2016重庆高职单招数学试题知识点:导数的四则运算法则

合集下载

导数的基本公式及四则运算法则

导数的基本公式及四则运算法则

常见函数的导数
指数函数
$(a^x)' = a^x ln a$
三角函数
$(sin x)' = cos x$, $(cos x)' = -sin x$
幂函数
$(x^n)' = n cdot x^{n-1}$
对数函数
$(ln x)' = frac{1}{x}$
反三角函数
$(arcsin x)' = frac{1}{sqrt{1x^2}}$
详细描述
对于两个可导函数的和或差,其导数可以通过分别对每个函数求导然后进行相应的加减运算来得到。 即,如果 $u(x)$ 和 $v(x)$ 都是可导的,那么 $(u(x) + v(x))'$ 和 $(u(x) - v(x))'$ 可以通过对 $u'(x)$ 和 $v'(x)$ 分别求导然后进行加法或减法运算来得到。
导数在解决实际问题中也有重要应用,如经济学、物理学和工程学等领域的问题。
导数的概念和计算方法对于培养数学思维和解决实际问题的能力具有重要意义。
导数与积分的关系
导数是微分的逆运算, 而积分是微分的积分。
通过导数和积分可以 相互转化,从而解决 复杂的数学问题。
导数和积分是微积分 中的两个基本概念, 它们之间存在密切的 联系。
THANKS
谢谢
导数的基本公式及四则运算法 则
目录
CONTENTS
• 导数的基本公式 • 导数的四则运算法则 • 导数的应用 • 导数与微积分的关系
01
CHAPTER
导数的基本公式
定义与性质
定义
导数描述了函数在某一点附近的 变化率,是函数局部性质的一种 体现。

导数的四则运算法则上课用

导数的四则运算法则上课用

D
练习: 如图, 水以常速(即单位时间内注入水旳体 积相同)注入下面四种底面积相同旳容器中, 请分别 找出与各容器相应旳水旳高度h与时间t旳函数关系 图象.
B
h
h
A
DC
h
h
O
t
(A)
O
t
(B)
O
t
(C)
O
t
(D)
练习:求下列函数旳导数
(1) y 3x3 2x2 5
(2)
y
1 4
x3
1 3
x2
ex ex (3) y ex ex
(3)
y
4e2 x (e2x 1)2
(4) y ln | x |
(4) y 1
x
例6.如图,设有圆C和定点O,
当l 从l0 开始在平面上绕O点匀速 旋转(旋转角度不超出90°)时,
它扫过旳圆内阴影部分旳面积S
是时间t旳函数,它旳图象大致是
下列四种情况中旳哪一种?
6、若f (x) ex , 则 f (x) ex
指数函数
7、若f 8、若f
(x) (x)
log a x ln x ,
,则 则f
f (
( x) x)
1
x
1 ln
a
对数函数
x
导数旳几何意义
函数 y=f(x)在点x0处旳导数旳几何意义,就是曲 线 y=f(x)在点P(x0 ,f(x0))处旳切线旳斜率.
x
2
x4y4 0
例4 求抛物线y x2 过点( 5 ,6)的切线方程 2
4x y 4 0或6x - y 9 0
练习 求过点(1,1)且与曲线y x3 相切的直线方程
3x y 2 0或3x - 4 y 1 0

(完整版)导数的四则运算法则

(完整版)导数的四则运算法则

§ 4 导数的四则运算法则、教学目标: 1知识与技能掌握有限个函数的和、差、积、商的求导公式;熟练运用公式求基本初等函数的四则运算的导数,能运用导数的几何意义,求过曲线上一点的切线。

2.过程与方法通过用定义法求函数 f ( x) =x+x2的导数,观察结果,发掘两个函数的和、差求导方法,给结合定义给出证明;由定义法求f(x)=x 2g(x)的导数,发现函数乘积的导数,归纳出两个函数积、商的求导发则。

3.情感、态度与价值观培养学生由特别到一般的思维方法去探索结论,培养学生实验一一观察一一归纳一一抽象的数学思维方法。

_教学重点:函数和、差、积、商导数公式的发掘与应用、教学难点:导数四则运算法则的证明三教学方法:探析归纳,讲练结合、四教学过程、(-」)、复习:导函数的概念和导数公式表。

1•导数的定义:设函数y f (x)在x x o处附近有定义,如果x 0时,y与x的比」(也叫函数的平均变化率)有极限即」无限趋近于某个常数,我们把这个极限值叫做x x函数y f (x)在x X。

处的导数,记作y/x,,即f/(x o) lim ——x)―f x 0 v2•导数的几何意义:是曲线y f (x)上点(x o, f (x o))处的切线的斜率.因此,如果y f (x)在点X。

可导,则曲线y f (x)在点(X。

,f (x。

))处的切线方程为y f (x o) f/(x o)(x X。

).3.导函数(导数):如果函数y f (x)在开区间(a,b)内的每点处都有导数,此时对于每一个x (a,b),都对应着一个确定的导数f/(x),从而构成了一个新的函数 f /(x),称这个函数f/(x)为函数y f (x)在开区间内的导函数,简称导数,4.求函数y f(x)的导数的一般方法:(1)求函数的改变量y f(x x) f(x). (2)求平均变化率—yf(x x) f(x) (3)取极限,得导数y/= f (x) 叽~x5.常见函数的导数公式: C' 0 ; (x n)' nx n(二)、探析新课两个函数和(差)的导数等于这两个函数导数的和(差) ,即[f(x) g(x)] f (x) g (x) [f (x) g(x)] f (x) g (x)证明:令y f(x) u(x) v(x),y [u(x x) v(x x)] [u(x) v(x)][u(x x) u(x)] [v(x x) v(x)] ulim x 0 limxlimx即[u(x) v(x)]' u (x) v例1:求下列函数的导数:2 x(1) y x 2 ;(2) In (3) (x21)(x 1);(4) 解: (1) y (x2 2x) (x2) (2x) 2x 2x l n2(2) In x) (、x) (Inx)(x21)(x 1) (x3x2x 1)(x2) (x1) (x2)12、x 。

高等数学中导数的四则运算1.加减:几个...

高等数学中导数的四则运算1.加减:几个...

高等数学中导数的四则运算1.加减:几个...
高等数学中导数的四则运算
1. 加减:几个函数在加减之后求导数的结果等于,将这几个函数分别求导数之后再进行加减。

这样的话我们一些基本初等函数通过加减运算后组成的新的初等函数的求导问题就可以转化为基本初等函数的求导问题,而基本函数的导数我们在解题过程中是需要牢牢记住的。

2. 乘法:几个函数相乘后的结果函数的导数与这几个函数的导数的关系是通过莱布尼茨公式给出来的,这个公式呢其实也是比较容易记忆的。

其实,就是这几个函数我们依次对其中的一个求导、其他的不求导相乘之后、再乘以一个系数(Cnk),然后将这些项再加起来。

3. 除法:这个就比较复杂,但好在我们只研究两个函数相除的情况,那这种情况的求导结果就是(分子导*分母不导- 分子不导*分母导)/分母的平方。

导数四则运算的性质是我们进行初等函数求导运算简化的非常重要的依照准则,当时我们学习求极限的时候也有类似这样的极限的四则运算法则。

导数的四则运算法则

导数的四则运算法则

法二:∵y=(2x2-1)(3x+1)=6x3+2x2-3x-1,
∴y′=(6x3+2x2-3x-1)′=(6x3)′+(2x2)′-(3x)′-(1)′=18x2+4x-3.
题型二 由导数值求参数 [学透用活]
[典例 2] 设 f(x)=a·ex+bln x,且 f′(1)=e,f′(-1)=1e,求 a,b 的值. [解] f′(x)=(a·ex)′+(bln x)′=a·ex+bx,
法二:设直线 l 的方程为 y=kx,切点为(x0,y0),则 k=xy00--00=x30+xx00-16. 又∵k=f′(x0)=3x20+1,∴x30+xx00-16=3x20+1,解得 x0=-2. ∴y0=(-2)3+(-2)-16=-26,k=3×(-2)2+1=13. ∴直线 l 的方程为 y=13x,切点坐标为(-2,-26).
应 求在某点处的切线方程,已知切线的方程或斜率求切点,以 用 及涉及切线问题的综合应用
先求出函数的导数,若已知切点,则求出切线斜率、切线方 方 程;若切点未知,则先设出切点,用切点表示切线斜率,再 法 根据条件求切点坐标.总之,切点在解决此类问题时起着至
关重要的作用
[对点练清]
1.若过函数f(x)=ln x+ax上的点P的切线与直线2x-y=0平行,则实数a的取值
[对点练清] 求下列函数的导数: (1)y=x2+xln x;(2)y=lnx2x; (3)y=exx;(4)y=(2x2-1)(3x+1).
解:(1)y′=(x2+xln x)′=(x2)′+(xln x)′
=2x+(x)′ln x+x(ln x)′=2x+ln x+x·1x=2x+ln x+1.
()
3.已知函数 f(x)=ax2+c,且 f′(1)=2,则 a 的值为

高中数学《导数的四则运算法则》知识点讲解及重点练习

高中数学《导数的四则运算法则》知识点讲解及重点练习

5.2.2 导数的四则运算法则 学习目标 1.理解函数的和、差、积、商的求导法则.2.理解求导法则的证明过程,能够综合运用导数公式和导数运算法则求函数的导数.知识点 导数的运算法则已知f (x ),g (x )为可导函数,且g (x )≠0.(1)[f (x )±g (x )]′=f ′(x )±g ′(x ).(2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ),特别地,[cf (x )]′=cf ′(x ).(3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2.1.⎝⎛⎭⎫e x +cos π4′=e x .( √ ) 2.函数f (x )=x e x 的导数是f ′(x )=e x (x +1).( √ )3.当g (x )≠0时,⎣⎡⎦⎤1g (x )′=-g ′(x )g 2(x ).( √ )一、利用运算法则求函数的导数例1 求下列函数的导数:(1)y =15x 5+43x 3; (2)y =3x 2+x cos x ;(3)y =x 1+x; (4)y =lg x -e x ;(5)y =(x +1)⎝⎛⎭⎫1x -1. 解 (1)y ′=⎝⎛⎭⎫15x 5+43x 3′=⎝⎛⎭⎫15x 5′+⎝⎛⎭⎫43x 3′=x 4+4x 2. (2)y ′=(3x 2+x cos x )′=(3x 2)′+(x cos x )′=6x +x ′cos x +x (cos x )′=6x +cos x -x sin x .(3)y ′=⎝ ⎛⎭⎪⎫x 1+x ′=x ′(1+x )-x (1+x )′(1+x )2=1+x -x (1+x )2=1(1+x )2. (4)y ′=(lg x -e x )′=(lg x )′-(e x )′=1x ln 10-e x . (5)y ′=⎣⎡⎦⎤(x +1)⎝⎛⎭⎫1x -1′ =⎝⎛⎭⎫1x -x ′1122=x x '-⎛⎫- ⎪⎝⎭1131222211=22x 'x 'x x ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭---=--- =-12x ⎝⎛⎭⎫1+1x . 反思感悟 利用导数运算法则的策略(1)分析待求导式子符合哪种求导法则,每一部分式子是由哪种基本初等函数组合成的,确定所需的求导法则和基本公式.(2)如果求导式比较复杂,则需要对式子先变形再求导,常用的变形有乘积式展开变为和式求导,商式变乘积式求导,三角函数恒等变换后求导等.(3)利用导数运算法则求导的原则是尽可能化为和、差,能利用和差的求导法则求导的,尽量少用积、商的求导法则求导.跟踪训练1 求下列函数的导数:(1)y =x 2+x ln x ;(2)y =ln x x 2; (3)y =e xx; (4)y =(2x 2-1)(3x +1).解 (1)y ′=(x 2+x ln x )′=(x 2)′+(x ln x )′=2x +(x )′ln x +x (ln x )′=2x +ln x +x ·1x=2x +ln x +1.(2)y ′=⎝⎛⎭⎫ln x x 2′=(ln x )′·x 2-ln x (x 2)′x 4 =1x ·x 2-2x ln x x 4=1-2ln x x 3. (3)y ′=⎝⎛⎭⎫e x x ′=(e x )′x -e x (x )′x 2=e x ·x -e xx 2. (4)方法一 y ′=[(2x 2-1)(3x +1)]′=(2x 2-1)′(3x +1)+(2x 2-1)(3x +1)′=4x (3x +1)+(2x 2-1)×3=12x 2+4x +6x 2-3=18x 2+4x -3.方法二 ∵y =(2x 2-1)(3x +1)=6x 3+2x 2-3x -1,∴y ′=(6x 3+2x 2-3x -1)′=(6x 3)′+(2x 2)′-(3x )′-(1)′=18x 2+4x -3.二、利用运算法则求曲线的切线例2 (1)曲线y =sin x sin x +cos x -12在点M ⎝⎛⎭⎫π4,0处的切线的斜率为( ) A .-12 B.12 C .-22 D.22答案 B解析 y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=1(sin x +cos x )2,故π=4|x y'=12, ∴曲线在点M ⎝⎛⎭⎫π4,0处的切线的斜率为12. (2)已知曲线f (x )=x 3+ax +b 在点P (2,-6)处的切线方程是13x -y -32=0.①求a ,b 的值;②如果曲线y =f (x )的切线与直线y =-14x +3垂直,求切线的方程. 解 ①f (x )=x 3+ax +b 的导数f ′(x )=3x 2+a ,由题意可得f ′(2)=12+a =13,f (2)=8+2a +b =-6,解得a =1,b =-16.②∵切线与直线y =-x 4+3垂直,∴切线的斜率k =4. 设切点的坐标为(x 0,y 0),则f ′(x 0)=3x 20+1=4,∴x 0=±1.由f (x )=x 3+x -16,可得y 0=1+1-16=-14或y 0=-1-1-16=-18,则切线方程为y =4(x -1)-14或y =4(x +1)-18,即y =4x -18或y =4x -14.反思感悟 (1)此类问题往往涉及切点、切点处的导数、切线方程三个主要元素,其他的条件可以进行转化,从而转化为这三个要素间的关系.(2)准确利用求导法则求出导函数是解决此类问题的第一步,也是解题的关键,务必做到准确.(3)分清已知点是否在曲线上,若不在曲线上,则要设出切点,这是解题时的易错点. 跟踪训练2 (1)曲线y =x 3-4x 2+4在点(1,1)处的切线方程为( )A .y =-x +2B .y =5x -4C .y =-5x +6D .y =x -1答案 C解析 由y =x 3-4x 2+4,得y ′=3x 2-8x ,y ′|x =1=3-8=-5,所以曲线y =x 3-4x 2+4在点(1,1)处的切线方程为y -1=-5(x -1),即y =-5x +6.(2)已知函数f (x )=a ln x x +1+b x,曲线y =f (x )在点A (1,f (1))处的切线方程为x +2y -3=0,则a ,b 的值分别为________.答案 1,1 解析 f ′(x )=a ⎝ ⎛⎭⎪⎫x +1x -ln x (x +1)2-b x 2. 由于直线x +2y -3=0的斜率为-12,且过点(1,1), 故⎩⎪⎨⎪⎧ f (1)=1,f ′(1)=-12,即⎩⎪⎨⎪⎧ b =1,a 2-b =-12,解得⎩⎪⎨⎪⎧a =1,b =1.三、与切线有关的综合问题例3 (1)曲线y =x ln x 上的点到直线x -y -2=0的最短距离是( ) A. 2 B.22C .1D .2 答案 B解析 设曲线y =x ln x 在点(x 0,y 0)处的切线与直线x -y -2=0平行.∵y ′=ln x +1,∴0=|x x y'=ln x 0+1=1,解得x 0=1,∴y 0=0,即切点坐标为(1,0).∴切点(1,0)到直线x -y -2=0的距离为d =|1-0-2|1+1=22, 即曲线y =x ln x 上的点到直线x -y -2=0的最短距离是22. (2)设曲线 y =a (x -1)e x 在点(1,0)处的切线与直线 x +2y +1=0垂直,则实数a =________.答案 2e解析 令y =f (x ),则曲线y =a (x -1)e x 在点(1,0)处的切线的斜率为f ′(1),又切线与直线x +2y +1=0垂直,所以f ′(1)=2.因为f (x )=a (x -1)e x ,所以f ′(x )=a e x +a (x -1)e x =ax e x ,所以f ′(1)=a e ,故a =2e. 反思感悟 本题正确的求出函数的导数是前提,审题时注意所给点是否是切点,挖掘题目隐含条件,求出参数,解决已知经过一定点的切线问题,寻求切点是解决问题的关键.跟踪训练3 求曲线y =2e(x -1)e x 在点(1,0)处的切线与坐标轴围成的面积. 解 由题意可知,y ′=2ex ·e x ,y ′|x =1=2, ∴切线方程为y =2(x -1),即2x -y -2=0.令x =0得y =-2;令y =0得x =1.∴曲线y =2e (x -1)e x 在点(1,0)处的切线与坐标轴围成的面积为S =12×2×1=1.1.已知f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值是( )A.193B.163C.133D.103答案 D解析 ∵f ′(x )=3ax 2+6x ,∴f ′(-1)=3a -6=4,∴a =103. 2.设函数y =-2e x sin x ,则y ′等于( )A .-2e x cos xB .-2e x sin xC .2e x sin xD .-2e x (sin x +cos x )答案 D解析 y ′=-2(e x sin x +e x cos x )=-2e x (sin x +cos x ).3.若函数f (x )=12f ′(-1)x 2-2x +3,则f ′(-1)的值为( ) A .-1 B .0 C .1 D .2答案 A解析 因为f (x )=12f ′(-1)x 2-2x +3, 所以f ′(x )=f ′(-1)x -2.所以f ′(-1)=f ′(-1)×(-1)-2,所以f ′(-1)=-1.4.已知f (x )=ln x x,则f ′(1)=________. 答案 1解析 f ′(x )=(ln x )′·x -ln x ·(x )′x 2=1x ·x -ln x x 2 =1-ln x x 2, 所以f ′(1)=1.5.已知函数f (x )=f ′⎝⎛⎭⎫π4cos x +sin x ,则f ⎝⎛⎭⎫π4的值为________. 答案 1解析 ∵f ′(x )=-f ′⎝⎛⎭⎫π4sin x +cos x ,∴f ′⎝⎛⎭⎫π4=-f ′⎝⎛⎭⎫π4×22+22,得f ′⎝⎛⎭⎫π4=2-1. ∴f (x )=(2-1)cos x +sin x ,∴f ⎝⎛⎭⎫π4=1.1.知识清单:(1)导数的运算法则.(2)综合运用导数公式和导数运算法则求函数的导数.2.方法归纳:转化法.3.常见误区:对于函数求导,一般要遵循先化简、再求导的基本原则.1.(多选)下列运算中正确的是( )A .(ax 2+bx +c )′=a (x 2)′+b (x )′B .(sin x -2x 2)′=(sin x )′-2′(x 2)′C.⎝⎛⎭⎫sin x x 2′=(sin x )′-(x 2)′x 2D .(cos x ·sin x )′=(cos x )′sin x +cos x (sin x )′答案 AD解析 A 项中,(ax 2+bx +c )′=a (x 2)′+b (x )′,故正确;B 项中,(sin x -2x 2)′=(sin x )′-2(x 2)′,故错误;C 项中,⎝⎛⎭⎫sin x x 2′=(sin x )′x 2-sin x (x 2)′(x 2)2,故错误; D 项中,(cos x ·sin x )′=(cos x )′sin x +cos x (sin x )′,故正确.2.函数f (x )=e x cos x 的图象在点(0,f (0))处的切线的倾斜角为( )A .0 B.π4 C .1 D.π2答案 B解析 对函数求导得f ′(x )=e x (cos x -sin x ),∴f ′(0)=1,∴函数f (x )=e x cos x 的图象在点(0,f (0))处的切线的倾斜角为π4. 3.设f (x )=x ln x ,若f ′(x 0)=2,则x 0等于( )A .e 2B .e C.ln 22D .ln 2 答案 B解析 ∵f (x )=x ln x ,∴f ′(x )=ln x +1(x >0),由f ′(x 0)=2,得ln x 0+1=2,即ln x 0=1,解得x 0=e.4.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于( )A .-1B .-2C .2D .0答案 B解析 ∵f ′(x )=4ax 3+2bx ,f ′(x )为奇函数,∴f ′(-1)=-f ′(1)=-2.5.(多选)当函数y =x 2+a 2x(a >0)在x =x 0处的导数为0时,那么x 0可以是( ) A .a B .0 C .-a D .a 2答案 AC解析 y ′=⎝ ⎛⎭⎪⎫x 2+a 2x ′=2x ·x -(x 2+a 2)x 2=x 2-a 2x 2, 由x 20-a 2=0得x 0=±a .6.已知f (x )=sin x 1+cos x,则f ′⎝⎛⎭⎫π3=________. 答案 23解析 因为f ′(x )=(sin x )′(1+cos x )-sin x (1+cos x )′(1+cos x )2=cos x (1+cos x )-sin x (-sin x )(1+cos x )2=cos x +cos 2x +sin 2x (1+cos x )2=cos x +1(1+cos x )2 =11+cos x . 所以f ′⎝⎛⎭⎫π3=11+cos π3=23. 7.已知f (x )=e x x,则f ′(1) =________,若f ′(x 0)+f (x 0)=0,则x 0=________. 答案 0 12解析 因为f ′(x )=(e x )′x -e x (x )′x 2=e x (x -1)x 2(x ≠0). 所以f ′(1)=0.由f ′(x 0)+f (x 0)=0,得()00020e 1e 0.x x x x x 0-+= 解得x 0=12. 8.已知函数f (x )=e x ·sin x ,则曲线y =f (x )在点(0,f (0))处的切线方程是____________. 答案 y =x解析 ∵f (x )=e x ·sin x ,f ′(x )=e x (sin x +cos x ),f ′(0)=1,f (0)=0,∴曲线y =f (x )在点(0,0)处的切线方程为y -0=1×(x -0),即y =x .9.若曲线y =x 2-ax +ln x 存在垂直于y 轴的切线,求实数a 的取值范围.解 ∵y =x 2-ax +ln x ,∴y ′=2x -a +1x, 由题意可知,存在实数x >0使得2x -a +1x=0, 即a =2x +1x成立,∴a =2x +1x ≥22(当且仅当2x =1x ,即x =22时等号成立).∴a 的取值范围是[22,+∞).10.已知函数f (x )=ax 2+bx +3(a ≠0),其导函数f ′(x )=2x -8.(1)求a ,b 的值;(2)设函数g (x )=e x sin x +f (x ),求曲线g (x )在x =0处的切线方程.解 (1)因为f (x )=ax 2+bx +3(a ≠0),所以f ′(x )=2ax +b ,又f ′(x )=2x -8,所以a =1,b =-8.(2)由(1)可知g (x )=e x sin x +x 2-8x +3,所以g ′(x )=e x sin x +e x cos x +2x -8,所以g ′(0)=e 0sin 0+e 0cos 0+2×0-8=-7,又g (0)=3,所以曲线g (x )在x =0处的切线方程为y -3=-7(x -0),即7x +y -3=0.11.已知曲线f (x )=x 2+ax +1在点(1,f (1))处切线的倾斜角为3π4,则实数a 等于( )A .1B .-1C .7D .-7答案 C解析 ∵f ′(x )=2x (x +1)-(x 2+a )(x +1)2=x 2+2x -a (x +1)2,又f ′(1)=tan 3π4=-1,∴a =7.12.已知曲线f (x )=(x +a )·ln x 在点(1,f (1))处的切线与直线2x -y =0垂直,则a 等于() A.12 B .1 C .-32 D .-1答案 C解析 因为f (x )=(x +a )·ln x ,x >0,所以f ′(x )=ln x +(x +a )·1x ,所以f ′(1)=1+a .又因为f (x )在点(1,f (1))处的切线与直线2x -y =0垂直,所以f ′(1)=-12,所以a =-32,故选C. 13.已知函数f (x )=f ′(-1)x 22-2x +3,则f (-1)的值为________. 答案 92解析 ∵f ′(x )=f ′(-1)·x -2,∴f ′(-1)=-f ′(-1)-2,解得f ′(-1)=-1.∴f (x )=-x 22-2x +3, ∴f (-1)=92. 14.已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为______________.答案 x -y -1=0解析 ∵点(0,-1)不在曲线f (x )=x ln x 上,∴设切点坐标为(x 0,y 0).又∵f ′(x )=1+ln x (x >0),∴⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴切点坐标为(1,0),∴f ′(1)=1+ln 1=1.∴直线l 的方程为y =x -1,即x -y -1=0.15.等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)(x -a 2)·…·(x -a 8),则f ′(0)=________. 答案 212解析 因为f ′(x )=(x )′·[(x -a 1)(x -a 2)·…·(x -a 8)]+[(x -a 1)·(x -a 2)·…·(x -a 8)]′·x =(x -a 1)(x -a 2)·…·(x -a 8)+[(x -a 1)·(x -a 2)·…·(x -a 8)]′·x ,所以f ′(0)=(0-a 1)(0-a 2)·…·(0-a 8)+0=a 1a 2·…·a 8.因为数列{a n }为等比数列,所以a 1a 8=a 2a 7=a 3a 6=a 4a 5=8,所以f ′(0)=84=212.16.偶函数f (x )=ax 4+bx 3+cx 2+dx +e 的图象过点P (0,1),且在x =1处的切线方程为y =x -2,求f (x )的解析式.解 ∵f (x )的图象过点P (0,1),∴e =1.又∵f (x )为偶函数,∴f (x )=f (-x ).故ax 4+bx 3+cx 2+dx +e =ax 4-bx 3+cx 2-dx +e .∴b =0,d =0.∴f (x )=ax 4+cx 2+1.∵函数f (x )在x =1处的切线方程为y =x -2,∴切点坐标为(1,-1).∴a +c +1=-1.∵f ′(1)=4a +2c ,∴4a +2c =1.∴a =52,c =-92. ∴函数f (x )的解析式为f (x )=52x 4-92x 2+1.。

一导数的四则运算法则

一导数的四则运算法则

u'( x) lim u( x) , v'( x) lim v( x)
x0 x
x0 x
且y v( x)在点x处必连续,即
lim v( x x) v( x)
x0
所以
lim
x0
y x
=
lim
x0
u( x) x
v(
x
x)
v( x) x
u( x)
=u '( x) v( x) u( x) v '( x)
一、导数的四则运算法则
定理1 设函数u( x)与v( x)在点x处可导,则函数u( x) v( x), u( x) v( x),u( x) (v( x) 0)在点x处也可导并且有:
v( x)
1、u(x) v(x) ' u '(x) v '(x)
2、u(x) v(x) ' u '(x) v(x) u(x) v '(x)
=
1
1 x
2
(16)(arc
cot
x)'
=
1 1 x
2
2、 导数的四则运算法则
(1)u(x) v(x) ' u '(x) v '(x)
(2)u(x) v(x) ' u '(x) v(x) u(x) v '(x)
(3)Cu(x) ' Cu '(x)(C为常数)
'
u( x)
u '( x) v( x) u( x) v '( x)
f '(u)u'( x)
值得指出的是,复合函数的求导法,有时也称为链 导法,它可用于多次复合的情形。

导数的四则运算法则5

导数的四则运算法则5

核心知

1.导数四则运

方法总

1、熟记导数的四
则运算
2.复合函数的
导数
2、复合函数的导数求
导公式熟记,要层层求
导。
易错提醒
复合函数的导数容
易求错。核心素养来自1.数学运算:导数的四则运算
1.若f(x)与g(x)是定义在R上的两个可导函数,且
f(x),g(x)满足f(x)=g(x),则f(x)与g(x)满足
4.复合函数的求导法则
即:y对x的导数等于y对u的导数与
u对x的导数的乘积
三、巩固新知
1.例1.求下列函数的导数
解:
1.例1.求下列函数的导数
解:
则yx yu ux
则yx yu ux
2.变式训练1:求下列函数的导数
3.例7.
解:
4.变式训练2
5.变式训练3
的导数;
体会课堂探究的乐趣,
汲取新知识的营养,
让我们一起 走 进 课 堂 吧!
二、探究新知
2.导数的运算法则1:
三、巩固新知
例3.
解:
2.导数的运算法则:
法则2:两个函数的积的导数,等于第一个函数的导数乘第
二个函数,加上第一个函数乘第二个函数的导数 ,即:
法则3:两个函数的商的导数,等于第一个函数的导数乘第
公式4.若f ( x) cos x, 则f '( x) sin x;
公式5.若f ( x) a x , 则f '( x) a x ln a (a 0);
公式6.若f ( x) e x , 则f '( x) e x ;
公式7.若f ( x) log a x, 则f '( x)

导数的基本公式及四则运算法则

导数的基本公式及四则运算法则

导数的减法法则
总结词
导数的减法法则是导数的基本运算法则 之一,它指出两个函数的导数的差等于 它们各自导数的差的负值。
VS
详细描述
如果函数$f(x)$和$g(x)$在某一点$x$处 可导,那么$(f(x) - g(x))' = f'(x) - g'(x)$ 。
导数的乘法法则
总结词
导数的乘法法则是说,如果一个函数乘以一 个常数,那么它的导数就是这个常数乘以该 函数的导数。
详细描述
对于对数函数f(x)=ln(x),其导数为f'(x)=1/x。这个公式告诉我们,对数函数的斜率与x 的倒数有关。
03
导数的四则运算法则
导数的加法法则
总结词
导数的加法法则是指两个函数的导数的和等于它们各自导数的和。
详细描述
如果函数$f(x)$和$g(x)$在某一点$x$处可导,那么$(f(x) + g(x))' = f'(x) + g'(x)$。
04
导数在实际问题中的应用
最大值和最小值问题
总结词
导数在求解最大值和最小值问题中具有广泛 应用。
详细描述
通过求导找到函数的极值点,进而确定函数 的最大值或最小值。在经济学、工程技术和 科学研究等领域中,求解最大值和最小值问 题是一个常见的问题,导数的应用为这些问
题提供了有效的解决方案。
速度和加速度问题
导数在实际问题中的应用案例分析
总结:导数在实际问题中有着广泛的应用,通过分析导数 ,我们可以解决许多实际问题,如最优化问题、经济问题 等。
例如,在物理学中,导数可以用来描述速度和加速度的变 化;在经济学中,导数可以用来分析边际成本和边际收益 ;在工程学中,导数可以用来设计最优化的方案。

导数的四则运算法则

导数的四则运算法则

1 2
xsinx + = = -
1 2 x x
cosx = -
2xsinx + cosx 2x x
cosx + 2xsinx 2x x
首页 上页பைடு நூலகம்返回 下页 结束 铃
1 x 例6.求y=f(x)= 的导函数,f'(1). 3 x
2 2 1 x (1 x ) (3 x ) (1 x )(3 x ) 解: y ' ( )' 3 x (3 x 2 )2
首页 上页 返回 下页 结束 铃
证明:令y=f(x)+g(x),则
Δy = f(x +Δx)+ g(x +Δx)-[f(x)+ g(x)] =[f(x +Δx)- f(x)]+[g(x +Δx)- g(x)]= Δf +Δg
Δy Δf Δg = + Δx Δx Δx Δy Δf Δg Δf Δg lim = lim + = lim + lim Δx→0 Δx Δx→0 Δx Δx Δx→0 Δx Δx→0 Δx
练习:求下列函数导函数 (1)y= e2x (2) 答案:(e2x)'=2e2x ,
首页 上页 返回
y=cos2x (cos2x)'= -sin2x
下页 结束 铃
练习题 1.若f(x)与g(x)是定义在R上的两个可导 函数,且f(x),g(x)满足f ’(x)=g’(x),则f(x) 与g(x)满足( B ) (A)f(x)=g(x) (B)f(x)-g(x)为常数函数
(1) y 2 x 3x 8
5 2
(2) y ( x 2x)( x 2)

导数四则运算

导数四则运算


A. 1
B. 1
8
4
C. 1
D.1
2
6.(04年重庆卷。文15)已知曲线y 1 x3 4 ,则过点p(2,4) 33
的切线的直线的方程是
7.垂直于直线2x-6y+1=0,且与曲线y=x3+3x2-5相切的直线的方程 是
第9页/共11页
练习3 8.求曲线y=sin x,(1)在点A ( ,1)处的切线方程:
(位移单位: m,时间单位: s)
点评:根据导数的几何意义及导数的物理意义可知
y f (x)在点x0处的导数就是曲线y f (x) 瞬时速度是位移函数S(t)对时间的导数。即v s |tt0 在点P(x0 , y0)处的切线的斜率即k y |xx0 f (x0 );
第7页/共11页
例题
【例4】设函数f (x) |1 1 x

A. 19 3
B. 10 3
C. 13 D. 16
3
3
3.若y=x2 sinx,则y=(

A.2x sinx B.x2 cosx c.2x cosx+x2 cosx D.2x sinx+x2 cosx
第6页/共11页
例题
【例3】(1)求曲线 y
x22x 1在点(1,1)处的切线方程:
(2)运动物体在曲线 S t -1 2t2上运动,求物体在 t 3x时的速度 2
学习目标
1. 熟记基本函数的导数公式 2. 掌握两个函数的和、差、积、商的求导法则 3. 会求简单函数的导数
第2页/共11页
例题
例1. 求下列函数的导数
(1)
y
2x2
1 x
3 x3
(2) y ex cos x sin x

导数的四则运算法则

导数的四则运算法则

±

= ′ () ± ′ ().
2. 函数的积、商的导数运算法则





= ′ () + ′ ();
′ − ′
=
2
≠0 .


追问: 你有哪些收获?
运用函数的导数运算法则求函数的导数,比用导数定义求函
数的导数要方便很多.
运用导数运算法则可以求很多初等函数的导数,这有助于研
究更多函数的性质.
课后作业
1. 求下列函数的导数:
(1) = 3cos + 2 ;
(2) = e ln;
(3) = tan.
2
2. 求曲线 = +
3
在点(1,4)处的切线方程.

′ 98 = 25 ′ 90
净化到纯净度为98%时净化费用的瞬时变化率是净化到纯净
度为90%时的25倍.
即净化到纯净度为98%时净化费用变化的快慢是净化到纯净
度为90%时净化费用变化快慢的25倍.


问题5 我们学习了哪些知识内容?
函数的和、差、积、商的导数运算法则.


1. 函数的和、差的导数运算法则
2sin

(2) () =
2

2sin ′ 2 − 2sin( 2 )′
=
4
2cos ⋅ 2 − 2sin ⋅ 2
=
4
2cos − 4sin
=
.
3

3
ℎ′ () = [ 2 + 2
= 2 + 2

]′

2016重庆高职单招数学试题知识点:导数的实际应用

2016重庆高职单招数学试题知识点:导数的实际应用

考单招——上高职单招网2016重庆高职单招数学试题知识点:导数的实际应用【试题内容来自于相关网站和学校提供】1:已知函数,则()A、0B、1C、2D、2:已知点是曲线上的一个动点,则点到直线的距离的最小值为()A、B、C、D、3:设f(x),g(x)分别是定义在R上的奇函数和偶函数。

当x<0时,f′(x)g(x)+f(x)g′(x)> 0,且g(-3)=0,则不等式f(x)g(x)<0的解集是()A、(-3,0)∪(3,+∞)考单招——上高职单招网B、(-3,0)∪(0,3)C、(-∞,-3)∪(3,+∞)D、(-∞,-3)∪(0,3)4:某工厂要围建一个面积为512 m2的矩形堆料场,一边可以用原有的墙壁,其他三边需要砌新的墙壁,当砌壁所用的材料最省时堆料场的长和宽分别为()A、32 m,16 mB、30 m,15 mC、40 m,20 mD、36 m,18 m5:函数f(x)=ln x的图像与函数g(x)=x 2-4x+4的图像的交点个数为()A、0B、1C、2D、36:设,若函数有小于零的极值点,则实数的取值范围是。

7:的极大值是,极小值是。

考单招——上高职单招网8:电动自行车的耗电量与速度之间有如下关系:,为使耗电量最小,则速度应定为。

9:设函数,对任意,恒有,其中M 是常数,则M的最小值是 .10:已知函数的图象在处的切线方程为,则的值是 .11:若函数,(Ⅰ)当时,求函数的单调增区间;(Ⅱ)函数是否存在极值.12:(12分)已知设的反函数为。

(I)求的单调区间;(II)若对任意,不等式恒成立,求实数的取值范围。

13:已知函数在(1,2)上是增函数,在(0,1)上是减函数。

求的值;当时,若在内恒成立,求实数的取值范围;考单招——上高职单招网求证:方程在内有唯一解.14:已知实数,函数。

(Ⅰ)若函数有极大值32,求实数的值;(Ⅱ)若对,不等式恒成立,求实数的取值范围。

15:已知函数,.(1)当时,求在闭区间上的最大值与最小值;(2)若线段:与导函数的图像只有一个交点,且交点在线段的内部,试求的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考单招——上高职单招网
2016重庆高职单招数学试题知识点:导数的四则运算法则
【试题内容来自于相关网站和学校提供】
1:函数在处的导数()
A、
B、
C、
D、
2:是函数的导函数,则的值为 ( )
A、1
B、 2
C、1或2
D、4
3:下列式子中,错误的是
A、
B、
C、
D、
4:函数是上的可导函数, 时,,则函数
的零点个数为()
A、
B、
C、
D、
考单招——上高职单招网
5:设,则等于()
A、
B、
C、0
D、以上都不是
6:若(2x-3) 5=a 0+a 1x+a 2x 2+a 3x 3+a 4x 4+a 5x 5,则a 1+2a 2+3a 3+4a 4+5a 5=________.
7:已知,则当取最大值时,=_____________. 8:若f( x)=(2 x+a) 2,且f′(2)=20,则a=________.
9:若_________________;
10:已知,则▲。

11:求函数的导数
(1) y=( x2-2 x+3) e2x;
(2) y= .
12:求函数的导数。

13:
求下列函数的导数:
考单招——上高职单招网
(1);(2);(3);(4);(5);(6)。

14:求下列函数的导数:
(1)(2)(3)
15:已知,求。

答案部分
1、D
,∴,∴,故选。

2、B
解:因为是函数的导函数,,
选B
3、D

4、D
考单招——上高职单招网

试题分析:时,,则讨论
的根的个数转化为
求的根的个数.设,则当时,
,函数在上单调递增,当时,,函数在上单调递减,而函数是上的连续可导函数,故无实数根
考点:函数的零点与方程根的联系,导数的运算
5、C
本题是对函数的求导问题,直接利用公式即可
6、 10
原等式两边求导得5(2x-3) 4·(2x-3)′=a 1+2a 2x+3a 3x 2+4a 4x 3+5a 5x 4,令上式中x=1,得a 1+2a 2+3a 3+4a 4+5a 5=10.
7、

8、 1
∵f′(x)=2(2 x+a)×2=4(2 x+a),∴f′(2)=16+4 a=20,∴a=1
9、
考单招——上高职单招网
试题分析:根据题意,由于,故可知答案为
考点:导数的运算
点评:主要是考查了多项式的导数的计算,属于基础题。

10、 -4
,则,从而有,解得。

所以,故
11、见解析
(1)注意到y>0,两端取对数,得
ln y=ln( x2-2 x+3)+ln e2x=ln( x2-2 x+3)+2 x
(2)两端取对数,得
ln| y|= (ln| x|-ln|1-x|),
两边解x求导,得
12、
考单招——上高职单招网。

13、(1)(2)(3)(4)(5)
(6)
(1)。

(2)。

(3)。

(4)∵,∴。

(5)。

(6)。

14、略
注意复合函数的求导方法(分解求导回代);注意问题的变通:如的导数容易求错,但的导数不易求错.
(1)
(2)
考单招——上高职单招网
(3)
15、 1
令,,
则。

令,
则,。

当时,。

相关文档
最新文档