34合并同类项(二)
34合并同类项课件1
- 2 x2 y 5
的系数是
-
2y x 共有三项,其中
52, 2y 的系数是2 ,
-
2 5
x
x的
2
y
系数是-1。
合并同类项
小结:
1、一个代数式的系数是它的数字
因数。
2、一个代数式的项数是这个代数
式的加数的个数。
请填下面两表:
代数 1000 -m 式
系数 1000 -1
-0.5a -0.5
-C5 3 xyz 14
第三章 第四节
+ =2
复习提问: 1、字母可以表示任何数吗?
2、请列出八个不同的代数式。
1、字母可以表示任何数。
2、像3, st,x+y, 2(m+n), a b, A , a3 ,x+2x+(x+1) 等都是代数式 。
3、单独一个数字或一个字母 也是代数式(如3,A)。
小明为一个矩形的娱乐场提供了如下的设计方案,其中 半圆形休息区和长方形形游泳区以外的地方都是绿地
是-1, 项- 81π n2 的系数是- 81π .
一、填空:
1、a 2b 3c 是 a , 2b , -3c 三项的
和,它是一个三项式 。
2、 m2
14 n 3 7
5 6
mn
n
是
m2
n 14 n3,7 , Nhomakorabea5 6
mn
,与
的和,它是
一个 四项 式。
3、-X-Y 是 -X 与 -Y 的和,
它是一个二项 式。
-1
3 14
代数式
项数
x+5.1y 2
x2 1 x3 1 x
合并同类项(基础训练)(解析版) (2)
3.4 合并同类项【基础训练】一、单选题1.计算:23322a b b a -+=( )A .0B .23a bC .322a b -D .232a b2.若23m x y 或2n xy -是同类项,那么m n -=( )A .0B .1C .1-D .2-3.下面合并同类项正确的是( )A .23325x x x +=B .2221a b a b -=C .220xy xy -+=D .0ab ab --= 4.单项式2x a b 与3y a b -是同类项,则x y -等于( )A .2B .1C .2-D .1-5.下列各组中,是同类项的是( )A .2a 和2bB .23和32C .23m n 和2mn -D .xyz 和4yz 6.下列计算结果正确的是( )A .325x y xy +=B .22523x x -=C .222a a a +=D .22243x y x y x y -= 7.若523m x y +与382n x y 的差是一个单项式,则代数式n m -的值为( )A .-8B .9C .-9D .-68.下列各式与23a b 是同类项的是( )A .23x yB .2a b -C .25a bcD .2ab9.下列计算正确的是( ).A .5x -3x =2xB .2243y y -=C .23x y xy +=D .235325x x x += 10.下列各式中,与3x y 是同类项的是( )A .2xy -B .32x y -C .3xy -D .22x y -11.若23x y -与m x y 是同类项,则m 的值为( )A .3-B .1C .2D .312.下列各组单项式中,是同类项的是( ).A .a 3和23B .-ab 和3abcC .6x 2y 和4yx 2D .3m 3n 2和8m 2n 313.下列计算正确的是( )A .422b b -=B .22385a a a -=-C .22223m n nm m n -=-D .33a b ab +=14.下列单项式中,与2ab 是同类项的是( )A .214ab - B .22a b C .22a bD .3ab 15.下列运算正确的是( )A .2325a a a +=B .333a b ab+= C .2222a bc a bc a bc -= D .523a a a -=16.下列计算正确的是( )A .220ab ba -=B .220a b ab -=C .325a a a +=D .235a b ab+= 17.若单项式2m a b 与312n a b 的和仍是单项式,则m n 的值是() A .9 B .8 C .6D .3 18.下列各式运算正确的是( )A .235a b ab +=B .2m m m -=C .222223m n m n +=D .1455mn nm mn -+=-19.下列各组式子中,是同类项的是( )A .23x y 与23xy -B .3x 与2yC .3xy 与2yx -D .3xy 与3yz20.下列计算正确的是( )A .a 2+2a 2=3a 4B .a 2﹣b 2=0C .5a 2﹣a 2=4a 2D .2a 2﹣a 2=2 21.下列各组中,不是同类项的是( )A .312a y 与323ya B .232abx 与353bax C .26a mb 与2a bm -D .313x y 与313xy 22.下列说法正确的是( )A .22a b 和212a b -是同类项B .22x -的系数是2C .单项式2x y 的次数是2D .213x π的系数是13 23.下列计算正确的是( )A .235x y xy +=B .32ab ab ab -=C .23a a a +=D .325a a a -+=- 24.单项式12b xy +-与7313a x y -是同类项,则下列单项式与它们属于同类项的是( ) A .35x y -B .33xyC .333x yD .xy 25.如果单项式2312a x y +-与1b y x -是同类项,那么a b ,的值分别为( ) A .2a =,4b =B .1a =-,2b =C .1a =-,4b =D .2a =-,2b = 26.下列式子正确的是( )A .332286xy y x -=-B .32523a b ab a -=C .2242a a a +=D .2221433xy y x xy --=- 27.下列运算正确的是( )A .22223x x x -=-B .220x y xy -=C .2235a a a +=D .532m m -= 28.下列运算正确的是( )A .2235m m m +=B .2332330x y y x -=C .624x x -=D .325x y xy += 29.下列运算结果正确的是( )A .437x y xy +=B .642xy xy xy -=C .22235x x +=D .2254x x -= 30.如果单项式312m x y +-与432n x y +的差是单项式,那么()2021m n +的值为( )A .1-B .0C .1D .20212二、填空题 31.若单项式2n x y -与53m x y 合并后得结果还是单项式,则m n -=_______.32.若2254m n x y x y x y -+=-,则m n +=__________.33.已知代数式x ﹣2y 的值是3,则代数式y +2x +1﹣5y 的值是_____.34.如果m 13a b +与4n 73a b +-是同类项,那么m n +的值为______.35.若123m x y +与3n x y 是同类项,则m n += ______ .36.如果单项式13a x y +-与212b y x 是同类项,则2a b a b -+--的值是____________. 三、解答题37.(1)计算:20191(1)(2 1.25)[4(8)]3---⨯⨯--. (2)化简:()22323(2)x xy x y xy y --+-+.38.已知单项式21925x m n -和5325y m n 是同类项,求代数式152x y -的值. 39.合并同类项:(1)222p p p ---(2)4523x y y x -+-(3)23233542x x x x x ---++(4)224()2()5()3()a b a b a b a b ---+-+-40.已知单项式23m a bc 和322n a b c -是同类项,且q 是最大的负整数.求代数式m +n -q 的值. 41.(1)若3x 3y m 与﹣2x n y 2是同类项,求m n 的值;(2)若﹣x a y 4与4x 4y 4b 的和单项式,求(﹣1)a b 2012的值.42.如果关于x 、y 的单项式2mx 3y 与﹣5nx 2a ﹣3y 的和仍是单项式.(1)求(7a ﹣22)2015的值.(2)若2mx 3y ﹣5nx 2a ﹣3y =0,且xy≠0,求(2m ﹣5n )2014的值.43.已知单项式3m x y 与25n x y -是同类项,求m n +的值.44.合并同类项(1)22732a a a a ++-(2)()223251x x x -+- 45.合并同类项:⑴223243;a a a a -+-+ ⑴223b 472;a ab ab ab --+-46.合并同类项:(1)225682a a a a ---(2)()323222323x y xy x y xy x y --+- 47.有理数,,a b c 在数轴上的位置如图所示:(1)用>或<填空:b c -_______0,+a b _______0,c a -______0.(2)化简:||||||||a b a c b c a +-++--.48.已知多项式22332255+--x xy xy x y 的次数是a ,单项式32b x y -与单项式13c x y 是同类项. (1)将多项式22332255+--x xy xy x y 按y 的降幂排列. (2)求代数式24-c ab 的值.49.有理数a b c ,,在数轴上的位置如图所示:化简:11a b b a c c +------50.化简:(1)22223322x y xy xy x y -+-+(2)22225643a a a a a -+++-51.计算下列各题:(1) (-15)+(+7)-(-3)(2) 4x -5-3(x -2)52.合并同类项(1)4573m n n m +--;(2)()()2222322a b a b --+.53.计算:()()225214382a a a a +-+-+ 54.有理数a 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:2a -________0,4a -________0.(2)化简:|2||4|a a -+-.55.先合并同类项,再求值.(1)222243245x y xy x y ++--,其中2x =,1y =-.(2)22289726x x x x -+-+-,其中1x =-.56.已知-x m -2n y m +n 与-3x 5y 6的和是单项式,求22(2)5()2(2)()m n m n m n m n --+--++的值. 57.(1)要使多项式222233x mx x --+合并同类项后不再出现含x 2的项.求m 的值.(2)已知a ,b 为常数,且24xy 、b axy 、5xy -三个单项式相加得到的和仍是单项式,求a ,b 的值. 58.张老师给学生出了一道题:当20192020a b ==-,时,求: 3323323(763)(363103)a a b a b a a b a b a -+---++-的值.题目出完后,小明说:“老师给的条件20192020a b ==-,是多余的.”小红说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说的有道理?为什么?59.计算下列各题:(1)4592358 -+-. (2)()137********⎛⎫--+⨯- ⎪⎝⎭(3)()2019424631 +÷----.(4)化简:22323ab a ab a ---.60.计算:(1)()2109251311314721422⎛⎫⎛⎫-+-÷-+⨯--- ⎪ ⎪⎝⎭⎝⎭(2)()21012005668213201920.12533π---⎛⎫⎛⎫⨯+-÷-⨯ ⎪ ⎪⎝⎭⎝⎭ (3)()24341023a a a a a a --⋅⋅-÷ 61.计算与合并同类项:(1)+4.7+(﹣4)﹣2.7﹣(﹣3.5)(2)11÷(﹣22)﹣3×(﹣11)(3)16+(﹣2)3+|﹣7|+(18-)×(﹣4) (4)0.25×(﹣2)2﹣[﹣4÷(23-)2+1]÷(﹣1)2020 (5)5x 4+3x 2y ﹣10﹣3x 2y+x 4﹣1(6)(7y ﹣3z)﹣(8y ﹣5z)(7)2(2a 2+9b)+3(﹣5a 2﹣6b)(8)﹣3(2x 2﹣xy)﹣4(x 2﹣xy ﹣6)62.直接写出下列各题结果()()-5-7+= , 7--7= , 3x x -= ,()-6-4= , 2-23⎛⎫÷= ⎪⎝⎭22-42a a += , ()1--63⎛⎫⨯= ⎪⎝⎭, 0-1-3= , 22-m m -= , ()3-26+= , ()351-1-2⎛⎫⨯= ⎪⎝⎭ 2234-77x x -= ,。
合并同类项、加(去)括号、准确数
合并同类项、加(去)括号、准确数知识点一:合并同类项把多项式中的同类项合并成一项,叫做合并同类项。
要点诠释:1、合并同类项的法则是:同类项的系数相加,所得的结果作为合并后所得项的系数,字母和字母的指数不变。
比如:在多项式中遇到同类项,可以运用交换律、分配律合并,如===2、合并同类项的一般步骤:(1)先判断谁与谁是同类项;注:所有的常数项都是同类项,合并时把它们结合在一起,运用有理数的运算法则合并。
(2)利用法则合并同类项;注:①合并同类项时,系数相加,字母部分不变,不能把字母的指数也相加,如 2a+5a≠7a2。
②如果两个同类项的系数互为相反数,合并同类项后,结果为0。
③合并同类项时,只能把同类项合并成一项,不是同类项的不能合并,不能合并的项,在每一步运算中不要漏掉。
(3)写出合并后的结果。
注:合并同类项时,只要多项式中不再有同类项,就是最后的结果,结果可能是单项式,也可能是多项式。
知识点二:去括号与添括号去括号法则:括号前是“﹢”号,把括号和它前面的“﹢”号去掉,括号里的各项都不变符号;括号前是“﹣”号,把括号和它前面的“﹣”号去掉,括号里的各项都改变符号。
要点诠释:1、括号前面有数字因数时,应利用乘法分配律,先将该数与括号内的各项分别相乘,再去掉括号,以避免发生符号错误。
2、在去掉括号时,括号内的各项或者都要改变符号,或者都不改变符号,而不能只改变某些项的符号。
3、一定要注意括号前面的符号,它是去掉括号后,括号内各项是否变号的依据。
如括号前面是“-”号,去括号时常忘记改变括号内每一项的符号,出现错误,或括号前有数字因数,去括号时没把数字因数与括号内的每一项相乘,出现漏乘的现象,只有严格按照去括号法则,才能避免出错。
添括号法则:所添括号前面是“+”号,括到括号里的各项都不变符号;所添括号前面是“-”号,括到括号里的各项都改变符号.要点诠释:1、添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“+”号或“-”号也是新添的,不是原来多项式的某一项的符号“移”出来的。
《合并同类项》 教案精品 2022年数学
2.2 整式的加减第1课时 合并同类项1.使学生理解多项式中同类项的概念,会识别同类项;(重点)2.使学生掌握合并同类项法那么,能进行同类项的合并.(重点,难点)一、情境导入周末,你和爸爸妈妈要外出游玩,中午决定在外面用餐,爸爸、妈妈和你各自选了要吃的东西,爸爸选了一个汉堡和一杯可乐,妈妈选了一个汉堡和一个冰淇淋,你选了一对蛋挞和一杯可乐,买的时候你该怎么向效劳员点餐?生活中处处有数学的存在.可以把具有相同特征的事物归为一类,在多项式中也可以把具有相同特征的单项式归为一类.自主探索:把以下单项式归归类,并说说你的分类依据.-7ab 、2x 、3、4ab 2、6ab . 二、合作探究 探究点一:同类项【类型一】 同类项的识别指出以下各题的两项是不是同类项,如果不是,请说明理由.(1)-x 2y 与12x 2y ;(2)23与-34;(3)2a 3b 2与3a 2b 3; (4)13xyz 与3xy . 解析:根据同类项的定义:所含字母相同,并且相同字母的指数也相同,对各式进行判断即可.解:(1)是同类项,因为-x 2y 与12x 2y 都含有x 和y ,且x 的指数都是2,y 的指数都是1;(2)是同类项,因为23与-34都不含字母,为常数项.常数项都是同类项;(3)不是同类项,因为2a 3b 2与3a 2b 3中,a 的指数分别是3和2,b 的指数分别为2和3,所以不是同类项;(4)不是同类项,因为13xyz 与3xy 中所含字母不同,13xyz 含有字母x 、y 、z ,而3xy 中含有字母x 、y .所以不是同类项.方法总结:(1)判断几个单项式是否是同类项的条件:所含字母相同;相同字母的指数分别相同.(2)同类项与系数无关,与字母的排列顺序无关.(3)常数项都是同类项.【类型二】 两个单项式是同类项,求字母指数的值假设-5x 2y m 与x ny 是同类项,那么m +n 的值为( ) A .1 B .2 C .3 D .4 解析:∵-5x 2y m和x ny 是同类项,∴n =2,m =1,m +n =1+2=3, 应选C.方法总结:注意掌握同类项定义中的两个“相同〞:(1)所含字母相同;(2)相同字母的指数相同,解题时易混淆,因此成了中考的常考点.探究点二:合并同类项将以下各式合并同类项. (1)-x -x -x ;(2)2x 2y -3x 2y +5x 2y ;(3)2a 2-3ab +4b 2-5ab -6b 2;(4)-ab 3+2a 3b +3ab 3-4a 3b .解析:逆用乘法的分配律,再根据合并同类项的法那么“把同类项的系数相加,所得结果作为系数,字母和字母的指数不变〞进行计算.解:(1)-x -x -x =(-1-1-1)x =-3x ;(2)2x 2y -3x 2y +5x 2y =(2-3+5)x 2y =4x 2y ;(3)2a 2-3ab +4b 2-5ab -6b 2=2a 2+(4-6)b 2+(-3-5)ab =2a 2-2b 2-8ab ;(4)-ab 3+2a 3b +3ab 3-4a 3b =(-1+3)ab 3+(2-4)a 3b =2ab 3-2a 3b .方法总结:合并同类项的时候,为了不漏项,可用不同的符号(如直线、曲线、圆圈)标记不同的同类项.探究点三:化简求值化简求值:2a 2b -2ab +3-3a 2b +4ab ,其中a =-2,b =12.解析:原式合并同类项得到最简结果,把a 与b 的值代入计算即可求出值.解:2a 2b -2ab +3-3a 2b +4ab =(2-3)a 2b +(-2+4)ab +3=-a 2b +2ab +3.将a =-2,b =12代入得原式=-(-2)2×12+2×(-2)×12+3=-1.方法总结:对多项式化简求值时,一般先化简,即先合并同类项,再代入值计算结果,在算式中代入负数时,要注意添加负号.探究点四:合并同类项的应用有一批货物,甲可以3天运完,乙可以6天运完,假设共有x 吨货物,甲乙合作运输一天后还有________吨没有运完.解析:甲每天运货物的13,乙每天运货物的16,那么两个人合作运输一天后剩余的货物为x -13x -16x =12x 吨,故填12x .方法总结:表达了数学在生活中的运用.解决问题的关键是读懂题意,找到所求的量之间的关系.三、板书设计1.同类项:所含字母相同,并且相同的字母指数也分别相同. 判断同类项的条件:两相同,两无关2.合并同类项法那么:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母局部不变.数学教学要紧密联系学生的生活实际,本节课从学生已有的知识和经验出发,从实际问题入手,引出合并同类项的概念.通过独立思考、讨论交流等方式归纳出合并同类项的法那么,通过例题教学、练习等方式稳固相关知识.教学中应激发学生主动参与的学习动机,培养学生思维的灵活性.第3课时 多项式1.理解多项式的概念;(重点)2.能准确迅速地确定一个多项式的项数和次数; 3.能正确区分单项式和多项式.(重点)一、情境导入 列代数式:(1)长方形的长与宽分别为a 、b ,那么长方形的周长是________; (2)图中阴影局部的面积为________;(3)某班有男生x 人,女生21人,那么这个班的学生一共有________人. 观察我们所列出的代数式,是我们所学过的单项式吗?假设不是,它又是什么代数式? 二、合作探究探究点一:多项式的相关概念【类型一】 单项式、多项式与整式的识别指出以下各式中哪些是单项式?哪些是多项式?哪些是整式?x 2+y 2,-x ,a +b3,10,6xy +1,1x ,17m 2n ,2x 2-x -5,2x 2+x,a 7.解析:根据整式、单项式、多项式的概念和区别来进行判断. 解:2x 2+x ,1x的分母中含有字母,既不是单项式,也不是多项式,更不是整式. 单项式有:-x ,10,17m 2n ,a 7;多项式有:x 2+y 2,a +b3,6xy +1,2x 2-x -5;整式有:x 2+y 2,-x ,a +b3,10,6xy +1,17m 2n ,2x 2-x -5,a 7. 方法总结:(1)分母中含有字母(π除外)的式子不是整式;(2)单项式和多项式都是整式;(3)单项式不含加、减运算,多项式必含加、减运算.【类型二】 确定多项式的项数和次数写出以下各多项式的项数和次数,并指出是几次几项式. (1)23x 2-3x +5; (2)a +b +c -d ;(3)-a 2+a 2b +2a 2b 2.解析:根据多项式的项数是多项式中单项式的个数,多项式的次数是多项式中次数最高的单项式的次数,可得答案.解:(1)23x 2-3x +5的项数为3,次数为2,二次三项式;(2)a +b +c -d 的项数为4,次数为1,一次四项式;(3)-a 2+a 2b +2a 2b 2的项数为3,次数为4,四次三项式.方法总结:(1)多项式的项一定包括它的符号;(2)多项式的次数是多项式里次数最高项的次数,而不是各项次数的和;(3)几次项是指多项式中次数是几的项.【类型三】 根据多项式的概念求字母的取值-5x m +104x m -4x m y 2是关于x 、y 的六次多项式,求m 的值,并写出该多项式. 解析:根据多项式中次数最高的项的次数叫做多项式的次数可得m +2=6,解得m =4,进而可得此多项式.解:由题意得m+2=6,解得m=4,此多项式是-5x4+104x4-4x4y2.方法总结:此题考查了多项式,解题的关键是弄清多项式次数是多项式中次数最高的项的次数.【类型四】与多项式有关的探究性问题假设关于x的多项式-5x3-mx2+(n-1)x-1不含二次项和一次项,求m、n的值.解析:多项式不含二次项和一次项,那么二次项和一次项系数为0.解:∵关于x的多项式-5x3-mx2+(n-1)x-1不含二次项和一次项,∴m=0,n-1=0,那么m=0,n=1.方法总结:多项式不含哪一项,那么哪一项的系数为0.探究点二:多项式的应用如图,某居民小区有一块宽为2a米,长为b米的长方形空地,为了美化环境,准备在此空地的四个顶点处各修建一个半径为a米的扇形花台,在花台内种花,其余种草.如果建造花台及种花费用每平方米为100元,种草费用每平方米为50元.那么美化这块空地共需多少元?解析:四个角围成一个半径为a米的圆,阴影局部面积是长方形面积减去一个圆面积.解:花台面积和为πa2平方米,草地面积为(2ab-πa2)平方米.所以需资金为[100πa2+50(2ab-πa2)]元.方法总结:用式子表示实际问题的数量关系时,首先要分清语言表达中关键词的含义,理清它们之间的数量关系和运算顺序.三、板书设计多项式:几个单项式的和叫做多项式.多项式的项:多项式中的每个单项式叫做多项式的项.常数项:不含字母的项叫做常数项.多项式的次数:多项式里次数最高项的次数叫做多项式的次数.整式:单项式与多项式统称整式.这节课的教学内容并不难,如果采用讲授的方式,很快90%以上的学生都可以理解、掌握.虽然单纯地从学生接受知识的角度,讲授法应该效果更好,但同时学生的自主学习的习惯和能力也不知不觉地被忽略了.事实证明,学生没有养成一个良好的自主学习的习惯,不会自己阅读、分析题意,他们今后的学习会受到很大的制约.。
3.4 合并同类项(含答案)-
3.4 合并同类项(一)◆基础训练一、选择题1.下列各组中的两项,不是同类项的是().A.a2b与-3ab2B.-x2y与2yx2C.2πr与π2r D.35与53 2.已知34x2与3n x n是同类项,则n等于().A.4 B.3 C.2或4 D.23.代数式7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3的值().A.与字母a,b都有关B.只与a有关C.只与b有关D.与字母a,b都无关二、填空题4.若-3x m-1y4与13x2y n+2是同类项,则m=_______,n=______.5.若│a-2b│+(b-3c)2=0,那么a+b-9c的值是________.三、解答题6.合并下列各式中的同类项(1)15x+4x-10x;(2)-8ab+ba+9ab;(3)-p2-p2-p2;(4)3x2y-5xy2+2x3-7x2y+6-4x3-xy2+10;(5)-4a4-8a3+6a+1-7a+2+6a3+4a4.7.合并下列同类项,并求各式的值.(1)3c2-8c+2c3-13c2+2c-2c3+3,其中c=-4;(2)3y4-6x3y-4y4+2yx3,其中x=-2,y=3.◆能力提高一、填空题8.已知2a x b n-1与3a2b2m(m为正整数)是同类项,那么(2m-n)=_______.9.当k=________时,代数式x6-5kx4y3-4x6+15x4y3+10中不含x4y3项.二、解答题10.已知-2a2b y+1与3a x b3是同类项,试求代数式2x3-3xy+6y2的值.11.如果-4x a y a+1与mx5y b-1的和是3x5y n,求(m-n)(2a-b)的值.◆拓展训练12.已知xy+y2=3,x2+xy=-12,求2x2+3xy+y2的值.答案:1.A 2.D 3.D 4.3,2 5.06.(1)9x,(2)2ab,(3)-3p2,(4)-2x3-4x2y-6xy2+16,(5)-2a3-a+3 7.(1)-10c2-6c+3,-133,(2)-y4-4x3y,158.1 9.1 2510.28 11.a=5,b=7,m=7,n=6,值为3 12.23.4 合并同类项(二)◆基础训练一、选择题1.已知代数式ax+bx合并后的结果是零,则下列结论正确的是().A.a=b=0 B.a=b=x=0 C.a+b=0 D.a-b=0 2.下列计算正确的是().A.3a-2a=1 B.-m-m=-m2C.7x2y2-7x2y3=0 D.2x2+2x2=4x2 3.当a=-1时,代数式-5a n-a n+8a n-3a n-a n+1(n为正整数)的值为().A.a-2 B.-a或0 C.0 D.1或-1 二、填空题4.合并13a-14a-15a=________.5.一个三角形的第一边长是3a+2b(3a+2b>2),第二边长比第一边长大b-1(b>1),第三边长比第二边长大2,则该三角形的周长为_________.三、解答题6.若│x+2│+(y-12)2=0,求代数式13x3-2x2y+23x3+3x2y+5xy2+7-5xy2的值.7.观察下列代数式:-x,2x2,-3x3,4x4,-5x5,…,-19x19,20x20,…,你能写出第n个代数式吗?并写出第2007个代数式.8.当a=-34,b=12时,求2(2a+b)2-3(2a+b)-8(2a+b)2+6(2a+b)的值.◆能力提高一、填空题9.把a+b当作一个因式,合并代数式2(a+b)2+(a+b)+3(a-b)2-4(a+b)中的同类项得________.10.已知2x2+xy=10,3y2+2xy=6,则4x2+8xy+9y2的值为_________.二、解答题11.如果单项式2ax m y与单项式5bx2m-3y是关于x,y的单项式,并且它们是同类项.(1)求m的值;(2)若2ax m y+5bx2m-3y=0,且xy≠0,求(2a+5b)1999+2m的值.12.初一(1)班与初一(2)班师生外出旅游,(1)班有教师6名,学生32名,(2)•班有教师4名,学生25名.教师的旅游费用为每人m元,学生的学生为每人n元,•因是团体给予优惠,教师按8折优惠,学生按6折优惠,•问此次旅游师生共花费多少钱?•计算当m=40元,n=30元时的总费用.◆拓展训练13.有这样一道题,“当x=1213,y=-0.78时,求代数式7x3-6x3y+3x2y+3x3+6x3y-3x2y-10x3的值”.有一位同学指出,题目中给出的条件x=1213,y=-0.78是多余的,•他的说法有道理吗?答案:1.C 2.D 3.C 4.-760a 5.9a+8b6.x=-2,y=12,原式=x3+x2y+7=17.(-1)n nx n或n为奇数时,-nx n,n为偶数时,nx n,第2007个代数式为-2007x2007.8.原式=-6(2a+b)2+3(2a+b)=-99.5(a+b)2-3(a+b)10.3811.(1)3,(2)0 12.8m+34.2n,1346元13.有道理,因为原式化简后为0.。
七上计算:合并同类项50题(含答案)
合并同类项50题(一)1.5279a b a b --++ 2.223462x y y x -++.3.22753268x x x x --+-+4.12523a b a b ++-.5.22221350.7544ab a b a b ab --+6.322383649a a b a b a -+-7.223254xy y xy y --+-8.22676598a a a a +----9.222243224a b ab a b ab ++-+-.10.2223465x x x x -+--11.22223x xy x xy --+ 12.2267946a b a b +-+-+13.722a b a b +--. 14.222233224y x xy x y +---.15.2222324332x xy y xy y x +--+-16.22224335ab a b ab a b -+-17.22223567x y xy xy x y -+-18.2274233a a a a +-++19.3245a a --+.20.3233354229x x x x x x -+--+++-21.22222317326mn n m mn n m --+ 22.2332572x y x x x y -+--+23.2213(24)2(5)2x x x x ---+-+-. 24.2212(2)(612)102x y x y ---+.25.2(53)3(3)a a b a b +---26.23(2)m n --27.13(2)2(4)20092x y x y ---++.28.()(43)(53)a b a b c a b c --+---+-.29.222294(23)4m m mn n n --++.30.222212()(3)2x y x x x y +--.31.22225(3)(3)a b ab ab a b --+ 32.221[7(43)3]2x x x x ----33.22(24)(51)a a a a -+--- 34.22(4)8m mn n n ---.35.2242(231)a b ab a b ab +-+-36.116(1)(21)23x x +--37.[5(2)2]x y x z y --+-38.224(32)(21)x x x x +-+--.39.3(34)x -+40.22(212)(1)a a a a -+--+41.43[3(42)8]x x x ---+ 42.223(2)2(3)a b b a b b +--43.2()2()a a b a b ++-+ 44.22222(3)(5)1a b ab ab a b --++45.32234(3)(25)a b b a --+-+46.3(1)(5)x x ---47.22213(54)62a a a a a -+-+48.22(621)2(342)a a a a +---+49.223(2)2(3)a ab ab b ---+50.已知23A x =-,21312B x x =--,求2A B -的值.合并同类项50题(一)参考答案与试题解析1.计算:5279a b a b --++【解答】解:5279a b a b --++(57)(29)a a b b =-++-+27a b =+.2.化简:223462x y y x -++.【解答】解:原式223462x y y x =-++22(32)(46)x x y y =++-+252x y =+.3.22753268x x x x --+-+【解答】解:原式235x x =-+.4.12523a b a b ++-. 【解答】解:原式12(5)()23a ab b =++- 11123a b =+. 5.22221350.7544ab a b a b ab --+ 【解答】解:原式222213(0.75)(5)44ab ab a b a b =+-+ 22234ab a b =- 6.322383649a ab a b a -+- 【解答】解:322383649a ab a b a -+- 33228(3)(64)9a a ab a b =-+-+ 321929a ab =-. 7.化简:223254xy y xy y --+-【解答】解:223254xy y xy y --+-22(35)(24)xy xy y y =-+-+226xy y =-.8.化简:22676598a a a a +----【解答】解:原式22(65)(79)(68)a a a a =-+--+2214a a =-+-.9.合并同类项:222243224a b ab a b ab ++-+-.【解答】解:222243224a b ab a b ab ++-+-2222(42)(34)(2)a a b b ab ab =-+++-2227a b ab =++.10.合并同类项:2223465x x x x -+--【解答】解:原式22(24)(36)5x x x x =++---2695x x =--.11.化简:22223x xy x xy --+【解答】解:原式22223x x xy xy =--+22(2)(23)x x xy xy =-+-+2x xy =-+.12.2267946a b a b +-+-+【解答】解:原式22(64)(7)(96)a a b b =++-+-+21063a b =+-.13.化简:722a b a b +--.【解答】解:722a b a b +--(72)(12)a b =-+-5a b =-.14.合并同类项:222233224y x xy x y +---.【解答】解:原式22(32)2(34)x xy y =--+-222x xy y =--15.2222324332x xy y xy y x +--+-【解答】解:原式2222(32)(23)(43)x xy y x xy y =-+-+-+=--. 16.22224335ab a b ab a b -+-【解答】解:原式22224335ab ab a b a b =+--2278ab a b =-.17.化简:22223567x y xy xy x y -+-【解答】解:原式2222(37)(65)4x y xy x y xy =-+-=-+.18.2274233a a a a +-++【解答】解:原式22(72)(43)3a a a a =-+++2573a a =++.19.计算;3245a a --+.【解答】解:3245a a --+(34)(25)a a =-+-+3a =-+.20.3233354229x x x x x x -+--+++-【解答】解:3233354229x x x x x x -+--+++-3332(32)5(2)(49)x x x x x x =-++++-+--2513x x =+-.21.22222317326mn n m mn n m --+ 【解答】解:原式22317(1)326mn =--+ 283mn =-. 22.2332572x y x x x y -+--+【解答】解:233223572322x y x x x y x y x -+--+=--.23.去括号,合并同类项:2213(24)2(5)2x x x x ---+-+-.【解答】解:原式2223612210151611x x x x x x =-++-+-=-++.24.先去括号,再合并同类项:2212(2)(612)102x y x y ---+. 【解答】解:2212(2)(612)102x y x y ---+ 22243610x y x y =--++2210x y =-++.25.去括号,合并同类项:2(53)3(3)a a b a b +---【解答】解:2(53)3(3)a a b a b +---10639a a b a b =+--+83a b =+.26.化简:23(2)m n --【解答】解:原式236m n =-+.27.去括号,并合并同类项:13(2)2(4)20092x y x y ---++. 【解答】解:13(2)2(4)2009638200914220092x y x y x y x y x y ---++=-+--+=-++. 28.去括号,合并同类项:()(43)(53)a b a b c a b c --+---+-.【解答】解:原式435325a b a b c a b c a b =-++----+=--.29.计算:222294(23)4m m mn n n --++.【解答】解:原式2222981244m m mn n n =-+-+212m mn =+.30.化简:222212()(3)2x y x x x y +--. 【解答】解:原式222223x y x x x y =+-+2232x y x =-.31.化简:22225(3)(3)a b ab ab a b --+【解答】解:原式22221553a b ab ab a b =---22126a b ab =-.32.计算:221[7(43)3]2x x x x ----【解答】解:原式2217(43)32x x x x =-+-+ 22174332x x x x =-+-+ 27332x x =--. 33.计算:22(24)(51)a a a a -+---【解答】解:原式222451a a a a =-+-++, 2653a a =-++.34.化简:22(4)8m mn n n ---.【解答】解:原式2288m mn n n =-+- 22m mn =-.35.计算:2242(231)a b ab a b ab +-+-.【解答】解:原式224462a b ab a b ab =+--+ 52ab =-+.36.116(1)(21)23x x +-- 【解答】解:原式213633x x =+-+ 71933x =+. 37.[5(2)2]x y x z y --+-【解答】解:原式(1052)x y x z y =----, 1052x y x z y =-+++,115x y z =++.38.化简:224(32)(21)x x x x +-+--.【解答】解:原式2243221x x x x =+-+-+, 2224231x x x x =-+-++,224x x =-++.39.3(34)x -+【解答】解:3(34)912x x -+=--.40.化简:22(212)(1)a a a a -+--+【解答】解:原式222121a a a a =-+-+- 2a a =+.41.43[3(42)8]x x x ---+【解答】解:原式439(42)24x x x =-+-- 43361824x x x =-+--1712x =-+.42.化简:223(2)2(3)a b b a b b +--【解答】解:原式223626a b b a b b =+-+ 212a b b =+.43.化简:2()2()a a b a b ++-+【解答】解:原式222a a b a b =++-- a b =-.44.22222(3)(5)1a b ab ab a b --++【解答】解:原式22226251a b ab ab a b =---+ 22571a b ab =-+45.化简:32234(3)(25)a b b a --+-+【解答】解:原式322341225a b b a =-+-+ 3210a b =+.46.化简:3(1)(5)x x ---【解答】解:原式335x x =--+22x =+.47.计算:22213(54)62a a a a a -+-+ 【解答】解:原式222135462a a a a a =---+ 21112a a =--. 48.化简:22(621)2(342)a a a a +---+【解答】解:原式22621684a a a a =+--+- 22107a a =+-.49.化简:223(2)2(3)a ab ab b ---+【解答】解:原式22(36)(62)a ab ab b =---+ 223662a ab ab b =-+-2232a b =-.50.已知23A x =-,21312B x x =--,求2A B -的值. 【解答】解:221232(31)2A B x x x -=---- 61x =-.。
人教版七年级数学上册同步备课 2.2.1 合并同类项(教学设计)
2.2.1 合并同类项教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第二章“整式的加减” 2.2.1 合并同类项,内容包括:同类项的概念、合并同类项的法则、在合并同类项的基础上进行化简、求值运算.2.内容解析本节课是学生进入初中阶段后,在学习了用字母表示数,单项式、多项式以及有理数运算的基础上,对同类项进行合并、探索、研究的一个课题.合并同类项是本章的一个重点,其法则的应用是整式加减的基础,也是以后学习解方程、解不等式的基础.另一方面,这节课与前面所学的知识的联系非常密切:合并同类项的法则是建立在有理数的加减运算的基础之上;在合并同类项过程中,要不断运用有理数的运算.可以说合并同类项是有理数加减运算的延伸与拓展.基于以上分析,确定本节课的教学重点为:知道同类项的概念,会识别同类项,理解和熟练应用合并同类项法则.二、目标和目标解析1.目标(1)知道同类项的概念,会识别同类项.(2)掌握合并同类项的法则,并能准确合并同类项.(3)能在合并同类项的基础上进行化简、求值运算.2.目标解析通过观察、对比、分析,理解同类项的定义,能够识别同类项.根据分配律,类比数的计算进行式的计算,从而理解合并同类项的概念,掌握合并同类项的法则.通过例题学习和习题训练,会利用合并同类项的法则化简多项式,会代入具体的值进行计算.经历概念的形成过程和法则的探究过程,培养观察、归纳、概括能力,发展应用意识.激发学生的求知欲,在独立思考和合作交流的基础上,积极参与讨论,敢于发表自己的观点,从交流中获益,体验成功的喜悦.三、教学问题诊断分析学生前面已经学会了有理数运算,掌握了单项式、多项式的有关概念等知识,为本节课的学习做好了铺垫.七年级的学生思维活跃,求知欲强,有比较强烈的自我意识,对观察、猜想、探索性的问题充满好奇.但我所教班级学生受基础知识和思维发展水平的限制,抽象概括能力不强,但学生上进心强,也有强烈的好奇心和好胜心,因而在教学素材的选取与呈现方式以及学习活动的安排上要设置学生感兴趣的并且具有挑战性的内容.学生在找同类项中问题不大,这部分的内容学生自己可以消化,而在合并同类项时对同类项中利用乘法交换律时容易出错,还有在多项式中找同类项时易将单项式的系数找错,特别是系数是负数的,学生容易遗漏,老师要在课堂上加以讲解.基于以上学情分析,确定本节课的教学难点为:能在合并同类项的基础上进行化简、求值运算.四、教学过程设计(一)问题引入1.银行职员数钞票时,把100元票面、50元票面、20元票面、10元票面…的人民币分类来数,在多项式中是否也有类似的情形呢?2.下图中有两个三角形,两个矩形,你能用式子表示这四个图形的面积和吗?四个图形面积和:2a+ab+3a+2ab=___________.(二)合作探究探究一:(1) 运用运算律计算:100×2+252×2=______________;100×(﹣2)+252×(﹣2)=________________;(2) 根据(1)中的方法完成下面的运算,并说明其中的道理:100t+252t=____________.在(1)中,我们知道,根据分配律可得100×2+252×2=(100+252)×2=352×2=704100×(﹣2)+252×(﹣2)=(100+252)×(﹣2)=352×(﹣2)=﹣704在(2)中,式子100t+252t表示100t与252t两项的和.它与(1)中的两个式子有相同的结构,并且字母t代表的是一个因(乘)数,因此根据分配律也应该有100t +252t=(100+252)t=352t.探究二:填空:(1)100t -252t=( )t ;(2)3x 2+2x 2=( )x 2;(3)3ab 2-4ab 2=( )ab 2.上述运算有什么共同特点,你能从中得出什么规律吗?对于上面的(1)(2)(3),利用分配律可得100t -252t=(100-252)t=﹣152t3x 2+2x 2=(3+2)x 2=5x 23ab 2-4ab 2=(3-4)ab 2=﹣ab 2观察:多项式100t -252t 的项100t 和﹣252t ,它们含有相同的字母t ,并且t 的指数都是1;多项式3x 2+2x 2的项3x 2和2x 2,它们含有相同的字母x ,并且x 的指数都是2;多项式3ab 2-4ab 2的项3ab 2和﹣4ab 2,它们含有相同的字母a 、b ,并且a 的指数都是1次,b 的指数都是2次.【归纳】同类项的概念像100t 与﹣252t ,3x 2与2x 2,3ab 2与﹣4ab 2这样,所含字母相同,并且相同字母的指数也相同的项叫做同类项. 几个常数项也是同类项. 例如5与﹣3.(三)考点解析例1.下列各组式子中,是同类项的是( )①2x 3y 5与x 5y 3;①x 6y 7z 与﹣3x 6y 7;①6xy 与53xy ;①x 4与34;①4x 2y 与3yx 2;①﹣100与15A.①①①B.①①①①C.①①①D.只有①【总结提升】同类项的判别方法(1)同类项只与字母及其指数有关,与系数无关,与字母在单项式中的排列顺序无关;(2)抓住“两个相同”:一是所含的字母要完全相同,二是相同字母的指数要相同,这两个条件缺一不可.(3)不要忘记几个单独的数也是同类项.【迁移应用】1.下列单项式中,ab 3的同类项是( )A.a 3b 2B.3a 2b 3C.a 2bD.ab 32.下列各选项中,不是同类项的是( )A.3a 2b 和﹣5ba 2B.12x 2y 和12xy 2C.6和23D.5x n 和﹣3x n 43.在多项式x 3﹣x+4﹣6x 3﹣5+7x 的每一项中,_____与x 3,____与﹣x ,____与4分别是同类项.(四)自学导航因为多项式中的字母表示的是数,所以我们也可以运用交换律、结合律、分配律把多项式中的同类项进行合并.例如,4x 2+2x +7+3x -8x 2-2=4x 2-8x 2+2x +3x +7-2 (交换律)=(4x 2-8x 2)+(2x +3x)+(7-2) (结合律)=(4-8)x 2+(2+3)x +(7-2) (分配律)=-4x 2+5x +5通常我们把一个多项式的各项按照某个字母的指数从大到小(降幂)或者从小到大(升幂)的顺序排列,如-4x 2+5x +5也可以写成5+5x -4x 2.(五)考点解析例2.多项式3x 2y −4x 5y 2+2−xy 3按字母x 的降幂排列正确的是( )A .3x 2y +4x 5y 2+2+xy 3B .−4x 5y 2+3x 2y −xy 3+2C .4x 5y 2+3x 2y −xy 3+2D .2-xy 3+3x 2y -4x 5y 2【分析】把一个多项式按照某一字母的指数从大到小的顺序排列起来,叫做把多项式按照这个字母降幂排列.解:3x 2y −4x 5y 2+2−xy 3按字母x 的降幂排列为−4x 5y 2+3x 2y −xy 3+2【迁移应用】1.代数式3m 2n −4m 3n 2+2mn 3−1按m 的降幂排列,正确的是( )A .−4m 3n 2+3m 2n +2mn 3−1B .2mn 3+3m 2n −4m 3n 2−1C .−1+3m 2n −4m 3n 2+2mn 3D .−1+2mn 3+3m 2n −4m 3n 22.多项式5x2y+y3−3xy2−x3按y的降幂排列是()A.5x2y−3xy2+y3−x3B.y3−3xy2+5x2y−x3C.5x2y−x3−3xy2+y3D.y3−x3+5x2y−3xy2(六)自学导航1.把多项式中的同类项合并成一项叫做合并同类项.2.合并同类项的法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.(七)考点解析例3.合并同类项:(1)4a2﹣9b﹣3a2+8b;(2)x3﹣3x2﹣2+4x2﹣1;(3)﹣4a2b﹣3ab+1+3ab﹣2a2b﹣4.解:(1)4a2﹣9b﹣3a2+8b=(4a2﹣3a2)+(﹣9b+8b) =(4﹣3)a2+(﹣9+8)b=a2﹣b;(2)x3﹣3x2﹣2+4x2﹣1=x3+(﹣3x2+4x2)+(﹣2﹣1)=x3+(﹣3+4)x2+(﹣2﹣1)=x3+x2﹣3;(3)﹣4a2b﹣3ab+1+3ab﹣2a2b﹣4=(﹣4a2b﹣2a2b)+(﹣3ab+3ab)+(1﹣4)=(﹣4﹣2)a2b+(﹣3+3)ab+(1﹣4)=﹣6a2b﹣3.【总结提升】“合并同类项”的方法:一找,找出多项式中的同类项,不同类的同类项用不同的标记标出;二移,利用加法的交换律,将不同类的同类项集中到不同的括号内;三合,将同一括号内的同类项相加即可.【迁移应用】1.﹣4a2b+3ab=(﹣4+3)a2b=﹣a2b,上述运算依据的运算律是( )A.加法交换律B.乘法交换律C.分配律D.乘法结合律2.下列计算正确的是( )A.3x2﹣x2=3B.a+b=abC.3+x=3xD.﹣ab+ab=03.合并同类项:(1)﹣2x2y﹣3x2y+5x2y; (2)3x2+2xy﹣5x﹣3y2﹣6xy.解:(1)原式=(﹣2﹣3+5)x2y=0;(2)原式=(3﹣5)x2+(2﹣6)xy﹣3y2=﹣2x2﹣4xy﹣3y2.例4.求多项式3x2+4x﹣2x2﹣x+x2﹣3x﹣1的值,其中x=﹣3.解:原式=(3x2﹣2x2+x2)+(4x﹣x﹣3x)﹣1=(3﹣2+1)x2+(4﹣1﹣3)x﹣1=2x2﹣1当x=﹣3时,原式=2×(﹣3)2﹣1=17.【迁移应用】1.当x=2025时,3x2+x﹣4x2﹣2x+x2+2024的值为______.2.求多项式a2b﹣6ab﹣3a2b+5ab+2a2b的值,其中a=0.1,b=0.01.解:原式=(a2b﹣3a2b+2a2b)+(﹣6ab+5ab)=(1﹣3+2)a2b+(﹣6+5)ab=﹣ab当a=0.1,b=0.01时,原式=﹣0.1×0.01=﹣0.001.例5.七年级有三个班参加了植树活动,其中一班植树x棵,二班植树棵数比一班的2倍少5,三班植树棵数比一班的一半多10.这三个班一共植树多少棵?x+10)棵,解:根据题意,得二班植树(2x﹣5)棵,三班植树(12所以这三个班一共植树(单位:棵)x+10x+2x﹣5+12)x+(﹣5+10)=(1+2+12=7x+5.2【迁移应用】张老师家住房结构如图所示(图中长度单位:m),他打算在卧室和客厅铺上木地板.请你帮他算一算,他至少需要木地板_____m 2.例6.已知4a 4b m c 与﹣72b 2a n+3c p﹣2的和是单项式,求5m+3n ﹣p 的值. 解:因为4a 4b m c 与﹣72b 2a n+3c p﹣2的和是单项式, 所以4a 4b m c 与﹣72b 2a n+3c p ﹣2是同类项所以4=n+3,m=2,1=p ﹣2,所以m=2,n=1,p=3.当m=2,n=l ,p=3时,5m+3n ﹣p=5×2+3×1﹣3=10.【迁移应用】1.若多项式5a 3b m +a n b 2+1可以进一步合并同类项,则m ,n 的值分别是( )A.m=3,n=1B.m=3,n=2C.m=2,n=1D.m=2,n=32.若13x 3y m+2与12x 1﹣n y 4的差是单项式,则这个差的结果是_________. 3.已知﹣4x a y a+1与mx 5y b ﹣1的和是3x 5y n ,求(m ﹣n)(2a ﹣b)的值.解:因为﹣4x a y a+1与mx 5y b ﹣1的和是3x 5y n ,所以﹣4+m=3,a=5,a+1=b ﹣1=n.所以a=5,b=7,m=7,n=6.所以(m ﹣n)(2a ﹣b)=(7﹣6)×(2×5﹣7)=3.例7.已知关于x ,y 的多项式2x 2+ax ﹣y+6﹣2bx 2+3x ﹣5y ﹣2的值与字母x 的取值无关,求a ,b 的值.解:2x 2+ax ﹣y+6﹣2bx 2+3x ﹣5y ﹣2=(2﹣2b)x 2+(a+3)x+(﹣1﹣5)y+(6﹣2)=(2﹣2b)x2+(a+3)x﹣6y+4因为多项式的值与x的取值无关所以2﹣2b=0,a+3=0,所以a=﹣3,b=1.【迁移应用】1.若关于x的多项式﹣3x2+mx+nx2﹣x+3的值与x的取值无关,则m,n的值分别为( )A.﹣1,﹣3B.1,3C.﹣1,3D.1,﹣32.若关于x,y的多项式mx3+3nxy2﹣2x3﹣xy2+y中不含三次项,则2m+3n的值为______.3.有这样一道题:“当x=1,y=2025时,求多项式7x3﹣6x3y+3x2y+3x3+6x3y﹣3x2y﹣10x3+3的值.”小聪4同学说:“就算不给出x=1,y=2 025,也能求出多项式的值.”他的说法有道理吗?请说明理由.4解:有道理.理由如下:原式=(7+3﹣10)x3+(﹣6+6)x3y+(3﹣3)x2y+3=3.该多项式的值与x,y的取值无关.所以小聪同学的说法有道理.(八)小结梳理五、教学反思。
苏科版数学七年级上册3.4.2《合并同类项》说课稿
苏科版数学七年级上册3.4.2《合并同类项》说课稿一. 教材分析《合并同类项》是苏科版数学七年级上册3.4.2节的内容,本节内容是在学生已经掌握了整式的加减、同类项的概念等知识的基础上进行授课的。
通过本节课的学习,使学生掌握合并同类项的方法和技巧,提高学生解决实际问题的能力。
教材中通过丰富的例题和练习题,引导学生自主探究,合作交流,培养学生的逻辑思维能力和创新能力。
二. 学情分析七年级的学生已经具备了一定的数学基础,对整式的加减、同类项的概念有一定的了解。
但学生在合并同类项时,容易出错,对同类项的判断和合并方法掌握不牢固。
因此,在教学过程中,教师需要关注学生的掌握情况,引导学生正确判断同类项,熟练掌握合并同类项的方法。
三. 说教学目标1.知识与技能目标:使学生掌握合并同类项的概念和方法,能够正确、熟练地合并同类项。
2.过程与方法目标:通过自主探究、合作交流,培养学生解决问题的能力和逻辑思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的创新精神和团队合作意识。
四. 说教学重难点1.教学重点:合并同类项的概念和方法。
2.教学难点:如何引导学生正确判断同类项,熟练掌握合并同类项的方法。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、讨论法等,引导学生自主探究、合作交流。
2.教学手段:利用多媒体课件、黑板、粉笔等传统教学工具,结合学习平台、练习软件等现代教育技术手段,提高教学效果。
六. 说教学过程1.导入新课:通过复习同类项的概念,引出合并同类项的概念和方法。
2.自主探究:学生自主完成教材中的例题,理解并掌握合并同类项的方法。
3.合作交流:学生分组讨论,分享合并同类项的心得体会,互相解答疑问。
4.课堂讲解:教师针对学生的疑问,进行讲解,重点讲解如何判断同类项和合并同类项的方法。
5.练习巩固:学生完成教材中的练习题,教师及时批改,纠正错误,巩固所学知识。
6.拓展提高:教师给出一些实际问题,引导学生运用合并同类项的方法解决,提高学生的应用能力。
合并同类项(5种题型)-2023年新七年级数学核心知识点与常见题型通关讲解练(人教版)(解析版)
合并同类项(5种题型)【知识梳理】一、同类项定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.几个常数项也是同类项. 要点诠释:(1)判断是否同类项的两个条件:①所含字母相同;②相同字母的指数分别相等,同时具备这两个条件的项是同类项,缺一不可.(2)同类项与系数无关,与字母的排列顺序无关. (3)一个项的同类项有无数个,其本身也是它的同类项. 二、合并同类项1. 概念:把多项式中的同类项合并成一项,叫做合并同类项.2.法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变. 要点诠释:合并同类项的根据是乘法分配律的逆运用,运用时应注意: (1)不是同类项的不能合并,无同类项的项不能遗漏,在每步运算中都含有. (2) 合并同类项,只把系数相加减,字母、指数不作运算.【考点剖析】题型一、同类项的概念例1.下列各组单项式中属于同类项的是: ①22m n 和22a b ;②312x y −和3yx ;③6xyz 和6xy ;④20.2x y 和20.2xy ; ⑤xy 和yx −;⑥12−和2.【答案】②⑤⑥【解析】①③两个单项式所含字母不相同;④相同字母的次数不相同. 【变式1】指出下列各题中的两项是不是同类项,不是同类项的说明理由.(1)233x y 与32y x −; (2)22x yz 与22xyz ; (3)5x 与xy ; (4)5−与8解:(1)(4)是同类项;(2)不是同类项,因为22x yz 与22xyz 所含字母,x z 的指数不相等;(3)不是同类项,因为5x 与xy 所含字母不相同.【变式2】下列每组数中,是同类项的是( ) . ①2x 2y 3与x 3y 2 ②-x 2yz 与-x 2y ③10mn 与23mn ④(-a )5与(-3)5 ⑤-3x 2y 与0.5yx 2 ⑥-125与12A .①②③B .①③④⑥C .③⑤⑥D .只有⑥ 【答案】C【变式3】判别下列各题中的两个项是不是同类项: (1)-4a 2b 3与5b 3a 2;(2)2213x y z −与2213xy z −;(3)-8和0;(4)-6a 2b 3c 与8ca 2. 【答案与解析】 (1)-4a2b3与5b3a2是同类项;(2)不是同类项;(3)-8和0都是常数,是同类项;(4)-6a2c 与8ca2是同类项.例2.单项式449m x y −与223n x y 是同类项,求23m n +的值. 【答案】7【解析】由题意,可得:4242m n =⎧⎨=⎩,解得:122m n ⎧=⎪⎨⎪=⎩,所以12323272m n +=⨯+⨯=. 【变式1】315212135m n m n x y x y −−+−若与是同类项,求出m, n 的值. 【答案与解析】因为 315212135m n m n x y x y −−+−与是同类项,所以 315,21 1.m n −=⎧⎨−=⎩ , 解得:2,1.m n =⎧⎨=⎩所以2,1m n ==【变式2】如果单项式﹣x a+1y 3与x 2y b 是同类项,那么a 、b 的值分别为( )A. a=2,b=3B. a=1,b=2C. a=1,b=3D. a=2,b=2 【答案】C解:根据题意得:a+1=2,b=3, 则a=1.【变式3】单项式313a b a b x y +−−与23x y 是同类项,求a b −的值.【答案】32【解析】由题意,可得:231a b a b +=⎧⎨−=⎩,解得:7414a b ⎧=⎪⎪⎨⎪=⎪⎩,所以713442a b −=−=. 题型二、合并同类项例3.合并下列各式中的同类项:(1)-2x 2-8y 2+4y 2-5x 2-5x+5x -6xy (2)3x 2y -4xy 2-3+5x 2y+2xy 2+5 【答案与解析】解: (1)-2x2-8y2+4y2-5x2-5x+5x-6xy=(-2-5)x2+(-8+4)y2+(-5+5)x-6xy =-7x2-4y2-6xy (2)3x2y-4xy2-3+5x2y+2xy2+5=(3+5)x2y+(-4+2)xy2+(-3+5)=8x2y-2xy2+2 【变式1】合并同类项:(1)22213224ab b a ab −+ (2)22222344x xy y xy y x −++−−; 解:2222213133(1).2(2)24244ab b a ab ab ab −+=−+=−;2222222222(2).2344(2)(4)(34)3x xy y xy y x x x xy xy y y x xy y−++−−=−+−++−=+−【变式2】合并下列同类项: (1)2215232x x x x −+−+−; (2)333332m n m n −−+;(3)2141732733m m a a a a −−+−+−.【答案】(1)211232x x −−+;(2)332m n −+;(3)25037a a m −−.【解析】(1)原式222111(3)(2)(5)2322x x x x x x =−+−−++=−−+;(2)原式333333(3)22m m n n m n =−+−+=+()-; (3)原式22411503(2)(7)33377a a a a m m a a m =+−+−+−−=−−.【变式3】下列运算中,正确的是( ) A. 3a+2b=5ab B. 2a 3+3a 2=5a 5 C. 3a 2b ﹣3ba 2=0 D. 5a 2﹣4a 2=1【答案】C解:3a 和2b 不是同类项,不能合并,A 错误; 2a3+和3a2不是同类项,不能合并,B 错误; 3a2b ﹣3ba2=0,C 正确;5a2﹣4a2=a2,D 错误, 故选:C .【变式4】合并下列同类项 (1)2222210.120.150.12x y x y y x yx +−+; (2)122121342n n n n n x y x y y x y x +++−−−;(3)2220.86 3.25a b ab a b ab a b −−++.【答案】(1)22220.620.150.1x y x y y x +−; (2)4n n x y −; (3)21.4a b ab −−. 【解析】(1)原式2222222221(0.12)0.150.10.620.150.12x y yx x y y x x y x y xy =++−=+−;(2)原式121212(32)44n n n n n n n xy x y x y x y x y +++=−−−=−;(3)原式222(0.8 3.2)(65) 1.4a b a b ab ab a b ab =−++−+=−−.例4.合并同类项:()221324325x x x x −++−−;()2222265256a b ab b a −++−; ()2223542625yx xy xy x y xy −+−+++;()()()()()2323431215141x x x x −−−−−+− (注:将“1x −”或“1x −”看作整体)【答案与解析】 (1)()()()22232234511x x x x x x =−+−++−=+−=+−原式(2)()()2222665522a a b b ab ab−+−++=原式=(3)原式=()()222562245x y x y xy xy xy−++−+++2245x y xy =++(4)()()()()()()223323315121412161x x x x x x ⎡⎤⎡⎤=−−−+−−−−=−−−−⎣⎦⎣⎦原式【变式】化简:(1)32313125433xy x y xy x −−−+ (2) (a-2b)2+(2b-a)-2(2b-a)2+4(a-2b) 【答案】原式3323211231123()()53345334xy xy x x y xy x y =−+−−=−+−− 3221.1512xy x y =−−−(2) (a-2b)2+(2b-a)-2(2b-a)2+4(a-2b) =(a-2b)2-2(a-2b)2+4(a-2b)-(a-2b)=(1-2)(a-2b)2+(4-1)(a-2b) =-(a-2b)2+3(a-2b).例5.已知35414527m n a b pa b a b ++−=−,求m+n -p 的值. 【答案与解析】解:依题意,得3+m =4,n+1=5,2-p =-7 解这三个方程得:m =1,n =4,p =9, ∴ m+n-p =1+4-9=-4. 【变式1】若223ma b 与40.5n a b −的和是单项式,则m = ,n = . 【答案】4,2 .【变式2】若35xa b 与30.2ya b −可以合并,则x = ,y = . 【答案】3,3±±题型三、化简求值例6.求代数式的值:2222345263x xy y xy y x −−+++−−,其中1,22x y ==. 22222222(4)(32)6(53)236211113,22()3226222222x xy xy y y x x xy y x x y =+−++−+−+−=+−−+===⨯+⨯⨯−−⨯+=−解:原式当时,上式【变式1】当2,1p q ==时,分别求出下列各式的值.(1)221()2()()3()3p q p q q p p q −+−−−−−;(2)2283569p q q p −+−−【答案与解析】(1)把()p q −当作一个整体,先化简再求值: 解:22221()2()()3()31(1)()(23)()32()()3p q p q q p p q p q p q p q p q −+−−−−−=−−+−−=−−−−又 211p q −=−=所以,原式=22222()()111333p q p q −−−−=−⨯−=− (2)先合并同类项,再代入求值.解:2283569p q q p −+−− 2(86)(35)9p q =−+−+− 2229p q =+−当p =2,q =1时,原式=22229222191p q +−=⨯+⨯−=. 【变式2】先化简,再求值:(1)2323381231x x x x x −+−−+,其中2x =;(2)222242923x xy y x xy y ++−−+,其中2x =,1y =. 【答案】解: (1)原式322981x x x =−−−+,当2x =时,原式=32229282167−⨯−⨯−⨯+=−.(2)原式22210x xy y =−+,当2x =,1y =时,原式=22222110116⨯−⨯+⨯=.【变式3】化简求值:(1)当1,2a b ==−时,求多项式3232399111552424ab a b ab a b ab a b −−+−−−的值. (2)若243(32)0a b b +++=,求多项式222(23)3(23)8(23)7(23)a b a b a b a b +−+++−+的值. 【答案与解析】(1)先合并同类项,再代入求值:原式=32391911()(5)52244a b ab a b −++−−−−=32345a b a b −−−将1,2a b ==−代入,得:3233234541(2)1(2)519a b a b −−−=−⨯⨯−−⨯−−=− (2)把(23)a b +当作一个整体,先化简再求值:原式=22(28)(23)(37)(23)10(23)10(23)a b a b a b a b +++−−+=+−+ 由243(32)0a b b +++=可得:430,320a b b +=+=两式相加可得:462a b +=−,所以有231a b +=−代入可得:原式=210(1)10(1)20⨯−−⨯−= 【变式4】3422323323622已知与是同类项,求代数式的值a b x y xy b a b b a b +−−−−+. 【答案】()()()3422323223323323231,2 4.2, 6.362232624,2,66426228.a b x y xy a b a b b a b b a b b b a b a b b a b a b +−−∴+=−=∴=−=−−+=−+−+=−∴=−==−⨯−⨯=解:与是同类项,当时,原式题型四、“无关”与“不含”型问题例7.李华老师给学生出了一道题:当x =0.16,y =-0.2时,求6x 3-2x 3y -4x 3+2x 3y -2x 3+15的值.题目出完后,小明说:“老师给的条件x =0.16,y =-0.2是多余的”.王光说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说的有道理?为什么? 【答案与解析】解:333336242215x x y x x y x −−+−+ =(6-4-2)x3+(-2+2)x3y+15 =15通过合并可知,合并后的结果为常数,与x 、y 的值无关,所以小明说得有道理.【变式1】如果关于x 的多项式222542x x kx x −++−中没有2x 项,则k = .答案:2k=−解析:先合并含2x 的项:2222225422542(2)542x x kx x x kx x x k x x x −++−=+−+−=+−+−,如没有2x 项,即2x 项的系数为0,即20k +=,所以2k =−.【变式2】若关于x 的多项式-2x 2+mx+nx 2+5x-1的值与x 的值无关,求(x-m)2+n 的最小值. 【答案】 -2x2+mx+nx2+5x-1=nx2-2x2+mx+5x-1=(n-2)x2+(m+5)x-1 ∵ 此多项式的值与x 的值无关,∴ 20,50.n m −=⎧⎨+=⎩ 解得: 25n m =⎧⎨=−⎩当n=2且m=-5时, (x-m)2+n=[x-(-5)]2+2≥0+2=2. ∵(x-m)2≥0,∴当且仅当x=m=-5时,(x-m)2=0,使(x-m)2+n 有最小值为2. 题型五、综合应用例8.若多项式-2+8x+(b-1)x 2+ax 3与多项式2x 3-7x 2-2(c+1)x+3d+7恒等,求ab-cd.【答案与解析】 法一:由已知ax3+(b-1)x2+8x-2≡2x3-7x2-2(c+1)x+(3d+7)∴ 2,17,82(1),237.a b c d =⎧⎪−=−⎪⎨=−+⎪⎪−=+⎩ 解得:2,6,5,3.a b c d =⎧⎪=−⎪⎨=−⎪⎪=−⎩∴ab-cd=2×(-6)-(-5)×(-3)=-12-15=-27. 法二:说明:此题的另一个解法为:由已知(a-2)x3+(b+6)x2+[2(c+1)+8]x-(3d+9)≡0. 因为无论x 取何值时,此多项式的值恒为零.所以它的各项系数皆为零,即从而解得 解得:【变式】若关于,x y 的多项式:2223332m m m m x y mx y nx y x y m n −−−−++−++,化简后是四次三项式,求m+n 的值.【答案】分别计算出各项的次数,找出该多项式的最高此项:因为22m x y −的次数是m ,2m mx y −的次数为1m −,33m nx y −的次数为m ,32m x y −−的次数为2m −, 又因为是三项式 ,所以前四项必有两项为同类项,显然2233m m x y nx y −−与是同类项,且合并后为0, 所以有5,10m n =+= ,5(1)4m n +=+−=.20,60,2(1)80,(39)0.a b c d −=⎧⎪+=⎪⎨++=⎪⎪−+=⎩2,6,5,3.a b c d =⎧⎪=−⎪⎨=−⎪⎪=−⎩【过关检测】一.选择题(共10小题)1.(2022秋•防城港期末)下列各式中,与2x3y2是同类项的是()A.3x2y3B.﹣y2x3C.2x5D.y5【分析】先根据同类项的定义进行解答即可.【解答】解:单项式2x3y2中x的次数是3,y的次数是2,四个选项中只有﹣y2x3符合.故选:B.【点评】本题考查的是同类项,熟知所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项是解题的关键.2.(2023春•互助县期中)单项式x m﹣1y3与﹣4xy n是同类项,则m n的值是()A.3B.1C.8D.6【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出m、n的值,代入计算即可得出答案.【解答】解:∵单项式xm﹣1y3与﹣4xyn是同类项,∴m﹣1=1,n=3,∴m=2,n=3,∴mn=23=8.故选:C.【点评】本题考查了同类项的知识,属于基础题,掌握同类项中的两个相同是解答本题的关键.3.(2022秋•长安区期末)已知单项式3x2m﹣1y与﹣x3y n﹣2是同类项,则m﹣2n的值为()A.2B.﹣4C.﹣2D.﹣1【分析】直接利用同类项的定义得出关于m,n的值,再代入计算即可.【解答】解:∵单项式3x2m﹣1y与﹣x3yn﹣2是同类项,∴2m﹣1=3,n﹣2=1,解得m=2,n=3,∴m﹣2n=2﹣2×3=﹣4.故选:B.【点评】本题考查了同类项,所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.4.(2022秋•公安县期末)单项式﹣x m+2y3﹣2n与x4y5是同类项,则m﹣n的值为()A.﹣3B.3C.﹣1D.1【分析】根据同类项的定义:所含字母相同,且相同字母的指数也相同的两个单项式是同类项,求得m,n 的值,即可求解.【解答】解:∵﹣xm+2y3﹣2n与是同类项,∴m+2=4,3﹣2n=5,解得:m=2,n=﹣1,∴m﹣n=2﹣(﹣1)=3,故选:B.【点评】本题考查了同类项,根据同类项的定义求出m,n的值是关键.5.(2023春•南安市期中)若3a x﹣1b2与4a3b y+2是同类项,则x,y的值分别是()A.x=4,y=0B.x=4,y=2C.x=3,y=1D.x=1,y=3【分析】根据同类项的定义即可求出答案.【解答】解:∵3ax﹣1b2与4a3by+2是同类项,∴x﹣1=3,y+2=2,解得x=4,y=0.故选:A.【点评】本题考查同类项.解题的关键是熟练运用同类项的定义.同类项的定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.6.(2023•隆昌市校级三模)若单项式﹣a m b3与2a2b n的和是单项式,则n的值是()A.3B.6C.8D.9【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)可得n的值.【解答】解:∵单项式﹣amb3与2a2bn的和是单项式,∴n=3;故选:A.【点评】本题考查同类项,熟练掌握同类项的定义是解题的关键.7.(2023•迎泽区校级三模)小明做了6道计算题:①﹣5﹣3=﹣2;②0﹣(﹣1)=1;③﹣12÷=24;④3a﹣2a=1;⑤3a2+2a2=5a4;⑥3a2b﹣4ba2=﹣a2b;请你帮他检查一下,他一共做对了()A.2题B.3题C.4题D.5题【分析】分别根据有理数的减法法则,有理数的除法法则以及合并同类项法则逐一判断即可.【解答】解:①﹣5﹣3=﹣5+(﹣3)=﹣8;②0﹣(﹣1)=0+1=1;③﹣12÷=﹣12×2=﹣24;④3a﹣2a=(3﹣2)a=a;⑤3a2+2a2=(3+2)a2=5a2;⑥3a2b﹣4ba2=(3﹣4)a2b=﹣a2b;所以一共做对了②⑥共2题.故选:A.【点评】本题主要考查了合并同类项以及有理数的混合运算,熟记相关运算法则是解答本题的关键.8.(2022秋•宣城期末)已知2a m b2和﹣a5b n是同类项,则m+n的值为()A.2B.3C.5D.7【分析】根据同类项的意义先求出m,n的值,然后再代入式子进行计算即可.【解答】解:∵2amb2和﹣a5bn是同类项,∴m=5,n=2,∴m+n=5+2=7,故选:D.【点评】本题考查了同类项,熟练掌握同类项的意义是解题的关键.9.(2023•靖江市一模)若单项式2x m y²与﹣3x3y n是同类项,则m n的值为()A.9B.8C.6D.5【分析】根据同类项的定义求出m,n的值,然后代入式子进行计算即可解答.【解答】解:∵单项式2xmy²与﹣3x3yn是同类项,∴m=3,n=2,∴mn=32=9,故选:A.【点评】本题考查了同类项,熟练掌握同类项的定义,所含字母相同,相同字母的指数也相同是解题的关键.10.(2023春•曲阜市期中)若﹣3x m﹣n y2与x4y5m+n的和仍是单项式,则有()A.B.C.D.【分析】根据两式的和仍是单项式,得到两式为同类项,利用同类项定义列出方程组,求出方程组的解即可得到m与n的值.【解答】解:﹣3xm﹣ny2与x4y5m+n的和仍是单项式,∴,解得.故选:A.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.二.填空题(共9小题)11.(2023春•鲤城区校级期中)如果3x2n﹣1y m与﹣5x m y3是同类项,则m+n的值是.【分析】根据同类项的概念求解.【解答】解:∵3x2n﹣1ym与﹣5xmy3是同类项,∴2n﹣1=m,m=3,∴m=3,n=2,则m+n=3+2=5.故答案为:5.:相同字母的指数相同.12.(2022秋•鼓楼区校级期末)若单项式与2x3y n的和仍是单项式,则m+n=.【分析】根据和是单项式,可得它们是同类项,在根据同类项,可得m、n的值,根据有理数的加法法则,可得答案.【解答】解:∵单项式与2x3yn的和仍是单项式,∴单项式与2x3yn是同类项,∴m=3,n=2,m+n=3+2=5,故答案为:5.【点评】本题考查了合并同类项,掌握同类项的定义是解答本题的关键.13.(2023春•顺义区期末)若单项式﹣5a2b m﹣1与2a2b是同类项,则m=.【分析】直接利用同类项的定义分析得出答案.所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【解答】解:因为单项式﹣5a2bm﹣1与2a2b是同类项,所以m﹣1=1,解得m=2.故答案为:2.【点评】此题主要考查了同类项,正确把握同类项的定义是解题关键.14.(2022秋•金牛区期末)若关于x、y的多项式(m﹣1)x2﹣3xy+nxy+2x2+2y+x中不含二次项,则m+n =.【分析】直接利用多项式不含二次项,得出关于m,n的等式,求出答案.【解答】解:∵(m﹣1)x2﹣3xy+nxy+2x2+2y+x=(m﹣1+2)x2+(n﹣3)xy+2y+x,关于关于x、y的多项式(m﹣1)x2﹣3xy+nxy+2x2+2y+x不含二次项,∴m﹣1+2=0,n﹣3=0,解得m=﹣1,n=3,则m+n=﹣1+3=2.故答案为:2.m,n的值是解题关键.15.(2022秋•嘉祥县期末)已知2x3y n+4和﹣x2m+1y2的和仍是单项式,则式子(m+n)2022=.【分析】根据题意可知2x3yn+4和﹣x2m+1y2是同类项,根据同类项的概念求出m,n的值,然后代入计算即可.【解答】解:∵2x3yn+4和﹣x2m+1y2的和仍是单项式,∴2x3yn+4和﹣x2m+1y2是同类项,∴3=2m+1,n+4=2,∴m=1,n=﹣2,∴(m+n)2022=(1﹣2)2022=1,故答案为:1.【点评】本题主要考查同类项,代数式求值,掌握同类项的概念是解题的关键.16.(2022秋•杭州期末)合并同类项2x﹣7y﹣5x+11y﹣1=.【分析】根据合并同类项法则计算即可.【解答】解:2x﹣7y﹣5x+11y﹣1=(2x﹣5x)+(11y﹣7y)﹣1=﹣3x+4y﹣1.故答案为:﹣3x+4y﹣1.【点评】本题考查了合并同类项,掌握合并同类项法则是解答本题的关键.17.(2022秋•江都区期末)若单项式与7a x+5b2与﹣a3b y﹣2的和是单项式,则x y=.【分析】利用同类项的定义求得x,y的值,再代入运算即可.【解答】解:∵单项式与7ax+5b2与﹣a3by﹣2的和是单项式,∴单项式与7ax+5b2与﹣a3by﹣2是同类项,∴x+5=3,y﹣2=2,∴x=﹣2,y=4.∴xy=(﹣2)4=16.故答案为:16.【点评】本题主要考查了合并同类项,利用同类项的定义求得x,y的值是解题的关键.18.(2022秋•东港区校级期末)当k=时,多项式x2+(k﹣1)xy﹣3y3﹣4xy﹣6中不含xy项.【分析】先合并同类项,然后使xy的项的系数为0,即可得出答案.【解答】解:x2+(k﹣1)xy﹣3y2﹣4xy﹣6=x2+(k﹣5)xy﹣3y2﹣6,∵多项式不含xy项,∴k﹣5=0,解得:k=5,故答案为:5.【点评】本题考查了合并同类项,属于基础题,解答本题的关键是掌握合并同类项的法则.19.(2022秋•射洪市期末)已知关于x、y的多项式(3a+2)x2+(9a+10b)xy﹣x+2y+7中不含二次项,则6a﹣15b=.【分析】根据多项式不含二次项,确定出a与b的值,代入原式计算即可求出值.【解答】解:∵关于x、y的多项式(3a+2)x2+(9a+10b)xy﹣x+2y+7中不含二次项,∴3a+2=0,9a+10b=0,解得:a=﹣,b=,则6a﹣15b=6×(﹣)﹣15×=﹣4﹣9=﹣13.故答案为:﹣13.【点评】此题考查了合并同类项,多项式,熟练掌握各自的性质是解本题的关键.三.解答题(共10小题)20.(2022秋•洛川县校级期末)已知单项式2x2m y7与单项式5x6y n+8是同类项,求m2+2n的值.【分析】利用同类项的定义求出m与n的值即可,再代入所求式子计算即可.定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【解答】解:∵单项式2x2my7与单项式5x6yn+8是同类项,∴2m=6,n+8=7,解得m=3,n=﹣1,∴m2+2n=9﹣2=7.【点评】此题考查了同类项,以及代数式求值,熟练掌握同类项的定义求出m与n的值是解本题的关键.21.(2022秋•永善县期中)若xy|a|与3x|2b+1|y是同类项,其中a、b互为倒数,求2(a﹣2b2)﹣(3b2﹣a)的值.【分析】先根据同类项的定义求出a,b的值,再根据去括号法则和合并同类项法则对2(a﹣2b2)﹣(3b2﹣a)进行化简,最后将a,b的值代入化简后的式子即可求解.【解答】解:∵xy|a|与3x|2b+1|y是同类项,∴|2b+1|=1,|a|=1,∴a=±1,2b+1=±1,∴b=0或﹣1,∵a、b互为倒数,∴a=1,b=﹣1,∴2(a﹣2b2)﹣(3b2﹣a)=2a﹣4b2﹣+=﹣=﹣==﹣3.【点评】本题主要考查了同类项和整式的化简求值,掌握同类项的定义,去括号法则和合并同类项法则是解题的关键.22.(2021秋•大荔县期末)找出下列式子中的同类项,并求这些同类项的和:ab,3xy2,,ab+1,6x2y,﹣5x2y.【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,结合选项即可作出判断,然后进行合并即可.【解答】解:ab和是同类项,6x2y和﹣5x2y是同类项;,6x2y+(﹣5x2y)=x2y.【点评】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项.注意同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同.23.(2022秋•榆阳区校级期末)已知a,b是有理数,关于x、y的多项式x3y a﹣bx3+6x2y2+x的次数为5,且这个多项式中不含x3项,请你写出这个多项式.【分析】根据多项式的定义解答即可.【解答】解:∵关于x、y的多项式x3ya﹣bx3+6x2y2+x的次数为5,且这个多项式中不含x3项,∴,解得,∴这个多项式为:x3y2+6x2y2+x.【点评】本题考查了多项式以及合并同类项,解题的关键是掌握与整式相关的概念.24.(2022秋•泉港区期末)化简:.【分析】根据合并同类项法则计算即可.【解答】解:==a2b3.【点评】本题考查了合并同类项,掌握合并同类项法则是解答本题的关键.25.(2022秋•北京期末)阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的结果是﹣(a﹣b)2;(2)已知x2﹣2y=4,求2﹣3x2+6y的值.【分析】(1)把(a﹣b)2看成一个整体,运用合并同类项法则进行计算即可;(2)把3x2﹣6y﹣21变形,得到3(x2﹣2y)﹣21,再根据整体代入法进行计算即可.【解答】解:(1)把(a﹣b)2看成一个整体,则3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2=(3﹣6+2)(a﹣b)2=﹣(a﹣b)2;故答案为:﹣(a﹣b)2;(2)∵x2﹣2y=4,∴原式=﹣3(x2﹣2y)+2=﹣12+2=﹣10.【点评】本题主要考查了整式的加减,解决问题的关键是运用整体思想;给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.26.(2022秋•吉林期中)已知多项式mx4+(m﹣2)x3+(n+1)x2﹣3x+n不含x2和x3的项,试写出这个多项式,再求当x=﹣1时该多项式的值.【分析】根据mx4+(m﹣2)x3+(n+1)x2﹣3x+n不含x2和x3的项可得出二次项和三次项的系数为0,从而求出m和n的值,再把x=﹣1代入多项式求出多项式的值即可.【解答】解:∵多项式mx4+(m﹣2)x3+(n+1)x2﹣3x+n不含x2和x3的项,∴m﹣2=0,n+1=0,∴m=2,n=﹣1,∴多项式为2x4﹣3x﹣,当x=﹣1时,多项式为2×(﹣1)4﹣3×(﹣1)﹣1=2+3﹣1=4.【点评】本题主要考查多项式求值问题,关键是要能确定m和n的值.27.(2022秋•太康县期中)阅读材料:在合并同类项中,5a﹣3a+a=(5﹣3+1)a=3a,类似地,我们把(x+y)看成一个整体,则5(x+y)﹣3(x+y)+(x+y)=(5﹣3+1)(x+y)=3(x+y).“整体思想”是中学教学解题中的一种重要的思想,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(x﹣y)2看成一个整体,合并3(x﹣y)2﹣6(x﹣y)2+2(x﹣y)2的结果是.(2)已知a2﹣2b=1,求3﹣2a2+4b的值;拓展探索:(3)已知a﹣2b=1,2b﹣c=﹣1,c﹣d=2,求a﹣6b+5c﹣3d的值.【分析】(1)把(x﹣y2)看作一个整体,合并即可得到结果;(2)原式后两项提取2变形后,将已知等式代入计算即可求出值;(3)原式整理后,将已知等式代入计算即可求出值.【解答】解:(1)把(x﹣y)2看成一个整体,合并3(x﹣y)2﹣6(x﹣y)2+2(x﹣y)2的结果是﹣(x﹣y)2,故答案为:﹣(x﹣y)2;(2)∵a2﹣2b=1,∴原式=3﹣2(a2﹣2b)=3﹣2=1;(3)∵a﹣2b=1,2b﹣c=﹣1,c﹣d=2,∴原式=a﹣2b﹣4b+2c+3c﹣3d=(a﹣2b)﹣2(2b﹣c)+3(c﹣d)=1+2+6=9.【点评】此题考查了合并同类项,代数式求值,熟练掌握运算法则是解本题的关键.28.(2022秋•桥西区校级期末)已知一个代数式与﹣2x2+x的和是﹣6x2+x+3.(1)求这个代数式;(2)当x=﹣时,求这个代数式的值.【分析】(1)直接利用整式的加减运算法则计算得出答案;(2)直接把x的值代入,进而得出答案.【解答】解:(12x2+x的和是﹣6x2+x+3,∴这个代数式为:﹣6x2+x+3﹣(﹣2x2+x)=﹣6x2+x+3+2x2﹣x=﹣4x2+3;(2)当x=﹣时,原式=﹣4×(﹣)2+3=﹣1+3=2.【点评】本题主要考查了整式的混合运算,掌握整式的混合运算法则是解题关键.29.(2021秋•米脂县期末)已知单项式﹣2a2b与是同类项,多项式是五次三项式,求m﹣n的值.【分析】根据同类项的概念及多项式的有关概念求解.【解答】解:∵多项式是五次三项式,∴2+n=5,∴n=3,∵单项式﹣2a2b与是同类项,∴m=2.∴m﹣n=2﹣3=﹣1.【点评】本题考查了同类项的知识及多项式的有关概念,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.。
34去括号
3.4去括号复习检测合并同类项①4x+2y—5x—y ②—3ab+7—9ab—3预习检测去括号(1)(2x-3y)+(5x+4y);(2)(8a-7b)-(4a-5b);导学目标:1.在具体情境中体会去括号的必要性,能运用运算律去括号。
2.总结去括号的法则,并能利用法则解决简单的问题。
3.探索和寻求去括号的法则与合理解释,形成分析解决问题的一些基本策略,提高创造性解决问题的愿望与能力。
4.通过组织教学,让学生体验只有用科学的方法,科学的态度才能学好数学的情感。
导学重点、难点:1.括号前是负号时,去括号后,原括号里的各项符号都要改变。
2.利用运算律去括号。
导学过程:一、自主探索合作交流课本P76课本上几种计算火柴根数的办法,所得结果一样吗?(鼓励学生猜想,并利用运算律去括号,比较运算结果。
)4+3(x-1)= 4+3x-3=3x+1 4 x-(x-1)=4 x-x+1=3x+1(学生进行小结,体会去括号的必要性)二、合作交流,探究总结去括号法则:1.括号前面是“+”号,去掉括号和“+”,括号里各项不变号。
2.括号前面是“-”号,去掉括号和“-”,括号里各项都变号。
a+(b-c)= a+b-c a-(b-c)= a-b+c为了便于记忆,教师引导学生共同完成下面的顺口溜:去括号,看符号:是“+”号,不变号;是“-”号,全变号三、双基训练,巩固提高例1:去括号,并合并同内项:(1)4 a-( a-3b);(2)a+(5a-3b)-(a-2b);(3)3(2xy-y)-2xy(1)题师生共同解答;(2)题学生自主完成;(3)小组合作交流讨论完成。
课堂练习:当堂检测:(1)a-(2a+b)+2(a-2b);(2)3(5x+4)-(3x-5);布置作业:。
合并同类项50题(有标准答案)
与 3 ab 2 是
7. 所含
相同,并且
也相同的项叫同类项。
8. 在代数式 4x 2 4xy 8y 2 3x 1 5x2 6 7x 2 中, 4x 2 的同类项是
类项是
。
9.在 a 2 (2k 6)ab b2 9 中,不含 ab 项,则 k=
,6 的同
10. 若 2x k y k 2 与 3x2 y n 的和未 5 x 2 y n ,则 k=
1 ”错抄成了“ x
2
1
”但他计算的结果也是
2
28.已知 : (x 2)2 | y 1 | 2
0, 求 2(xy2 x2y) [2 xy2 3(1 x2 y)] 2 的值 ? 参考答案
一、选择题
1 .D 2 .C
3 .D
4 .A
5 .D
6 .D
7 .C
-2-/6
8 .D 9 .A 10. C 二、填空题
当 x=1,y=3 时 4xy-x 2=4×1×3-1=11 ?
22. (1)
2 y3 3xy 2 x2 y 2 xy2 y 3 2 y3 3xy2 x 2 y 2xy2 2 y 3 xy 2 x2 y
(2)5(m-n)-2(m-n)-4(m-n) =(5-2-4)(m-n) =-2(m-n) =-2m+2n
3
6
6
12
52
47
3y )+( x 1)= x 3 y 1
3
6
6
3y )-( 1 x2 1)= 1 x2 3y 1 31
3
6
6
-3-/6
23.解 : 原式 5xy 8x2 12x2 4xy
5xy 4xy 12 x2 8x2
合并同类项2
小结: 小结:
什么是多项式, 什么是多项式,什么是多项式的项 和多项式的次数? 和多项式的次数?
3x−2y
a − 4ab + 4b
2
2
2 2 − x y + 5x − y 3
一个三位数, 一个三位数,十位数字是 x ,个 位数字是十位数字的2倍 位数字是十位数字的 倍,百位数字比 个位数字小3, 个位数字小 ,你能用代数式表示这个 三位数吗? 三位数吗? 解:因为十位数字是x,由题意得, 因为十位数字是 ,由题意得, 个位数字是2x,百位数字是(2x- 个位数字是 ,百位数字是 - 3),用代数式表示这个三位数是: 用代数式表示这个三位数是: 用代数式表示这个三位数是 100(2x-3)+10x+2x - + +
观察以下代数式: 观察以下代数式:
1 2 ab + bc + ac,4x − 5 y, ab − mn − πn 8
这几个代数式含有加减运算,可以把它们看作是 这几个代数式含有加减运算,可以把它们看作是 含有加减运算 几个单项式的和。 几个单项式的和。我们把这样的代数式叫多项式, 我们把其中的每一个单项式叫做这个多项式的项 多项式的项。 我们把其中的每一个单项式叫做这个多项式的项。 是由4x,-5y这两项的和组成(注意这里看成 这两项的和组成( 如4x-5y是由 是由 这两项的和组成 是省略加号),其中4x项的系数是 ,-5y项的系数 ),其中 项的系数是4,- 是省略加号),其中 项的系数是 ,- 项的系数 是-5。 。
第三个代数式有哪几项,各项系数是什么? 第三个代数式有哪几项,各项系数是什么?
1 2 a + bc + ac ,4x − 5y , ab − mn − πn 8
合并同类项练习题 (答案)
合并同类项练习题①已知-2x2m 1y3与5x7y n-1是同类项,那么m+n= 。
答案:7解析:根据同类项定义,相同字母的指数相同,2m+1=7,3=n-1,得出m=3,n=4所以m+n=7②已知n是个正整数,如果2axⁿ + 3x²+1是一个单项式,那么aⁿ= 。
答案:2.25解析:根据单项式定义2axⁿ + 3x²不能存在,即这个单项式是1。
所以n=2,2a=-3,即a=-1.5。
所以aⁿ=(-1.5)ⁿ=2.25③多项式ax³-7x²+ax²-7x+7+bx²-x³ 是一个一次多项式,那么a²b=。
答案:6解析:合并同类项得(a-1)x³+(a+b-7)x²-7x+7根据最高项的次数是1,所以三次项(a-1)x³不存在,a-1=0,即a=1二次项(a+b-7)x²也不存在,所以a+b-7=0,b=6。
所以a²b=6④已知x=-1234,计算x²+2x³-x(1+2x²)+10的值。
但是计算时漏掉了负号把-1234当成1234,算出的结果是1521532。
那么正确的结果是。
答案:1524000解析:先合并同类项x²+2x³-x(1+2x²)+10=x²-x+10由于x²的值不变,正确的应该比错误答案多1234×2=2468所以答案是1521532+2468=1524000⑤已知|a-2|与|b+1|互为相反数,求3b³+3ab²+3b²-ab²-2a²b-2ab²-b³的值。
答案:9解析:根据|a-2|+|b+1|=0 可知a=2,b=-1先合并同类项3b³+3ab²+3b²-ab²-2a²b-2ab²-b³=2b³+3b²-2a²b把a=2,b=-1代入,2b³+3b²-2a²b=-2+3+8=9⑥已知x+2y=5,求(-2x-4y+8)³+(x-3)²-x²-12y+7的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
互
动 问题1: 如图,建筑工人用两种不同颜色的 探 大理石铺设地面。请问这两个长方形面积怎
样表示?
究
8
5
n
n
合
作
交
8n 和 5n
步骤:化简、代值、计算。
练习五
温馨提示:
化简、代值、计算
求代数式的值:
8p2-7q+6q-7p2-7 ,其中p=3,q=3 解:原式=(8-7)p2 +(-7+6)q-7
= p2 -q-7 当p=3,q=3时,
原式=32 -3-7=-1
这节课你学到了什么? 给你留下印象最深刻的是什么? 本节课应注意什么? 你还有什么问题?
究
合
作
–7a2b+2a2b =(–7+2)a2b =–5a2b
交 流
把代数式中的同类项合并成一项, 叫做合并同类项.
合并同类项的法则:
把同类项的系数_相__加__ , 字母和字母 的_指___数__不__变___.
简记为:(一加,两不变)
依据是:乘法的分配律的逆运算:
ac+bc = (a+b)c
例1、合并同类项:
念、如何合并同类项,学习了怎样求 代数式的值以及分类讨论的数学思想。 从中也体会到数学知识与现实生活有 着密切的联系,所以老师希望大家不 但要会学数学,更重要的是要会做数 学、用数学,从而体会数学的真正价 值。
作业
1.课本p118习题3.5:知识技能 第1题, 第2题的(1)、(3) .
2. 易百分p46 :合并同类项(2).
流
互
如果把这两种不同颜色的大理石拼成一个
动
探 长方形,这个长方形的面积可以用代数式表示吗?
有几种表示方法?
8
5
究
n
n
合
作
8 n + 5 n 或( 8 + 5 ) n = 13 n
交
流
8 n + 5 n = ( 8 + 5 ) n = 13 n
你还记得:(a+b)c=ac+bc吗? 自
主
探
8n+5n = ( 8+5)n = 13n
3.4 合并同类项(二)
1、计算:1 1 23 1 23
4
4
2、下列代数式是几项的和?每项的系
数分别是什么?
a3 -3a2b +a - 5a2b -2a3 哪些项可以归为同一类呢?
-2xy+x+5xy-y+7+yx
观察a3 与-2a3 , -3a2b与-5a2 b , - 2xy、5xy与 yx
= –x-2
练习四:
合并同类项(写出过程):
(1) 3b 3a3 1 a3 2b (2) 2y 6 y 2xy 5- 2xy- 3y
(3) -(a+b)3+3(a+b)3
解:(3)原式=(-1+3)(a+b)3 =2 (a+b)3
注意步骤
例2: 求代数式 3x2 5x 0.5x2 x 1 的值,其中 x 2 .说一说你是怎样 算的。
如果关于字母x的代数式 -3x2 +mx+nx2 – x+3与x的取值无关, 求(m+n)(m-n)的值。 基本思路: 先合并同类项; 令x、x2项的系数为零,求出m、n的值; 将m、n的值代入所求的代数式中计算。
回顾建构 形成体系
同类项
两个特点 两相同
(1)所含字母相同;
(2)相同字母的指数分 别相同;
合并同类项 法则
一加两不变
(1)系数相加作为 结果的系数。
(2)字母不变
相同字母的指数
也不变。
回顾建构 形成体系
判断和合并同类项口诀: 同类项,需判断,两相同,是条件; 合并时,要计算,系数加,两不变。
. 今天我们共同学习了同类项的概
1、m、n为何值时,-5x2ny2与2x3ym 是同类项?
2、说出2x2y3的同类项?
3、下列各题的结果是否正确,若有错,请指 出错在何处:
(1)3x 3y 6xy( );(2)7x 5x 12x2
( );
(3)16 y2 7 y2 9( );(4)19a2b 9ab2 10ab( ).
归为同一类的项有什么共同特征?
同类项的概念
所含字母 相同,并且相同字母 的 指数 也相同的项,叫做同类项。
a3 与-2a3 , -3a2b与-5a2 b , - 2xy、5xy与yx
两个条件缺一不可 ; 同类项与系数无关,与字母的排 列顺序也无关; 所有的有理数都是同类项.
练习一:
下列各组是否是同类项?为什么?
(1) 7a-3a2+2a+a2+3 (2) 4ab 8 2b2 9ab 8 解:(1)原式=(7+2)a+(-3+1)a2+3
=9a-2a2+3
两组同类项之间用“+”连接
步骤 (1)找出同类项(用线画出来); (2)系数相加作为结果的系数,字母和字母的指数不变。
(3)单独的项写在后面。(不是同类项不能合并)
练习三:
仔 细
合并同类项:2x2-5x+x2+4x-3x2-2
斟
解:原式=2x2+x2-3x2–5x+4x-2 (第一步) 酌
=(2+1-3)x2-(5+4)x-2 (第二步)
= x2 –9x-2 (第三步)
观察上述解题过程,有几处错误? 错在哪一步?怎样改正。
改为:= (2+1-3)x2+(-5+4)x-2