昆山市2017年中考一轮复习《无理数与实数》专题练习含答案
初中数学中考一轮复习专题1数与式重点、考点知识、方法总结及真题练习
在实数范围内,正数和零统称为非负数.我们已经学习过的非负数有如下三种形式:
(1)仸何一个实数 a 的绝对值是非负数,即| a |≥0; (2)仸何一个实数 a 的平方是非负数,即 a2 ≥0; (3)仸何非负数的算术平方根是非负数,即 a 0 ( a 0 ).
非负数具有以下性质: (1)非负数有最小值零; (2)有限个非负数乊和仍是非负数; (3)几个非负数乊和等于 0,则每个非负数都等于 0. 4.实数的运算
a a (a 0, b 0) bb
②.加减法
将二次根式化为最简二次根式后,将同类二次根式的系数相加减,被开方数和根指数丌变,
即合并同类二次根式.
【典例】
1.计算:5 +
﹣×+ ÷.
【答案】 【解析】解:原式= + ﹣
+3 ÷
=2 ﹣1+3
=2 +2.
x xy xy y
2.若 x 0 ,化简
注:单独一个字母戒一个数也是代数式.
2.代数式的分类:
3.代数式的书写规则: (1)数字不字母相乘戒字母不字母相乘,通常把乘号写作“ ”戒省略丌写,字母乊间的
顺序可以交换,但一般按字母表中的先后顺序写.数字应在字母乊前.如: 3b 丌要写成 b3 (2)在代数式中出现除法运算时,一般都变成分数和乘法来计算.如: 2a b 写成 2a
x
2
0
即
x
1 且x 2
2
.
【难度】易
【结束】
2.若
,则 ( )
A. b>3B. b<3C. b≥3D. b≤3
【答案】D.
【解析】
3 b = 3 b ,所以 3 b ≥0,即 b 3 .
中考数学无理数与实数专题卷(有答案)
中考数学无理数与实数专题卷(有答案)一、单选题(共2题;共4分)1.在π,﹣,,3.14,,sin30°,0各数中,无理数有()A. 2个B. 3个C. 4个D. 5个2.下列各式中,正确的是( )A. ± =±B. ± = ;C. ± =±D. =±二、填空题(共3题;共3分)3.16的平方根是________.4.计算:=________.5.在﹣,π,0,1.23,,,0.131131113中,无理数有________ 个.三、计算题(共14题;共93分)6.计算:﹣3tan30°+(π﹣4)0.7.计算:tan30°+|-2|.8.解方程:9m2-(2m+1)2=0.9.计算:(1)(﹣a2)3•4a(2)2x(x+1)+(x+1)2.10.(2015•庆阳)计算:(﹣2)0+()﹣1+4cos30°﹣|﹣|11.计算:(1)(2).12(1)计算:(﹣2014)0+|﹣tan45°|﹣()﹣1+(2)解方程:+=3.13.计算下列各题.(1)(2)(3)一般地,当a、b为任意角时,sin(a+b)与sin(a-b)的值可以用下面的公式求得:; .例如.请你试着求一求sin15 的值.14.解不等式组:(1).(2),并将它的解集在数轴上表示出来.15.计算(1)计算6sin60°﹣()﹣2﹣(2)化简:16.计算:17.计算题(1)计算:;(2)解方程:.18.计算:(1)(2x)3•y3÷16xy2(2)x2﹣(x+3)(x﹣3)(3)简便计算:201×199.19.化简:.答案一、单选题1.A2. A二、填空题3. 4.2 5.2三、计算题6.解:﹣3tan30°+(π﹣4)0= =7. 解:原式=1﹣2 +2 =1﹣2+2=18.解:原方程可化为,即(5m+1)(5m-1)=0,即5m+1=0或m-1=0,∴原方程的解为m1=,m2=1.9. (1)解:原式=﹣a6•4a=﹣4a7(2)解:原式=2x2+2x+x2+2x+1=3x2+4x+110.【解答】解:原式=1+3+4×﹣2=4.11. (1)解:(2)解:,∴x1=1, x2=3 .12.解:(1)原式=1+1﹣2+2,=2;(2)+=3去分母得:2x﹣1=3(x﹣1),则﹣x=﹣2,解得:x=2,检验:把x=2代入(x﹣1)≠0,∴x=2是原分式方程的解.13. (1)解:原式(2)解:原式(3)解:由题意得:sin15 =sin(45 -30 )=sin45 ·cos30 -cos45 ·sin3014. (1)解:解不等式①,得x<1.解不等式②,得x≥0,故不等式组的解集为0≤x<1(2)解:由①得:﹣2x≥﹣2,即x≤1,由②得:4x﹣2<5x+5,即x>﹣7,所以﹣7<x≤1.在数轴上表示为:15.(1)解:原式=6× ﹣9﹣2 = ﹣9;(2)解:原式= +===16.解:原式=9+1﹣3 =717.(1)解:原式= .(2)解:,18.(1)解:原式=8x3y3÷16xy2=(2)解:原式=x2﹣(x2﹣9)=9(3)解:原式=(200+1)(200﹣1)=2002﹣1 =3999919. 解:原式=.。
中考数学专题复习卷:无理数与实数(含解析)
无理数与实数一、选择题1.四个数0,1,,中,无理数的是()A. B.1 C. D.02.4的平方根是()A. B.2 C.-2 D.163.下列无理数中,与最接近的是()A. B.C.D.4.估计的值在()A. 2和3之间B. 3和4之间 C. 4和5之间 D. 5和6之间5.7的算术平方根是()A. 49B.C.﹣D.±6.的值等于()A. 3B. -3C. ±3D.7.( )A. B.C.D.8.当x分别取,,0,2时,使二次根式的值为有理数的是()A.B.C. 0D.29.已知:a× =b×1 =c÷ ,且a、b、c都不等于0,则a、b、c中最小的数是()A. a B . b C.c D.a和c10.设a是9的平方根,B=()2,则a与B的关系是()A. a=±BB. a=BC. a=﹣B D. 以上结论都不对11.下列各组数中互为相反数的是()A. 5和B. 和C. 和D. ﹣5和12.已知面积为8的正方形边长是x,则关于x的结论中,正确的是()A. x是有理数B. x不能在数轴上表示C. x是方程4x=8的解D. x是8的算术平方根二、填空题13.﹣的相反数是________,倒数是________,绝对值是________.14.计算:3-1-()0=________.15.计算:________.16.比较大小:3________ (填<,>或=).17.若=2.449,=7.746,=244.9,=0.7746,则x=________,y=________.18.比较大小:﹣3________cos45°(填“>”“=”或“<”).19.一个正数的平方根分别是x+1和x﹣5,则x=________.20.化简( -1)0+( )-2- + =________.21.已知实数x,y满足|x-4|+ =0,则以x,y的值为两边长的等腰三角形的周长是________.22.如图,数轴上点A所表示的实数是________.三、解答题23. 计算:(﹣2)3+ +10+|﹣3+ |.24. (1)计算:﹣2sin45°+(2﹣π)0﹣()﹣1;(2)先化简,再求值•(a2﹣b2),其中a= ,b=﹣2 .25.已知5a+2的立方根是3,3a+b-1的算术平方根是4,c是的整数部分.(1)求a,b,c的值;(2)求3a-b+c的平方根答案解析一、选择题1.【答案】A【解析】:A. 属于无限不循环小数,是无理数,A符合题意;B.1是整数,属于有理数,B不符合题意;C. 是分数,属于有理数,C不符合题意;D.0是整数,属于有理数,D不符合题意;故答案为:A.【分析】无理数:无限不循环小数,由此即可得出答案.2.【答案】A【解析】:∵22=2,(-2)2=4,∴4的平方根是±2.故答案为:A.【分析】平方根:如果一个数的平方等于a,那么这个数叫做a的平方根,由此即可得出答案.3.【答案】C【解析】:4= ,与最接近的数为,故答案为:C.【分析】根据算数平方根的意义,4=,再根据算术平方根的性质,被开方数越大,其算术根越大,通过观察发现的被开方数17最接近的被开方数,从而得出答案。
(完整版)中考数学专题复习卷:无理数与实数专项练习题(含解析)
无理数与实数一、专练选择题1. 四个数 0, 1,,中,无理数的是()A. C.2.4 的平方根是()A. C.-23. 以下无理数中,与最靠近的是()A. B.C.D.4. 预计的值在()A. 2和3之间B. 3和 4之间 C. 4和5之间 D. 5和6之间5.7 的算术平方根是()A.49B.C.﹣D.±6.的值等于()A. 3B. -3C.±3D.7.()A. B.C.D.8. 当 x 分别取,,0,2时,使二次根式的值为有理数的是()A.B.C. 0D.29. 已知: a×=b×1=c÷,且a、b、c都不等于0,则 a、 b、 c 中最小的数是()A. a B . b C.c D.a 和 c10. 设 a 是 9 的平方根, B=()2,则a与B的关系是()A. a=±BB.a=BC. a=﹣B D.以上结论都不对11. 以下各组数中互为相反数的是()A. 5和B.和C.和D. ﹣ 5 和12. 已知面积为8 的正方形边长是x,则对于x 的结论中,正确的选项是()A. x 是有理数B. x 不可以在数轴上表示C. x 是方程 4x= 8 的解 D. x 是 8 的算术平方根二、专项练习填空题13.﹣的相反数是________,倒数是________,绝对值是________.14.计算: 3-1 - ()0=________ .15. 计算:________.16. 比较大小: 3________ ( 填<,>或= ) .17. 若=2.449 ,=7.746 ,=244.9 ,=0.7746 ,则 x=________, y=________ .18. 比较大小:﹣3________cos45°(填“>”“ =”或“<”).19.一个正数的平方根分别是 x+1 和 x﹣ 5,则 x=________.20. 化简 ( -1) 0+() -2-+ =________.21. 已知实数x, y 知足 |x-4|+ =0,则以 x,y 的值为两边长的等腰三角形的周长是________.22.如图,数轴上点 A 所表示的实数是 ________.三、解专项练习解答题23.计算:(﹣2)3++10+| ﹣3+| .24. ( 1)计算:﹣2sin45 °+( 2﹣π)0﹣()﹣1;( 2)先化简,再求值?( a2﹣ b2),此中 a= ,b=﹣ 2.25. 已知 5a+2 的立方根是3,3a+b-1 的算术平方根是4,c 是的整数部分.(1)求 a, b, c 的值;(2)求 3a-b+c 的平方根专项练习分析一、专练选择题1.【答案】 A【分析】: A.属于无穷不循环小数,是无理数, A 切合题意;B.1 是整数,属于有理数, B 不切合题意;C.是分数,属于有理数, C 不切合题意;D.0 是整数,属于有理数, D 不切合题意;故答案为: A.【剖析】无理数:无穷不循环小数,由此即可得出答案.2.【答案】 A【分析】:∵ 22=2, (-2 )2=4,∴ 4 的平方根是± 2.故答案为: A.【剖析】平方根:假如一个数的平方等于a, 那么这个数叫做 a 的平方根,由此即可得出答案.3.【答案】 C【分析】:4=,与最靠近的数为,故答案为 :C.【剖析】依据算数平方根的意义,4=,再依据算术平方根的性质,被开方数越大,其算术根越大,经过察看发现的被开方数17 最靠近的被开方数,进而得出答案。
江苏省苏州昆山市石牌中学2017年中考数学一轮复习专题练习《有理数》(解析版)
2017年中考数学一轮复习专题练习《有理数》一.选择题1. 如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm),其中不合格的是()A. Φ45.02B. Φ44.9C. Φ44.98D. Φ45.01【答案】B【解析】试题分析:表示的含义是:45-0.04≤直径≤45+0.03,即44.96≤直径≤45.03.因此A,C,D都合格,只有B不合格.故此题选B.考点:正负数的含义.2. ﹣的相反数是()A. ﹣B.C. ﹣3D. 3【答案】B【解析】试题分析:根据只有符号不同的两个数互为相反数,可得-的相反数为.故选:B.点睛:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.3. 数轴上点A、B表示的数分别是5、﹣3,它们之间的距离可以表示为()A. ﹣3+5B. ﹣3﹣5C. |﹣3+5|D. |﹣3﹣5|【答案】D【解析】试题分析:由距离的定义和绝对值的关系,由点A、B表示的数分别是5、﹣3,可得它们之间的距离=|﹣3﹣5|=8,故选:D.点睛:本题考查绝对值的意义、数轴上两点间的距离;理解数轴上两点间的距离与绝对值的关系是解决问题的关键.4. 已知点M、N、P、Q在数轴上的位置如图,则其中对应的数的绝对值最大的点是()A. MB. NC. PD. Q【答案】D【解析】试题分析:观察数轴可知,点Q到原点的距离最远,所以点Q的绝对值最大.故答案选D.考点:数轴;绝对值.5. 的倒数是()A. ﹣2B. 2C.D. ...【答案】A【解析】试题分析:根据倒数的定义,乘积为1的两数互为倒数,可知其倒数为-2.故选:A.6. 据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为()A. 3.386×108B. 0.3386×109C. 33.86×107D. 3.386×109【答案】A【解析】试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.数字338 600 000用科学记数法可简洁表示为3.386×108考点:科学记数法—表示较大的数.7. 如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A. B. C. D.【答案】C【解析】试题分析:∵|-3.5|=3.5,|+2.5|=2.5,|-0.6|=0.6,|+0.7|=0.7,0.6<0.7<2.5<3.5,∴从轻重的角度看,最接近标准的是-0.6.故答案选C.考点:绝对值.二.填空题8. 已知|a+2|=0,则a=__.【答案】-2【解析】∵|a+2|=0,∴a+2=0,∴a=-29. 蜜蜂建造的蜂巢既坚固又省料,其厚度约为0.000073米,将0.000073用科学记数法表示为__.【答案】7.3×10﹣5【解析】试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:将0.000073用科学记数法表示为7.3×10﹣5.故答案为:7.3×10﹣5.10. 观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,…,试猜想,32016的个位数字是__.【答案】1【解析】试题分析:设n为自然数,∵34n+1的个位数字是3,与31的个位数字相同,34n+2的个位数字是9,与32的个位数字相同,34n+3的个位数字是7,与33的个位数字相同,34n的个位数字是1,与34的个位数字相同,...∴32016=3504×4的个位数字与34的个位数字相同,应为1,故答案为:1.点睛:本题考查了数字的变化规律,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.11. ﹣的相反数的倒数是__.【答案】2016【解析】试题分析:根据只有符号不同的两个数互为相反数,可得-的相反数为.然后根据乘积为1的两数互为倒数,可得倒数为2016.故答案为:2016.三.解答题(共8小题)12.请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15)(2)999×118+999×(﹣)﹣999×18.【答案】(1)-14985(2)99900【解析】试题分析:(1)将式子变形为(1000﹣1)×(﹣15),再根据乘法分配律计算即可求解;(2)根据乘法分配律计算即可求解.试题解析:(1)999×(﹣15)=(1000﹣1)×(﹣15)=1000×(﹣15)+15=﹣15000+15=﹣14985;(2)999×118+999×(﹣)﹣999×18=999×(118﹣﹣18)=999×100=9990013. 出租车司机小李某天下午营运全是在东西走向的人民大道上进行的.如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6(1)将最后一名乘客送到目的地时,小李距下午出车时的出发点多远?(2)若汽车耗油量为3升/千米,这天下午小李开车共耗油多少升?【答案】(1)39(2)将最后一名乘客送到目的地时,小李距下午出发地点的距离是39千米;若汽车耗油量为3升/千米,这天下午汽车共耗油195升【解析】试题分析:(1)将所走的路程相加可得出小李距下午出发地点的距离....(2)耗油量=耗油速率×总路程,总路程为所走路程的绝对值的和.解:(1)(+15)+(﹣2)+(+5)+(﹣1)+(+10)+(﹣3)+(﹣2)+(+12)+(+4)+(﹣5)+(+6)=39千米;(2)|+15|+|﹣2|+|+5|+|﹣1|+|+10|+|﹣3|+|﹣2|+|+12|+|+4|+|﹣5|+|+6|=65(千米),则耗油65×3=195升.答:将最后一名乘客送到目的地时,小李距下午出发地点的距离是39千米;若汽车耗油量为3升/千米,这天下午汽车共耗油195升.考点:正数和负数.14. 如果规定符号“﹡”的意义是a﹡b=,求2﹡(﹣3)﹡4的值.【答案】2.4试题解析:2﹡(﹣3)﹡4=﹡4=6﹡4==2.415. (1)阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.(2)回答下列问题:①数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;②数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x为;③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是.④解方程|x+1|+|x﹣2|=5.【答案】①3,3,4②|x+1|,1或-3③-1≤x≤2④x=-4或x=③根据绝对值的性质,可得到一个一元一次不等式组,通过求解,就可得出x的取值范围....④根据题意分三种情况:当x≤﹣1时,当﹣1<x≤2时,当x>2时,分别求出方程的解即可.试题解析:①数轴上表示2和5的两点之间的距离是|2﹣5|=3;数轴上表示﹣2和﹣5的两点之间的距离是|﹣2﹣(﹣5)|=3;数轴上表示1和﹣3的两点之间的距离是|1﹣(﹣3)|=4②数轴上x与-1的两点间的距离为|x-(-1)|=|x+1|,如果|AB|=2,则x+1=±2,解得x=1或-3.③根据题意得x+1≥0且x-2≤0,则-1≤x≤2;④解方程|x+1|+|x﹣2|=5.当x+1>0,x-2>0,则(x+1)+(x-2)=5,解得x=3当x+1<0,x-2<0,则-(x+1)-(x-2)=5,解得x=-2当x+1与x-2异号,则等式不成立.所以答案为:3或-2.。
江苏省苏州昆山市石牌中学2017届九年级中考一轮复习数学试题(原卷版)
2017年中考数学一轮复习专题练习《无理数与实数》一.选择题1. 的算术平方根是()A. 2B. ±2C.D.2. 已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是()A. a•b>0B. a+b<0C. |a|<|b|D. a﹣b>03. 实数a,b在数轴上的位置如图所示,则|a|﹣|b|可化简为()A. a﹣bB. b﹣aC. a+bD. ﹣a﹣b4. 的运算结果应在哪两个连续整数之间()A. 2和3B. 3和4C. 4和5D. 5和65. 已知边长为m的正方形面积为12,则下列关于m的说法中,错误的是()①m是无理数;②m是方程m2﹣12=0的解;③m满足不等式组;④m是12的算术平方根.A. ①②B. ①③C. ③D. ①②④6. 已知实数a,b在数轴上的位置如图所示,下列结论错误的是()A. |a|<1<|b|B. 1<﹣a<bC. 1<|a|<bD. ﹣b<a<﹣17. 实数b满|b|<3,并且有实数a,a<b恒成立,a的取值范围是()A. 小于或等于3的实数B. 小于3的实数C. 小于或等于﹣3的实数D. 小于﹣3的实数二.填空题8. 实数﹣27的立方根是__.9. 若实数m,n满足(m﹣1)2+=0,则(m+n)5=__.10. 将实数,π,0,﹣6由小到大用“<”号连起来,可表示为__....11. 比较大小:__.(填“>”,“<”或“=”)三.解答题12. 计算:(﹣1)2016+2sin60°﹣|﹣|+π0.13. 计算:|﹣3|+﹣(﹣1)2+(﹣)0.14. 计算:.15. 计算:|﹣3|﹣(2016+sin30°)0﹣(﹣)﹣1.。
中考数学总复习无理数与实数-精练精析及答案解析
无理数与实数1一.选择题(共8小题)1.8的平方根是()A.4 B.±4C.2 D.2.的平方根是()A.±3 B.3 C.±9D.93.已知9.972=99.4009,9.982=99.6004,9.992=99.8001,求之值的个位数字为何?()A.0 B.4 C.6 D.84.已知边长为a的正方形的面积为8,则下列说法中,错误的是()A.a是无理数B.a是方程x2﹣8=0的一个解C.a是8的算术平方根D.a满足不等式组5.化简得()A.100 B.10 C. D.±106.若实数x、y满足=0,则x+y的值等于()A.1 B. C.2 D.7.下列实数中是无理数的是()A.B.2﹣2C.5. D.sin45°8.下列各数:,π,,cos60°,0,,其中无理数的个数是()A.1个B.2个C.3个D.4个二.填空题(共8小题)9.4的平方根是_________ .10.计算:= _________ .11.的算术平方根为_________ .12.计算:= _________ .13.一个数的算术平方根是2,则这个数是_________ .14.计算:﹣= _________ .15.观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是_________ (结果需化简).16.下面是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥3)行从左向右数第n﹣2个数是_________ (用含n 的代数式表示)三.解答题(共6小题)17.计算:﹣4cos45°+()﹣1+|﹣2|.18.计算:.19.计算:(﹣)﹣2+﹣2sin45°﹣|1﹣|.20.计算:(﹣1)0﹣(﹣2)+3tan30°+()﹣1.21.若的整数部分为a,小数部分为b,求a2+b2的值.22.己知+(x﹣2)2=0,求x﹣y的平方根.无理数与实数1参考答案与试题解析一.选择题(共8小题)1.8的平方根是()A. 4 B.±4C.2D.考点:平方根.分析:直接根据平方根的定义进行解答即可解决问题.解答:解:∵,∴8的平方根是.故选:D.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.的平方根是()A.±3B.3 C.±9D.9考点:平方根;算术平方根.专题:计算题.分析:根据平方运算,可得平方根、算术平方根.解答:解:∵,9的平方根是±3,故选:A.点评:本题考查了算术平方根,平方运算是求平方根的关键.3.已知9.972=99.4009,9.982=99.6004,9.992=99.8001,求之值的个位数字为何?()A.0 B.4 C.6 D.8考点:算术平方根.分析:利用已知得出≈9.98,进而得出答案.解答:解:∵9.972=99.4009,9.982=99.6004,9.992=99.8001,∴≈9.98,∴≈998,即其个位数字为8.故选:D.点评:此题主要考查了算术平方根,得出的近似值是解题关键.4.已知边长为a的正方形的面积为8,则下列说法中,错误的是()A.a是无理数 B. a是方程x2﹣8=0的一个解C.a是8的算术平方根 D. a满足不等式组考点:算术平方根;无理数;解一元二次方程-直接开平方法;解一元一次不等式组.分析:首先根据正方形的面积公式求得a的值,然后根据算术平方根以及方程的解的定义即可作出判断.解答:解:a==2,则a是无理数,a是方程x2﹣8=0的一个解,是8的算术平方根都正确;解不等式组,得:3<a<4,而2<3,故错误.故选:D.点评:此题主要考查了算术平方根的定义,方程的解的定义,以及无理数估计大小的方法.5.化简得()A.100 B.10 C.D.±10考点:算术平方根.分析:运用算术平方根的求法化简.解答:解:=10,故答案为:B.点评:本题主要考查算术平方根用二次根式的性质和化简的知识点,本题是基础题,比较简单.6.若实数x、y满足=0,则x+y的值等于()A. 1 B.C.2 D.考点:非负数的性质:算术平方根;非负数的性质:偶次方.专题:分类讨论.分析:根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.解答:解:由题意得,2x﹣1=0,y﹣1=0,解得x=,y=1,所以,x+y=+1=.故选:B.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.7.下列实数中是无理数的是()A.B.2﹣2C.5. D.s in45°考点:无理数.专题:常规题型.分析:根据无理数是无限不循环小数,可得答案.解答:解:A、是有理数,故A选项错误;B、是有理数,故B选项错误;C、是有理数,故C选项错误;D、是无限不循环小数,是无理数,故D选项正确;故选:D.点评:本题考查了无理数,无理数是无限不循环小数.8.下列各数:,π,,cos60°,0,,其中无理数的个数是()A.1个B.2个C.3个D.4个考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:据无理数定义得有,π和是无理数.故选:B.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.二.填空题(共8小题)9.4的平方根是±2.考点:平方根.专题:计算题.分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.解答:解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10.计算:= 3 .考点:算术平方根.专题:计算题.分析:根据算术平方根的定义计算即可.解答:解:∵32=9,∴=3.故答案为:3.点评:本题较简单,主要考查了学生开平方的运算能力.11.的算术平方根为.考点:算术平方根.专题:计算题.分析:首先根据算术平方根的定义计算先=2,再求2的算术平方根即可.解答:解:∵=2,∴的算术平方根为.故答案为:.点评:此题考查了算术平方根的定义,解题的关键是知道=2,实际上这个题是求2的算术平方根.注意这里的双重概念.12.计算:= ﹣8 .考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:分别根据负整数指数幂、0指数幂及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可.解答:解:原式=﹣1﹣8+1+|3﹣4|=﹣8.故答案为:﹣8.点评:本题考查的是实数的运算,熟知负整数指数幂、0指数幂及特殊角的三角函数值是解答此题的关键.13.一个数的算术平方根是2,则这个数是 4 .考点:算术平方根.专题:计算题.分析:利用算术平方根的定义计算即可得到结果.解答:解:4的算术平方根为2,故答案为:4点评:此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.14.计算:﹣= ﹣3 .考点:算术平方根.分析:根据算术平方根的定义计算即可得解.解答:解:﹣=﹣3.故答案为:﹣3.点评:本题考查了算术平方根的定义,是基础题,熟记概念是解题的关键.15.观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是﹣3(结果需化简).考点:算术平方根.专题:规律型.分析:通过观察可知,规律是根号外的符号以及根号下的被开方数依次是:(﹣1)1+1×0,(﹣1)2+1,(﹣1)3+1…(﹣1)n+1),可以得到第16个的答案.解答:解:由题意知道:题目中的数据可以整理为:,(﹣1)2+1,…(﹣1)n+1),∴第16个答案为:.故答案为:.点评:主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.16.下面是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥3)行从左向右数第n﹣2个数是(用含n的代数式表示)考点:算术平方根.专题:规律型.分析:观察不难发现,被开方数是从1开始的连续自然数,每一行的数据的个数是从2开始的连续偶数,求出n﹣1行的数据的个数,再加上n﹣2得到所求数的被开方数,然后写出算术平方根即可.解答:解:前(n﹣1)行的数据的个数为2+4+6+…+2(n﹣1)=n(n﹣1),所以,第n(n是整数,且n≥3)行从左到右数第n﹣2个数的被开方数是n(n﹣1)+n﹣2=n2﹣2,所以,第n(n是整数,且n≥3)行从左到右数第n﹣2个数是.故答案为:.点评:本题考查了算术平方根,观察数据排列规律,确定出前(n﹣1)行的数据的个数是解题的关键.三.解答题(共6小题)17.计算:﹣4cos45°+()﹣1+|﹣2|.考点:实数的运算;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项化为最简二次根式,第二项利用特殊角的三角函数值计算,第三项利用负指数幂法则计算,最后一项利用绝对值法则计算即可得到结果.解答:解:原式=2﹣4×+2+2=4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.计算:.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:分别进行二次根式的化简、特殊角的三角函数值、零指数幂、负整数指数幂等运算,然后按照实数的运算法则计算即可.解答:解:原式=2﹣2×+1﹣8=.点评:本题考查了实数的运算,涉及了二次根式的化简、特殊角的三角函数值、零指数幂、负整数指数幂等知识,属于基础题.19.计算:(﹣)﹣2+﹣2sin45°﹣|1﹣|.考点:实数的运算;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:本题涉及负整指数幂、特殊角的三角函数值、二次根式化简三个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果解答:解:原式=+﹣﹣(﹣1)=.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.计算:(﹣1)0﹣(﹣2)+3tan30°+()﹣1.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:本题涉及零指数幂、负整指数幂、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得结果.解答:解:原式=1﹣+2++3=6.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.21.若的整数部分为a,小数部分为b,求a2+b2的值.考点:估算无理数的大小.分析:根据2,可得a、b的值,根据乘方运算,可得幂,根据实数的运算,可得答案.解答:解:的整数部分为a,小数部分为b,a=2,b=﹣2,a2+b2=22+(﹣2)2=4+(7﹣4+4)=15﹣4.点评:本题考查了估算无理数的大小,利用了2得出a、b是解题关键.22.己知+(x﹣2)2=0,求x﹣y的平方根.考点:非负数的性质:算术平方根;非负数的性质:偶次方;平方根.专题:计算题.分析:根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.解答:解:∵+(x﹣2)2=0,∴,解得,∴x﹣y=﹣2+7=5.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.。
中考数学总复习无理数与实数-精练精析及答案解析
无理数与实数1一.选择题(共8小题)1.8的平方根是()A.4 B.±4C.2 D.2.的平方根是()A.±3 B.3 C.±9D.93.已知9.972=99.4009,9.982=99.6004,9.992=99.8001,求之值的个位数字为何?()A.0 B.4 C.6 D.84.已知边长为a的正方形的面积为8,则下列说法中,错误的是()A.a是无理数B.a是方程x2﹣8=0的一个解C.a是8的算术平方根D.a满足不等式组5.化简得()A.100 B.10 C. D.±106.若实数x、y满足=0,则x+y的值等于()A.1 B. C.2 D.7.下列实数中是无理数的是()A.B.2﹣2C.5. D.sin45°8.下列各数:,π,,cos60°,0,,其中无理数的个数是()A.1个B.2个C.3个D.4个二.填空题(共8小题)9.4的平方根是_________ .10.计算:= _________ .11.的算术平方根为_________ .12.计算:= _________ .13.一个数的算术平方根是2,则这个数是_________ .14.计算:﹣= _________ .15.观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是_________ (结果需化简).16.下面是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥3)行从左向右数第n﹣2个数是_________ (用含n 的代数式表示)三.解答题(共6小题)17.计算:﹣4cos45°+()﹣1+|﹣2|.18.计算:.19.计算:(﹣)﹣2+﹣2sin45°﹣|1﹣|.20.计算:(﹣1)0﹣(﹣2)+3tan30°+()﹣1.21.若的整数部分为a,小数部分为b,求a2+b2的值.22.己知+(x﹣2)2=0,求x﹣y的平方根.无理数与实数1参考答案与试题解析一.选择题(共8小题)1.8的平方根是()A. 4 B.±4C.2D.考点:平方根.分析:直接根据平方根的定义进行解答即可解决问题.解答:解:∵,∴8的平方根是.故选:D.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.的平方根是()A.±3B.3 C.±9D.9考点:平方根;算术平方根.专题:计算题.分析:根据平方运算,可得平方根、算术平方根.解答:解:∵,9的平方根是±3,故选:A.点评:本题考查了算术平方根,平方运算是求平方根的关键.3.已知9.972=99.4009,9.982=99.6004,9.992=99.8001,求之值的个位数字为何?()A.0 B.4 C.6 D.8考点:算术平方根.分析:利用已知得出≈9.98,进而得出答案.解答:解:∵9.972=99.4009,9.982=99.6004,9.992=99.8001,∴≈9.98,∴≈998,即其个位数字为8.故选:D.点评:此题主要考查了算术平方根,得出的近似值是解题关键.4.已知边长为a的正方形的面积为8,则下列说法中,错误的是()A.a是无理数 B. a是方程x2﹣8=0的一个解C.a是8的算术平方根 D. a满足不等式组考点:算术平方根;无理数;解一元二次方程-直接开平方法;解一元一次不等式组.分析:首先根据正方形的面积公式求得a的值,然后根据算术平方根以及方程的解的定义即可作出判断.解答:解:a==2,则a是无理数,a是方程x2﹣8=0的一个解,是8的算术平方根都正确;解不等式组,得:3<a<4,而2<3,故错误.故选:D.点评:此题主要考查了算术平方根的定义,方程的解的定义,以及无理数估计大小的方法.5.化简得()A.100 B.10 C.D.±10考点:算术平方根.分析:运用算术平方根的求法化简.解答:解:=10,故答案为:B.点评:本题主要考查算术平方根用二次根式的性质和化简的知识点,本题是基础题,比较简单.6.若实数x、y满足=0,则x+y的值等于()A. 1 B.C.2 D.考点:非负数的性质:算术平方根;非负数的性质:偶次方.专题:分类讨论.分析:根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.解答:解:由题意得,2x﹣1=0,y﹣1=0,解得x=,y=1,所以,x+y=+1=.故选:B.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.7.下列实数中是无理数的是()A.B.2﹣2C.5. D.s in45°考点:无理数.专题:常规题型.分析:根据无理数是无限不循环小数,可得答案.解答:解:A、是有理数,故A选项错误;B、是有理数,故B选项错误;C、是有理数,故C选项错误;D、是无限不循环小数,是无理数,故D选项正确;故选:D.点评:本题考查了无理数,无理数是无限不循环小数.8.下列各数:,π,,cos60°,0,,其中无理数的个数是()A.1个B.2个C.3个D.4个考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:据无理数定义得有,π和是无理数.故选:B.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.二.填空题(共8小题)9.4的平方根是±2.考点:平方根.专题:计算题.分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.解答:解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10.计算:= 3 .考点:算术平方根.专题:计算题.分析:根据算术平方根的定义计算即可.解答:解:∵32=9,∴=3.故答案为:3.点评:本题较简单,主要考查了学生开平方的运算能力.11.的算术平方根为.考点:算术平方根.专题:计算题.分析:首先根据算术平方根的定义计算先=2,再求2的算术平方根即可.解答:解:∵=2,∴的算术平方根为.故答案为:.点评:此题考查了算术平方根的定义,解题的关键是知道=2,实际上这个题是求2的算术平方根.注意这里的双重概念.12.计算:= ﹣8 .考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:分别根据负整数指数幂、0指数幂及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可.解答:解:原式=﹣1﹣8+1+|3﹣4|=﹣8.故答案为:﹣8.点评:本题考查的是实数的运算,熟知负整数指数幂、0指数幂及特殊角的三角函数值是解答此题的关键.13.一个数的算术平方根是2,则这个数是 4 .考点:算术平方根.专题:计算题.分析:利用算术平方根的定义计算即可得到结果.解答:解:4的算术平方根为2,故答案为:4点评:此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.14.计算:﹣= ﹣3 .考点:算术平方根.分析:根据算术平方根的定义计算即可得解.解答:解:﹣=﹣3.故答案为:﹣3.点评:本题考查了算术平方根的定义,是基础题,熟记概念是解题的关键.15.观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是﹣3(结果需化简).考点:算术平方根.专题:规律型.分析:通过观察可知,规律是根号外的符号以及根号下的被开方数依次是:(﹣1)1+1×0,(﹣1)2+1,(﹣1)3+1…(﹣1)n+1),可以得到第16个的答案.解答:解:由题意知道:题目中的数据可以整理为:,(﹣1)2+1,…(﹣1)n+1),∴第16个答案为:.故答案为:.点评:主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.16.下面是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥3)行从左向右数第n﹣2个数是(用含n的代数式表示)考点:算术平方根.专题:规律型.分析:观察不难发现,被开方数是从1开始的连续自然数,每一行的数据的个数是从2开始的连续偶数,求出n﹣1行的数据的个数,再加上n﹣2得到所求数的被开方数,然后写出算术平方根即可.解答:解:前(n﹣1)行的数据的个数为2+4+6+…+2(n﹣1)=n(n﹣1),所以,第n(n是整数,且n≥3)行从左到右数第n﹣2个数的被开方数是n(n﹣1)+n﹣2=n2﹣2,所以,第n(n是整数,且n≥3)行从左到右数第n﹣2个数是.故答案为:.点评:本题考查了算术平方根,观察数据排列规律,确定出前(n﹣1)行的数据的个数是解题的关键.三.解答题(共6小题)17.计算:﹣4cos45°+()﹣1+|﹣2|.考点:实数的运算;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项化为最简二次根式,第二项利用特殊角的三角函数值计算,第三项利用负指数幂法则计算,最后一项利用绝对值法则计算即可得到结果.解答:解:原式=2﹣4×+2+2=4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.计算:.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:分别进行二次根式的化简、特殊角的三角函数值、零指数幂、负整数指数幂等运算,然后按照实数的运算法则计算即可.解答:解:原式=2﹣2×+1﹣8=.点评:本题考查了实数的运算,涉及了二次根式的化简、特殊角的三角函数值、零指数幂、负整数指数幂等知识,属于基础题.19.计算:(﹣)﹣2+﹣2sin45°﹣|1﹣|.考点:实数的运算;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:本题涉及负整指数幂、特殊角的三角函数值、二次根式化简三个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果解答:解:原式=+﹣﹣(﹣1)=.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.计算:(﹣1)0﹣(﹣2)+3tan30°+()﹣1.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:本题涉及零指数幂、负整指数幂、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得结果.解答:解:原式=1﹣+2++3=6.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.21.若的整数部分为a,小数部分为b,求a2+b2的值.考点:估算无理数的大小.分析:根据2,可得a、b的值,根据乘方运算,可得幂,根据实数的运算,可得答案.解答:解:的整数部分为a,小数部分为b,a=2,b=﹣2,a2+b2=22+(﹣2)2=4+(7﹣4+4)=15﹣4.点评:本题考查了估算无理数的大小,利用了2得出a、b是解题关键.22.己知+(x﹣2)2=0,求x﹣y的平方根.考点:非负数的性质:算术平方根;非负数的性质:偶次方;平方根.专题:计算题.分析:根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.解答:解:∵+(x﹣2)2=0,∴,解得,∴x﹣y=﹣2+7=5.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.。
无理数与实数的综合训练题(中考题精选)
无理数与实数的综合训练题(中考题精选)1.如图,在数轴上有两个长方形ABCD和EFGH,这两个长方形的宽都是2√2个单位长度,长方形ABCD的长AD是4√2个单位长度,长方形EFGH的长EH是8√2个单位长度,点E在数轴上表示的数是5√2,且E,D两点之间的距离为12√2.(1)点H在数轴上表示的数是,点A在数轴上表示的数是;(2)若线段AD的中点为M,线段EH上有一点N,EN=14EH,M以每秒4个单位长度的速度向右匀速运动,N以每秒3个单位长度的速度向左运动,设运动的时间为x秒,问当x为多少时,原点O恰为线段MN的三等分点?(3)若线段AD的中点为M,线段EH上有一点N,EN=14EH,长方形ABCD以每秒4个单位长度的速度向右匀速运动,长方形EFGH保持不动,设运动时间为t秒,是否存在一个t的值,使以M,N,F三点为顶点的三角形是直角三角形?若存在,求t的值;不存在,请说明理由.2.阅读材料:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,那么形如a+bi(a,b为实数)的数就叫做复数,a叫这个复数的实部,b叫做这个复数的虚部.它有如下特点:①它的加,减,乘法运算与整式的加,减,乘法运算类似例如计算:(2+i)+(3﹣4i)=(2+3)+(1﹣4)i=5﹣3i:(3+i)i=3i+i2=3i﹣1.②若它们的实部和虚部分别相等,则称这两个复数相等;若它们的实部相等,虚部互为相反数,则称这两个复数共轭,如1+2i的共轭复数为1﹣2i.(1)填空:i3=,i4=;(2)求(2+i)2的共轭复数;(3)已知(a+i)(b+i)=1+3i,求a2+b2(i2+i3+i4…+i2018)的值.3.如图,正方形ABCD 的边AB 在数轴上,点A 表示的数为﹣1,正方形ABCD 的周长为16个单位长度.(1)点B 表示的数为 ;(2)将正方形ABCD 沿数轴水平移动,移动后的正方形记为正方形A ′B ′C ′D ′. ①当移动后的正方形A ′B ′C ′D ′与原正方形ABCD 重叠部分的面积为4时,求点A ′表示的数;②设正方形ABCD 的移动速度为每秒2个单位长度,点E 为线段AA ′的中点,点F 在线段BB '上,且BF =14BB ′.经过t 秒后,点E 、F 所表示的数互为相反数,直接写出t 的值.4.已知,如图,实数a 、b 、c 在数轴上表示的点分别是点A 、B 、C ,且a 、b 、c 满足(a +8)2+(b +2)2+|c ﹣3|=0.(1)求a 、b 、c 的值;(2)若点A 沿数轴向左以每秒1个单位的速度运动,点B 和点C 沿数轴向右运动,速度分别是2个单位/秒、3个单位/秒.设运动时间为t (秒).①2秒后,点A 、B 、C 表示的数分别是 , , ;②运动t 秒后,求点B 和点C 之间的距离(用“BC ”表示)和点A 和点B 之间的距离(用“AB ”表示);(用含t 的代数式表示)③在②的基础上,请问:3×BC ﹣AB 的值是否随着时间t 的变化而变化?若不变化,求这个不变的值;若变化,求这个值的变化范围;(3)若点A 沿数轴向右以每秒1个单位的速度运动,点B 和点C 沿数轴向左运动,速度分别是2个单位/秒、3个单位/秒.设运动时间为t (秒).是否存在某一时刻,满足点A 和点B 之间的距离是点B 和点C 之间的距离的12若存在,直接写出时间t 的值;若不存在,说明理由.5.如图1,在数轴上点A,点B对应的数分别是6,﹣6,∠DCE=90°(点C与点O重合,点D在数轴的正半轴上).(1)如图1,若CF平分∠ACE,则∠AOF=度;点A与点B的距离=;(2)如图2,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位后,再绕点顶点C 逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α.①当t=1时,α=;点B与点C的距离=;②猜想∠BCE和α的数量关系,并说明理由;(3)如图3,开始∠D1C1E1与∠DCE重合,将∠DCE沿数轴的正半轴向右平移t(0<t <3)个单位,再绕点顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α,与此同时,将∠D1C1E1沿数轴的负半轴向左平移t(0<t<3)个单位,再绕点顶点C1顺时针旋转30t度,作C1F1平分∠AC1E1,记∠D1C1F1=β,若α与β满足|α﹣β|=20°,求t的值.6.(1)计算:(√2+1)0﹣2﹣1−√2tan45°+|−√2|(2)解二元一次方程组:{x =3y −53y =8−2x .7.解方程组{3x +6y =106x +3y =8,并求√xy 的值.8.用48 m 的篱笆在空地上围成一个绿化场地.现有两种设计方案:一种是围成正方形场地,另一种是围成圆形场地,试问:选用哪一种方案围成的场地面积较大?并说明理由.9.如图,是一个计算流程图:(1)求计算流程图能够运算进行下去的最小整数?(2)是否存在输入有效的x 值后,始终输不出y 值?如果存在,请写出所有满足要求的x 的值;如果不存在,请说明理由.10.计算:(1)√83+√0+√14; (2)2√2+|√2−√3|;(3)√0.04−√(−2)2+|√3−2|+√3.11.(1)如图,实数a,b,c在数轴上对应点的位置如图所示,化简√a2+|b﹣a|−√(a+b)33−|b﹣c|的结果.(2)已知实数a,b,c满足(a﹣2)2+|2b+6|+√5−c√5−c=0.求√a−3b+c的平方根.12.(1)计算:−(−3)+√16−2sin30°−|1−√2|;(2)解不等式组:{2x−13−5x+12⩽1 5x−2<3(x+1).13.如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a﹣30|+(b+6)2=0.点O 是数轴原点.(1)点A表示的数为,点B表示的数为,线段AB的长为.(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=2BC,则点C在数轴上表示的数为.(3)现有动点P、Q都从B点出发,点P以每秒1个单位长度的速度向终点A移动;当点P移动到O点时,点Q才从B点出发,并以每秒3个单位长度的速度向右移动,且当点P到达A点时,点Q就停止移动,设点P移动的时间为t秒,问:当t为多少时,P、Q两点相距4个单位长度?14.如图,O 为原点,在数轴上点A 表示的数为a ,点B 表示的数为b ,且a ,b 满足|a +2|+(3a +b )2=0(1)a = ,b = ;(2)若点P 从点A 出发,以每秒1个单位长度的速度沿数轴向右匀速运动,设运动的时间为t (秒).①当点P 运动到线段OB 上,且PO =2PB 时,求t 的值;②先取OB 的中点E ,当点P 在线段OE 上时,再取AP 的中点F ,试探究AB−OP EF的值是否为定值?若是,求出该值;若不是,请用含t 的代数式表示.③若点P 从点A 出发,同时,另一动点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,到达点O 后立即原速返回向右匀速运动,到点B 后停止运动,当PQ =1时,求t 的值.15.对于实数a ,我们规定:用符号[√a]表示不大于√a 的最大整数,称[√a]为a 的根整数,例如:[√9]=3,[√10]=3.(1)仿照以上方法计算:[√4]= ;[√26]= . (2)若[√x]=1,写出满足题意的x 的整数值 .如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次[√10]=3→[√3]=1,这时候结果为1.(3)对100连续求根整数, 次之后结果为1.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是 .16.先阅读第(1)题的解法,再解答第(2)题:(1)已知a ,b 是有理数,并且满足等式5−√3a =2b +23√3−a ,求a ,b 的值.解:因为5−√3a =2b +23√3−a所以5−√3a =(2b ﹣a )+23√3所以{2b −a =5−a =23解得{a =−23b =136 (2)已知x ,y 是有理数,并且满足等式x 2﹣2y −√2y =17﹣4√2,求x +y 的值.17.阅读理解:求√105的近似值.小明的方法:设√105=10+x ,其中0<x <1,则105=(10+x )2,即105=100+20x +x 2. ∵0<x <1 ∴0<x 2<1,∴105≈100+20x ,解之得x ≈0.25,即√105的近似值为10.25,小莉的方法:设√105=11﹣y ,其中0<y <1,则105=(11﹣y )2,即105=121﹣22y +y 2,∵0<y <1 ∴0<y 2<1,∴105≈121﹣22y ,解之得y ≈0.73,即√105的近似值为10.27.【反思比较】你认为 的方法更接近√105.(填“小明”或“小莉”) 【深入思考】下面关于x 与y 之间的数量关系A .x +y >1B .x +y =1C .x +y <1D .无法确定 你认为正确的是 .请说明理由.18.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A 、点B 表示的数分别为a 、b ,则A ,B两点之间的距离AB =|a ﹣b |,线段AB 的中点表示的数为a+b 2.【问题情境】如图,数轴上点A 表示的数为﹣4,点B 表示的数为16,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(t >0). 【综合运用】 (1)填空:①A 、B 两点间的距离AB = ,线段AB 的中点表示的数为 ; ②当t 为 秒时,点P 与点Q 相遇.(2)①用含t 的代数式表示:t 秒后,点P 表示的数为 ;点Q 表示的数为 ; ②若将数轴翻折,使点A 与数轴上表示6的点重合,则此时点B 与数轴上表示数 的点重合.(3)若点M 为P A 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN 的长.19.如图,数轴上点A 表示的数为﹣2,点B 表示的数为8,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(t >0). (1)填空:①A 、B 两点间的距离AB = ,线段AB 的中点表示的数为 ;②用含t 的代数式表示:t 秒后,点P 表示的数为 ;点Q 表示的数为 . (2)求当t 为何值时,PQ =12AB ;(3)当点P 运动到点B 的右侧时,P A 的中点为M ,N 为PB 的三等分点且靠近于P 点,求PM −34BN 的值.20.如图,已知数轴上点A表示的数为8,B是数轴上一点(B在A点左边),且AB=10,动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒.(1)写出数轴上点B所表示的数;(2)点P所表示的数;(用含t的代数式表示);(3)C是AP的中点,D是PB的中点,点P在运动的过程中,线段CD的长度是否发生变化?若变化,说明理由,若不变,请你画出图形,并求出线段CD的长.。
初中数学《无理数与实数》专项练习题(附答案)
,0,1.2131415,
−
4 5
,﹣
0.5252252225…(每两个 5 之间依次增加 1 个 2)
( 1 )正数集合:{
…};
( 2 )负分数集合:{ …};
( 3 )整数集合:{ …};
( 4 )无理数集合:{ …}.
45.若一正数 a 的两个平方根分别是 2m-3 和 5-m,求 a 的值.
46.若一个立方体木块的体积是 0.125m3 , 现将它锯成 8 个同样大小的立方体小木块,求每个小立方体 木块的表面积.
47.计算:
27 + |1 −
3|
+
(
1 2
)−1
−
20160
.
48.将右面各数填入相应的集合内:﹣3.8,﹣10,4.3,2π,﹣
20 7
,0,1.2131415…
整数集合:{ 负分数集合:{ 正数集合:{ 无理数集合:{ 49.请把下列各数填入相应的集合中.
(2)(2 − 1)2 = 25
38.计算:|
3
﹣2|+3tan30°+(
1 2
)﹣1﹣(3﹣π)0﹣
(
2)2
.
39.计算:3tan30°+|2﹣
3
|+(
1 3
)﹣1﹣(3﹣π)0﹣(﹣1)2017
.
40.计算:
(
−
4)
×
(
−
1 2
)
+
2−1
−
(
− 1)0 +
36 .
第四部分:解答题
41.若 5a+1 和 a﹣19 是正数 m 的两个平方根,求 m 的值.
中考数学专题复习《实数》检测题真题(含答案)
中考专题复习实 数1、有理数:像3、53-、119……这样的 或 。
2、数轴:规定了 、 和 的直线叫做数轴(画数轴时,要注意上述规定的 三要素缺一不可)。
3、相反数:只有 不同的两个数,如a 的相反数是 ,0的相反数仍是 。
若a 与b 互为相反数,则 .4、绝对值:正数的绝对值是它 ,负数的绝对值是它的 ,0的绝对值是0.任何实数的绝对值都是 ,a ≧0.互为相反数的两个数的绝对值相等,a =a -。
5、倒数: 没有倒数。
正数的倒数是正数,负数的倒数是负数。
若a 与b 互为倒数,则 .6、有理数的四则混合运算:(1)先乘方,再乘除,最后加减; (2)同级运算,从左到右进行;(4)如有括号,先做括号内的运算,按 ,中括号, 依次进行。
7、乘方:求n 个 的积的运算,叫做乘方,乘方的结果叫做 。
在a n中,a 叫做 ,n 叫做 。
8、科学记数法:把一个数写做 的形式,其中101<≤a ,n 是整数,这种记数法叫做科学记数法。
9、平方根:如果一个数的平方等a ,那么这个数叫做a 的 或 ,0的平方根是0,负数 平方根。
a 的平方根记为a ±(a ≧0),读作“正负根号a ”,a 叫做被开方数。
10、算术平方根:如果一个正数的平方等于a ,那么这个正数叫做a 的 ,0的算术平方根为0。
a 的算术平方根记为a (a ≧0),读作“根号a ”,a 叫做被开方数。
11、立方根:如果一个数的立方等于a ,那么这个数叫做a 的 或 ,0的立方 根是0,正数的立方根是正数,负数的立方根是负数。
3a -=3a ,a 的立方根记为3a ,读作“三次根号a ”,a 叫做 ,3是 。
知识回顾12、无理数:像2、33、……这样的 。
13、实数: 和 统称为实数。
实数与数轴上的点 。
1.(2017湖南长沙,1)下列实数中,为有理数的是( ) A .B .C .D .12.(2017广东广州,1)如图1,数轴上两点表示的数互为相反数,则点表示的( )A . -6B .6C . 0D .无法确定3.(2017湖南长沙,3)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为( ) A .B .C .D .4.(2017山东临沂,1)的相反数是( ) A .B .C .2017D .5.(2017浙江宁波,4)实数的立方根是 .6.(2017重庆A 卷,13)“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为 . 7.(2017重庆A 卷,14)计算:|﹣3|+(﹣1)2= . 8.(2017江苏徐州,9)的算术平方根是 . 9.(2017浙江嘉兴,17(1))计算:.10.(2017浙江台州,17)计算:.基础检测考点精讲1.有理数概念【例题1】(2017河南,1)下列各数中比1大的数是()A.2 B.0 C.-1 D.-3【答案】A,【解析】根据正数大于0,0大于负数,两个负数,绝对值大的反而小可得题目选项中的各数中比1大的数是2,故选A.【考点】有理数的大小比较.【变式】(2017重庆A卷,14)计算:|﹣3|+(﹣1)2= .【答案】4.【解析】|﹣3|+(﹣1)2=4【考点】有理数的混合运算.【例题2】(2017天津,1)计算的结果等于()A.2 B. C.8 D.【答案】A.【解析】根据有理数的加法法则即可得原式-2,故选A.【变式】(2017山东滨州,1)计算-(-1)+|-1|,结果为()A.-2 B.2 C.0 D.-1【答案】B.【解析】原式=1+1=2,故选B.【例题3】(2017山东日照,3)铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为()A.4.64×105B.4.64×106C.4.64×107D.4.64×108【答案】C.【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于4640万有8位,所以可以确定n=8﹣1=7.4640万=4.64×107.故选:C.【考点】科学记数法—表示较大的数.【变式】(2017辽宁沈阳,3)“弘扬雷锋精神,共建幸福沈阳”幸福沈阳需要830万沈阳人共同缔造。
中考数学《无理数与实数》专题复习试卷含试卷分析
-初三数学专题复习无理数与实数一、单选题1.和数轴上的点一一对应的是()A. 有理数B. 无理数C. 实数D. 整数和分数2.估算的值在().A. 7和8之间B. 6和7之间C. 3和4之间D. 2和3之间3.下列各数中没有平方根的数是()A. B. C. D.4.在实数0,-,2,-中最小的实数为()A. -2B. -C. 0D. -5.的值等于()A. 4B. 2C. ±2D. ±46.计算的结果是()A. ±3B. 3C. ﹣3D.7.能与数轴上的点一一对应的是()A. 整数B. 有理数C. 无理数D. 实数8.4的平方根是()A. ±2B. 2C.D.9.计算:3÷的结果是()A. B. C. D.10. 化简得()A. 100B. 10C.D. ±1011.按键的计算结果为()A. 21B. 15C. 84D. 4812.计算的结果是()A. ±3B. 3C. 3D.13.若2m﹣4与3m﹣1是同一个数两个不同的平方根,则m的值()A. ﹣3B. 1C. ﹣3或1D. ﹣114.估算﹣2的值()A. 在1到2之间B. 在2到3之间C. 在3到4之间D. 在4到5之间15.在下列各式中:=,=0.1, =0.1,-=-27,其中正确的个数是()A. 1B. 2C. 3D. 416.下列各式正确的是()A. 2a2﹣a2=2B. +=C. ()2=25D. =117.下列四个实数中,是无理数的为()A. B. C. 0 D. 0.18.计算×+()0的结果为()A. 2+B. +1C. 3D. 519.下列四个实数中,绝对值最小的数是()A. -5B. -C. 1D. π20.在﹣3.14,,,﹣,0,中,无理数的个数是()A. 1B. 2C. 3D. 4二、填空题21. =________.22. 计算:|﹣3|﹣=________.23.估算的大小________(结果精确到1).24.用“<”或“>”填空:+1________4.25.若=2﹣x,则x的取值范围是________;若3+的小数部分是m,3﹣的小数部分是n,则m+n=________.三、计算题26.计算:(1)|﹣5|+ ﹣32;(2)求x的值:4x2﹣25=0;(3)﹣|2﹣|﹣;(4)﹣﹣.27.计算:.28.计算(1)计算:|1﹣|﹣+ .(2)求x的值:4(x+1)2﹣9=0.29.计算(1)(﹣1)2﹣|1﹣|+(2)+ ﹣﹣| ﹣2|(3)(x﹣1)2=4(4)3x3=﹣81.30.已知a的倒数,b的相反数是,c的立方根是﹣1,求a2+b2+c2的值.四、解答题31.已知2x—y的平方根为±3,3x+y的立方根是1,求3x-2y的平方根.32.把下列各数分别填在相应的集合中:﹣,,,0,,,,,3.14答案解析部分一、单选题1.【答案】C2.【答案】D3.【答案】D4.【答案】B5.【答案】B6.【答案】B7.【答案】D8.【答案】A9.【答案】A10.【答案】B11.【答案】D12.【答案】B13.【答案】B14.【答案】C15.【答案】B16.【答案】D17.【答案】A18.【答案】C19.【答案】C20.【答案】B二、填空题21.【答案】322.【答案】123.【答案】424.【答案】>25.【答案】x≤2;1三、计算题26.【答案】(1)解:原式=5+4﹣9=0(2)解:方程整理得:x2= ,开方得:x=±(3)解:原式=5﹣2+ +3=6+(4)解:原式= + ﹣=﹣27.【答案】解:2-2-2cos30°+tan60°+(π-3.14)0=28.【答案】(1)解:原式= ﹣1﹣2+ = ﹣(2)解:方程整理得:(x+1)2= ,开方得:x+1=± ,解得:x= 或x=﹣29.【答案】(1)解:(﹣1)2﹣|1﹣|+=1﹣+1+3=5﹣(2)解:+ ﹣﹣| ﹣2|= +3﹣(﹣2)﹣2+=3+2(3)解:∵(x﹣1)2=4,∴x﹣1=±2,解得x=3或﹣1.(4)解:3x3=﹣81∴x3=﹣27,∴x=﹣3.30.【答案】解:根据题意得:a= ,b= ,c=﹣1,则原式=3+5+1=9.四、解答题31.【答案】解:∵2x-y的平方根为±3,3x+y的立方根是1,∴2x-y=9,3x+y=1.解得:x=2,y=-5.∴3x-2y=3×2-2×(-5)=16.∵16的平方根是±4,∴3x-2y的平方根是±4.32.【答案】解:有理数集合: - , ,0, , ,3.14 .无理数集合: , ,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年中考数学一轮复习专题练习《无理数与实数》一.选择题1.的算术平方根是()A.2 B.±2 C.D.2.已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是()A.a•b>0 B.a+b<0 C.|a|<|b|D.a﹣b>03.实数a,b在数轴上的位置如图所示,则|a|﹣|b|可化简为()A.a﹣b B.b﹣a C.a+b D.﹣a﹣b4.的运算结果应在哪两个连续整数之间()A.2和3 B.3和4 C.4和5 D.5和65.已知边长为m的正方形面积为12,则下列关于m的说法中,错误的是()①m是无理数;②m是方程m2﹣12=0的解;③m满足不等式组;④m是12的算术平方根.A.①②B.①③C.③D.①②④6.已知实数a,b在数轴上的位置如图所示,下列结论错误的是()A.|a|<1<|b|B.1<﹣a<b C.1<|a|<b D.﹣b<a<﹣17.实数b满|b|<3,并且有实数a,a<b恒成立,a的取值范围是()A.小于或等于3的实数B.小于3的实数C.小于或等于﹣3的实数D.小于﹣3的实数二.填空题8.实数﹣27的立方根是.9.若实数m,n满足(m﹣1)2+=0,则(m+n)5=.10.将实数,π,0,﹣6由小到大用“<”号连起来,可表示为.11.比较大小:.(填“>”,“<”或“=”)三.解答题12.计算:(﹣1)2016+2sin60°﹣|﹣|+π0.13.计算:|﹣3|+﹣(﹣1)2+(﹣)0.14.计算:.15.计算:|﹣3|﹣(2016+sin30°)0﹣(﹣)﹣1.答案与解析一.选择题1.(2016•毕节市)的算术平方根是()A.2 B.±2 C.D.【分析】首先根据立方根的定义求出的值,然后再利用算术平方根的定义即可求出结果.【解答】解:=2,2的算术平方根是.故选:C.【点评】此题主要考查了算术平方根的定义,注意关键是要首先计算=2.2.(2016•大庆)已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是()A.a•b>0 B.a+b<0 C.|a|<|b|D.a﹣b>0【分析】根据点a、b在数轴上的位置可判断出a、b的取值范围,然后即可作出判断.【解答】解:根据点a、b在数轴上的位置可知1<a<2,﹣1<b<0,∴ab<0,a+b>0,|a|>|b|,a﹣b>0,.故选:D.【点评】本题主要考查的是数轴的认识、有理数的加法、减法、乘法法则的应用,掌握法则是解题的关键.3.(2016•威海)实数a,b在数轴上的位置如图所示,则|a|﹣|b|可化简为()A.a﹣b B.b﹣a C.a+b D.﹣a﹣b【分析】根据数轴可以判断a、b的正负,从而可以化简|a|﹣|b|,本题得以解决.【解答】解:由数轴可得:a>0,b<0,则|a|﹣|b|=a﹣(﹣b)=a+b.故选C.【点评】本题考查实数与数轴,解题的关键是明确数轴的特点,根据数轴可以判断a、b的正负.4.(2016•资阳)的运算结果应在哪两个连续整数之间()A.2和3 B.3和4 C.4和5 D.5和6【分析】根据无理数的大小比较方法得到<<,即可解答.【解答】解:∵<<,即5<<6,∴的运算结果应在5和6两个连续整数之间.故选:D.【点评】本题考查了估算无理数的大小,解决本题的关键是明确<<.5.(2015•通辽)已知边长为m的正方形面积为12,则下列关于m的说法中,错误的是()①m是无理数;②m是方程m2﹣12=0的解;③m满足不等式组;④m是12的算术平方根.A.①②B.①③C.③D.①②④【分析】①根据边长为m的正方形面积为12,可得m2=12,所以m=2,然后根据是一个无理数,可得m是无理数,据此判断即可.②根据m2=12,可得m是方程m2﹣12=0的解,据此判断即可.③首先求出不等式组的解集是4<m<5,然后根据m=2<2×2=4,可得m不满足不等式组,据此判断即可.④根据m2=12,而且m>0,可得m是12的算术平方根,据此判断即可.【解答】解:∵边长为m的正方形面积为12,∴m2=12,∴m=2,∵是一个无理数,∴m是无理数,∴结论①正确;∵m2=12,∴m是方程m2﹣12=0的解,∴结论②正确;∵不等式组的解集是4<m<5,m=2<2×2=4,∴m不满足不等式组,∴结论③不正确;∵m2=12,而且m>0,∴m是12的算术平方根,∴结论④正确.综上,可得关于m的说法中,错误的是③.故选:C.【点评】(1)此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a本身是非负数.(3)求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.(2)此题还考查了无理数和有理数的特征和区别,要熟练掌握,解答此题的关键是要明确:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数.(3)此题还考查了不等式的解集的求法,以及正方形的面积的求法,要熟练掌握.6.已知实数a,b在数轴上的位置如图所示,下列结论错误的是()A.|a|<1<|b|B.1<﹣a<b C.1<|a|<b D.﹣b<a<﹣1【分析】首先根据数轴的特征,判断出a、﹣1、0、1、b的大小关系;然后根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,逐一判断每个选项的正确性即可.【解答】解:根据实数a,b在数轴上的位置,可得a<﹣1<0<1<b,∵1<|a|<|b|,∴选项A错误;∵1<﹣a<b,∴选项B正确;∵1<|a|<|b|,∴选项C正确;∵﹣b<a<﹣1,∴选项D正确.故选:A.【点评】(1)此题主要考查了实数与数轴,要熟练掌握,解答此题的关键是要明确:实数与数轴上的点是一一对应关系.任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.数轴上的任一点表示的数,不是有理数,就是无理数.(2)此题还考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.7.实数b满|b|<3,并且有实数a,a<b恒成立,a的取值范围是()A.小于或等于3的实数B.小于3的实数C.小于或等于﹣3的实数D.小于﹣3的实数【分析】熟悉绝对值的意义,根据绝对值的意义求得b的取值范围,再根据a,b的关系求得a的取值范围.【解答】解:∵|b|<3,∴﹣3<b<3,又∵a<b,∴a的取值范围是小于或等于﹣3的实数.故选C.【点评】此题考查了绝对值的有关内容,用几何方法借助数轴来求解,更直观,且不容易遗漏,体现了数形结合的优点.二.填空题8.(2016•宁波)实数﹣27的立方根是﹣3.【分析】由立方根的定义和乘方的关系容易得出结果.【解答】解:∵(﹣3)3=﹣27,∴实数﹣27的立方根是﹣3.故答案为:﹣3.【点评】本题考查了立方根的定义、乘方的意义;熟练掌握立方根的定义是解决问题的关键.9.若实数m,n满足(m﹣1)2+=0,则(m+n)5=﹣1.【分析】根据非负数的性质可求出m、n的值,进而可求出(m+n)5的值.【解答】解:由题意知,m,n满足(m﹣1)2+=0,∴m=1,n=﹣2,∴(m+n)5=(1﹣2)5=﹣1.故答案为:﹣1.【点评】此题主要考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.10.将实数,π,0,﹣6由小到大用“<”号连起来,可表示为﹣6.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:≈2.236,π≈3.14,∵﹣6<0<2.236<3.14,∴﹣6.故答案为:﹣6.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.11.比较大小:<.(填“>”,“<”或“=”)【分析】首先求出两个数的差是多少;然后根据求出的差的正、负,判断出、的大小关系即可.【解答】解:﹣==∵,∴4,∴,∴﹣<0,∴<.故答案为:<.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是判断出﹣的差的正、负.三.解答题12.(2016•黄石)计算:(﹣1)2016+2sin60°﹣|﹣|+π0.【分析】根据实数的运算顺序,首先计算乘方和乘法,然后从左向右依次计算,求出算式(﹣1)2016+2sin60°﹣|﹣|+π0的值是多少即可.【解答】解:(﹣1)2016+2sin60°﹣|﹣|+π0=1+2×﹣+1=1+﹣+1=2【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.(3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.13.(2016•衢州)计算:|﹣3|+﹣(﹣1)2+(﹣)0.【分析】根据绝对值和算术平方根、乘方以及零指数幂的定义进行计算,即可得出结果.【解答】解:|﹣3|+﹣(﹣1)2+(﹣)0=3+3﹣1+1=6.【点评】本题考查了实数的运算、绝对值和算术平方根、乘方以及零指数幂的定义;熟练掌握实数的运算是解决问题的关键.14.(2016•梅州)计算:.【分析】根据实数的运算顺序,首先计算乘方、乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:=1+×﹣3+2=1+1﹣3+2=1【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.(3)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(4)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.15.计算:|﹣3|﹣(2017+sin30°)0﹣(﹣)﹣1.【分析】根据实数的运算顺序,首先计算乘方,然后从左向右依次计算,求出算式|﹣3|﹣(2017+sin30°)0﹣(﹣)﹣1的值是多少即可.【解答】解:|﹣3|﹣(2017+sin30°)0﹣(﹣)﹣1=3﹣1+2=2+2=4.【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方。