2017年高考新课标3卷文科数学试题(解析版)
2017年数学真题及解析_2017年全国统一高考数学试卷(文科)(新课标ⅲ)
2017年全国统一高考数学试卷(文科)(新课标Ⅲ)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为()A.1 B.2 C.3 D.42.(5分)复平面内表示复数z=i(﹣2+i)的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.(5分)已知sinα﹣cosα=,则sin2α=()A.﹣ B.﹣ C.D.5.(5分)设x,y满足约束条件则z=x﹣y的取值范围是()A.[﹣3,0]B.[﹣3,2]C.[0,2]D.[0,3]6.(5分)函数f(x)=sin(x+)+cos(x﹣)的最大值为()A.B.1 C.D.7.(5分)函数y=1+x+的部分图象大致为()A. B.C.D.8.(5分)执行如图的程序框图,为使输出S的值小于91,则输入的正整数N 的最小值为()A.5 B.4 C.3 D.29.(5分)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB. C.D.10.(5分)在正方体ABCD﹣A1B1C1D1中,E为棱CD的中点,则()A.A1E⊥DC1B.A1E⊥BD C.A1E⊥BC1D.A1E⊥AC11.(5分)已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,则C的离心率为()A.B.C.D.12.(5分)已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a=()A.﹣ B.C.D.1二、填空题13.(5分)已知向量=(﹣2,3),=(3,m),且,则m=.14.(5分)双曲线(a>0)的一条渐近线方程为y=x,则a=.15.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知C=60°,b=,c=3,则A=.16.(5分)设函数f(x)=,则满足f(x)+f(x﹣)>1的x的取值范围是.三、解答题17.(12分)设数列{a n}满足a1+3a2+…+(2n﹣1)a n=2n.(1)求{a n}的通项公式;(2)求数列{}的前n项和.18.(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.19.(12分)如图四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD,若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.20.(12分)在直角坐标系xOy中,曲线y=x2+mx﹣2与x轴交于A、B两点,点C的坐标为(0,1),当m变化时,解答下列问题:(1)能否出现AC⊥BC的情况?说明理由;(2)证明过A、B、C三点的圆在y轴上截得的弦长为定值.21.(12分)已知函数f(x)=lnx+ax2+(2a+1)x.(1)讨论f(x)的单调性;(2)当a<0时,证明f(x)≤﹣﹣2.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,直线l1的参数方程为,(t为参数),直线l2的参数方程为,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)﹣=0,M为l3与C的交点,求M的极径.[选修4-5:不等式选讲]23.已知函数f(x)=|x+1|﹣|x﹣2|.(1)求不等式f(x)≥1的解集;(2)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范围.2017年全国统一高考数学试卷(文科)(新课标Ⅲ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分。
2017年新课标3文科数学含答案
2017年普通高等学校招生全国统一考试(新课标Ⅲ)文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={1,2,3,4},B={2,4,6,8},则A B 中元素的个数为⋂A .1B .2C .3D .42.复平面内表示复数z=i(–2+i)的点位于A .第一象限B .第二象限C .第三象限D .第四象限3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A .月接待游客逐月增加B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.已知,则=4sin cos 3αα-=sin 2αA .B .C .D .79-29-29795.设x ,y 满足约束条件,则z =x -y 的取值范围是326000x y x y +-≤⎧⎪≥⎨⎪≥⎩A .[–3,0]B .[–3,2]C .[0,2]D .[0,3]6.函数f (x )=sin(x +)+cos(x −)的最大值为153π6πA .B .1C .D .6535157.函数y =1+x +的部分图像大致为2sinxx A .B .C .D .8.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .29.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A .B .C .D .π3π4π2π410.在正方体中,E 为棱CD 的中点,则1111ABCD A B C D -A .B .C .D .11A E DC ⊥1A E BD⊥11A E BC ⊥1A E AC⊥11.已知椭圆C :,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为22221x y a b+=直径的圆与直线相切,则C 的离心率为20bx ayab -+=A BCD .1312.已知函数有唯一零点,则a =211()2()x x f x x x a ee --+=-++A .B .C .D .112-1312二、填空题:本题共4小题,每小题5分,共20分。
2017年高考新课标3卷文科数学试题(解析版)
****
----
2017年普通高等学校招生全国统一考试
文科数学
(适用地区:云南、贵州、广西、四川)
第Ⅰ卷(选择题共60分)
一、选择题(本大题共12 个小题,每小题 5 分,共60 分.在每小题给出的四个选项中,只有一个选项
是符合题目要求的.)
1.已知集合A={1 ,2,3,4} ,B={2 ,4,6,8} ,则A∩B 中元素的个数为( )
A .1 B.2 C.3 D.4
[解析] 由题意可得A∩B={2 ,4} ,故选B.
答案: B
2.复平面内表示复数z=i(–2+i)的点位于( )
A .第一象限B.第二象限C.第三象限D.第四象限
[解析] 由题意z=-1-2i,故选B.
答案: B
3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014 年 1 月至2016 年12 月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.
根据该折线图,下列结论错误的是( )
A .月接待游客逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8 月
D.各年 1 月至 6 月的月接待游客量相对于7 月至12 月,波动性更小,变化比较平稳
[解析] 由折线图,7 月份后月接待游客量减少, A 错误,故选A.
答案: A
- 1 -。
2017年高考新课标Ⅲ卷文数试题解析(解析版)
绝密★启用前2017年普通高等学校招生全国统一考试文科数学注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={1,2,3,4},B ={2,4,6,8},则A B I 中元素的个数为 A .1B .2C .3D .4【答案】B【解析】由题意可得{}2,4A B =I ,故A B I 中元素的个数为2,所以选B. 【考点】集合运算【名师点睛】集合基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提. (2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决. (3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图. 2.复平面内表示复数i(2i)z =-+的点位于 A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】i(2i)12i z =-+=--,则表示复数i(2i)z =-+的点位于第三象限. 所以选C. 【考点】复数运算【名师点睛】对于复数的四则运算,首先要切实掌握其运算技巧和常规思路,如(i)(i)()()i(,,,)a b c d ac bd ad bc a b c d ++=-++∈R .其次要熟悉复数的相关基本概念,如复数i(,)a b a b +∈R 的实部为a 、虚部为b 、对应的点为(,)a b 、共轭复数为i.a b -3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳【答案】A【考点】折线图【名师点睛】用样本估计总体时统计图表主要有:1.频率分布直方图,特点:频率分布直方图中各小长方形的面积等于对应区间的频率,所有小长方形的面积之和为1; 学*科网2.频率分布折线图,连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.3. 茎叶图,对于统计图表类题目,最重要的是认真观察图表,从中提炼出有用的信息和数据.4.已知4sin cos3αα-=,则sin2α=A.79-B.29-C.29D.79【答案】A【解析】()2sin cos17 sin22sin cos19ααααα--===--.所以选A.【考点】二倍角的正弦公式【名师点睛】应用三角公式解决问题的三个变换角度:(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等. (3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用或变用公式”、“通分或约分”、“分解与组合”、“配方与平方”等.5.设x,y满足约束条件3260x yxy+-≤⎧⎪≥⎨⎪≥⎩,则z x y=-的取值范围是A.[–3,0] B.[–3,2] C.[0,2] D.[0,3]【答案】B【考点】线性规划【名师点睛】线性规划的实质是把代数问题几何化,即运用数形结合的思想解题.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点处或边界上取得.6.函数1ππ()sin()cos()536f x x x=++-的最大值为A.65B.1 C.35D.15【答案】A【考点】三角函数的性质【名师点睛】三角恒等变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为sin()y A x B ωϕ=++的形式,再借助三角函数的图像研究性质,解题时注意观察角、函数名、结构等特征. 7.函数2sin 1xy x x =++的部分图像大致为【答案】D【解析】当1x =时,()111sin12sin12f =++=+>,故排除A,C ;当x →+∞时,1y x →+,故排除B,满足条件的只有D,故选D.【考点】函数图像【名师点睛】(1)运用函数性质研究函数图像时,先要正确理解和把握函数相关性质本身的含义及其应用方向.(2)在运用函数性质特别是奇偶性、周期、对称性、单调性、最值、零点时,要注意用好其与条件的相互关系,结合特征进行等价转化进行研究.如奇偶性可实现自变量正负转化,周期可实现自变量“”,即将函数值的大小关系转化为自变量的大小关系.大小转化,单调性可实现去f8.执行下面的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为A.5 B.4 C.3 D.2【答案】D【考点】程序框图【名师点睛】对算法与程序框图的考查,侧重于对程序框图中循环结构的考查.先明晰算法及程序框图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环的起始条件、循环次数、循环的终止条件,更要通过循环规律,明确程序框图研究的数学问题,是求和还是求项.9.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π4【答案】B【解析】绘制圆柱的轴截面如图所示,由题意可得:11,2AC AB ==, 结合勾股定理,底面半径2213122r ⎛⎫=-= ⎪⎝⎭,由圆柱的体积公式,可得圆柱的体积是2233ππ1π24V r h ⎛⎫==⨯⨯= ⎪ ⎪,故选B.【考点】圆柱的体积公式【名师点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.10.在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥【答案】C【解析】根据三垂线定理的逆定理,可知平面内的线垂直于平面的斜线,则也垂直于斜线在平面内的射影,A.若11A E DC ⊥,那么11D E DC ⊥,很显然不成立;B.若1A E BD ⊥,那么BD AE ⊥,显然不成立;C.若11A E BC ⊥,那么11BC B C ⊥,成立,反过来11BC B C ⊥时,也能推出11BC A E ⊥,所以C 成立;D.若1A E AC ⊥,则AE AC ⊥,显然不成立,故选C. 【考点】线线位置关系【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型: (1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.11.已知椭圆C :22220)1(x y a ba b +=>>的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .63B .33C .23D .13【答案】A【考点】椭圆的离心率【名师点睛】解决椭圆和双曲线的离心率的求值及取值范围问题,其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等. 12.已知函数211()2(ee )x xf x x x a --+=-++有唯一零点,则a =A .12-B .13C .12D .1【答案】C【解析】函数()f x 的零点满足()2112e e x x x x a --+-=-+,设()11eex x g x --+=+,则()()21111111e 1eeee e x x x x x x g x ---+----'=-=-=, 当()0g x '=时,1x =;当1x <时,()0g x '<,函数()g x 单调递减; 当1x >时,()0g x '>,函数()g x 单调递增, 当1x =时,函数()g x 取得最小值,为()12g =.设()22h x x x =-,当1x =时,函数()h x 取得最小值,为1-,若0a ->,函数()h x 与函数()ag x -没有交点;若0a -<,当()()11ag h -=时,函数()h x 和()ag x -有一个交点, 即21a -⨯=-,解得12a =.故选C. 【考点】函数的零点【名师点睛】利用函数零点的情况求参数的值或取值范围的方法: (1)利用零点存在性定理构建不等式求解. (2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两个熟悉的函数图像的上、下关系问题,从而构建不等式求解. 二、填空题:本题共4小题,每小题5分,共20分。
2017年新课标全国卷3高考文科数学试题及答案
–.学习资料收集于网络,仅供参考绝密★启用前2017年普通高等学校招生全国统一考试(新课标Ⅲ)文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={1,2,3,4},B={2,4,6,8},则A⋂B中元素的个数为A.1B.2C.3D.42.复平面内表示复数z=i(2+i)的点位于A.第一象限B.第二象限C.第三象限D.第四象限3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图根据该折线图,下列结论错误的是A.月接待游客逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳44.已知sinα-cosα=,则sin2α=3A.-79C.29D.7x≥0学习资料收集于网络,仅供参考9B.-29⎧3x+2y-6≤0⎪5.设x,y满足约束条件⎨,则z=x-y的取值范围是⎪⎩y≥0A.[–3,0]B.[–3,2]C.[0,2]D.[0,3]1ππ6.函数f(x)=sin(x+)+cos(x−)的最大值为5366A.B.15sin x7.函数y=1+x+的部分图像大致为x2C.35D.15A.B.C.D.8.执行下面的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为A.5B.4C.3D.2A . πB . 3π= 1 ,(a >b >0)的左、右顶点分别为 A ,A ,且以线段 A A 为直3D . 12B . 1B b c b c 9.已知圆柱的高为 1,它的两个底面的圆周在直径为 2 的同一个球的球面上,则该圆柱的体积为4 C . π 2 D .π 410.在正方体 ABCD - A B C D 中,E 为棱 CD 的中点,则1 1 1 1A . A E ⊥DC11B . A E ⊥BDC . A E ⊥BC1 1 1D . AE ⊥AC111.已知椭圆 C : x 2 y 2+a 2b 21 2 1 2径的圆与直线 b x - ay + 2ab = 0 相切,则 C 的离心率为A .63B .33C .2312.已知函数 f ( x ) = x 2 - 2 x + a(e x -1 + e - x +1 ) 有唯一零点,则 a =A . -13C .12 D .1二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
2017高考新课标全国3卷文科数学
2017年一般高等学校招生全国统一考试(新课标Ⅲ)文科数学一、选择题:本大题共12小题,每题5分,共60分。
在每题给出的四个选项中,只有一项为哪一项符合题目要求的。
1.已知集合A={1,2,3,4},B={2,4,6,8},那么A⋂B中元素的个数为A.1 B.2 C.3 D.42.复平面内表示复数z=i(–2+i)的点位于A.第一象限B.第二象限C.第三象限D.第四象限3.某城市为了解游客人数的转变规律,提高旅行效劳质量,搜集并整理了2021年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.依照该折线图,以下结论错误的选项是A.月接待游客逐月增加B.年接待游客量逐年增加C.各年的月接待游客量顶峰期大致在7,8月D.各年1月至6月的月接待游客量相关于7月至12月,波动性更小,转变比较平稳4.已知4sin cos3αα-=,那么sin2α=A.79-B.29-C.29D.795.设x,y知足约束条件3260x yxy+-≤⎧⎪≥⎨⎪≥⎩,那么z=x-y的取值范围是A .[–3,0]B .[–3,2]C .[0,2]D .[0,3]6.函数f (x )=15sin(x +3π)+cos(x −6π)的最大值为A .65B .1C .35D .157.函数y =1+x +2sin xx的部份图像大致为A .B .C .D .8.执行下面的程序框图,为使输出S 的值小于91,那么输入的正整数N 的最小值为A .5B .4C .3D .29.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,那么该圆柱的体积为A .πB .3π4C .π2D .π410.在正方体1111ABCD A B C D -中,E 为棱CD 的中点,那么A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC⊥11.已知椭圆C :22221x y a b+=,(a >b >0)的左、右极点别离为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,那么C 的离心率为AB C .3D .1312.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,那么a =A .12-B .13C .12D .1二、填空题:此题共4小题,每题5分,共20分。
2017全国卷3文科数学试题和参考答案解析
绝密★启封并使用完毕前试题类型:新课标Ⅲ2017年普通高等学校招生全国统一考试文科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共24题,共150分,共4页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑字迹的签字笔书写,字体工整,笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破,不准使用涂改液、修正液、刮纸刀。
第I 卷一、单选题 (本大题共12小题,每小题5分,共60分。
) 1. 已知集合{}{}1,2,3,4,2,4,6,8A B ==,则AB 中的元素的个数为( )A. 1B. 2C. 3D. 4 2. 复平面内表示复数()2z i i =-+的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( )A. 月接待游客量逐月增加B. 年接待游客量逐年增加C. 各年的月接待游客量高峰期大致在7,8月D. 各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 4.已知4sin cos 3αα-=,则sin 2α=( ) A. 79- B. 29- C. 29 D. 795. 设,x y 满足约束条件326000x y x y +-≤⎧⎪≥⎨⎪≥⎩则z x y =-的取值范围是( )A. []3,0-B. []3,2-C. []0,2D. []0,36. 函数()1sin cos 536f x x x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭的最大值为( )A.65 B. 1 C. 35 D. 157. 函数2sin 1xy x x =++的部分图像大致为( )8.执行右面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( )A. 5B. 4C. 3D. 29. 已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A. πB.34π C.2π D. 4π 10. 在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则( )A.11A E DC ⊥B. 1A E BD ⊥C. 11A E BC ⊥D. 1A E AC ⊥11. 已知椭圆()2222:10x y C a b a b+=>>的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )A .63 B . 33 C . 23D . 1312. 已知函数()()2112x x f x x x a e e --+=-++有唯一零点,则a =( )A . 12- B . 13 C . 12D . 1第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题、第(23)题为选考题,考生根据要求作答. 二、填空题 (本大题共4小题,每小题5分,共20分)13. 已知向量()2,3a =-,()3,b m =,且a b ⊥,则m =____。
2017高考全国3卷文科数学试题及标准答案
2017年普通高等学校招生全国统一考试(新课标Ⅲ)文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={1,2,3,4},B={2,4,6,8},则A⋂B中元素的个数为A.1ﻩﻩﻩﻩB.2ﻩﻩﻩC.3 ﻩﻩﻩD.42.复平面内表示复数z=i(–2+i)的点位于A.第一象限ﻩB.第二象限ﻩﻩC.第三象限ﻩD.第四象限3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.已知4sin cos3αα-=,则sin2α=A.79-ﻩﻩﻩ B.29-ﻩﻩﻩC.29ﻩﻩD.795.设x,y满足约束条件3260x yxy+-≤⎧⎪≥⎨⎪≥⎩,则z=x-y的取值范围是A.[–3,0]ﻩﻩﻩB.[–3,2]ﻩﻩ C.[0,2] D.[0,3]6.函数f(x)=15sin(x+3π)+cos(x−6π)的最大值为A.65ﻩﻩB.1 ﻩﻩC.35ﻩﻩﻩD.157.函数y=1+x+2sin xx的部分图像大致为A.ﻩB.C.ﻩﻩD.8.执行下面的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为A.5 ﻩﻩﻩB.4ﻩﻩﻩ C.3ﻩﻩD.2。
2017年高考真题全国新课标三卷文科数学(解析版)
2017年高考真题全国新课标三卷文科数学(解析版)已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为几个?答案:2解析:A∩B={2,4},共2个元素。
选择B选项。
复平面内表示复数z=i(–2+i)的点位于哪个象限?答案:第二象限解析:z=-i(2-i)=-2i+i^2=-2i-1.所以z在第二象限。
选择B选项。
根据该折线图,下列结论错误的是?A。
月接待游客逐月增加B。
年接待游客量逐年增加C。
各年的月接待游客量高峰期大致在7,8月D。
各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳答案:A解析:由折线图,7月份后月接待游客量减少,所以A错误。
选择A选项。
已知sinα-cosα=4/9,则sin2α=?答案:-2/17解析:sin2α=2sinαcosα=2(sinα-cosα)cosα=2(4/9)cosα=-8/81.所以sin2α=-2/17.选择A选项。
设x,y满足约束条件{3x+2y-6≤0,x≥0,y≥0},则z=x-y 的取值范围是?A。
[-3,0]B。
[-3,2]C。
[0,2]D。
[0,3]答案:B解析:绘制不等式组表示的可行域,结合目标函数的几何意义可得函数在点A(0,3)处取得最小值z=-3,在点B(2,0)处取得最大值z=2.所以z的取值范围是[-3,2]。
选择B选项。
函数f(x)=sin(x+π/6)+cos(x-π/3)的最大值为多少?A。
5/6B。
1C。
1/5D。
5答案:A解析:由诱导公式可得:cos(x-π/3)=sin(π/2-(x-π/3))=sin(x-π/6),所以f(x)=sin(x+π/6)+sin(x-π/6)=2cos(π/6)sinx=√3sinx。
∵|sinx|≤1,∴f(x)的最大值为√3,即5/6.选择A选项。
函数y=1+x+sinx?(此处有格式错误,请删除)答案:无法判断解析:此题缺少函数的定义域和范围,无法判断。
2017年高考新课标Ⅲ卷文科数学试题(解析版)
绝密★启用前2017年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={1,2,3,4},B ={2,4,6,8},则A B 中元素的个数为A .1B .2C .3D .4【答案】B【解析】由题意可得:{}2,4AB = .本题选择B 选项.2.复平面内表示复数i(2i)z =-+的点位于 A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】由题意:i(2i)12i z =-+=-- .本题选择C 选项.3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳【答案】A【解析】由折线图,可知每年7月到8月折线图呈下降趋势,月接待游客量减少,A错误.本题选择A选项.4.已知4sin cos3αα-=,则sin2α=A.79-B.29-C.29D.79【答案】A【解析】()2sin cos17 sin22sin cos19ααααα--===--.本题选择A选项.5.设x,y满足约束条件3260x yxy+-≤⎧⎪≥⎨⎪≥⎩,则z x y=-的取值范围是A.[–3,0] B.[–3,2] C.[0,2] D.[0,3] 【答案】B6.函数1ππ()sin()cos()536f x x x=++-的最大值为A .65B .1C .35D .15【答案】A7.函数2sin 1xy x x =++的部分图像大致为【答案】D【解析】当1x =时,()111sin12sin12f =++=+>,故排除A,C ;当x →+∞时,1y x →+,故排除B,满足条件的只有D,故选D.8.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A.5 B.4 C.3 D.2【答案】D9.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A.πB.3π4C.π2D.π4【答案】B【解析】绘制圆柱的轴截面如图所示,由题意可得:11,2 AC AB==,结合勾股定理,底面半径r==由圆柱的体积公式,可得圆柱的体积是223ππ1π4V r h==⨯⨯=⎝⎭,故选B.10.在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥【答案】C11.已知椭圆C :22221x y a b+=(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A B C D .13【答案】A【解析】以线段12A A 为直径的圆的圆心为坐标原点()0,0,半径为r a =,圆的方程为222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离等于半径,即d a ==,整理可得223a b =,即()2223,a a c =-即2223a c =,从而22223c e a ==,则椭圆的离心率3c e a ===,故选A.12.已知函数211()2(ee )x xf x x x a --+=-++有唯一零点,则a =A .12-B .13C .12D .1【答案】C二、填空题:本题共4小题,每小题5分,共20分。
2017年高考全国Ⅲ卷文数试题(解析版)
试卷点评
命题特点 该口古7 新课标 导导导 高考数学试卷,试卷内容 体 新课程理念,贴 中学数学教学,坚持
对基础知识 基本技能 及数学思想方法的考查 在保持稳定的基础 ,进行适度的改革和 创新 该口古7 稳 的 古 的数学试卷 稳中求进 试卷考查
试卷结构 稳, 时题目 和 无偏怪题,难度控制理想 体知识点 变化 回 教材,注重基础 该口古7
1.已知集合 A={1,2,3,4},B={2,4,6,8},则 A I B 中元素的个数 A.1 答案 B B .2 C .3 D.4
解析 由题意可得 考点 集合 算
A I B = {2, 4} , A I B 中元素的个数
该,所 选 B.
师点睛 集合的基本 算的关注点 (古)看元素 成.集合是由元素 成的,从研究集合中元素的构成入手是解决集合 算问题 的前提. (该) 些集合是可 化简的,先化简再研究 关系并进行 算,可使问题简单明了,易于解 决. (详)注意数形结合思想的 用,常用的数形结合形式 数轴 坐标系和 有enn 图. 2.复 面内表示复数 z = i( −2 + i) 的点 于 A.第一象限 答案 叶 解析 由题意 考点 复数 算 师点睛 首先对于复数的四则 算,要 实掌握 算技 和常规思路,如 次要熟悉复数相关基本概念, 对 点 B.第 象限 C.第 象限 D.第四象限
z = −1 − 2i ,在第 象限. 所 选 叶.
(a + bi )(c + di ) = (ac − bd ) + (ad + bc ) i , (a , b, c.d ∈ R) .
如复数 a + bi (a , b ∈ R ) 的实部
a
虚部
b
2017年全国3卷文科数学试题(解析版)
17年全国3卷 文数一、选择题:1.已知集合A={1,2,3,4},B={2,4,6,8},则A ⋂B 中元素的个数为 A .1B .2C .3D .42.复平面内表示复数z=i(–2+i)的点位于 A .第一象限B .第二象限C .第三象限D .第四象限3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 4.已知4sin cos 3αα-=,则sin 2α= A .79-B .29-C .29D .795.设x ,y 满足约束条件326000x y x y +-≤⎧⎪≥⎨⎪≥⎩,则z =x -y 的取值范围是 A .[–3,0]B .[–3,2]C .[0,2]D .[0,3]6.函数f (x )=15sin(x +3π)+cos(x −6π)的最大值为A .65B .1C .35D .157.函数y =1+x +2sin xx 的部分图像大致为A .B .C .D .8.执行下面的程序框图,学@科网为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .29.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π410.在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥11.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A 6B 3C 2D .1312.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .1二、填空题:本题共4小题,每小题5分,共20分。
2017年高考新课标3卷文科数学试题(解析版)
2017年普通高等学校招生全国统一考试文科数学(适用地区:云南、贵州、广西、四川第I卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分•在每小题给出的四个选项中,只有一个选项是符合题目要求的.)1 •已知集合A= {1 , 2, 3, 4} , B= {2 , 4, 6, 8},则APB中元素的个数为()[解析]由题意可得A P B={2 , 4},故选B •答案:B2 .复平面内表示复数z= i(— + i)的点位于(A •第一象限B .第二象限C.第三象限 D •第四象限[解析]由题意z=— 1 —2i,故选B •答案:B3 •某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A •月接待游客逐月增加B .年接待游客量逐年增加C •各年的月接待游客量高峰期大致在7, 8月D •各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳[解析]由折线图,7月份后月接待游客量减少,A错误,故选A •答案:A月按㈱粘審豪(力•人)4.已知sin a—COS a = 3,贝y sin2 a=(答案:A答案:A满足条件的只有D,故选D .答案:D[解析]sin2 a= 2sin a cos a=2一97 -(sin a—cos of — 17,故选A .5.设x, y满足约束条件3X+ 2y—6 <0X>0 ,y >0则z= x —y的取值范围是(C. [0,2] [0,3][解析]绘制不等式组表示的可行域,结合目标函数的几何意义可得函数在点A(0, 3)处取得最小值z =0—3= — 3 .在点B(2, 0)处取得最大值z= 2—0= 2,故选A .答案:Br”n6 .函数f(x) = sin X+ 3 + cos X—的最大值为([解析]由诱导公式可得cos X—n=cos 2—nX+ 3. n=sin X+3,则f(x)= ;sin -,. n 6 nX+ 3 +叫+ 3 = 5sin X+ 3,函数的最大值为6,故选[解析]当x = 1 时,f(1) = 1+ 1 + sin 1 = 2+ sin1>2 ,故排除A , C,当X T +*时,y T1+ x,故排除B,7 .函数y =&执行下面的程序框图,为使输出S 的值小于91,则输入的正整数 N 的最小值为(答案:B10.在正方体 ABCD — A 1B 1C 1D 1中,E 为棱CD 的中点,贝U ( )A . A 1E 丄 DC 1B . A 1E 丄 BDC . A 1E 丄 BC 1D . A 1E 丄 AC[解析]根据三垂线逆定理,平面内的线垂直平面的斜线,那么也垂直斜线在平面内的射线. 对于A ,若A 1E 丄DC 1,那么D 1E 丄DC 1,很显然不成立;[解析]若N = 2,第一次进入循环,循环,此时1 W2成立, S = 100,100 “ M 一 10 一10,i = 2 W2成立;第二次进入 S = 100 — 10= 90, M = -Z-10= 1, i = 3W2不成立,10•••输出 S = 90<91成立,•输入的正整数 的最小值是2,故选D .答案:D9 .已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为3nA . nB .—4[解析]如果,画出圆柱的轴截AC = 1, AB =;, • r = BC = 23,宁,故选B . 4C . 3D . 2C .那么圆柱的体积是 V = n 2h = n对于B ,若A I E 丄BD ,那么BD 丄AE ,显然不成立;对于D ,若A i E 丄AC ,贝U AE 丄AC ,显然不成立,故选 C . 答案:C—ay + 2ab = 0相切,则 C 的离心率为()C. ~3[解析]以线段A i A 2为直径的圆是X 2+ y 2= a 2,直线bx — ay + 2ab = 0与圆相切,二圆心到直线的距离 d e =a 辱,故选A .i2.已知函数 f(x) = x 2— 2x + a(e x —i + e—x +i)有唯一零点,贝U a =( )ii iA . — 2B . 3C . 2D . i[解析]方法一:由条件,f(x) = x 2— 2x + a(e x —i + e — x + i),得:f(2 — x) = (2 — x)2 — 2(2 — x)+ a(e 2 —x — i+ e— (2—x)+ i)=x 2— 4x + 4— 4 + 2x + a(e i x + e x i ) =x 2— 2x + a(e x_ i + e—x + i)••• f(2 — x)= f(x),即乂= i 为f(x)的对称轴,由题意,f(x)有唯一零点, f(x)的零点只能为x = 1 , 即f(1) = 12 — 2 1 + a(e i —1 + e— i +i) = o ,解得 a = 2.———————i e 2(x —1) — i方法二:x 2— 2x =— a(e^i + ^^1),设 g(x) = e^1 + ^^1, g'x) = e^ 1 — ^^i = e^1— e —! = ------------------ x —,e e当g'x)= 0时,x = 1,当x<1时,g'x)<0,函数单调递减,当x>1时,g'x)>0,函数单调递增,当x = 1时, 函数取得最小值g(1) = 2,设h(x) = x 2— 2x ,当x = 1时,函数取得最小值—1;若—a>0,函数h(x)和ag(x)没有 1交点,当一a<0时,一ag(1) = h(1)时,此时函数h(x)和ag(x)有一个交点,即一a^=— 1 a = ?,故选C .答案:C第U 卷(非选择题共90分)本试卷包括必考题和选考题两部分.第 13题〜第21题为必考题,每个试题考生都必须作答.第22题〜第24题为选考题,考生根据要求作答.对于C ,若A I E 丄BC i ,那么BC i 丄B i C ,成立,反过来BC i 丄B i C 时,也能推出 BC i 丄A i E ,「. C 成立,11.已知椭圆 C :a 2+ £= 1(a>b>0)的左、右顶点分别为A i 、A 2,且以线段 A 1A 2为直径的圆与直线 bx2= a ,整理为 a 2= 3b 2,即卩 a 2= 3(a 2— c 2) 2a 2 = 3c 2,即 C 2= 2,a 2 +b 2 a 3答案:A二、填空题(本大题共4小题,每小题5分,共20分.)13. 已知向量"a = (—2, 3), lb = (3, m),且it 丄号,则m = ________________ . [解析]由题意可得一2>3+ 3m= 0,••• m = 2.答案:2x 2y2^314. 双曲线孑一= 1(a>0)的一条渐近线方程为y= 5X,则a = _________________ .[解析]由双曲线的标准方程可得渐近线方程为y=^x,结合题意可得a= 5.a答案:515. ____________________________________________________________________________________ △ ABC 的内角A, B, C 的对边分别为a, b, c.已知 C = 60° b=/6, c= 3,贝U A= ______________________ .远史厂[解析]由题意SinB= 孟,即sinB=b Sn C= 飞彳=乎,结合b<c可得B= 45°则A= 180。
(完整版)2017年新课标3文科数学含答案
2017年普通高等学校招生全国统一考试(新课标Ⅲ)文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={1,2,3,4},B={2,4,6,8},则A⋂B中元素的个数为A.1 B.2 C.3 D.42.复平面内表示复数z=i(–2+i)的点位于A.第一象限B.第二象限C.第三象限D.第四象限3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.已知4sin cos3αα-=,则sin2α=A .79-B .29-C .29D .795.设x ,y 满足约束条件326000x y x y +-≤⎧⎪≥⎨⎪≥⎩,则z =x -y 的取值范围是 A .[–3,0]B .[–3,2]C .[0,2]D .[0,3]6.函数f (x )=15sin(x +3π)+cos(x −6π)的最大值为A .65B .1C .35D .157.函数y =1+x +2sin xx的部分图像大致为A .B .C .D .8.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .29.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π410.在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥11.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为AB C D .1312.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .1二、填空题:本题共4小题,每小题5分,共20分。
2017年高考新课标3卷文科数学试题(解析版)
2017年普通高等学校招生全国统一考试文科数学(适用地区:云南、贵州、广西、四川)第Ⅰ卷(选择题共60分)一、选择题(本大题共12 个小题,每小题 5 分,共60 分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.)1.已知集合A={1 ,2,3,4} ,B={2 ,4,6,8} ,则A∩B 中元素的个数为( )A .1 B.2 C.3 D.4[解析] 由题意可得A∩B={2 ,4} ,故选B.答案:B2.复平面内表示复数z=i(–2+i)的点位于( )A .第一象限B.第二象限C.第三象限D.第四象限[解析] 由题意z=-1-2i,故选B.答案:B3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014 年1 月至2016 年12 月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( )A .月接待游客逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8 月D.各年 1 月至6 月的月接待游客量相对于7 月至12 月,波动性更小,变化比较平稳[解析] 由折线图,7 月份后月接待游客量减少, A 错误,故选A.答案:A- 1 -4,则s in2α=( ) 4.已知sinα-cosα=3A .-79B.-2929C.D.792-1(sinα-cosα)[解析] sin2α=2sinαcosα==-1 79,故选A.答案:A3x+2y-6≤0x≥0,则z=x-y 的取值范围是( )5.设x,y 满足约束条件y≥0A .[–3,0] B.[–3,2] C.[0,2] D.[0,3][解析] 绘制不等式组表示的可行域,结合目标函数的几何意义可得函数在点A(0,3) 处取得最小值z =0-3=-3.在点B(2,0) 处取得最大值z=2-0=2,故选A.答案:B6.函数 f (x)=sin x+π+cos x-3π的最大值为()665 A .35B.1 C.15D.[解析] 由诱导公式可得cos x-π=cos6ππ-x+2 3π=sin x+,31π则f(x)=sin x+5 3 +sin x+π 66 π=sin x+,函数的最大值为,故选A.3 5 3 5答案:A7.函数y=1+x+s in x2 的部分图像大致为( ) x[解析] 当x=1 时,f(1)=1+1+sin1=2+sin1>2,故排除A,C,当x→+∞时,y→1+x,故排除B,D.D,故选满足条件的只有答案:D- 2 -8.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N的最小值为( ) A .5 B.4 C.3 D.2[解析] 若N=2,第一次进入循环,1≤2成立,S=100,M =-10010=-10,i=2≤2成立;第二次进入循环,此时S=100-10=90,M=--10=1,i=3≤2不成立,∴输出S=90<91 成立,∴输入的正整数N 10的最小值是2,故选D.答案:D9.已知圆柱的高为1,它的两个底面的圆周在直径为 2 的同一个球的球面上,则该圆柱的体积为( )3πA .πB.4πC.2πD.4[解析] 如果,画出圆柱的轴截面12,∴r=BC=AC=1,AB=3 32h=π×,那么圆柱的体积是V=πr2 22×1=3π,故选B.4答案:B10.在正方体ABCD -A1B1C1D1 中,E 为棱C D 的中点,则( )A .A1E⊥DC1 B.A1E⊥BD C.A1E⊥BC1 D.A1E⊥AC[解析] 根据三垂线逆定理,平面内的线垂直平面的斜线,那么也垂直斜线在平面内的射线.- 3 -对于C,若A1E⊥BC1,那么BC1⊥B1C,成立,反过来BC1⊥B1C 时,也能推出BC1⊥A1E,∴C 成立,对于D,若A1E⊥AC,则AE⊥AC,显然不成立,故选C.答案:C11.已知椭圆C:2 2x y2+2=1( a>b>0)的左、右顶点分别为A1、A2,且以线段A1A2 为直径的圆与直线bx a b-ay+2ab=0 相切,则 C 的离心率为( )A .63B.33C.23D.132+y2=a2,直线bx-ay+2ab=0 与圆相切,∴圆心到直线的距离 d[解析] 以线段A1A2 为直径的圆是x=2ab=a,整理为a2=3b2,即a2=3(a2-c2) 2a2=3c2,即2=3b2,即a2=3(a2-c2) 2a2=3c2,即2+b2a2c 2 c,e==2=a 3 a6,故选 A .3答案:A2-2x+a(e x-1+e-x+112.已知函数f(x)=x )有唯一零点,则a=( )A .-12 B.1 13 C.2 D.12-2x+a(e x-1+e-x+1[解析] 方法一:由条件,f(x)=x ),得:2-2(2-x)+a(e2-x-1+ e-(2-x)+1f(2-x)=(2-x) )2 1-x x-1=x -4x+4-4+2x+a(e +e)=x2-2x+a(e x -x+1)-1+e∴f(2-x)=f(x),即x=1为f(x)的对称轴,由题意,f(x)有唯一零点,∴f(x)的零点只能为x=1,1即f(1) =12-2·1+a(e1-1+e-1+1)=0,解得a=.22 x-1 -x+1 x-1 -x+1 x-1 -x+1 x-1方法二:x -2x=-a(e +e +e ,g′x()=e -e =e),设g(x)=e -2(x-1)-11 ex-1=x-1 ,e e当g′x()=0时,x=1,当x<1时,g′x()<0,函数单调递减,当x>1时,g′x()>0,函数单调递增,当x=1时,函数取得最小值g(1)=2,设h(x)=x2-2x,当x=1时,函数取得最小值-1;若-a>0,函数h( x)和ag(x)没有1交点,当-a<0时,-ag(1)=h(1)时,此时函数h(x)和ag(x)有一个交点,即-a×2=-1 a=,故选C.2 答案:C第Ⅱ卷(非选择题共90 分)本试卷包括必考题和选考题两部分.第13 题~第21 题为必考题,每个试题考生都必须作答.第22 题~第24 题为选考题,考生根据要求作答.- 4 -二、填空题(本大题共 4 小题,每小题 5 分,共20 分.)→13.已知向量 a→→=(-2,3),b =(3,m),且 a→⊥b ,则m=.[解析] 由题意可得-2×3+3m=0,∴m=2.答案:214.双曲线2x2-a2y 3=1(a>0)的一条渐近线方程为y=9 5x,则a=.3[解析] 由双曲线的标准方程可得渐近线方程为y=±x,结合题意可得a=5.a答案:515.△ABC 的内角A,B,C 的对边分别为a,b,c.已知C=60°,b=6,c=3,则A=.[解析] 由题意b=sinBc bsinC,即sinB==sinC c36×2=32,结合b<c 可得B=45°,则A=180°-B-C2=75°.答案:75°16.设函数f(x)=x+1,x≤0则满足f(x)+f(x-x,x>0212)>1 的x 的取值范围是.[解析] 方法一:∵f(x)=x+1,x≤0 1,f(x)+f x-x,x>02 212>1,即f x->1-f(x),由图象变换可画出y=f x-12与y=1-f(x)的图象如下:y1y f(x)21 1( , )4 41 1 x2 2y 1 f (x)12 由图可知,满足f x->1-f(x)的解为(-14,+∞).11 1 x+x-11方法二:由题意得,当x> 时,2 ;当0< x≤时,2 +1>1 恒成立,即x+2x-2>1 恒成立,即x>2 2 2 20< x≤12;当x≤0时x+1+x-12+1>1 x>-14,即-1 14< x≤0;综上x的取值范围是(-4,+∞).1答案:(-,+∞)4三、解答题(本大题共 6 小题,共70 分,解答应写出文字说明、证明过程或演算步骤.)第17~21 题为必考题,每个试题考生都必须作答.第22、23 题为选考题,考生根据要求作答.- 5 -(一)必考题:共60分.17.(本小题满分12 分)设数列{ a n} 满足a1+3a2+⋯+(2n-1)a n=2n.(1)求{ a n}的通项公式;(2)求数列a n2n+1的前n 项和.[解析] (1)∵a1+3a2+⋯+(2n-1)a n=2n,①∴n≥2时,a1+3a2+⋯+(2n-1)a n-1=2(n-1),②2①-②得,(2n-1)a n=2,a n=2n-1,又n=1 时,a1=2 适合上式,2∴a n=; 2n-1(2)由(1)a n=2n+12=(2n-1)(2n+1)1 1-,2n-1 2n+1a1 a2 a n 1 1 ∴S n=++⋯+=(1-)+( -3 5 2n+1 3 3 15)+⋯+(1 1 1-)=1-=2n-1 2n+1 2n+12n.2n+118.(本小题满分12 分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶 4 元,售价每瓶6 元,未售出的酸奶降价处理,以每瓶 2 元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500 瓶;如果最高气温位于区间[20,25),需求量为300 瓶;如果最高气温低于20,需求量为200 瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15) [15,20) [20,25) [25,30) [30,35) [35,40) 天数 2 16 36 25 7 4 以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300 瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450 瓶时,写出Y 的所有可能值,并估计Y 大于零的概率.[解析] (1)需求量不超过300 瓶,即最高气温不高于25℃,从表中可知有54 天,∴所求概率为P=54 3=.90 5(2)Y 的可能值列表如下:最高气温[10,15) [15,20) [20,25) [25,30) [30,35) [35,40) Y -100 -100 300 900 900 900 低于20℃:y=200×6+250×2-450×4=-100;[20,25):y=300×6+150×2-450×4=300;不低于25℃:y=450×(6-4)=900,2 16 ∴Y 大于0 的概率为P=+=90 90 15.- 6 -19.(本小题满分 12 分)如图,四面体 ABCD 中,△ ABC 是正三角形, AD = CD .(1)证明: AC ⊥BD ;(2)已知△ ACD 是直角三角形, AB =BD .若 E 为棱B D 上与 D 不重合的点, 且 AE ⊥EC ,求四面体 ABCE 与四面体 ACDE 的体积比.[解析 ] (1)证明:取A C 中点 O ,连O D ,OB , ∵AD =CD ,O 为 AC 中点,∴ AC ⊥OD , 又∵△ ABC 是等边三角形,∴ AC ⊥ OB ,又∵ OB ∩OD =O ,∴ AC ⊥平面 OBD ,BD 平面 OBD , ∴AC ⊥BD ;(2)设A D =CD =2,∴ AC = 2 2,AB =CD =2 2,又∵ AB =BD ,∴ BD =2 2,∴△ ABD ≌ △ CBD ,∴ AE =EC , 又∵ AE ⊥EC ,AC =2 2,∴ AE =EC =2, 在△ ABD 中,设D E =x ,根据余弦定理cos ∠ ADB = AD 2+BD 2-AB 2 2AD ·BDAD=2+DE 2-AE 2 2AD ·DE= 2+(2 2)2-(2 2)22+x 2-22 2 2 = , 2×2×x 2×2×2 2解得 x = 2,∴点 E 是 BD 的中点,则V D -ACE =V B -ACE ,∴V D -ACE=1. V B -ACE-ACE2+mx –2 与 x 轴交于A ,B 两点,点 C 的坐标 20.(本小题满分 12 分)在直角坐标系x Oy 中,曲线 y =x为(0,1).当 m 变化时,解答下列问题:(1)能否出现A C ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在 y 轴上截得的弦长为定值.2+mx -2=0 的根, [解析 ] (1)设A (x1,0),B(x 2,0),则x 1,x 2 是方程 x∴x 1+x 2=- m ,x 1x 2=- 2,→ →则A C ·BC= (-x 1,1) ·(-x 2,1)=x 1x 2+1=- 2+1=- 1≠0, ∴不会能否出现A C ⊥BC 的情况.(2)解法一:过A ,B ,C 三点的圆的圆心必在线段A B 垂直平分线上,设圆心E(x 0, y 0),- 7 -x1+x2则x0==-2 m,由|EA |=|EC|得2x1+x2-x1 2+y02=2x1+x222+(y0-1)2,1+x1x2化简得y0==-2 1 2 ,∴圆E 的方程为x+m22+y+122=-m22+-1-1-122,令x=0 得y1=1,y2=-2,∴过A,B,C 三点的圆在y 轴上截得的弦长为1-(-2)=3,∴过A,B,C 三点的圆在y 轴上截得的弦长为定值解法二:设过A,B,C 三点的圆与y 轴的另一个交点为D,由x1x2=-2 可知原点O 在圆内,由相交弦定理可得|OD ||OC |=|OA||OB|=|x1||x2|=2,又|OC |=1,∴|OD |=2,∴过A,B,C 三点的圆在y 轴上截得的弦长为|OC |+|OD |=3,为定值.2+(2a+1) x. 21.(本小题满分12 分)已知函数 f (x)=ln x+ax3-2. (1)讨论f( x)的单调性;(2)当a<0 时,证明f(x) ≤-4a[解析] (1) f′x()=2+(2a+1)x+12ax (2 ax+1)( x+1)=(x>0),x x当a≥0 时,f′x()≥,0则f(x )在(0,+∞)单调递增,当a<0 时,则f(x)在(0,- 1)单调递增,在(-1,+∞)单调递减. 2a 2a(2)由(1) 知,当a<0 时,f( x)max=f(-12a),1f(-)-(-2a 3+2)=ln(-4a1)+2a1+1,令y=ln t+1-t(t=-2a1>0),2a则y′=1t-1=0,解得t=1,∴y 在(0,1)单调递增,在(1,+∞)单调递减,3∴y max=y(1)=0,∴y≤0,即f (x)max≤-( +2),∴f( x) ≤-4a 3-2.4a(二)选考题:共10分.请考生在第22、23 题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10 分)选修4―4坐标系与参数方程:在直角坐标系xOy 中,直线l1 的参数方程为x=2+ty=kt(t 为参数),直线l2 的参数方程为x=-2+mmky=(ml1 与l2 的交点为P,当k 变化时,P 的轨迹为曲线C.为参数).设(1)写出 C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)-2=0,M 为l3 与C 的- 8 -交点,求M 的极径.[解析] (1)将参数方程转化为普通方程1l1:y=k(x-2)⋯⋯①;l2:y=(x+2)⋯⋯②k由①②消去k可得:x2-y2=4,即P的轨迹方程为x2-y2=4;(2)将参数方程转化为一般方程l3:x+y-2=0⋯⋯③联立l3和曲线C得x+y-2=0,解得2-y2=4x3 22x=,由2y=-2x=ρcosθ,解得ρ=5,y=ρsinθ即M的极半径是5.23.(本小题满分10 分)选修4— 5 不等式选讲:已知函数f( x)=|x+1|–|x–2|.(1)求不等式f(x) ≥1的解集;2(2)若不等式f(x) ≥x –x+m 的解集非空,求m 的取值范围.-3,x≤-12x-1,-1<x<2.由f (x) ≥1可得:[解析] (1) f( x)=|x+1|–|x–2|可等价为f(x)=3,x≥2①当x≤-1时显然不满足题意;②当-1< x<2时,2x-1≥1,解得x≥1;③当x≥2时,f(x)=3≥1恒成立.综上,f( x) ≥的1解集为{ x|x≥1}.2-x+m等价为f(x)-x2+x≥m,(2)不等式f(x) ≥x令g(x)=f( x)-x2+x,则g( x) ≥m解集非空只需要[g(x)] max≥m.-x2+x-3,x≤-1而g(x)=-x2+3x-1,-1<x<2.-x2+x+3,x≥2①当x≤-1时,[ g(x)]max=g(-1)=-3-1-1=-5;3②当-1< x<2时,[g(x)]max=g(2)=-322+3·3-1=-1=5;2 4③当x≥2时,[ g(x)] max=g(2)=-22+2+3=1.综上,[g( x)]max=5 5 ,故m≤.4 45∴m 的取值范围为(-∞,].4- 9 -。
2017年全国统一高考数学试卷(文科)(新课标ⅲ)(含解析版)
A. —6
5
5
3
B. 1
6
C. —3
5
D
1 _5
7. Cs 分)函数 y=l+x+兰坚-的部分图象大致为(
X2
C.
D.
8. Cs 分)执行如图的程序框图,为使输出 S 的值小千 91, 则输入的正整数 N 的最小值为(
A. 5
B. 4
C. 3
D. 2
9. cs 分)已知圆柱的高为 1, 它的两个底曲的圆周在直径为 2 的同一个球的球血上,则该圆柱的休
={ (5 分)设函数 f 16.
(x) x+l , x<o ,则满足 f (x) +f (x- 上) >1 的 x 的取值范围是
.
产, x >o
2
19. (12 分)如图四面体 ABCD 中,^ ABC 是正二伯形, AD=CD.
(1) 证明: AC 上 BD: (2) 已知^ ACD 是直伯二川形, AB=BD, 若 E 为棱 BD 上与 D 个重合的点,且 AE 上 EC, 求四面体 ABCE
7.【解答】解:函数y=l+x+兰坚一, 可知:f(x) =x+王坚-是奇函数, 所以函数的图象关千原点对称, 则函数y=l+x+主皿-的图象关千(O, 1) 对称, 当x➔o', f Cx) >o, 排除A、c, 当x=rr时,y=l顷, 排除B. 第4页(共9页)
故选:D. 【点评】本题考查函数 的图象的 判断,函数的奇偶性以及特殊点是常用方 法.
A
y
x 【点评】本题考查线线垂直的 判断,是中档题,斛题时要认真审题,注意向量法的合理运用.
【点评】本题考查曲圆柱 的体积的 求法,考查圆柱、球等基础知识,考查推理论证能力、运算求 解能 力、空间想象 能力,考查化归与转化思想,是中档题.
2017年高考文科数学全国卷3及答案解析
绝密★启用前2017年普通高等学校招生全国统一考试(全国卷III )文科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合1,2{},3,4A =,2,4{},6,8B =,则A B 中元素的个数为( )A .1B .2C .3D .4 2.复平面内表示复数i(2i)z =-+的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( )A .月接待游客量逐月增加B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.已知4sin cos 3αα-=,则sin2α=( )A .79-B .29-C .29D .795.设,x y 满足约束条件3260,0,0,x y x y +-⎧⎪⎨⎪⎩≤≥≥则z x y =-的取值范围是( ) A .[]3,0-B .[]3,2-C .[0,2]D .[0,3] 6.函数1ππ()sin()cos()536f x x x =++-的最大值为( ) A .65B .1C .35D .157.函数2sin 1xy x x=++的部分图象大致为( )ABC D8.执行如图所示的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为 ( )毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在-----------------此------------------卷------------------上------------------答------------------题-------------------无---------------效------------A .5B .4C .3D .29.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 ( ) A .πB .3π4C .π2D .π410.在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则( )A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥11.已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( ) A .63B .33C .23D .1312.已知函数211()2(e e )x x f x x x a --+=-++有唯一零点,则a =( ) A .12-B .13C .12D .1二、填空题:本题共4小题,每小题5分,共20分.13.已知向量(2,3)=-a ,(3,)m =b ,且⊥a b ,则m = . 14.双曲线2221(0)9x y a a -=>的一条渐近线方程为35y x =,则a =. 15.ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知60C =,6b =,3c =,则A = .16.设函数1,0,()2,0,xx x f x x +⎧=⎨⎩≤ >则满足1()()12f x f x +->的x的取值范围是 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)设数列{}n a 满足123(21)2n a a n a n +++-=.(1)求{}n a 的通项公式;(2)求数列{}21na n +的前n 项和. 18.(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表: 最高气温[10,15) [15,20) [20,25) [25,30) [30,35) [35,40)天数 2 16 36 25 7 4以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300瓶的概率; (2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y 大于零的概率. 19.(12分)如图,四面体ABCD 中,ABC △是正三角形,AD CD =.(1)证明:AC BD ⊥;(2)已知ACD △是直角三角形,AB BD =,若E 为棱BD 上与D 不重合的点,且AE EC ⊥,求四面体ABCE 与四面体ACDE 的体积比.20.(12分)在直角坐标系xOy 中,曲线22y x mx =+-与x 轴交于A ,B 两点,点C 的坐标为(0,1),当m 变化时,解答下列问题: (1)能否出现AC BC ⊥的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.21.(12分)已知函数2ln )1((2)x ax f x a x =+++. (1)讨论()f x 的单调性; (2)当0a <时,证明3()24f x a--≤.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.[选修4―4:坐标系与参数方程](10分) 在直角坐标系xOy 中,直线1l 的参数方程为2,x t y kt =+⎧⎨=⎩(t 为参数),直线2l 的参数方程为2,x m m y k =-+⎧⎪⎨=⎪⎩(m 为参数).设1l 与2l 的交点为P ,当k 变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设3l :(cos sin )20ρθθ+=,M 为3l 与C 的交点,求M 的极径.23.[选修4—5:不等式选讲](10分) 已知函数()|1||2|f x x x =+--. (1)求不等式()1f x ≥的解集;(2)若不等式2()f x x x m -+≥的解集非空,求m 的取值范围.毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在-----------------此------------------卷------------------上------------------答------------------题-------------------无---------------效------------2017年普通高等学校招生全国统一考试(全国卷3)文科数学答案解析一、选择题1.【答案】B【解析】A,B两集合中有两个公共元素2,4,故选B.2.【答案】C 【解析】2i(2i)2i i12iz=-+=-+=--,故复平面内表示复数i(2i)z=-+的点位于第三象限,故选C.3.【答案】A【解析】由折线图可知,各年的月接待游客量从8月份后存在下降趋势,故选A.4.【答案】A【解析】将4sin cos3αα-=的两边进行平方,得2216sin2sin cos cos9αααα-+=,即7sin29α=-,故选A.5.【答案】B【解析】不等式组3260,0,x yxy+-⎧⎪⎨⎪⎩≤≥≥表示得平面区域如图中阴影部分所示,作出直线l:y x=,平移直线0l,当直线z x y=-过点(2,0)A时,z取得最大值2,当直线z x y=-过点(0,3)B时,z取得最小值3-,所以z x y=-的取值范围是[3,2]-,故选B.6.【答案】A【解析】因为ππππcos()cos[()]sin()6323x x x-=+-=+,所以6π()sin()53f x x=+,于是()f x的最大值为65,故选A.7.【答案】D【解析】易知函数2sin ()xg x x x=+是奇函数,其函数图象关于原点对称,所以函数2sin 1xy x x=++的图象只需把()g x 的图象向上平移一个单位长度,结合选项知选D . 8.【答案】D【解析】当输入的正整数N是所给选项中最小的正整数2时,1t =,100M =,S =,则第一次循环,0100100S =+=,1001010M =-=-,2t =;第二次循环,1001090S =-=,10110M -=-=,3t =,此时2t ≤不成立,输出9091S =<.故选D .9.【答案】B【解析】球心到圆柱的底面的距离为圆柱高的12,球的半径为1,则圆柱底面圆的半径r =,故该圆柱的体积23ππ14V =⨯⨯=,故选B .10.【答案】C【解析】由正方体的性质得111A B BC ⊥,11B C BC ⊥,所以1BC ⊥平面11A B CD ,又1A E ⊂平面11A B CD ,所以11A E BC ⊥,故选C . 11.【答案】A【解析】以线段12A A 为直径的圆的圆心为坐标原点(0,0)O ,半径为a .由题意,圆心到直线20bx ay ab -+=的距离为a=,即223a b =.又222213b e a =-=,所以e ,故选A .12.【答案】C【解析】由211()2(e e )x x f x x x a --+=-++,得221(2)1211211(2)(2)2(2)[(ee)]4442(e e)2(ee)x x xx x x f x x x a x x x a x x a ----+----+-=---++=-+-+++=-++,所以(2)()f x f x -=,即1x =为()f x 图象得对称轴.由题意得()f x 有唯一零点,所以()f x 得零点只能为1x =,即21111(1)121(e e )0f a --+=-⨯++=,解得12a =.故选C . 二.填空题13.【答案】2【解析】因为⊥a b ,所以2330m =-⨯+=a b ,解得2m =. 14.【答案】5【解析】因为双曲线2221(0,0)9x y a b a -=>>的渐近线方程为b y x a=±,所以5a =.15.【答案】°75【解析】由正弦定理,得sin 6sin602sin 2b C B c===,所以45B =或135,因为b c <,所以B C <,故45B =,所以75A =. 16.【答案】1(,)4-+∞【解析】当0x ≤时,由113()()(1)(1)21222f x f x x x x +-=++-+=+>,得104x -<≤;当12x 0<≤时,111()()2(1)21222x x f x f x x x +-=+-+=++>,即1202x x +->,因为01112200222x x +++-=>>,所以12x 0<≤;当12x >时,110221()()222212x x f x f x -+-=+++>>,所以12x >.综上,x 得取值范围是1(,)4-+∞.三、解答题17.【答案】解:(1)221n a n =-; (2)1111112 (1335212121)n nS n n n =-+-++-=-++.【解析】(1)因为123(21)2n a a n a n +++-=,故当2n ≥时,1213(23)2(1)n a a n a n -+++-=-,两式相减得(21)2n n a -=,所以2(2)21n a n n =-≥, 又由题设可得12a =, 从而{}n a 的通项公式为221n a n =-. (2)记{}21na n +的前n 项和为n S , 由(1)知21121(21)(21)2121n a n n n n n ==-++--+. 则1111112 (1335212121)n nS n n n =-+-++-=-++. 18.【答案】(1)0.6; (2)0.8.【解析】(1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为216360.690++=,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.(2)当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则64504450900Y =⨯-⨯=;若最高气温位于区间[20,25),则63002(450300)4450300Y =⨯+--⨯=; 若最高气温低于20,则62002(450200)4450100Y =⨯+--⨯=-; 所以,Y 的所有可能值为900,300,100-,Y 大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为3625740.890+++=,因此Y 大于零的概率的估计值为0.8.19.【答案】解:(1)取AC 的中点O ,连结DO ,BO , 因为AD CD =,所以AC DO ⊥.又由于ABC ∆是正三角形,故BO AC ⊥. 从而AC ⊥平面DOB ,故AC BD ⊥; (2)连结EO .由(1)及题设知90ADC ∠=,所以DO AO =, 在Rt AOB ∆中,222BO AO AB +=, 又AB BD =,所以222222BO DO BO AO AB BD +=+==,故90DOB ∠=.由题设知AEC △为直角三角形,所以12EO AC =.又ABC △是正三角形,且AB BD =,所以12EO BD =.故E 为BD 的中点,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,四面体ABCE 的体积为四面体ABCD 的体积的12,即四面体ABCE 与四面体ACDE 的体积之比为1:1. 【解析】(1)取AC 的中点O ,连结DO ,BO , 因为AD CD =,所以AC DO ⊥.又由于ABC ∆是正三角形,故BO AC ⊥. 从而AC ⊥平面DOB ,故AC BD ⊥; (2)连结EO .由(1)及题设知90ADC ∠=,所以DO AO =, 在Rt AOB ∆中,222BO AO AB +=, 又AB BD =,所以222222BO DO BO AO AB BD +=+==,故90DOB ∠=.由题设知AEC △为直角三角形,所以12EO AC =. 又ABC △是正三角形,且AB BD =,所以12EO BD =.故E 为BD 的中点,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,四面体ABCE 的体积为四面体ABCD 的体积的12,即四面体ABCE 与四面体ACDE 的体积之比为1:1.20.【答案】解:(1)不能出现AC BC ⊥的情况,理由如下: 设1(,0)A x ,2(,0)B x ,则1x ,2x 满足220x mx +-=,所以122x x =-.又C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为121112x x --⋅=-,所以不能出现AC BC ⊥的情况.(2)BC 的中点坐标为21(,)22x ,可得BC 的中垂线方程为221()22x y x x -=-.由(1)可得12x x m +=-,所以AB 的中垂线方程为2mx =-.联立22,21()22m x x y x x ⎧=-⎪⎪⎨⎪-=-⎪⎩又22220x mx +-=,可得,21.2m x y ⎧=-⎪⎪⎨⎪=-⎪⎩所以过A ,B ,C 三点的圆的圆心坐标为1(,)22m --,半径r ,故圆在y轴上截得的弦长为3=,即过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.【解析】(1)不能出现AC BC ⊥的情况,理由如下: 设1(,0)A x ,2(,0)B x ,则1x ,2x 满足220x mx +-=,所以122x x =-.又C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为121112x x --⋅=-,所以不能出现AC BC ⊥的情况.(2)BC 的中点坐标为21(,)22x ,可得BC 的中垂线方程为221()22x y x x -=-. 由(1)可得12x x m +=-,所以AB 的中垂线方程为2mx =-.联立22,21()22m x x y x x ⎧=-⎪⎪⎨⎪-=-⎪⎩又22220x mx +-=,可得,21.2m x y ⎧=-⎪⎪⎨⎪=-⎪⎩所以过A ,B ,C 三点的圆的圆心坐标为1(,)22m --,半径r ,故圆在y轴上截得的弦长为3=,即过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.21.【答案】解:(1)()f x 的定义域为(0,)+∞,1(1)(21)()221x ax f x ax a x x++'=+++=.若0a ≥,则当(0,)x ∈+∞时,()0f x '>,故()f x 在(0,)+∞单调递增.若0a <,则当1(0,)2x a∈-时,()0f x '>;当1(,)2x a ∈-+∞时,()0f x '<.故()f x 在1(0,)2a -单调递增,在1(,)2a-+∞单调递减. (2)由(1)知,当0a <时,()f x 在12x a=-取得最大值,最大值为111()ln()1224f a a a-=---. 所以3()24f x a --≤等价于113ln()12244a a a -----≤,即11ln()1022a a-++≤,设()ln 1g x x x =-+,则1()1g x x'=-,当(0,1)x ∈时,()0g x '>;当(1,)x ∈+∞时,()0g x '<.所以()g x 在(0,1)单调递增,在(1,)+∞单调递减. 故当1x =时,()g x 取得最大值,最大值为(1)0g =. 所以当0x >时,()0g x ≤.从而当0a <时,11ln()1022a a -++≤,即3()24f x a--≤. 【解析】(1)()f x 的定义域为(0,)+∞,1(1)(21)()221x ax f x ax a x x++'=+++=.若0a ≥,则当(0,)x ∈+∞时,()0f x '>,故()f x 在(0,)+∞单调递增.若0a <,则当1(0,)2x a∈-时,()0f x '>;当1(,)2x a ∈-+∞时,()0f x '<.故()f x 在1(0,)2a -单调递增,在1(,)2a-+∞单调递减.(2)由(1)知,当0a <时,()f x 在12x a=-取得最大值,最大值为111()ln()1224f a a a-=---. 所以3()24f x a --≤等价于113ln()12244a a a -----≤,即11ln()1022a a-++≤,设()ln 1g x x x =-+,则1()1g x x'=-,当(0,1)x ∈时,()0g x '>;当(1,)x ∈+∞时,()0g x '<.所以()g x 在(0,1)单调递增,在(1,)+∞单调递减.故当1x =时,()g x 取得最大值,最大值为(1)0g =. 所以当0x >时,()0g x ≤.从而当0a <时,11ln()1022a a -++≤,即3()24f x a--≤. 22.【答案】解:(1)消去参数t 得1l 的普通方程1:(2)l y k x =-;消去参数m t 得2l 的普通方程21:(2)l y x k=+.设(,)P x y ,由题设得(2),1(2).y k x y x k =-⎧⎪⎨=+⎪⎩消去k 得224(0)x y y -=≠, 所以C 的普通方程为224(0)x y y -=≠;(2)C 的极坐标方程为222(cos sin )4(02π,π)ρθθθθ-=≠<<.联立222(cos sin )4,(cos sin )0ρθθρθθ⎧-=⎪⎨+⎪⎩得cos sin 2(cos sin )θθθθ-=+. 故1tan 3θ=-,从而29cos 10θ=,21sin 10θ=. 代入222(cos sin )4ρθθ-=得25ρ=,所以交点M【解析】(1)消去参数t 得1l 的普通方程1:(2)l y k x =-;消去参数m t 得2l 的普通方程21:(2)l y x k=+.设(,)P x y ,由题设得(2),1(2).y k x y x k =-⎧⎪⎨=+⎪⎩消去k 得224(0)x y y -=≠, 所以C 的普通方程为224(0)x y y -=≠;(2)C 的极坐标方程为222(cos sin )4(02π,π)ρθθθθ-=≠<<.联立222(cos sin )4,(cos sin )0ρθθρθθ⎧-=⎪⎨+⎪⎩得cos sin 2(cos sin )θθθθ-=+. 故1tan 3θ=-,从而29cos 10θ=,21sin 10θ=. 代入222(cos sin )4ρθθ-=得25ρ=,所以交点M23.【答案】解:(1)3,1,()21,12,3,2,x f x x x x --⎧⎪=--⎨⎪⎩ <≤≤ >当1x -<时,()1f x ≥无解;当12x -≤≤时,由()1f x ≥得,211x -≥,解得12x ≤≤; 当2x >时,由()1f x ≥解得2x >. 所以()1f x ≥的解集为{|1}x x ≥.(2)由2()f x x x m -+≥得2|1||2|m x x x x +---+≤,而22|1||2|||1||2||x x x x x x x x +---+++--+≤235(||)24x =--+54≤, 且当32x =时,25|1||2|4x x x x +---+=, 故m 的取值范围为5(,]4-∞. 【解析】(1)3,1,()21,12,3,2,x f x x x x --⎧⎪=--⎨⎪⎩ <≤≤ >当1x -<时,()1f x ≥无解;当12x -≤≤时,由()1f x ≥得,211x -≥,解得12x ≤≤; 当2x >时,由()1f x ≥解得2x >. 所以()1f x ≥的解集为{|1}x x ≥.(2)由2()f x x x m -+≥得2|1||2|m x x x x +---+≤,而22|1||2|||1||2||x x x x x x x x +---+++--+≤235(||)24x =--+54≤, 且当32x =时,25|1||2|4x x x x +---+=,故m 的取值范围为5(,]4-∞.。
2017年全国统一高考新课标版Ⅲ卷全国3卷文科数学试卷及参考答案与解析
2017年全国统一高考新课标版Ⅲ卷全国3卷文科数学试卷及参考答案与解析一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为( )A.1B.2C.3D.42.(5分)复平面内表示复数z=i(-2+i)的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( )A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.(5分)已知sinα-cosα=,则sin2α=( )A.-B.-C.D.5.(5分)设x,y满足约束条件则z=x-y的取值范围是( )A.[-3,0]B.[-3,2]C.[0,2]D.[0,3]6.(5分)函数f(x)=sin(x+)+cos(x-)的最大值为( )A. B.1 C. D.7.(5分)函数y=1+x+的部分图象大致为( )A. B.C. D.8.(5分)执行如图的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为( )A.5B.4C.3D.29.(5分)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A.πB.C.D.10.(5分)在正方体ABCD-A1B1C1D1中,E为棱CD的中点,则( )A.A1E⊥DC1B.A1E⊥BD C.A1E⊥BC1D.A1E⊥AC11.(5分)已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx-ay+2ab=0相切,则C的离心率为( )A. B. C. D.12.(5分)已知函数f(x)=x2-2x+a(e x-1+e-x+1)有唯一零点,则a=( )A.-B.C.D.1二、填空题13.(5分)已知向量=(-2,3),=(3,m),且,则m=.14.(5分)双曲线(a>0)的一条渐近线方程为y=x,则a=.15.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知C=60°,b=,c=3,则A=.16.(5分)设函数f(x)=,则满足f(x)+f(x-)>1的x的取值范围是.三、解答题17.(12分)设数列{an }满足a1+3a2+…+(2n-1)an=2n.(1)求{an}的通项公式;(2)求数列{}的前n项和.18.(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.19.(12分)如图四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD,若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE 与四面体ACDE的体积比.20.(12分)在直角坐标系xOy中,曲线y=x2+mx-2与x轴交于A、B两点,点C的坐标为(0,1),当m变化时,解答下列问题:(1)能否出现AC⊥BC的情况?说明理由;(2)证明过A、B、C三点的圆在y轴上截得的弦长为定值.21.(12分)已知函数f(x)=lnx+ax2+(2a+1)x.(1)讨论f(x)的单调性;(2)当a<0时,证明f(x)≤--2.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,直线l1的参数方程为,(t为参数),直线l2的参数方程为,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)-=0,M为l3与C的交点,求M的极径.[选修4-5:不等式选讲]23.已知函数f(x)=|x+1|-|x-2|.(1)求不等式f(x)≥1的解集;(2)若不等式f(x)≥x2-x+m的解集非空,求m的取值范围.2017年全国统一高考数学试卷(文科)(新课标Ⅲ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年普通高等学校招生全国统一考试文科数学(适用地区:云南、贵州、广西、四川)第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.)1.已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为( )A.1 B.2 C.3 D.4[解析] 由题意可得A∩B={2,4},故选B.答案:B2.复平面内表示复数z=i(–2+i)的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限[解析] 由题意z=-1-2i,故选B.答案:B3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( )A.月接待游客逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳[解析] 由折线图,7月份后月接待游客量减少,A错误,故选A.答案:A4.已知sin α-cos α=43,则sin2α=( )A .-79B .-29C .29D .79[解析] sin2α=2sin αcos α=(sin α-cos α)2-11=-79,故选A .答案:A5.设x ,y 满足约束条件⎩⎨⎧3x +2y -6≤0x ≥0y ≥0,则z =x -y 的取值范围是( )A .[–3,0]B .[–3,2]C .[0,2]D .[0,3][解析] 绘制不等式组表示的可行域,结合目标函数的几何意义可得函数在点A (0,3) 处取得最小值z =0-3=-3.在点B (2,0) 处取得最大值z =2-0=2,故选A .答案:B6.函数f (x )=sin ⎝⎛⎭⎫x +π3+cos ⎝⎛⎭⎫x -π6的最大值为( )A .65B .1C .35D .15[解析] 由诱导公式可得cos ⎝⎛⎭⎫x -π6=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫x +π3=sin ⎝⎛⎭⎫x +π3,则f (x )=15sin ⎝⎛⎭⎫x +π3+sin ⎝⎛⎭⎫x +π3=65sin ⎝⎛⎭⎫x +π3,函数的最大值为65,故选A .答案:A7.函数y =1+x +sin xx2的部分图像大致为( )[解析] 当x =1时,f (1)=1+1+sin1=2+sin1>2,故排除A ,C ,当x →+∞时,y →1+x ,故排除B ,满足条件的只有D ,故选D .答案:D8.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( )A .5B .4C .3D .2[解析] 若N =2,第一次进入循环,1≤2成立,S =100,M =-10010=-10,i =2≤2成立;第二次进入循环,此时S =100-10=90,M =--1010=1,i =3≤2不成立,∴输出S =90<91成立,∴输入的正整数N的最小值是2,故选D .答案:D9.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB .3π4C .π2D .π4[解析] 如果,画出圆柱的轴截面AC =1,AB =12,∴r =BC =32,那么圆柱的体积是V =πr 2h =π×⎝⎛⎭⎫322×1=3π4,故选B .答案:B10.在正方体ABCD -A 1B 1C 1D 1中,E 为棱CD 的中点,则( ) A .A 1E ⊥DC 1B .A 1E ⊥BDC .A 1E ⊥BC 1D .A 1E ⊥AC[解析] 根据三垂线逆定理,平面内的线垂直平面的斜线,那么也垂直斜线在平面内的射线. 对于A ,若A 1E ⊥DC 1,那么D 1E ⊥DC 1,很显然不成立;对于B ,若A 1E ⊥BD ,那么BD ⊥AE ,显然不成立;对于C ,若A 1E ⊥BC 1,那么BC 1⊥B 1C ,成立,反过来BC 1⊥B 1C 时,也能推出BC 1⊥A 1E ,∴C 成立, 对于D ,若A 1E ⊥AC ,则AE ⊥AC ,显然不成立,故选C . 答案:C11.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A 1、A 2,且以线段A 1A 2为直径的圆与直线bx-ay +2ab =0相切,则C 的离心率为( )A .63B .33C .23D .13[解析] 以线段A 1A 2为直径的圆是x 2+y 2=a 2,直线bx -ay +2ab =0与圆相切,∴圆心到直线的距离d =2ab a 2+b2=a ,整理为a 2=3b 2,即a 2=3(a 2-c 2)⇒2a 2=3c 2,即c 2a 2=23,e =c a =63,故选A .答案:A12.已知函数f (x )=x 2-2x +a (e x -1+e-x +1)有唯一零点,则a =( )A .-12B .13C .12 D .1[解析] 方法一:由条件,f (x )=x 2-2x +a (e x -1+e -x +1),得:f (2-x )=(2-x )2-2(2-x )+a (e 2-x -1+e-(2-x )+1)=x 2-4x +4-4+2x +a (e 1-x +e x -1) =x 2-2x +a (e x -1+e-x +1)∴f (2-x )=f (x ),即x =1为f (x )的对称轴,由题意,f (x )有唯一零点, ∴f (x )的零点只能为x =1, 即f (1)=12-2·1+a (e 1-1+e-1+1)=0,解得a =12.方法二:x 2-2x =-a (e x -1+e -x +1),设g (x )=e x -1+e -x +1,g ′(x )=e x -1-e -x +1=e x -1-1e x -1=e 2(x -1)-1e x -1, 当g ′(x )=0时,x =1,当x <1时,g ′(x )<0,函数单调递减,当x >1时,g ′(x )>0,函数单调递增,当x =1时,函数取得最小值g (1)=2,设h (x )=x 2-2x ,当x =1时,函数取得最小值-1;若-a >0,函数h (x )和ag (x )没有交点,当-a <0时,-ag (1)=h (1)时,此时函数h (x )和ag (x )有一个交点,即-a ×2=-1⇒a =12,故选C .答案:C第Ⅱ卷(非选择题共90分)本试卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答.二、填空题(本大题共4小题,每小题5分,共20分.)13.已知向量a →=(-2,3),b →=(3,m ),且a →⊥b →,则m = . [解析] 由题意可得-2×3+3m =0,∴m =2. 答案:214.双曲线x 2a 2-y 29=1(a >0)的一条渐近线方程为y =35x ,则a = .[解析] 由双曲线的标准方程可得渐近线方程为y =±3a x ,结合题意可得a =5.答案:515.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b =6,c =3,则A = . [解析] 由题意b sin B =c sin C ,即sin B =b sin C c =6×323=22,结合b <c 可得B =45°,则A =180°-B -C =75°.答案:75°16.设函数f (x )=⎩⎨⎧x +1,x ≤02x ,x >0则满足f (x )+f (x -12)>1的x 的取值范围是 .[解析] 方法一:∵f (x )=⎩⎨⎧x +1,x ≤02x ,x >0,f (x )+f ⎝⎛⎭⎫x -12>1,即f ⎝⎛⎭⎫x -12>1-f (x ),由图象变换可画出y =f ⎝⎛⎭⎫x -12与y =1-f (x )的图象如下:1)2-)由图可知,满足f ⎝⎛⎭⎫x -12>1-f (x )的解为(-14,+∞).方法二:由题意得,当x >12时,2x +2x -12>1恒成立,即x >12;当0<x ≤12时,2x +x -12+1>1恒成立,即0<x ≤12;当x ≤0时x +1+x -12+1>1⇒x >-14,即-14<x ≤0;综上x 的取值范围是(-14,+∞).答案:(-14,+∞)三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.) 第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(本小题满分12分)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n .(1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和. [解析] (1)∵a 1+3a 2+…+(2n -1)a n =2n ,① ∴n ≥2时,a 1+3a 2+…+(2n -1)a n -1=2(n -1),② ①-②得,(2n -1)a n =2,a n =22n -1, 又n =1时,a 1=2适合上式, ∴a n =22n -1;(2)由(1)a n 2n +1=2(2n -1)(2n +1)=12n -1-12n +1, ∴S n =a 13+a 25+…+a n 2n +1=(1-13)+(13-15)+…+(12n -1-12n +1)=1-12n +1=2n 2n +1.18.(本小题满分12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率代替最高气温位于该区间的概率. (1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y 大于零的概率.[解析] (1)需求量不超过300瓶,即最高气温不高于25℃,从表中可知有54天, ∴所求概率为P =5490=35.(2)Y 的可能值列表如下:低于20℃:y =200×6+250×2-450×4=-100; [20,25):y =300×6+150×2-450×4=300; 不低于25℃:y =450×(6-4)=900, ∴Y 大于0的概率为P =290+1690=15.19.(本小题满分12分)如图,四面体ABCD 中,△ABC 是正三角形,AD =CD .(1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB =BD .若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.[解析] (1)证明:取AC 中点O ,连OD ,OB , ∵AD =CD ,O 为AC 中点,∴AC ⊥OD , 又∵△ABC 是等边三角形,∴AC ⊥OB ,又∵OB ∩OD =O ,∴AC ⊥平面OBD ,BD 平面OBD , ∴AC ⊥BD ;(2)设AD =CD =2,∴AC =22,AB =CD =22,又∵AB =BD ,∴BD =22,∴△ABD ≌△CBD ,∴AE =EC , 又∵AE ⊥EC ,AC =22,∴AE =EC =2, 在△ABD 中,设DE =x ,根据余弦定理cos ∠ADB =AD 2+BD 2-AB 22AD ·BD =AD 2+DE 2-AE 22AD ·DE =22+(22)2-(22)22×2×22=22+x 2-222×2×x ,解得x =2,∴点E 是BD 的中点,则V D -ACE =V B -ACE ,∴V D -ACEV B -ACE=1.20.(本小题满分12分)在直角坐标系xOy 中,曲线y =x 2+mx –2与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.[解析] (1)设A (x 1,0),B (x 2,0),则x 1,x 2是方程x 2+mx -2=0的根, ∴x 1+x 2=-m ,x 1x 2=-2,则AC →·BC →=(-x 1,1)·(-x 2,1)=x 1x 2+1=-2+1=-1≠0, ∴不会能否出现AC ⊥BC 的情况.(2)解法一:过A ,B ,C 三点的圆的圆心必在线段AB 垂直平分线上,设圆心E (x 0,y 0),则x 0=x 1+x 22=-m2,由|EA |=|EC |得⎝⎛⎭⎫x 1+x 22-x 12+y 02=⎝⎛⎭⎫x 1+x 222+(y 0-1)2,化简得y 0=1+x 1x 22=-12,∴圆E 的方程为⎝⎛⎭⎫x +m 22+⎝⎛⎭⎫y +122=⎝⎛⎭⎫-m 22+⎝⎛⎭⎫-12-12,令x =0得y 1=1,y 2=-2,∴过A ,B ,C 三点的圆在y 轴上截得的弦长为1-(-2)=3, ∴过A ,B ,C 三点的圆在y 轴上截得的弦长为定值 解法二:设过A ,B ,C 三点的圆与y 轴的另一个交点为D ,由x 1x 2=-2可知原点O 在圆内,由相交弦定理可得|OD ||OC |=|OA ||OB |=|x 1||x 2|=2, 又|OC |=1,∴|OD |=2,∴过A ,B ,C 三点的圆在y 轴上截得的弦长为|OC |+|OD |=3,为定值. 21.(本小题满分12分)已知函数f (x )=ln x +ax 2+(2a +1)x . (1)讨论f (x )的单调性;(2)当a <0时,证明f (x )≤-34a -2.[解析] (1)f ′(x )=2ax 2+(2a +1)x +1x =(2ax +1)(x +1)x (x >0),当a ≥0时,f ′(x )≥0,则f (x )在(0,+∞)单调递增,当a <0时,则f (x )在(0,-12a )单调递增,在(-12a ,+∞)单调递减.(2)由(1)知,当a <0时,f (x )max =f (-12a),f (-12a )-(-34a +2)=ln(-12a )+12a +1,令y =ln t +1-t (t =-12a >0),则y ′=1t-1=0,解得t =1,∴y 在(0,1)单调递增,在(1,+∞)单调递减, ∴y max =y (1)=0,∴y ≤0,即f (x )max ≤-(34a +2),∴f (x )≤-34a-2. (二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4―4坐标系与参数方程:在直角坐标系xOy 中,直线l 1的参数方程为⎩⎨⎧x =2+ty =kt (t 为参数),直线l 2的参数方程为⎩⎪⎨⎪⎧x =-2+my =m k(m为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ)-2=0,M 为l 3与C 的交点,求M 的极径.[解析] (1)将参数方程转化为普通方程 l 1:y =k (x -2)……①;l 2:y =1k(x +2)……②由①②消去k 可得:x 2-y 2=4,即P 的轨迹方程为x 2-y 2=4; (2)将参数方程转化为一般方程l 3:x +y -2=0……③联立l 3和曲线C 得⎩⎨⎧x +y -2=0x 2-y 2=4,解得⎩⎨⎧x =322y =-22,由⎩⎨⎧x =ρcos θy =ρsin θ,解得ρ=5,即M 的极半径是5.23.(本小题满分10分)选修4—5不等式选讲: 已知函数f (x )=|x +1|–|x –2|. (1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2–x +m 的解集非空,求m 的取值范围.[解析] (1) f (x )=|x +1|–|x –2|可等价为f (x )=⎩⎪⎨⎪⎧-3,x ≤-12x -1,-1<x <23,x ≥2.由f (x )≥1可得:①当x ≤-1时显然不满足题意; ②当-1<x <2时,2x -1≥1,解得x ≥1;③当x ≥2时,f (x )=3≥1恒成立.综上,f (x )≥1的解集为{x |x ≥1}. (2)不等式f (x )≥x 2-x +m 等价为f (x )-x 2+x ≥m ,令g (x )=f (x )-x 2+x ,则g (x )≥m 解集非空只需要[g (x )]max ≥m .而g (x )=⎩⎪⎨⎪⎧-x 2+x -3,x ≤-1-x 2+3x -1,-1<x <2-x 2+x +3,x ≥2.①当x ≤-1时,[g (x )]max =g (-1)=-3-1-1=-5; ②当-1<x <2时,[g (x )]max =g (32)=-⎝⎛⎭⎫322+3·32-1=54;③当x ≥2时,[g (x )]max =g(2)=-22+2+3=1. 综上,[g (x )]max =54,故m ≤54.∴m 的取值范围为 (-∞,54].。