动量守恒之动量和电磁感应结合
电磁感应中动量定理和动量守恒
高考物理电磁感应中动量定理和动量守恒定律的运用(1)如图1所示,半径为r的两半圆形光滑金属导轨并列竖直放置,在轨道左侧上方MN 间接有阻值为R0的电阻,整个轨道处在竖直向下的磁感应强度为B的匀强磁场中,两轨道间距为L,一电阻也为R0质量为m的金属棒ab从MN处由静止释放经时间t到达轨道最低点cd时的速度为v,不计摩擦。
求:(1)棒从ab到cd过程中通过棒的电量。
(2)棒在cd处的加速度。
(2)如图2所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为L的区域内,现有一个边长为a(a﹤L)的正方形闭合线圈以初速度v0垂直磁场边界滑过磁场后,速度为v(v ﹤v0),那么线圈A.完全进入磁场中时的速度大于(v0+v)/2B.完全进入磁场中时的速度等于(v0+v)/2C.完全进入磁场中时的速度小于(v0+v)/2D.以上情况均有可能(3)在水平光滑等距的金属导轨上有一定值电阻R,导轨宽d电阻不计,导体棒AB垂直于导轨放置,质量为m ,整个装置处于垂直导轨平面向上的匀强磁场中,磁感应强度为B.现给导体棒一水平初速度v0,求AB在导轨上滑行的距离.(4)如图3所示,在水平面上有两条导电导轨MN、PQ,导轨间距为d,匀强磁场垂直于导轨所在的平面向里,磁感应强度的大小为B,两根完全相同的金属杆1、2间隔一定的距离摆开放在导轨上,且与导轨垂直。
它们的电阻均为R,两杆与导轨接触良好,导轨电阻不计,金属杆的摩擦不计。
杆1以初速度v0滑向杆2,为使两杆不相碰,则杆2固定与不固定两种情况下,最初摆放两杆时的最少距离之比为:A.1:1B.1:2C.2:1D.1:15:如图所示,光滑导轨EF、GH等高平行放置,EG间宽度为FH间宽度的3倍,导轨右侧水平且处于竖直向上的匀强磁场中,左侧呈弧形升高。
ab、cd是质量均为m的金属棒,现让ab从离水平轨道h高处由静止下滑,设导轨足够长。
试求: (1)ab、cd棒的最终速度;(2)全过程中感应电流产生的焦耳热。
动量定理及动量守恒定律在电磁感应中的应用
动量定理及动量守恒定律在电磁感应中的应用摘要:《普通高中物理课程标准》指出,高中物理课程旨在进一步提高学生的科学素养,落实“立德树人”的根本任务。
基于学科核心素养教学实施策略和方法,要落实到教育教学的全过程,本文重点介绍动量定理、动量守恒定律在电磁感应解题的运用。
关键词:动量动量守恒电磁感应应用一、动量定理:物体所受合外力的冲量等于物体的动量变化.表达式:I=Δp或Ft=mv2-mv1.二、动量守恒定律:一个系统不受外力或者所受合外力为零,这个系统的总动量保持不变.表达式:m1v1+m2v2=m1v1′+m2v2′或p=p′.三、在电磁感应中,动量定理应用于单杆切割磁感线运动,可求解变力的时间、速度、位移和电荷量.(1)求电荷量或速度:B LΔt=mv2-mv1, q= t.(2)求时间:Ft-I冲=mv2-mv1, I冲=BILΔt=BL .(3)求位移:-BILΔt=- =0-mv0,即 - s=m(0-v).四、在电磁感应中对于双杆切割磁感线运动,若双杆系统所受合外力为零,运用动量守恒定律结合能量守恒定律可求解与能量有关的问题。
例1.如图所示,在水平面上有两条导电导轨MN,PQ,导轨间距为d,匀强磁场垂直于导轨所在的平面向里,磁感应强度的大小为B,两根完全相同的金属杆1,2间隔一定的距离摆开放在导轨上,且与导轨垂直.它们的电阻均为R,两杆与导轨接触良好,导轨电阻不计,金属杆的摩擦不计.杆1以初速度v滑向杆2,为使两杆不相碰,则杆2固定与不固定两种情况下,最初摆放两杆时的最小距离之比为( C )A.1∶1B.1∶2C.2∶1D.1∶1解析:杆2固定:对回路 q1= = .对杆1:-B d·Δt=0-mv0,q1=·Δt 联立解得s1= .杆2不固定: 对回路 q2=对杆2:B d·Δt=mv2-0 全程动量守恒:mv=mv1+mv2末态两棒速度相同,v1=v2,q2=·Δt 联立解得s2= . s1∶s2=2∶1,则C选项正确.例2.如图所示,宽度为L的平行光滑的金属轨道,左端为半径为r1的四分之一圆弧轨道,右端为半径为r2的半圆轨道,中部为与它们相切的水平轨道.水平轨道所在的区域有磁感应强度为B的竖直向上的匀强磁场.一根质量为m的金属杆a 置于水平轨道上,另一根质量为M的金属杆b由静止开始自左端轨道最高点滑下,当b滑入水平轨道某位置时,a就滑上了右端半圆轨道最高点(b始终运动且a,b 未相撞),并且a在最高点对轨道的压力大小为mg,此过程中通过a的电荷量为q,a,b杆的电阻分别为R1,R2,其余部分电阻不计.在b由静止释放到a运动到右端半圆轨道最高点过程中,求:(1)在水平轨道上运动时b的最大加速度是多大;(2)自b释放到a到达右端半圆轨道最高点过程中,系统产生的焦耳热是多少;(3)a刚到达右端半圆轨道最低点时b的速度是多大.解析:(1)由机械能守恒定律得 M =Mgr1解得vb1=b刚滑到水平轨道时加速度最大,E=BLvb1, I= ,由牛顿第二定律有F安=BIL=Ma 解得a= .(2)由动量定理有-B Lt=Mvb2-Mvb1, 即-BLq=Mvb2-Mvb1解得vb2= -根据牛顿第三定律得:a在最高点受支持力N=N′=mg, mg+N=m解得va1=由能量守恒定律得Mgr1= M + m +mg2r2+Q 解得Q=BLq -3mgr2-.(3)由能量守恒定律有2mgr2= m - m解得va2=由动量守恒定律得Mvb1=Mvb3+mva2解得vb3= - .答案:(1)(2)BLq -3mgr2-(3) -例3.如图所示,将不计电阻的长导线弯折成P1P2P3,Q1Q2Q3形状,P1P2P3和Q1Q2Q3是相互平行且相距为d的光滑固定金属导轨.P1P2,Q1Q2的倾角均为θ,P2P3,Q2Q3在同一水平面上,P2Q2⊥P2P3,整个导轨在方向竖直向上、磁感应强度大小为B的匀强磁场中,质量为m电阻为R的金属杆CD从斜导轨上某处静止释放,然后沿水平导轨滑动一段距离后停下.杆CD始终垂直导轨并与导轨保持良好接触,导轨和空气阻力均不计,重力加速度大小为g,导轨倾斜段和水平段都足够长,求:(1)杆CD能达到的最大速度;( 2)杆CD在距P2Q2为L处释放,滑到P2Q2处恰达到最大速度,则沿倾斜导轨下滑的时间Δt1及在水平导轨上滑行的最大距离.解析:(1)杆CD达到最大速度时,杆受力平衡BdImcosθ=mgsinθ此时杆CD切割磁感线产生的感应电动势为E=Bdvmcosθ由欧姆定律可得Im = , 解得vm= .(2)在杆CD沿倾斜导轨下滑的过程中,动量定理有mgsinθ·Δt1-Bdcosθ·Δt1=mvm-0= = =解得Δt1= +在杆CD沿水平导轨运动的过程中,根据动量定理有 -B d·Δt2=0-mvm该过程中通过R的电荷量为 q2=Δt2,得q2=杆CD沿水平导轨运动的过程中,通过的平均电流为 = =得q2=Δt2=解得s= .答案:(1)(2) +3。
动量守恒定律与能量守恒定律
在环境保护和污染治理中,利用动量守恒定律和能量守恒定律来 分析和解决环境问题。
05 深入理解动量守恒定律与 能量守恒定律的意义
对物理学发展的影响
奠定物理学基础
动量守恒定律和能量守恒定律是物理学中最基本、最重要 的原理之一,为整个物理学的发展提供了坚实的理论基础。
推动物理学进步
这两个定律的发现和证明推动了物理学的发展,引发了多 次科学革命,不断推动着物理学理论的完善和创新。
物体运动
01
动量守恒定律可以解释和理解物体运动的现象,如碰撞、火箭
发射等。
声学原理
02
声音传播过程中,声波的动量守恒,能量守恒定律则解释了声
音的传播速度和强度变化。
电磁波传播
03
电磁波的传播过程中,能量守恒定律解释了电磁波的能量分布
和传播速度。
工程领域的运用
01
02
03
机械工程
在机械设计中,动量守恒 定律和能量守恒定律被广 泛应用于分析机械系统的 运动和能量传递。
动量守恒定律与能量守恒定律
contents
目录
• 动量守恒定律 • 能量守恒定律 • 动量守恒与能量守恒的关系 • 动量守恒定律与能量守恒定律在现实生
活中的应用 • 深入理解动量守恒定律与能量守恒定律
的意义
01 动量守恒定律
定义与公式
定义
动量守恒定律是物理学中的基本定律之一,它指出在没有外 力作用的情况下,一个封闭系统的总动量保持不变。
动量守恒定律要求系统是封闭的,即 系统中的物质不能离开或进入系统。
系统内力的矢量和为零
系统内力的矢量和为零意味着系统内 部相互作用力的总和为零,不会改变 系统的总动量。
动量守恒定律的应用实例
31 第七章 第2讲 动量守恒定律
答案:(1)8 N 5 N (2)8 m/s (3)0.2 m 解析:(1)当滑块处于静止时桌面对滑杆的支持力等于滑块和滑杆的 重力,即 N1=(m+M)g=8 N 当滑块向上滑动过程中受到滑杆的摩擦力为1 N,根据牛顿第三定律 可知滑块对滑杆的摩擦力也为1 N,方向竖直向上,则此时桌面对滑 杆的支持力为N2=Mg-f′=5 N
【重难诠释】 1.动量守恒条件的理解 (1)理想守恒:不受外力或所受外力的合力为零。 (2)近似守恒:系统内各物体间相互作用的内力远大于它所受到的外力。 (3)某一方向守恒:如果系统在某一方向上所受外力的合力为零,则系 统在这一方向上动量守恒。
2.应用动量守恒定律解题的步骤
【典例精析】 考向1 动量守恒的判断
(1)三个情况的讨论: ①若m1=m2,则v1′=0,v2′=v1 (质量相等的两个物体发生弹性碰撞, 则碰撞后两物体交换速度)。 ②若m1>m2,则v1′>0,v2′>0(碰后两物体沿同一方向运动)。 特例:当m1≫m2时,v1′≈v1,v2′≈2v1。 ③若m1<m2,则v1′<0,v2′>0(碰后两物体沿相反方向运动)。 特例:当m1≪m2时,v1′≈-v1,v2′≈0。
(2)重要推论:
运动物体 A 以速度 v0 与静止的物体 B 发生碰撞: ①当发生弹性碰撞时,物体 B 获得的速度最大:vBmax=mA2+mAmB v0。
②当发生完全非弹性碰撞时损失的机械能最多,物体 B 获得的速度最
小:vBmin=mAm+AmB v0。
③当发生非弹性碰撞时,碰后物体
B
的速度范围为: mA mA+mB
B [虽然题给四个选项均满足动量守恒定律,但 A、D 两项中,碰后 A 的速度 vA′大于 B 的速度 vB′,不符合实际,AD 错误;C 项中,两 球碰后的总动能 Ek 后=12 mAvA′2+12 mBvB′2=57 J,大于碰前的总动能 Ek 前=12 mAvA2+12 mBvB2=22 J,违背了能量守恒定律,C 错误;而 B 项既符合实际情况,也不违背能量守恒定律,B 正确。]
专题突破练 专题四 第18练 电磁感应中的动量问题 电磁感应规律的综合应用
第18练电磁感应中的动量问题电磁感应规律的综合应用1.(多选)(2019·全国卷Ⅲ·19)如图,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab、cd静止在导轨上.t=0时,棒ab以初速度v0向右滑动.运动过程中,ab、cd始终与导轨垂直并接触良好,两者速度分别用v1、v2表示,回路中的电流用I表示.下列图像中可能正确的是()答案AC解析棒ab以初速度v0向右滑动,切割磁感线产生感应电动势,使整个回路中产生感应电流,判断可知棒ab受到与v0方向相反的安培力的作用而做变减速运动,棒cd受到与v0方向相同的安培力的作用而做变加速运动,它们之间的速度差Δv=v1-v2逐渐减小,整个系统产生的感应电动势逐渐减小,回路中感应电流逐渐减小,最后变为零,即最终棒ab和棒cd的速度相同,v1=v2,这时两相同的光滑导体棒ab、cd组成的系统在足够长的平行金属导轨上,选运动,水平方向上不受外力作用,由动量守恒定律有m v0=m v1+m v2,解得v1=v2=v02项A、C正确,B、D错误.2.(多选)(2022·全国甲卷·20)如图,两根相互平行的光滑长直金属导轨固定在水平绝缘桌面上,在导轨的左端接入电容为C的电容器和阻值为R的电阻.质量为m、阻值也为R的导体棒MN静止于导轨上,与导轨垂直,且接触良好,导轨电阻忽略不计,整个系统处于方向竖直向下的匀强磁场中.开始时,电容器所带的电荷量为Q,合上开关S后()A .通过导体棒MN 电流的最大值为Q RCB .导体棒MN 向右先加速、后匀速运动C .导体棒MN 速度最大时所受的安培力也最大D .电阻R 上产生的焦耳热大于导体棒MN 上产生的焦耳热答案 AD解析 开始时电容器两极板间的电压U =Q C ,合上开关瞬间,通过导体棒的电流I =U R =Q CR,随着电容器放电,通过电阻、导体棒的电流不断减小,所以在开关闭合瞬间,导体棒所受安培力最大,此时速度为零,A 项正确,C 项错误;由于回路中有电阻与导体棒,最终电能完全转化为焦耳热,故导体棒最终必定静止,B 项错误;由于导体棒切割磁感线,产生感应电动势,所以通过导体棒的电流始终小于通过电阻的电流,由焦耳定律可知,电阻R 上产生的焦耳热大于导体棒MN 上产生的焦耳热,D 项正确.3.(多选)(2022·湖南卷·10)如图,间距L =1 m 的U 形金属导轨,一端接有0.1 Ω的定值电阻R ,固定在高h =0.8 m 的绝缘水平桌面上.质量均为0.1 kg 的匀质导体棒a 和b 静止在导轨上,两导体棒与导轨接触良好且始终与导轨垂直,接入电路的阻值均为0.1 Ω,与导轨间的动摩擦因数均为0.1(设最大静摩擦力等于滑动摩擦力),导体棒a 距离导轨最右端1.74 m .整个空间存在竖直向下的匀强磁场(图中未画出),磁感应强度大小为0.1 T .用F =0.5 N 沿导轨水平向右的恒力拉导体棒a ,当导体棒a 运动到导轨最右端时,导体棒b 刚要滑动,撤去F ,导体棒a 离开导轨后落到水平地面上.重力加速度取10 m/s 2,不计空气阻力,不计其他电阻,下列说法正确的是( )A .导体棒a 离开导轨至落地过程中,水平位移为0.6 mB .导体棒a 离开导轨至落地前,其感应电动势不变C .导体棒a 在导轨上运动的过程中,导体棒b 有向右运动的趋势D .导体棒a 在导轨上运动的过程中,通过电阻R 的电荷量为0.58 C答案 BD解析 导体棒a 在导轨上向右运动,产生的感应电流方向向里,流过导体棒b 的电流方向向里,由左手定则可知安培力向左,则导体棒b 有向左运动的趋势,故C 错误;导体棒b 与电阻R 并联,有I =BL v 0.15 Ω,当导体棒a 运动到导轨最右端时,导体棒b 刚要滑动,有B ·I 2·L =μmg ,联立解得导体棒a 的速度为v =3 m/s ,导体棒a 离开导轨至落地前做平抛运动,有x=v t ,h =12gt 2,联立解得导体棒a 离开导轨至落地过程中水平位移为x =1.2 m ,故A 错误;导体棒a 离开导轨至落地前做平抛运动,水平速度切割磁感线,则产生的感应电动势不变,故B 正确;导体棒a 在导轨上运动的过程中,通过电路的电荷量为q =I ·Δt =BL ·Δx 0.15 Ω=0.1×1×1.740.15 C =1.16 C ,导体棒b 与电阻R 并联,则通过电阻R 的电荷量为q R =q 2=0.58 C ,故D 正确.4.(2022·辽宁卷·15)如图所示,两平行光滑长直金属导轨水平放置,间距为L .abcd 区域有匀强磁场,磁感应强度大小为B ,方向竖直向上.初始时刻,磁场外的细金属杆M 以初速度v 0向右运动,磁场内的细金属杆N 处于静止状态.两金属杆与导轨接触良好且运动过程中始终与导轨垂直.两杆的质量均为m ,在导轨间的电阻均为R ,感应电流产生的磁场及导轨的电阻忽略不计.(1)求M 刚进入磁场时受到的安培力F 的大小和方向;(2)若两杆在磁场内未相撞且N 出磁场时的速度为v 03,求:①N 在磁场内运动过程中通过回路的电荷量q ;②初始时刻N 到ab 的最小距离x ;(3)初始时刻,若N 到cd 的距离与第(2)问初始时刻的相同、到ab 的距离为kx (k >1),求M 出磁场后不与N 相撞条件下k 的取值范围.答案 (1)B 2L 2v 02R 方向水平向左 (2)①m v 03BL ②2m v 0R 3B 2L2 (3)2≤k <3 解析 (1)细金属杆M 以初速度v 0向右运动,刚进入磁场时,产生的电动势为E =BL v 0电流为I =E 2R则所受的安培力大小为F =BIL =B 2L 2v 02R由左手定则可知安培力的方向水平向左;(2)①金属杆N 在磁场内运动的过程中,取水平向右为正方向,由动量定理有B I L ·Δt =m ·v 03-0 且q =I ·Δt联立解得通过回路的电荷量q =m v 03BL②设杆M 在磁场中运动的位移大小为x 1,杆N 在磁场中运动的位移大小为x 2,则有Δx =x 1-x 2,有 I =E2R ,E =BL ·Δx Δt 整理可得q =BL ·Δx 2R联立可得Δx =2m v 0R 3B 2L 2 若两杆在磁场内刚好相撞,N 到ab 的最小距离为x =Δx =2m v 0R 3B 2L 2 (3)两杆出磁场后在平行光滑长直金属导轨上运动,若N 到cd 的距离与第(2)问初始时刻的相同、到ab 的距离为kx (k >1),则N 到cd 边的速度大小恒为v 03,取水平向右为正方向,根据动量守恒定律可知m v 0=m v 1+m ·v 03解得N 出磁场时,M 的速度大小为v 1=23v 0 由题意可知,此时M 到cd 边的距离为s =(k -1)x若要保证M 出磁场后不与N 相撞,则有两种临界情况:①M 减速到v 03时出磁场,速度刚好等于N 的速度,一定不与N 相撞,对M 根据动量定理有 -B I 1L ·Δt 1=m ·v 03-m ·23v 0 q 1=I 1·Δt 1=BL ·(k -1)x 2R联立解得k =2②M 运动到cd 边时,恰好减速到零,则对M 由动量定理有-B I 2L ·Δt 2=0-m ·23v 0 同理解得k =3综上所述,M 出磁场后不与N 相撞条件下k 的取值范围为2≤k <3.1.(多选)足够长的平行光滑金属导轨ab 、cd 水平放置于竖直向上的匀强磁场中,ac 之间连接阻值为R 的电阻,导轨间距为L ,导体棒ef 垂直导轨放置且与导轨接触良好,导体棒质量为m 、电阻为r .t =0时刻对导体棒施加一个水平向右的力F (图中未画出),导体棒在F 的作用下开始做初速度为零的匀加速直线运动,当导体棒运动x 距离时撤去外力F ,此时导体棒的速度大小为v 0.若不计导轨电阻,则下列说法正确的是( )A .外力F 的大小与时间的关系式为F =ma +B 2L 2at R +rB .t =0时刻外力F 的大小为m v 022xC .从撤去外力F 到导体棒停止运动,电阻R 上产生的焦耳热为12m v 02 D .从撤去外力F 到导体棒停止运动,导体棒运动的位移大小为m v 0(R +r )B 2L 2答案 ABD 解析 由题知导体棒在F 的作用下开始做初速度为零的匀加速直线运动,根据牛顿第二定律有F -B 2L 2v R +r =ma ,v =at ,整理有F =B 2L 2at R +r+ma ,A 正确;由v 02=2ax ,解得在t =0时刻F =ma =m v 022x ,B 正确;从撤去外力F 到导体棒停止运动,根据动能定理有Q =12m v 02,则R 上产生的焦耳热为Q R =R R +r Q =Rm v 022(R +r ),C 错误;从撤去外力F 到导体棒停止运动,根据动量定理有-B I Lt =0-m v 0,I ·t =BL vR +r ·t =BLx R +r ,联立解得x =m v 0(R +r )B 2L 2,D 正确. 2.(多选)(2022·湖南衡阳市二模)如图,光滑平行导轨上端接一电阻R ,导轨弯曲部分与水平部分平滑连接,导轨间距为l ,导轨水平部分左端有一竖直向上的匀强磁场,磁感应强度大小为B ,现将金属棒PQ 从导轨弯曲部分的上端由静止释放,金属棒刚进入磁场时的速度大小为v 1,离开磁场时的速度大小为v 2,改变金属棒释放的高度,使其释放高度变为原来的12,金属棒仍然可以通过磁场区域,导轨和金属棒的电阻不计,则( ) A .金属棒通过磁场区域时金属棒中的电流方向为由P 到QB .金属棒第二次离开磁场时的速度大小为v 2-(1-22)v 1C .金属棒在两次通过磁场区域的过程中电阻R 上产生的热量相等D .金属棒在两次通过磁场区域的过程中通过电阻R 的电荷量相等答案 BD解析 金属棒通过磁场区域时,由右手定则可知,金属棒中的电流方向为由Q 到P ,故A 错误;金属棒第二次释放的高度变为原来的12,由动能定理可知,进入匀强磁场时的速度大小为v 3=2v 12,金属棒通过磁场区域的过程中,根据动量定理有-B I lt =Δp ,又因为I =E R,E =ΔΦt ,所以-Bl ΔΦR=Δp ,则可知金属棒两次通过匀强磁场区域的过程中动量变化量相同,速度变化量也相同,则v 2-v 1=v 4-v 3,故金属棒第二次离开磁场时的速度大小为v 4=v 2-(1-22)v 1,故B 正确;金属棒第二次通过磁场区域的过程中所用时间长且减少的动能少,则电阻R 上产生的热量少,故C 错误;由电荷量q =ΔΦR,可知金属棒在两次通过磁场区域的过程中通过电阻R 的电荷量相等,故D 正确.3.(多选)如图所示,足够长的水平光滑金属导轨所在空间中,分布着垂直于导轨平面方向竖直向上的匀强磁场,磁感应强度大小为B .两导体棒a 、b 均垂直于导轨静止放置.已知导体棒a 质量为2m ,导体棒b 质量为m ,长度均为l ,接入电路的电阻均为r ,其余部分电阻不计.现使导体棒a 获得瞬时平行于导轨水平向右的初速度v 0.除磁场作用外,两棒沿导轨方向无其他外力作用,在两导体棒运动过程中,下列说法正确的是( )A .任何一段时间内,导体棒b 的动能增加量跟导体棒a 的动能减少量在数值上总是相等的B .任何一段时间内,导体棒b 的动量改变量跟导体棒a 的动量改变量总是大小相等、方向相反C .全过程中,通过导体棒b 的电荷量为2m v 03BlD .全过程中,导体棒b 共产生的焦耳热为m v 026答案 BCD解析 根据题意可知,两棒组成闭合回路,电流相同,故所受安培力的合力为零,动量守恒,故任何一段时间内,导体棒b 的动量改变量跟导体棒a 的动量改变量总是大小相等、方向相反,根据能量守恒定律可知,a 的动能减少量在数值上等于b 的动能增加量与产热之和,故A 错误,B 正确;两棒最终共速,根据动量守恒定律,有2m v 0=(2m +m )v ,对b 棒m v -0=B I l ·t =Blq ,联立解得q =2m v 03Bl,故C 正确;根据能量守恒定律,可知两棒共产生的焦耳热为Q =12×2m v 02-12()2m +m v 2=m v 023,而由于两棒的电阻大小相等,因此b 棒产生的焦耳热为Q b =12Q =m v 026,故D 正确. 4.(2022·山东烟台市、德州市一模)有一边长为L 、质量为m 、总电阻为R 的正方形导线框自磁场上方某处自由下落,如图所示.匀强磁场区域Ⅰ、Ⅱ的磁感应强度大小均为B ,二者宽度分别为L 、H ,且H >L .导线框恰好匀速进入区域Ⅰ,一段时间后又恰好匀速离开区域Ⅱ,重力加速度为g ,下列说法正确的是( )A .导线框离开区域Ⅱ的速度大于mgRB 2L2 B .导线框刚进入区域Ⅱ时的加速度大小为g ,方向竖直向上C .导线框进入区域Ⅱ的过程产生的焦耳热为mgHD .导线框自开始进入区域Ⅰ至刚完全离开区域Ⅱ的时间为6B 2L 3mgR答案 C解析 由题意知,导线框恰好匀速离开区域Ⅱ,则有mg =BIL =B 2L 2v R ,解得v =mgR B 2L2,A 错误;导线框进入区域Ⅰ到刚要进入区域Ⅱ过程一直做匀速运动,有v =mgR B 2L2,导线框下边刚进入磁场区域Ⅱ时,上、下边都切割磁感线,由法拉第电磁感应定律可知E 2=BL v +BL v =2BL v ,又I 2=E 2R ,联立解得I 2=2BL v R,导线框所受安培力F 2=2BI 2L ,由牛顿第二定律有F 2-mg =ma ,解得a =3g ,方向竖直向上,B 错误;开始进入区域Ⅱ时与开始离开区域Ⅱ时,速度大小相等,则导线框产生的焦耳热等于重力势能的减少量,有Q =mgH ,C 正确;导线框自开始进入区域Ⅰ至开始进入区域Ⅱ的过程中,t 1=L v =B 2L 3mgR,导线框自开始进入区域Ⅱ至开始离开区域Ⅱ过程中,由动量定理得mgt 2-F 安2Δt =m v -m v ,即mgt 2-BL 2BL 2R =0,解得t 2=2B 2L 3mgR ,导线框自开始离开区域Ⅱ至刚完全离开区域Ⅱ过程中,t 3=L v =B 2L 3mgR,故t =t 1+t 2+t 3=4B 2L 3mgR,D 错误. 5.(多选)(2022·河北省模拟)如图所示,两根相距L 且电阻不计的足够长光滑金属导轨,导轨左端为弧形,右端水平,且水平部分处于方向竖直向下、磁感应强度大小为B 的匀强磁场中.铜棒a 、b 电阻均为R 、质量均为m ,均与导轨垂直且与导轨接触良好,铜棒b 静止在导轨水平部分,铜棒a 在弧形导轨上从距离水平部分高度为h =0.5L 处由静止释放,重力加速度为g ,关于此后的过程,下列说法正确的是( )A .回路中的最大电流为gLBL RB .铜棒b 的最大加速度为gLB 2L 22mRC .铜棒b 获得的最大速度为gLD .回路中产生的总焦耳热为mgL 4答案 BD解析 铜棒a 沿弧形导轨下滑,刚进入磁场区域时,由机械能守恒定律有mgh =12m v 2,且h =0.5 L ,解得v =gL ,回路中的最大感应电动势E =BL v ,回路中的最大电流I =E 2R,联立解得I =BL gL 2R,故A 错误;铜棒b 受到的最大安培力F 安=BIL ,由牛顿第二定律有F 安=ma ,解得铜棒b 的最大加速度a =B 2L 2gL 2mR,故B 正确;铜棒a 、b 在匀强磁场中做切割磁感线运动的过程中,整体所受合外力为零,动量守恒,最终铜棒a 、b 速度相等,由动量守恒定律得m v =2m v ′,解得铜棒b 获得的最大速度为v ′=gL 2,故C 错误;由能量守恒定律得,回路中产生的总焦耳热为Q =12m v 2-12×2m v ′2=mgL 4,故D 正确. 6.(多选)(2022·广东韶关市二模)某高中科研兴趣小组利用课余时间进行研究电磁阻尼效果的研究性学习,实验示意图如图甲所示,虚线MN 右侧有垂直于水平面向下的匀强磁场,边长为1 m 、质量为0.1 kg 、电阻为0.2 Ω的正方形金属线框在光滑绝缘水平面上以大小v 0=2 m/s 的速度向右滑动并进入磁场,磁场边界MN 与线框的右边框平行.从线框刚进入磁场开始计时,线框的速度v 随滑行的距离x 变化的规律如图乙所示,下列说法正确的是( )A .图乙中x 0=1 mB .线框进入磁场的过程中,线框的加速度先不变再突然减为零C .线框进入磁场的过程中,线框中产生的焦耳热为0.1 JD .线框进入磁场的过程中,通过线框某横截面的电荷量为22C 答案 AD 解析 穿过线框的磁通量变化导致线框中产生感应电流,使线框受到安培力的作用,从而使速度改变;当线框完全进入磁场时,磁通量不变,速度不变,则由题图乙可知x 0=1 m ,A正确;线框进入磁场的过程中,安培力F =BIL ,其中I =E R =BL v R,由题图乙可知,速度减小,则安培力减小,由牛顿第二定律可知,线框的加速度减小,因此线框做变减速运动,B 错误;根据能量守恒定律可知,减少的动能全部转化为焦耳热,则有Q =ΔE k =12m v 02-12m v 2,代入数据可得Q =0.15 J ,C 错误; 线框进入磁场的过程中,取水平向右为正方向,根据动量定理可得-B 2L 2v R t =m v -m v 0,整理得v =v 0-B 2L 2x mR,结合题图乙可知,当x =1 m 时,v =1 m/s ,代入解得B =150 T ,通过线框某横截面的电荷量为q =I t =Bx 02R ,解得q =22 C ,D 正确. 7.(多选)(2022·宁夏吴忠中学三模)如图所示,两段均足够长、不等宽的光滑平行导轨固定在水平面上,较窄导轨的间距L 1=1 m ,较宽导轨的间距L 2=1.5 m .整个装置处于磁感应强度大小为B =0.5 T 、方向竖直向上的匀强磁场中,导体棒MN 、PQ 的质量分别为m 1=0.4 kg 、m 2=1.2 kg ,长度分别为1 m 、1.5 m ,电阻分别为R 1=0.3 Ω、R 2=0.9 Ω,两导体棒静止在水平导轨上.t =0时刻,导体棒MN 获得v 0=7 m/s 、水平向右的初速度.导轨电阻忽略不计,导体棒MN 、PQ 始终与导轨垂直且接触良好,导体棒MN 始终在较窄导轨上运动,取g =10 m/s 2则( )A .t =0时刻,回路中的电流为3512A B .导体棒MN 最终做匀速直线运动,速度大小为3 m/sC .通过导体棒MN 的电荷量最大值为3.4 CD .导体棒PQ 中产生的焦耳热最大值为4.2 J答案 ABD解析 t =0时刻,回路中的电流为I 0=E R =BL 1v 0R 1+R 2=3512A ,故A 正确;导体棒MN 与PQ 切割磁感线产生的电动势相互削弱,当两导体棒产生的电动势相等时,感应电流为零,所受安培力为零,故两导体棒最终做匀速直线运动,此时有BL 1v MN =BL 2v PQ ,设从导体棒MN 开始运动至导体棒MN 、PQ 做匀速运动所用的时间为Δt ,取水平向右为正方向,对导体棒MN 分析,由动量定理得-BL 1I ·Δt =m 1v MN -m 1v 0,对导体棒PQ 分析,由动量定理得BL 2I ·Δt =m 2v PQ ,又因为q =I ·Δt ,联立解得v MN =3 m/s ,v PQ =2 m/s ,q =3.2 C ,故B 正确,C 错误;由能量守恒定律得12m 1v 02=12m 1v MN 2+12m 2v PQ 2+Q 总,Q PQ =R 2R 1+R 2Q 总,代入数据联立解得Q PQ =4.2 J ,故D 正确.8.(多选)如图所示,竖直放置的两根足够长的光滑金属导轨相距L ,导轨的两端分别与电源(串联一滑动变阻器R )、定值电阻R 0、电容器(电容为C ,原来不带电)和开关S 相连.整个空间充满了磁感应强度大小为B 、方向垂直于导轨平面向外的匀强磁场.一质量为m 、电阻不计的金属棒ab 横跨在导轨上.已知电源电动势为E 、内阻为r ,不计导轨的电阻.当S 接1,滑动变阻器R 接入电路一定阻值时,金属棒ab 在磁场中恰好保持静止.当S 接2后,金属棒ab 从静止开始下落,下落距离为h 时达到稳定速度.重力加速度为g ,则下列说法正确的是( )A .当S 接1时,滑动变阻器接入电路的阻值R =EBLmgB .若将ab 棒由静止释放的同时,将S 接到3,则电容器积累的电荷量随金属棒速度v 的变化关系为Q =CBL vC .当S 接2时,金属棒ab 从静止开始到刚好达到稳定速度所经历的时间t =B 2L 2h +m 2gR 02mgR 0B 2L 2D .若将ab 棒由静止释放的同时,将S 接到3,则金属棒ab 将做匀加速直线运动,加速度大小a =mgm +CB 2L 2答案 BD解析 当S 接1时,有I =E R +r ,由平衡条件得mg =BIL ,联立解得R =EBLmg -r ,故A 错误;当S 接2,速度稳定时有mg =B 2L 2v R 0,解得v =mgR 0B 2L 2,金属棒ab 从静止开始下落,下落距离为h 时达到稳定速度,根据动量定理可得mgt -B I Lt =m v ,即mgt -B 2L 2vR 0·t =m v ,其中vt =h ,联立解得t =B 4L 4h +m 2gR 02mgR 0B 2L 2,故C 错误;若将棒ab 由静止释放的同时,将S 接到3,则电容器积累的电荷量随金属棒速度v 的变化关系为Q =CU =CBL v ,根据动量定理可得mg Δt -B I ′L Δt =m Δv ,即mg Δt -BL ·ΔQ =m Δv ,将ΔQ =CBL Δv 代入解得mg Δt -CB 2L 2Δv =m Δv ,所以a =Δv Δt =mgm +CB 2L 2,金属棒ab 将做匀加速直线运动,故B 、D 正确.9.如图所示,两电阻不计的光滑平行金属导轨固定在竖直平面内,两导轨间的距离为L ,导轨顶端连接定值电阻R ,导轨上有一质量为m 、长度为L 、电阻不计的金属杆,杆始终与导轨接触良好.整个装置处于磁感应强度大小为B 的匀强磁场中,磁场的方向垂直导轨平面向里.现使杆从M 点以v 0的速度竖直向上运动,经历时间t ,到达最高点N ,重力加速度大小为g .求t 时间内:(1)流过电阻的电荷量q ; (2)电阻上产生的焦耳热Q . 答案 (1)m v 0-mgtBL(2)12m v 02-m 2gR (v 0-gt )B 2L 2解析 (1)杆竖直向上运动的过程中,取v 0方向为正方向,根据动量定理,有-mgt -F t =0-m v 0 F =BL I q =I t联立解得q =m v 0-mgt BL(2)设杆上升的高度为h ,取v 0方向为正方向,由动量定理得-mgt -B 2L 2vR t =0-m v 0又h =v t联立解得h =mR (v 0-gt )B 2L 2杆上升过程中由能量守恒定律可知,电阻上产生的焦耳热Q =12m v 02-mgh联立解得Q =12m v 02-m 2gR (v 0-gt )B 2L 2.10.(2022·天津市一模)如图,间距为L 的两平行金属导轨右端接有电阻R ,固定在离地高为H 的平面上,空间存在着方向竖直向下、磁感应强度大小为B 的匀强磁场.质量为m 的金属杆ab 垂直导轨放置,杆获得一个大小为v 0的水平初速度后向左运动并离开导轨,其落地点距导轨左端的水平距离为s .已知重力加速度为g ,忽略一切摩擦和阻力,杆和导轨电阻不计.求:(1)杆即将离开导轨时的加速度大小a ;(2)杆穿过匀强磁场的过程中,克服安培力做的功W ; (3)杆ab 在水平导轨上运动的位移大小x .答案 (1)B 2L 2s 2mRH 2gH (2)12m (v 02-gs 22H ) (3)mR B 2L 2(v 0-s 2H2gH ) 解析 (1)杆离开导轨后做平抛运动,则有H =12gt 2,s =v t ,联立解得杆离开导轨时的速度大小为v =sg 2H杆离开导轨时,产生的感应电动势为E =BL v 感应电流大小为I =ER杆受到的安培力大小为F =BIL 根据牛顿第二定律可得F =ma联立解得杆即将离开导轨时的加速度大小为a =B 2L 2s2mRH 2gH(2)根据动能定理,可得-W =12m v 2-12m v 02则杆穿过匀强磁场的过程中,克服安培力做的功为 W =12m (v 02-gs 22H)(3)根据动量定理,可得-B I Lt =m v -m v 0 q =I t =BLxR联立解得x =mR B 2L 2(v 0-s2H2gH ).11.两足够长且不计电阻的光滑金属轨道如图甲所示放置,间距为d =1 m ,在左端弧形轨道部分高h =1.25 m 处放置一金属杆a ,弧形轨道与平直轨道的连接处平滑无摩擦,在平直轨道右端放置另一金属杆b ,杆a 、b 接入电路的电阻分别为R a =2 Ω、R b =5 Ω,在平直轨道区域有竖直向上的匀强磁场,磁感应强度大小为B =2 T .现杆b 以初速度大小v 0=5 m/s 开始向左滑动,同时由静止释放杆a ,杆a 由静止滑到水平轨道的过程中,通过杆b 的平均电流为0.3 A ;从a 下滑到水平轨道时开始计时,a 、b 运动的速度-时间图像如图乙所示(以a 运动的方向为正方向),其中m a =2 kg ,m b =1 kg ,g 取10 m/s 2,求:(1)杆a 在弧形轨道上运动的时间;(2)杆a 在水平轨道上运动过程中通过其截面的电荷量; (3)在整个运动过程中杆b 产生的焦耳热. 答案 (1)5 s (2)73 C (3)1156J解析 (1)设杆a 由静止滑至弧形轨道与平直轨道连接处时杆b 的速度大小为v b 0,对杆b 运用动量定理,有Bd I ·Δt =m b (v 0-v b 0) 由题图乙可知,v b 0=2 m/s 代入数据解得Δt =5 s.(2)对杆a 由静止下滑到平直导轨上的过程中,由机械能守恒定律有m a gh =12m a v a 2解得v a =2gh =5 m/s设最后a 、b 两杆共同的速度大小为v ′,由动量守恒定律得m a v a -m b v b 0=(m a +m b )v ′ 代入数据解得v ′=83m/s杆a 动量的变化量等于它所受安培力的冲量,设杆a 的速度从v a 到v ′的运动时间为Δt ′,则由动量定理可得-Bd I ′·Δt ′=m a (v ′-v a ),而q =I ′·Δt ′ 代入数据解得q =73C.(3)由能量守恒定律可知杆a 、b 中产生的总焦耳热为Q =m a gh +12m b v 02-12(m b +m a )v ′2=1616 J则b 杆中产生的焦耳热为Q ′=R b R a +R bQ =1156 J.错题统计(题号)对应考点错因分析动量定理在电磁感应中的应用动量守恒定律在电磁感应中的应用电磁感应中的综合问题一、动量定理、动量守恒定律在电磁感应中的应用导体棒在磁场中做变速运动,所受安培力是变力,可用动量定理求速度、位移、电荷量、时间等.对于双杆问题,若双杆所受外力为零,可用动量守恒定律分析.1.单杆运动问题已知量(其中B、L、m已知)待求量关系式(以棒减速为例)v1、v2q -B I LΔt=m v2-m v1,q=IΔtv1、v2、R总x -B2L2vΔtR总=m v2-m v1,x=vΔtF其他为恒力,v1、v2、q Δt-B I LΔt+F其他Δt=m v2-m v1,q=IΔtF其他为恒力,v1、v2、R总、x(或Δt)Δt(或x)-B2L2vΔtR总+F其他·Δt=m v2-m v1,x =vΔt2.双杆运动问题(1)等间距轨道上的双杆问题①双杆所受外力的合力为零时,若只需求末速度,可用动量守恒定律分析.②若需求电荷量、位移、时间等,则需要利用动量定理分析.(2)不等距导轨上的双杆问题由于合外力不为零,不等距导轨上的双杆问题需用动量定理分析.常见的双杆模型:题型一(等距、初速度、光滑、平行)题型二(不等距、初速度、光滑、平行)题型三(等距、恒力、光滑、平行)示意图导体棒长度L1=L2导体棒长度L1=2L2,两棒只在各自的轨道上运动导体棒长度L1=L2图像观点力学观点棒1做加速度减小的减速运动,棒2做加速度减小的加速运动;稳定时,两棒以相等的速度匀速运动棒1做加速度减小的减速运动,棒2做加速度减小的加速运动;稳定时,两棒的加速度均为零,速度之比为1∶2开始时,两棒做变加速运动;稳定时,两棒以相同的加速度做匀加速运动动量观点两棒组成的系统动量守恒两棒组成的系统动量不守恒对单棒可以用动量定理两棒组成的系统动量不守恒对单棒可以用动量定理能量观点系统动能的减少量等于产生的焦耳热系统动能的减少量等于产生的焦耳热拉力做的功一部分转化为双棒的动能,一部分转化为内能(焦耳热):W=Q+E k1+E k23.杆+电容器模型基本模型规律无外力,电容器充电(电阻阻值为R,导体棒电阻不计,电容器电容为C)无外力,电容器放电(电源电动势为E,内阻不计,导体棒电阻不计,电容器电容为C)电路特点导体棒相当于电源,电容器被充电电容器放电,相当于电源;导体棒受安培力而运动电流的特点安培力为阻力,棒减速,E减小,有I=BL v-U CR,电容器被充电,U C变大,当BL v=U C时,I=0,F安=0,棒做匀电容器放电时,导体棒在安培力作用下开始运动,同时阻碍放电,导致电流减小,直至电流为零,此时U C=BL v。
大学物理第三章动量守恒定律和能量守恒定律
动量守恒定律的表述
总结词
动量守恒定律表述为系统不受外力或所 受外力之和为零时,系统总动量保持不 变。
VS
详细描述
动量守恒定律是自然界中最基本的定律之 一,它表述为在一个封闭系统中,如果没 有外力作用或者外力之和为零,则系统总 动量保持不变。也就是说,系统的初始动 量和最终动量是相等的。
动量守恒定律的适用条件
能量守恒定律可以通过电磁学 的基本公式推导出来。
能量守恒定律可以通过相对论 的质能方程推导出来。
能量守恒定律的应用实例
01
02
03
04
机械能守恒
在无外力作用的系统中,动能 和势能可以相互转化,但总和
保持不变。
热能守恒
在一个孤立系统中,热量只能 从高温物体传递到低温物体,
最终达到热平衡状态。
电磁能守恒
详细描述
根据牛顿第三定律,作用力和反作用力大小相等、方向相反。如果将一个物体施加一个力F,则该力会产生一个 加速度a,进而改变物体的速度v。由于力的作用是相互的,反作用力也会对另一个物体产生相同大小、相反方向 的加速度和速度变化。因此,在系统内力的相互作用下,系统总动量保持不变。
02
能量守恒定律
能量守恒定律的表述
感谢观看
01
能量守恒定律表述为:在一个封闭系统中,能量不能被创造或消灭, 只能从一种形式转化为另一种形式。
02
能量守恒定律是自然界的基本定律之一,适用于宇宙中的一切物理过 程。
03
能量守恒定律是定量的,可以用数学公式表示。
04
能量守恒定律是绝对的,不受任何物理定律的限制。
能量守恒定律的适用条件
能量守恒定律适用于孤立系统,即系统与外界没有能量 交换。
《动量与动量守恒》课件
动量的计算公式
总结词
动量的计算公式是P=mv,其中m表示物体的质量,v表示物 体的速度。
详细描述
动量的计算公式是P=mv,其中m表示物体的质量,单位是 千克(kg),v表示物体的速度,单位是米/秒(m/s)。这 个公式用于计算物体的动量,即物体运动时的质量和速度的 乘积。
动量单位与符号
总结词
在国际单位制中,动量的单位是千克·米/秒(kg·m/s),符号为P。
动量定理在日常生活和科技领域中有广泛的应用。例如,在车辆安全设计中,可以利用 动量定理来分析碰撞过程中车辆的变形和受力情况,从而优化车辆的结构设计。在航天 工程中,可以利用动量定理来分析火箭发动机喷气速度与推力之间的关系,从而优化火
箭的设计和发射过程。此外,在体育运动、军事等领域中也有广泛的应用。
06 动量与动量守恒的实验验证
详细描述
动量定理的推导过程可以通过牛顿第二定律 (F=ma)和积分运算来完成。首先,根据 牛顿第二定律,物体的加速度与作用力成正 比,然后通过积分运算,可以得到物体动量 的变化量与作用力与时间的乘积成正比,即 动量定理的表述。
动量定理的应用
总结词
动量定理在日常生活和科技领域中有广泛的应用。
详细描述
VS
详细描述
动量守恒定律只在满足一定条件时才成立 。这些条件包括系统不受外力作用或者系 统所受的外力作用之和为零。这是因为动 量守恒定律是在理想状态下推导出来的, 忽略了空气阻力、摩擦力等外部因素的影 响。因此,在实际应用中,只有当系统满 足这些条件时,才能应用动量守恒定律。
动量守恒定律的推导
总结词
总结词
动量定理的表述是物体动量的变化量等于作用力与时间的乘积。
详细描述
动量定理是物理学中的一个基本定理,它描述了物体动量的变化与作用力之间的关系。具体来说,一 个物体动量的变化量等于作用力与作用时间的乘积。这个定理在经典力学和相对论力学中都有应用。
2024届高考一轮复习物理教案(新教材粤教版):动量观点在电磁感应中的应用
专题强化二十五 动量观点在电磁感应中的应用目标要求 1.掌握应用动量定理处理电磁感应问题的方法技巧.2.建立电磁感应问题中动量守恒的模型,并用动量守恒定律解决问题.题型一 动量定理在电磁感应中的应用导体棒或金属框在感应电流所引起的安培力作用下做非匀变速直线运动时,当题目中涉及速度v 、电荷量q 、运动时间t 、运动位移x 时常用动量定理求解. 考向1 “单棒+电阻”模型情景示例1水平放置的平行光滑导轨,间距为L ,左侧接有电阻R ,导体棒初速度为v 0,质量为m ,电阻不计,匀强磁场的磁感应强度为B ,导轨足够长且电阻不计,从开始运动至停下来求电荷量q-B I L Δt =0-m v 0,q =I Δt ,q =m v 0BL求位移x-B 2L 2v R Δt =0-m v 0,x =v Δt =m v 0R B 2L2应用技巧初、末速度已知的变加速运动,在用动量定理列出的式子中q =IΔt ,x =v Δt ;若已知q 或x 也可求末速度情景示例2间距为L 的光滑平行导轨倾斜放置,倾角为θ,由静止释放质量为m 、接入电路的阻值为R 的导体棒,当通过横截面的电荷量为q 或下滑位移为x 时,速度达到v求运动时间-B I L Δt +mg sin θ·Δt =m v -0,q =I Δt -B 2L 2vR Δt +mg sin θ·Δt =m v -0,x =v Δt应用技巧用动量定理求时间需有其他恒力参与.若已知运动时间,也可求q 、x 、v 中的任一个物理量例1 (多选)(2023·广东湛江市检测)如图所示,宽为L 的足够长U 形光滑导轨放置在绝缘水平面上,整个导轨处于竖直向上、磁感应强度大小为B 的匀强磁场中,将一质量为m 、接入电路的有效电阻为R 、长度略大于L 的导体棒垂直于导轨放置.某时刻给导体棒一沿导轨向右、大小为v 0的水平速度,不计导轨电阻,棒在运动过程中始终与导轨垂直且接触良好,则下列说法正确的是( )A .导体棒中感应电流方向为由a 到bB .导体棒中的最大发热量为12m v 02C .导体棒的加速度逐渐减小到0D .通过导体棒的电荷量最大值为m v 02BL答案 BC解析 根据右手定则可知,导体棒中感应电流方向为由b 到a ,选项A 错误;当导体棒静止时,动能全部转化为焦耳热,则导体棒中的最大发热量为12m v 02,选项B 正确;导体棒向右运动时,受到向左的安培力作用而做减速运动,则加速度满足a =BIL m =B 2L 2vmR ,随速度的减小,加速度减小,最后导体棒速度为零时加速度减小到0,选项C 正确;从开始运动到最后停止,由动量定理可知-F 安Δt =0-m v 0,F 安Δt =B I L Δt =BLq ,通过导体棒的电荷量最大值为q =m v 0BL ,选项D 错误.考向2 不等间距上的双棒模型例2 (多选)(2023·辽宁抚顺市模拟)如图所示,M 、N 、P 、Q 四条光滑的足够长的金属导轨平行放置,导轨间距分别为2L 和L ,两组导轨间由导线相连,装置置于水平面内,导轨间存在方向竖直向下的、磁感应强度大小为B 的匀强磁场,两根质量均为m 、接入电路的电阻均为R 的导体棒C 、D 分别垂直于导轨放置,且均处于静止状态,其余部分电阻不计.t =0时使导体棒C 获得瞬时速度v 0向右运动,两导体棒在运动过程中始终与导轨垂直并与导轨接触良好.且达到稳定运动时导体棒C 未到两组导轨连接处.则下列说法正确的是( )A .t =0时,导体棒D 的加速度大小为a =B 2L 2v 0mRB .达到稳定运动时,C 、D 两棒速度之比为1∶1C .从t =0时至达到稳定运动的过程中,回路产生的内能为25m v 02D .从t =0时到达到稳定运动的过程中,通过导体棒的电荷量为2m v 05BL答案 ACD解析 开始时,导体棒中的感应电动势E =2BL v 0,电路中感应电流I =E2R ,导体棒D 所受安培力F =BIL ,导体棒D 的加速度为a ,则有F =ma ,解得a =B 2L 2v 0mR ,故A 正确;稳定运动时,电路中电流为零,设此时C 、D 棒的速度分别为v 1、v 2,则有2BL v 1=BL v 2,对变速运动中任意极短时间Δt ,由动量定理得,对C 棒有2B I L Δt =m Δv 1,对D 棒有B I L Δt =m Δv 2,故对变速运动全过程有v 0-v 1=2v 2,解得v 2=25v 0,v 1=15v 0,故B 错误;根据能量守恒定律可知回路产生的内能为Q =12m v 02-12m v 12-12m v 22,解得Q =25m v 02,故C 正确;由上述分析可知对变速运动中任意极短时间Δt ,由动量定理得,对C 棒有2B I L Δt =m Δv 1,可得2BLq =m (v 0-v 1),解得q =2m v 05BL ,故D 正确.考向3 “电容器+棒”模型1.无外力充电式基本 模型 规律(导轨光滑,电阻阻值为R ,电容器电容为C )电路特点导体棒相当于电源,电容器充电电流特点安培力为阻力,棒减速,E 减小,有I =BL v -U CR ,电容器充电U C变大,当BL v =U C 时,I =0,F 安=0,棒匀速运动运动特点和最棒做加速度a 减小的减速运动,最终做匀速运动,此时I =0,但电终特征容器带电荷量不为零最终速度电容器充电荷量:q=CU最终电容器两端电压U=BL v 对棒应用动量定理:m v-m v0=-B I L·Δt=-BLq v=m v0m+B2L2C.v-t图像例3如图甲、乙中,除导体棒ab可动外,其余部分均固定不动,图甲中的电容器C原来不带电.设导体棒、导轨电阻均可忽略,导体棒和导轨间的摩擦也不计,图中装置均在水平面内,且都处于方向垂直于水平面(即纸面)向里的匀强磁场中,导轨足够长.现给导体棒ab 一个向右的初速度v0,在图甲、乙两种情形下,关于导体棒ab的运动状态,下列说法正确的是()A.图甲中,ab棒先做匀减速运动,最终做匀速运动B.图乙中,ab棒先做加速度越来越小的减速运动,最终静止C.两种情况下通过电阻的电荷量一样大D.两种情形下导体棒ab最终都保持匀速运动答案 B解析题图甲中,导体棒向右运动切割磁感线产生感应电流而使电容器充电,由于充电电流不断减小,安培力减小,则导体棒做变减速运动,当电容器C极板间电压与导体棒产生的感应电动势相等时,电路中没有电流,ab棒不受安培力,向右做匀速运动,故A错误;题图乙中,导体棒向右运动切割磁感线产生感应电流,导体棒受向左的安培力而做减速运动,随速度的减小,电流减小,安培力减小,加速度减小,最终ab棒静止,故B正确,D错误;根据F安=B I L,有F安t=B I Lt=qBL=mΔv,得q=mΔvBL,电荷量跟导体棒ab的动量变化量成正比,因为题图甲中导体棒的动量变化量小于题图乙,所以题图甲中通过R的电荷量小于题图乙中通过R的电荷量,故C错误.2.无外力放电式基本模型规律(电源电动势为E,内阻不计,电容器电容为C) 电路特点电容器放电,相当于电源;导体棒受安培力而运动电流特点电容器放电时,导体棒在安培力作用下开始运动,同时阻碍放电,导致电流减小,直至电流为零,此时U C=BL v m运动特点及最终特征做加速度a减小的加速运动,最终匀速运动,I=0最大速度v m 电容器充电电荷量:Q0=CE 放电结束时电荷量:Q=CU=CBL v m电容器放电电荷量:ΔQ=Q0-Q=CE-CBL v m对棒应用动量定理:m v m-0=B I L·Δt=BLΔQv m=BLCEm+B2L2Cv-t图像例4(2023·广东广州市模拟)如图甲为飞机在航空母舰甲板上起飞的电磁弹射装置,其工作原理如图乙:水平固定的平行光滑金属导轨,导轨间有垂直于导轨平面的匀强磁场,金属棒MN垂直静置于导轨间,开关S先接1,电容器完全充电后,开关S再接至2使MN棒向右加速运动.当MN棒产生的感应电动势与电容器两极板的电压相等时,回路中电流为零,飞机达到起飞速度,已知直流电源的电动势E,电容器的电容C,两导轨的间距L(电阻不计),磁感应强度大小B,MN棒的质量m0、电阻R.在飞机起飞过程中,求:(1)MN 棒受到的最大安培力F 的大小和方向;(2)若飞机起飞时速度为v ,飞机起飞过程中电容器释放的电荷量ΔQ ; (3)飞机起飞时速度v 的大小的表达式(用题干已知的物理量表示). 答案 (1)BLE R 方向水平向右 (2)(E -BL v )C (3)BLECB 2L 2C +m 0解析 (1)开关S 刚接至2时,回路中电流最大,MN 棒受到的安培力最大,最大安培力 F =BIL =BLER金属棒MN 上的电流方向从M 流向N 端,由左手定则可知安培力方向水平向右. (2)飞机起飞速度为v 时,金属棒的感应电动势E ′=BL v 即此时电容器两极板间的电压U =BL v 则ΔQ =ΔU ·C =(E -BL v )C(3)飞机起飞时,电容器两极板的电压U =E ′=BL v 对金属棒由动量定理可得B I Lt =m 0v -0 又B I Lt =BL ΔQ =BL (EC -BL v C ) 所以BL (EC -BL v C )=m 0v 解得v =BLEC B 2L 2C +m 0.题型二 动量守恒定律在电磁感应中的应用1.在双金属棒切割磁感线的系统中,双金属棒和导轨构成闭合回路,安培力充当系统内力,如果它们不受摩擦力,且受到的安培力的合力为0时,满足动量守恒,运用动量守恒定律解题比较方便.2.双棒模型(不计摩擦力)双棒无外力双棒有外力示意图F为恒力动力学观点导体棒1受安培力的作用做加速度减小的减速运动,导体棒2受安培力的作用做加速度减小的加速运动,最后两棒以相同的速度做匀速直线运动导体棒1做加速度逐渐减小的加速运动,导体棒2做加速度逐渐增大的加速运动,最终两棒以相同的加速度做匀加速直线运动动量观点系统动量守恒系统动量不守恒能量观点棒1动能的减少量=棒2动能的增加量+焦耳热外力做的功=棒1的动能+棒2的动能+焦耳热例5(多选)(2019·全国卷Ⅲ·19)如图,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab、cd静止在导轨上,t=0时,棒ab以初速度v0向右滑动.运动过程中,ab、cd始终与导轨垂直并接触良好,两者速度分别用v1、v2表示,回路中的电流用I表示.下列图像中可能正确的是()答案AC解析棒ab以初速度v0向右滑动,切割磁感线产生感应电动势,使整个回路中产生感应电流,判断可知棒ab受到与v0方向相反的安培力的作用而做变减速运动,棒cd受到与v0方向相同的安培力的作用而做变加速运动,它们之间的速度差Δv=v1-v2逐渐减小,整个系统产生的感应电动势逐渐减小,回路中感应电流逐渐减小,最后变为零,即最终棒ab和棒cd的速度相同,v1=v2,这时两相同的光滑导体棒ab、cd组成的系统在足够长的平行金属导轨上运动,水平方向上不受外力作用,由动量守恒定律有m v0=m v1+m v2,解得v1=v2=v02,选项A、C正确,B、D错误.例6 如图所示,在磁感应强度大小为B 的匀强磁场区域内,垂直磁场方向的水平面中有两根固定的足够长的平行金属导轨,在导轨上面平放着两根导体棒ab 和cd ,两棒彼此平行且相距d ,构成一矩形回路.导轨间距为L ,两导体棒的质量均为m ,电阻均为R ,导轨电阻可忽略不计.设导体棒可在导轨上无摩擦地滑行,初始时刻ab 棒静止,给cd 棒一个向右的初速度v 0,求:(1)当cd 棒速度减为0.6v 0时,ab 棒的速度v 及加速度a 的大小;(2)ab 、cd 棒间的距离从d 增大到最大的过程中,通过回路的电荷量q 及两棒间的最大距离x . 答案 (1)0.4v 0 B 2L 2v 010mR (2)m v 02BL d +m v 0RB 2L2解析 (1)两棒组成的系统所受合外力为零,因此满足动量守恒定律,有m v 0=0.6m v 0+m v 解得v =0.4v 0回路感应电动势E =0.6BL v 0-0.4BL v 0 此时回路电流I =E2R因此加速度a =BILm整理得a =B 2L 2v 010mR(2)ab 、cd 棒速度相等时有最大距离,根据动量守恒定律可得m v 0=2m v 共 对ab 棒,根据动量定理有B I L Δt =m v 共 而q =I Δt ,解得q =m v 02BL在这段时间内,平均感应电动势E =BL Δv回路平均电流I =E 2R因此流过某截面的电荷量q =I Δt =BL Δv 2R Δt =BL (x -d )2R ,解得最大距离x =d +m v 0RB 2L2.课时精练1.(多选)如图所示,一质量为2m 的足够长U 形光滑金属框abcd 置于水平绝缘平台上,bc 边长为L ,不计金属框电阻.一长为L 的导体棒MN 置于金属框上,导体棒的阻值为R 、质量为m .装置处于磁感应强度为B 、方向竖直向下的匀强磁场中.现给金属框水平向右的初速度v 0,在整个运动过程中MN 始终与金属框保持良好接触,则( )A .刚开始运动时产生的感应电流方向为M →N →c →b →MB .导体棒的最大速度为v 02C .通过导体棒的电荷量为2m v 03BLD .导体棒产生的焦耳热为56m v 02答案 AC解析 金属框开始获得向右的初速度v 0,根据右手定则可知电流方向为M →N →c →b →M ,故A 正确;以整体为研究对象,由于整体水平方向不受力,所以整体水平方向动量守恒,最后二者速度相等,取初速度方向为正方向,根据动量守恒定律可得2m v 0=3m v ,可得v =23v 0,故B 错误;对导体棒根据动量定理可得B I L Δt =m v -0,其中I Δt =q ,可得通过导体棒的电荷量为q =2m v 03BL ,故C 正确;由能量守恒知导体棒产生的焦耳热为Q =12×2m v 02-12×3m v 2=13m v 02,故D 错误. 2.(多选)如图所示,半径为r 的粗糙四分之一圆弧导轨与光滑水平导轨平滑相连,四分之一圆弧导轨区域没有磁场,水平导轨区域存在磁感应强度大小为B 、方向竖直向上的匀强磁场,导轨间距为l ,ab 、cd 是质量为m 、接入电路中电阻为R 的金属棒,导轨电阻忽略不计.cd 静止在平滑轨道上,ab 从四分之一圆弧轨道顶端由静止释放,在圆弧轨道上克服阻力做功 12mgr ,水平导轨足够长,ab 、cd 始终与导轨垂直并接触良好,且不会相撞,重力加速度为g .从ab 棒进入水平轨道开始,下列说法正确的是( )A .ab 棒先做匀减速运动,最后做匀速运动B .cd 棒先做匀加速直线运动,最后和ab 以相同的速度做匀速运动C .ab 棒刚进入磁场时,cd 棒电流为Bl gr2RD .ab 棒的最终速度大小为gr2答案 CD解析 ab 棒进入磁场受向左的安培力,做减速运动,所以安培力减小,则ab 棒先做加速度减小的减速运动,cd 棒与ab 棒串联,所以先做加速度减小的加速运动,最后它们共速,做匀速运动,故A 、B 错误;ab 棒刚进入磁场的速度就是它下滑到底端的速度,根据动能定理mgr -12mgr =12m v 2,可得速度为v =gr ,则感应电动势为E =Bl v ,两金属棒串联,故两棒瞬时电流为I =Bl gr 2R ,两棒共速时由动量守恒定律有m v =2m v ′,得速度大小为v ′=gr 2,故C 、D 正确.3.(多选)如图,相距为L 的两光滑平行金属导轨固定在绝缘水平桌面上,左端接一电容器C ,阻值为R 的电阻通过三角旋钮开关S 与两导轨连接,长度为L 、质量为m 的金属杆ab 垂直导轨放置,且与导轨始终接触良好,两导轨间存在垂直导轨平面向下的匀强磁场,磁感应强度大小为B .三角旋钮开关S 仅1、2之间导电,S 左旋时能将电阻R 和电容器C 接入同一回路,右旋时能将电阻R 和金属杆ab 接入同一回路,初始时1、2连接电容器和金属杆,现用恒力F 向右拉金属杆ab ,使其从静止开始运动,经一段时间后撤去F ,同时旋转S ,此时金属杆的速度大小为v 0,不计金属杆和导轨的电阻.下列说法正确的是( )A .撤去F 前,金属杆做变加速直线运动B .撤去F 同时向右旋开关S ,金属杆做加速度减小的减速运动C .恒力F 对金属杆做的功等于12m v 02D .若分别左旋右旋S ,两种情况下,通过电阻R 的电荷量之比为CB 2L 2∶m 答案 BD解析 撤去F 前,对金属杆进行受力分析有F -BIL =ma ,对电容器Q =CU =CBL v ,充电电流I =ΔQ Δt =CBL Δv Δt =CBLa ,解得a =F CB 2L 2+m,可知金属杆做匀加速直线运动,A 错误;撤去F 同时向右旋开关S ,此时仅有电阻R 和金属杆ab 接入同一回路,且金属杆有向右的速度,根据右手定则与左手定则,可判定安培力向左,且BIL =B 2L 2v R =ma ,可知金属杆将向右做加速度减小的减速运动,B 正确;根据动能定理有W F +W 安=12m v 02,其中安培力做负功,则恒力F 对金属杆做的功大于12m v 02,C 错误;撤去F 时,电容器极板带电荷量Q =CBL v 0,对金属杆分析,由动量定理有-B I L ·Δt =0-m v 0,由于金属杆减速切割磁感线而通过电阻的电荷量q =I ·Δt ,当左旋S ,通过电阻的电荷量q 1=Q ,当右旋S ,通过电阻的电荷量q 2=q ,解得q 1q 2=CB 2L 2m,D 正确. 4.(多选)如图,足够长的平行光滑金属导轨M 、N 固定在水平桌面上,导轨间距离为L ,垂直导轨平面有竖直向下的匀强磁场,以CD 为分界线,左边磁感应强度大小为2B ,右边为B ,两导体棒a 、b 垂直导轨静止放置,a 棒距CD 足够远,已知a 、b 棒质量均为m 、长度均为L 、电阻均为r ,棒与导轨始终接触良好,导轨电阻不计,现使a 获得一瞬时水平速度v 0,在两棒运动至稳定的过程中(a 棒还没到CD 分界线),下列说法正确的是( )A .a 、b 系统机械能守恒B .a 、b 系统动量不守恒C .通过导体棒a 的电荷量为2m v 05BLD .导体棒a 产生的焦耳热为2m v 025答案 BC解析 因为a 、b 棒切割磁感线时产生感应电流,继而导体棒中有焦耳热产生,故a 、b 系统机械能不守恒,故A 错误;由题意知a 棒受到的安培力为 F a =2BIL ,方向水平向左,而b 棒受到的安培力为 F b =BIL ,方向水平向右,故a 、b 系统所受合外力不为零,故a 、b 系统动量不守恒,故B 正确;因两棒运动至稳定时满足2BL v 1=BL v 2,设向右为正方向,则对a 、b 棒运动至稳定的过程中分别由动量定理得-2B I Lt =m v 1-m v 0,B I Lt =m v 2,联立解得v 1=v 05,v 2=2v 05.又因为q =I t ,所以通过导体棒a 的电荷量为q =2m v 05BL,故C 正确;由题意知稳定之后,电路中不再有感应电流,则不再有焦耳热产生,所以对a 、b 棒运动至稳定的过程中,由能量守恒定律得导体棒a 、b 产生的总焦耳热为Q =12m v 02-12m v 12-12m v 22=25m v 02,所以导体棒a 产生的焦耳热为Q ′=12Q =15m v 02,故D 错误. 5.(多选)(2023·云南昆明市一中质检)如图所示,一光滑轨道固定在架台上,轨道由倾斜和水平两段组成,倾斜段的上端连接一电阻R =0.5 Ω,两轨道间距d =1 m ,水平部分两轨道间有一竖直向下,磁感应强度B =0.5 T 的匀强磁场.一质量m =0.5 kg 、长为l =1.1 m 、电阻忽略不计的导体棒,从轨道上距水平面h 1=0.8 m 高处由静止释放,通过磁场区域后从水平轨道末端水平飞出,落地点与水平轨道末端的水平距离x 2=0.8 m ,水平轨道距水平地面的高度h 2=0.8 m .通过计算可知(g 取10 m/s 2)( )A .导体棒进入磁场时的速度为3 m/sB .导体棒整个运动过程中,电阻R 上产生的热量为3 JC .磁场的长度x 1为2 mD .整个过程通过电阻的电荷量为2 C答案 BCD解析 设导体棒进入磁场时的速度为v 0,根据机械能守恒定律有12m v 02=mgh 1,解得v 0= 4 m/s ,故A 错误;导体棒从水平轨道水平飞出做平抛运动,则水平方向有x 2=v t ,竖直方向有h 2=12gt 2,联立代入数据解得v =2 m/s ,导体棒通过磁场区域过程中,根据能量守恒定律有Q =12m v 02-12m v 2,则导体棒整个运动过程中,电阻R 上产生的热量为Q =3 J ,故B 正确;导体棒通过磁场区域过程中,根据动量定理有F 安t 1=Bdq =m v 0-m v ,又有q =I t 1=ΔΦR =Bdx 1R,联立代入数据解得q =2 C ,x 1=2 m ,故C 、D 正确.6.(多选)(2023·广东茂名市联考)如图所示,在光滑绝缘水平面上有一宽度为d 的区域,区域内存在着方向竖直向下、磁感应强度大小为B 的匀强磁场,一质量为m 、边长为L (L <d )的正方形金属线圈以速度v 沿水平方向进入磁场,且恰好能全部穿出磁场,则下列说法正确的是( )A .进入磁场的过程中通过线圈横截面的电荷量为m v 2BLB .线圈中无感应电流的时间为d -L vC .线圈进入磁场的过程中产生的焦耳热为m v 24D .线圈进入磁场的过程中产生的焦耳热为3m v 28答案 AD解析 进入磁场的过程和穿出磁场的过程通过线圈横截面的电荷量相等.设进入过程中平均电流为I 1,时间为t 1,全部进入磁场时的速度为v 1,由动量定理得-BI 1Lt 1=m v 1-m v ,设进入磁场过程中通过线圈横截面的电荷量为q 1,q 1=I 1t ,则有-BLq 1=m v 1-m v ,同理,穿出磁场时,因为恰能全部穿出,故-BLq 2=-m v 1,q 1=q 2,所以v -v 1=v 1,解得v 1=v 2,则进入磁场过程中通过线圈横截面的电荷量为m v 2BL ,故A 正确;无感应电流的时间为t =d -L v 1=2(d -L )v ,故B 错误; 进入磁场过程中产生的焦耳热Q =m v 22-m v 122=3m v 28,故C 错误,D 正确.7.(多选)(2023·广东韶关市模拟)某高中科研兴趣小组利用课余时间进行电磁阻尼效果的研究学习,实验示意图如图甲所示,虚线MN 右侧有垂直于水平面向下的范围足够大的匀强磁场,边长为1 m 、质量为0.1 kg 、电阻为0.2 Ω的正方形金属线框在光滑绝缘水平面上以大小v 0=2 m/s 的速度向右滑动并进入磁场,磁场边界MN 与线框的右边框平行.从线框刚进入磁场开始计时,线框的速度v 随滑行的距离x 变化的规律如图乙所示,下列说法正确的是( )A .图乙中x 0=1 mB .线框进入磁场的过程中,线框的加速度先不变再突然减为零C .线框进入磁场的过程中,线框中产生的焦耳热为0.1 JD .线框进入磁场的过程中,通过线框某横截面的电荷量为22 C 答案 AD 解析 磁通量变化,线框中产生感应电流,就会受到安培力的作用,从而改变速度;当线框完全进入磁场时,磁通量不变,速度就不变,即题图乙中x 0=1 m ,A 正确;线框进入磁场过程中,安培力为F =BIL ,其中I =E R =BL v R ,则F =B 2L 2v R,由题图乙可知,速度减小,则安培力减小,由牛顿第二定律可知,线框的加速度减小,线框做变减速运动,B 错误;根据能量守恒定律可得,减少的动能全部转化为焦耳热,则有Q =ΔE k =12m v 02-12m v 2,代入数据可得Q =0.15 J ,C 错误; 线框进入磁场过程中,取水平向右为正,根据动量定理可得-B 2L 2v Rt =m v -m v 0,解得v =v 0-B 2L 2x mR,结合题图乙可知,当x =1 m 时,v =1 m/s ,代入数据解得B =150 T ,通过线框某横截面的电荷量为q =I t =BLx R ,解得q =22 C ,D 正确. 8.如图所示,平行光滑金属双导轨P 1Q 1M 1和P 2Q 2M 2,其中P 1Q 1和P 2Q 2为半径r =0.8 m 的14光滑圆轨道,O 1和O 2为对应圆轨道的圆心,Q 1、Q 2在O 1、O 2正下方且为圆轨道和水平轨道的平滑连接点,Q 1M 1和Q 2M 2为足够长的水平轨道,水平轨道处于竖直向上的匀强磁场中,磁感应强度B =1 T ,导轨间距L =1 m ;两导体棒a 、b 始终垂直于两导轨且与导轨接触良好,a 、b 的质量均为1 kg ,电阻均为1 Ω,导轨电阻不计.初始时刻,b 静止在水平导轨上,a 从与圆心等高的P 1P 2处由静止释放,a 、b 在以后运动的过程中不会发生碰撞(g =10 m/s 2).求:(1)导体棒a 从Q 1Q 2进入磁场时,导体棒b 的加速度大小;(2)导体棒a 、b 稳定时的速度大小;(3)整个过程中,通过导体棒b 的电荷量.答案 (1)2 m/s 2 (2)2 m/s (3)2 C解析 (1)导体棒a 从P 1P 2到Q 1Q 2,由动能定理得m a gr =12m a v 02-0 代入数据得v 0=4 m/s a 刚进入匀强磁场时,由法拉第电磁感应定律得E =BL v 0=4 V由闭合电路的欧姆定律得I =E R a +R b=2 A 由牛顿第二定律得ILB =m b a b代入数据得a b =2 m/s 2.(2)当导体棒a 、b 稳定时,由动量守恒定律得m a v 0=(m a +m b )v 1代入数据得v 1=2 m/s.(3)整个过程中,对导体棒b 由动量定理得I LBt =m b v 1,又q =I t ,代入数据得q =2 C.9.如图所示,两根足够长的固定平行金属导轨位于同一水平面内,导轨间的距离为L ,导轨上横放着两根导体棒ab 和cd .设两根导体棒的质量皆为m 、电阻皆为R ,导轨光滑且电阻不计,在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .开始时ab 和cd 两导体棒有方向相反的水平初速度,初速度大小分别为v 0和2v 0,求:(1)从开始到最终稳定回路中产生的焦耳热;(2)当ab 棒向右运动,速度大小变为v 04时,回路中消耗的电功率的值. 答案 (1)94m v 02 (2)B 2L 2v 028R解析 (1)选水平向右为正方向,从开始到最终稳定的过程中,两棒总动量守恒,则有2m v 0-m v 0=2m v ,解得v =v 02,由能量守恒可得从开始到最终稳定回路中产生的焦耳热为Q =12m v 02+12m (2v 0)2-12(2m )v 2=94m v 02. (2)当ab 棒向右运动,速度大小变为v 04时,设cd 棒的速度是v 2,根据动量守恒得2m v 0-m v 0=m v 2+m v 04,解得v 2=3v 04,此时回路中的总电动势E =BL (3v 04-v 04)=12BL v 0,则消耗的电功率为P =E 22R =B 2L 2v 028R .。
动量动量守恒定律知识点总结
动量动量守恒定律知识点总结
一、动量
定义:动量,又称线性动量,是描述物体运动状态的物理量,其定义为物体的质量和速度的乘积,用符号p表示。
动量是一个矢量,它的方向与速度的方向相同。
动量的国际单位制中的单位是kg·m/s,量纲为MLT⁻¹。
基本性质:
动量是矢量,具有大小和方向。
质点组的动量为组内各质点动量的矢量和。
动量是一个守恒量,在封闭系统中,如果没有外力作用,系统的总动量将保持不变。
动量是机械运动传递的量度,反映了物体运动的趋势和状态。
二、动量守恒定律
定义:动量守恒定律是自然界中最重要、最普遍的守恒定律之一。
它表明,如果一个系统不受外力作用,或者所受外力之和为零,那么这个系统的总动量将保持不变。
守恒条件:
系统不受外力或所受合外力为零(严格条件)。
系统内力远大于外力(近似条件)。
在某个方向上,外力之和为零,那么在这个方向上动量守恒。
适用范围:动量守恒定律不仅适用于宏观物体的低速运动,也适用于微观物体的高速运动。
无论内力是什么性质的力,只要满足守恒条件,动量守恒定律总是适用的。
三、动量守恒定律的应用
动量守恒定律在物理学中有广泛的应用,例如碰撞问题、爆炸现象、火箭发射等。
通过运用动量守恒定律,可以求解出碰撞后的速度、火箭发射的速度等问题。
综上所述,动量及动量守恒定律是物理学中的基本概念和定律,对于理解物体的运动状态和相互作用具有重要意义。
在实际应用中,需要结合具体情境和问题进行分析和求解。
电磁感应与守恒定律
电磁感应与守恒定律电磁感应与守恒定律是电磁学中两个重要的基本概念和原则。
电磁感应是指由于磁场的变化而在导体中产生电流的现象,而守恒定律则是指能量、动量和电荷守恒的基本原则。
本文将详细讨论电磁感应和守恒定律的相关内容,以及它们在物理学中的重要性。
一、电磁感应电磁感应是指通过磁场的变化而在导体中产生电流的现象。
当导体处于磁场中时,如果磁场的磁感应强度发生变化,就会在导体中感应出电动势,从而产生电流。
这一现象由法拉第发现并总结为法拉第感应定律,即法拉第电磁感应定律。
根据法拉第电磁感应定律,感应电动势的大小与磁感应强度的变化率成正比。
当磁场的磁感应强度发生变化时,感应电动势的方向由法拉第右手规则确定。
如果导体是闭合回路,感应电动势将驱动电荷在导体中产生电流,这被称为感应电流。
电磁感应广泛应用于发电机、变压器等电磁设备中。
在发电机中,通过转动磁场和线圈之间的相互作用,将机械能转化为电能;在变压器中,利用电磁感应原理实现电压的升降变换。
二、守恒定律守恒定律是物理学中的基本原则,包括能量守恒定律、动量守恒定律和电荷守恒定律。
这些定律表明在物理系统中,相应的物理量在一个封闭系统中的总量是守恒的。
能量守恒定律指出,在一个封闭系统内,系统的能量总量是恒定的,能量只能从一种形式转化为另一种形式,而不能被创造或消失。
例如,当一个物体从较高的位置下落时,它的重力势能会转化为动能,但总能量保持不变。
动量守恒定律指出,在一个封闭系统中,总动量保持不变。
当系统内的物体相互作用产生力时,物体的动量可以相互转移,但总动量不变。
例如,当两个物体碰撞时,它们的动量可能会发生改变,但两个物体的动量总和保持不变。
电荷守恒定律指出,在一个封闭系统中,总电荷保持不变。
在物理过程中,电荷可以从一个物体转移到另一个物体,但总电荷量守恒。
这就解释了为什么电荷不能被创造或消失。
三、电磁感应与守恒定律的关系电磁感应和守恒定律是相辅相成的。
法拉第电磁感应定律实质上是能量守恒定律和电荷守恒定律的应用。
电磁感应现象中的动量问题课件
F
(1)导体棒做初速度为零 a
F
匀加速运动:
m B2L2C
(2)回路中旳电流恒定:
I
CBLa
CBLF m CB2L2
(3)导体棒受安培力恒定:
CB2 L2 F
F安 m CB2 L2
(4)导体棒克服安培力做旳功等于
电容器储存旳电能:
v v0
证明
2023/12/5
W克B
1 C(Blv)2 2
O
3、两个导体棒之间旳距离降低旳最大值
N V0
总结:无外力双棒问题
基本模型
无外力
等距式
1
2
运动特点
杆1做a渐小 v0 旳加速运动
杆2做a渐小 旳减速运动
最终特征
v1=v2
I=0
系统规律
动量守恒 能量守恒
无外力 不等距式
v0
2
1
杆1做a渐小 旳减速运动
杆2做a渐小 旳加速运动
a=0 I=0
动量不守恒
L1v1=L2v2 能量守恒
利用电荷量与磁通量旳变化旳关系,能够研究变速运动旳位移
∑BL∆q=mV-mV0
q N N BS =N Bdx
t
t
t
变速运动旳运动分析与电量问题问题 例四、如图,水平放置旳U形金属导轨一端连接一种电容为C旳电容器, 整个空间有竖直向下旳匀强磁场,导轨上横放一根长为L、质量为m旳 金属杆。若电容器最初带有电荷Q,闭合开关后最终稳定时,电容器上 剩余带电量多大?金属杆旳速度多大?
力,求:
(1)两棒最终加速度各是多少;
(2)棒ab上消耗旳最大电功率。
a
c
L1
B
L2
F
电磁感应问题中动量定理应用归类
电磁感应问题中动量定理应用归类
动量定理是指在相互作用系统中,两个物体发生相互作用前后,它们的动量变化量相等且大小相同,也就是说总动量守恒。
在电磁感应问题中,动量定理可以被应用于分析导体中自由电子受到电磁力的作用。
下面是电磁感应问题中动量定理的应用所需的相关参考内容:
1. 磁场中运动带电粒子的动量定理
在磁场中运动带电粒子的情况下,动量定理可以用来分析带电粒子受到磁场作用时的运动规律。
具体的参考内容包括磁场对带电粒子产生的洛伦兹力公式以及动量定理的定义和应用。
2. 感应电动势的产生与动量定理
在感应电动势的产生问题中,可以利用动量定理来推导感应电动势的产生。
具体的参考内容包括受到磁场作用的导体中的自由电子受到洛伦兹力的描述、动量定理的定义和应用、以及感应电动势的产生过程。
3. 电磁铁中导体的运动和动量定理
在电磁铁中导体的运动问题中,动量定理可以用来分析导体所受的力以及速度的变化。
具体的参考内容包括电磁铁的结构和工作原理、动量定理的定义和应用、以及导体受到的力和速度的变化规律。
动力学、动量和能量观点在磁场中的应用
动力学、动量和能量观点在电学中的应用电磁感应中的动量和能量的应用1.应用动量定理可以由动量变化来求解变力的冲量.如在导体棒做非匀变速运动的问题中,应用动量定理可以解决牛顿运动定律不易解答的问题.2.在相互平行的水平轨道间的双棒做切割磁感线运动时,由于这两根导体棒所受的安培力等大反向,合外力为零,若不受其他外力,两导体棒的总动量守恒,解决此类问题往往要应用动量守恒定律.类型1动量定理和功能关系的应用例1如图1所示,两根电阻不计的光滑金属导轨竖直放置,相距为L,导轨上端接电阻R,宽度相同的水平条形区域Ⅰ和Ⅱ内有磁感应强度为B、方向垂直导轨平面向里的匀强磁场,其宽度均为d,Ⅰ和Ⅱ之间相距为h且无磁场.一长度为L、质量为m、电阻为r的导体棒,两端套在导轨上,并与两导轨始终保持良好的接触,导体棒从距区域Ⅰ上边界H处由静止释放,在穿过两段磁场区域的过程中,流过电阻R上的电流及其变化情况相同,重力加速度为g.求:(1)导体棒进入区域Ⅰ的瞬间,通过电阻R的电流大小与方向.(2)导体棒通过区域Ⅰ的过程,电阻R上产生的热量Q.(3)求导体棒穿过区域Ⅰ所用的时间.(2018·甘肃天水模拟)如图2所示,竖直放置的两光滑平行金属导轨,置于垂直于导轨平面向里的匀强磁场中,两根质量相同的导体棒a和b,与导轨紧密接触且可自由滑动.先固定a,释放b,当b的速度达到10 m/s时,再释放a,经过1 s后,a的速度达到12 m/s,g取10 m/s2,则:(1)此时b的速度大小是多少?(2)若导轨足够长,a、b棒最后的运动状态怎样?类型2动量守恒定律和功能关系的应用1.问题特点对于双导体棒运动的问题,通常是两棒与导轨构成一个闭合回路,当其中一棒在外力作用下获得一定速度时必然在磁场中切割磁感线,在该闭合电路中形成一定的感应电流;另一根导体棒在磁场中通过时在安培力的作用下开始运动,一旦运动起来也将切割磁感线产生一定的感应电动势,对原来电流的变化起阻碍作用.2.方法技巧解决此类问题时通常将两棒视为一个整体,于是相互作用的安培力是系统的内力,这个变力将不影响整体的动量守恒.因此解题的突破口是巧妙选择系统,运用动量守恒(动量定理)和功能关系求解.(2017·湖南长沙四县三月模拟)足够长的平行金属轨道M、N,相距L=0.5 m,且水平放置;M、N左端与半径R=0.4 m的光滑竖直半圆轨道相连,与轨道始终垂直且接触良好的金属棒b和c可在轨道上无摩擦地滑动,两金属棒的质量m b=m c=0.1 kg,接入电路的有效电阻R b=R c=1 Ω,轨道的电阻不计.平行水平金属轨道M、N处于磁感应强度B=1 T的匀强磁场中,磁场方向与轨道平面垂直向上,光滑竖直半圆轨道在磁场外,如图3所示,若使b棒以初速度v0=10 m/s开始向左运动,运动过程中b、c不相撞,g取10 m/s2,求:(1)c棒的最大速度;(2)c棒达最大速度时,此棒产生的焦耳热;(3)若c棒达最大速度后沿半圆轨道上滑,金属棒c到达轨道最高点时对轨道的压力的大小.如图4所示,平行倾斜光滑导轨与足够长的平行水平光滑导轨平滑连接,导轨电阻不计.质量分别为m和12m的金属棒b和c静止放在水平导轨上,b、c两棒均与导轨垂直.图中de虚线往右有范围足够大、方向竖直向上的匀强磁场.质量为m的绝缘棒a垂直于倾斜导轨静止释放,释放位置与水平导轨的高度差为h.已知绝缘棒a滑到水平导轨上与金属棒b发生弹性正碰,金属棒b进入磁场后始终未与金属棒c发生碰撞.重力加速度为g.求:(1)绝缘棒a与金属棒b发生弹性正碰后分离时两棒的速度大小;(2)金属棒b进入磁场后,其加速度为其最大加速度的一半时的速度大小;(3)两金属棒b、c上最终产生的总焦耳热.如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为L的区域内,现有一个边长为a(a﹤L)的正方形闭合线圈以初速度v0垂直磁场边界滑过磁场后,速度为v(v﹤v0),那么线圈()A完全进入磁场中时的速度大于(v0+v)/2B完全进入磁场中时的速度等于(v0+v)/2C完全进入磁场中时的速度小于(v0+v)/2D以上情况均有可能如图所示,在水平面上有两条导电导轨MN、PQ,导轨间距为d,匀强磁场垂直于导轨所在的平面向里,磁感应强度的大小为B ,两根完全相同的金属杆1、2间隔一定的距离摆开放在导轨上,且与导轨垂直。
08讲 动量与动量守恒定律在电磁感应中的应用解析版
2022-2023高考物理二轮复习(新高考)08讲动量与动量守恒定律在电磁感应中的应用●动量与动量守恒定律在电磁感应中的应用的思维导图●重难点突破一.动量定理在电磁感应现象中的应用:导体棒在感应电流所引起的安培力作用下运动时,当题目中涉及速度v、电荷量q、运动时间t、运动位移x时常用动量定理求解.二.动量守恒定律在电磁感应中的应用:在双金属棒切割磁感线的系统中,双金属棒和导轨构成闭合回路,安培力充当系统内力,如果它们不受摩擦力,且受到的安培力的合力为0时,满足动量守恒,运用动量守恒定律解题比较方便.●考点应用,质量为m,电阻不计,匀强1.水平放置的平行光滑导轨,间距为L,左侧接有电阻R,导体棒初速度为v磁场的磁感应强度为B,导轨足够长且电阻不计,从开始运动至停下来导体棒或金属框在感应电流所引起的安培力作用下做非匀变速直线运动时,常用的计算:-B I L Δt =0-mv 0,q =I Δt ,q =mv 0BL -B 2L 2v R Δt =0-mv 0,x =v Δt =mv 0R B 2L2例1:如图所示,固定在同一水平面内的两根平行长直金属导轨的间距为d ,其右端接有阻值为R 的电阻,整个装置处在竖直向上、磁感应强度大小为B 的匀强磁场中。
一质量为m (质量分布均匀)的导体杆ab 垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为μ。
现杆在水平向左、垂直于杆的恒力F 作用下从静止开始沿导轨运动距离L 时,速度恰好达到最大(运动过程中杆始终与导轨保持垂直)。
设杆接入电路的电阻为r ,导轨电阻不计,重力加速度大小为g ,则此过程错误的是()A .杆的速度最大值为22()F mg RB d μ-B .流过电阻R 的电荷量为BdLR r+C .从静止到速度恰好达到最大经历的时间2222()()()m R r B d L t B d F mg R r μ+=+-+D .恒力F 做的功与安培力做的功之和大于杆动能的变化量【答案】A【详解】A .当杆的速度达到最大时,安培力为22=B d v F R r +安此时杆受力平衡,则有F-μmg-F 安=0解得22()()F mg R r v B d μ-+=A 错误,符合题意;B .流过电阻R 的电荷量为BdLq It R r R r∆Φ===++B 正确,不符合题意;C .根据动量定理有()F mg t BIt mv μ--=,q It=结合上述解得2222()()()mg R r B d L t B d F mg R r μ+=+-+C 正确,不符合题意;D .对于杆从静止到速度达到最大的过程,根据动能定理,恒力F 、安培力、摩擦力做功的代数和等于杆动能的变化量,由于摩擦力做负功,所以恒力F 、安培力做功的代数和大于杆动能的变化量,D 正确,不符合题意。
(完整版)动量守恒定律模块知识点总结
动量守恒定律模块知识点总结1.定律内容:相互作用的几个物体组成的系统,如果不受外力作用,或者它们受到的外力之和为零,则系统的总动量保持不变。
2.一般数学表达式:''11221122m v m v m v m v +=+3.动量守恒定律的适用条件 :①系统不受外力或受到的外力之和为零(∑F 合=0); ②系统所受的外力远小于内力(F 外F 内),则系统动量近似守恒;=③系统某一方向不受外力作用或所受外力之和为零,则系统在该方向上动量守恒(分方向动量守恒)4.动量恒定律的五个特性①系统性:应用动量守恒定律时,应明确研究对象是一个至少由两个相互作用的物体组成的系统,同时应确保整个系统的初、末状态的质量相等②矢量性:系统在相互作用前后,各物体动量的矢量和保持不变.当各速度在同一直线上时,应选定正方向,将矢量运算简化为代数运算③同时性:应是作用前同一时刻的速度,应是作用后同—时刻的速度12,v v ''12,v v ④相对性:列动量守恒的方程时,所有动量都必须相对同一惯性参考系,通常选取地球作参考系⑤普适性:它不但适用于宏观低速运动的物体,而且还适用于微观高速运动的粒子.它与牛顿运动定律相比,适用范围要广泛得多,又因动量守恒定律不考虑物体间的作用细节,在解决问题上比牛顿运动定律更简捷例题.1.质量为m 的人随平板车以速度V 在平直跑道上匀速前进,不考虑摩擦阻力,当此人相对于车竖直跳起至落回原起跳位置的过程中,平板车的速度 ( A ) A .保持不变 B .变大 C .变小 D .先变大后变小 E .先变小后变大2.两名质量相等的滑冰人甲和乙都静止在光滑的水平冰面上.现在其中一人向另一人抛出一个篮球,另一人接球后再抛回.如此反复进行几次后,甲和乙最后的速率关系是 ( B ). A .若甲先抛球,则一定是V 甲>V 乙 B .若乙最后接球,则一定是V 甲>V 乙C .只有甲先抛球,乙最后接球,才有V 甲>V 乙D .无论怎样抛球和接球,都是V 甲>V 乙3.一小型宇宙飞船在高空绕地球做匀速圆周运动如果飞船沿其速度相反的方向弹射出一个质量较大的物体,则下列说法中正确的是( CD ). A .物体与飞船都可按原轨道运行B .物体与飞船都不可能按原轨道运行C .物体运行的轨道半径无论怎样变化,飞船运行的轨道半径一定增加D .物体可能沿地球半径方向竖直下落4.在质量为M 的小车中挂有一单摆,摆球的质量为m 。
新高考下动量、动量守恒定律在“电磁感应”中的应用
新高考下动量、动量守恒定律在“电磁感应”中的应用引言:电磁感应是物理学中重要的概念之一,涉及到动量和动量守恒定律的应用。
在新高考的物理考试中,动量和动量守恒定律的运用在解题过程中显得尤为重要。
本文将重点探讨动量和动量守恒定律在“电磁感应”中的应用,通过实例分析具体案例,帮助读者更好地理解和掌握相关知识。
一、电磁感应的基本原理1.电磁感应的概念电磁感应是指磁场相对运动产生电场,或者电场相对运动产生磁场的现象。
电磁感应是电动势和电流产生的基础,也是电磁感应定律的基础。
2.法拉第电磁感应定律法拉第电磁感应定律表明,在导线中出现磁通量的变化时,将会诱导出产生的电动势。
即:ε = -dΦ/dt其中,ε表示产生的感应电动势,Φ表示磁通量,t表示时间。
二、动量和动量守恒定律在电磁感应中的应用1.动量的概念动量是物体运动的物理量,它等于物体的质量乘以速度。
在电磁感应中,动量与产生的电动势和磁通量的变化有着密切的关系。
2.动量守恒定律在电磁感应中的应用动量守恒定律是指在闭合系统中,系统的总动量保持不变。
这一定律在电磁感应中有着重要的应用。
例如,在变压器的工作过程中,通过电磁感应产生的电动势使得电流变化,而电流的变化又产生磁场的变化,最终会导致动量的变化。
根据动量守恒定律,系统的总动量始终保持不变。
具体应用案例:假设在一个闭合回路中,有一匀强磁场B。
开始时,闭合回路中没有电流,磁场作用在回路上,这时由于运动的原因(例如运动的金属杆较彼处在一个大的强磁场区域)而产生的感应电动势,从而电流可以在回路中开始流动。
根据动量守恒定律,电流的产生导致磁场中的能量转化为电场中的能量,并且导致产生的电磁场中的能量。
引入动量守恒定律,可以描述上述过程中的动量变化。
在开始时,闭合回路中的动量为零,由于磁场作用,金属杆开始运动,动量开始发生变化。
随着动量的变化,电动势产生,从而电流开始流动。
通过运用动量守恒定律,我们可以定量描述磁场能量和电场能量之间的转化过程。
动量守恒角动量守恒机械能守恒三者之间的关系
动量守恒、角动量守恒和机械能守恒三者之间的关系概述在物理学中,动量、角动量和机械能是三个重要的物理量,它们分别描述了物体的运动状态、旋转状态和能量状态。
这三个物理量都有一个共同的特点,就是在一定的条件下,它们都是守恒的,即不随时间变化。
这些条件通常是指系统不受外力或外力矩的作用,或者外力或外力矩对系统做的功或做的角功为零。
这些条件也可以称为系统是孤立的或封闭的。
动量守恒、角动量守恒和机械能守恒是物理学中最基本和最普遍的定律之一,它们反映了自然界中存在的一种对称性和不变性。
这些定律可以用来分析和解决许多物理问题,例如碰撞、转动、振动、轨道运动等。
在这篇文章中,我们将介绍这三个定律的含义、推导和应用,并探讨它们之间的关系。
动量守恒定义动量是一个矢量物理量,表示物体运动状态的大小和方向。
动量的定义公式为:→p=m→v其中,→p是动量,m是质量,→v是速度。
根据定义,可以看出动量与质量和速度都有关,如果物体的质量或速度发生变化,那么动量也会发生变化。
动量守恒定律是指,在一个孤立系统中,系统内各个物体之间相互作用时,系统总动量不随时间变化,即:→P=n∑i=1→p i=常数其中,→P是系统总动量,→p i是第i个物体的动量,n是系统内物体的个数。
根据定义,可以看出动量守恒定律要求系统内没有外力作用,或者外力对系统做的功为零。
推导动量守恒定律可以从牛顿第二定律推导出来。
牛顿第二定律是指,在一个惯性参考系中,物体所受合外力与其质量乘以加速度成正比,即:→F=m→a其中,→F是合外力,→a是加速度。
根据定义,可以看出合外力与加速度都是矢量物理量,方向相同。
对于一个孤立系统中的任意两个物体A和B,根据牛顿第三定律(作用力与反作用力大小相等、方向相反),我们有:→FAB=−→F BA其中,→F AB是A对B的作用力,→F BA是B对A的反作用力。
由于系统内没有其他外力作用,所以这两个力就是系统内各个物体所受的合外力。
高中物理专题复习 动量及动量守恒定律
高中物理专题复习动量及动量守恒定律一、动量守恒定律的应用1.碰撞两个物体在极短时间内发生相互作用,这种情况称为碰撞。
由于作用时间极短,一般都满足内力远大于外力,所以可以认为系统的动量守恒。
碰撞又分弹性碰撞、非弹性碰撞、完全非弹性碰撞三种。
仔细分析一下碰撞的全过程:设光滑水平面上,质量为m 1的物体A 以速度v 1向质量为m 2的静止物体B 运动,B 的左端连有轻弹簧。
在Ⅰ位置A 、B 刚好接触,弹簧开始被压缩,A 开始减速,B 开始加速;到Ⅱ位置A 、B 速度刚好相等(设为v ),弹簧被压缩到最短;再往后A 、B 开始远离,弹簧开始恢复原长,到Ⅲ位置弹簧刚好为原长,A 、B 分开,这时A 、B 的速度分别为21v v ''和。
全过程系统动量一定是守恒的;而机械能是否守恒就要看弹簧的弹性如何了。
⑴弹簧是完全弹性的。
Ⅰ→Ⅱ系统动能减少全部转化为弹性势能,Ⅱ状态系统动能最小而弹性势能最大;Ⅱ→Ⅲ弹性势能减少全部转化为动能;因此Ⅰ、Ⅲ状态系统动能相等。
这种碰撞叫做弹性碰撞。
由动量守恒和能量守恒可以证明A 、B 的最终速度分别为:121121212112,v m m m v v m m m m v +='+-='。
⑵弹簧不是完全弹性的。
Ⅰ→Ⅱ系统动能减少,一部分转化为弹性势能,一部分转化为内能,Ⅱ状态系统动能仍和⑴相同,弹性势能仍最大,但比⑴小;Ⅱ→Ⅲ弹性势能减少,部分转化为动能,部分转化为内能;因为全过程系统动能有损失(一部分动能转化为内能)。
这种碰撞叫非弹性碰撞。
⑶弹簧完全没有弹性。
Ⅰ→Ⅱ系统动能减少全部转化为内能,Ⅱ状态系统动能仍和⑴相同,但没有弹性势能;由于没有弹性,A 、B 不再分开,而是共同运动,不再有Ⅱ→Ⅲ过程。
这种碰撞叫完全非弹性碰撞。
可以证明,A 、B 最终的共同速度为121121v m m m v v +='='。
在完全非弹性碰撞过程中,系统的动能损失最大,为:()()21212122121122121m m v m m v m m v m E k +='+-=∆。