列表述正确的是( A ) A .第一宇宙速度又叫环绕速度 B .第一宇宙速度又叫脱离速度 C .第一宇宙速度跟地球的质量无关 D .第一宇宙速度跟地球的半径无关4.北斗卫星导航系统是我国自行研制开发的区域性三维卫星定位与通信系统(CNSS),建成后的北斗卫星导航系统包括5颗同步卫星和30颗一般轨道卫星.对于其中的5颗同步卫星,下列说法中正确的是( C ) A .它们运行的线速度一定不小于7.9 km/s B .地球对它们的吸引力一定相同 C .一定位于赤道上空同一轨道上 D .它们运行的加速度一定相同考点一 开普勒定律 万有引力定律的理解与应用 (自主学习)1.开普勒行星运动定律(1)行星绕太阳的运动通常按圆轨道处理.(2)开普勒行星运动定律也适用于其他天体,例如月球、卫星绕地球的运动.(3)开普勒第三定律a 3T 2=k 中,k 值只与中心天体的质量有关,不同的中心天体k 值不同. 2.万有引力定律公式F =G m 1m 2r 2适用于质点、均匀介质球体或球壳之间万有引力的计算.当两物体为匀质球体或球壳时,可以认为匀质球体或球壳的质量集中于球心,r 为两球心的距离,引力的方向沿两球心的连线.1-1.[开普勒定律的理解] (2016·全国卷Ⅲ)关于行星运动的规律,下列说法符合史实的是( )A .开普勒在牛顿定律的基础上,导出了行星运动的规律B .开普勒在天文观测数据的基础上,总结出了行星运动的规律C .开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因D .开普勒总结出了行星运动的规律,发现了万有引力定律解析:开普勒在前人观测数据的基础上,总结出了行星运动的规律,与牛顿定律无联系,选项A 错误,选项B 正确;开普勒总结出了行星运动的规律,但没有找出行星按照这些规律运动的原因,C 错误;牛顿发现了万有引力定律,D 错误. 答案:B1-2.[万有引力定律的理解] 关于万有引力定律,下列说法正确的是( ) A .牛顿提出了万有引力定律,并测定了引力常量的数值 B .万有引力定律只适用于天体之间C .万有引力的发现,揭示了自然界一种基本相互作用的规律D .地球绕太阳在椭圆轨道上运行,在近日点和远日点受到太阳的万有引力大小是相同的 答案:C1-3.[万有引力定律的应用] 一名宇航员来到一个星球上,如果该星球的质量是地球质量的一半,它的直径也是地球直径的一半,那么这名宇航员在该星球上所受的万有引力大小是他在地球上所受万有引力的( ) A .0.25倍 B .0.5倍 C .2.0倍D .4.0倍解析:由F 引=GMm r 2=12GM 0m(r 02)2=2GM 0mr 20=2F 地,故C 项正确.答案:C1-4.[开普勒定律的应用] 北斗卫星导航系统(BDS)是中国自行研制的全球卫星导航系统,该系统将由35颗卫星组成,卫星的轨道有三种:地球同步轨道、中地球轨道和倾斜轨道.其中,同步轨道半径大约是中轨道半径的1.5倍,那么同步卫星与中轨道卫星的周期之比约为( )解析:同步轨道半径大约是中轨道半径的1.5倍,根据开普勒第三定律a 3T 2=k 得T 2同T 2中=r 3同r 3中=(32)3,所以同步卫星与中轨道卫星的周期之比约为(32).答案:C考点二 星体表面的重力加速度问题 (自主学习)1.在地球表面附近的重力加速度g (不考虑地球自转): mg =G mM R 2,得g =GM R 22.在地球上空距离地心r =R +h 处的重力加速度为g ′, mg ′=GmM (R +h )2,得g ′=GM(R +h )2 所以g g ′=(R +h )2R 22-1.[天体表面某高度处的重力加速度] (2017·天津卷)我国自主研制的首艘货运飞船“天舟一号”发射升空后,与已经在轨运行的“天宫二号”成功对接形成组合体.假设组合体在距地面高度为h 的圆形轨道上绕地球做匀速圆周运动,已知地球的半径为R ,地球表面处重力加速度为g ,且不考虑地球自转的影响.则组合体运动的线速度大小为 ,向心加速度大小为 .解析:在地球表面附近,物体所受重力和万有引力近似相等,有:G MmR 2=mg ,航天器绕地球做匀速圆周运动,万有引力提供向心力,有:G Mm(R +h )2=m v 2R +h =ma ,解得:线速度v =R g R +h ,向心加速度a =gR 2(R +h )2. 答案:Rg R +h gR 2(R +h )22-2.[天体表面某深度处的重力加速度] 假设地球是一半径为R 、质量分布均匀的球体.一矿井深度为d .已知质量分布均匀的球壳对壳内物体的引力为零.矿井底部和地面处的重力加速度大小之比为( ) A .1-dRB .1+dRC .(R -d R )2D .(R R -d)2解析:如图所示,根据题意,地面与矿井底部之间的环形部分对处于矿井底部的物体引力为零.设地面处的重力加速度为g ,地球质量为M ,地球表面的物体m 受到的重力近似等于万有引力,故mg =G MmR 2;设矿井底部处的重力加速度为g ′,等效“地球”的质量为M ′,其半径r =R -d ,则矿井底部处的物体m 受到的重力mg ′=G M ′m r 2,又M =ρV =ρ·43πR 3,M ′=ρV ′=ρ·43π(R -d )3,联立解得g ′g =1-d R ,A 对.答案:A考点三 中心天体质量和密度的估算 (自主学习)中心天体质量和密度常用的估算方法3-1.[天体质量的计算] (2017·北京卷)利用引力常量G 和下列某一组数据,不能计算出地球质量的是( )A .地球的半径及重力加速度(不考虑地球自转)B .人造卫星在地面附近绕地球做圆周运动的速度及周期C .月球绕地球做圆周运动的周期及月球与地球间的距离D .地球绕太阳做圆周运动的周期及地球与太阳间的距离解析:在地球表面附近,在不考虑地球自转的情况下,物体所受重力等于地球对物体的万有引力,有GMm R 2=mg ,可得M =gR 2G ,选项A 能求出地球质量.根据万有引力提供卫星、月球、地球做圆周运动的向心力,由GMm R 2=m v 2R ,v T =2πR ,解得M =v 3T 2πG ;由GMm 月r 2=m 月(2πT 月)2r ,解得M =4π2r 3GT 2月;由GM 日M r 2日=M (2πT 日)2r 日,会消去两边的M ;故选项BC 能求出地球质量,选项D 不能求出. 答案:D3-2.[天体密度的计算] (2018·广东六校联考)由于行星自转的影响,行星表面的重力加速度会随纬度的变化而有所不同.宇航员在某行星的北极处从高h 处自由释放一重物,测得经过时间t 1重物下落到行星的表面,而在该行星赤道处从高h 处自由释放一重物,测得经过时间t 2重物下落到行星的表面,已知行星的半径为R ,引力常量为G ,则这个行星的平均密度是()A.ρ=3h2πGRt21B.ρ=3h 4πGRt21C.ρ=3h2πGRt22D.ρ=3h 4πGRt22解析:在北极,根据h=12gt21得:g=2ht21,根据GMmR2=mg得星球的质量为:M=gR2G=2hR2Gt21,则星球的密度为:ρ=MV=2hR2Gt21∶4πR33=3h2πGt21R,故A正确,B、C、D错误.答案:A[反思总结]估算天体质量和密度时应注意的问题1.利用万有引力提供天体做圆周运动的向心力估算天体质量时,估算的只是中心天体的质量,并非环绕天体的质量.2.区别天体半径R和卫星轨道半径r,只有在天体表面附近的卫星才有r≈R;计算天体密度时,V=43πR3中的R只能是中心天体的半径.考点四卫星运行参量的比较与计算(自主学习)1.卫星的轨道(1)赤道轨道:卫星的轨道在赤道平面内,同步卫星就是其中的一种.(2)极地轨道:卫星的轨道过南北两极,即在垂直于赤道的平面内,如极地气象卫星.(3)其他轨道:除以上两种轨道外的卫星轨道,且轨道平面一定通过地球的球心.2.地球卫星的运行参数4-1.[卫星运行规律分析](2017·全国卷Ⅲ)2017年4月,我国成功发射的天舟一号货运飞船与天宫二号空间实验室完成了首次交会对接,对接形成的组合体仍沿天宫二号原来的轨道(可视为圆轨道)运行.与天宫二号单独运行时相比,组合体运行的() A.周期变大B.速率变大C.动能变大D.向心加速度变大解析:根据万有引力提供向心力有GMmr2=m(2πT)2r=m v2r=ma,可得周期T=2πr3GM,速率v=GMr,向心加速度a=GMr2,对接前后,轨道半径不变,则周期、速率、向心加速度均不变,质量变大,则动能变大,C正确,A、B、D错误.答案:C4-2.[高度不同的卫星的运动规律]“马航MH370”客机失联后,我国已紧急调动多颗卫星(均做匀速圆周运动),利用高分辨率对地成像、可见光拍照等技术对搜寻失联客机提供支持.关于环绕地球运动的卫星,下列说法正确的是()A.低轨卫星(环绕半径远小于地球同步卫星的环绕半径)都是相对地球运动的,其环绕速率可能大于7.9 km/sB.地球同步卫星相对地球是静止的,可以固定对一个区域拍照C.低轨卫星和地球同步卫星可能具有相同的速率D.低轨卫星和地球同步卫星可能具有相同的周期答案:B4-3.[同步卫星运行规律](2016·全国卷Ⅱ)利用三颗位置适当的地球同步卫星,可使地球赤道上任意两点之间保持无线电通讯.目前,地球同步卫星的轨道半径约为地球半径的6.6倍.假设地球的自转周期变小,若仍仅用三颗同步卫星来实现上述目的,则地球自转周期的最小值约为( ) A .1 h B .4 h C .8 hD .16 h解析:万有引力提供向心力,对同步卫星有 GMm r 2=m 4π2T 2r ,整理得GM =4π2r 3T 2 当r =6.6R 地时,T =24 h若地球的自转周期变小,轨道半径最小为2R 地三颗同步卫星A 、B 、C 如图所示分布 则有4π2(6.6R 地)3T 2=4π2(2R 地)3T ′2解得T ′≈T6=4 h ,B 正确. 答案:B考点五 宇宙速度的理解与计算 (自主学习)1.第一宇宙速度的推导 方法一:由G Mm R 2=m v 21R 得v 1=GM R=7.9×103m/s. 方法二:由mg =m v 21R 得v 1=gR =7.9×103 m/s.第一宇宙速度是发射人造卫星的最小速度,也是人造卫星的最大环绕速度,此时它的运行周期最短,T min =2πRg =5 075 s ≈85 min.2.宇宙速度与运动轨迹的关系(1)v 发=7.9 km/s 时,卫星绕地球做匀速圆周运动.(2)7.9 km/s <v 发<11.2 km/s ,卫星绕地球运动的轨迹为椭圆. (3)11.2 km/s ≤v 发<16.7 km/s ,卫星绕太阳做椭圆运动.(4)v 发≥16.7 km/s ,卫星将挣脱太阳引力的束缚,飞到太阳系以外的空间.5-1.[第一宇宙速度的理解与计算] (2019·青岛调研)行星A 和B 都可看作均匀球体,其质量之比是2∶1,半径之比是1∶2,则两颗行星的第一宇宙速度之比为( ) A .2∶1 B .1∶2 C .1∶1D .4∶1解析:根据万有引力提向心力:G MmR 2=m v 2R ,解得:v = GMR ,则有:v A v B =GM AR AGM B R B=M A R B M B R A =21,故A 正确.答案:A5-2.[宇宙速度与运动轨迹的关系] (多选)如图所示,在发射地球同步卫星的过程中,卫星首先进入椭圆轨道Ⅰ,然后在Q 点通过改变卫星速度,让卫星进入地球同步轨道Ⅱ,则( )A .该卫星在P 点的速度大于7.9 km/s ,小于11.2 km/sB .卫星在同步轨道Ⅱ上的运行速度大于7.9 km/sC .在轨道Ⅰ上,卫星在P 点的速度大于在Q 点的速度D .卫星在Q 点通过加速实现由轨道Ⅰ进入轨道Ⅱ解析:由于卫星的最大环绕速度为7.9 km/s ,故A 错误;环绕地球做圆周运动的人造卫星,最大的运行速度是7.9 km/s ,故B 错误;P 点比Q 点离地球近些,故在轨道Ⅰ上,卫星在P 点的速度大于在Q 点的速度,C 正确;卫星在Q 点通过加速实现由轨道Ⅰ进入轨道Ⅱ,故D 正确. 答案:CD1.(多选)如图所示,三颗质量均为m 的地球同步卫星等间隔分布在半径为r 的圆轨道上,设地球质量为M ,半径为R .下列说法正确的是( BC )A.地球对一颗卫星的引力大小为GMm (r-R)2B.一颗卫星对地球的引力大小为GMm r2C.两颗卫星之间的引力大小为Gm2 3r2D.三颗卫星对地球引力的合力大小为3GMm r22.“嫦娥五号”探测器预计在2017年发射升空,自动完成月球样品采集后从月球起飞,返回地球,带回约2 kg月球样品.某同学从网上得到一些信息,如表格中的数据所示,则地球和月球的密度之比为( B )地球和月球的半径之比 4地球表面和月球表面的重力加速度之比 6A.23B.32C.4D.63.2018年7月22日美国在卡纳维拉尔角空军基地成功发射了地球同步轨道卫星Telstar 19 Vantage,定点在西经63度赤道上空.2018年7月25日欧洲航天局在圭亚那太空中心成功发射了4颗伽利略导航卫星(FOCFM-19、20、21、22),这4颗伽利略导航卫星质量大小不等,运行在离地面高度为23 616 km的中地球轨道.设所有卫星绕地球做匀速圆周运动,下列说法正确的是( B )A.这4颗伽利略导航卫星运行时所需的向心力大小相等B.FOCFM-19运行时周期小于Telstar 19 V antage的运行周期C.Telstar 19 Vantage运行时线速度可能大于地球第一宇宙速度D .FOCFM -19运行时的向心加速度小于Telstar 19 Vantage 的向心加速度解析:根据万有引力提供向心力得:F =G Mm r 2,这4颗伽利略导航卫星的轨道半径相等,但质量大小不等,故这4颗伽利略导航卫星的向心力大小不相等,故A 错误;根据万有引力提供向心力得:G Mm r 2=m 4π2T 2r ,解得:T =2πr 3GM ,因FOCFM -19运行时轨道半径小于地球同步轨道卫星Telstar 19 Vantage 的轨道半径,故FOCFM -19运行时周期小于Telstar 19 Vantage 的运行周期,故B 正确;根据万有引力提供向心力得:G Mm r 2=m v 2r ,解得:v =GM r ,因地球同步轨道卫星Telstar 19 Vantage 的轨道半径大于地球半径,故Telstar 19 Vantage 运行时线速度一定小于地球第一宇宙速度,故C 错误;根据万有引力提供向心力得:G Mm r 2=ma ,解得:a =GM r 2,因FOCFM -19运行时轨道半径小于地球同步轨道卫星Telstar 19 Vantage 的轨道半径,故FOCFM -19的向心加速度大于Telstar 19 V antage 的向心加速度,故D 错误.4.(多选)(2019·湖北、山东重点中学联考)已知万有引力常量G ,利用下列数据可以计算地球半径的是( ACD )A .月球绕地球运动的周期、线速度及地球表面的重力加速度gB .人造卫星绕地球的周期、角速度及地球的平均密度ρC .地球同步卫星离地的高度、周期及地球的平均密度ρD .近地卫星的周期和线速度解析:由周期T 和线速度v ,根据v =2πr T 可求得r ,由G Mm r 2=m ⎝ ⎛⎭⎪⎫2πT 2r 可求得地球的质量M ,根据G Mm R 2=mg 可求得地球的半径R ,故A 正确,B 错误;已知地球同步卫星离地的高度h 、周期T 及地球的平均密度ρ,根据G Mm (R +h )2=m 4π2(R +h )T 2以及M =ρ4πR 33可求得地球的半径R ,选项C 正确;已知近地卫星的周期T 和线速度v ,由v =2πR T 可求得地球的半径,则D 正确.[A 组·基础题]1. (2015·福建卷)如图,若两颗人造卫星a 和b 均绕地球做匀速圆周运动,a 、b 到地心O 的距离分别为r 1、r 2,线速度大小分别为v 1、v 2,则( A )A.v 1v 2=r 2r 1 B .v 1v 2=r 1r 2 C.v 1v 2=(r 2r 1)2 D .v 1v 2=(r 1r 2)22.(2018·江苏盐城龙冈中学调研).某物体在地面上受到地球对它的万有引力为F .若此物体受到的引力减小到F 4,则此物体距离地面的高度应为(R 为地球半径)( A )A .RB .2RC .4RD .8R3.(2018·北京市丰台区高三一模)2018年2月12日,我国以“一箭双星”方式成功发射“北斗三号工程”的两颗组网卫星.已知某北斗导航卫星在离地高度为21 500千米的圆形轨道上运行,地球同步卫星离地的高度约为36 000千米.下列说法正确的是( B )A .此北斗导航卫星绕地球运动的周期大于24小时B .此北斗导航卫星的角速度大于地球同步卫星的角速度C .此北斗导航卫星的线速度小于地球同步卫星的线速度D .此北斗导航卫星的加速度小于地球同步卫星的加速度解析:根据题意可知北斗导航卫星的轨道半径小于同步卫星的轨道半径,由G Mm r 2=m 4π2T 2r 可得T =2πr 3GM ,可知轨道半径越大,周期越大,所以北斗导航卫星绕地球运动的周期小于24小时,A 错误;由G Mm r 2=mω2r 可得ω=GM r 3,可知轨道半径越大,角速度越小,所以北斗导航卫星的角速度大于地球同步卫星的角速度,B 正确;由G Mm r 2=m v 2r 可得v =GMr ,可知轨道半径越大,线速度越小,所以北斗导航卫星的线速度大于地球同步卫星的线速度,C 错误;由G Mm r 2=ma 可得a =GM r ,可知轨道半径越大,向心加速度越小,所以北斗导航卫星的加速度大于地球同步卫星的加速度,D 错误.4.(2015·山东卷)如图,拉格朗日点L 1位于地球和月球连线上,处在该点的物体在地球和月球引力的共同作用下,可与月球一起以相同的周期绕地球运动.据此,科学家设想在拉格朗日点L 1建立空间站,使其与月球同周期绕地球运动.以a1、a2分别表示该空间站和月球向心加速度的大小,a3表示地球同步卫星向心加速度的大小.以下判断正确的是( D )A.a2>a3>a1B.a2>a1>a3C.a3>a1>a2D.a3>a2>a15.(多选)如图所示,近地人造卫星和月球绕地球的运行轨道可视为圆.设卫星、月球绕地球运行周期分别为T卫、T月,地球自转周期为T地,则( AC )A.T卫<T月B.T卫>T月C.T卫<T地D.T卫=T地6.(多选)在太阳系中有一颗半径为R的行星,若在该行星表面以初速度v0竖直向上抛出一物体,上升的最大高度为H,已知该物体所受的其他力与行星对它的万有引力相比较可忽略不计.根据这些条件,可以求出的物理量是( BD )A.太阳的密度B.该行星的第一宇宙速度C.该行星绕太阳运行的周期D.卫星绕该行星运行的最小周期7.(多选)(2017·江苏卷)“天舟一号”货运飞船于2017年4月20日在文昌航天发射中心成功发射升空,与“天宫二号”空间实验室对接前,“天舟一号”在距离地面约380 km的圆轨道上飞行,则其( BCD )A.角速度小于地球自转角速度B.线速度小于第一宇宙速度C.周期小于地球自转周期D.向心加速度小于地面的重力加速度8.(2019·安徽江淮十校联考)理论研究表明地球上的物体速度达到第二宇宙速度11.2 km/s时,物体就能脱离地球,又知第二宇宙速度是第一宇宙速度的2倍.现有某探测器完成了对某未知星球的探测任务悬停在该星球表面.通过探测到的数据得到该星球的有关参量:(1)其密度基本与地球密度一致.(2)其半径约为地球半径的2倍.若不考虑该星球自转的影响,欲使探测器脱离该星球,则探测器从该星球表面的起飞速度至少约为( D )A .7.9 km/sB .11.2 km/sC .15.8 km/sD .22.4 km/s解析:根据G Mm R 2=m v 2R ,其中的M =43πR 3ρ,解得v =43πGR 2ρ∝R ,因R 星=2R 地,可知星球的第一宇宙速度是地球第一宇宙速度的2倍,即7.9×2 km/s ,则欲使探测器脱离该星球,则探测器从该星球表面的起飞速度至少约为2×7.9×2 km/s ≈22.4 m/s ,故选D.[B 组·能力题]9.(多选)(2019·河北廊坊联考)我国的火星探测任务基本确定,将于2020年左右发射火星探测器,这将是人类火星探测史上前所未有的盛况.若质量为m 的火星探测器在距火星表面高度为h 的轨道上做匀速圆周运动,运行周期为T ,已知火星半径为R ,引力常量为G ,则( BD )A .探测器的线速度v =2πR TB .探测器的角速度ω=2πTC .探测器的向心加速度a =G m (R +h )2D .火星表面重力加速度g =4π2(R +h )3R 2T 2解析:探测器运行的线速度v =2πr T =2π(R +h )T,故A 错误;根据角速度与周期的关系公式可知,探测器的角速度ω=2πT ,故B 正确;探测器绕火星做匀速圆周运动,由万有引力提供向心力,设火星的质量为M ,则有G Mm (R +h )2=ma ,解得a =G M (R +h )2,故C 错误;忽略火星自转,在火星表面有:G Mm R 2=mg ,解得:g =GM R 2=4π2(R +h )3T 2R 2,故D正确.10.(多选)(2019·江西景德镇一中月考)某人造地球卫星绕地球做圆周运动的周期为T ,已知:地球半径R ,地球表面的重力加速度g ,引力常量G .则下列说法正确的是( AC )A .这颗人造地球卫星做圆周运动的角速度ω=2πTB .这颗人造地球卫星离地面的高度h =3gR 2T 24π2C .这颗人造地球卫星做圆周运动的线速度v =32πgR 2TD .地球的平均密度ρ=3πGT 2解析:这颗人造地球卫星做圆周运动的角速度ω=2πT ,选项A 正确;卫星绕地球做匀速圆周运动,根据万有引力提供向心力得:G Mm r 2=m 4π2T 2r ;物体在地球表面上,根据万有引力等于重力,得G Mm R 2=mg ,联立解得卫星运行半径r =3gR 2T 24π2.这颗人造地球卫星离地面的高度h =3gR 2T 24π2-R ,选项B 错误;这颗人造地球卫星做圆周运动的线速度v =2πr T =2πT 3gR 2T 24π2=2πgR 2T ,选项C 正确; 由G Mm R 2=mg 得地球的质量M =gR 2G ,地球平均密度ρ=M43πR 3=3g 4πGR,选项D 错误. 11.(2019·山东淄博教学诊断)为了迎接太空时代的到来,美国国会通过一项计划:在2050年前建造成太空升降机,就是把长绳的一端搁置在地球的卫星上,另一端系住升降机,放开绳,升降机能到达地球上,科学家可以控制卫星上的电动机把升降机拉到卫星上.已知地球表面的重力加速度g =10 m/s 2,地球半径R =6 400 km ,地球自转周期为24 h .某宇航员在地球表面测得体重为800 N ,他随升降机垂直地面上升,某时刻升降机加速度为10 m/s 2,方向竖直向上,这时此人再次测得体重为850 N ,忽略地球公转的影响,根据以上数据( BD )A .可以求出升降机此时所受万有引力的大小B .可以求出升降机此时距地面的高度C .可以求出此时宇航员的动能D .如果把绳的一端搁置在同步卫星上,可知绳的长度至少有多长解析:根据牛顿第二定律:N - mg ′=ma ,可求出此时的重力加速度g ′,升降机此时所受到的万有引力为F =mg ′,因为不知道升降机的质量,所以求不出升降机所受的万有引力,A 错误;根据万有引力等于重力可得:mg =G Mm R 2和G Mm (R +h )2=mg ′,可求出升降机此时距地面的高度h ,B 正确;根据地球表面人的体重和地球表面的重力加速度,可知宇航员质量为80 kg ,但宇航员此时的速度无法求出,C 错误;根据万有引力提供向心力可得:G Mm (R +h )2=m (R +h )4π2T 2、mg =G Mm R 2、T =24 h ,可求出同步卫星离地面的高度,此高度即为绳长的最小值,D 正确.12.土星拥有许多卫星,到目前为止所发现的卫星数已经有30多个.土卫一是土星8个大的、形状规则的卫星中最小且最靠近土星的一个,直径为392千米,与土星平均距离约1.8×105千米,公转周期为23小时,正好是土卫三公转周期的一半,这两个卫星的轨道近似于圆形.求:(1)土卫三的轨道半径;(已知32=1.26,结果保留两位有效数字)(2)土星的质量.(结果保留一位有效数字)解析:(1)根据开普勒第三定律R 3T 2=k ,可知土卫一的轨道半径R 1、周期T 1与土卫三的轨道半径R 2、周期T 2满足R 31T 21=R 32T 22,所以R 2=3T 22T 21R 1=(32)2×1.8×105 km =2.9×105 km. (2)根据土卫一绕土星运动有G Mm R 21=mR 14π2T 21,可得土星质量M =4π2R 31GT 21=4×3.142×(1.8×108)36.67×10-11×(23×3 600)2 kg =5×1026 kg. 答案:(1)2.9×105 km (2)5×1026 kg。

2020年高考物理最新考点模拟试题: 卫星(航天器)的变轨及对接问题(解析版)

2020年高考物理最新考点模拟试题: 卫星(航天器)的变轨及对接问题(解析版)

2020年高考物理最新考点模拟试题:卫星(航天器)的变轨及对接问题(解析版)一.选择题1.(6分)(2019陕西榆林四模)我国是少数几个掌握飞船对接技术的国家之一,为了实现神舟飞船与天宫号空间站顺利对接,具体操作应为()A.飞船与空间站在同一轨道上且沿相反方向做圆周运动接触后对接B.空间站在前、飞船在后且两者沿同一方向在同一轨道做圆周运动,在合适的位置飞船加速追上空间站后对接C.空间站在高轨道,飞船在低轨道且两者同向飞行,在合适的位置飞船加速追上空间站后对接D.飞船在前、空间站在后且两者在同一轨道同向飞行,在合适的位置飞船减速然后与空间站对接【参考答案】C【名师解析】飞船在轨道上高速运动,如果在同轨道上沿相反方向运动,则最终会撞击而不是成功对接,故A错误;两者在同轨道上,飞船加速后做离心运动,则飞船的轨道抬升,故不能采取同轨道加速对接,故B错误;飞船在低轨道加速做离心运动,在合适的位置,飞船追上空间站实现对接,故C正确;两者在同一轨道飞行时,飞船突然减速做近心运动,飞船的轨道高度要降低,故不可能与同轨道的空间站实现对接,故D错误。

2. (2019辽宁沈阳一模)“神舟十一号”飞船与“天宫二号”空间实验室自动交会对接前的示意图如图所示,圆形轨道I为“天宫二号”运行轨道,圆形轨道II为“神舟十一号”运行轨道。

此后“神舟十一号”要进行多次变轨,才能实现与“天宫二号”的交会对接,则:()A. “天宫二号”在轨道I的运行速率大于“神舟十一号”在轨道II上运行速率B. “神舟十一号”由轨道II变轨到轨道I需要减速C. “神舟十一号”为实现变轨需要向后喷出气体D. “神舟十一号”变轨后比变轨前机械能减少【参考答案】C【名师解析】由题可知,万有引力提供向心力,即,则,由于“天宫二号”的轨道半径大,可知其速率小,则A错误;“神舟十一号” 由轨道II变轨到轨道I需要加速做离心运动,要向后喷出气体,速度变大,发动机做正功,使其机械能增加,故选项C正确,BD错误。

备考2020年高考物理一轮复习:第四章第4讲万有引力与航天讲义含解析

备考2020年高考物理一轮复习:第四章第4讲万有引力与航天讲义含解析

第4讲 万有引力与航天板块一 主干梳理·夯实基础【知识点1】 开普勒行星运动定律 Ⅰ 1.定律内容开普勒第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。

开普勒第二定律:对任意一个行星来说,它与太阳的连线在相等的时间扫过相等的面积。

开普勒第三定律:所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等,即a 3T 2=k 。

2.使用条件:适用于宇宙中一切环绕相同中心天体的运动,也适用于以行星为中心的卫星。

【知识点2】 万有引力定律及应用 Ⅱ1.内容:自然界中任何两个物体都是相互吸引的,引力的大小与两物体的质量的乘积成正比,与两物体间距离的二次方成反比。

2.公式:F =G m 1m 2r 2,其中G 为万有引力常量,G =6.67×10-11 N·m 2/kg 2,其值由卡文迪许通过扭秤实验测得。

公式中的r 是两个物体之间的距离。

3.使用条件:适用于两个质点或均匀球体;r 为两质点或均匀球体球心间的距离。

【知识点3】 环绕速度 Ⅱ1.第一宇宙速度又叫环绕速度,其数值为7.9 km/s 。

2.第一宇宙速度是人造卫星在地球表面附近环绕地球做匀速圆周运动时具有的速度。

3.第一宇宙速度是人造卫星的最小发射速度,也是人造卫星的最大环绕速度。

4.第一宇宙速度的计算方法。

(1)由G MmR 2=m v 2R ,解得:v =GM R ;(2)由mg =m v 2R 解得:v =gR 。

【知识点4】 第二宇宙速度和第三宇宙速度 Ⅰ 1.第二宇宙速度(脱离速度)使物体挣脱地球引力束缚的最小发射速度,其数值为11.2 km/s 。

2.第三宇宙速度(逃逸速度)使物体挣脱太阳引力束缚的最小发射速度,其数值为16.7 km/s 。

【知识点5】 经典时空观和相对论时空观 Ⅰ 1.经典时空观(1)在经典力学中,物体的质量不随运动速度改变;(2)在经典力学中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是相同的。

高考物理一轮复习专题4.5 卫星与航天(精练)(解析版)

高考物理一轮复习专题4.5 卫星与航天(精练)(解析版)

专题4.5卫星与航天1.(湖北武汉二中2019届模拟)2018年1月,我国在西昌卫星发射中心用长征三号乙运载火箭以“一箭双星”方式成功发射第26、27颗北斗导航组网卫星,两颗卫星属于中轨道卫星,运行于半径为10354km 的圆形轨道上.卫星轨道平面与赤道平面成55°倾角.关于这两颗卫星,以下说法正确的是()A .两颗卫量的周期相等、运行速率相等B .两颗卫星均为通信使用,故均为地球同步卫星C .两颗卫星从地球上看是移动的,但每天经过特定的地区上空D .两颗卫星的向心加速度小于地球表面的重力加速度【答案】AD【解析】两颗卫星的轨道半径及轨道平面相同,则运行的周期相等、运行速率相等,选项A 正确;因两颗卫星的轨道平面不与赤道重合,则两颗卫星不可能是地球的同步卫星,选项B 错误;两颗卫星从地球上看是移动的,但因不是地球的同步卫星,则每天不可能经过特定的地区上空,选项C 错误;根据a =GMr 2可知,两颗卫星的向心加速度小于地球表面的重力加速度,选项D 正确.2.(江苏徐州一中2019届模拟)我国自主研制的高分辨率对地观测系统包含至少7颗卫星,分别编号为“高分一号”到“高分七号”,它们都将在2020年前发射并投入使用。

“高分一号”是一颗低轨遥感卫星,其轨道高度为645km 。

关于“高分一号”卫星,下列说法正确的是()图4A .发射速度大于7.9km/sB .可以定点在相对地面静止的同步轨道上C .卫星绕地球运行的线速度比月球的小D .卫星绕地球运行的周期比月球的大【答案】A【解析】发射卫星的最小速度为7.9km/s ,卫星离地面越远,发射速度越大,所以“高分一号”卫星的发射速度大于7.9km/s ,A 正确;设地球的质量为M ,“高分一号”卫星的轨道半径为r ,则卫星的周期T =2πr 3GM。

由于r <r 同步,所以T <24h ,故“高分一号”卫星不能固定在相对地面静止的同步轨道上,B 错误;卫星的环绕速度v =GMr,因为月球的轨道半径大于“高分一号”卫星的轨道半径,所以月球绕地球运行的线速度小于“高分一号”卫星的线速度,C 错误;由T =2πr 3GM知,轨道半径越大,周期越长,所以月球绕地球运行的周期大于“高分一号”卫星的周期,D 错误。

2020届高考物理总复习4-5天体运动与人造卫星针对训练(含解析)新人教版

2020届高考物理总复习4-5天体运动与人造卫星针对训练(含解析)新人教版

天体运动与人造卫星1. (2019年蚌埠模拟)北斗卫星导航系统是我国自行研制开发的区域性三维卫星定位与通信 系统(CNSS ),建成后的北斗卫星导航系统包括 5颗同步卫星和30颗一般轨道卫星•对于其中的5颗同步卫星,下列说法中正确的是 ()A.它们运行的线速度一定不小于 7.9 km/sB. 地球对它们的吸引力一定相同C. 一定位于赤道上空同一轨道上D. 它们运行的加速度一定相同 解析:同步卫星运行的线速度一定小于 7.9 km/s , A 错误;地球对5颗同步卫星吸引力的方向一定不同,B 错误;5颗同步卫星一定位于赤道上空同一轨道上,它们运行的加速度 大小一定相等,方向不同,C 正确,D 错误.答案:C2. (2019年丽水模拟)(多选)设地球的半径为 R ,质量为m 的卫星在距地面 2R )高处做 匀速圆周运动,地面的重力加速度为g ,则下列说法正确的是( )答案:CD3.(多选)“神舟九号”飞船与“天宫一号”目标飞行器在离地面 343 km 的近圆形轨道上成功进行了我国首次载人空间交会对接. 对接轨道所处的空间存在极其稀薄的大气.下列说法正确的是( )A. 为实现对接,两者运行速度的大小都应介于第一宇宙速度和第二宇宙速度之间B.如不加干预,在运行一段时间后, “天宫一号”的动能可能会增加C. 如不加干预,“天宫一号”的轨道高度将缓慢降低D. 航天员在“天宫一号”中处于失重状态,说明航天员不受地球引力作用 解析:可认为目标飞行器是在圆形轨道上做匀速圆周运动, 由v =:'GM 知轨道半径越大时运行速度越小.第一宇宙速度为当r 等于地球半径时的运行速度,即最大的运行速度,故目标飞行器的运行速度应小于第一宇宙速度,A 错误;如不加干预,稀薄大气对“天宫一号”的阻力做负功, 使其机械能减小,引起高度的下降, 从而地球引力又对其做正功,当地球引力所做正功大于空气阻力所做负功时,“天宫一号”的动能就会增加,故 B 、C 皆正确;解析:卫星在距地面 2R >高处做匀速圆周运动,由牛顿第二定律得2mm v 2 G? = m = rrto 「2 = 「2 「22-=ma 在地球表面处有mm —,= mg 其中 r i = R>, ;2m ,a=9,C D 正确.A. 卫星的线速度为B. 卫星的角速度为C. 卫星的加速度为D.卫星的周期为4 n 2r r 2 = 3R ,解以上各式得T = 2 nA B 错误,航天员处于完全失重状态的原因是地球对航天员的万有引力全部用来提供使航天员随“天宫一号”绕地球运行的向心力了,而非航天员不受地球引力作用,故D错误.答案:BC4. (多选)发射地球同步卫星时,先将卫星发射至近地圆轨道1然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3,轨道1和2相切于Q点,轨道2和3相切于P点,设卫星在轨道1和轨道3正常运行的速度和加速度分别为V i、V3和a i、a3,在轨道2经过P点时的速度和加速度为V2和a2,且当卫星分别在1、2、3轨道上正常运行时周期分别为T i、T2、T3,以下说法正确的是()图4—5- 15A. V i> V2>V3B. V i> V3>V2C. a i>a2>a3D. T i<T?<T3解析:卫星在轨道i运行速度大于卫星在轨道3运行速度,在轨道2经过P点时的速度V2小于V3,选项A错误,B正确.卫星在轨道i和轨道3正常运行加速度a i>a3,在轨道2 经过P点时的加速度a2= a3,选项C错误.根据开普勒第三定律,卫星在轨道i、2、3上正常运行时周期T i<T2<T3,选项D正确.答案:BD5. (20i8年高考•课标全国卷I )(多选)20i7年,人类第一次直接探测到来自双中子星合并的引力波.根据科学家们复原的过程,在两颗中子星合并前约i00 s时,它们相距约400 km,绕二者连线上的某点每秒转动i2圈.将两颗中子星都看作是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一时刻两颗中子星()A.质量之积B.质量之和C.速率之和D.各自的自转角速度解析:两颗中子星运动到某位置的示意图如图4—5—i6所示每秒转动i2圈,图4—5—i6角速度已知,中子星运动时,由万有引力提供向心力得Gnm 2产=r i①Gnm2r 2②~p~2~l = r 1+「2 ③质量之和可以估算.由线速度与角速度的关系 v = wr 得V i = wr i V 2= w r 2⑤由③④⑤式得V i + V 2= w (r i + r 2) = wl ,速率之和可以估算. 质量之积和各自自转的角 速度无法求解.答案:BC洁哺吋冋30H活动对最,住少学一气嶽阿以(暉:Lf 乍番由①②③式得3 2l ,所以 m i + m =G (m +m )会员升级服务第一拨・清北季神马‘有清华北大学■方法论谦;还有清华学霸向所有的父母亲述自己求学之路:蔚水名校试卷悄悄的上线了;扫qq领取官网不首发课程,很峯人我没告诉他窮!会员qq专享等祢来撩……。

2020版高考物理一轮复习第四章第4讲万有引力与航天课件新人教版

2020版高考物理一轮复习第四章第4讲万有引力与航天课件新人教版

d h
D.在该星球表面发射卫星时最小的发射速度为 v0
ቤተ መጻሕፍቲ ባይዱ
d h
解析:物体做竖直上抛运动,根据运动学公式可得星球表面 的重力加速度为 g′=2vh02,因而在该星球表面发射卫星的最小速 度为 vmin= g′R=v20 hd,选项 C、D 错误.设星球的质量为 M,物体的质量为 m,在星球表面上有 GMRm2 =mg′,解得 M= 8vG20dh2,选项 A 正确,B 错误.
考向 2 双星及多星系统 (1)多星系统的条件 ①各星彼此相距较近. ②各星绕同一圆心做匀速圆周运动.
(2)多星系统的结构
类型
双星模型
三星模型
结构 图
运行所需向心力都由 向心 由两星之间的万有引力提供,
其余行星对其万有引 力 故两星的向心力大小相等
力的合力提供 运动
各行星转动方向相同,周期、角速度相等 参量
计算中心天体的质量、密度时的两点区别 (1)天体半径和卫星的轨道半径 通常把天体看成一个球体,天体的半径指的是球体的半径.卫星 的轨道半径指的是卫星围绕天体做圆周运动的圆的半径.卫星的轨道 半径大于等于天体的半径. (2)自转周期和公转周期 自转周期是指天体绕自身某轴线运动一周所用的时间,公转周期 是指卫星绕中心天体做圆周运动一周所用的时间.自转周期与公转周 期一般不相等.
(2)借助外援法:测出卫星绕天体做匀速圆周运动的半径 r 和周期
T. ①由 GMr2m=m4Tπ22r得天体的质量为 M=4GπT2r23. ②若已知天体的半径 R,则天体的密度 ρ=MV =43πMR3=G3Tπ2rR3 3. ③若卫星绕天体表面运行时,可认为轨道半径 r 等于天体半径 R,
则天体密度 ρ=G3Tπ2,可见,只要测出卫星环绕天体表面运行的周期 T, 就可估算出中心天体的密度.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题4.5 卫星与航天1.掌握宇宙速度及卫星运行参数。

2.理解双星模型和多星模型。

3.理解同步卫星问题和变轨问题。

知识点一 宇宙速度及卫星运行参数 1.三种宇宙速度比较宇宙速度 数值(km/s)意义第一宇宙速度 7.9 地球卫星最小发射速度(环绕速度)第二宇宙速度 11.2 物体挣脱地球引力束缚的最小发射速度(脱离速度) 第三宇宙速度16.7物体挣脱太阳引力束缚的最小发射速度(逃逸速度)2.第一宇宙速度的计算方法 (1)由G Mm R 2=m v 2R 得v =GM R 。

(2)由mg =m v 2R 得v =gR 。

3.物理量随轨道半径变化的规律规律⎩⎪⎪⎨⎪⎪⎧G Mm r2=r =R 地+h⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m v 2r →v =GM r →v ∝1rmω2r →ω=GMr 3→ω∝=1r3m 4π2T 2r →T =4π2r 3GM →T ∝r3ma →a =GM r 2→a ∝1r 2越高越慢mg =GMmR 2地近地时→GM =gR2地4.同步卫星的六个“一定”知识点二 双星模型和多星模型 1.双星模型(1)定义:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图所示。

(2)特点:①各自所需的向心力由彼此间的万有引力相互提供,即 Gm 1m 2L 2=m 1ω21r 1=m 14π2T 21r 1, Gm 1m 2L 2=m 2ω22r 2=m 24π2T 22r 2。

②两颗星的周期及角速度都相同,即 T 1=T 2,ω1=ω2。

③两颗星的半径与它们之间的距离关系为:r 1+r 2=L 。

(3)两颗星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2r 1。

2.多星模型(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同。

(2)三星模型①如图所示,三颗质量相等的行星,一颗行星位于中心位置不动,另外两颗行星围绕它做圆周运动。

这三颗行星始终位于同一直线上,中心行星受力平衡。

运转的行星由其余两颗行星的引力提供向心力:Gm 2r 2+Gm 22r 2=ma 向。

两行星转动的周期、角速度、线速度的大小相等。

②如图所示,三颗质量相等的行星位于一正三角形的顶点处,都绕三角形的中心做圆周运动。

每颗行星运行所需向心力都由其余两颗行星对其万有引力的合力来提供。

Gm 2L 2×2×cos 30°=ma 向,其中L =2r cos 30°。

三颗行星转动的方向相同,周期、角速度、线速度的大小相等。

考点一 宇宙速度【典例1】(2019·哈尔滨市第六中学模拟)地球的近地卫星线速度约为8 km/s ,已知月球质量约为地球质量的1/81,地球半径约为月球半径的4倍,下列说法正确的是( )A .在月球上发射卫星的最小速度约为8 km/sB .月球卫星的环绕速度可能达到4 km/sC .月球的第一宇宙速度约为1.8 km/sD .“近月卫星”的速度比“近地卫星”的速度大 【答案】C【解析】根据第一宇宙速度v =GM R ,月球与地球的第一宇宙速度之比为v 2v 1=M 2R 1M 1R 2=481=29,月球的第一宇宙速度约为v 2=29v 1=29×8 km/s≈1.8 km/s ,在月球上发射卫星的最小速度约为1.8 km/s ,月球卫星的环绕速度小于1.8 km/s 。

“近月卫星”的速度1.8 km/s ,小于“近地卫星”的速度。

【方法技巧】计算第一宇宙速度的思路 (1)根据G Mm R 2=m v 2R ,v =GM R 。

(2)根据mg =m v 2R ,v =gR 。

(3)利用比例关系:在计算其它星球的第一宇宙速度时,通常利用地球的第一宇宙速度值7.9 km/s ,通过比例关系求解。

【变式1】(2019·江苏启东中学模拟) 我国计划2020年发射火星探测器。

已知火星的质量约为地球质量的19,火星的半径约为地球半径的12。

下列关于火星探测器的说法中正确的是( )A .发射速度只要大于第一宇宙速度即可B .发射速度只有达到第三宇宙速度才可以C .发射速度应大于第二宇宙速度、小于第三宇宙速度D .火星探测器环绕火星运行的最大速度约为第一宇宙速度的一半 【答案】CD【解析】根据三个宇宙速度的意义,可知A 、B 错误,C 正确;已知M 火=M 地9,R 火=R 地2,则v max ∶v 1=GM 火R 火∶GM 地R 地=23≈0.5,D 正确。

考点二 卫星运行参数的分析与计算【典例2】(2019·新课标全国Ⅲ卷)金星、地球和火星绕太阳的公转均可视为匀速圆周运动,它们的向心加速度大小分别为a 金、a 地、a 火,它们沿轨道运行的速率分别为v 金、v 地、v 火。

已知它们的轨道半径R 金<R 地<R 火,由此可以判定( ) A .a 金>a 地>a 火 B .a火>a 地>a 金 C .v 地>v 火>v 金 D .v 火>v 地>v 金【答案】A【解析】AB .由万有引力提供向心力2MmGma R=可知轨道半径越小,向心加速度越大,故知A 项正确,B 错误;CD .由22Mm v G m R R=得v =C 、D 都错误。

【举一反三】(2018·江苏卷)我国高分系列卫星的高分辨对地观察能力不断提高.今年5月9日发射的“高分五号”轨道高度约为705 km ,之前已运行的“高分四号”轨道高度约为36 000 km ,它们都绕地球做圆周运动.与“高分四号”相比,下列物理量中“高分五号”较小的是( )A .周期B .角速度C .线速度D .向心加速度【答案】A【解析】“高分五号”的运动半径小于“高分四号”的运动半径,即r 五<r 四.由万有引力提供向心力得GMmr 2=mr 4π2T 2=mrω2=m v 2r =ma .A :T = 4π2r 3GM ∝r 3,T 五<T 四. B :ω= GM r 3∝1r 3,ω五>ω四. C :v =GM r ∝1r ,v 五>v 四.D :a =GM r 2∝1r 2,a 五>a 四.所以A 选项符合题意。

【方法技巧】利用万有引力定律解决卫星运动的技巧 (1)一个模型天体(包括卫星)的运动可简化为质点的匀速圆周运动模型. (2)两组公式G Mm r 2=m v 2r =mω2r =m 4π2T 2r =mamg =GMmR 2(g 为天体表面处的重力加速度)(3)a 、v 、ω、T 均与卫星的质量无关,只由轨道半径和中心天体质量共同决定,所有参量的比较,最终归结到半径的比较.【变式2】(2019·天津卷)2018年12月8日,肩负着亿万中华儿女探月飞天梦想的嫦娥四号探测器成功发射,“实现人类航天器首次在月球背面巡视探测,率先在月背刻上了中国足迹”。

已知月球的质量为M 、半径为R ,探测器的质量为m ,引力常量为G ,嫦娥四号探测器围绕月球做半径为r 的匀速圆周运动时,探测器的A 234πr GMB.动能为2GMm R C 3Gm r D .向心加速度为2GM R 【答案】C【解析】由万有引力提供向心力可得222224GMm v m r m r m ma r T r πω====,可得32r T GM=故A 正确;解得v =2122k GMm E mv r ==,故B 错误;解得ω=C 错误;解得2GMa r=,故D 错误。

综上分析,答案为A 。

【举一反三】(2018·全国卷Ⅲ)为了探测引力波,“天琴计划”预计发射地球卫星P ,其轨道半径约为地球半径的16倍;另一地球卫星Q 的轨道半径约为地球半径的4倍.P 与Q 的周期之比约为( )A .2∶1B .4∶1C .8∶1D .16∶1 【答案】C【解析】由G Mm r 2=mr 4π2T 2知,T 2r 3=4π2GM ,则两卫星T 2P T 2Q =r 3Pr 3Q . 因为r P ∶r Q =4∶1,故T P ∶T Q =8∶1.考点三 同步卫星问题【典例3】(2019·北京卷)2019年5月17日,我国成功发射第45颗北斗导航卫星,该卫星属于地球静止轨道卫星(同步卫星)。

该卫星A .入轨后可以位于北京正上方B .入轨后的速度大于第一宇宙速度C .发射速度大于第二宇宙速度D .若发射到近地圆轨道所需能量较少 【答案】D【解析】由于卫星为同步卫星,所以入轨后一定只能与赤道在同一平面内,故A 错误;由于第一宇宙速度为卫星绕地球运行的最大速度,所以卫星入轨后的速度一定小于第一宇宙速度,故B 错误;由于第二宇宙速度为卫星脱离地球引力的最小发射速度,所以卫星的发射速度一定小于第二宇宙速度,故C 错误;将卫星发射到越高的轨道克服引力所作的功越大,所以发射到近地圆轨道所需能量较小,故D 正确。

【方法技巧】地球同步卫星的特点(1)轨道平面一定:轨道平面和赤道平面重合。

(2)周期一定:与地球自转周期相同,即T =24 h =86 400 s 。

(3)角速度一定:与地球自转的角速度相同。

(4)高度一定:据G Mm r 2=m 4π2T 2r 得r =3GMT 24π2=4.23×104 km ,卫星离地面高度h =r -R ≈6R (为恒量)。

(5)绕行方向一定:与地球自转的方向一致。

【变式3】 (2019·山东泰安一中二模)中国北斗卫星导航系统(BDS)是中国自行研制的全球卫星导航系统,是继美国全球定位系统(GPS)、俄罗斯格洛纳斯卫星导航系统(GLONASS)之后第三个成熟的卫星导航系统.预计2020年左右,北斗卫星导航系统将形成全球覆盖能力.如图所示是北斗导航系统中部分卫星的轨道示意图,已知a 、b 、c 三颗卫星均做圆周运动,a 是地球同步卫星,则( )A .卫星a 的角速度小于c 的角速度B .卫星a 的加速度大于b 的加速度C .卫星a 的运行速度大于第一宇宙速度D .卫星b 的周期等于24 h 【答案】AD【解析】根据万有引力提供向心力,由G Mmr 2=mω2r 可得角速度ω=GMr 3,可知轨道半径r 越大,角速度ω越小,由于a 的轨道半径大于c 的轨道半径,所以卫星a 的角速度小于c 的角速度,A 正确;由G Mmr 2=ma 可得向心加速度a =GMr 2,由于卫星a 的轨道半径与卫星b 的轨道半径相等,所以卫星a 的加速度等于b 的加速度,B 错误;由G Mm r 2=m v 2r 可得线速度v =GMr ,轨道半径r 越大,v 越小,而第一宇宙速度为轨道半径等于地球半径的绕地卫星的速度,所以卫星a 的运行速度一定小于第一宇宙速度,C 错误;由G Mmr 2=m (2πT )2r ,可得周期T =2πr 3GM ,而卫星a 的轨道半径与卫星b 的轨道半径相等,所以卫星b 的周期等于卫星a 的周期,即等于地球自转周期24 h ,D 正确。

相关文档
最新文档